Science.gov

Sample records for cofecu magnetic alloy

  1. Magnetic behavior of as-deposited and annealed CoFe and CoFeCu nanowire arrays by ac-pulse electrodeposition

    NASA Astrophysics Data System (ADS)

    Ramazani, A.; Almasi-Kashi, M.; Golafshan, E.; Arefpour, M.

    2014-09-01

    CoFe and CoFeCu self-organized alloy nanowires were grown into anodic aluminum oxide template by potentiostatic mode of ac-pulse electrodeposition technique and subsequently annealed at 580 °C. The influence of bath composition, off-time between pulses and annealing treatment on the Cu content, microstructure and magnetic properties of CoFeCu nanowire arrays have been discussed. Increasing the off-time between pulses decreased the coercivity and saturation magnetization of the CoFeCu nanowires due to substitution of Co and Fe with Cu atoms which resulted in electroless process. Coercivity and squareness of the annealed samples increased due to improvement of samples crystallinity. Magnetic measurements showed high perpendicular magnetic anisotropy of the nanowires with easy axis parallel to nanowires axis. X-ray diffraction results indicated that annealed CoFeCu nanowires were polycrystalline with two distinct CoFe and Cu phases.

  2. Microstructural and magnetic characterizations of CoFeCu electrodeposited in self-assembled mesoporous silicon

    NASA Astrophysics Data System (ADS)

    Fortas, G.; Haine, N.; Sam, S.; Gabouze, N.; Saifi, A.; Ouir, S.; Menari, H.

    2015-03-01

    Self-assembled mesoporous silicon with quasi-regular pore arrangements has been fabricated by the electrochemical anodization process in hydrofluoric acid solution. CoFeCu was electrodeposited in this structure from a bath containing sodium acetate as a complexing agent with a pH value of 5. The effect of current density on the morphology, the structure and the magnetic properties of CoFeCu deposit was studied by SEM, EDS, DRX and VSM. It has been shown that the morphology and structure of samples were strongly influenced by the current density and etching duration. The micrographs show the vertical and branched nanowires and also a discontinuous growth of wires. Further, the growth of a thick layer from the grain boundaries of released CoFeCu wires is produced. The magnetic hysteresis loops demonstrate that the CoFeCu nanowires exhibit easy magnetic axis perpendicular to the PS channels axis when the current density varied from 3 to 10 mA/cm2. Nevertheless, they reveal a no magnetic anisotropy of CoFeCu nanostructures deposited only in the outside of porous silicon, probably due to the vanishing the shape anisotropy.

  3. The effect of Fe content in electrodeposited CoFe/Cu multilayers on structural, magnetic and magnetoresistance characterizations.

    PubMed

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan; Safak, Mürşide; Karaagac, Oznur

    2010-11-01

    A series of CoFe/Cu multilayers were electrodeposited on Ti substrates from the electrolytes containing their metal ion under potentiostatic control, but the Fe concentration in the electrolytes was changed from 0.0125 M to 0.2 M. The deposition was carried out in a three-electrode cell at room temperature. The deposition of Cu layers was made at a cathode potential of -0.3 V with respect to saturated calomel electrode (SCE), while the ferromagnetic CoFe layers were deposited at -1.5 V versus SCE. The structural studies by X-ray diffraction revealed that the multilayers have face-centered-cubic structure. The magnetic characteristics of the films were investigated using a vibrating sample magnetometer and their easy-axis was found to be in film plane. Magnetoresistance measurements were carried out using the Van der Pauw method at room temperature with magnetic fields up to +/- 12 kOe. All multilayers exhibited giant magnetoresistance (GMR) and the GMR values up to 8% were obtained.

  4. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  5. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  6. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  7. Magnetic Characteristics of Two Metglas Alloys

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; SNS nEDM Collaboration

    2016-09-01

    Magnetic shielding is gaining greater significance as precision experiments become more sensitive, such as for the Spallation Neutron Source nEDM [neutron electric dipole moment] measurement. Targeting a sensitivity of 10-28 e-cm, the SNS nEDM collaboration minimizes magnetic shield gradients and magnetic noise with a superconducting lead shield and several shield layers that include using a Metglas layer as a primary component. Metglas is a thin ribbon of proprietary engineered alloy that comes in many varieties. One alloy with high (as cast) permeability is Metglas alloy 2705M, which is primarily composed of Cobalt. However, this alloy will activate under neutron radiation and is therefore unsuitable. However, another high-performance Metglas alloy, 2826 MB, contains only trace amounts of Cobalt. A study of the shielding characteristics of the two alloys was performed, paying close attention to field oscillation frequency and magnitude.

  8. Controlling magnetic interfaces using ordered surface alloys

    NASA Astrophysics Data System (ADS)

    Ji, Chenlu; Wang, Zhe; Wu, Qiang; Huang, Li; Altman, M. S.

    2016-10-01

    We have investigated the growth and magnetic properties of Fe thin films on the clean W(100) surface and W(100)-M c(2 × 2) (M =Cu , Ag, Au) surface alloy substrates. The influence of the interface on magnetism is assessed experimentally by studying sensitive threshold behavior in magnetic ordering using spin-polarized low-energy electron microscopy. The onset of ferromagnetic order that occurs with increasing film thickness at room temperature due to finite-sized scaling of the Curie temperature varies reproducibly among films on W(100) and the surface alloys. Magnetic moments and exchange coupling constants of the magnetic ground states are also determined theoretically for films with ideal interfaces by first-principles density functional theory calculations. These microscopic quantities are consistently enhanced in Fe films on the noble metal-induced surface alloys compared to their values in films on the clean W(100) surface. We attribute the systematic variation of magnetic onset observed experimentally to the competition between the intrinsically enhanced magnetic coupling and moments on the surface alloy substrates and several extrinsic factors that could suppress magnetic ordering, including intermixing, substrate and film roughness, and surface alloy disorder. Tendencies for intermixing are explored theoretically by determining the energy barrier for noble metal segregation. Despite these possible extrinsic effects, the results suggest that the use of the broad class of ordered surface alloys as alternative substrates may offer greater opportunities for manipulating thin film magnetism.

  9. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  10. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  11. Hyperfine magnetic fields in substituted Finemet alloys

    NASA Astrophysics Data System (ADS)

    Brzózka, K.; Sovák, P.; Szumiata, T.; Gawroński, M.; Górka, B.

    2016-12-01

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  12. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  13. Joint properties of cast Fe-Pt magnetic alloy laser welded to gold alloys.

    PubMed

    Watanabe, Ikuya; Nguyen, Khoi; Benson, P Andrew; Tanaka, Yasuhiro

    2006-01-01

    This study investigated the joint properties of a cast Fe-Pt magnetic alloy (Fe-36 at % Pt) laser welded to three gold alloys. The gold alloys used were ADA Type II and Type IV gold alloys, and an Ag-based (Ag-Au) gold alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared for each alloy. After the cast Fe-Pt plates were heat treated, they were butted against each of the three alloys and then laser welded with Nd:YAG laser at 200 V. Homogeneously welded specimens were also prepared for each alloy. Tensile testing was conducted at a crosshead speed of 1 mm/min. Failure load (N) and elongation (%) were recorded. After tensile testing, the fractured surfaces were examined with the use of SEM. The failure-load values of the group of alloys welded homogeneously were ranked in the order of: Ag-Au alloy > Type IV alloy > Type II alloy > Fe-Pt alloy. The Type IV alloy welded to Fe-Pt alloy had the highest failure-load value among the three alloys tested. The elongation results tended to follow a similar pattern. The results of this study indicated that Type IV gold alloy is a suitable alloy for metal frameworks to which cast Fe-Pt magnetic alloy is laser welded.

  14. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Corell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1998-01-01

    The objective of this study is to conduct the Earth-based research sufficient to successfully propose a flight experiment (1) to experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in conductive melts as this applies to the bulk growth of solid solution semiconducting materials in the reduced gravitational levels available in low Earth orbit and (2) to assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during space processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system was chosen because it has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit high growth rates compared to many other commonly studied alloy semiconductors. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. Some compositional anomalies observed by us in magnetic grown crystals can only be explained by TEMC; this has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface.

  15. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1999-01-01

    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.

  16. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    NASA Astrophysics Data System (ADS)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  17. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zheng, Zhou; Xu, Jing; Wang, Yan

    2014-04-01

    In this paper, the effects of milling duration and composition on the microstructure and magnetic properties of equi-atomic FeSiBAlNi and FeSiBAlNiNb high entropy alloys during mechanical alloying have been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy and alternating gradient magnetometry. The amorphous high entropy alloys have been successfully fabricated using the mechanical alloying method. The results show that the Nb addition prolongs the milling time for the formation of the fully FeSiBAlNi amorphous phase and decreases the glass forming ability. However, FeSiBAlNiNb amorphous high entropy alloy has the higher thermal stability and heat resisting properties. Moreover, the as-milled FeSiBAlNi(Nb) powders are soft-magnetic materials indicated by their low coercivity. The saturation magnetization of the as-milled FeSiBAlNi(Nb) powders decreases with prolonging of the milling time and shows the lowest value when the amorphous high entropy alloys are formed. It suggests that the as-milled products with solid solution phases show the better soft-magnetic properties than those with fully amorphous phases. The Nb addition does not improve the soft-magnetic properties of the FeSiBAlNi high entropy alloys. Rather, both amorphous high entropy alloys have similar soft-magnetic properties after a long milling time.

  18. Galvanic corrosion between dental precious alloys and magnetic stainless steels used for dental magnetic attachments.

    PubMed

    Takahashi, Noriko; Takada, Yukyo; Okuno, Osamu

    2008-03-01

    In this study, we examined the corrosion behavior of dental precious alloys and magnetic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, used for dental magnetic attachments. Their galvanic corrosion behavior was evaluated from the viewpoint of corrosion potentials when they were in contact with each other. Rest potentials of the precious alloys were constantly higher than those of magnetic stainless steels. Since most gold alloys raised the corrosion potential more significantly than silver alloys did, silver alloys seemed to be better suited than gold alloys for combination with magnetic stainless steels. However, all corrosion potential values were sufficiently lower than the breakdown potentials of the stainless steels and existed within their passive regions. Based on the findings of this study, SUS XM27 and SUS 447J1--which exhibited higher breakdown potentials than SUS 444--emerged as the preferred choices for combination with gold alloys.

  19. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    SciTech Connect

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A.

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  20. Magnetic anisotropy of FeGa alloys

    NASA Astrophysics Data System (ADS)

    Rafique, Sadia; Cullen, James R.; Wuttig, Manfred; Cui, Jun

    2004-06-01

    Cubic magnetocrystalline anisotropy constants, K1 and K2, for Fe1-xGax alloys were measured using magnetization curves with x=0.05, 0.125, 0.14, 0.18, and 0.20. Thin circular (110) disks all with <100>, <110>, and <111> in the plane of the disk were used to measure K1 and K2. K1 was also measured with (100) circular disks. K1 for 5 at. % Ga content was found to be larger than that of pure Fe. (All compositions mentioned hereafter are atomic percents.) K1 and K2 both drop gradually up to 18 at. % Ga substitution. Then there is a sharp drop in the magnitude of both constants. K2 was found to be equal to -9K1/4 and the <110> and <111> directions were equally hard magnetically for all compositions considered in this study. Calculation of the anisotropy energy density verifies this result. K1 measured from both (110) and (100) disks was reasonably consistent.

  1. Magnetic-doped alloys with very large Seebeck coefficients

    NASA Technical Reports Server (NTRS)

    Sellmeyer, D. J.; Zagarins, J.

    1972-01-01

    Preliminary results of this study show that, based on selection of magnetic solute and nonmagnetic solvent from periodic table, alloys having Seebeck coefficients approaching 100 micron V/K can be obtained.

  2. Composition dependence of magnetic properties in perpendicularly magnetized epitaxial thin films of Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Mizukami, S.; Kubota, T.; Wu, F.; Zhang, X.; Miyazaki, T.; Naganuma, H.; Oogane, M.; Sakuma, A.; Ando, Y.

    2012-01-01

    Mn-Ga binary alloys show strong magnetism and large uniaxial magnetic anisotropy even though these alloys do not contain any noble, rare-earth metals or magnetic elements. We investigate the composition dependence of saturation magnetization MS and uniaxial magnetic anisotropy Ku in epitaxial films of MnxGa1-x alloys (x˜0.5-0.75) grown by magnetron sputtering. The MS values decrease linearly from approximately 600 to 200 emu/cm3 with increasing x, whereas the Ku values decrease slightly from approximately 15 to 10 Merg/cm3 with increasing x. These trends are distinct from those for known tetragonal hard magnets obtained in a limited composition range in Mn-Al and Fe-Pt binary alloys. These data are analyzed using a localized magnetic moment model.

  3. A new class of natural magnetic materials - The ordering alloys

    NASA Technical Reports Server (NTRS)

    Wasilewski, Peter

    1988-01-01

    It is shown that tetrataenite (approximately FeNi), found in many meteorites, and Josephinite (approximately FeNi3), found in many serpentinized peridotites and possibly in Allende, are atomically ordered alloys. Data are presented, showing magnetic hysteresis loops, coercivity-temperature behavior at cryogenic temperatures, and thermomagnetic curves, that show that these ordered magnetic materials have unique magnetic properties and do not fit the conventional rock magnetism paradigms represented by Fe3O4 serpentinites. The ordered state is characterized by induced magnetic anisotropy, reaching the extreme for the tetragonal truly uniaxial anisotropy in FeNi. It is suggested that these ordered magnetic alloys should be considered a new class of natural magnetic materials.

  4. Magnetic properties of electrodeposited Ni‒P alloys with varying phosphorus content

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Fishgoit, L. A.; Chernavskii, P. A.; Safonov, V. A.; Filippova, S. E.

    2017-02-01

    The effect thermal treatment has on the magnetic properties (magnetization, saturation magnetization, and coercivity) of Ni‒P alloys prepared via electrodeposition is studied. The process of amorphous Ni‒P alloys devitrification is investigated by differential scanning calorimetry. The effects of chemical composition and thermal treatment on magnetic properties of the alloys are revealed.

  5. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    NASA Astrophysics Data System (ADS)

    Buot, Felix A.; Otadoy, Roland E. S.; Rivero, Karla B.

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  6. Magnetic Domains in Magnetostrictive Fe-Ga Alloys

    SciTech Connect

    Q. Xing; T.A. Lograsso

    2008-11-03

    Lorentz microscopy was applied to the observation of magnetic domains in iron-gallium (Fe-Ga) alloys. Results did not show any link between the magnetic domains and the magnetostriction enhancement by Ga addition, but did reveal that the drastic decrease in magnetostriction for Fe-31.2 at. % Ga was due to the presence of large scale precipitates. Magnetic domain features did not change in the alloys of A2, D0{sub 3}, A2+D0{sub 3}, A2+B2+D0{sub 3}, and A2+fine scale precipitates. Large scale precipitates within the slow-cooled Fe-31.2 at. % Ga affected both the distribution and wall motion of magnetic domains.

  7. Hexaferrite magnetic materials prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ding, J.; Maurice, D.; Miao, W. F.; McCormick, P. G.; Street, R.

    1995-02-01

    The structure and properties of hexaferrites in the form of MFe 12O 19 with M = Ba, Sr and Pb prepared by mechanical alloying and heat treatment have been studied. Coercivities of 6-7 kOe were measured for Ba- and Sr-hexaferrite powders. The high values of coercivities have been associated with small particle sizes (˜ 0.1 μm) resulting from the mechanical alloying and subsequent heat treatment. High-coercivity anisotropic samples have been synthesized using hot-pressing, with remanences of 70-75% of the saturation magnetisation being obtained.

  8. Structural and magnetic properties of nanocrystalline Fe-Co-Ni alloy processed by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Eskandari, Hossein; Mohammad-Hosseini, Vahid

    2016-01-01

    In this present work, a nanostructured iron-cobalt-nickel alloy with Fe50Co30Ni20 composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe3O4 crystalline phase.

  9. Magnetic properties and magnetic hardening mechansim of Pt-Co-B alloys

    NASA Technical Reports Server (NTRS)

    Qiu, Ning; Flanagan, F.; Wittig, James E.

    1994-01-01

    The intrinsic coercivity is found to be maximized in the Pt42Co45B13 ternary alloy which is undercooled and rapidly solidified (quenched using a 70 m/s wheel speed after undercooling), and then annealed (800 C for 2400 min). The same alloy, processed at slower cooling rates and annealed in the same way, has a much larger scale microstructure and a much lower resulting magnetic coercivity. The microstructure which would optimize the coercitvity of this coercivity of this ternary alloy is a completely ordered L1(sub zero) Pt-Co matrix with a submicron magnetic single-domion Co-boride precipitate. The L1(sub zero) phase is highly anistropic magnetically while the Co-boride precipate is somewhat less so. Annealing treatments designed to produced single-domain Co-boride precipitates enhance the coercivity. This suggests that the refined microstructures is responsible for the high coercivities found in the rapidly solidified and annealed alloy. The magnetic domain wall thickness for a Co-boride precipitate is determined from both experimental observation and theoretical calculation in order to evaluate its influence on the coercivity of the alloy. The effects of the pinning of domain walls and the barrier to the nucleation of reverse domains on the coercivity are discussed. Both microstrucutral analysis and theoretical calculation indicate that the high coercivities in the Pt42Co45B13 alloy are due to the difficult nucleation of reverse magnetic domains.

  10. Magnetic properties of Co-Cu metastable solid solution alloys

    NASA Astrophysics Data System (ADS)

    Fan, Xu; Mashimo, Tsutomu; Huang, Xinsheng; Kagayama, Tomoko; Chiba, Akira; Koyama, Keiichi; Motokawa, Mitsuhiro

    2004-03-01

    Metastable solid solution alloy powders and bulk alloys in the cobalt(Co)-copper(Cu) (10 90 mol % Co) system, which is an almost immiscible system at the ambient state, were prepared by mechanical alloying (MA) and shock compression. All MA-treated powders showed the x-ray diffraction patterns of a single phase of fcc structure. The lattice parameter increases with Cu concentration and is fundamentally on the line with Vegard’s law. The magnetization curves of CoxCu100-x (x=20 80) metastable bulk alloys at room temperature showed ferromagnetism, while the one of Co10Cu90 system showed paramagnetism. The saturation magnetic moment (Ms) curve versus electron numbers per atom at 0 K was found to be similar to the Slater-Pauling curves of other transition-metal binary systems and decreased with increasing Cu concentration and approached zero at about 28.8 electrons per atom. The magnetoresistance ratio at room temperature increased with Cu content in the ferromagnetic region, while the one of the paramagnetic Co10Cu90 alloy was negligibly small.

  11. Modelling the phase diagram of magnetic shape memory Heusler alloys

    NASA Astrophysics Data System (ADS)

    Entel, P.; Buchelnikov, V. D.; Khovailo, V. V.; Zayak, A. T.; Adeagbo, W. A.; Gruner, M. E.; Herper, H. C.; Wassermann, E. F.

    2006-03-01

    We have modelled the phase diagram of magnetic shape memory alloys of the Heusler type by using the phenomenological Ginzburg-Landau theory. When fixing the parameters by realistic values taken from experiment we are able to reproduce most details of, for example, the phase diagram of Ni2+xMn1-xGa in the (T, x) plane. We present the results of ab initio calculations of the electronic and phonon properties of several ferromagnetic Heusler alloys, which allow one to characterize the structural changes associated with the martensitic instability leading to the modulated and tetragonal phases. From the ab initio investigations emerges a complex pattern of the interplay of magic valence electron per atom numbers (Hume-Rothery rules for magnetic ternary alloys), Fermi surface nesting and phonon instability. As the main result, we find that the driving force for structural transformations is considerably enhanced by the extremely low lying optical modes of Ni in the Ni-based Heusler alloys, which interfere with the acoustical modes enhancing phonon softening of the TA2 mode. In contrast, the ferromagnetic Co-based Heusler alloys show no tendency for phonon softening.

  12. Production of Ni100-x-yMnxGay magnetic shape memory alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hatchard, T. D.; Thorne, J. S.; Farrell, S. P.; Dunlap, R. A.

    2008-11-01

    Powdered samples of a variety of compositions of the off-stoichiometric magnetic shape memory alloy Ni2MnGa have been prepared by mechanical alloying from elemental precursors. As-milled powders are highly disordered and show very weak ferromagnetic order. Annealing produces a well-ordered L21 Heusler phase with high saturation magnetization. Annealing results in a consistent loss of Ga of about 1-4 at.% (of total sample composition). Structural and magnetic properties of a range of compositions have been measured and are reported in the present work. A magnetically oriented metal-polymer composite has been prepared by mixing the powdered sample in epoxy and curing under an externally applied magnetic field. The magnetic anisotropy energy of the composite sample has been measured and found to be about 20% of the value expected for a single crystal of similar composition. Possibilities for increasing the magnetic anisotropy of metal-polymer composites are discussed. Results are discussed in terms of the effects of structural and chemical order on the resulting magnetic properties in the context of a model based on indirect exchange interactions.

  13. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys.

    PubMed

    Bruno, N M; Wang, S; Karaman, I; Chumlyakov, Y I

    2017-01-16

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg(-1) K(-1) or 22 J kg (-1) K(-1), and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  14. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg‑1 K‑1 or 22 J kg ‑1 K‑1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  15. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    PubMed Central

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg−1 K−1 or 22 J kg −1 K−1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed. PMID:28091551

  16. Cobalt-Free Permanent Magnet Alloys.

    DTIC Science & Technology

    1984-10-01

    CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE October 1984 13. NUMBER OF PAGES 62 14. MONITORING AGENCY NAME & ADDRESS(II different from...1:2u c-d ole: its 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different , froal Ripp t).. - le. SUPPLEMENTARY NOTES 0 • 19. KEY...Curie Temperature in the Nickel ii Substituted Y2 Fe 1 7 Alloys. 4 Fluid Convection Cathode set-up used for 15 powder production. 5 Sketch of fluid

  17. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  18. Magnetically driven three-dimensional manipulation and inductive heating of magnetic-dispersion containing metal alloys

    PubMed Central

    Calabro, Joshua D.; Huang, Xu; Lewis, Brian G.; Ramirez, Ainissa G.

    2010-01-01

    Fundamental to the development of three-dimensional microelectronic fabrication is a material that enables vertical geometries. Here we show low-melting-point metal alloys containing iron dispersions that can be remotely manipulated by magnetic fields to create vertical geometries and thus enable novel three-dimensional assemblies. These iron dispersions enhance the mechanical properties needed for strong, reliable interconnects without significantly altering the electrical properties of the alloys. Additionally, these iron dispersions act as susceptors for magnetic induction heating, allowing the rapid melting of these novel alloys at temperatures lower than those usually reported for conventional metal alloys. By localizing high temperatures and by reducing temperature excursions, the materials and methods described have potential in a variety of device fabrication applications. PMID:20194786

  19. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  20. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  1. Electron Mobility in Wide-Gap Semiconducting Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Kuivalainen, P.; Sinkkonen, J.

    1982-12-01

    Electrical transport in wide band-gap semimagnetic semiconductos is studied by calculating the charge carrier relaxation times due to various scattering mechanisms. Special attention is paid to the spin disorder and alloy scatterings caused by the randomly distributed magnetic ions. The numerical estimations show that in the ferromagnetic case such as Sr1-cEucS the spin disorder scattering may dominate near the magnetic transition temperature even at concentrations C < 1.0. In antiferromagnetic semiconductors such as Cd1-cMncTe the spin disorder scattering seems to be masked by other scattering mechanisms, i.e., alloy scattering, deformation potential scattering and polar optical phonon scattering. The relation of the calculated mobilities to the results of the photomagnetoresistance measurements on Cd1-cMncTe is discussed.

  2. Abnormal magnetization behaviors in Sm-Ni-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Yang, W. Y.; Zhang, Y. F.; Zhao, H.; Chen, G. F.; Zhang, Y.; Du, H. L.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Yang, Y. C.; Yang, J. B.

    2016-06-01

    The magnetization behaviors in Sm-Ni-Fe-Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu5-type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu5-type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (Hcm) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10-15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion.

  3. First principles statistical mechanics of alloys and magnetism

    NASA Astrophysics Data System (ADS)

    Eisenbach, Markus; Khan, Suffian N.; Li, Ying Wai

    Modern high performance computing resources are enabling the exploration of the statistical physics of phase spaces with increasing size and higher fidelity of the Hamiltonian of the systems. For selected systems, this now allows the combination of Density Functional based first principles calculations with classical Monte Carlo methods for parameter free, predictive thermodynamics of materials. We combine our locally selfconsistent real space multiple scattering method for solving the Kohn-Sham equation with Wang-Landau Monte-Carlo calculations (WL-LSMS). In the past we have applied this method to the calculation of Curie temperatures in magnetic materials. Here we will present direct calculations of the chemical order - disorder transitions in alloys. We present our calculated transition temperature for the chemical ordering in CuZn and the temperature dependence of the short-range order parameter and specific heat. Finally we will present the extension of the WL-LSMS method to magnetic alloys, thus allowing the investigation of the interplay of magnetism, structure and chemical order in ferrous alloys. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and it used Oak Ridge Leadership Computing Facility resources at Oak Ridge National Laboratory.

  4. Magnetism, elasticity, and magnetostriction of FeCoGa alloys

    NASA Astrophysics Data System (ADS)

    Dai, Liyang; Cullen, James; Wuttig, Manfred; Lograsso, T.; Quandt, Eckhard

    2003-05-01

    It is known that the substitution of Co for Fe gives rise to increases in magnetization and Curie temperature, not only in the bcc metals, but also in intermetallic compounds and alloys as well. With the expectation that this is the case in Co-substituted FeGa, we measured magnetization, Curie temperature, magnetostriction and elastic constants of a series of polycrystalline FeCoGa ternary alloys with up to 17% Ga and up to 10% Co. The magnetostriction at saturation for Fe0.93-xCo.07Gax increases to 90 ppm for x=0.17. For larger percentages of Co, the rise in magnetostriction is not as sharp as it is in the 7% case. The shear elastic modulus decreases with Ga, again in keeping with the results for FeGa. The magnetostriction and the elastic constants are sensitive to sample preparation for the high-Ga material. We conclude that the substitution of small (<0.10) percentages of Co for Fe in bcc FeCoGa alloys enhances the magnetic and magnetostrictive properties of the parent FeGa material.

  5. Stability of the magnetomechanical problem in magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Chatzigeorgiou, George; Haldar, Krishnendu; Lagoudas, Dimitris C.

    2010-04-01

    In this work we study the unstable phenomena that occur on Magnetic Shape Memory Alloys (MSMAs) during compression tests. Solving the coupled magnetomechanical problem we observe that during the reorientation process the material presents strong non-uniformity, in the form of localized zones, in the distribution of the magnetic, the stress and the strain field. This non-uniformity is due to loss of ellipticity of the coupled problem during the martensitic reorientation and affects significantly the reorientation process. The identification of the stability conditions of the magnetomechanical problem is achieved by performing stability analysis.

  6. New Fe-Co-Ni-Cu-Al-Ti Alloy for Single-Crystal Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Bazhenov, V. E.; Moiseev, A. V.; Kireev, A. V.

    2016-03-01

    A new alloy intended for single-crystal permanent magnets has been suggested. The new alloy has been designed based on the well-known Fe-Co-Ni-Cu-Al-Ti system and contains to 1 wt % Hf. The alloy demonstrates an enhanced potential ability for single-crystal forming in the course of unidirectional solidification of ingot. Single-crystal permanent magnets manufactured from this alloy are characterized by a high level of magnetic properties. When designing the new alloy, computer simulation of the phase composition and calculations of solidification parameters of complex metallic systems have been performed using the Thermo-Calc software and calculation and experimental procedures based on quantitative metallographic analysis of quenched structures. After the corresponding heat treatment, the content of high-magnetic phase in the alloy is 10% higher than that in available analogous alloys.

  7. Magnetic x-ray linear dichroism in the photoelectron spectroscopy of ultrathin magnetic alloy films

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Goodman, K. W.; Mankey, G. J.; Willis, R. F.; Denlinger, J. D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    The magnetic structure of nanoscale alloy films has been probed using the magnetic x-ray linear dichroism in photoelectron spectroscopy. FeNi and CoFe epitaxial films were grown on Cu(001), in situ and using molecular beam epitaxy techniques. The magnetic x-ray linear dichroism measurements were made at the Spectromicroscopy Facility of the Third Generation Advanced Light Source. Because soft x-rays were used to generate photoemission from the 3p core levels, both elemental selectivity and magnetic sensitivity were achieved simultaneously.

  8. Structural and magnetic properties of samarium iron and related alloys

    NASA Astrophysics Data System (ADS)

    Meacham, Brian Eugene

    There were three research objectives. The first objective was to determine what controls the structural scale of the microstructure in Sm-Fe alloys. The second objective was to study the morphological development of antiphase domains. The last objective was to determine the effect of the microstructural state on the coercivity and magnetization reversal of Sm2Fe 17Nx. The as-solidified alloys had large grains with irregular shape but the metal carbide modified alloys had a refinement of the microstructural scale and improved homogeneous grain shape. The magnitude of the scale reduction depended on the additives. It was determined that an important factor for the refinement was the glass forming ability of the alloy composition. The evidence points to solute segregation at the solidification boundary as the dominant mechanism that controls the grain size. The as-solidified binary alloy had significant strain. As annealing occurs the development of antiphase domains causes the reduction of strain, which reduces the defect density. A similar morphology occurs in the TiC modified alloy. It was discovered that order pattern in the antiphase domains has a twin symmetry. This is a new structural feature that has not been seen in antiphase domains before and is called rebel ordering. The recoil data showed that nucleation of reversed domains causes a peak in the remanent susceptibility curve. However, when domain wall pinning occurs there are fluctuations. It was discovered that as the loop shape improves, the separation between the coercivity and the peak center decreases linearly with either the squareness ratio or the fullness factor. The nitrided binary alloy coercivity decreases with increasing ordering. However, there is a narrow order parameter region where the antiphase structure effectively pins domain walls resulting in an enhancement of the coercivity. The microstructural scale affects the coercivity. The single domain limit was determined to be about 300 nm

  9. [Electrochemical behavior of 3 magnetic alloys used for prosthetic retention].

    PubMed

    Pezzoli, M; Angelini, E; Zucchi, F; Re, G

    1989-06-01

    By means of potentiodynamic techniques the electrochemical behaviour of a ferromagnetic alloy Pd-Co and three types of caps (AISI 316 stainless steel, Pd, Ti) for permanent Sm-Co magnets has been investigated in artificial saliva and in Ringer's solution. In addition short-circuit measurements were performed on several couples Pd-Co/AISI 316, Ti, Pd caps. From our findings a good corrosion resistance of all the materials is evidenced in artificial saliva. In Ringer's solution, which is more aggressive, Pd-Co shows no tendency to passivity.

  10. Magnetic properties of ball milled Fe-40Al at.% alloys

    SciTech Connect

    Amils, X.; Nogues, J.; Surinach, S.; Baro, M.D.; Munoz, J.S.

    1998-07-01

    A direct correlation between the lattice parameter and the saturation magnetization, during the disordering (ball milling) and posterior reordering (annealing) processes, has been found in Fe-40Al At.% compounds. These results indicate that the paramagnetic-ferromagnetic-paramagnetic transitions induced by ball milling and subsequent annealing could be related to the changes in volume, and not only to nearest neighbors effects as is commonly assumed. Moreover, these alloys have been found to become spin glass at low temperatures, independently of their structural state (ordered or disordered).

  11. Applications of the directional solidification in magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Liu, J.; Hu, Q. D.; Liu, Q. H.; Karaman, I.; Li, J. G.

    2016-03-01

    A zone melting liquid metal cooling (ZMLMC) method of directional solidification was applied to prepare highly-oriented Ni52Fe17Ga27Co4 magnetic shape memory alloys. At high temperature gradient and low growth velocity, the well-developed preferred orientation for coarse columnar crystals was obtained. Such a structure leads to a large complete pseudoelastic recovery of 5% at 348 K. Moreover, the pseudoelastic behaviours and the kinetics of the martensitic transformation (MT) are significantly affected by the intersection angle between the loading direction and the grain boundaries.

  12. Frequency-dependent energy harvesting via magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sayyaadi, Hassan; Askari Farsangi, Mohammad Amin

    2015-11-01

    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday’s law of magnetic field induction. It has been shown that, in order to harvest the maximum RMS voltage in the MSMA-based energy harvester, an optimum value of bias magnetic field exists, which is the corresponding magnetic field for the start of pseudoelasticity behavior. In addition, to achieve a more compact energy harvester with higher energy density, a specimen with a lower aspect ratio can be chosen. As the main novelty of the paper, it is found that the dynamic effects play a major role in determining the harvested voltage and power, especially for high excitation frequency or specimen thickness.

  13. Energy harvesting from structural vibrations of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Farsangi, Mohammad Amin Askari; Cottone, Francesco; Sayyaadi, Hassan; Zakerzadeh, Mohammad Reza; Orfei, Francesco; Gammaitoni, Luca

    2017-03-01

    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating voltage in a vibrating MSMA. In particular, 15 μW power is harvested for acceleration of 0.3 g RMS at a frequency of 19.1 Hz, which is comparable with piezoelectric energy harvesters. It is also found that the optimum bias magnetic field for maximum voltage is lower than the starting field of pseudo elastic behavior.

  14. A novel inertial energy harvester using magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Askari Farsangi, Mohammad Amin; Sayyaadi, Hassan; Zakerzadeh, Mohammad Reza

    2016-10-01

    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli model and von Kármán theory are derived. A thermodynamics-based constitutive model is used to predict the nonlinear strain and magnetization response of the MSMAs. Also, the induced voltage during martensite variant reorientation in MSMAs is investigated with the help of Faraday’s law of induction. Finally, the effect of different parameters including bias magnetic field, pre-strain and number of MSMA elements are investigated in details. The results show that this novel energy harvester has the capability of using as an alternative to the current piezoelectric and magnetostrictive ones for harvesting energy from ambient vibration.

  15. High field magnetic behavior in Boron doped Fe2VAl Heusler alloys

    NASA Astrophysics Data System (ADS)

    Venkatesh, Ch.; Vasundhara, M.; Srinivas, V.; Rao, V. V.

    2016-11-01

    We have investigated the magnetic behavior of Fe2VAl1-xBx (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the Tc, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (MS) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble MS at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method.

  16. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Ruochen; Qian, Mingfang; Zhang, Xuexi; Qin, Faxiang; Wei, Longsha; Xing, Dawei; Cui, Xiping; Sun, Jianfei; Geng, Lin; Peng, Huaxin

    2017-04-01

    Giant magnetocaloric effect in Ni-Mn-X (X=In, Sn, Sb) Heusler alloys has been revealed due to the significant shift of the martensite transformation temperatures under a bias magnetic field. However, the magnetic hysteresis during the magnetization and demagnetization cycles creates a large hysteresis loss and reduces the refrigeration capacity. Here we demonstrated that the magnetic hysteresis loss in Ni-Mn-Sb alloys was effectively reduced by Si-doping. The quaternary Ni49.0Mn38.4Sb11.7Si0.9 alloy exhibited martensite and magnetic transitions around room temperature. Maximum magnetic entropy change ΔSm 9.4 J/kg K and working temperature interval 7.0 K were achieved attributed to the martensite transformation under a magnetic field of 5 T. Meanwhile, the average magnetic hysteresis loss for Ni49.0Mn38.4Sb11.7Si0.9 alloy was 2.1 J/kg, much smaller than that for Ni49.0Mn38.5Sb12.5 alloy, 11.4 J/kg. As a result, a refrigeration capacity of 50.2 J/kg was obtained in the Ni49.0Mn38.4Sb11.7Si0.9 alloy. This result shows that Si-doped Ni-Mn-Sb alloys may act as a potential material system for magnetic refrigeration.

  17. Chemically synthesized magnetic Co-Fe-Ga alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Imai, Takatomo; Shima, Mutsuhiro

    2017-01-01

    Magnetic properties of Co2Fe x Ga y alloy nanoparticles in the L21 ordered phase produced by chemical synthesis and post annealing have been investigated. Structural analyses of the Co2Fe x Ga y samples by X-ray diffraction show that both ordered B2 and L21 phases are formed when Ga composition is in the range 0.66 ≤ y ≤ 1.42. With increasing y from 0.58 to 1.4 at x = 1.0, the coercivity increases from 7.1 to 23 mT, while the saturation magnetization decreases from 970 to 410 kA/m. Microstructural analyses using TEM reveal that the alloy particles annealed at 973 K are agglomerated by sintering. When Al(NO3)3 was added during the synthesis, the average particle size significantly decreases from 84 to 12 nm, presumably due to the formation of aluminum oxides, resulting in the decrease in coercivity from 29 to 5.1 mT.

  18. 4-d magnetism: Electronic structure and magnetism of some Mo-based alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2017-02-01

    We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

  19. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Vergniory, M. G.; Kushwaha, S.; Hirschberger, Max; Chulkov, E. V.; Ernst, A.; Ong, N. P.; Cava, Robert J.; Bernevig, B. Andrei

    2016-12-01

    Weyl fermions have recently been observed in several time-reversal-invariant semimetals and photonics materials with broken inversion symmetry. These systems are expected to have exotic transport properties such as the chiral anomaly. However, most discovered Weyl materials possess a substantial number of Weyl nodes close to the Fermi level that give rise to complicated transport properties. Here we predict, for the first time, a new family of Weyl systems defined by broken time-reversal symmetry, namely, Co-based magnetic Heusler materials X Co2Z (X =IVB or VB; Z =IVA or IIIA). To search for Weyl fermions in the centrosymmetric magnetic systems, we recall an easy and practical inversion invariant, which has been calculated to be -1 , guaranteeing the existence of an odd number of pairs of Weyl fermions. These materials exhibit, when alloyed, only two Weyl nodes at the Fermi level—the minimum number possible in a condensed matter system. The Weyl nodes are protected by the rotational symmetry along the magnetic axis and separated by a large distance (of order 2 π ) in the Brillouin zone. The corresponding Fermi arcs have been calculated as well. This discovery provides a realistic and promising platform for manipulating and studying the magnetic Weyl physics in experiments.

  20. Fe-based nanocrystalline FeBCCu soft magnetic alloys with high magnetic flux density

    NASA Astrophysics Data System (ADS)

    Fan, Xingdu; Ma, Aibin; Men, He; Xie, Guoqiang; Shen, Baolong; Makino, Akihiro; Inoue, Akihisa

    2011-04-01

    In this study, the magnetic properties and crystalline behavior of Fe84-xB10C6Cux (x = 0-1.3) alloys prepared by annealing the melt-spun ribbon have been investigated. A Cu element was added to this system with the aim of decreasing the coercivity because the addition of Cu clusters prior to the crystallization stimulates the nucleation of α-Fe primary crystals, which greatly influences the final microstructure. It is found that in the Fe84-xB10C6Cux alloy system, the coercivity decreases with increasing x and exhibits a minimum at around x = 1.0. When x = 1.0, the alloy exhibits excellent magnetic properties after the appropriate heat treatment with a high Bs of 1.78 T, low Hc of 5.1 A/m, and low core loss less than 4.3 W/kg at 1.0 T and 400 Hz that is about 55% of that of oriented Si-steel. These results indicate that the application of this alloy to power transformers will produce very large energy savings.

  1. Unexpected magnetic behavior in amorphous Co{sub 90}Sc{sub 10} alloy

    SciTech Connect

    Ghafari, M. E-mail: skamali@utsi.edu; Gleiter, H.; Sakurai, Y.; Itou, M.; Peng, G.; Fang, Y. N.; Feng, T.; Hahn, H.; Kamali, S. E-mail: skamali@utsi.edu

    2015-09-28

    An amorphous alloy Co{sub 90}Sc{sub 10} has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co{sub 90}Sc{sub 10} appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co{sub 90}Sc{sub 10} alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co{sub 90}Sc{sub 10} alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co.

  2. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  3. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    DOE PAGES

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less

  4. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E. Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  5. Magnetic patterning using ion irradiation for highly ordered CoPt alloys with perpendicular anisotropy

    SciTech Connect

    Abes, M.; Venuat, J.; Muller, D.; Carvalho, A.; Schmerber, G.; Beaurepaire, E.; Dinia, A.; Pierron-Bohnes, V.

    2004-12-15

    We used a combination of ion irradiation and e-beam lithography to magnetically pattern an ordered CoPt alloy with strong perpendicular magnetic anisotropy. Ion irradiation disorders the alloy and strongly reduces the magnetic anisotropy. Magnetic force microscopy showed a regular array of 1 {mu}m{sup 2} square dots with perpendicular anisotropy separated by 1 {mu}m large ranges with in-plane anisotropy. This is further confirmed by magnetic measurements, which showed that arrays protected by a 200 nm Pt layer present the same coercive field and the same perpendicular anisotropy as before irradiation. This is promising for applications in magnetic recording technologies.

  6. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Mankey, G.J.; Willis, R.F.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    We have begun a program to characterize magnetic alloy overlays using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  7. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    SciTech Connect

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-06-15

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and <10 % of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic momentm was measured for each sample as a function of applied external field H{sub 0} and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy

  8. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect

    2012-01-01

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  9. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    SciTech Connect

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-06-15

    The influence of annealing on the microstructural evolution and magnetic properties of Ni{sub 50}Fe{sub x}Al{sub 50-x} alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type {beta}-phase and typical off eutectic microstructure consisting of proeutectic B2 type {beta} dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC {gamma}-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC {gamma}-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T{sub C}). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T{sub C} of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC {alpha}-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the {beta}-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: {yields} Evolution of microstructure and magnetic properties with varying Fe content. {yields} Transient rise in magnetization via the formation of ferromagnetic phase. {yields} Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. {yields} Nanoscale

  10. Magnetic properties of Co2Fe(Ga1-xSix) alloys

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Chakraborty, Dibyashree; Srinivasan, Ananthakrishnan

    2014-09-01

    Magnetic and crystallographic properties of bulk Co2Fe(Ga1-xSix) alloys with 0≤x≤1 are reported in this work. The alloys with x=0.75 and 1.00 exhibit L21 structure whereas the alloys with x=0, 0.25 and 0.50 crystallized in the disordered A2 phase. Unit cell volume of this series of alloys decreased from 189.1 to 178.5 Å3 as x was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (TC) which showed a systematic variation with x (1089 K, 1075 K, 1059 K, 1019 K and 1015 K for x=0, 0.25, 0.5, 0.75 and 1.00, respectively). The saturation magnetization moment Ms for the alloys with x=0, 0.25 and 0.50 are 5.05μB, 5.23μB, 5.49μB, respectively, in accordance with the Slater-Pauling rule, but alloys with x=0.75 and 1.00 deviated from this rule. The effective moment per magnetic atom (pc) of the alloys was estimated from the inverse DC magnetic susceptibility data above TC. A comparison of Ms with pc reveals the half-metallic character of the alloys.

  11. Electrodeposition of quaternary alloys in the presence of magnetic field

    PubMed Central

    2010-01-01

    Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Γ%) was increased in the presence of PPMF, with results of Γ% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF. PMID:20604934

  12. Half-metallic alloys: electronic structure, magnetism and spin polarization.

    PubMed

    Dederichs, P H; Galanakis, I; Mavropoulos, Ph

    2005-01-01

    Using the state-of-the-art screened Korringa-Kohn-Rostoker Green function method we study the electronic and magnetic properties of NiMnSb and similar Heusler alloys. We show that all these compounds are half-metals, e.g. the minority-spin band is semiconducting and the Fermi level falls within this gap resulting in 100% spin polarization at the Fermi level. The total spin moment M(t) shows the so-called Slater-Pauling behaviour and scales with the total valence charge Z(t) following the rule M(t) = Z(t) - 18 for half and M(t) = Z(t) - 24 for full Heusler alloys. These rules are connected to the origin of the gap. Finally we show that the inclusion of the spin-orbit interaction in our calculations kills the half-metallic gap but the spin-polarization at the Fermi level can be still very high, approximately 99% for NiMnSb, but much lower for a half-metallic compound like zinc-blende MnBi (77%).

  13. The effect of magnetic annealing on the magnetostriction for Sm-Dy-Fe rod alloys

    NASA Astrophysics Data System (ADS)

    Wang, Bowen; Wang, Zhihua; Weng, Ling; Huang, Wenmei; Sun, Ying; Cui, Baozhi

    2013-05-01

    The Sm0.86Dy0.14Fex (x = 1.85-2.05) magnetostrictive alloys have been prepared with arc-melting and then cast into a copper mold with a diameter of 8 mm. It is found that the magnetostriction (λ// - λ⊥) increases from -900 × 10-6 for untreated rod alloys to -1200 × 10-6 for magnetically annealed rod alloys at the magnetic field of 640 kA/m. In the magnetic annealing temperature range of 483-643 K, the magnetostriction value exhibits a peak at 543 K. The variation of magnetostriction and magnetization with magnetic fields has been determined and the mechanism of domains' movements has been discussed. This result is very important to improve the magnetostrictive property of Sm-Dy-Fe rod alloys.

  14. Structural and magnetic transformations in Ni51 - x Mn36 + x Sn13 alloys

    NASA Astrophysics Data System (ADS)

    Kaletina, Yu. V.; Gerasimov, E. G.; Schastlivtsev, V. M.; Gaviko, V. S.; Terentev, P. B.

    2015-02-01

    The structural and magnetic phase transitions in Ni-Mn-Sn-based alloys have been studied. The temperature dependences of the martensitic and magnetic phase transformations in Ni51 - x Mn36 + x Sn13 alloys (0 ≤ x ≤ 4) have been determined in the case where manganese atoms substitute for nickel atoms. For the studied alloys, the concentration phase diagram has been constructed and the temperature regions of the existence of the high-temperature austenite phase L21 and the low-temperature martensite phase in different magnetic states have been determined.

  15. Magnetic, magnetocaloric properties and phenomenological model in amorphous Fe60Ru20B20 alloy

    NASA Astrophysics Data System (ADS)

    Boutahar, A.; Lassri, H.; Hlil, E. K.

    2015-11-01

    Magnetic, magnetocaloric properties and phenomenological model of amorphous Fe60Ru20B20 alloy are investigated in detail. The amorphous alloy has been synthesized using melt spinning method. The magnetic transition nature undergoes a second-order magnetic phase transition from ferromagnetic to paramagnetic states with a Curie temperature of 254 K. Basis on the thermodynamic Maxwell's relation, magnetic entropy change (-ΔSM) is calculated. Further, we also report a theoretical investigation of the magnetocaloric effect using a phenomenological model. The best model parameters and their variation with temperature and the magnetic field were determined. The theoretical predictions are found to agree closely with experimental measurements.

  16. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  17. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  18. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-04-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10‑6 cm3·g‑1–1.29 × 10‑6 cm3·g‑1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10‑6 cm3·g‑1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10‑6 cm3·g‑1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10‑6 cm3·g‑1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments.

  19. Structural, thermal and magnetic investigations on immiscible Ag-Co nanocrystalline alloy with addition of Mn

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Sardar, G.; Nath, D. N.; Chattopadhyay, P. P.

    2016-08-01

    50Ag-50Co (at%) and 40Ag-40Co-20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350-650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag-Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag-Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag-Co-Mn alloy obtained after annealing at 550 °C for 1 h.

  20. Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications.

    PubMed

    Uyama, Emi; Inui, Shihoko; Hamada, Kenichi; Honda, Eiichi; Asaoka, Kenzo

    2013-09-01

    Metal devices in the human body induce serious metal artifacts in magnetic resonance imaging (MRI). Metals artifacts are mainly caused by a volume magnetic susceptibility (χv) mismatch between a metal device and human tissue. In this research, Au-xPt-yNb alloys were developed for fabricating MRI artifact-free biomedical metal devices. The magnetic properties, hardness and phase constitutions of these alloys were investigated. The Au-xPt-8Nb alloys showed satisfactory χv values. Heat treatments did not clearly change the χv values for Au-xPt-8Nb alloys. The Vickers hardness (HV) of these two alloys was much higher than that of high-Pt alloys; moreover, aging at 700°C increased the HV values of these two alloys. A dual phase structure consisting of face-centered cubic α1 and α2 phases was observed and aging at 700°C promoted phase separation. The Au-5Pt-8Nb and Au-10Pt-8Nb alloys showed satisfactory χv values and high hardness and are thus suggested as candidates for MRI artifact-free alloys for biomedical applications.

  1. Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.

    PubMed

    Lavrentiev, M Yu; Wróbel, J S; Nguyen-Manh, D; Dudarev, S L

    2014-08-14

    A model lattice ab initio parameterized Heisenberg-Landau magnetic cluster expansion Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. The thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range extending well over 1000 K. The predicted face-centered cubic-body-centered cubic coexistence curve, the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted temperatures of magnetic transitions simulated as functions of alloy composition agree well with experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic phase of Fe-Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding to the occurrence of the Invar effect.

  2. Magnetic field and atomic order effect on the martensitic transformation of a metamagnetic alloy.

    PubMed

    Barandiaran, J M; Chernenko, V A; Cesari, E; Salas, D; Gutierrez, J; Lazpita, P

    2013-12-04

    The martensitic transformation (MT) of metamagnetic shape memory alloys is very sensitive to the applied magnetic field and atomic order. We analyze the alloy Ni50Mn34.5In15.5 in magnetic fields up to 13 T. The alloy has been prepared both in an ordered state by slow cooling, and in a disordered state by rapid quenching. In both cases the dependence of the martensitic transition temperature on the field is highly nonlinear. Such departure from linearity is due to a decrease of the entropy change at the transition, ΔS, with the applied field. This can be explained by the ordering effect of the magnetic field on the frustrated magnetic structure of the alloy in the martensitic phase. Compliance with a recent model, relying on the strong magnetoelastic interactions in these compounds, is very satisfactory.

  3. Mechanochemical synthesis of nanocrystalline Fe and Fe-B magnetic alloys

    NASA Astrophysics Data System (ADS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-12-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe-B magnetic alloys was the goal of this study. In this regard, different Fe2O3-B2O3 powder mixtures with sufficient amount of CaH2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe95B5 and Fe85B15 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe95B5 and Fe85B15 alloys can be successfully synthesized by the reduction reaction of Fe2O3 and B2O3 with CaH2 during mechanical alloying. The structure of produced Fe95B5 and Fe85B15 alloys was a combination of Fe and Fe2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170-240 Oe and 9-28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe-B alloys.

  4. Saturation magnetization in supersaturated solid solution of Co-Cu alloy

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Kajikawa, Kota; Hakamada, Masataka; Mabuchi, Mamoru

    2009-10-01

    The magnetovolume effect has been investigated using a supersaturated solid solution of a Co-19 at. %Cu alloy processed by electrodeposition. The enhanced saturation magnetization of the Co-Cu alloy was attributed to both metastable fcc Co and lattice expansion. The density functional theory using the CASTEP code revealed that an enhanced magnetic moment due to the magnetovolume effect is obtained in fcc Co, but not in hcp Co.

  5. (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements

    DTIC Science & Technology

    2016-02-02

    AFRL-AFOSR-VA-TR-2016-0091 (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements George...2012 – 31/10/2015 4. TITLE AND SUBTITLE (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements... Science and Eng., Raleigh, NC (Profs. Justin Schwartz and Carl C. Koch). Their team performed all manufacturing and experimental measurements. 14

  6. Enhancement of superconductivity by an external magnetic field in magnetic alloys

    NASA Astrophysics Data System (ADS)

    Borycki, Dawid

    2014-05-01

    An infinite-volume limit solution of the thermodynamics of a BCS superconductor containing spin 1/2 and 7/2 magnetic impurities, obtained recently in [D. Borycki, J. Maćkowiak, Supercond. Sci. Technol. 24, 035007 (2011)] is exploited to derive the expressions for critical magnetic field ( T). The credibility of the resulting thermodynamically limited theoretical equations, which depend on the magnetic coupling constant g and impurity concentration c, is verified on the experimental data for the following superconducting alloys: LaCe, ThGd and SmRh4B4. Good quantitative agreement with experimental data is found for sufficiently small values of c. The discrepancies between theoretical and experimental values of ( T) for larger values of c in case of LaCe and ThGd are reduced by introducing the concept of the effective temperature , which accounts for the Coulomb interactions between the electron gas and impurity ions. At low temperatures, the critical magnetic field is found to increase with decreasing temperature T. This enhancement of the critical magnetic field provides evidence of the Jaccarino-Peter effect, which was experimentally observed in the Kondo systems like LaCe, (La1 - x Ce x )Al2 and also in the pseudoternary compounds, including Sn1 - x Eu x Mo6S8, Pb1 - x Eu x Mo6S8 and La1.2 - x Eu x Mo6S8. The effect of an external magnetic field on a BCS superconductor perturbed by magnetic impurities was also studied. On these grounds, by analyzing the dependence of superconducting transition temperature T c on of (La1 - x Ce x )Al2, we have shown, that for certain parameter values, external magnetic field compensates the destructive effect of magnetic impurities.

  7. Solubility and magnetic properties enhancement in bi-phase nanostructure Cu-Fe-Mn alloy

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Basumallick, A.; Nath, D. N.; Chattopadhyay, P. P.

    2013-09-01

    In order to improve solubility and magnetic properties, the ball milling technology was used for the production of 50Cu-40Fe-10Mn (wt%) alloy. The effect of Mn content on the microstructure and magnetic properties of Cu-Fe alloy was also investigated in detail. Microstructure and magnetic properties of the alloy were analyzed by X-ray diffraction, differential scanning calorimetry, high resolution transmission electron microscopy and superconducting quantum interface device magnetometry. The results showed that a complete solid solution of the alloy was produced after 30 h of milling. Quantitative phase analysis of X-ray diffraction data revealed that the milled alloy obtained after isothermal annealing at 550 °C for 1 h consisted of Cu (54.52 wt%), α-Fe (36.49 wt%) and MnO (8.99 wt%). The milled alloy obtained after annealing at 450 °C for 1 h leads to the maximum values of magnetic properties such as coercivity=438 Oe, remanent magnetization=14.3 emu/g, and saturation magnetization=51 emu/g.

  8. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys

    PubMed Central

    Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming

    2016-01-01

    Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265

  9. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys.

    PubMed

    Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C

    2010-08-11

    Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.

  10. Orientation magnetic phase transition induced by shock loading of the Fe-Cr-Co alloy

    NASA Astrophysics Data System (ADS)

    Sud'enkov, Yu. V.; Sarnatskii, V. M.; Smirnov, I. V.

    2017-02-01

    The strength characteristics of Fe-Cr-Co alloys have been investigated under high-strain-rate deformation of samples. It has been found that, under shock-wave loading, a significant remanent magnetization appears in the samples and their fragments due to the orientation magnetic phase transition. The threshold pressures of the magnetic phase transition have been determined, and the distribution of the remanent magnetization in the samples has been analyzed.

  11. Magnetic susceptibility of Inconel alloys 718, 625, and 600 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira B.; Mitchell, Michael R.; Murphy, Allan R.; Goldfarb, Ronald B.; Loughran, Robert J.

    1990-01-01

    After a hydrogen fuel bleed valve problem on the Discovery Space Shuttle was traced to the strong magnetization of Inconel 718 in the armature of the linear variable differential transformer near liquid hydrogen temperatures, the ac magnetic susceptibility of three samples of Inconel 718 of slightly different compositions, one sample of Inconel 625, and on sample of Inconel 600 were measured as a function of temperature. Inconel 718 alloys are found to exhibit a spin glass state below 16 K. Inconel 600 exhibits three different magnetic phases, the lowest-temperature state (below 6 K) being somewhat similar to that of Inconel 718. The magnetic states of the Inconel alloys and their magnetic susceptibilities appear to be strongly dependent on the exact composition of the alloy.

  12. Magnetic properties of Fe-Cu alloys prepared by pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Noce, R. D.; Gomes, O. D. M.; de Magalhães, S. D.; Wolf, W.; Guimarães, R. B.; de Castro, A. C.; Pires, M. J. M.; Macedo, W. A. A.; Givord, D.; Barthem, V. M. T. S.

    2009-11-01

    FexCu100-x metastable alloys were prepared by pulsed electrodeposition for 5alloys crystallize in the bcc structure of α-Fe and the Fe-poor ones in the fcc structure of Cu. The magnetic properties of the ferromagnetic Fe-rich alloys (x>50) are reminiscent of those observed in Fe-Cu alloys prepared by other methods. The Curie temperature decreases regularly with decreasing x. In the Fe-poor alloys (x≤30), the observed properties indicate that Fe-rich clusters form within a Cu-rich matrix. In the x=10 alloy, the Fe clusters are found to be superparamagnetic at room temperature, but a superferromagnetic order develops below a critical temperature of about 120 K. It is suggested that the intercluster coupling is mediated by Ruderman-Kittel-Kasuya-Yosida interactions which are predominantly positive due to the very short intercluster distances.

  13. Tunnel magnetoresistance effect and magnetic damping in half-metallic Heusler alloys.

    PubMed

    Oogane, M; Mizukami, S

    2011-08-13

    Some full-Heusler alloys, such as Co(2)MnSi and Co(2)MnGe, are expected to be half-metallic ferromagnetic material, which has complete spin polarization. They are the most promising materials for realizing half-metallicity at room temperature owing to their high Curie temperature. We demonstrate a huge tunnel magnetoresistance effect in a magnetic tunnel junction using a Co(2)MnSi Heusler alloy electrode. This result proves high spin polarization of the Heusler alloy. We also demonstrate a small magnetic damping constant in Co(2)FeAl epitaxial film. The very high spin polarization and small magnetic constant of Heusler alloys will be a great advantage for future spintronic device applications.

  14. Effect of Electronic and Magnetic Valences on Phase Transition and Magnetic Properties in Co-Ni-Al-RE (RE = Gd, Dy and Er) Alloys

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Lou, Shuting; Yang, Liu; Li, Tao; Hao, Shuai; Yan, Chen

    2017-02-01

    The effect of the electronic and magnetic valence state on the phase transition and magnetic properties of several Co-Ni-Al-RE (RE = Gd, Dy and Er) ferromagnetic shape memory alloys were investigated. The martensitic transformation temperature showed a distinct increase with increasing the valence electron concentration, but no obvious change in the magnetic properties of the alloys was observed with increasing the valence electron concentration. On the other hand, the magnetic properties of the sample increased with the magnetic valence number of the alloy, while no change was observed in the phase transformation temperature with the magnetic valence number.

  15. Co{sub 2}MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions

    SciTech Connect

    Kaemmerer, S.; Thomas, A.; Huetten, A.; Reiss, G.

    2004-07-05

    As a consequence of the growing theoretical predictions of 100% spin-polarized half- and full-Heusler compounds over the past six years, Heusler alloys are among the most promising materials class for future magnetoelectronic and spintronic applications. We have integrated Co{sub 2}MnSi, as a representative of the full-Heusler compound family, as one magnetic electrode into magnetic tunnel junctions. The preparation strategy has been chosen so as to sputter Co{sub 2}MnSi at room temperature onto a V-buffer layer, which assists in (110) texture formation, and to deposit the Al-barrier layer directly thereafter. After plasma oxidizing the Al-barrier layer, subsequent annealing leads (1) to the texture formation and (2) to the appropriate atomic ordering within the Co{sub 2}MnSi, and (3) homogenizes the AlO{sub x} barrier. It is shown that the magnetic switching of the ferromagnetic electrodes is well controlled from room temperature down to 10 K. The resulting tunnel magnetoresistance-effect amplitude of the Co{sub 2}MnSi containing magnetic tunnel junctions has been determined as a function of temperature and the spin polarization of the Co{sub 2}MnSi Heusler compound has been estimated to be 61% at 10 K. Thus, the spin polarization of the Co{sub 2}MnSi layer at 10K exceeds that of conventional transition metals.

  16. Magnetic Properties of Hard Magnetic Alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si

    NASA Astrophysics Data System (ADS)

    Vompe, T. A.; Milyaev, I. M.; Yusupov, V. S.

    2017-01-01

    The method of regression analysis is used to obtain equations describing the dependences of magnetic hysteresis properties of magnetically hard powder alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si on regimes of thermomagnetic treatment (the temperatures of the start of the treatment and the rates of cooling in magnetic field). The determined treatment modes make it possible to obtain in an alloy with a coercive force H c up to 40 kA/m, a residual induction B r up to 1.2 T, and a maximum energy product ( BH)max up to 25 kJ/m3. The alloy may find application in the production of rotors of synchronous hysteresis-reluctance motors.

  17. Producing Low-Oxygen Samarium/Cobalt Magnet Alloy

    NASA Technical Reports Server (NTRS)

    Das, Dilip K.; Kumar, Kaplesh; Frost, Robert T.; Chang, C. W.

    1987-01-01

    Experiments aimed at producing SmCo5 alloy with low oxygen contamination described in report. Two methods of alloying by melting without contact with crucible walls tested. Lowest oxygen contamination, 70 parts per million achieved by dc arc melting on water-cooled, tantalum-clad copper hearth in purified quiescent argon atmosphere. Report includes photographs of equipment, photomicrographs of alloy samples, detailed descriptions of procedures tried, and tables of oxygen contamination and intrinsic coercivities of samples produced.

  18. Magnetic Properties of Liquid Gd-TM (TM = Mn, Fe, Co, Ni) Alloys

    NASA Astrophysics Data System (ADS)

    Ohno, Satoru; Shimakura, Hironori; Tahara, Shuta; Okada, Tatsuya

    2016-12-01

    Liquid Gd-TM (TM = Mn, Fe, Ni) alloys on the TM-rich side have relatively small and negative temperature coefficients of the magnetic susceptibility χ, which become large and negative with increasing Gd content. The large and negative temperature coefficient of χ for liquid Co gradually weakens at up to 70 at. % Co with the addition of Gd. Liquid Gd and GdcCo1-c alloys with c ≥ 0.5 also have a relatively large and negative temperature coefficient of χ. Liquid Gd-TM alloys on the Gd-rich side obey the Curie law. The magnetic susceptibilities of liquid Gd-Fe and Gd-Co alloys exhibit Curie-Weiss behavior on the TM-rich side. The dependence of χ on the composition for liquid Gd-TM (TM = Mn, Fe, Ni) alloys gradually increases with the Gd content, and that for liquid Gd-Co alloys has a minimum at the composition of 20 at. % Gd. The dependences of χ3d and χ4f on the composition due to the 3d- and 4f-electrons were analyzed by subtracting the corresponding data for liquid La-TM alloys from χ for the liquid Gd-TM alloys.

  19. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    SciTech Connect

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  20. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  1. Preferential magnetic orientation in amorphous alloys determined by NFS and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Procházka, Vít; Vrba, Vlastimil; Šretrová, Pavla; Smrčka, David; Miglierini, Marcel

    2016-10-01

    Amorphous and nanocrystalline alloys frequently exhibit anisotropic behavior, which is a consequence of magnetic moments preferential orientation. This study reports the results obtained from a set of nuclear forward scattering experiments and transmission Mössbauer spectroscopy experiments that we have run in order to determine the degree of crystallization and the preferential orientation of magnetic moments in the material. The nuclear forward scattering of synchrotron radiation and the transmission Mössbauer spectroscopy were performed on the nanocrystalline alloy of the composition Fe79Mo8Cu1B12. The experimental data were evaluated and magnetic texture was determined. Relevance of the results was confronted with transmission Mössbauer experiments.

  2. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys.

    PubMed

    Suyalatu; Nomura, Naoyuki; Oya, Kei; Tanaka, Yuko; Kondo, Ryota; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2010-03-01

    The microstructures and magnetic susceptibilities of Zr-Mo alloys were investigated to develop a Zr alloy with a low magnetic susceptibility for magnetic resonance imaging (MRI). The microstructure was evaluated with an X-ray diffractometer (XRD), an optical microscope (OM) and a transmission electron microscope (TEM), and the magnetic susceptibility was measured with a magnetic susceptibility balance. The alpha' phase with acicular structure was dominant in Zr-1Mo alloys, while the omega and beta phases with the equiaxed and relatively flat (no acicular) microstructure was dominant in Zr-3Mo. The mixed microstructural features of Zr-1Mo and Zr-3Mo were observed in Zr-2Mo, which consists of the alpha', omega and beta phases. The beta phase is stabilized when the Mo content exceeds over 3 mass% Mo. As-cast Zr-Mo alloys showed a minimum value of magnetic susceptibility at 3 mass% Mo, and the value abruptly increased up to 10% Mo before remaining stable up to 15 mass% Mo. XRD, OM and TEM revealed that the minimum value of the susceptibility was closely related to the appearance of the athermal omega phase in the beta phase. As the Mo content decreases from 3 mass%, the alpha' phase appears with the omega and beta phases. On the other hand, as the Mo content increases from 3 mass%, the beta phase increases and the omega phase decreases. Thus the appearance of the alpha' and beta phase leads to an increase in magnetic susceptibility. The magnetic susceptibility of as-cast Zr-3Mo alloy was almost one-third that of Ti-6Al-4V, which is commonly used for medical implant devices. Zr-Mo alloys are useful for medical devices used under MRI.

  3. Recent progress in perpendicularly magnetized Mn-based binary alloy films

    NASA Astrophysics Data System (ADS)

    Zhu, Li-Jun; Nie, Shuai-Hua; Zhao, Jian-Hua

    2013-11-01

    In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxAl thin films with perpendicular magnetic anisotropy. First, we present a brief introduction to the demands for perpendicularly magnetized materials in spintronics, magnetic recording, and permanent magnets applications, and the most promising candidates of tetragonal MnxGa and MnxAl with strong perpendicular magnetic anisotropy. Then, we focus on the recent progress of perpendicularly magnetized MnxGa and MnxAl respectively, including their lattice structures, bulk synthesis, epitaxial growth, structural characterizations, magnetic and other spin-dependent properties, and spintronic devices like magnetic tunneling junctions, spin valves, and spin injectors into semiconductors. Finally, we give a summary and a perspective of these perpendicularly magnetized Mn-based binary alloy films for future applications.

  4. Local magnetic effects of interface alloying in Fe/Co superlattices.

    PubMed

    Kamali-M, S; Bergman, A; Andersson, G; Stanciu, V; Häggström, L

    2006-07-05

    Effects of interface alloying and the thickness dependence of magnetic properties of Fe/Co(001) multilayers have been investigated. The thicknesses of the Fe layers have been varied between two and 14 monolayers while the Co layers have been held constant at 7 ML. From conversion electron Mössbauer spectroscopy (CEMS) measurements and electronic structure calculations it is found that the magnitude of the Fe magnetic hyperfine field is larger close to the interface and smaller in the middle of thick (≥9 ML) Fe layers. For a thinner Fe layer (≤5 ML) the largest field is found in the centre of the Fe layer. By modelling the effects of interface alloying from earlier data for bulk Fe-Co alloys, and comparing with the experimental results, the degree of interface alloying is estimated to be 2-3 ML at each interface.

  5. Magnetically induced electrodeposition of Zn-Ni alloy coatings and their corrosion behaviors

    NASA Astrophysics Data System (ADS)

    Rao, Vaishaka R.; Bangera, Kasturi V.; Hegde, A. Chitharanjan

    2013-11-01

    The less magnetic features of Zn-Ni alloy compared to Fe-Ni and Fe-Co alloys made it interesting to develop them under the influence of applied magnetic field. In this regard, the effects of a magnetic field (B) applied in a direction parallel and perpendicular to the nominal current, during electrodeposition process of Zn-Ni alloy have been investigated by means of X-ray diffraction and EDX analysis. The modification of crystal orientation by superimposition of a varying magnetic field is studied for alloys of constant nickel content (8 a %.), deposited at optimal current density (j) of 3.0 A dm-2. The effect of magnetic field on crystallographic orientation and hence the corrosion behaviors of the coatings were studied. The preferential orientations (101) and (002) of the zinc phase and (330) γ-Ni5Zn21 phase are always favored to exist with parallel and perpendicular magnetic field. The preferential (321) γ-Ni5Zn21 orientation is found to be the characteristic of perpendicular magnetic field. Further, Zn (100) orientation is found to be non-responsive to the effect of parallel magnetic field. The coatings developed using perpendicular magnetic field is more corrosion resistant compare to that for parallel magnetic field. This is attributed to the additional (321) γ-Ni5Zn21 orientations. The changes in the phase structure of the coatings deposited at different magnetic field are attributed to the effect caused by the magnetic convection induced in the electrolytic solution, called MHD effect (magneto-hydrodynamic effect). The chemical composition of the alloy was found to be same in both natural and magnetically induced deposition due to constant Ni content in the bath. The variation in the surface morphology of the coatings was studied by scanning electron microscopy (SEM). The Zn-Ni alloy coating deposited at 0.8 T perpendicular B showed the highest corrosion resistance (with corrosion rate=0.26×10-2 mm y-1) compared to the one with no B (corrosion rate=14

  6. Films of Soft-Magnetic Fe-Based Nanocrystalline Alloys for High-Density Magnetic Storage Application

    NASA Astrophysics Data System (ADS)

    Shefteľ, E. N.; Bannykh, O. A.

    This paper presents a review of works related to the problem of development of soft-magnetic film Fe-based alloys exhibiting the combination of properties, such as the high saturation inductance, high level of soft-magnetic parameters over a wide range of MHz-frequencies, high wear-resistance and thermal stability, and an ability to be prepared by thin-film technologies. Magnetic cores of high-density recording heads are the principal application of these materials. Physical fundamentals of explanation of ferromagnetic behavior of a material with nano-sized structure, which have been developed for FINEMETs (Fe-Nb-Cu-Si-B) with the mixed amorphous + nanocrystalline structure, are considered. A new class of alloys Fe-Me-X (Me=Metal of III-V groups of the Periodic Table and X=C, N, O, and B) whose properties are higher that those of FINEMETs are discussed. The structure of these alloys consists of two nanocrystalline phases, such as the ferromagnetic α-Fe-based and nonmagnetic MeX phases. This structure provides the dispersion strengthening of the alloys. Metal science approaches to the selection of both chemical compositions and conditions of structure formation for these film alloys have been developed by authors and are discussed in this article.

  7. -Interface effects on the magnetic moment of Co and Cu in CoCu granular alloys

    SciTech Connect

    Garcia Prieto, A.; Fdez-Gubieda, M.L.; Chaboy, J.; Laguna-Marco, M.A.; Muro, T.; Nakamura, T.

    2005-12-01

    We report on x-ray magnetic circular dichroism experiments performed on Co{sub 5}Cu{sub 95} annealed granular alloys with giant magnetoresistance. Results on the Co-L{sub 2,3} edge evidence a direct correlation between the Co orbital and spin magnetic moment and the Co clusters interfacial roughness. On the other hand, we have found dichroism on the Cu-L{sub 2,3} edge, revealing an induced magnetic polarization of the Cu interfacial atoms. The magnetic moment of the Cu atoms is mainly of spin character and is ferromagnetically coupled with the Co magnetic moment.

  8. Magnetic properties of Fe-Cu alloys grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Grigorov, I. L.; Freeland, J. W.; Walker, J. C.

    1996-03-01

    Magnetic properties of Fe_xCu_1-x alloys are difficult to study due to the low mutual solid solubility of the components. These alloys can be formed by co-sputtering onto a cold substrate, however, they retain fcc phase only for x < 0.6footnote[1]C.L. Chien et. al. Phys.Rev. B 33, 3247 (1986). In this work Fe_xCu_1-x alloys were grown epitaxially by co-deposition onto the Cu(100) substrate. Using this technique we can stabilize the alloy in fcc phase across the entire Fe concentration range. During growth, the substrate was maintained at 0^0C to prevent clustering. Crystal structure was monitored by in-situ RHEED and ex-situ X-ray diffraction. The correlation between structural and magnetic properties of the alloys as well as their dependence on the film thickness were studied by SQUID magnetometry and Mössbauer spectroscopy. Initial results showed a non-zero quadrupole splitting of the room temperature Mössbauer absorption line indicating the random distribution of iron in the Cu matrix. Both low temperature Mössbauer and SQUID measurements on the alloys with low iron concentration showed significant reduction of the average magnetic moment and T_c.

  9. Hf--Co--B alloys as permanent magnet materials

    DOEpatents

    McGuire, Michael Alan; Rios, Orlando; Ghimire, Nirmal Jeevi

    2017-01-24

    An alloy composition is composed essentially of Hf.sub.2-XZr.sub.XCo.sub.11B.sub.Y, wherein 0alloy composition is composed essentially of ferromagnetic Hf.sub.2-XZr.sub.XCo.sub.11B.sub.Y, wherein 0.ltoreq.X<2 and 0alloys can be melt-spun with in-situ and/or ex-situ annealing to produce the nanoscale crystalline structure.

  10. Phase structure and magnetic properties of Mn{sub 3}Ga{sub 2} alloy

    SciTech Connect

    Lu, Q. M. Yu, F.; Yue, M.; Zhang, H. G.; Li, Y. Q.; Liu, Y. Q.; Zhang, J. X.; Yan, X. L.

    2014-05-07

    In this paper, Mn{sub 3}Ga{sub 2} alloys with high saturation magnetization and high Curie temperatures were prepared by levitation melting high pure Mn and Ga elements followed by annealing. The effect of annealing temperature on phase structure and magnetic properties was investigated by means of x-ray diffraction and a vibrating sample magnetometer. A single phase alloy Mn{sub 3}Ga{sub 2}, which has tetragonal P4/mmm structure, was obtained with an annealing temperature of 773 K and annealing time of 24 h. The hysteresis curve of its easy axis for this single phase alloy shows that the room temperature coercivity and saturation magnetization are 4.18 kOe and 50.81 emu/g, respectively. The thermomagnetic curves indicate that the Curie temperature is about 650 K and a phase transformation occurs above 823 K.

  11. Tailoring the magnetic properties of CoFeNi alloys with variations in copper contents

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Oh; Kim, Hyun Kyung; Kim, Gyeung Ho; Jeung, Won Young

    2006-04-01

    CoFeNi alloys are some of the most studied soft magnetic materials because of their superior properties over FeNi alloys as write head core materials in hard disk drives. Pulsed electrodeposition was shown to be an interesting approach to vary the crystalline structure of the fcc-bcc mixed phase CoFeNi and CoFeNiCu films without changing the composition and the grain size by using a single bath. The permeability μ of CoFeNiCu films plated from bath composition exceeded 4.6×106. Coercivity Hc was 20-73 A/m. The high saturation magnetic flux Bs was 1.8 T. The soft magnetic CoFeNiCu film prepared satisfies all the requirements needed for the preparation of magnetic recording heads, as all magnetic properties were improved in this direction.

  12. Investigation of magnetic domains in Ni Mn Ga alloys with a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Heczko, O.; Söderberg, O.; Hannula, S.-P.; Lindroos, V. K.

    2005-10-01

    The magnetic domains of martensite have been investigated with a scanning electron microscope in three Ni-Mn-Ga alloys with five-layered, seven-layered and non-layered (T) martensite structure. Type I magnetic contrast provides an overview of the domain pattern. This contrast arises from the stray field of the specimen and it is observed in a secondary-electron image. The type II magnetic contrast of a backscattered electron image gives the detailed magnetic microstructure together with the crystal morphology. A stripe domain pattern is formed in all the alloys when there is one dominant martensite variant in the sample. The second minor variant might be distorted due to interaction with the magnetic domain structure of the major variant. The mechanism of the deformation is not entirely clear and a tentative explanation for this deformation is suggested.

  13. Recent progress in high Bs Fe-based nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Yoshizawa, Y.

    2011-02-01

    High saturation magnetic flux density (high-Bs) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m-1 and a high Bs of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe80.5Cu1.5Si4B14 nanocrystalline alloy is 0.46 W kg-1, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg-1, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  14. Phase equilibria of Fe-C binary alloys in a magnetic field

    NASA Astrophysics Data System (ADS)

    England, Roger Dale

    The deployment of high flux magnetic processing in industry requires the ability to model the expected results of a proposed processing, and the current assumptions in the literature did not reflect the actual outcome in measurements of ductile iron. Simple binary iron-carbon alloys of less than one weight percent carbon were thermo-magnetically processed and then compared with Gibbs free energy phase transformation predictions. The data was used to quantify the change in the Gibbs free energy associated with the addition of a static high flux magnetic field, which is complicated by the change in magnetic response as the iron carbon alloys pass through the Curie point. A current common practice is to modify Gibbs free energy by -12J per mole per Tesla applied, as has been reported in the literature. This current prediction practice was employed in initial experiments for this work and the experimental data did not agree with these predicted values. This work suggests two specific influences that affect the model, chemistry and magnetic dipole changes. First, that the influence of alloying elements in the original chemistry, as the samples in the literature were a manganese alloy with 0.45 weight percent carbon, as well as not being precisely controlled for tramp elements that commonly occur in recycled material, created a change that was not predicted and therefore the temperatures were incorrect. Also, the phase transformation in a high flux magnetic field was measured to have a different response under warming versus cooling than the normal hysteresis under ambient magnetism. The change in Gibbs free energy for the binary alloys was calculated as -3J per mole per Tesla in warming, and -8J per mole per tesla in cooling. The change from these values to the -12J per mole per Tesla previously reported is attributed to the change in chemistry. This work attributes the published increase in physical properties to the Hall-Petch relation as a result of the finer product

  15. Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Lou, Shuting; Yan, Chen; Yang, Liu; Li, Tao; Hao, Shuai; Wang, Xingyi; Liu, Huan

    2017-04-01

    A large magnetic field-induced strain (MFIS) was discovered in single-crystal alloys, whereas it is proven difficult for such apparent strain values to be obtained in polycrystalline alloys. In order for an apparent strain discovery to occur, the polycrystalline Co-Ni-Al system was doped by 0-1 at.% of Er and the effects of doping on microstructure, magnetism and MFIS were studied via scanning electron microscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometer in the present work. The microstructure of the alloy was a dual-phase microstructure, including the matrix and the γ phase. Following the Er doping, the γ phase was continuously coarsened, forming a network of precipitates surrounding the grains. Also, a Co-Er-rich intermetallic compound was formed in the Co-rich γ phase when the Er content exceeded 0.1 at.%. The martensitic transformation temperature has a decreasing tendency during the Er being doped from 0 at.% to 1 at.% and the martensitic structure of the sample is of the L10 type, forming twin grains in the (111) twinning plane. On the contrary, the magnetic properties were improved by Er doping, especially saturation magnetization and magneto-crystalline anisotropy constantly increased to 60.45 emu/g and 3.13 × 106 erg/cm3 when the Er content reached 1 at.%, respectively. Also, the strain recovery ratio ( R s) of Co-Ni-Al-Er alloys can be enhanced by thermo-mechanical cycles and Er doping. At 5% of the total strain, the R s value exceeded 83% following thermo-mechanical cycles when the Er doping was 1 at.%. The strain in the applied magnetic field was increased by Er doping and an excess of 140 ppm of MFIS was obtained in the polycrystalline Co-Ni-Al-Er alloys.

  16. Recent breakthrough development of the magnetic shape memory effect in Ni Mn Ga alloys

    NASA Astrophysics Data System (ADS)

    Söderberg, O.; Ge, Y.; Sozinov, A.; Hannula, S.-P.; Lindroos, V. K.

    2005-10-01

    Magnetic shape memory (MSM) alloys or ferromagnetic shape memory alloy (FSMA) materials discovered by Ullakko et al (1996 Appl. Phys. Lett. 69 1966-8) have received increasing interest, since they can produce a large strain with rather high frequencies without a change in the external temperature. These materials have potential for actuator and sensor applications. MSM materials exhibit giant magnetic field induced strain (MFIS) based on the rearrangements of the crystallographic domains (twin variants). The magnetization energy of the material is lowered when such twin variants that have the easy axis of magnetization along the field start to grow due to twin boundary motion. Currently, the best working MSM materials are the near-stoichiometric Ni2MnGa Heusler alloys in which the properties are highly composition dependent. Their modulated martensitic structures, 5M and 7M, show 6% or 10% response respectively in a magnetic field less than 800 kA m-1. The MSM service temperature of the 5M alloys is between 150 and 333 K, and the optimal frequency region is up to 500 Hz. The fatigue life of the MSM elements has been shown to be at least 50 × 106 shape change cycles. This paper reviews the research work carried out at Helsinki University of Technology on MSM materials since 1998.

  17. Magnetic-Field Dependence of Thermoelectric Properties of Sintered Bi90Sb10 Alloy

    NASA Astrophysics Data System (ADS)

    Murata, Masayuki; Yamamoto, Atsushi; Hasegawa, Yasuhiro; Komine, Takashi

    2016-03-01

    The magnetic-field dependence of the thermoelectric properties and dimensionless figure of merit ( ZT) of a sintered Bi90Sb10 alloy were experimentally and theoretically evaluated. The Bi-Sb alloy was synthesized in a quartz ampule using the melting method, and the resultant ingot was then ground via ball milling. A sintered Bi90Sb10 alloy with a particle size in the range of several to several tens of micrometers was prepared using the spark plasma sintering (SPS) method. The magnetic-field dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity were experimentally evaluated at temperatures of 77-300 K for magnetic fields of up to 2.9 T. The results showed that ZT increased by 37% at 300 K under a 2.5-T magnetic field. A theoretical calculation of the magneto-Seebeck coefficient based on the Boltzmann equation with a relaxation time approximation was also performed. Hence, the experimental result for the magneto-Seebeck coefficient of the Bi90Sb10 alloy at 300 K was qualitatively and quantitatively explained. Specifically, the carrier scattering mechanism was shown to be acoustic phonon potential scattering and the carrier mobility ratio between the L- and T-points was found to be 3.3, which corresponds to the characteristics of a single crystal. It was concluded that the effect of the magnetic field on the Seebeck coefficient was demonstrated accurately using the theoretical calculation model.

  18. Pressure dependence on the remanent magnetization of Fe-Ni alloys and Ni metal

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; Gilder, Stuart Alan; Maier, Bernd

    2014-10-01

    We measured the acquisition of magnetic remanence of iron-nickel alloys (Fe64Ni36, Fe58Ni42, and Fe50Ni50) and pure Ni under pressures up to 23 GPa at room temperature. Magnetization decreases markedly for Fe64Ni36 between 5 and 7 GPa yet remains ferromagnetic until at least 16 GPa. Magnetization rises by a factor of 2-3 for the other compositions during compression to the highest applied pressures. Immediately upon decompression, magnetic remanence increases for all Fe-Ni alloys while magnetic coercivity remains fairly constant at relatively low values (5-20 mT). The amount of magnetization gained upon complete decompression correlates with the maximum pressure experienced by the sample. Martensitic effects best explain the increase in remanence rather than grain-size reduction, as the creation of single domain sized grains would raise the coercivity. The magnetic remanence of low Ni Invar alloys increases faster with pressure than for other body-centered-cubic compositions due to the higher magnetostriction of the low Ni Invar metals. Thermal demagnetization spectra of Fe64Ni36 measured after pressure release broaden as a function of peak pressure, with a systematic decrease in Curie temperature. Irreversible strain accumulation from the martensitic transition likely explains the broadening of the Curie temperature spectra, consistent with our x-ray diffraction analyses.

  19. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    DOE PAGES

    Huang, L.; Cong, D. Y.; Ma, L.; ...

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore,more » good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less

  20. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    NASA Astrophysics Data System (ADS)

    Lou, Chang-Sheng; Liu, Tie; Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang

    2017-02-01

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials.

  1. Elastic and chemical contributions to the stability of magnetic surface alloys on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Marathe, Madhura; Imam, Mighfar; Narasimhan, Shobhana

    2009-02-01

    We have used density-functional theory to study the miscibility and magnetic properties of surface alloys. Our systems consist of a single pseudomorphic layer of MxN1-x on the Ru(0001) surface, where M=Fe or Co, and N=Pt , Au, Ag, Cd, or Pb. Several of the combinations studied by us display a preference for atomically mixed configurations over phase-segregated forms. We have also performed further ab initio calculations to obtain the parameters describing the elastic interactions between atoms in the alloy layer, including the effective atomic sizes at the surface. We find that while elastic interactions favor alloying for all the systems considered by us, in some cases chemical interactions disfavor atomic mixing. We show that a simple criterion (analogous to the Hume-Rothery first law for bulk alloys) need not necessarily work for strain-stabilized surface alloys because of the presence of additional elastic contributions to the alloy heat of formation that will tend to oppose phase segregation. We find that magnetic moments are significantly enhanced with respect to the bulk elements.

  2. Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2016-12-01

    Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.

  3. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  4. Magnetic entropy change and refrigerant capacity of rapidly solidified TbNi2 alloy ribbons

    NASA Astrophysics Data System (ADS)

    Sánchez Llamazares, J. L.; Sánchez-Valdes, C. F.; Ibarra-Gaytan, P. J.; Álvarez-Alonso, Pablo; Gorria, P.; Blanco, J. A.

    2013-05-01

    The magnetocaloric effect in TbNi2 alloy ribbons synthesized by rapid solidification was investigated. This material crystallizes in a superstructure of the cubic Laves phase structure type C15 (space group F-43m). The saturation magnetization and Curie temperature are MS = 134 ± 2 A m2 kg-1 and TC = 37 ± 1 K, respectively. For a magnetic field change of 5 T, the material shows a maximum magnetic entropy change |ΔSMpeak| = 13.9 J kg-1 K-1, with a full-width at half-maximum δTFWHM = 32 K, and a refrigerant capacity RC = 441 J kg-1. The RC value is similar to those reported for other magnetic refrigerants operating within the temperature range of 10-80 K. Finally, it is worth noting that the use of rapid solidification circumvents the necessity for long-term high-temperature homogenization processes normally needed with these RNi2 alloys.

  5. Fe-Zr-Nd-Y-B permanent magnet derived from crystallization of bulk amorphous alloy

    NASA Astrophysics Data System (ADS)

    Tan, Xiaohua; Xu, Hui; Bai, Qin; Dong, Yuanda

    2007-12-01

    The microstructure and magnetic properties of Nd2Fe14B/(Fe3B,α-Fe) nanocomposite magnet derived form crystallization of bulk amorphous Fe68Zr2Y4B21Nd5 alloy, which was prepared by copper mold casting, have been investigated. The obtaining maximum values of Ms, Mr, Hci, and (BH)max annealed at 963K for Fe68Zr2Nd5Y4B21 alloy are 86Am2/kg, 49Am2/kg, 380kA/m, and 43kJ/m3, respectively. δM plot, high resolution transmission electron microscopy observation, and three-dimensional atom probe technique clarified that the hard magnetic behavior is due to the exchange coupling between soft and hard magnetic nanophases.

  6. Relativistic Effects on Electron Transport in Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Drchal, Václav; Kudrnovský, Josef; Turek, Ilja

    We study the relativistic effects on electron transport in spin-polarized metals and random alloys on ab initio level using the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO) method. We employ a Kubo linear-response approach adapted to disordered multisublattice systems in which the chemical disorder is described in terms of the coherent potential approximation (CPA). The CPA vertex corrections are included. We calculate both the Fermi surface and Fermi sea terms of the full conductivity tensor. We find that in cubic ferromagnetic 3d transition metals (Fe, Co, Ni) and their random binary alloys (Ni-Fe, Fe-Si) the Fermi sea term in the anomalous Hall conductivity is small in comparison with the Fermi surface term, however, in more complicated structures, such as hexagonal Co and selected Co-based Heusler alloys, it becomes important. We find an overall good agreement between the theory and experimental data.

  7. MR Measurement of Alloy Magnetic Susceptibility: Towards Developing Tissue-Susceptibility Matched Metals

    PubMed Central

    Astary, Garrett W.; Peprah, Marcus K.; Fisher, Charles R.; Stewart, Rachel L.; Carney, Paul R.; Sarntinoranont, Malisa; Meisel, Mark W.; Manuel, Michele V.; Mareci, Thomas H.

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7 T and 11.1 T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7 T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device. PMID:23727587

  8. MR measurement of alloy magnetic susceptibility: towards developing tissue-susceptibility matched metals.

    PubMed

    Astary, Garrett W; Peprah, Marcus K; Fisher, Charles R; Stewart, Rachel L; Carney, Paul R; Sarntinoranont, Malisa; Meisel, Mark W; Manuel, Michele V; Mareci, Thomas H

    2013-08-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7T and 11.1T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device.

  9. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  10. Itinerant magnetism and spin glass states of iron rich amorphous alloys

    NASA Astrophysics Data System (ADS)

    Krey, U.; Krompiewski, S.; Krauss, U.

    1990-04-01

    We generalize our self-consistent treatment of the itinerant magnetism of disordered or amorphous transition metal alloys, given in a series of recent papers, in such a way that now also itinerant spin glasses can be treated; i.e. not only the local magnitude, as before, also the local polarization direction can now differ from site, due to a subtle interplay between the isotropic intra-atomic Coulomb interaction and the anisotropic hopping terms in the Hamiltonian. Using a realistic approach with all relevant orbitals, this theory is then applied to a detailed numerical study of the magnetism of iron-rich amorphous Fe-Zr alloys, including hydrogenated samples, and of fictitious amorphous Fe at various densities. As a result we find that in the non-hydrogenated Fe-Zr alloys and in amorphous Fe the transverse components, although summing up to zero, can locally be almost comparable to the longitudinal polarization per atom.

  11. Martensitic and magnetic transformation in Mn50Ni50-xSnx ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ma, L.; Wang, S. Q.; Li, Y. Z.; Zhen, C. M.; Hou, D. L.; Wang, W. H.; Chen, J. L.; Wu, G. H.

    2012-10-01

    A martensitic transformation (MT) from a body-centered-cubic austenitic phase to a tetragonal martensitic phase has been found in Mn50Ni50-xSnx (0 ≤ x ≤ 11) alloys. The martensitic transformation temperature can be decreased by about 71.6 K by increasing the Sn concentration by 1 at. %. For 9 ≤ x ≤ 11, Mn50Ni50-xSnx ferromagnetic shape memory alloys are obtained. Due to the large magnetization difference (ΔM = 60 emu/g) and small thermal hysteresis (ΔT = 6 K) in the Mn50Ni40Sn10 alloy, a two-way magnetic-field-induced martensitic transformation is observed with dT/dH = 2 K/T.

  12. Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets.

    PubMed

    Balamurugan, B; Das, B; Zhang, W Y; Skomski, R; Sellmyer, D J

    2014-02-12

    The structural and magnetic properties of nanostructured Co-rich transition-metal alloys, Co(100-x)TMx (TM = Hf, Zr and 10 ≤ x ≤ 18), were investigated. The alloys were prepared under non-equilibrium conditions using cluster-deposition and/or melt-spinning methods. The high-anisotropy HfCo7 and Zr2Co11 structures were formed for a rather broad composition region as compared to the equilibrium bulk phase diagrams, and exhibit high Curie temperatures of above 750 K. The composition, crystal structure, particle size, and easy-axis distribution were precisely controlled to achieve a substantial coercivity and magnetization in the nanostructured alloys. This translates into high energy products in the range of about 4.3-12.6 MGOe, which are comparable to those of alnico.

  13. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  14. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    NASA Astrophysics Data System (ADS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-01-01

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments.

  15. Strong, non-magnetic, cube textured alloy substrates

    DOEpatents

    Goyal, Amit

    2011-02-01

    A warm-rolled, annealed, polycrystalline, cube-textured, {100}<100>, FCC-based alloy substrate is characterized by a yield strength greater than 200 MPa and a biaxial texture characterized by a FWHM of less than 15.degree. in all directions.

  16. Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys.

    PubMed

    D'Souza, Sunil Wilfred; Roy, Tufan; Barman, Sudipta Roy; Chakrabarti, Aparna

    2014-12-17

    Influence of disorder, antisite defects, martensite transition and compositional variation on the magnetic properties and electronic structure of Mn(2)NiGa and Mn(1+x)Ni(2-x)Ga magnetic shape memory alloys have been studied by using full potential spin-polarized scalar relativistic Korringa-Kohn-Rostocker (FP-SPRKKR) method. Mn(2)NiGa is ferrimagnetic and its total spin moment increases when disorder in the occupancy of MnNi (Mn atom in Ni position) is considered. The moment further increases when Mn-Ga antisite defect [1] is included in the calculation. A reasonable estimate of TC for Mn(2)NiGa is obtained from the exchange parameters for the disordered structure. Disorder influences the electronic structure of Mn(2)NiGa through overall broadening of the density of states and a decrease in the exchange splitting. Inclusion of antisite defects marginally broaden the minority spin partial DOS (PDOS), while the majority spin PDOS is hardly affected. For Mn(1+x)Ni(2-x)Ga where 1 ⩾ x ⩾ 0, as x decreases, Mn(Mn) moment increases while Mn(Ni) moment decreases in both austenite and martensite phases. For x ⩾ 0.25, the total moment of the martensite phase is smaller compared to the austenite phase, which indicates possible occurrence of inverse magnetocaloric effect. We find that the redistribution of Ni 3d- Mn(Ni) 3d minority spin electron states close to the Fermi level is primarily responsible for the stability of the martensite phase in Mn-Ni-Ga.

  17. Magnetic and structural characteristics of PrCo13-xSiO alloys and their nitrides

    SciTech Connect

    Huang, M.Q.; Wallace, W.E.; Obermyer, R.T.; Simizu, S.; Sankar, S.G.

    1996-01-31

    PrCo13-xSix alloys with 0 <= x <= 4.5 have been synthesized and studied at temperatures from 10 to 1273 K and in fields up to 17 kOe. The structure and magnetic properties of the alloys vary significantly with changes in Si content x. In the alloys with x = 0, TMA and XRD studies show the phases present to be Pr2Co17 and Co. For x = 1.5 or 2.0, the alloys are essentially single-phase fcc materials (NaZn13 structure type). At larger values of x the ternary alloy formed in a bet structure (Ce2Ni17Si0 structure type). Replacement of Co by Si in PrCo13 results in a drop in T{sub c} from 1318 K (for LaCo13) to approx. 900 K for fcc Pr(Co.Si)13 alloy and to approx. 20 K for bct Pr(Co.Si)sub 13 alloys. There is also a large drop in magnetization from 104.6 emu/g for the alloy with x = 1.5 to 19.2 emu/g for the alloys with x = 4.0. A bct alloy (x = 3.5) showed negligible magnetic anisotropy. Si doping sharply reduces the Co moment. Si doping also reduces tbe Pr moment to 1.5 micrometer sub s (fcc alloys) and to 1.8 micrometers sub s (bct alloys). Nitrogenation fails to improve Pr(Co.Si)13 alloys as permanent magnet materials.

  18. Effective magnetic anisotropy and internal demagnetization investigations in soft magnetic nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Varga, L. K.; Novák, L.; Mazaleyrat, F.

    2000-02-01

    In order to clarify the effect of the initial anisotropy K1 of the nanograins on the effective < K> of two-phase nanocrystalline Fe 73.5Si 13.5B 9Nb 3Cu 1 (Finemet) and Fe 86Zr 7B 6Cu 1 alloys, the coercivity, virgin and anhysteretic curves have been studied at room temperature after different annealing. The experimental determination of the effective < K> was found to be 280 and 500 J/m 3, respectively, instead of the order of unity J/m 3 expected by random anisotropy model calculations. The internal demagnetization factor, as a measure of magnetic heterogeneities was found to have a negligible contribution to the effective < K> in both materials although it is higher in the FeZr-based one. The coercivity results are explained well by our adaptation of the Friedberg and Paul formula in which the ratio of the Curie temperatures are considered for the ratio of the two local exchange constants. Further more calculations are developed from this formula in order to connect qualitatively the coercivity and the internal demagnetizing factor

  19. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  20. Change of magnetic properties of nanocrystalline alloys under influence of external factors

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik

    2016-10-01

    Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.

  1. Growth, structure and magnetism of self-organized epitaxial nano-alloys on a metallic substrate

    NASA Astrophysics Data System (ADS)

    Rousset, S.; Moreau, N.; Repain, V.; Chacon, C.; Girard, Y.; Klein, J.; Lagoute, J.; Bulou, H.; Scheurer, F.; Goyhenex, C.; Ohresser, Ph.

    2013-03-01

    The CoPt alloy is one of the most studied bimetallic compounds, due to its potential application for magnetic recording. We report here on CoxPt1-x nano-alloys deposited on the well-known Au(111) reconstructed surface since it has been recognized as a powerful substrate in order to investigate the magnetic properties of metallic nano-clusters. The growth of CoxPt1-x clusters on the Au(111) surface observed by STM revealed a morphological transition from single layer to bilayer islands with the Co concentration x. Using molecular dynamics calculations, we show that this transition is driven by the local strain due to Co atoms. These results are interpreted by a competition between the interface energy, the mixing energy and the elastic energy. Using X-ray Magnetic Circular Dichroism, we have studied the magnetic properties of these nano-alloys. The out-of-plane anisotropy of pure Co clusters strongly decreases, until it goes in-plane for 40% of Pt. This spin reorientation transition is interpreted by a phenomenological pair model for magnetic anisotropy.

  2. Jahn-Teller-like origin of the tetragonal distortion in disordered Fe-Pd magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Opahle, Ingo; Koepernik, Klaus; Nitzsche, Ulrike; Richter, Manuel

    2009-02-01

    The electronic structure and magnetic properties of disordered FexPd100-x alloys (50magnetization data. The origin of the tetragonal distortion in the Fe-Pd magnetic shape memory alloys is found to be a Jahn-Teller-like effect, which allows the system to reduce its band energy in a narrow composition range. Prospects for an optimization of the alloys' properties by adding third elements are discussed.

  3. Electronic structure and magnetic properties of disordered Co{sub 2}FeAl Heusler alloy

    SciTech Connect

    Jain, Vishal Jain, Vivek Sudheesh, V. D. Lakshmi, N. Venugopalan, K.

    2014-04-24

    The effects of disorder on the magnetic properties of Co{sub 2}FeAl alloy are reported. X-ray diffraction exhibit A2-type disordered structure. Room temperature Mössbauer studies show the presence of two sextets with hyperfine field values of 31T and 30T along with a nonmagnetic singlet. The electronic structure of ordered and disordered Co{sub 2}FeAl alloys, investigated by means of the KKR Green's-function method shows that the magnetic moment of the ordered structure is 5.08μ{sub B} and is 5.10μ{sub B} when disordered. However, a much higher magnetic moment of 5.74μ{sub B} is observed experimentally.

  4. Effects of tensile stress on the magnetic Barkhausen effect in 2605 Co amorphous alloy

    SciTech Connect

    Mitra, A.; Jiles, D.C.

    1995-11-01

    A study of the magnetic Barkhausen effect emissions in 2605 Co amorphous alloys has been made. These emissions, which appear as magnetization pulses in the material, can be detected by a pick-up coil and analyzed in a variety of ways. In this study the Barkhausen effect signals were found to be dependent on both magnetic field and applied tensile stress. This dependence was in accordance with a theoretical model of the Barkhausen effect developed previously. The analysis and modeling of the resulting behavior was found to be particularly simple because amorphous alloys have no crystalline anisotropy, and therefore the effects of stress on the Barkhausen emission were not masked by competing effects.

  5. Magnetic Nondestructive Investigation of Ferromagnetic Alloys Subjected to Stress and Fatigue

    SciTech Connect

    Melikhov, Y.; Lo, C.C.H.; Jiles, D.C.

    2004-02-26

    The influence of stress and fatigue under various stress amplitudes on the magnetic properties of a range of magnetic alloys (Ni, Fe55Ni45, Fe64Ni36 and Fe54Ni29Co17) was studied. Barkhausen effect signal and symmetrical minor hysteresis loops were measured at various stages during the tensile and fatigue tests. The data were analyzed using the Preisach model formalism in order to identify parameters which better described the structural changes in the materials. The results obtained from this work has enhanced the applicability of magnetic measurements for non-destructive testing of materials.

  6. Microstructural, mechanical and magnetic properties of high-strength low-alloy steel

    NASA Astrophysics Data System (ADS)

    Narayan, S. Prakash; Rao, V.; Mohanty, O. N.

    1991-06-01

    Studies have been carried out on commercial grade high-strength low-alloy steel, microalloyed with Nb, V and Ti with a view to developing high-strength material with moderate soft magnetic properties. In order to obtain a suitable microstructure necessary for achieving the desired mechanical strength and magnetic properties, spheroidisation annealing (SA) as well as quenching and tempering (QT) treatments have been employed. At longer annealing or tempering time (⩾ 30 h), both the SA and QT samples have shown ample spheroidisation of carbides resulting in considerable improvement in the magnetic properties without much deterioration in mechanical strength.

  7. Electrodeposition of iron and iron-aluminium alloys in an ionic liquid and their magnetic properties.

    PubMed

    Giridhar, P; Weidenfeller, B; El Abedin, S Zein; Endres, F

    2014-05-28

    In this work we show that nanocrystalline iron and iron-aluminium alloys can be electrodeposited from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C. The study comprises CV, SEM, XRD, and magnetic measurements. Two different sources of iron(ii) species, Fe(TfO)2 and FeCl2, were used for the electrodeposition of iron in [Py1,4]TfO. Cyclic voltammetry was employed to evaluate the electrochemical behavior of FeCl2, Fe(TfO)2, and (FeCl2 + AlCl3) in the employed ionic liquid. Thick iron deposits were obtained from FeCl2/[Py1,4]TfO at 100 °C. Electrodeposition of iron-aluminium alloys was successful in the same ionic liquid at 100 °C. The morphology and crystallinity of the obtained deposits were investigated using SEM and XRD, respectively. XRD measurements reveal the formation of iron-aluminium alloys. First magnetic measurements of some deposits gave relatively high coercive forces and power losses in comparison to commercial iron-silicon samples due to the small grain size in the nanometer regime. The present study shows the feasibility of preparing magnetic alloys from ionic liquids.

  8. Structural and magnetic properties of mechanically alloyed Co 20Cu 80 solid solution

    NASA Astrophysics Data System (ADS)

    Yoo, Y. G.; Yang, D. S.; Yu, S. C.; Kim, W. T.; M. Lee, J.

    1999-08-01

    Microstructural change during the mechanical alloying of Co 20Cu 80 has been studied by X-ray diffractometry (XRD) and extended X-ray absorption fine structure (EXAFS) techniques. EXAFS analysis shows clearly the formation of supersaturated Co 20Cu 80 solid solution with FCC crystal structure during mechanical alloying, which is in good agreement with XRD analysis. Magnetic properties also have been studied by SQUID magnetometer from 4 to 290 K. The supersaturated Co 20Cu 80 solid solution shows wide distribution in Co cluster size due to the continuous blocking of Co cluster as a function of temperature.

  9. Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy.

    PubMed

    Mizukami, S; Wu, F; Sakuma, A; Walowski, J; Watanabe, D; Kubota, T; Zhang, X; Naganuma, H; Oogane, M; Ando, Y; Miyazaki, T

    2011-03-18

    Spin precession with frequencies up to 280 GHz is observed in Mn(3-δ)Ga alloy films with a perpendicular magnetic anisotropy constant K(u)∼15  M erg/cm(3). The damping constant α, characterizing macroscopic spin relaxation and being a key factor in spin-transfer-torque systems, is not larger than 0.008 (0.015) for the δ=1.46 (0.88) film. Those are about one-tenth of α values for known materials with large K(u). First-principles calculations well describe both low α and large K(u) for these alloys.

  10. The role of nickel content and the magnetic remanence in iron-nickel alloys of lunar composition

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1974-01-01

    Lunar samples are magnetic primarily due to the body centered cubic (BCC) iron and iron-nickel alloys they contain. Presented for the first time are results which demonstrate that the magnitude of the martensitic thermal remanence (MTRM) induced on quenching iron-nickel alloy in the geomagnetic field depends on the nickel content of the alloy. High magnetic stability is due to the increasing dislocation density and increasingly complex microstructures associated with increasing nickel content in the alloys. The results agree with the mechanical and structural properties of the alloys. The characteristic quench martensite microstructure observed on metallographic examination provides a recognition criterion for the MTRM mechanism. These results are important for lunar and meteoritic research intending to ascertain the paleofield responsible for the observed remanent magnetization.-

  11. Magnetic glass in shape memory alloy: Ni45Co5Mn38Sn12.

    PubMed

    Lakhani, Archana; Banerjee, A; Chaddah, P; Chen, X; Ramanujan, R V

    2012-09-26

    The first order martensitic transition in the ferromagnetic shape memory alloy Ni(45)Co(5)Mn(38)Sn(12) is also a magnetic transition and has a large field induced effect. While cooling in the presence of a field this first order magnetic martensite transition is kinetically arrested. Depending on the cooling field, a fraction of the arrested ferromagnetic austenite phase persists down to the lowest temperature as a magnetic glassy state, similar to the one observed in various intermetallic alloys and in half doped manganites. A detailed investigation of this first order ferromagnetic austenite (FM-A) to low magnetization martensite (LM-M) state transition as a function of temperature and field has been carried out by magnetization measurements. Extensive cooling and heating in unequal field (CHUF) measurements and a novel field cooled protocol for isothermal MH measurements (FC-MH) are utilized to investigate the glass like arrested states and show a reverse martensite transition. Finally, we determine a field-temperature (HT) phase diagram of Ni(45)Co(5)Mn(38)Sn(12) from various magnetization measurements which brings out the regions where thermodynamic and metastable states coexist in the HT space, clearly depicting this system as a 'magnetic glass'.

  12. Magnetic and Distribution of Magnetic Moments in Amorphous Fe89.7 P10.3 Alloy Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Shi, Hui-Gang; Xue, De-Sheng

    2008-01-01

    Binary amorphous Fe89.7P10.3 alloy nanowire arrays in diameter of about 40nm and length of about 3 μm have been fabricated in an anodic aluminium oxide template by electrodeposition. Magnetic properties of the samples are investigated by mean of vibrating sample magnetometer, transmission Mössbauer spectroscopy and conversion electron Mössbauer spectroscopy at room temperature. It is found that the nanowire arrays have obvious perpendicular magnetic anisotropy and are ferromagnetic at room temperature, with its Mössbauer spectra consisting of six broad lines. The average angles between the Fe magnetic moment and the wire axis are about 14° inside and 28° at the end of the amorphous Fe89.7P10.3 alloy nanowire arrays, respectively. The magnetic behaviour is decided by the shape anisotropy and the dipolar interaction between wires. In addition, the magnetic moments distribution is theoretically demonstrated by using the symmetric fanning mechanism of the spheres chain model.

  13. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-18

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (-8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  14. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-01

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (˜8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  15. Magnetic and microstructural properties of nanocrystalline Fe-25 at% Al and Fe-25 at% Al +0.2 at%B alloys prepared by mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Ibn Gharsallah, H.; Makhlouf, T.; Escoda, L.; Suñol, J. J.; Khitouni, M.

    2016-04-01

    In the present work, structural and magnetic properties of nanocrystalline Fe-25at%Al and Fe-25at%Al+0.02at%B alloys produced by mechanical alloying were studied. Their microstructural properties were investigated by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. A BCC-nanostructured Fe(Al,B) solid solution with an average crystallite size of about 18nm has been produced by milling for 4h. Whereas in Fe-25at%Al the alloying process has been accomplished after 16h of milling. It is found that B speeds up the formation of a bcc phase with finer microstructure (around 5nm) after 40h of milling. When increasing the milling time, the crystallite size decreases for all powders. An increase in microstrain was observed with increasing the milling time and also with addition of boron. Coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. The magnetic measurements show a contrasting saturation magnetization and coercivity ( Hc) in both alloys. These variations are explained by crystallite size and strain variations in the samples during milling.

  16. Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys.

    PubMed

    Suyalatu; Kondo, Ryota; Tsutsumi, Yusuke; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2011-12-01

    The effects of the microstructures and phases of Zr-rich Mo alloys on their magnetic susceptibilities and mechanical properties were investigated in order to develop a Zr alloy with low magnetic susceptibility for use in magnetic resonance imaging (MRI). The magnetic susceptibility was measured with a magnetic susceptibility balance, while mechanical properties were evaluated by a tensile test. The microstructure was evaluated with an X-ray diffractometer, an optical microscope, and a transmission electron microscope. Evaluation of the microstructures revealed that the α' phase was the dominant form at less than 2% Mo content in the as-cast alloy. The ω phase was formed in as-cast Zr-3Mo but disappeared with aging at 973 K. Magnetic susceptibility was reflected in the phase constitution: the susceptibility showed a local minimum at Zr-(0.5-1)Mo with mostly α' phase and a minimum at Zr-3Mo with mostly β and ω phases. The magnetic susceptibility of as-cast Zr-3Mo increased at 973 K due to disappearance of the ω phase. However, the susceptibility was still as low as that of as-cast Zr-1Mo. The ultimate tensile strength of α'-based Zr-Mo alloys was tailored from 674 to 970 MPa, and the corresponding elongation varied from 11.1% to 2.9%. Because Zr-Mo alloys containing ω phase were found, through tensile tests, to be brittle this phase should be avoided, irrespective of the low magnetic susceptibility, in order to maintain mechanical reliability. Elongation of the Zr-3Mo alloy was dramatically improved when the phase constitution was changed to α and β phases by aging at 973 K for 86.4 ks. The magnetic susceptibilities of the α'-based Zr-Mo alloys are one-third those of Ti-6Al-4V and Ti-6Al-7Nb, and thus these Zr alloys are useful for medical devices under MRI.

  17. Structure, Magnetic, and Electrical Properties of Heusler-Type Fe3- x Co x Si Ferromagnetic Alloys

    NASA Astrophysics Data System (ADS)

    Raja, M. Manivel; Kamat, S. V.

    2015-10-01

    The effect of substitution of Co for Fe on structure, magnetic, and electrical resistivity of Heusler-type Fe3- x Co x Si (0 ≤ x ≤ 1) alloys was investigated using X-ray powder diffraction, 57Fe Mössbauer spectroscopy, magnetic, and electrical transport measurements. The results revealed that these alloys consist of ordered DO3 phase and some L21 phase up to x ≤ 0.5. However, for x > 0.5, the alloys consisted of L21 ordered phase and B2 disordered phase. The magnetization value was close to that predicted from Slater-Pauling rule for x ≥ 0.5 alloys. The Curie temperature increased from 832 K (559 °C) for x = 0 (Fe3Si) alloy to 1016 K (743 °C) for x = 1 (Fe2CoSi) alloy. Electrical transport studies revealed the presence of half-metallic behavior at low temperatures in x ≥ 0.5 alloys. No half-metallic behavior was observed for x = 0 and 0.25 alloys; however, a high resistivity with ferromagnetism was observed in these alloys, which is desirable for ferromagnetic metal/semiconductor spintronic devices.

  18. Effect of atomic disorder on magnetization and half-metallic character of Cr2CoGa alloy

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Modak, Rajkumar; Paul, Pralay; Srinivasan, A.

    2016-11-01

    Crystallographic, magnetic and transport properties of bulk Cr2CoGa alloy are reported in this work. The alloy exhibits inverse Heusler (or XA) structure. Analysis of XRD pattern reveals the presence of 10% Cr(B)-Ga disorder in the alloy. Lattice constant of the alloy was found to be 5.80 Å. The alloy exhibits ferrimagnetic behavior with Curie temperature (TC) of 320 K as obtained from the thermo-magnetic measurement and temperature dependent inverse susceptibility for the alloy. The saturation magnetization Ms for the alloy was found to be 0.26 μB/f.u. at 25 K against the value of 0 μB/f.u. predicted by Slater-Pauling rule. This deviation is attributed to the presence of Cr(B)-Ga disorder along with a small amount of Cr(B)-Co disorder in the alloy. The temperature dependent resistivity data shows a T2 dependency in low temperature region predicting that the charge carriers are not completely spin polarized at Fermi level due to the presence of sub-lattice disorder. Linear variation of resistivity above 100 K indicates the main contribution is from scattering of electrons by phonons. The effective anisotropy of the alloy was low (1.2×104 Jm-3 at 25 K) mainly due to its low Ms.

  19. Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High B s and Good Manufacturability

    NASA Astrophysics Data System (ADS)

    Wan, Fangpei; He, Aina; Zhang, Jianhua; Song, Jiancheng; Wang, Anding; Chang, Chuntao; Wang, Xinmin

    2016-10-01

    In order to develop Fe-based nanocrystalline soft magnetic alloys with high saturation magnetic flux density ( B s) and good manufacturability, the effect of the Nb content on the thermal stability, microstructural evolution and soft magnetic properties of Fe78- x Si13B8Nb x Cu1 ( x = 0, 1, 2 and 3) alloys were investigated. It is found that proper Nb addition is effective in widening the optimum annealing temperature range and refining the α-Fe grain in addition to enhancing the soft magnetic properties. For the representative Fe76 Si13B8Nb2Cu1 alloy, the effective annealing time can be over 60 min in the optimal temperature range of 500-600°C. FeSiBNbCu nanocrystalline soft magnetic alloys with desirable soft magnetic properties including high B s of 1.39 T, low coercivity ( H c) of 1.5 A/m and high effective permeability ( μ e) of 21,500 at 1 kHz have been developed. The enhanced soft magnetic performance and manufacturability of the FeSiBNbCu nanocrystalline alloys are attributed to the high activated energy for the precipitation of α-Fe(Si) and the second phase. These alloys with excellent performance have promising applications in electromagnetic fields like inductors.

  20. Disorder influenced magnetic phase transition in the Ce(Fe 0.9 Ru 0.1)2 alloy.

    PubMed

    Chattopadhyay, M K; Roy, S B

    2010-06-16

    We have studied a 10% Ru-doped CeFe(2) alloy, Ce(Fe(0.9)Ru(0.1))(2), through magnetization, magnetotransport, and heat capacity measurements. This study shows that, while this alloy is antiferromagnetic at low temperatures and paramagnetic at high temperatures, there exists evidence of ferromagnetic ordering in the intermediate temperature regime. We show here that with 10% Ru doping the first order magnetic transition observed in the Ce(Fe(1 - x)Ru(x))(2) alloys with x < 0.08 is reduced to a quasi-continuous phase transition. The characteristic thermomagnetic history effects associated with the ferromagnetic-antiferromagnetic phase transition in the Ce(Fe(1 - x)Ru(x))(2) alloys with x < 0.08 are not observed in the Ce(Fe(0.9)Ru(0.1))(2) alloy. This alloy continues to exhibit the large magnetoresistance and large magnetocaloric effect associated with this first order magnetic transition in the alloys with smaller Ru concentration, but it does not show any energy loss due to thermomagnetic hysteresis. The present work thus shows how the introduction of quenched disorder due to alloying effects may be used to tune the first order magnetic transition in a material for more efficient functional use.

  1. Magnetic properties and magnetocaloric effect in Fe90- x Sn x Zr10 alloy ribbons

    NASA Astrophysics Data System (ADS)

    Phan, T. L.; Dan, N. H.; Thanh, T. D.; Mai, N. T.; Ho, T. A.; Yu, S. C.; Le, Anh-Tuan; Phan, M. H.

    2015-04-01

    This work points out the possibility of tuning the magnetocaloric (MC) effect in Fe90- x Sn x Zr10 alloy ribbons in the temperature range from 235 to 315 K by changing the Sn-doping content ( x). Under an applied field change from 0 to 50 kOe, the maximum magnetic-entropy changes around the ferromagnetic-paramagnetic phase transition are about 3.6, 4.1 and 3.3 J kg-1·K-1 for x = 0, 2 and 4, respectively, which correspond to relative cooling powers of 280 ˜ 410 J·kg-1. Studying the magnetic properties of the alloy ribbons based on Banerjee's criteria and assessing the magneticordering parameter n = dLn|Δ S m |/dLn H (where Δ S m and H are the magnetic-entropy change and the magnetic field, respectively) reveals that the alloys undergo a second-order phase transition and exhibit a short-range ferromagnetic order. The nature of these phenomena is further analyzed by means of the results obtained from the analyses of the crystal structure, the Curie-Weiss law, and the Griffith phase.

  2. Magnetic and magnetocaloric properties of ferromagnetic shape memory alloy Mn50Ni40In10-xSbx

    NASA Astrophysics Data System (ADS)

    Liu, Hongyan; Liu, Zhuhong; Li, Getian; Ma, Xingqiao

    2016-10-01

    Magnetic properties of Mn50Ni40In10-xSbx alloys and thermal history effect on the magnetization behavior and magnetic entropy change of Mn50Ni40In9Sb1 have been systematically studied. It indicates that the martensitic transformation temperature gradually increases with the increase of Sb content. Meanwhile, the overall magnetization of austenite decreases and that of martensite increases. The magnetization behavior, the critical magnetic field for martensite-to-austenite transformation and the magnetic entropy are very sensitive to the thermal history effect. The maximum magnetic entropy change is up to 27.1 J kg-1 K-1 in Mn50Ni40In9Sb1 alloy under a magnetic field of 30 kOe with continuous heating method.

  3. Icosahedral and Other Quasicrystal Phases in Magnetic Alloy Systems

    DTIC Science & Technology

    1990-09-12

    comoositions at slower wheel speeds we fabrica t ed single-phase quasicrystals with no x-ray evidence of amorphous or crystalline structures present. The...experimental work confirmed that Mn itself shows a larger local moment in quasicrystalline alloys (1.2 - 1.5 IB/Mn, average) than in related crystalline ... structures (0 - 0.5 ItB/Mn), possibly because some of the Mn atoms them occupy the Ih site. The need existed to 1) find QC’s that more readily

  4. Cytocompatibility evaluation of NiMnSn meta-magnetic shape memory alloys for biomedical applications.

    PubMed

    Guiza-Arguello, Viviana R; Monroe, James A; Karaman, Ibrahim; Hahn, Mariah S

    2016-07-01

    Recently, magnetic shape memory alloys (MSMAs) have emerged as an interesting extension to conventional shape memory alloys (SMAs) due to their capacity to undergo reversible deformation in response to an externally applied magnetic field. Meta-magnetic SMAs (M-MSMAs) are a class of MSMAs that are able to transform magnetic energy to mechanical work by harnessing a magnetic-field induced phase transformation, and thus have the capacity to impose up to 10 times greater stress than conventional MSMAs. As such, M-MSMAs may hold substantial promise in biomedical applications requiring extracorporeal device activation. In the present study, the cytotoxicity and ion release from an Ni50 Mn36 Sn14 atomic percent composition M-MSMA were evaluated using NIH/3T3 fibroblasts. Initial studies showed that the viability of cells exposed to NiMnSn ion leachants was 60 to 67% of tissue culture polystyrene (TCP) controls over 10 to 14 days of culture. This represents a significant improvement in cytocompatibility relative to NiMnGa alloys, one of the most extensively studied MSMA systems, which have been reported to induce 80% cell death in only 48 h. Furthermore, NiMnSn M-MSMA associated cell viability was increased to 80% of TCP controls following layer-by-layer alloy coating with poly(allylamine hydrochloride)/poly(acrylic acid) [PAH/PAA]. Ion release measures revealed that the PAH/PAA coatings decreased total Sn and Mn ion release by 50% and 25%, respectively, and optical microscopy evaluation indicated that the coatings reduced NiMnSn surface oxidation. To our knowledge, this study presents the first cytotoxicity evaluation of NiMnSn M-MSMAs and lays the groundwork for their further biological evaluation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 853-863, 2016.

  5. Variation of magnetic domain structure during martensite variants rearrangement in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xingzhe; Li, Fang

    2012-07-01

    Studies of magnetic domain and anisotropy in ferromagnetic shape memory alloys (FSMAs) are crucial for both understanding their ferromagnetism and engineering in applications. The experimental measurements showed that magnetization rotations and domain-wall motions exhibit distinct characteristics in the field-preferred variants and stress-preferred variants of FSMAs [Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz, and J. McCord, Appl. Phys. Lett. 90, 192504 (2007)]. Aiming at characterization of formation and variation of the complex magnetic microstructure in FSMAs, we present an analytical approach based on the energy minimization theory and Boltzmann relation on magnetic domains. The magnetic domain behavior during the martensite variants rearrangement is captured to show a good agreement with the experimental observations.

  6. The thermoelectric power of Al-0.99 wt.% Fe alloys in the AC magnetic field

    NASA Astrophysics Data System (ADS)

    Lan, Qing; Zhang, Jianfeng; Liu, Xuan; Le, Qichi; Yin, Siqi; Liu, Yiting; Cui, Jianzhong

    2017-04-01

    The melt structure of Al-0.99 wt.% Fe alloys in the AC magnetic field have been studied with thermoelectric power by the four-point probe technique and microstructure with the liquid quenching method. The melt temperature is in the range of 913 K–1013 K. The thermoelectric power increases due to the AC magnetic field and decreases after the AC magnetic field stops, then keeps stable. Some characteristic parameters of thermoelectric power in the recovery process are used to represent the variation of melt structure. The α-Al phase refinement in the AC magnetic field is attributed to the persistent variation of melt structure. The persistent variation of thermoelectric power can be used to characterize the variation of the α-Al phase size. The hardness increases and the diffraction peaks of some planes reduce, which can reflect the uniform and disorder melt structure in the AC magnetic field.

  7. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging.

    PubMed

    Bomatí-Miguel, Oscar; Morales, María P; Tartaj, Pedro; Ruiz-Cabello, Jesús; Bonville, Pierre; Santos, Martín; Zhao, Xinqing; Veintemillas-Verdaguer, Sabino

    2005-10-01

    Pharmaceutical grade magnetic colloidal dispersions have been prepared from iron alloys synthesized by laser pyrolysis. The colloids were obtained by simultaneous dispersion and coating of the particles with dextran in a strong alkaline solution. Both powders and dispersions have been analyzed in terms of microstructural characteristics, chemical composition and magnetic properties. The powders consist of uniform spherical nanoparticles (12 nm of diameter) showing a metallic core encapsulated into an iron-oxide shell. On the other hand, the colloidal dispersions consist of magnetic particles-aggregates with hydrodynamic sizes of approximately 75 nm. Magnetic resonance images of rats were taken after the intravenously administration of the Fe colloidal dispersions, and compared with those obtained using a commercial iron oxide magnetic resonance imaging contrast agent. The results showed a contrast improvement of 60% in the liver with respect to the commercial sample, which suggests that this product could be a suitable contrast agent for NMR imaging of liver and spleen.

  8. Magnetic properties of carbon-encapsulated Fe-Co alloy nanoparticles.

    PubMed

    Wu, Aibing; Yang, Xuwei; Yang, Hua

    2013-04-14

    Carbon-encapsulated Fe-Co alloy nanoparticles (Fe-Co(C)) have been fabricated with different Co/Fe ratios by an efficient solid-state route using melamine as carbon source. The structure and morphology of Fe-Co(C) nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The XRD characterization results reveal that all products are alloys with no carbide impurity. The TEM and HRTEM observations show that the alloy nanoparticles are encapsulated in carbon shells. Additionally, the reactions involved in the syntheses are postulated. The variation of magnetic properties of Fe-Co(C) with Co/Fe has been discussed according to the room temperature VSM measurement results.

  9. Atomic structure and magnetic properties of Cu 80Co 20 nanocrystalline compound produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.; Uimin, M. A.; Yermakov, A. Ye; Korobeinikov, A. Yu

    1999-10-01

    Direct observation of the atomic structure of the mechanically alloyed Cu 80Co 20 compounds has been made using the field ion microscope (FIM). Phase composition, defect structure and morphology of material on the atomic scale have been determined. It has been established that the studied material is chemically inhomogeneous, presenting a mixture of two main phases: heterogeneous solid solution of cobalt in copper, and pure cobalt. Phase volume ratios, particle and cluster sizes have been estimated. An evaluation of Co content in CuCo solid solution has been made. The width of interfaces in this mechanically alloyed material was revealed to be at least twice the width of phase boundaries in metals and alloys. Superparamagnetism of the compound studied at elevated temperatures and saturation magnetization deficit at low temperatures are discussed on the basis of the above-mentioned structural data.

  10. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    SciTech Connect

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  11. Perpendicular magnetic anisotropy induced by tetragonal distortion of FeCo alloy films grown on Pd(001).

    PubMed

    Winkelmann, Aimo; Przybylski, Marek; Luo, Feng; Shi, Yisheng; Barthel, Jochen

    2006-06-30

    We grew tetragonally distorted FexCo1-x alloy films on Pd(001). Theoretical first-principles calculations for such films predicted a high saturation magnetization and a high uniaxial magnetic anisotropy energy for specific values of the lattice distortion c/a and the alloy composition x. The magnetic anisotropy was investigated using the magneto-optical Kerr effect. An out-of-plane easy axis of magnetization was observed for Fe0.5Co0.5 films in the thickness range of 4 to 14 monolayers. The magnetic anisotropy energy induced by the tetragonal distortion is estimated to be almost 2 orders of magnitude larger than the value for bulk FeCo alloys. Using LEED Kikuchi patterns, a change of the easy axis of magnetization can be related to a decrease of the tetragonal distortion with thickness.

  12. Investigation of the structural, electronic, and magnetic properties of Ni-based Heusler alloys from first principles

    NASA Astrophysics Data System (ADS)

    Qawasmeh, Yasmeen; Hamad, Bothina

    2012-02-01

    Density functional theory (DFT) calculations are performed to investigate the structural, electronic, magnetic, and elastic properties of Ni2MnZ (Z = B, Al, Ga, In) and Ni2FeZ (Z = Al, Ga) full Heusler alloys. The alloys are found to be metallic ferromagnets with total magnetic moments of about 4μB/f.u. and 3μB/f.u for Ni2MnZ and Ni2FeZ alloys, respectively. The Ni2MnAl and Ni2MnIn alloys are found to be stable at L21 phase, while the other alloys are more stable in the tetragonal phase with c/a ratios of 1.38 and 1.27 for Ni2MnB and Ni2MnGa, respectively and 1.35 for both Ni2FeAl and Ni2FeGa. The Ni2MnB alloy exhibits the highest electron spin polarization in its tetragonal phase, which is about 88% greater than that of L21 structure. However, the Ni2MnGa, Ni2FeAl, and Ni2FeGa alloys exhibit lower spin polarizations in their tetragonal phase than those at the L21. The most contribution of the total magnetic moments comes from Mn or Fe atoms, whereas Ni atoms exhibit much smaller magnetic moments. However, Z atoms have small induced magnetic moments, which are coupled antiferromagnetically with Ni, Mn and Fe.

  13. Magnetic properties of Nd-Fe-Co(Cu)-Al-B amorphous alloys prepared by nonequilibrium techniques

    NASA Astrophysics Data System (ADS)

    Kumar, G.; Eckert, J.; Roth, S.; Löser, W.; Ram, S.; Schultz, L.

    2002-03-01

    The amorphous alloys Nd40Fe40Co5Al8B7, Nd57Fe20Co5Al10B8, and Nd57Fe20Cu5Al10B8 were prepared by copper mold casting, melt spinning, and mechanical alloying. Despite their similar x-ray diffraction patterns, samples display different magnetic and thermal behavior correlated with the method of preparation. The fully amorphous melt-spun ribbons exhibit relatively soft magnetic properties with coercivities ≈40 kA/m at room temperature and a Curie temperature (TC)≈474 K. Apparently only the mold-cast cylinders of 3 mm diameter show hard magnetic behavior with a coercivity in the range of 258-270 kA/m (depending on composition) and have approximately the same TC as that of the melt-spun ribbons. An additional magnetic transition at 585 K due to the presence of Nd2Fe14B phase in the case of Nd40Fe40Co5Al8B7 cast rod has been observed. Heat treatment above crystallization temperature in as-cast Nd57Fe20Co5Al10B8 and Nd57Fe20Cu5Al10B8 samples destroys the hard magnetic properties. In contrast, mechanically alloyed amorphous samples are soft magnetic with maximum coercivity up to 11 kA/m but show an entirely different TC≈680-740 K, which is rather characteristic of an Fe solid solution. The magnetic properties are discussed in terms of different local atomic environment and cluster sizes in amorphous samples prepared by different methods.

  14. Ageing effects on structural and magnetic transformations in a Ni-Co-Mn-Ga alloy

    NASA Astrophysics Data System (ADS)

    Seguí, C.; Cesari, E.

    Partial substitution of Ni by Co in Mn-rich Ni-Mn-Ga alloys has been found to modify the magnetic ordering of the phases, improving in this way the possibility to obtain large magnetization difference between austenite and martensite, an essential requirement to induce the martensitic transformation by application of a magnetic field. Particularly, Ni50-xCoxMnyGa50-y alloys undergo, for Co content below x = 9, structural transformation between ferromagnetic austenite and paramagnetic martensite, thus leading to enhanced magnetization difference values. The martensitic transformation temperatures as well as the martensite and austenite Curie temperatures depend on composition, but significant changes can be brought about by selected thermal treatments. In this work, the composition is chosen as Ni42Co8Mn32Ga18 in order to obtain concurrent martensitic transformation and austenite Curie temperature, and the effect of quench and subsequent ageing on the structural and magnetic transitions is studied. Aside from the monotonic transformation temperatures change, which is mostly attributed to atomic ordering taking place upon post-quench ageing, the results show the effect of the relative position of the structural and magnetic ordering reactions on the transformation entropy change.

  15. Microstructural and magnetic characterization of rapidly solidified and annealed Pt-Co-B alloys

    NASA Technical Reports Server (NTRS)

    Qiu, N.; Teubert, J. A.; Overfelt, R. A.; Wittig, J. E.

    1991-01-01

    Significant increases in intrinsic coercivity (Hic) of Pt-Co alloys have been obtained by the addition of boron and the application of rapid solidification processing. After rapid solidification by double anvil splat quenching with subsequent annealing at 650 C for 30 min, an alloy of Pt42Co45B13 exhibits an Hic as high as 14 kOe. Annealing of the Pt-Co-B influences the L1(0) superlattice structure and grain size of the matrix, the crystal structure and size of Co-boride precipitate, and the distribution of magnetic domain walls. A microstructural analysis shows that the maximum H(ic) occurs when Co borides, having the Co3B structure, are within the single magnetic domain size. The magnetic hardening mechanism in Pt-Co-B is believed to be a combination of inhibited magnetic domain nucleation and difficult reverse magnetic domain growth caused by the interaction of the magnetically anisotropic Co borides with the L1(0) Pt-Co matrix.

  16. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  17. Combined Time-Resolved X-ray Magnetic Circular Dichroism and Ferromagnetic Resonance Studies of Magnetic Alloys and Multilayers (invited)

    SciTech Connect

    Arena,D.; Vescovo, E.; Kao, C.; Guan, Y.; Bailey, W.

    2007-01-01

    We present measurements of element- and time-resolved ferromagnetic resonance (FMR) in magnetic thin films at gigahertz frequencies via an implementation of time-resolved x-ray magnetic circular dichroism (TR-XMCD). By combining TR-XMCD and FMR, using a rf excitation that is phase locked to the photon bunch clock, the dynamic response of individual layers or precession of individual elements in an alloy can be measured. The technique also provides extremely accurate measurements of the precession cone angle (to 0.1{sup o}) and the phase of oscillation (to 2{sup o}, or {approx}5 ps at 2.3 GHz). TR-XMCD combined with FMR can be used to study the origins of precessional damping by measuring the relative phase of dissimilar precessing magnetic moments. We have used the technique to measure the response of specific elements and separate layers in several alloys and structures, including a single Ni{sub 81}Fe{sub 19} layer, a pseudo-spin-valve structure (Ni{sub 81}Fe{sub 19}/Cu/Co{sub 93}Zr{sub 7}), magnetic bilayers consisting of low damping (Co{sub 93}Zr{sub 7}) and high damping (Tb-doped Ni{sub 81}Fe{sub 19}) layers joined across a common interface, and elemental moments in Tb-doped Ni{sub 81}Fe{sub 19}.

  18. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Chen, S.-Y.; Kar, A.; Vaidyanathan, R.

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  19. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    SciTech Connect

    Benafan, O. E-mail: raj@ucf.edu; Vaidyanathan, R. E-mail: raj@ucf.edu; Chen, S.-Y.; Kar, A.

    2015-12-15

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell’s equations and heat conduction.

  20. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Liu, H.; Zhang, X. X.; Zhang, M.; Dai, X. F.; Hu, H. N.; Chen, J. L.; Wu, G. H.

    2004-08-01

    The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni 50+ xFe 25- xGa 25 ( x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L2→B2 transition occurs in the samples treated at 873 K, while the γ phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni 2FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni 2FeGa on the saturation magnetization and exchange interaction are also discussed.

  1. Mössbauer studies of magnetic phase transitions in the alloy series ?

    NASA Astrophysics Data System (ADS)

    Hutchings, J. A.; Thomas, M. F.; Al-Kanani, H. J.; Booth, J. G.

    1998-07-01

    The crystal structure of the parent alloy 0953-8984/10/27/014/img8 of the series under investigation has four distinct iron sites. Mössbauer spectra of the series 0953-8984/10/27/014/img9 with 0953-8984/10/27/014/img10 recorded at 293 and 4.2 K and fitted with four components show little site preference for Mn substitution up to x = 0.15. At x = 0.20 evidence for site preference is observed. The magnetic phases at 4.2 K were deduced from changes in the Mössbauer spectra in applied fields. The alloy with x = 0.20 is found to be ferromagnetic. Alloys with x = 0.05, 0.10 and 0.15 show evidence of a canted spin phase. A transition from a canted to a ferromagnetic phase is observed at applied fields 0953-8984/10/27/014/img11 T for the x = 0.15 alloy. Phase diagrams constructed from Mössbauer and magnetization results are compared with the predictions of a generalized theoretical model which incorporates ferromagnetic and antiferromagnetic interactions.

  2. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment.

    PubMed

    Benafan, O; Chen, S-Y; Kar, A; Vaidyanathan, R

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  3. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  4. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.

    PubMed

    Lee, Chung-Hyo

    2016-02-01

    Solid-state reduction has occurred during mechanical alloying of a mixture of Fe2O3 and Mg powders at room temperature. It is found that magnetic nanocomposite in which MgO is dispersed in alpha-Fe matrix with nano-sized grains is obtained by mechanical alloying of Fe2O3 with Mg for 30 min. Consolidation of the ball-milled powders was performed in a spark plasma sintering (SPS) machine up to 800-1000 degrees C. X-ray diffraction result shows that the average grain size of alpha-Fe in a-Fe/MgO nanocomposite sintered at 800 degrees C is in the range of 110 nm. It can be also seen that the coercivity of SPS sample sintered at 800 degrees C is still high value of 88 Oe, suggesting that the grain growth of magnetic alpha-Fe phase during SPS process tends to be suppressed.

  5. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    SciTech Connect

    Incropera, F.P.; Prescott, P.J.

    1995-12-31

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, by reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.

  6. Synthesis of monosized magnetic-optical AuFe alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Hong Ling; Wu, Jun Hua; Min, Ji Hyun; Kim, Young Keun

    2008-04-01

    We report the preparation and characterization of multifunctional AuFe alloy nanoparticles of three compositions, Au0.25Fe0.75, Au0.5Fe0.5, and Au0.75Fe0.25, by a polyol process. It is found that the fusion of the two elements into one nanostructure entity retains the optical and magnetic properties of the individual components. The x-ray diffraction and transmission electron microscopy analyses confirm the formation of the alloy nanostructure with a narrow distribution of particle sizes and provides the detailed structural arrangements. The magnetic investigation shows the superparamagnetic or soft ferromagnetic behavior of the nanoparticles at room temperature, whereas the UV-visible measurements display the variation of the absorption bands at ˜560nm. The AuFe nanoparticles are rendered water soluble after thiolation.

  7. The influence of plastic deformation on the magnetic properties of ? alloy

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Li, X. G.; Chiba, A.

    1996-07-01

    Magnetization is measured in plastically deformed 0953-8984/8/27/018/img2 alloy in the temperature range from 4.5 to 80 K.The temperature dependence of spontaneous magnetization 0953-8984/8/27/018/img3 has been analysed according to the self-consistent renormalization theory of spin fluctuation. The value of 0953-8984/8/27/018/img4 decreases from 0953-8984/8/27/018/img5 to 0953-8984/8/27/018/img6 and the Curie temperature 0953-8984/8/27/018/img7 declines from 57.8 to 50.1 K with 50% strain. The decreases in 0953-8984/8/27/018/img4 and 0953-8984/8/27/018/img7 can be explained by the introduction of the antiphase boundary, which reveals the existence of an atomically ordered structure in the Ni - Cu alloys.

  8. Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys

    SciTech Connect

    Skomski, Ralph; Manchanda, Priyanka; Takeuchi, Ichiro; Cui, Jun

    2014-06-11

    The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.

  9. Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys

    SciTech Connect

    Skomski, R; Manchanda, P; Takeuchi, I; Cui, J

    2014-05-31

    The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.

  10. Magnetic micromechanical structures based on CoNi electrodeposited alloys

    NASA Astrophysics Data System (ADS)

    Cojocaru, P.; Magagnin, L.; Gomez, E.; Vallés, E.; Liu, F.; Carraro, C.; Maboudian, R.

    2010-12-01

    Electrodeposited CoNi magnetic microstructures compatible with silicon microfabrication technology have been developed using a sulfamate acidic bath, as an alternative to a less environmentally friendly chloride bath. The galvanostatic electrodeposition in the formulated electrolyte allows the deposition of cobalt-rich CoNi films and microstructures defined by photoresist at high deposition rates. Microstructures are adherent to the substrate, with a good lateral definition and resistance to the wet etching for the release of the sacrificial layer. The released structures respond to applied magnetic fields and no breakage occurred during large deformation.

  11. Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries

    PubMed Central

    Haldar, K.; Lagoudas, D. C.

    2014-01-01

    A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials. PMID:25197247

  12. Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries.

    PubMed

    Haldar, K; Lagoudas, D C

    2014-09-08

    A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials.

  13. Magnetic properties of Ba- and Sr-hexaferrite prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ding, J.; Street, R.; Nishio, H.

    1996-12-01

    Samples of Ba- and Sr-hexaferrite were prepared by mechanical alloying and subsequent heat treatment were found to consist of single domain particles of the single hexaferrite phase. The particles had a wide distribution of anisotropy fields. Study of irreversible magnetisation suggested, that the demagnetisation process is mainly controlled by the Wohlfarth rotation. It was deduced from the results of measurements of magnetic viscosity, that the activation volume was of same order of magnitude as the cube of the domain wall thickness.

  14. Directional solidification of Al-8 wt. %Fe alloy under high magnetic field gradient

    NASA Astrophysics Data System (ADS)

    Wu, Mingxu; Liu, Tie; Dong, Meng; Sun, Jinmei; Dong, Shulin; Wang, Qiang

    2017-02-01

    We investigated applying a magnetic field (up to 6 T) during directional solidification of a hypereutectic Al-8 wt. %Fe alloy, finding that it dramatically affected the final microstructure. A eutectic area appeared at the top of the samples, and as the magnetic flux density increased, the eutectic area clearly enlarged. In addition, the Al3Fe phase was twisted and fractured, and some phases aggregated and distributed randomly in the samples. We also investigated the volume fraction distribution of the Al3Fe phase, revealing that applying the magnetic field during solidification caused dramatic disorder in the solute and phase distributions. The magnetic force induced by the interaction between the magnetic field gradient and the magnetic materials appeared to be the main reason not only for the occurrence and enlargement of the eutectic area but also for the movement of Fe-enriched zones during directional solidification. Otherwise, the deformation and fracture of the Al3Fe phase, the morphological instability in the interface between the eutectic area and the Al3Fe phase, and the random distribution of the aggregated Al3Fe phase appeared to come from the thermoelectric magnetic force/thermoelectric magnetic convection under the magnetic field.

  15. Improvement of microstructure and magnetic properties of Nd-Fe-B alloys by Nb and Co additions

    NASA Astrophysics Data System (ADS)

    Ahmed, F. M.; Harris, I. R.

    In order to establish the role of niobium on the hydrogenation, disproportionation, desorption and recombination (HDDR) behavior of near-stoichiometric alloys, two alloys: NdI3Fe8OB7 and Nd13Fe78Nb1Co1B7 (at%) were investigated before, during and after the HDDR process. The microstructure of the as-cast Nb-free alloy before employing the HDDR process was found to consist of three phases, the matrix Nd 2Fe 14B (φ) phase, Nd-rich phase and a significant amount of free iron; whereas, the microstructure of the Nb-containing alloy consisted of only the first two phases. The HDDR behavior of the above alloys was characterized using a high-resolution scanning electron microscope (HRSEM). The disproportionation of the Nd 2Fe 14B (φ) matrix phase starts at the Nd-rich/φ phase interface, resulting in the formation of a sub-micron structure consisting of Fe, Fe 2B and Nd-hydride. The disproportionated structures of the Nb-free alloy contained large arms of free iron dendrites, which were retained from the as-cast structures. In the niobium-containing alloy, the recombined grains appear finer and with more rounded shapes in comparison with those of the NdFeB alloy. Promising magnetic properties have been obtained for bonded magnets using the HDDR powder. The magnetic properties, especially the intrinsic coercivity, improved significantly by using ˜1% Nd in excess of the stoichiometric content.

  16. Electron transport behaviour and soft magnetic properties of bulk amorphous Fe72Si4B20Nb4 alloy

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Ghosh Chowdhury, S.; Mitra, A.; Nishiyama, N.; Inoue, A.

    2006-08-01

    The crystallization behaviour, electrical resistivity, magnetic and mechanical properties of as-quenched bulk amorphous Fe72Si4B20Nb4 alloy was investigated. The alloy, prepared in the form of rods by a copper mould casting technique, revealed an amorphous structure as observed from x-ray diffractometry. Differential scanning calorimetry and thermal variation of electrical resistivity measurements showed distinct glass transition temperature, Tg occurring 50-60 K below the crystallization onset (TX). Such a wide supercooled range was also attributed to the highly reduced glass transition temperature, Trg which was in the range of 0.56-0.58 found to be prevalent in good glass forming alloys. The alloy also showed a non-linear decrease in stability time at different temperatures between Tg and TX. The bulk amorphous alloy exhibited a drastic decrease in electrical resistivity around the glass transition temperature which was attributed to high electron propagation due to enhanced stress relaxation as result of a decrease in viscosity. The material exhibited superior soft magnetic properties with a coercivity value of 212 mOe, which is fairly low with respect to reported bulk amorphous alloys. The amorphous alloy also showed saturation induction of 12 kG and a moderate Curie temperature of 595 K. The as-quenched bulk amorphous alloy exhibited a high mechanical hardness of 1250 HV (Vickers). The superior soft magnetic properties coupled with high mechanical hardness opens up the scope for bulk amorphous Fe-Si-B systems with Nb incorporation.

  17. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  18. Lattice dynamics and external magnetic-field effects in Ni-Fe-Ga alloys

    NASA Astrophysics Data System (ADS)

    Pérez-Landazábal, J. I.; Recarte, V.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.; Jiménez-Ruiz, M.; Link, P.; Cesari, E.; Chumlyakov, Y. I.

    2009-10-01

    Precursor phenomena were investigated in a Ni-Fe-Ga alloy close to the stoichiometric Heusler composition Ni2FeGa . In particular, the phonon-dispersion curves, the diffuse scattering and the magnetic properties of a single crystalline Ni51.5Fe21.5Ga27 alloy were measured as a function of temperature. The TA2 branch along the [110] direction of the L21 phase shows a significant phonon softening around ξ=0.35 resulting in a marked dip which becomes more pronounced as the temperature decreases. Diffuse neutron-scattering measurements performed along [ξ¯ξ0] direction around Bragg reflections also reveal the presence of small satellite peaks at ξ=0.33 whose intensity increases on approaching the martensitic transformation temperature. Both elastic and inelastic-scattering anomalies confirm the occurrence of premartensitic phenomena in Ni-Fe-Ga alloys. The influence of an external magnetic field (6 T) on the anomalous phonon is shown to be negligible and just a small shift of the transformation temperature takes place because of the magnetic field.

  19. Industrialization of nanocrystalline Fe-Si-B-P-Cu alloys for high magnetic flux density cores

    NASA Astrophysics Data System (ADS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-03-01

    Nanocrystalline Fe-Si-B-P-Cu alloys exhibit high saturation magnetic flux density (Bs) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe-Si-B-P-Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe85.7Si0.5B9.5P3.5Cu0.8)99C1 ribbons exhibit low coercivity (Hc)~4.5 A/m, high Bs~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60-100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors

  20. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  1. The magnetic and transport properties of the Co2FeGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Brück, Ekkes; de Boer, Frank R.; Li, Zhuangzhi; Wu, Guangheng

    2004-08-01

    The magnetic and transport properties of the Co2FeGa Heusler alloy have been investigated. The results show that the temperature dependence of the magnetization follows the spin-wave behaviour at low temperature. The electrical resistivity behaves according to a ~T2 power law, which may be mainly attributed to electron-electron scattering, and the contribution of electron-phonon scattering to the resistivity seems to be small. We have not observed remarkable magnetoresistance in our measurements. Point contact Andreev reflection measurements of the spin-polarization yield a polarization of 59%, which is consistent with the theoretical prediction by a first-principles calculation.

  2. Ordered states in binary alloys with one magnetic component: A binomial description

    NASA Astrophysics Data System (ADS)

    Rodríguez-Alba, R.; Acosta Ortíz, S. E.; Morán-López, J. L.

    2015-09-01

    A description of chemically and magnetically ordered states, based on the binomial formalism, is presented. By this method, one can analyze all possible configurations that depend on the crystalline structure and the size of the basic cluster used for the description of the system. The procedure is outlined for a cluster of n sites and its application is illustrated for a 4-point cluster in fcc and bcc lattices. This cluster size is big enough to describe ordered alloys with magnetic atoms forming decorated ferromagnetic, antiferromagnetic, superantiferromagnetic and other more complex arrangements.

  3. Ultrathin films of polycrystalline MnGa alloy with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ono, Atsuo; Suzuki, Kazuya Z.; Ranjbar, Reza; Sugihara, Atsushi; Mizukami, Shigemi

    2017-02-01

    Room temperature growth of textured polycrystalline films of MnGa alloys using a CoGa buffer layer on a thermally oxidized Si substrate is demonstrated. MnGa thin films with a thickness of 2 nm exhibit out-of-plane rectangular hysteresis loops. A small saturation magnetization of about 200 emu/cm3 and a large perpendicular magnetic anisotropy of up to 3–5 Merg/cm3 were achieved for 2- and 3-nm-thick MnGa ultrathin films; such values have never been reported before, and they provide a pathway for integration with conventional Si technology.

  4. Perpendicular magnetization of Co2FeAl full-Heusler alloy films induced by MgO interface

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Mitani, Seiji; Inomata, Koichiro

    2011-06-01

    The perpendicular magnetization of Co2FeAl (CFA) full-Heusler alloy films was achieved in the structures of CFA/MgO and MgO/CFA with the perpendicular magnetic anisotropy energy density (KU) of 2-3×106 erg/cm3, which can be used as the perpendicular ferromagnetic electrodes of MgO-based magnetic tunnel junctions (MTJs) with high thermal stability at sub-50-nm dimension. The CFA thickness dependence of KU was investigated at different annealing temperatures, indicating that the perpendicular anisotropy of CFA is contributed by the interfacial anisotropy between CFA and MgO. This letter will open up a way for obtaining perpendicular magnetization of Co-based full-Heusler alloys, which is promising for further reduction in the critical current of current induced magnetization switching in MgO-based MTJ nanopillars with perpendicular full-Heusler alloy electrodes.

  5. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability.

    PubMed

    Zhang, Yong; Zuo, TingTing; Cheng, YongQiang; Liaw, Peter K

    2013-01-01

    Soft magnetic materials (SMMs) find important applications in a number of areas. The diverse requirements for these applications are often demanding and challenging for the design and fabrication of SMMs. Here we report a new class of FeCoNi(AlSi)x (0 ≤ x ≤ 0.8 in molar ratio) SMMs based on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which the combination of saturation magnetization (1.15 T), coercivity (1,400 A/m), electrical resistivity (69.5 μΩ·cm), yield strength (342 MPa), and strain without fracture (50%) makes the alloy an excellent SMM. Ab initio calculations are used to explain the high magnetic saturation of the present HEAs and the effects of compositional structures on magnetic characteristics. The HEA-based SMMs point to new directions in both the application of HEAs and the search for novel SMMs.

  6. High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability

    PubMed Central

    Zhang, Yong; Zuo, TingTing; Cheng, YongQiang; Liaw, Peter K.

    2013-01-01

    Soft magnetic materials (SMMs) find important applications in a number of areas. The diverse requirements for these applications are often demanding and challenging for the design and fabrication of SMMs. Here we report a new class of FeCoNi(AlSi)x (0 ≤ x ≤ 0.8 in molar ratio) SMMs based on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which the combination of saturation magnetization (1.15 T), coercivity (1,400 A/m), electrical resistivity (69.5 μΩ·cm), yield strength (342 MPa), and strain without fracture (50%) makes the alloy an excellent SMM. Ab initio calculations are used to explain the high magnetic saturation of the present HEAs and the effects of compositional structures on magnetic characteristics. The HEA-based SMMs point to new directions in both the application of HEAs and the search for novel SMMs. PMID:23492734

  7. Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping

    PubMed Central

    Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei

    2017-01-01

    Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152

  8. Observation of clusters in Re60Fe30Al10 alloys and the associated magnetic properties

    NASA Astrophysics Data System (ADS)

    Z, Kong H.; J, Ding; L, Dong Z.; L, Wang; T, White; Y, Li

    2002-03-01

    Magnetic properties and microstructure of melt-spun ribbons of RE60Fe30Al10 alloys with RE{} = {}Nd, Sm, Dy, Gd and Y were studied in detail. High coercivity values in the range of MA m-1 were observed at low temperatures for amorphous ribbons. Presence of Fe-rich clusters and nanoscale rare-earth crystallites in the amorphous matrix in the ribbons were revealed by high-resolution transmission electron microscopy studies. The magnetic transition temperatures were estimated experimentally and compared with fitting results based on the cluster ferromagnetism model (Wang L et al 2001 Phys. Rev. B 64 214410). Possible mechanisms for the magnetic behaviour observed due to the presence of Fe-rich magnetic clusters are discussed.

  9. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, M.; Wang, W. Q.; Wang, W. H.; Chen, J. L.; Wu, G. H.; Meng, F. B.; Liu, H. Y.; Liu, B. D.; Qu, J. P.

    2002-11-01

    Quaternary Heusler alloy Ni2)(Mn,FeGa has been studied systematically for the structure, martensitic transformation, and magnetic properties in two systems of Ni50.5Mn25-xFexGa24.5 and Ni50.4Mn28-xFexGa21.6. Substituting Fe for Mn up to about 70%, the pure L21 phase and the thermoelastic martensitic transformation still can be observed in these quaternary systems. Iron doping dropped the martensitic transformation temperature from 220 to 140 K, increased the Curie temperature from 351 to 429 K, and broadened the thermal hysteresis from about 7 to 18 K. Magnetic analysis revealed that Fe atoms contribute to the net magnetization of the material with a moment lower than that of Mn. The temperature dependence of magnetic-field-induced strains has been improved by this doping method.

  10. Magnetic indication of the stress-induced martensitic transformation in ferromagnetic Ni Mn Ga alloy

    NASA Astrophysics Data System (ADS)

    Heczko, O.; L'vov, V. A.; Straka, L.; Hannula, S.-P.

    2006-07-01

    A quantitative study of the stress-induced martensitic transformation in Ni 49.7Mn 29.1Ga 21.2 magnetic shape memory alloy has been carried out in two different ways: the first way is based on the measurements of saturation magnetization under variable mechanical stress and the second one is founded on the quantitative theoretical treatment of experimental stress-strain loops. A functional dependence between the volume fraction of transformed martensite and applied stress has been determined from both magnetization and strain values. A quantitative agreement between the functions determined in two different ways has been observed, and hence, the effectiveness of the magnetic indication of the stress-induced martensitic transformations has been proved. This method can be used to monitor stress-induced transformations in martensitic films, needles and small specimens.

  11. Energetics of variant conversion in ferromagnetic shape memory alloys by external magnetic fields

    NASA Astrophysics Data System (ADS)

    Steuwer, Axel; Mori, Tsutomu; Kato, Hiroyuki; Wada, Taishi

    2003-08-01

    Using energetics, we examine the occurrence of large strains, so-called giant magnetostriction, in ferromagnetic shape memory alloys by the application of an external magnetic field. It is claimed that these strains originate from the conversion of one martensite variant to another. In this article, we attempt to show that magnetic work cannot supply the work required for the conversion of martensite variants in most cases. It is also pointed out that the latter work dissipates, while most of the magnetic work is conserved, as indicated by almost hysteresis-free magnetization curves. Therefore, simple energy conservation arguments rule out the suggested variant conversion mechanism not only quantitatively, but also qualitatively. A possible explanation for the occurrence of large strains is offered.

  12. Tunable exchange bias in dilute magnetic alloys – chiral spin glasses

    PubMed Central

    Hudl, Matthias; Mathieu, Roland; Nordblad, Per

    2016-01-01

    A unidirectional anisotropy appears in field cooled samples of dilute magnetic alloys at temperatures well below the cusp temperature of the zero field cooled magnetization curve. Magnetization measurements on a Cu(13.5 at% Mn) sample show that this anisotropy is essentially temperature independent and acts on a temperature dependent excess magnetization, ΔM. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of ΔM at larger fields, thus instead appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. This two faced nature of the anisotropy has been empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction. PMID:26817418

  13. Effect of annealing on structural and magnetic properties of Al substituted nanocrystalline Fe-Si-Co alloy powders

    NASA Astrophysics Data System (ADS)

    Shyni, P. C.; Alagarsamy, Perumal

    2016-11-01

    We report effects of annealing and substitution of Al on structural and magnetic properties of nanocrystalline Fe80-xAlxCo5Si15 (x=0-10) alloy powders prepared by mechanical alloying process using a planetary ball mill technique. All the as-milled powders exhibit non-equilibrium solid solution of α-Fe (Si,Co,Al). While the average size of crystals decreases, the lattice constant and dislocation density increase with increasing Al content. On the other hand, the annealing at elevated temperatures increases the size of the crystals and decreases the dislocation density. In addition, the substitution of Al in FeAlCoSi alloy powders controls growth of the crystals during annealing. As a result, coercivity (HC) of the annealed powders decreases considerably. However, the variation in HC is dominated by the dislocation density. Fe70Al10Co5Si15 powder annealed at 900 °C exhibits improved magnetic properties (HC~14 Oe and moderate magnetization of 160 emu/g) due to optimum nanocrystalline microstructure with fine nanocrystals (~18 nm) and reduced dislocation density. Systematic correlations observed between structural and magnetic properties for Fe80-xAlxCo5Si15 powders reveal a promising approach to control the growth of the crystals in the annealed nanocrystalline alloys and to improve the magnetic properties of mechanically alloyed Fe-Si based nanocrystalline alloys by adding suitable substituting elements.

  14. Magnetism of Body-Centered Tetragonal FeRh1-xPdx Alloys (I) Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Yuasa, Shinji; Miyajima, Hideki; Otani, Yoshichika; Sakuma, Akimasa

    1995-12-01

    Crystalline structures and magnetic properties of the FeRh1-xPdx system were investigated. Substitution of Pd for Rh stabilized body-centered tetragonal (bct) structure of the ordered CuAu-type with increasing axial ratio c/a from 1.18 to 1.36. The bctalloys in the range x=0.530˜0.61 exhibited a first-order phase transition from antiferromagnetic to ferromagnetic state, while the bct alloys with x<0.530 exhibited a first-order phase transition from antiferromagnetic to Curie paramagnetic state. Both the axial ratio and the volume increased abruptly at the transitions. A new ferromagnetic phase with orthorhombic structure with the space group Cmmm was found in the bct alloys with x=0.525˜0.61 below room temperature. This ferromagnetic phase possesses a larger magnetic moment than that of the bct phase. Reduction of the crystalline symmetry may have enhanced the magnetic moment.

  15. Structural and magnetic properties of a chemically ordered face-centered-cubic (111) Mn alloy film

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuowei; Li, Qiangyong; Venus, D.

    2006-04-01

    A 4 ML Ni/W(110) substrate is used to establish a (111) face-centered-cubic (fcc) template upon which 3 ML of Fe is deposited and annealed to 580 K to form a substrate with very good short and long range fcc (111) order, that is Fe rich at the surface. Mn alloy films are formed by annealing a subsequent Mn deposit of 0.3-1.6 ML. Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and directional AES show that an ordered alloy is not formed until an annealing temperature of 580 K, upon which a multilayer alloy with a P(23×23)R30° LEED pattern is created. The alloy films formed from 0.3 to 0.5 ML of Mn have magnetic properties similar to the FeNi substrate. Hysteresis loops and ac-susceptibility curves measured using the Kerr effect give square loops with a ferromagnetic moment along the in-plane fcc [-211] direction and a Curie temperature TC of about 460 K. There is an increase in coercive field likely due to the inhomogeneities introduced by the Mn. Alloy films formed from 0.8 to 1.6 ML of Mn show a marked increase in the width of the susceptibility peak, and a decrease in the peak temperature. The hysteresis loop becomes slanted with a reduced coercive field. The measurements are consistent with a paramagnetic or antiferromagnetic Mn alloy forming an uneven interface within the FeNi film, so that the remaining FeNi film has a wide distribution in TC.

  16. Microstructure and magnetic properties of Cu0.8(Fe1 - xCox)0.2 alloy powders manufactured by a mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Yoo, Yong Goo; Yu, Seong Cho; Kim, Won Tae

    1996-04-01

    Changes in structural and magnetic properties during mechanical alloying and heat treatment were studied in Cu0.8(Fe1-xCox)0.2 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) alloys using x-ray diffractometry, transmission electron microscopy, and magnetometry. Supersaturated solid solutions with a fcc crystal structure were obtained in all alloys by mechanical alloying. The grain sizes of the solid solutions were about 20 nm. Magnetization of the supersaturated solid solutions could be explained by a mixture of two types of particles showing paramagnetism and ferromagnetism. The variation in magnetization with Co content in the solutions was similar to the Slater-Pauling curve. Fe-Co with a bcc structure precipitates during annealing of the Cu0.8Fe0.1Co0.1 alloy. With increasing annealing temperature ferromagnetic behavior becomes dominant due to a coarsening of the precipitates.

  17. Magnetic and magnetotransport properties of nanocrystalline Ag 0.85Fe 0.15 and Ag 0.70Fe 0.30 alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Gómez, J. A.; Xia, S. K.; Passamani, E. C.; Giordanengo, B.; Baggio-Saitovitch, E. M.

    2001-01-01

    The magnetic and magnetotransport properties of nanocrystalline Ag 0.85Fe 0.15 and Ag 0.70Fe 0.30 alloys have been studied by Mössbauer spectroscopy, magnetization and resistivity measurements. The samples were prepared by mechanical alloying of Fe and Ag powders in a high-energy ball mill. Mössbauer spectroscopy and magnetic measurements of the final milled samples indicate the presence of single-domain 'Fe' particles. The magnetoresistance values, at 4.2 K and for a magnetic field of 8 T, are 2.5% and 5.7% for samples Ag 0.85Fe 0.15 and Ag 0.70Fe 0.30, respectively. The magnetoresistance behavior indicates the cluster-glass-like features in both the final milled samples.

  18. In-situ neutron scattering studies of magnetic shape memory alloys under stress, temperature, and magnetic fields

    SciTech Connect

    Brown, Donald W; Sisneros, Thomas A; Kabra, Saurabh; Schlagel, Deborah

    2010-01-01

    We have utilized the SMARTS engineering neutron diffractometer to study the crystallographic orientation and phase transformations in the ferromagnetic shape memory alloy Ni 2MnGa under conditions of temperature (200-600K), stress (500MPa), and magnetic field (2T). Neutrons are uniquely suited to probe the crystallographic response of materials to external stimuli because of their high penetration, which allows them to sample the bulk of the material (as opposed to the surface) as well as pass through environmental chambers. A single crystal of Ni{sub 5}MnGa was repeatedly thermally cycled through the Austenitic-Martensitic phase transformation under varying conditions of applied stress, magnetic field or both. In-situ neutron diffraction was used to quantitatively monitor the population of the crystallographic variants in the martensitic phase as a function of the external stimuli during cooling. Neutron diffraction was used to monitor variant selection in the Ferromagnetic Shape Memory Alloy Ni{sub 2}Mn Ga during austenitic to martensitic transformation under varying conditions of externally applied stress and magnetic field. Qualitatively, the results were to be expected in this simple example. The shorter and magnetically soft c-axis of the tetragonal martensitic phase aligned with the compressive stress or magnetic field. However, neutron diffraction proved useful in directly quantifying the selection of the preferred variant by external influence. For instance, by quantifying the variant selection, the neutron diffraction results made apparent that the sample 'remembered' a loading cycle following a 'reset' cycle with no external applied stress. Moreover, the power of in-situ neutron diffraction will become more apparent when applied to more complex, less understood, samples such as polycrystalline samples or composite samples.

  19. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  20. Development of magnetic shape memory alloy actuators for a swashplateless helicopter rotor

    NASA Astrophysics Data System (ADS)

    Couch, Ronald Newton

    Actuator concepts utilizing NiMnGa, ferromagnetic shape memory alloy are investigated for potential use on a smart rotor for trailing edge flap actuation. With their high energy density, large dynamic stroke, and wide operating bandwidth, ferromagnetic shape memory alloys (FSMA) like NiMnGa, seem like attractive candidates for smart rotor actuators, potentially able to fulfill the requirements for both primary rotor control and vibration suppression. However, because of the recent discovery of the material, current experimental data and analytical tools are limited. To rectify these shortcomings, an extensive set of detailed experiments were conducted on samples of NiMnGa to characterize the response of the alloy for a wide variety of mechanical and magnetic loading conditions. Measurements of the material performance parameters such as power density, damping properties, magneto-mechanical coupling, and transduction efficiency were included. Once characterized, the experimental data were used to develop a series of analytical tools to predict the behavior of the material. A model, developed in parallel to thermal shape memory alloy models is proposed to predict the quasi-static stress-strain behavior. A simple, low frequency, parameter based model was also developed to predict the alloy's dynamic strain response. A method for developing conceptual actuators utilizing NiMnGa as the actuation element was proposed. This approach incorporates experimental data into a process that down-selects a series of possible actuator configurations to obtain a single configuration optimized for volumetric and weight considerations. The proposed actuator was designed to deliver 2 mm of stroke and 60 N of force at an actuation frequency of 50 Hz. However, to generate the 1.0 T magnetic field, the actuator mass was determined to be 2.8 kg and required a minimum of 320 Watts of power for operation. The mass of the NiMnGa element was only 18.3 g. It was concluded that although the Ni

  1. HfCo7-Based Rare-Earth-Free Permanent-Magnet Alloys

    SciTech Connect

    Das, B; Balamurugan, B; Kumar, P; Skomski, R; Shah, VR; Shield, JE; Kashyap, A; Sellmyer, DJ

    2013-07-01

    This study presents the structural and magnetic properties of melt-spun HfCo7, HfCo7-xFex (0.25 <= x <=), and HfCo7Six (0.2 <= x <= 1.2) alloys. Appreciable permanent-magnet properties with a magnetocrystalline anisotropy of about 9.6-16.5, Mergs/cm(3), a magnetic polarization J(s) approximate to 7.2-10.6 kG, and coercivities H-c = 0.5-3.0 kOe were obtained by varying the composition of these alloys. Structural analysis reveals that the positions of x-ray diffraction peaks of HfCo7 show good agreement with those corresponding to an orthorhombic structure having lattice parameters of about a = 4.719 angstrom, b = 4.278 angstrom, and c = 8.070 angstrom. Based on these results, a model crystal structure for HfCo7 is developed and used to estimate the magnetic properties of HfCo7 using density-functional calculations, which agree with the experimental results.

  2. Hard magnetic properties of melt-spun Mn-Al-C alloys

    NASA Astrophysics Data System (ADS)

    Pasko, A.; Mazaleyrat, F.; LoBue, M.; Fazakas, E.; Varga, L. K.

    2013-01-01

    Structural and magnetic characterization of Mnx-yAl100-x-yC2y (x = {50, 55}; y = {0, 1}) melt­spun ribbons is reported. To obtain the metastable ferromagnetic τ­phase, rapidly solidified alloys were annealed either in a vacuum furnace at 823 K or directly in the vibrating sample magnetometer under applied magnetic field. Optimal magnetic properties were demonstrated by Mn54Al44C2 samples proved to be single­phase with a coercivity of 0.19 T measured in both cases. For this composition the structural ɛ→τ phase transformation has been magnetically detected at 786 K, Curie temperature of τ­phase (Tc = 592 K, Tp = 610 K) has been determined using mean field approximations in ferromagnetic and paramagnetic regions. Rietveld refinement of X­ray diffraction spectra was employed to analyse the phase constitution of annealed alloys, lattice parameters as a function of chemical composition and mean grain size for the phases involved.

  3. Low-cost Ce1-xSmx(Fe, Co, Ti)12 alloys for permanent magnets

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Martín-Cid, A.; Barandiaran, J. M.; Salazar, D.; Hadjipanayis, G. C.

    2016-05-01

    Ce1-xSmxFe9Co2Ti alloys based on the ThMn12-type crystal structure have been synthesized via melt-spinning of prefabricated alloys and via mechanochemical processing of CeO2- Sm2O3- Fe2O3-TiO2- Co - Ca - CaO powder mixtures. Coercive fields up to 0.8 kOe and 2.1 kOe were obtained in annealed melt-spun alloys with x = 0 and x = 0.5, respectively. Submicron, partially anisotropic particles collected after the mechanochemical synthesis for x = 0.5 and x = 1 exhibited coercivity (energy product) of 1.8 kOe (5.4 MGOe) and 5.8 kOe (9.9 MGOe), respectively. The low magnetic anisotropy field of CeFe9Co2Ti alloy requires at least a partial Sm-substitution for Ce in order to develop a reasonably high coercivity.

  4. Effect of disorder on electronic and magnetic properties of Co{sub 2}VGa Heusler alloy

    SciTech Connect

    Seema, K.; Kumar, Ranjan

    2015-08-28

    This paper presents the effect of disorder on electronic, magnetic and half-metallic properties of Co{sub 2}VGa Heusler alloy using density functional theory. Binary mixing is the most common form of atomic disorder in these compounds. We have considered three types of disorders: DO{sub 3}, A2 and B2 disorder which corresponds to X-Y, X-Z and Y-Z mixing respectively. After structural optimization, we found that A2 disorder has high formation energy and is most unlikely to occur. The half-metallic nature of the alloy is destroyed in presence of DO{sub 3} and A2 disorder. The destruction of half-metallicity is due to reconstruction of energy states. Also the loss of half-metallicity is accompanied by reversal of spin-polarization at the Fermi level. B2 disorder retains the half-metallic nature of the alloy but spin-polarization value is reduced as compared to the ordered alloy.

  5. Influence of Sn on the magnetic ordering of Ni-Sn alloy synthesized using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Dhanapal, K.; Narayanan, V.; Stephen, A.

    2016-05-01

    The Ni-Sn alloy was synthesized using borohydride assisted chemical reduction method. The composition of the synthesized alloy was determined using atomic absorption spectroscopy which revealed that the observed composition of Sn is high when compared to the initial composition. The ultrafine particles are clearly observed from field emission scanning electron microscope for all the sample. The X-ray diffraction measurement confirmed that the as-synthesized samples are of amorphous like nature while the samples annealed at 773 K showed crystalline nature. The Fourier transform infrared spectroscopy confirmed metallic bond stretching in the alloy samples. The crystallization and phase transition temperature was observed from differential scanning calorimetry. The shift in the crystallization temperature of Ni with increasing percentage of Sn was observed. The vibrating sample magnetometer was employed to understand the magnetic behavior of the Ni-Sn alloy. As-synthesized alloy samples showed paramagnetic nature while the annealed ones exhibit the soft ferromagnetic, antiferromagnetic and paramagnetic nature. The saturation magnetization value and magnetic ordering in the Ni-Sn alloys depend on the percentage of Sn present in the alloy.

  6. One-Step Synthesis and Magnetic Phase Transformation of Ln-TM-B Alloy by Chemical Reduction.

    PubMed

    Kim, Chang Woo; Kim, Young Hwan; Cha, Hyun Gil; Lee, Don Keun; Kang, Young Soo

    2007-04-11

    Binary and ternary intermetallic alloy systems are of interest for a variety of academic and technological applications. Despite recent advances in synthesizing binary alloy, there are very few reports of ternary alloy related to lanthanide series. The purpose of this work is to contribute to ternary alloy systems such as lanthanide-transition metal-boron with a simple chemical method and analysis of its magnetic behavior. Ternary Nd-Fe-B amorphous alloy was successfully synthesized with borohydride. The magnetic behavior in the process of formation of ternary Nd-Fe-B alloy and Nd2Fe14B from amorphous phase alloy is reported. Compared with the synthesis of a transition metal, the existence of a lanthanide ion makes aggregates-like particles with a diameter of 2 nm possible in the formation of a nanosphere, which is a significantly important result in terms of acceleration of the reduction-diffusion reaction for the formation of ternary alloy. In the process of reduction and diffusion, the Nd phase is diffused into the Fe-based phase, and then the ternary Nd2Fe14B intermetallic compound is fabricated.

  7. Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Axinte, Eugen; Zhao, Zhengfeng; Wang, Yan

    2016-09-01

    The effects of elemental addition, C and Ce, on the microstructure, thermal property and magnetic property of mechanically alloyed FeSiBAlNi (based-W5) high entropy alloys (HEAs) have been investigated in depth in the present work. The amorphous HEAs have been successfully fabricated by mechanical alloying. The results reveal that Ce addition obviously shortens the formation time of fully amorphous phase, therefore leading to the enhanced glass forming ability (GFA) of the based-W5. The final products of as-milled FeSiBAlNiC alloy consist of the main amorphous phase and a small amount of Si nanocrystals. In addition, C and Ce addition are both beneficial to enhance the thermal stability. The coercivity force (Hc) of the tested samples lies in the range of 50-378 Oe, suggesting the semi-hard magnetic property. The saturation magnetization (Ms) becomes decreased with increasing the milling time. C addition effectively increases Ms exhibiting the good magnetic property, however, Ce addition presents the negative effect. It should be noted that the amorphous phase tends to be formed when the radius ratio (Rr) is larger than 1, and the GFA is enhanced with increasing Rr and valence electron concentration.

  8. Effect of Mn on the Microstructure and Magnetic Properties in Cu-Fe-Co Alloys

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Basu Mallick, A.; Nath, D. N.; Chattopadhyay, P. P.

    2011-02-01

    An attempt was made to study the effect of Mn addition on the formation of supersaturated solid solution of Co and Fe in Cu during ball milling and precipitation of the solute-rich phases during subsequent annealing of the ball-milled product. It is demonstrated that the addition of Mn in the ternary CuFeCo powder blend enhances the metastable solubility of Fe and Co in Cu and facilitates the formation of the nanocrystalline supersaturated single-phase solid solution. Field emission-scanning electron microscopy (FE-SEM) also revealed notable influence of Mn on the morphological evolution of the ball-milled and annealed alloy powders. X-ray diffraction (XRD) analysis revealed that the FeCo phase having the bcc Bravais lattice forms after annealing at and above 620 K (350 °C) in both alloys. Estimation of magnetic properties showed that Mn addition in the CuFeCo alloy improved the coercivity, remanence, and magnetic saturation.

  9. Continuous-annealing method for producing a flexible, curved, soft magnetic amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Francoeur, Bruno; Couture, Pierre

    2012-04-01

    A method has been developed for continuous annealing of an amorphous alloy ribbon moving forward at several meters per second, giving a curved shape to the ribbon that remains flexible afterward and can be easily wound into a toroidal core with excellent soft magnetic properties. A heat pulse was applied by a compact system on a Metglas 2605HB1 ribbon moving forward at 5 m/s to initiate a thermal treatment at 460 °C, near crystallization onset. The treatment duration was less than 0.1 s, and the heating and cooling rates were above 10 000 °C/s, which helped preserve most of the alloy as-cast ductility state. Such high temperature rates were achieved by forcing a static contact between the moving ribbon and a temperature-controlled roller. A tensile stress and a series of bending configurations were applied on the moving ribbon during the treatment to induce the development of magnetic anisotropy and to obtain the desired natural curvature radius. The core losses at 60 Hz of a toroidal test core wound with the resulting ribbon are lower than the specific values reported by the alloy manufacturer. This method can be implemented at the casting plant for supplying a low-cost, ready-to-use ribbon, easy to handle and cut, for mass production of toroidal cores for distribution transformer kernels (core and coil only), pulse power cores, etc.

  10. The structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Li; Zhang, Jian-Min; Xu, Ke-Wei

    2016-04-01

    Employing the first-principles calculations, we have investigated the structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn. The TiZrCoIn alloy with type (I) configuration is predicted to be half-metallic ferromagnet at its equilibrium lattice constant 6.525 Å with an indirect band gap of 0.930 eV in minority spin channel. The total magnetic moment is 2 μB/f.u., following the Slater-Pauling rule μt=Zt-18. Moreover, the negative formation energy indicates the thermodynamical stability of this alloy. The band gap of minority spin channel is determined by the bonding (t2g) and antibonding (t1u) states created from the hybridizations of the d states of transition metal atoms Ti, Zr and Co. In addition, the HM, character is kept as hydrostatic strain ranged from -10% to 7.6% and tetragonal strain ranged from -19% to 27%.

  11. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  12. Intrinsic magnetic properties of single-phase Mn1+xGa (0 < x < 1) alloys

    PubMed Central

    Lu, Q. M.; Yue, M.; Zhang, H. G.; Wang, M. L.; Yu, F.; Huang, Q. Z.; Ryan, D. H.; Altounian, Z.

    2015-01-01

    Magnetization measurements have been carried out on a series of carefully prepared single-phase Mn1 + xGa (0 < x < 1) alloys. The saturation magnetization Ms, measured at 5 K, has a value of 92.0 emu/g for x = 0.15. This is the highest value reported in these alloys and is close to the calculated value of 116 emu/g for the stoichiometric compound (x = 0). Ms decreases gradually with x and has a value of 60.7 emu/g for x = 0.86. This behavior is consistent with the extra Mn atoms occupying Ga sites and coupling antiferromagnetically with the rest of the Mn atoms. The intrinsic magnetic properties of the Mn-Ga alloys indicate their great potential as novel, rare-earth free permanent magnetic materials. PMID:26597458

  13. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  14. Effect of magnetic field on Fe - Si - Al alloy properties with zero magnetostriction

    NASA Astrophysics Data System (ADS)

    Naimi, E. K.; Kaputkin, D. E.

    2012-09-01

    A method and results for a study of the effect of permanent and variable (up to about 1.5 kHz) magnetic fields with intensity H = 0-1050 A/m on internal friction Q -1 and Young's modulus defect ∆ E/ E in magnetically-soft alloy of the system Fe - Si - Al (sendast type) with mechanical vibration frequency about 105 Hz are provided. The range of strain rate amplitudes ɛ0 within which Q -1 and ∆ E/ E are independent of H, and the range where they increase linearly with an increase in S0 over the whole range of change in H are determined. Results obtained are analyzed within the framework of existing relaxation theory and hysteresis mechanism of elastic vibration damping within magnetically soft materials.

  15. Polymorphic MnAs nanowires of a magnetic shape memory alloy.

    PubMed

    Echeverría-Arrondo, C; Pérez-Conde, J; Ayuela, A

    2014-03-28

    We describe a magnetic shape memory alloy, in which it is the nanostructural confinement that influences both the crystal geometry and the electronic and magnetic properties. We use calculations from first-principles on shape memory MnAs nanowires to study the influence of strain on the resulting crystallographic phases, which arise at their surfaces. We show that MnAs nanowires as thin as two nanometers can be stable in a new crystal geometry which is induced by one-dimensionality and hence is unknown in the bulk, typically hexagonal. The changes between phases caused by differences in strain require the existence of twin domains. Our analysis suggests that the strain-induced structural transition - which is here described for MnAs compounds - could be applied to other (magnetic) shape memory nanowire systems for applications in a range of devices from mechanical to magneto-electronic.

  16. Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy

    NASA Astrophysics Data System (ADS)

    Barandiaran, J. M.; Chernenko, V. A.; Cesari, E.; Salas, D.; Lazpita, P.; Gutierrez, J.; Orue, I.

    2013-02-01

    We study the martensitic transformation (MT) of metamagnetic shape memory alloy Ni50Mn34.5In15.5 in the magnetic fields up to 12 T. The observed dependence of the MT temperature, Tm, on the field is highly nonlinear. As far as magnetization change, ΔM, remains field-independent, a depart from linearity of Tm(H) function is attributed to a decrease of the transformation entropy, ΔS. This decrease correlates with the parameter (TC-Tm), controlled by magnetic field, where TC is the Curie temperature of austenite, and with the dependence of ΔS on the width of the MT temperature interval deduced from a ferroelastic model of MT.

  17. A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys

    NASA Astrophysics Data System (ADS)

    Blázquez, J. S.; Franco, V.; Conde, A.; Gottschall, T.; Skokov, K. P.; Gutfleisch, O.

    2016-09-01

    Different excitations, like temperature, magnetic field, or pressure, can drive a martensitic transition in Heusler alloys. Coupled phenomena in these materials lead to interesting magnetocaloric and barocaloric effects ascribed to this transition. In this work, we demonstrate that isothermal transformations induced by a magnetic field and isofield transformations induced by the temperature can be described using the same framework. By defining an effective temperature that relates field and temperature through the properties of the system (magnetic moment and entropy of the transition), both kinds of loops can be transformed into the other kind, therefore providing a more effective way of characterizing hysteretic samples. The validity of this effective temperature approach to describe the transition holds for martensite to austenite transformations as well as reversal ones, and thus, the hysteresis phenomena can be described using this single general excitation.

  18. A three-dimensional constitutive model for magnetic shape memory alloys under magneto-mechanical loadings

    NASA Astrophysics Data System (ADS)

    Mousavi, Mohammad Reza; Arghavani, Jamal

    2017-01-01

    This paper presents a three-dimensional phenomenological constitutive model for magnetic shape memory alloys (MSMAs), developed within the framework of irreversible continuum thermodynamics. To this end, a proper set of internal variables is introduced to reflect the microstructural consequences on the material macroscopic behavior. Moreover, a stress-dependent thermodynamic force threshold for variant reorientation is introduced which improves the model accuracy. Preassumed kinetic equations for magnetic domain volume fractions, decoupled equations for magnetization unit vectors and appropriate presentation of the limit function for martensite variant reorientation lead to a simple formulation of the proposed constitutive model. To show the model capability in reproducing the main features of MSMAs, several numerical examples are solved and compared with available experimental data as well as available three-dimensional constitutive models in the literature. Demonstrating good agreement with experimental data besides possessing computational advantages, the proposed constitutive model can be used for analysis of MSMA-based smart structures.

  19. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy

    NASA Astrophysics Data System (ADS)

    Gautam, Ravi; Prabhu, D.; Chandrasekaran, V.; Gopalan, R.; Sundararajan, G.

    2016-05-01

    We report a new (Fe-P)-Si based alloy with relatively high induction (1.8-1.9 T), low coercivity (< 80 A/m), high resistivity (˜38 μΩ cm) and low core loss (217 W/kg @ 1 T/1 kHz) comparable to the commercially available M530-50 A5 Si-steel. The attractive magnetic and electrical properties are attributed to i) the two phase microstructure of fine nano precipitates of Fe3P dispersed in α-Fe matrix achieved by a two-step heat-treatment process and ii) Si addition enhancing the resistivity of the α-Fe matrix phase. As the alloy processing is by conventional wrought metallurgy method, it has the potential for large scale production.

  20. Structure and Magnetic Properties of Mechanical Alloyed Mn-15at.%Al

    NASA Astrophysics Data System (ADS)

    Hannora, Ahmed E.; Hanna, Faried F.; Marei, Lotfy K.

    2013-04-01

    Mechanical alloying (MA) method has been used to produce nanocrystallite Mn-15at.%Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α-Mn and aluminum powder samples show a mixture of α + β-MnAl phases after 20 h of milling and changes to a dominant β-MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall-Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are 2.1 emu/g and 92 Oe, respectively.

  1. Structure and magnetic properties of surface alloyed Fe nanocapsules prepared by arc discharge

    NASA Astrophysics Data System (ADS)

    Si, P. Z.; Choi, C. J.; Brück, E.; Geng, D. Y.; Zhang, Z. D.

    2005-12-01

    C-Fe-Si alloy encapsulating Fe nanocapsules were fabricated by arc evaporating the mixture of Fe and SiC powders. The high temperature of the electric arc results in a surface reaction between SiC and Fe nanoparticles and therefore a uniform encapsulation of the Fe nanoparticles with its alloy. The size of the nanocapsules ranges from 10 to 60 nm while most shells are approximately 7 nm in thickness. Air oxidation to the as-prepared sample does not change the shell/core structure but the saturation magnetization and the coercivity are reduced. The characteristics of the nanocapsules were investigated systematically by using X-ray diffraction, transmission electron microscopy, energy dispersive spectra, X-ray photoelectron spectroscopy, and superconducting quantum interference device magnetometer.

  2. Soft x-ray magnetic circular dichroism of L21-type Co2FeGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Umetsu, R. Y.; Nakamura, T.; Kobayashi, K.; Kainuma, R.; Sakuma, A.; Fukamichi, K.; Ishida, K.

    2010-03-01

    Spin and orbital magnetic moments of the L21-type Co2FeGa Heusler alloy have been investigated using x-ray magnetic circular dichroism spectra in the soft x-ray region. From the spectra of the L2,3-edge of Co and Fe, the ratios of the orbital magnetic moment to the spin magnetic moment Morb/Mspin are estimated to be 0.06 for Co and 0.02 for Fe, in agreement with the available theoretical values. The orbital magnetic moments of these two elements are small in line with theoretical results, reflecting the high symmetry of the L21-type crystal structure. Furthermore, it has been confirmed that the magnetic moment of Ga is induced in the present alloy.

  3. Magnetic and anomalous electronic transport properties of the quaternary Heusler alloys Co2Ti1-xFexGe

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, B.; Midhunlal, P. V.; Babu, P. D.; Kumar, N. Harish

    2016-06-01

    The half-metallic Heusler alloy Co2TiGe has a ferromagnetic ground state with a low magnetic moment (2 μB). It is free of atomic antisite disorder but has low Curie temperature (~390 K). In contrast the other cobalt based Heusler alloy Co2FeGe has high Curie temperature (~980 K) and high magnetic moment (5.6 μB) while exhibiting antisite disorder and lack of half-metallicity. Hence it is of interest to investigate the magnetic and transport properties of solid solutions of these two materials with contrasting characteristics. We report the structural, magnetic and electronic transport properties of quaternary Co2Ti1-x FexGe (x=0.2, 0.4, 0.6, 0.8) Heusler alloys. The alloys crystallize in L21 structure but with antisite disorder. The magnetization measurements revealed that the alloys were of soft ferromagnetic type with high Curie temperatures. Deviation from Slater-Pauling behavior and drastic change in electronic transport properties with some anomalous features were observed.The complex electronic transport properties have been explained using different scattering mechanisms.

  4. Structure, magnetic properties and magnetocaloric effects of Fe50Mn15- x Co x Ni35 alloys

    NASA Astrophysics Data System (ADS)

    Zhong, XiChun; Tian, HuaCun; Tang, PengFei; Liu, ZhongWu; Zheng, ZhiGang; Zeng, DeChang

    2014-03-01

    Fe50Mn15- x Co x Ni35 ( x=0, 1, 3, 5, 7) alloys were prepared by arc melting under purified argon atmosphere. The ingots were homogenized at 930°C for 90 h followed by water quenching. The crystal structure, magnetic properties and magnetocaloric effects of the alloys were studied by X-ray diffraction (XRD) and MPMS-7-type SQUID. The results show that all samples still maintained a single γ-(Fe, Ni)-type phase structure. With the increase of the content of Co, the Curie temperatures of these alloys increased and exhibited a second-order magnetic transition from ferromagnetic (FM) to paramagnetic (PM) state near Curie temperature. The maximum magnetic entropy change and the relative cooling power of Fe50Mn10Co5Ni35 alloy was 2.55 J/kg·K and 181 J/kg, respectively, for an external field change of 5 T. Compared with rare earth metal Gd, Fe50Mn15- x Co x Ni35 series of alloys have obvious advantage in resource price; their Curie temperatures can be tuned to near room temperature, maintain a relatively large magnetic entropy change at the same time and they are a type of potential magnetic refrigeration materials near room temperature.

  5. Structural and magnetic properties of Mn50Fe50-xSnx (x=10, 15 and 20) alloys

    NASA Astrophysics Data System (ADS)

    Ghosh, Tanmoy; Agarwal, Sandeep; Mukhopadhyay, P. K.

    2016-11-01

    In this work we report measurements and comparisons of the structural, magnetic and transport properties of a series of Mn50Fe50-xSnx alloys (x=10, 15 and 20). We found that while the lower Sn composition sample stabilized in β-Mn-type crystallographic phase, the higher Sn composition alloys contained both β-Mn-type as well as Mn3Sn-type hexagonal DO19 phases. Through d.c. and a.c. magnetic property measurements we have established the existence of a ferromagnetic transition near room temperature followed by a spin reorientation at lower temperature in the Mn3Sn-type crystallographic phase of the alloys. Our resistivity study also revealed an interesting behavior with negative temperature coefficient (TCR) in these alloys.

  6. Magnetization hysteresis studies in Sm1-xGdxAl2 alloys

    NASA Astrophysics Data System (ADS)

    Vaidya, U. V.; Venkatesh, S.; Rakhecha, V. C.; Ramakrishnan, S.; Grover, A. K.

    2009-03-01

    SmAl2 (Tc ˜ 125 K, μsat= 0.23 μB/f.u.) is known to exhibit magnetic compensation when doped with Gd (< 3 at.%). In such stoichiometries though the magnetization gets closer to zero, there exists a large spin polarization. This makes such materials attractive candidates for applications. We have performed detailed magnetization hysteresis and other studies in the series Sm1-xGdxAl2. In x=0.02 alloy, the loops are shifted (notion of exchange bias) along negative H-axis for temperatures just above Tcomp , and along positive H-axis for temperatures T < Tcomp. We argue that the change in the sign of exchange bias is due to the magnetic contribution of conduction electron polarization as well as that of local magnetic moments reversing the signs. At Tcomp the width of the hysteresis loop collapses. In the given series, one can set up the system in either spin-surplus or orbital-surplus state and control the exchange bias field. The compositions with 0.03 <= x < 0.06 do not exhibit zero cross over of magnetization and remain spin surplus. Our various studies and analysis shall be presented.

  7. Structure and magnetic properties of amorphous Fe-(Zr,Nb)-B melt spun alloys

    NASA Astrophysics Data System (ADS)

    Zamora, J.; Betancourt, I.

    2017-04-01

    In this work, we report the structure and magnetic behavior of an amorphous Fe81Zr5Nb4B10 melt-spun alloy. The radial distribution function (RDF) afforded the resolution of the nearest-neighbor configuration on the basis of the atom-pair distance information, for which the positions of each peak indicated the atom-to-atom separation involved for short-range ordering. The first peaks of RDF were attributed to the distances of B-B, Fe-Fe and Zr-Nb atomic pairs, indicating a glassy structure equivalent to a distorted bcc-Fe cluster. From magnetic measurements, a magnetic moment of 0.65 Bohr magneton per Fe atom was established, together with a Curie temperature of 334 K and an initial ac permeability of 550 for frequencies as high as 250 kHz. In addition, the magnetocaloric effect, quantified from isothermal magnetization measurements through the magnetic entropy variation, reached a maximum of 2.0 J/kg K for a magnetic field change of 2.0 T.

  8. Structural and magnetization behavior of highly spin polarized Co{sub 2}CrAl full Heusler alloy

    SciTech Connect

    Saha, S. N. Panda, J. Nath, T. K.

    2014-04-24

    The half metallic ferromagnet Co{sub 2}CrAl full Huesler alloy was successfully prepared by arc melting process. The electrical and magnetic properties of Co{sub 2}CrAl alloy have been studied in the temperature range of 5 – 300 K. The ferromagnetic Curie temperature T{sub c} of the same alloy has been observed at 329.8 K. The alloy shows semiconducting like electronic transport behavior throughout the studied temperature range. The origin of the semiconducting behavior of Co{sub 2}CrAl alloy can be best explained by the localization of conduction electrons and the presence of an energy gap in the electronic spectrum near the Fermi level E{sub F}.

  9. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  10. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    SciTech Connect

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  11. Compressive Response of Polycrystalline NiCoMnGa High-Temperature Meta-magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Karaca, H. E.; Turabi, A. S.; Basaran, B.; Pathak, A. K.; Dubenko, I.; Ali, N.; Chumlyakov, Y. I.; Li, P.

    2013-10-01

    The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect.

  12. Influence of boron on the magnetic and transport properties of FeZr amorphous and nanocrystalline alloys

    SciTech Connect

    Barandiaran, J.M.; Gorria, P. . Dept. de Electricidad y Electronica); Sal, J.C.G.; Brquin, L.F. ); Kaul, S.N. . School of Physics)

    1994-11-01

    The magnetic properties and electrical resistivity of amorphous and nanocrystalline FeZr and FeZrB(Cu) alloys are compared in a wide range of temperatures (4 to 1,000 K). The addition of boron increases the Curie temperature of the alloys and induces a broad minimum in the resistivity vs temperatures. A first step of crystallization occurs around 700 K in all the alloys, giving rise to [alpha]-Fe crystallites of very small size. Small amounts of boron greatly influence the exchange interactions, enhancing the ferromagnetic character of these compounds.

  13. Investigation of non-magnetic alloys for the suppression of tritium permeation

    SciTech Connect

    1980-07-01

    The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: problem definition, and literature search and analysis. Task I was complicated by the incomplete status of fusion reactor development, particularly with respect to selection of coolant and blanket materials and temperatures. The approach taken was to establish a probable range of requirements.

  14. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente

    2015-12-01

    We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.

  15. The electronic and magnetic properties of quaternary Heusler alloy CoFeMnGe

    NASA Astrophysics Data System (ADS)

    Seema, K.

    2016-05-01

    We present study of quaternary Heusler alloy CoFeMnGe using density functional theory. The compound is half-metallic with half-metallic gap of 0.13 eV. The total magnetic moment of this compound is 3.96 μB which is in close agreement with Slater-Pauling rule. The effect of lattice compression and expansion shows the robustness of half-metallicity. A large value of half-metallic gap and 100% spin-polarization makes this material interesting for spin dependent applications.

  16. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOEpatents

    Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  17. Atomic structure, alloying behavior, and magnetism in small Fe-Pt clusters

    NASA Astrophysics Data System (ADS)

    Chittari, Bheema Lingam; Kumar, Vijay

    2015-09-01

    We report results of the atomic structure, alloying behavior, and magnetism in F emP tn(m +n =2 -10 ) clusters using projector augmented wave (PAW) pseudopotential method and spin-polarized generalized gradient approximation (GGA) for the exchange-correlation energy. These results are compared with those obtained by using HCTH exchange-correlation functional and LANL2DZ basis set in the Gaussian program and the overall trends are found to be similar. As in bulk Fe-Pt alloys, clusters with equal composition of Fe and Pt have the largest binding energy and the largest heat of nanoalloy formation for a given number of atoms in the cluster. There are some deviations due to the different symmetries in clusters and in cases where the total number of atoms is odd. The lowest energy isomers tend to maximize bonds between unlike atoms with Fe (Pt) atoms occupying high (low) coordination sites in the core (surface) of the cluster. The binding energy, heat of formation, and the second order difference of the total energy show F e2P t2 , F e4P t4 , and F e4P t6 clusters to be the most stable ones among the different clusters we have studied. The magnetic moments on Fe atoms are high in Pt-rich clusters as well as in small Fe-rich clusters and decrease as the aggregation of Fe atoms and the cluster size increases. The maximum value of the magnetic moments on Fe atoms is ˜3.8 μB , whereas for Pt atoms it is 1 μB. These are quite high compared with the values for bulk Fe as well as bulk FePt and F e3Pt phases while bulk Pt is nonmagnetic. There is significant charge transfer from those Fe atoms that interact directly with Pt atoms. We discuss the hybridization between the electronic states of Pt and Fe atoms as well as the variation in the magnetic moments on Fe and Pt atoms. Our results provide insight into the understanding of the nanoalloy behavior of Fe-Pt and we hope that this would help to design Fe based nanoalloys and their assemblies with high magnetic moments for

  18. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Xue, Lin; Yang, Weiming; Liu, Haishun; Men, He; Wang, Anding; Chang, Chuntao; Shen, Baolong

    2016-12-01

    Through gradient substitution of Co for Fe, the magnetic properties and microstructures of (Fe1-xCox)83Nb2B14Cu1 (x=0.1, 0.2, 0.3, 0.4, 0.5) nanocrystalline alloys were investigated. Because of the strong ferromagnetic exchange coupling between Co and Fe, substantial improvement in saturation magnetization was achieved with proper levels of Co addition. Meanwhile, the Curie temperature increased noticeably with increasing Co addition. After heat treatment, the (Fe0.9Co0.1)83Nb2B14Cu1 nanocrystalline alloy showed a refined microstructure with an average grain size of 10-20 nm, exhibiting a comparatively high saturation magnetization of 1.82 T and a lower coercivity of 12 A/m compared to other Hitperm-type alloys with higher Co contents. Additionally, the Curie temperature reached 1150 K upon introduction of Co. As the soft magnetic properties are strengthened by adding a small amount of Co, the combination of fine, soft magnetic properties and low cost make this nanocrystalline alloy a potential magnetic material.

  19. A study of Fe2+xMn1-xAl alloys: Structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Paduani, C.; Migliavacca, A.; Pöttker, W. E.; Schaf, J.; Krause, J. C.; Ardisson, J. D.; Samudio Pérez, C. A.; Takeuchi, A. Y.; Yoshida, M. I.

    2007-08-01

    The Fe2+xMn1-xAl alloys were studied experimentally to assess the effect of variations of composition around stoichiometric on the structural and magnetic properties of this system. The results indicate that the ordered L21(X2YZ) structure of full Heusler alloys can be stabilized with small deviations of composition from the stoichiometric 2:1:1. The saturation magnetization is strongly composition dependent and decreases with the increase of the Mn concentration, in spite of the fact that the Mn atoms carry the largest moment in the ordered phase. The highest Curie temperature was observed for the Fe-richer alloy. Magnetic measurements suggest that atomic disorder and competition of the antiferromagnetic Fe-Mn and Mn-Mn interactions with the ferromagnetic Fe-Fe, Mn-Mn and Fe-Mn interactions lead to a frustrated couplings ending in a reentrant spin-glass behavior at low temperature.

  20. Premartensitic transition and relevant magnetic effects in Ni50Mn34In15.5Al0.5 alloy.

    PubMed

    Wu, Yuqin; Guo, Shaopu; Yu, Shuyun; Cheng, Hui; Wang, Ruilong; Xiao, Haibo; Xu, Lingfang; Xiong, Rui; Liu, Yong; Xia, Zhengcai; Yang, Changping

    2016-05-16

    Resistance measurement, in situ optical microscopic observation, thermal and magnetic measurements have been carried out on Ni50Mn34In15.5Al0.5 alloy. The existence of a pronounced premartensitic transition prior to martensitic transition can be characterized by microstructure evolution as well as exothermic peak and smooth decrease of resistance and magnetization with obvious hysteresis over a wide temperature range upon cooling. Consequently, the alloy undergoes two successive magneto-structural transitions consisting of premartensitic and martensitic transitions. Magnetoelastic coupling between magnetic and structural degrees of freedom would be responsible for the appearance of premartensitic transition, as evinced by the distinct shift of transitions temperatures to lower temperature with external applied field of 50 kOe. The inverse premartensitic transition induced by magnetic field results in large magnetoresistance, and contributes to the enhanced inverse magnetocaloric effect through enlarging the peak value and temperature interval of magnetic entropy change ΔSm.

  1. Premartensitic transition and relevant magnetic effects in Ni50Mn34In15.5Al0.5 alloy

    PubMed Central

    Wu, Yuqin; Guo, Shaopu; Yu, Shuyun; Cheng, Hui; Wang, Ruilong; Xiao, Haibo; Xu, Lingfang; Xiong, Rui; Liu, Yong; Xia, Zhengcai; Yang, Changping

    2016-01-01

    Resistance measurement, in situ optical microscopic observation, thermal and magnetic measurements have been carried out on Ni50Mn34In15.5Al0.5 alloy. The existence of a pronounced premartensitic transition prior to martensitic transition can be characterized by microstructure evolution as well as exothermic peak and smooth decrease of resistance and magnetization with obvious hysteresis over a wide temperature range upon cooling. Consequently, the alloy undergoes two successive magneto-structural transitions consisting of premartensitic and martensitic transitions. Magnetoelastic coupling between magnetic and structural degrees of freedom would be responsible for the appearance of premartensitic transition, as evinced by the distinct shift of transitions temperatures to lower temperature with external applied field of 50 kOe. The inverse premartensitic transition induced by magnetic field results in large magnetoresistance, and contributes to the enhanced inverse magnetocaloric effect through enlarging the peak value and temperature interval of magnetic entropy change ΔSm. PMID:27183331

  2. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    PubMed

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  3. The effect of transverse magnetic field treatment on wave-absorbing properties of FeNi alloy powders

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhu, Zhenghou; Xiong, Chao; Xu, Xing; Lin, Qianying

    2017-01-01

    The Fe50Ni50 alloy powders were successfully synthesized with the liquid phase reduction method and then treated with the transverse magnetic field of 200 kA/m. The influences of transverse magnetic field treatment on microstructures and radar absorbing properties of the powders were mainly investigated. Whether the powders were treated with the transverse magnetic field or not, the main phases of Fe50Ni50 alloy powders were FeNi3 and a small amount of Fe2O3. Results showed that the real part of complex permeability μʹ; of the Fe50Ni50 alloy powders in 1-5 GHz increased significantly, especially at the frequency of 1 GHz, the μʹ; increased from 2.2 to 2.8 after transverse magnetic field treatment. The magnetic loss tanδm of the Fe50Ni50 alloy powders after transverse magnetic field treatment was ≥0.3 in the frequency range of 1-13 GHz and 0.7-1.05 in the frequency range of 3.5-9.0 GHz. Compared with those of the untreated powders, the wave-absorbing properties of the powders after transverse magnetic field treatment were significantly improved. The Fe50Ni50 alloy powders coatings with thickness of 1.5 mm exhibited excellent wave-absorbing properties after transverse magnetic field treatment, and the qualified absorption band width reached nearly 3 GHz when the reflectivity |R| was ≥10 dB.

  4. Temperature Dependence of the Magnetization of the Ni52Mn24Ga24 Alloy in Various Structural States

    NASA Astrophysics Data System (ADS)

    Musabirov, I. I.; Sharipov, I. Z.; Mulyukov, R. R.

    2015-10-01

    are presented of a study of the temperature dependence of the magnetization σ(Т) of the polycrystalline Ni52Mn24Ga24 alloy in various structural states: in the initial coarse-grained state, after severe plastic deformation by high pressure torsion, and after stepped annealing of the deformed specimen at temperatures from 200 to 700°С for 30 min. As a study of the σ(Т) curve shows, in an alloy possessing a coarse-grained initial structure, a martensitic phase transition and a magnetic phase transition are observed in the room temperature interval. The martensitic transformation takes place in the ferromagnetic state of the alloy. This transformation is accompanied by an abrupt lowering of the magnetization of the material, associated with a lowering of the symmetry of the crystalline lattice and a high value of the magnetocrystalline anisotropy constant of the alloy in the martensitic phase. It is shown that as a result of plastic deformation there takes place a destruction of ferromagnetic order and a suppression of the martensitic transformation. Consecutive annealing after deformation leads to a gradual recovery of ferromagnetic order and growth of the magnetization of the material. Recovery of the martensitic transformation begins to be manifested only after annealing of the alloy at a temperature of 500°C, when the mean grain size in the recrystallized structure reaches a value around 1 μm.

  5. Magnetic properties of polycrystalline Co2Cr1-xFexAl alloys

    NASA Astrophysics Data System (ADS)

    Buchmeier, M.; Schneider, C. M.; Werner, J.; Elefant, D.; Teresiak, A.; Behr, G.; Schumann, J.; Arushanov, E.

    2007-06-01

    We have investigated the magnetic properties of the Heusler phase Co2Cr1-xFexAl in the composition regime (x=0.3-0.5) in the disordered B2 phase. Both bulk and surface static and dynamic magnetic aspects were addressed by employing alternating gradient magnetometry (AGM), magneto-optical Kerr effect (MOKE) and Brillouin light scattering (BLS). All samples show ferromagnetic hysteresis loops and a tendency of increasing saturation magnetization Ms with the iron content. With BLS the behavior of bulk spin waves and the Damon Eshbach (DE) surface spin wave mode have been studied. The spectra are typical for opaque bulk ferromagnetic samples with strong exchange. The measured spin wave frequencies as a function of magnetic field are in good agreement with the calculated values. Saturation magnetization and gyromagnetic ratio g have been determined from the field-dependent peak positions of the bulk and the DE modes. The g-factor extracted from the DE mode shows a clear tendency of increase with increasing Fe-content. However, we could not find any peculiarities of the alloy with x=0.4, which had been proposed as a Heusler phase on the basis of electronic structure calculations [T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, R.J. Cava, J. Solid State Chem. 176 (2003) 646].

  6. Evaluation of magnetic behaviour and in vitro biocompatibility of ferritic PM2000 alloy.

    PubMed

    Flores, M S; Ciapetti, G; González-Carrasco, J L; Montealegre, M A; Multigner, M; Pagani, S; Rivero, G

    2004-05-01

    PM2000 is a ferritic alloy obtained by powder metallurgy and is being investigated for potential applications as a biomaterial. This work aimed to assess the biological compatibility and to determine the influence of the processing route and further recrystallisation treatment on the magnetic behaviour. The magnetic behaviour has been analysed as a function of the hysteresis loop obtained by using an inductive method. The biocompatibility has been tested using human osteoblast-like cells seeded onto discs of PM2000. The ability of cells, on its surface, to attach, grow, and produce alkaline phosphatase (ALP) was determined. It is shown that PM2000 is a soft magnetic material irrespective of its material condition, its remanent magnetisation being very low (up to about 3% for the recrystallised swaged material). Fields close to 200 Oe are required to saturate the material. The saturation magnetisation is about 135 emu g(-1). In vitro tests indicate that cells are able to attach and grow onto its surface, and produce ALP, a specific marker of cells with bone-forming activity. In this respect, PM2000 holds promise as a suitable substrate for bone integration. These properties could make PM2000 a useful candidate for the preparation of medical devices where biocompatible and soft magnetic materials are sought. Applications for dental magnetic attachments could be envisaged.

  7. Magnetic softness and high-frequency characteristics of Fe65Co35-O alloy films

    NASA Astrophysics Data System (ADS)

    Wang, W.; Chen, Y.; Yue, G. H.; Sumiyama, K.; Hihara, T.; Peng, D. L.

    2009-07-01

    The effects of oxygen concentration and film thickness were studied on the microstructural, electrical, and magnetic properties of Fe65Co35-O alloy films prepared by dc magnetron sputtering at room temperature. The films showed the best magnetic softness with a large saturation magnetization of 21.5 kG, low coercivities of 2.8 and 2.1 Oe in easy and hard axes, respectively, and a high resistivity of 2215 μΩ cm at an optimized condition of an oxygen gas flow ratio of 1.0% and a film thickness of 105 nm. Such an excellent magnetic softness can be attributed to grain refinement caused by the addition of very low dose of oxygen, which basically did not lead to the full formation of Fe and/or Co oxide phases with low saturation magnetizations. The microwave permeability measurement indicated that the addition of very low dose of oxygen could improve the response of real permeability to frequency. A high real permeability of 525 at frequency up to 1.2 GHz was obtained for the Fe65Co35-O films deposited at the optimized condition above.

  8. Preparation of A357 Alloy Slurry by Pulsed Magnetic Field Processing

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Yao, J. P.; Qiu, H.; Zhou, Q.

    2012-06-01

    Pulsed magnetic field (PMF) processing was employed for preparing semi-solid A357 alloy slurry in this study. The effects of pouring temperature and vibration power on the microstructure of the primary phase in semi-solid A357 alloy slurry were studied, and some characteristic parameters characterized the morphology and the grain size of the primary α-Al particles were obtained. The results show that the primary α-Al particles became finer and rounder with the decrease of pouring temperature and/or the increase of vibration power. However, over a certain vibration power, coarse structures appeared again. The slurry with the primary α-Al particles of average diameter of approximately 92 μm and average shape factor of 0.56 can be prepared under the action of a PMF at a vibration power of 250 W with pouring temperature of 903 K (630 °C). It was feasible to use PMF processing to prepare semi-solid alloy slurry because of its strong forced convection within the whole bulk melt.

  9. Hot workability of R-Fe-B alloys and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Akioka, K.; Kobayashi, O.; Yamagami, T.; Arai, A.; Shimoda, T.

    1991-04-01

    The hot workability of R-Fe-B alloys and their magnetic properties were extensively investigated. Modified hot pressing employing a ring which constrains an alloy ingot enabled hot working without cracking at high strain rates up to ɛ˙ = 1 × 10-1/s. Excessive discharging of the liquid R-rich phase was controlled and the refinement of crystal grains occurred at high strain rate hot pressing. Through these effects the maximum Hci reached 18 kOe, and a (BH)max of 33.3 MGOe with a moderate Hci of 15 kOe was obtained in a composition of the Pr-Fe-B-Cu system. Post-heat treatment at 475-525 °C was effective for enhancing Hci. It was found that even in Nd-based alloys, a (BH)max of more than 30 MGOe was achieved by hot pressing at a high strain rate, because the change in composition during pressing is minimized.

  10. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    PubMed

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  11. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  12. Atomic level characterization of the morphology of phases in Chromindur magnetic alloys

    SciTech Connect

    Miller, M.K. ); Camus, P.P . Applied Superconductivity Center); Hetherington, M.G. . Dept. of Materials)

    1991-01-01

    The atom probe field ion microscope has been used to characterize the morphology and determine the compositions of the iron-rich {alpha} and chromium-enriched {alpha}{prime} phases produced during isothermal and step cooled heat treatments in a Chromindur 2 ductile permanent magnet alloy. The good magnetic properties of this material are due to a combination of the composition of the two phases and the isolated nature and size of the ferromagnetic {alpha} phase. The morphology of the {alpha} phase is produced as a result of the shape of the miscibility gap and the step-cooled heat treatment and is distinctly different from that formed during isothermal heat treatments. 6 refs., 3 figs., 4 tabs.

  13. Change in magnetic properties of a cold rolled and thermally aged Fe-Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, D. G.; Ryu, K. S.; Kobayashi, S.; Takahashi, S.; Cheong, Y. M.

    2010-05-01

    The variation in magnetic properties of a Fe-1%Cu model alloy due to a cold rolling and a thermal aging has been evaluated to simulate the radiation damage of reactor pressure vessel of nuclear power plant. The thermal aging was conducted at 500 °C with different aging times in series. The hysteresis loops, magnetic Barkhausen noise (BN) and Vickers microhardness were measured for prestrained, strained, and thermal aged samples. The coercivity increased by a plastic strain and decreased by thermal aging, The BN decreased in the prestrained and strained samples but large changes were observed in the strained sample. These results were interpreted in terms of the domain wall motion signified by a change in the mean free path associated with microinternal stress and copper rich precipitates.

  14. Structural and magnetic investigation on tetragonal R-Fe alloy with 1:12 stoechiometry

    NASA Astrophysics Data System (ADS)

    Khazzan, S.; Mliki, N.; Bessais, L.

    2012-02-01

    Structure and magnetic proprieties of ball-milled Sm(Fe,Mo)12 compounds were carried out under an Ar atmosphere. Milled powders were subsequently annealed at a temperature ranging from 700°C up to 1200°C. The effects of heat treatment, on structure and magnetic property changes, have been investigated by means of x-ray diffraction using the Rietveld method, and differential sample magnetometer. At low temperature, Rietveld analysis has revealed the presence of new phase with the 1:10 stoechiometry. Insertion of carbon atoms was carried out via a solid - solid reaction either. Upon carbonation, the Curie temperature of samarium based alloy was enhanced. Besides, systematic analyses of the structural aspects have been undertaken upon insertion.

  15. Soft Magnetic Alloy-Polymer Composite for High-Frequency Power Electronics Application

    NASA Astrophysics Data System (ADS)

    Calata, Jesus N.; Lu, Guo-Quan; Ngo, Khai

    2014-01-01

    Soft magnetic alloys are limited to lower frequencies because of increased eddy-current losses at higher frequencies. A simple low-temperature solvent-based process was developed to coat permalloy powder with a benzocyclobutene insulating layer to reduce interparticle eddy-current loss. Low-signal measurements show that the permeability of the cured composite exhibits a bandwidth beyond 10 MHz. In contrast, the permeability of the pure powder rolled off well below 1 MHz with a corresponding increase in the imaginary permeability. Measurements of the core loss density at 5 MHz on pressed composite cores show a core loss of 300 mW/cm3 at more than 90 gauss, while the pure powder core achieved the same core loss density at just over 10 gauss. The results demonstrate that the polymer coating process is an effective way of reducing the interparticle eddy-current loss in powdered magnetic cores at high frequencies.

  16. Magnetic properties and atomic ordering of BCC Heusler alloy Fe2MnGa ribbons

    NASA Astrophysics Data System (ADS)

    Xin, Yuepeng; Ma, Yuexing; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan

    2016-05-01

    The electronic structure, atomic disorder and magnetic properties of the Heusler alloy Fe2MnGa have been investigated experimentally and theoretically. BCC Fe2MnGa ribbon samples were prepared. Experimentally, a saturation magnetic moment (3.68 μB at 5 K) much larger than the theoretical value (2.04 μB) has been reported. First-principles calculations indicate that the difference is related to the Fe-Mn disorder between A, B sites, as can also be deduced from the XRD pattern. L21 type Fe2MnGa is a ferrimagnet with antiparallel Fe and Mn spin moments. However, when Fe-Mn disorder occurs, part of Mn moments will be parallel to Fe moments, and the Fe moments also clearly increase simultaneously. All this results in a total moment of 3.74 μB, close to the experimental value.

  17. A new hard magnetic phase in binary Nd-Fe and Pr-Fe alloys

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, G. C.; Tsoukatos, A.; Strzeszewski, J.; Long, Gary J.; Pringle, O. A.

    1989-01-01

    A new magnetic phase has been observed in as-cast and melt-spun Nd-Fe and Pr-Fe alloys with a Curie temperature around 265°C. SEM studies show the presence of this phase in the form of spherical and elongated particles 5 μ m in size with a composition having a ratio of Fe/Nd=4:1. This phase is believed to be a ternary Nd-Fe-O phase stabilized with oxygen. The phase appears to have a high anisotropy leading to coercivities of about 6 kOe in as-cast samples at room temperature. The Mössbauer spectra of this phase can be fitted to four Fe sites with magnetic moments ranging from 1.7 to 2.54μ B.

  18. Magnetic properties and structure of (Co-Ni)3Pt alloy films

    NASA Astrophysics Data System (ADS)

    Lauhoff, G.; Suzuki, T.; Toporov, A.

    2006-09-01

    A study of the magnetic and structural properties of (Co-Ni)3Pt alloy thin films epitaxially grown onto Al2O3(00•1) substrates has been carried out. The (CoNi)3Pt and Ni3Pt films deposited in a temperature range of 300-450°C show a partial superlattice ordering. The perpendicular magnetic anisotropy Ku is found to increase with order parameter S. For deposition temperatures of about TS=400°C, the Ku becomes 8×105erg/cc at S =0.3 for Ni3Pt and 4×106erg/cc for (CoNi)3Pt at S =0.4 compared to 2×107erg/cc at S =0.7 for Co3Pt films.

  19. Relation between the magnetization and the electrical properties of alloy GaSb-MnSb films

    SciTech Connect

    Koplak, O. V.; Polyakov, A. A.; Davydov, A. B.; Morgunov, R. B.; Talantsev, A. D.; Kochura, A. V.; Fedorchenko, I. V.; Novodvorskii, O. A.; Parshina, L. S.; Khramova, O. D.; Shorokhova, A. V.; Aronzon, B. A.

    2015-06-15

    The influence of the charge carrier concentration on the magnetic properties of GaSb-MnSb alloys is studied. The ferromagnetism of GaSb-MnSb films is caused by the presence of MnSb granules and manifests itself in both magnetometric measurements and the presence of an anisotropic magnetoresistance and the anomalous Hall effect. Electric conduction is executed by charge carriers (holes) in a GaSb matrix. The magnetization of clusters depends on stoichiometry and the concentration of Mn{sup 2+} and Mn{sup 3+} ions, which is specified by the film growth conditions. At high film growth temperatures, ferromagnetic clusters containing Mn{sup 2+} ions mainly form. At low growth temperatures, an antiferromagnetic phase containing Mn{sup 3+} ions forms.

  20. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    SciTech Connect

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  1. Atomic disorder and the magnetic, electrical, and optical properties of a Co{sub 2}CrAl Heusler alloy

    SciTech Connect

    Svyazhin, A. D. Shreder, E. I.; Voronin, V. I.; Berger, I. F.; Danilov, S. E.

    2013-03-15

    Two Co{sub 2}CrAl alloy samples subjected to different heat treatment regimes are studied. An exact distribution of atoms over the sublattices in the samples is determined by X-ray diffraction and neutron diffraction methods. These data are used to perform ab initio density of states calculations and to calculate the magnetic moments of the samples in a coherent potential approximation. The calculated magnetic moments are compared to the experimental values. The effect of atomic ordering on the electronic structure near the Fermi level is analyzed using optical methods. The possible causes of the detected temperature dependence of the electrical resistivity, unusual for metallic alloys, are discussed.

  2. Effects of an Applied Magnetic Field on the Directional Solidification of Hg(1-x)Zn(x)Se Alloys

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Lehoczky, S. L.; Szofran, F. R.; Jones, K. S.

    1999-01-01

    Directionally solidified Hg(0.9)Zn(0.1)Se alloys were studied as an alternative to HgCdTe for the detection of electromagnetic radiation because of predicted improvements in lattice stability. Several boules were grown using a modified Bridgman-Stockbarger method and in an applied magnetic field. Axial compositional profiles showed mass transfer was primarily diffusion controlled. Radial compositional variations were greatly reduced when solidification occurred in an applied magnetic field. Microstructural characteristics and dislocation etch pit densities were greatly improved over HgTe based alloys. The extreme importance of processing conditions on defect generation was illustrated by comparing ampoule configurations and thermal profiles.

  3. Lattice dynamics in magnetic superelastic Ni-Mn-In alloys. Neutron scattering and ultrasonic experiments

    SciTech Connect

    Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis; Planes, A.; Lograsso, Tom; Schlagel, D. L.; Zarestky, Jerel L.; Acet, Mehmet; Garlea, Vasile O

    2009-01-01

    Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni50Mn34In16 magnetic superelastic composition. The paper reports the experimental determination of the low-lying phonon dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA2 branch are relatively low and it exhibits a small dip anomaly at a wave number n= 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C0 = (C11 C12)=2. Both temperature softenings are typical for bcc based solids which undergo martensitic transformations and re ect the dynamical instability of the cubic lattice against shearing of f110g planes along h1 10i directions. Additionally, we measured low-lying phonon dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling.

  4. Effect of Co content on structure and magnetic behaviors of high induction Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Roy, Rajat K.; Panda, Ashis K.; Mitra, Amitava

    2016-11-01

    The replacement of Fe with Co is investigated in the (Fe1-xCox)79Si8.5B8.5Nb3Cu1 (x=0, 0.05, 0.2, 0.35, 0.5) amorphous alloys. The alloys are synthesized in the forms of ribbons by single roller melt spinning technique, and the structural and magnetic properties of annealed ribbons are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), B-H curve tracer, respectively. All as-cast alloys are structurally amorphous, however, their magnetic properties are varying with Co addition. The Co addition within 5-20 at% results in moderate thermal stability, saturation induction, Curie temperature and lowest coercivity, while 35 at% Co causes highest saturation induction, coercivity, Curie temperature and lowest thermal stability. On devitrification, the magnetic properties change with the generation of α-FeCo nanocrystallites and (FeCo)23B6, Fe2B phases during primary and secondary crystallization stages, respectively. A small amount Co is advantageous for maintaining finer nanocrystallites in amorphous matrix even after annealing at 600 °C, leading to high saturation magnetization (>1.5 T) and low coercivity (~35 A/m). The improved magnetic properties at elevated temperatures indicate these alloys have a potential for high frequency transformer core applications.

  5. Microstructure and magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5 alloy

    NASA Astrophysics Data System (ADS)

    Tan, X. H.; Xu, H.; Man, H.; Tang, Y. J.; Yang, L. P.; Bai, Q.

    2011-04-01

    The microstructure and magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5,prepared by suction casting the molten alloy into a copper mold under an argon atmosphere, have been investigated. The results show that clusters with size 3-5 nm are found to be embedded in the amorphous matrix of as-cast bulk amorphous Nd60Fe20Al5Co10B5 alloy. The Nd60Fe20Al5Co10B5 alloy shows hard magnetic behavior at room temperature, with an intrinsic coercivity of 360 kA/m and a remanence of 69.39 mT. The magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5 has been investigated on the major hysteresis loop, and simple logarithmic time dependence is observed. A value for the fluctuation field of 8.24 kA/m is obtained. Analysis based on a Henkel plot is used to confirm the existence of magnetic interaction among clusters. The coercivity mechanism responsible for the hard magnetic behavior of bulk amorphous Nd60Fe20Al5Co10B5 alloy is also discussed.

  6. Magnetic properties of Fe-Cu-Nb-Si-B nanocrystalline magnetic alloys

    SciTech Connect

    Garcia del Muro, M.; Batlle, X.; Zquiak, R.; Tejada, J.; Polak, C.; Groessinger, R.

    1994-03-01

    Several ribbons of composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 16.5}B{sub 6} and Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} were prepared by annealing the as-quenched samples between 525 C and 700 C, which induced nucleation of nanocrystallites of Fe bcc-type composition. Mean grain sizes were obtained from X-ray diffraction. Static magnetic properties were measured with both a Magnet Physik Hysteresis-Graph (up to 200 Oe) and a SHE S.Q.U.I.D. Magnetometer (up to 50 kOe). Soft magnetic parameters (coercive field and initial permeability) were very sensitive to grain size. The ZFC magnetization at low field showed a broad peak at a temperature T{sub M}, thus signaling a certain distribution of nanocrystalline sizes, and T{sub M} strongly decreased when the mean grain size decreased. Isothermal magnetization curves at low temperature showed the expected asymptotic behavior of a random magnet material at low and high fields.

  7. The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Permanent Magnetic Alloys.

    PubMed

    Ren, Kezhi; Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke

    2017-03-20

    We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.

  8. Magnetic and Mechanical Properties of Hard Magnetic Alloys 30Kh21K3M and 30Kh20K2M2V

    NASA Astrophysics Data System (ADS)

    Stel'mashok, S. I.; Milyaev, I. M.; Yusupov, V. S.; Milyaev, A. I.

    2017-01-01

    The magnetic and mechanical properties of two hard magnetic alloys (30Kh21K3M and 30Kh20K2M2V) of the Fe - Cr - Co system in anisotropic and isotropic conditions produced by traditional induction melting and by the method of powder metallurgy with subsequent pressure treatment of the metal are studied. The obtained regression equations for B r , H cB and ( BH )max describe the quantities adequately in the used range of variation of factors. The response surfaces and their sections in the phase space of the heat treatment factors are plotted. The results of the analysis of the proportion of residual induction in anisotropic and isotropic states are used to infer that the model of the mechanism of magnetization reversal of hard magnetic alloys of the class considered needs amending.

  9. Interacting Stoner-Wohlfarth behavior in hysteresis curves of Sm(CoFeCuZr) z magnets

    NASA Astrophysics Data System (ADS)

    Romero, S. A.; de Campos, M. F.; Rechenberg, H. R.; Missell, F. P.

    Several magnets with different Zr contents were studied: Sm(Co balFe 0.2Cu 0.1Zr x) 8 (bal=balance; x=0, 0.02, 0.04, 0.06 and 0.08). The microstructure of the magnets includes three main phases, all crystallographically coherent: the cell phase Sm 2(Co,Fe) 17, the cell boundary phase Sm(Co,Cu) 5 and a lamellar Zr-rich phase, rhombohedral (ZrSm) 1Co 3. The hysteresis curves were compared with the Callen, Liu and Cullen (CLC) modification of the Stoner-Wohlfarth model for an isotropic distribution of interacting single-domain particles. Choosing reasonable values for the saturation magnetization Ms, the anisotropy field Ha, and the mean-field interactions of the CLC model, we were able to reproduce the main features of the hysteresis curves for the x=0.02 and 0.04 samples. For higher x values, X-ray diffraction Rietveld analysis revealed the presence of other "impurity" phases, among them cubic Zr 6(Co,Fe) 23, rhombohedral (SmZr) 5(CoFeCu) 19 and rhombohedral (SmZr) 2(CoFeCu) 7.

  10. Evolution of microstructure and defect structure in manganese-aluminum-based permanent magnet alloys

    NASA Astrophysics Data System (ADS)

    Yanar, Cagatay

    In this study, the transformation behavior of MnAl-based ferromagnetic alloys was investigated. The low-cost and availability of the Mn-Al base metals along with their high mechanical strength, machineability and high magnetic energy product (BH) per unit weight make these materials attractive candidates for permanent magnet applications. These alloys derive their magnetic properties from the metastable L10 tau-phase, which generally appears towards the Mn-rich side of the near equiatomic composition. The magnetic properties of these materials are strongly influenced by the microstructure and characteristic defect structure of the tau-phase. The tau-phase exhibits a unique defect structure, which includes twins, stacking faults, anti-phase domain boundaries and dislocations. Understanding the true nature of defect generation is necessary in order to be able to develop processing techniques to enhance and optimize the properties of these materials. The tau-phase derives from a phase mixture of ε(hcp) and ε '(B19) phases through various heat treatment processes. Controversial mechanisms are reported in the literature regarding the nature of the ε + ε' → tau transformation. Phase transformation mechanisms that are displacive and those involving a massive transformation have been reported. In this study, the true nature of the tau-phase formation was investigated experimentally by utilizing techniques such as transmission electron microscopy (TEM), high-resolution electron microscopy (HREM) and in-situ TEM heating experiments. It was shown that both of the transformation modes, i.e. massive and displacive mechanisms, can operate and result in tau-phase formation. The atomic nature of the displacive transformation was studied in detail to elucidate the viability of transformation of a two-phase mixture into a single phase through a shear transformation. In the absence of stress, the massive mode was shown to dominate microstructural evolution in bulk materials

  11. First-principles calculation on dilute magnetic alloys in zinc blend crystal structure

    NASA Astrophysics Data System (ADS)

    Ullah, Hamid; Inayat, Kalsoom; Khan, S. A.; Mohammad, S.; Ali, A.; Alahmed, Z. A.; Reshak, A. H.

    2015-07-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III-V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga1-xMnxX (X=P, As) compounds reveal that Ga0.75Mn0.25P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga0.75Mn0.25As and Ga0.5Mn0.5As and tune Ga0.25Mn0.75As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga0.75Mn0.25P, Ga0.75Mn0.25As and Ga0.5Mn0.5As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III-V semiconductors can be effectively used in spintronic devices.

  12. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-04-01

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe73.5Cu1Nb3Si15.5B7 alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  13. Investigating Magnetic and Structural Changes of Thin FeNi Alloy Films

    NASA Astrophysics Data System (ADS)

    Hochstrasser, M.; Tobin, J. G.; Morton, S. A.; Wadill, G. D.; Gilman, N. A. R.; Willis, R. F.

    2002-03-01

    Bulk FeNi alloys exhibit the "Invar effect", a sudden arresting of the Wigner-Seitz cell volume and a zero expansion coefficient. Simultaneously, the crystal structure changes from fcc to bcc while Curie temperature goes to zero. This structural transformation can be arrested in films grown on a Cu(001) substrate. Theoretical work predicts that the fcc phase can exist in two possible states: a ferromagnetic high volume state or a antiferromagnetic low volume state showing a 1% volume change between a non-collinear equilibrium state and the high spin state. We measured elemental magnetic properties with x-ray circular and linear dichroism on FeNi films grown on Cu(100). Our measurements show a change in the local magnetic moments of Fe as well as Ni, which corresponds very well with the Slater-Pauling curve. We also observe the collapse of the magnetic moments, as previously reported in bulk materials, in these thin films. Exchange splitting measured with angular and spin-resolved measurements confirm the magnetic measurements done with dichroism.

  14. Influence of phase transformation on the permanent-magnetic properties of Fe-Pt based alloys

    NASA Astrophysics Data System (ADS)

    Brück, E.; Xiao, Q. F.; Thang, P. D.; Toonen, M. J.; de Boer, F. R.; Buschow, K. H. J.

    2001-07-01

    We have studied the effect of the atomic disorder-order transformation on remanence enhancement and coercivity in Fe-Pt-based materials by isothermal annealing at temperatures well below the transformation point. We also investigated the effect of the annealing temperature and the effect of various types of additives. The relative amount of the low-temperature hard-magnetic face-centered-tetragonal (FCT) phase precipitated in the high-temperature magnetically soft face-centered-cubic (FCC) phase was determined by means of X-ray diffraction. As a function of annealing time and annealing temperature, particle size and relative amount of the FCT phase increased at the cost of the FCC phase. These changes were followed by means of magnetic measurements. We observed a continuous increase in coercivity with increasing annealing time, eventually reaching a maximum. The Kneller-Hawig model was used to explain the occurrence of remanence enhancement and the continuously changing degree of exchange coupling between the magnetically soft and hard phase. The suitability of Fe-Pt based alloys in dental applications is discussed.

  15. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy "NANOMET®" cores

    NASA Astrophysics Data System (ADS)

    Nishiyama, N.; Tanimoto, K.; Makino, A.

    2016-05-01

    Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys "NANOMET®" exhibit high saturation magnetic flux density (Bs > 1.8 T), low coercivity (Hc < 10 A/m) and low core loss (W1.7/50 ˜ 0.4 W/kg) even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

  16. Magnetic properties of Nd-Ga-Fe{sub bal}-Nb-B alloy

    SciTech Connect

    Kim, Hyunkyu; Sung Kim, Chul; Yong An, Sung; Ryong Choi, Kang; Choi, Moonhee

    2014-05-07

    Here, we have synthesized Nd-Ga-Fe{sub bal}-Nb-B alloy by strip casting method. The crystalline and magnetic properties of sample were investigated with x-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectrometer. The XRD pattern was analyzed with the Rietveld refinement method, indicating a tetragonal structure and the space group of P4{sub 2}/mnm. The temperature dependence of zero-field cooled (ZFC) magnetization curve was measured under applied field at temperature ranging from 4.2 to 740 K. From the ZFC curve, Curie temperature and spin reorientation temperature are determined to be 615 K and 130 K, respectively. Also, Mössbauer spectra were measured at various temperatures ranging from 4.2 to 620 K. Each spectrum was fitted with 6-sextets for Fe site (8j{sub 1}, 8j{sub 2}, 16k{sub 1}, 16k{sub 2}, 4c, and 4e), and magnetic hyperfine field, Isomer shift, electric quadrupole shift, and area ratio values were obtained from the fit. We observed the change in slope of magnetic hyperfine field and electric quadrupole shift at 130 K while the Curie temperature was determined to be 615 K from the measurement of zero velocity counter, agreeing with the values obtained from VSM measurements.

  17. Relationship between Magnetocrystalline Anisotropy and Orbital Magnetic Moment in L10-Type Ordered and Disordered Alloys

    NASA Astrophysics Data System (ADS)

    Kota, Yohei; Sakuma, Akimasa

    2012-08-01

    The magnetocrystalline anisotropy energy and orbital magnetic moment in L10-type transition metal alloys such as FePt, FePd, FeNi, CoPt, CoPd, and MnAl are evaluated while continuously varying the degree of order. The electronic structure with spin--orbit interaction is calculated by employing the tight-binding linear muffin-tin orbital method based on the local spin-density approximation. To control the degree of order, we consider a substitutional disorder and then adopt the coherent potential approximation. The magnetocrystalline anisotropy energy Δ E is roughly proportional to the power of the long-range order parameter S, i.e., Δ E \\propto Sn (n ˜ 1.6{--}2.4). We also discuss the relationship between the magnetocrystalline anisotropy energy and the orbital magnetic moment. In the same compositional system with different degrees of order, the difference between the orbital magnetic moment in the magnetic easy axis and that in the hard one is proportional to Δ E. However, the coefficient corresponding to the effective spin--orbit coupling is inconsistent with the intrinsic one in some cases.

  18. Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn-Ni-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Suresh, K. G.

    2016-12-01

    In this report, effect of Fe substitution on martensitic transition, magnetic, magnetocaloric and exchange bias (EB) properties of Mn50Ni40-xFexSn10 (x=0, 0.5, 1, 1.5, 2 and 3) Heusler alloys series has been investigated systematically. Fe substitution has been found to affect the ferromagnetic/antiferromagnetic interactions significantly in both the martensite and austenite phases. Martensitic transition temperature decreases with increasing Fe content, which is attributed to the decrease in number of average valence electrons per atom (e/a ratio) of these alloys. Large magnetic entropy change (ΔSM) and refrigerant capacity (RC) have been observed in these alloys, as a maximum ΔSM of 12.6 J/kg. K is observed for composition x=0.5. Present alloys have also been found to show large exchange bias properties, as maximum exchange bias fields (HEB) of 890 Oe and 810 Oe are observed for x=0 and 0.5, respectively at 5 K. Composition and temperature dependencies of EB are associated with the change in exchange anisotropy at interfaces of competing magnetic phases. Study of minor loop and training effect also corroborates with the presence of EB in these alloys.

  19. Chemical synthesis, characterizations and magnetic properties of nanocrystalline Fe{sub 50}Co{sub 50} alloy

    SciTech Connect

    Dalavi, Shankar B.; Panda, Rabi Narayan; Raja, M. Manivel

    2014-04-24

    Nanocrystalline Fe{sub 50}Co{sub 50} alloy has been synthesized successfully by chemical reduction route using superhydride as reducing agent and oleic acid and oleylamine as capping agents. Phase purity, crystallite size and lattice parameters of the synthesized NPs are determined by X-ray powder diffraction method. FeCo alloy crystallizes in body centered cubic (bcc) structure having crystallite size equal to 29 nm and lattice parameters equal to 2.8546 Å. The size and shape morphologies of the material were studied by SEM analysis. SEM micrograph study shows the average particle size to be 60 nm and indicates the appearance of agglomerates of the nano-particles consisting of several crystallites. The room temperature magnetic hysteresis studies indicate ferromagnetic behavior of the materials. The values of saturation magnetization and coercivity were 65 emu/g and 460 Oe, respectively. Magnetic properties of the material were interpreted on the basis of fine particle magnetism.

  20. Preparation of Soft Magnetic Fe-Ni-Pb-B Alloy Nanoparticles by Room Temperature Solid-Solid Reaction

    PubMed Central

    Zhong, Qin

    2013-01-01

    The Fe-Ni-Pb-B alloy nanoparticles was prepared by a solid-solid chemical reaction of ferric trichloride, nickel chloride, lead acetate, and potassium borohydride powders at room temperature. The research results of the ICP and thermal analysis indicate that the resultants are composed of iron, nickel, lead, boron, and PVP, and the component of the alloy is connected with the mole ratio of potassium borohydride and the metal salts. The TEM images show that the resultants are ultrafine and spherical particles, and the particle size is about a diameter of 25 nm. The largest saturation magnetization value of the 21.18 emu g−1 is obtained in the Fe-Ni-Pb-B alloy. The mechanism of the preparation reaction for the Fe-Ni-Pb-B multicomponent alloys is discussed. PMID:24348196

  1. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    NASA Astrophysics Data System (ADS)

    Zhang, R. L.; Damewood, L.; Fong, C. Y.; Yang, L. H.; Peng, R. W.; Felser, C.

    2016-11-01

    For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  2. Difference in Magnetic Field Threshold for Thermal Plasma Formation between Copper Alloys 145 and 101 Pulsed to Multi-Megagauss Surface Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bauer, B. S.; Fuelling, S.; Ivanov, V. V.; Hutchinson, T. M.; Yates, K. C.; Awe, T. J.

    2016-10-01

    Understanding the impact of choice of metal alloy on plasma formation is important for plasma physics and applications (e.g., fusion energy). Thermal ionization by pulsed ohmic heating of Cu-145 (99.5% Cu, 0-0.7% Te, 0-0.012% P) has been compared with that of a purer alloy, Cu-101 (>99.99% Cu), via well-characterized experiments that avoided contamination by arcing. Copper rods were pulsed to 1.0-MA peak current in 100 ns, with the applied magnetic field rising linearly at 50-80 MG/ μs, depending on the rod initial diameter (0.49-1.59 mm). The initial magnetic skin depth was much smaller than the rod radius, so surface plasma formation was observed while current was propagating into the conductor as a nonlinear diffusion wave. The rod surface finish was controlled (electropolished or not) and examined with optical and scanning electron microscopy. The expansion and ionization of the rod were observed with visible and EUV radiometry, time-resolved imaging, and laser shadowgraphy. Rods of both alloys explode when the applied magnetic field reaches 2 MG, well before plasma formation. Rods of both alloys expand at 3.5 km/s surface velocity. However, Cu-145 undergoes bulk surface ionization at 3.0 MG, whereas Cu-101 only turns to plasma when the magnetic field exceeds 3.5 MG.

  3. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    SciTech Connect

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23 and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  4. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    DOE PAGES

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23 andmore » Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.« less

  5. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Rios, Orlando

    2015-02-01

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23, and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  6. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.

    PubMed

    Dunand, David C; Müllner, Peter

    2011-01-11

    The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.

  7. Magnetic properties of Ce-Nd-Fe-Mo alloys and their nitrides

    SciTech Connect

    Zhou, C; Pinkerton, FE

    2014-11-01

    New quaternary alloys of Ce-1 xNdxFe12 Mo-y(y) with x=0, 0.2, 0.4, 0.6, 0.8, 1 and y=0, 1.5, 2 have been prepared and magnetically hardened by melt spinning. X-ray diffraction indicates that the as-spun materials exhibit the tetragonal ThMn12-type structure. Prior to nitriding, the coercivity H-ci is less than 0.6 kOe in all alloys and is independent of Nd content, while the magnetization 4 pi M-19 (measured in an applied held of 19 kOe) and Curie temperature T-c increase with added Nd content x. The effects of nitriding pressure P, time t, and temperature TOR magnetic properties have been carefully evaluated on NdFe10Mo2 in order to identify the optimal nitriding parameters. The optimized nitriding profile was subsequently adopted to nitride the remaining samples. After nitrogenation, T-c and 4 pi M-19 have been substantially enhanced primarily due to the increased Fe-Fe exchange from nitrogen induced lattice dilation. Benefitting from the positive contribution from Nd, H-ci has been greatly improved in the Nd containing samples. As a result, Ce0.2Nd0.8Fe10Mo2 nitride features H-ci=2.9 kOe and (BH)(max) = 1.6 MGOe and Ce0.2Nd0.8Fe10.5Mo1.5 nitride demonstrates H-ci=2.5 kOe, (BH)(max) = 1.5 MGOe at room temperature, and T-c=337 degrees C. which are substantial advancements compared to the pure Ce based ThMn12-type materials previously reported. (C) 2014 Published by Elsevier B.V.

  8. Ab initio construction of magnetic phase diagrams in alloys: The case of Fe1-xMnxPt

    DOE PAGES

    Pujari, B. S.; Larson, P.; Antropov, V. P.; ...

    2015-07-28

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe1–xMnxPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of the magnetic phasemore » diagram is demonstrated.« less

  9. Effect of sputtering pressure on stacking fault density and perpendicular magnetic anisotropy of CoPt alloys

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Woong; Oh, Young-Wan; Kim, Dae-Hoon; Kim, Jai-Young; Park, Byong-Guk

    2016-09-01

    We report the effects of Ar sputtering pressure on perpendicular magnetic anisotropy in disordered CoPt alloys via the modulation of stacking fault density. The coercivity and anisotropy field of CoPt alloys are gradually enlarged with an increase in Ar sputtering pressure from 3 mTorr to 30 mTorr. Structural analyses using transmission electron microscopy, atomic force microscopy and x-ray reflectivity show that the structural properties of the samples, such as roughness or grain size, are not significantly changed by variations in Ar sputtering pressure. On the other hand, in-plane x-ray diffraction measurements reveal that the stacking fault density is reduced in films grown under higher pressure, and instead favors HCP stacking. Our results suggest that perpendicular magnetic anisotropy in CoPt alloys can be enhanced by the growth of the sample under a high Ar sputtering pressure, which decreases stacking fault density.

  10. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe80-xCrxCo20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe55Cr25Co20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5.

  11. Electrolytic hydriding of LaFe(13-x)Si(x) alloys for energy efficient magnetic cooling.

    PubMed

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P; Cohen, Lesley F

    2012-04-17

    An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe(13-x)Si(x)-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state.

  12. Effect of the nanocrystallization of a soft magnetic amorphous Fe-P-Mo alloy on its corrosion resistance in a damp industrial SO2-contaminated atmosphere

    NASA Astrophysics Data System (ADS)

    Vavilova, V. V.; Korneev, V. P.; Anosova, M. O.

    2016-09-01

    The study of the electrochemical behavior of a soft magnetic amorphous Fe-P-Mo alloy in a 0.1M Na2SO4 solution, which simulates a damp SO2-contaminated atmosphere, shows that the corrosion resistance of the nanocrystalline Fe80.2P17.1Mo2.7 alloy is comparable to that of a FINEMET alloy. No molybdenum is required for manufacturing the Fe80.2P17.1Mo2.7 alloy, because it can be prepared using natural alloy ferrophosphorus containing molybdenum.

  13. Joint properties of cast Fe-Pt magnetic alloy laser-welded to Co-Cr alloy.

    PubMed

    Baba, Naoki; Watanabe, Ikuya; Tanaka, Yasuhiro; Hisatsune, Kunihiro; Atsuta, Mitsuru

    2005-12-01

    This study investigated the joint properties of Fe-Pt alloy laser-welded to Co-Cr alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared with Fe-Pt and Co-Cr alloys. Fe-Pt plates were butted against Co-Cr plates and laser-welded using Nd:YAG laser. Control and homogeneously welded specimens were also prepared. Laser welding was performed with and without argon shielding. Tensile testing was conducted, and both fracture force (Ff: N) and elongation (El: %) were recorded. There were no differences in the Ff value between the specimens with and without argon shielding for the welded Fe-Pt/Co-Cr. Lower Ff value of the welded specimen was obtained in the order of Fe-Pt alloy < Fe-Pt/Co-Cr < Co-Cr alloy. The results indicated that Fe-Pt welded to Co-Cr had Ff values between the values of homogeneously welded Fe-Pt and Co-Cr alloys. Argon shielding, on the other hand, had no effect on the weld strength between Fe-Pt and Co-Cr alloys.

  14. Magnetic Field-Induced Precipitation Behaviors of Alloy Carbides M2C, M3C, and M6C in a Molybdenum-Containing Steel

    NASA Astrophysics Data System (ADS)

    Hou, T. P.; Li, Y.; Zhang, Y. D.; Wu, K. M.

    2014-05-01

    The effect of a 12-T high magnetic field on alloy carbide precipitation in an Fe-C-Mo alloy during tempering at an intermediate temperature was investigated. Thin foils and carbon extraction replicas of the treated specimens were examined by transmission electron microscopy (TEM). The results show that the applied high field effectively promoted the precipitation of (Fe,Mo)6C alloy carbide. The concentration of Fe atom in Fe6- x Mo x C carbide is increased whereas that of Mo atom decreased when the high magnetic field was applied. However, the high magnetic field almost had no detectable influence on the atom concentration in (Fe,Mo)2C and (Fe,Mo)3C carbides. First principle calculations have been performed to calculate the magnetic moment per iron atom of the carbides to explore the origin of the effect of the magnetic field. The influence of the high magnetic field on the precipitation behaviors of alloy carbides was closely related to the magnetic moment of (Fe,Mo)2C, (Fe,Mo)3C, and (Fe,Mo)6C. The magnetic field promotes the formation of the carbides with high total magnetic moment. The effect of the high magnetic field on the substitutional solute atom (Fe and Mo) concentration change in the three alloy carbides was attributed to their magnetization differences per Fe atom.

  15. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  16. A theoretical study of the cluster glass-Kondo-magnetic disordered alloys

    NASA Astrophysics Data System (ADS)

    Zimmer, F. M.; Magalhães, S. G.; Coqblin, B.

    2009-10-01

    The physics of disordered alloys, such as typically the well known case of CeNi1-xCux alloys, showing an interplay among the Kondo effect, the spin glass state and a magnetic order, has been studied firstly within an average description like in the Sherrington-Kirkpatrick model. Recently, a theoretical model [S.G. Magalhaes, F.M. Zimmer, P.R. Krebs, B. Coqblin, Phys. Rev. B 74 (2006) 014427] involving a more local description of the intersite interaction has been proposed to describe the phase diagram of CeNi1-xCux. This alloy is an example of the complex interplay between Kondo effect and frustration in which there is in particular the onset of a cluster-glass state. Although the model given in Magalhaes et al. [Phys. Rev. B 74 (2006) 014427] has reproduced the different phases relatively well, it is not able to describe the cluster-glass state. We study here the competition between the Kondo effect and a cluster glass phase within a Kondo-lattice model with an inter-cluster random Gaussian interaction. The inter-cluster term is treated within the cluster mean-field theory for spin glasses [C.M. Sokoulis, Phys. Rev. B 18 (1978) 3757], while, inside the cluster, an exact diagonalisation is performed including inter-site ferromagnetic and intra-site Kondo interactions. The cluster glass order parameters and the Kondo correlation function are obtained for different values of the cluster size, the intra-cluster ferromagnetic coupling and the Kondo intra-site coupling. We obtain that the increase of the Kondo coupling tends clearly to destroy the cluster glass phase.

  17. Magnetism and magnetic anisotropy of Ni xPd 1-x alloy

    NASA Astrophysics Data System (ADS)

    Tang, Z. B.; Tian, C. S.; Yin, L. F.; Dong, G. S.; Jin, Xiaofeng

    2007-03-01

    Single-crystalline Ni xPd 1-x thin films with a face-centered cubic structure for the whole stoichiometry 0⩽ x⩽1 have been achieved on Cu(1 0 0) via molecular beam epitaxy (MBE). The ferromagnetism shows up at x⩾0.25 at 300 K and the total magnetization decreases as the Pd concentration increases, which confirms our earlier first-principles calculations (Y.S. Shi, M.F. Wang, D. Qian, G.S. Dong, X.F. Jin, D.S. Wang, J. Magn. Magn. Mater. 277 (2004) 71). The magnetocrystalline anisotropy of Ni xPd 1-x is determined to be cubic with a negative K1, as measured by the magneto-optical Kerr effect (MOKE) technique with a rotating magnetic field (ROTMOKE).

  18. Magnetic characterization of dual phase FeZrB soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Kong, L. H.; Chen, R. R.; Song, T. T.; Gao, Y. L.; Zhai, Q. J.

    2011-12-01

    The magnetic properties and the annealing process of Fe78Zr7B15 amorphous ribbons are investigated by X-ray diffraction (XRD), differential scanning calorimetry, and vibrating sample magnetometer. The fully amorphous structure of the as-quenched ribbons is confirmed by the XRD pattern. The Curie temperature and the saturation magnetization Ms of the ribbons are 305 °C and 124.3 emu/g, respectively. Annealing at 550 °C can result in an increase in Ms with annealing time due to the increasing crystallized volume fraction of α-Fe phase. The optimized annealing process is established at 550 °C for 20-30 min with maximum Ms of 146.6 emu/g. The morphology of the ribbons annealed at 550 °C is observed by scanning electron microscopy, showing that nanocrystalline α-Fe grains are dispersed in an amorphous matrix.

  19. Critical behavior and magnetic entropy change at magnetic phase transitions in Ni50Mn35In14Si1 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Das, R.; Alagarsamy, P.; Srinivasan, A.

    2014-12-01

    We have investigated critical behaviour and magnetocaloric effect in polycrystalline Ni50Mn35In14Si1 alloy near the second-order ferromagnetic phase transitions (SOPT) at austenite Curie temperature (TC,A) and at martensite Curie temperature (TC,M) by determining the critical exponents, β, γ and δ corresponding to the temperature dependence of spontaneous magnetization, initial susceptibility and isothermal magnetization, respectively. The field dependence of the maximum value of the magnetic entropy change (Δ SM) at the two TC's was estimated using the Maxwell relation as well as from the values of the critical exponents. Values of Δ SM obtained by these two methods at both the SOPT are in remarkable agreement with each other. The critical exponents have been determined by analysing isothermal magnetization data using two different methods, viz., the modified Arrott plot method and the Widom scaling relation. The scaling plots depicted on linear as well as logarithmic scales confirm the reliability of the values of critical exponents obtained. The values of the critical exponents of polycrystalline Ni50Mn35In14Si1 alloy at both the TC's are close to those predicted by mean-field theory confirming the presence of long-range magnetic ordering in the investigated alloy.

  20. Effect of stress and plastic deformation on hysteresis and anhysteretic magnetization of Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Lofland, Sam

    2004-03-01

    We report on the low-field magnetic properties of thin FeNi alloys films and ribbons under tensile stress. The magnetization was measured using a conventional vibrating sample magnetometer using a special designed fixture allowing applying forces as large as 250 N providing sizable uniaxial stresses on thin film and wires. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal (parallel to the stresses) dc field. We discuss results of the measurements of steel and invar samples of FeNi samples leads to higher susceptibility and lower coercivity for low tensile stress. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops were characterized. Larger stresses result in plastic strain of the sample which induces an increase in dislocation density and subsequently domain wall pinning. This causes an increase in coercivity and decrease in anhysteretic permeability at the highest stresses. We also discuss the effect of composition and processing on these results.

  1. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    SciTech Connect

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F; Thompson, James R; Krcmar, Maja; Wang, Xun-Li

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. The theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.

  2. Structural and magnetic studies of the nanocrystalline Nd-Fe-B-Nb alloy ribbons

    NASA Astrophysics Data System (ADS)

    Szwaja, M.; Pawlik, K.; Pawlik, P.; Kaszuwara, W.; Wysłocki, J. J.; Gębara, P.

    2013-01-01

    A detailed studies of the phase constitution, microstructure and magnetic properties of the nanocrystalline Nd9.2Fe61.64B21.16Nb8 alloy ribbons, are reported. It was shown that the rapidly solidified ribbons have partially amorphous structure and soft magnetic properties in the as-cast state. The heat treatment at temperatures higher than 923 K led to the growth of the hard magnetic Nd2Fe14B phase and the metastable Nd2Fe23B3 phase. The Mössbauer confirmed that during annealing of the samples at temperature higher than 923 K the paramagnetic Nd1+ɛFe4B4 phase was also formed. The microstructure consisting of mixture of constituent phases was observed with transmission electron microscopy (TEM). Furthermore, with increasing annealing temperature the decrease of the saturation polarization Js was observed. The maximum values of coercivity JHc = 1175 kA/m was obtained for a sample annealed at 1023K. However, annealing at 1003 K resulted in the improvement of remanence polarization Jr = 0.35 T and the maximum energy product (BH)max = 21 kJ/m3.

  3. Localized magnetic moments in the Heusler alloy Rh2MnGe

    NASA Astrophysics Data System (ADS)

    Klaer, P.; Kallmayer, M.; Elmers, H. J.; Basit, L.; Thöne, J.; Chadov, S.; Felser, C.

    2009-04-01

    X-ray magnetic circular dichroism (XMCD) of core-level absorption (x-ray absorption spectroscopy, XAS) spectra in the soft x-ray region has been measured for the ferromagnetic Heusler alloy Rh2MnGe at the Rh M3,2 and Mn L3,2 edges. The ratio of Rh and Mn spin moments amounts to 0.05 which is smaller than the ratio of 0.1 determined by a local density approximation electronic band structure calculation. We have found that the orbital moments of the Rh 4d and Mn 3d states are very small. The observed Rh 2p XAS spectrum can be understood on the basis of the Rh 3d partial density of unoccupied states as is typical for metals. The observed features of the Mn 2p XAS and XMCD spectra are dominated by final state multiplets as is typical for oxides. The comparison of experimental and ab initio calculated XAS/XMCD spectra reveals a strong narrowing of the Mn 3d bands, indicating strongly localized Mn moments. The magnetic moments are considerably more localized for Rh2MnGe in comparison with the isoelectronic compound Co2MnGe. In spite of the strong localization of the Mn moment, the temperature dependences of sublattice magnetization are equal for the Mn and Rh sublattices in contrast to the prediction by a Heisenberg model. This might be attributed to the remaining itinerant character of the Rh moment.

  4. Bridgman Growth of GeSi Alloys in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Vujisic, L.; Motakef, S.

    1998-01-01

    Ge(0.95)Si(0.050 alloy crystals have been grown by the vertical Bridgman technique, both with and without an axial 5 Tesla magnetic field. The crystals were processed in a constant axial thermal gradient and the effects of graphite, hot pressed boron nitride, and pyrolitic boron nitride ampoule materials on interface shapes and macrosegregation profiles were investigated. The sample grown in a graphite ampoule at 5 Tesla exhibited a macroscopic axial concentration profile close to that of complete mixing and strong striation patterns. In samples grown in boron nitride ampoules, both with and without a 5 Tesla magnetic field applied, measured macroscopic axial concentration profiles were intermediate between those expected for a completely mixed melt and diffusion-controlled growth, and striation patterns were also observed. Possible explanations for the apparent inability of the magnetic field to reduce the flow velocities to below the growth velocities are discussed, and results of growth experiments in pyrolitic boron nitride ampoules are also described.

  5. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  6. Magnetic properties of Fe80-xCoxZr7Si13 (x = 0 - 30) amorphous alloys

    NASA Astrophysics Data System (ADS)

    Kopcewicz, M.; Grabias, A.; Latuch, J.

    2011-11-01

    Amorphous Fe80-xCoxZr7Si13 (x = 0 - 30) alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared by melt quenching. Partial substitution of iron by cobalt causes the increase of the hyperfine fields from about 19 to 27 T for x = 0 and 30, respectively, as revealed by conventional Mössbauer spectroscopy. The specialized rf-Mössbauer technique permitted us to estimate the soft magnetic properties of the alloys. The rf-collapse effect, which is very sensitive to the local anisotropy field, is observed for all amorphous FeCoZrSi alloys revealing that they are magnetically very soft. The rf-sidebands intensities, which are related to the magnetostriction, increase with the increase of Co content in the alloys. In Fe60Co20Zr7Si13 and Fe50Co30Zr7Si13 samples the rf field exposure induced partial crystallization that was attributed to mechanical deformations related to high frequency magnetostrictive vibrations forced by the rf field. The magnetostrictive origin of this effect was supported by the measurements of magnetostriction constants of the studied alloys. Measurements of the hysteresis loops revealed that coercivity increases for higher Co content.

  7. Investigation of non-magnetic alloys for the suppression of tritium permeation. Final report

    SciTech Connect

    Turnbull, John C.; Kessler, S. William; Eastman, G. Yale

    1980-07-01

    This report describes a small (300 man hour) literature survey relating to the suppression of tritium loss by permeation through the walls of fusion reactors. The program was based on prior in-house Thermacore work to suppress hydrogen permeation into high temperature (800/sup 0/C) heat pipes. The Thermacore approach involves selection of a steel with a small (.5 to 5%) aluminum content. The aluminum is diffused to the surface and oxidized. The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: Problem Definition and Literature Search and Analysis.

  8. Magnetic field effects on the electrodeposition of CoNiMo alloys

    NASA Astrophysics Data System (ADS)

    Aaboubi, Omar; Msellak, Khalid

    2017-02-01

    In this work we have examined the influence of applying homogeneous magnetic field (MF) up to 1.2T, on Cobalt- Nickel-Molybdenum (CoNiMo) alloys electrodeposition from citric bath. The surface morphology, chemical composition and the crystallographic texture has been investigated by X-ray diffraction (XRD), X-ray composition mapping and scanning electron microscopy (SEM) images. The mass transport behaviour during the electrodeposition process has been examined through the polarization curves and electrochemical impedance methods. As expected, under MF control an enhancement in the mass transport rate was observed leading to grains refinement and homogeneous distribution of the Co, Mo and Ni atoms in the obtained CoNiMo films. These findings highlight the synergistic combination of Ni, Co and Mo by promoting the MHD convection due to the Lorentz force acting during the Ni(II) and Co(II) ions reduction.

  9. Effect of the low magnetic field on the electrodeposition of Co{sub x}Ni{sub 100−x} alloys

    SciTech Connect

    Olvera, S.; Arce Estrada, E.M.; Sanchez-Marcos, J.; Palomares, F.J.; Vazquez, L.; Herrasti, P.

    2015-07-15

    Magnetic, chemical and structural properties of electrosynthesized Co{sub x}Ni{sub 100−x} have been studied. The electrodeposition has been conducted both in the presence and absence of a low magnetic field. The application of a perpendicular magnetic field during the synthesis modified slightly the morphology of the alloys. These changes depend more on the film composition than on the applied field, as demonstrated by AFM images. In the absence of magnetic field, the Co{sub x}Ni{sub 100−x} film grows along the (200) direction. However, when the magnetic field was applied, a preferential orientation along the (111) direction was observed. No important magnetic changes are induced by the presence of the magnetic field during the growth. Based on X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) experiments, the chemical composition of the films was preserved during preparation regardless of whether or not magnetic field is applied. There has been observed an increase in deposition rate in the presence of field even at these low magnetic fields. - Highlights: • CoNi alloys were electrosynthesized in the absence and presence of a low magnetic field. • Application of a magnetic field produced an orientation in the (111) plane of the alloy. • An external field changes the voltammetric curves reducing the energy required for the alloy formation. • The composition and magnetic properties were constant in the absence and presence of magnetic field.

  10. Influence of external magnetic fields on the freezing temperature Tf of Ni 79Mn 21 alloys: Evidence for anisotropy rotation

    NASA Astrophysics Data System (ADS)

    Öner, Y.; Firat, T.; Ercan, İ.; Aktaş, B.

    1988-04-01

    DC magnetization measurements have been performed for Ni 79Mn 21 alloys in the temperature range of 4.2 to 50 K. Taking the demagnetizing field into account, the influence of an external magnetic field, Hext, on the re-entrant spin-glass transition temperature Tf of this alloy has been investigated. It has been observed that Tf is independent of Hext if Hext is sma ller than the demagnetizing field HD ( = NMs) where N is the demagnetizing factor; Ms is the value of the saturation magnetization. However, for higher fields, Tf is displaced towards lower temperatures. These results are interpreted in terms of anisotropy rotation based on the "domain-anisotropy" model.

  11. Analysis of Magnetic Minor Hysteresis Loops in Thermally Aged and Cold-rolled Fe-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, F.; Kobayashi, S.; Murakami, T.; Takahashi, S.; Kamada, Y.; Kikuchi, H.

    2011-01-01

    Neutron irradiation causes the formation of Cu precipitate in reactor pressure vessel steel and makes the steel susceptible to rupture. In the present study, we have examined magnetic minor hysteresis loops of Fe-1wt%Cu alloy after thermally ageing at 753 K and subsequent cold rolling to elucidate the effects of Cu precipitation on magnetic properties. Minor-loop coefficients, obtained from scaling power laws between field-dependent parameters of minor hysteresis loops, decrease with ageing time and show a local maximum around 200 min, reflecting the growth of Cu precipitates with ageing. For the alloy cold-rolled after ageing, the minor-loop properties linearly increase with reduction and show a good relationship with mechanical properties such as DBTT and hardness. These observations indicate that the analysis method using magnetic minor loops can be an useful technique of nondestructive evaluation of irradiation embrittlement and subsequent deformation hardening in reactor pressure vessel steels.

  12. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    NASA Astrophysics Data System (ADS)

    Ćakιr, Aslι; Righi, Lara; Albertini, Franca; Acet, Mehmet; Farle, Michael; Aktürk, Selçuk

    2013-11-01

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni50Mn50-xGax in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L10, 5M →7M, and 5M→7M→L10 with decreasing temperature. The L10 non-modulated structure is most stable at low temperature.

  13. The electronic and magnetic properties of defects on half-metallic Ti2NiIn alloy

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Ping; Zhang, Ya-Ling; Sun, Xiao-Wei; Song, Ting; Guo, Peng

    2016-01-01

    Using full-potential local-orbital minimum-basis method within density functional theory (DFT), we study the electronic and magnetic properties of ideal and defective Ti2NiIn Heusler alloy. The ideal Ti2NiIn exhibits a half-metallic ferromagnetic behavior with a total magnetic moment of 3.000 μB and a band gap 0.394 eV, which is promising for fabricating spin injection devices as the Fermi level is located in the middle of band gap. Among these studied defects, only NiIn antisite as well as Ti(A) and Ti(B) vacancies retain the half-metallicity. However, the remaining defects destroy the half-metallicity. The calculations of formation energy indicate that Ti(A) vacancy can be spontaneously formed during the fabrications of the alloy. In addition, we also discuss the electronic and magnetic properties under different defects.

  14. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  15. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    PubMed

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content

  16. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.

    PubMed

    Zhou, F Y; Qiu, K J; Li, H F; Huang, T; Wang, B L; Li, L; Zheng, Y F

    2013-12-01

    In this study, the microstructures, mechanical properties, corrosion behaviors, in vitro cytocompatibility and magnetic susceptibility of Zr-1X alloys with various alloying elements, including Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi, were systematically investigated to explore their potential use in biomedical applications. The experimental results indicated that annealed Zr-1X alloys consisted entirely or primarily of α phase. The alloying elements significantly increased the strength and hardness of pure Zr and had a relatively slight influence on elastic modulus. Ru was the most effective enhancing element and Zr-1Ru alloy had the largest elongation. The results of electrochemical corrosion indicated that adding various elements to Zr improved its corrosion resistance, as indicated by the reduced corrosion current density. The extracts of the studied Zr-1X alloys produced no significant deleterious effects on osteoblast-like cells (MG 63), indicating good in vitro cytocompatibility. All except for Zr-1Ag alloy showed decreased magnetic susceptibility compared to pure Zr, and Zr-1Ru alloy had the lowest magnetic susceptibility value, being comparable to that of α' phase Zr-Mo alloy and Zr-Nb alloy and far lower than that of Co-Cr alloy and Ti-6Al-4V alloy. Among the experimental Zr-1X alloys, Zr-1Ru alloy possessing high strength coupled with good ductility, good in vitro cytocompatibility and low magnetic susceptibility may be a good candidate alloy for medical devices within a magnetic resonance imaging environment.

  17. Study on the microstructures and the magnetic properties of precipitates in a Cu75-Fe5-Ni20 alloy.

    PubMed

    Kang, Sung; Takeda, Mahoto; Takeguchi, Masaki; Hiroi, Zenji; Kim, Geun-Woo; Bae, Dong-Sik; Lee, Chan-Gyu; Koo, Bon-Heun

    2012-02-01

    The microstructural evolutions of precipitates formed in a Cu75-Fe5-Ni20 alloy on isothermal annealing at 873 K and 1073 K have been investigated by means of transmission electron microscopy (TEM). Nano-scale magnetic particles were formed randomly in the Cu-rich matrix after receiving a short annealing due to phase decomposition in the alloy. With increasing the isothermal annealing time, however, the striking features that two or more nano-scale particles with a cubic shape and a rod shape were aligned linearly along (100) directions were observed on isothermal annealing at 873 K and 1073 K, respectively. To investigate electro-magnetic properties of precipitates in a Cu-Fe-Ni alloy, the superconducting quantum interference device (SQUID) magnetometer and physical property measurement system (PPMS) were also complemented. The present study revealed significant influences that the magnetic properties of the specimens were closely related to the microstructures in the Cu-Fe-Ni alloy, which microstructures significantly depend on the isothermal annealing temperature.

  18. Magnetic hysteresis loop technique as a tool for the evaluation of σ phase embrittlement in Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kamada, Y.; Murakami, T.; Echigoya, J.; Kikuchi, H.; Kobayashi, S.

    2013-02-01

    Fe-48 wt% Cr alloy was isothermally aged at 700 °C up to 250 h for the formation and growth of σ phase. Micro Vicker's hardness and magnetic hysteresis loop (MHL) measurements were carried out at various lengths of time by interrupting the test to observe the change in mechanical and magnetic properties respectively. A small volume fraction of σ phase did not produce any change in the hardness whereas a drastic decrease in remanence was found for its demagnetizing effect. The existence of σ phase was confirmed by transmission electron microscopy. The maximum induction of the alloy decreased with thermal ageing as the volume of ferrites decreased for the formation of non-magnetic σ phase. The volume fraction of σ phase was estimated from the maximum induction. The results showed that MHL technique can even detect 1% of σ phase in the alloy considering remanence as a measuring parameter. Hence MHL would be a powerful non-destructive evaluation technique for the evaluation of σ phase embrittlement in Fe-Cr alloys.

  19. Study of the magnetic properties, structure, and phase transformation in the alloys of the Co-Al-W system

    SciTech Connect

    Davidov, D. I. Stepanova, N. N. Kazantseva, N. V. Rigmant, M. B. Shishkin, D. A.

    2015-10-27

    An experimental study of phase transformations in the system of Co-Al-W in the concentration area of the intermetallic compound Co{sub 3}(Al, W) is presented. The structure and phase composition of the Co–9 at % Al–X at % W (X = 4.5, 6.8, 8.5, 10, 12.5) alloys in depending on the tungsten content are analyzed. The Curie temperature and magnetic properties of the alloys with the different phase composition are determined.

  20. Consecutive magnetic and magnetocaloric transitions in herringbone nanostructured Heusler Mn50Ni41Sn9 alloy.

    PubMed

    Prasanna, A A; Ram, S; Fecht, H J

    2013-08-01

    A herringbone nanostructured Mn-rich Heusler Mn50Ni50-Sndelta (8 - 9) alloy exhibits tailored magnetocaloric properties in the martensite and ferro <-> paramagnetic transitions concur in a narrow temperature window. In a Sn --> Ni substitution 8 - 9, the martensite (M) <-- austenite (A) transition up-lifts adequately well above the room temperature - 310.5 K in the DSC thermogram and magnetization scanned with temperature. A noninterrupted heating following a cooling in DSC at a given rate gives a smaller enthalpy change deltaH(M <-- A) - deltaH(M --> A approximately equal to 282 mJ/g (deltaC(P)(M <-- A) - deltaC(P)(M --> A) approximately equal to 0.025 mJ/g-K in the heat capacity), i.e., the M <-> A transition process lacks a complete reversibility. Warming a zero-field cooled sample retains lower magnetization (sigma) at low fields B, e.g., by 58% over the field cooled value at 5 mT, wherein merely low field magnetic susceptibility imparts the magnetization process. A reversible thermal hysteresis thus the transition traces in cooling and heating. The field diminishes difference in two sigma-values progressively, e.g., only - 12% lasts at 5 T. The two curves bifurcate below 160 K (B-5 mT) and the gap grows exponentially over lower temperatures before sigma(M <-- A) gets steady near 60 K in a superparamagnetic (SPM) behavior. The SPM feature (follows the Langevin model) below a paramagnetic regime begins (> or = 250 K) before a ferromagnetic A-state lines-up the successive transitions. Temperature and frequency dependence ac and dc susceptibilities describe the surface spins dynamics.

  1. Design, modelling and control of a micro-positioning actuator based on magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Minorowicz, Bartosz; Leonetti, Giuseppe; Stefanski, Frederik; Binetti, Giulio; Naso, David

    2016-07-01

    This paper presents an actuator based on magnetic shape memory alloys (MSMAs) suitable for precise positioning in a wide range (up to 1 mm). The actuator is based on the spring returned operating mode and uses a Smalley wave spring to maintain the same operating parameters of a classical coil spring, while being characterized by a smaller dimension. The MSMA element inside the actuator provides a deformation when excited by an external magnetic field, but its behavior is characterized by an asymmetric and saturated hysteresis. Thus, two models are exploited in this work to represent such a non-linear behavior, i.e., the modified and generalized Prandtl-Ishlinskii models. These models are particularly suitable for control purposes due to the existence of their analytical inversion that can be easily exploited in real time control systems. To this aim, this paper investigates three closed-loop control strategies, namely a classical PID regulator, a PID regulator with direct hysteresis compensation, and a combined PID and feedforward compensation strategy. The effectiveness of both modelling and control strategies applied to the designed MSMA-based actuator is illustrated by means of experimental results.

  2. Proton and deuteron nuclear magnetic resonance studies of amorphous hydrogenated silicon, carbon, and carbon alloys

    NASA Astrophysics Data System (ADS)

    Kernan, Mary Jane Wurth

    Despite the profound influence of semiconductors and the changes they have produced, many fundamental questions remain unanswered. We have used proton and deuteron nuclear magnetic resonance (NMR) to explore the role of hydrogens in amorphous silicon and amorphous carbon and carbon alloy films. In the carbon films, dipolar filtering techniques reveal a two-component shifted lineshape in the proton NMR spectra and deuteron magnetic resonance (DMR) data demonstrate a feedstock gas dependence in the film deposition process. In these measurements, DMR is used to examine the effect of hydrogen on the photovoltaic properties of amorphous silicon thin films. We have measured the effects of photoillumination on amorphous silicon, particularly with respect to the process of metastable defect formation (the Staebler-Wronski effect). The creation and passivation of dangling silicon bonds is observed and quantified. We report large-scale light-induced atomic rearrangements which produce shifts and broadenings of the DMR lineshapes. The deuterium NMR lineshape component most affected by atomic rearrangements is a broad central feature which is shown to be molecular in origin. This spectral feature includes hydrogens trapped and immobile on surfaces created by strains and dislocations in the material. Narrowing of the lineshape at elevated temperatures indicates motion with a small activation energy. The substantial population represented by this feature is shown to account for at least 15% of the total hydrogens in high-quality amorphous silicon samples.

  3. Magnetic Compton scattering study of the Co2FeGa Heusler alloy: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Deb, Aniruddha; Itou, M.; Sakurai, Y.; Hiraoka, N.; Sakai, N.

    2001-02-01

    The spin density in Co2FeGa Heusler alloy has been measured in a magnetic Compton scattering experiment using 274-keV circularly polarized synchrotron radiation at the high energy inelastic scattering beamline (BL08W) at SPring-8, Japan. A detailed band-structure calculation including hyperfine field study was performed utilizing the generalized gradient corrected full-potential linear augmented plane-wave (FLAPW-GGA) method. The magnetic Compton profiles for the [100], [110], and [111] principal directions, reported here, show anisotropy in the momentum density which is in good agreement with the FLAPW-GGA results based on ferromagnetic ground state. The conduction electrons were found to have a negative spin polarization of 0.60μB, which is at variance with the prediction of a positive moment from the recent neutron data. In the calculation, 3d spin moment at the Co and Fe site was found to be 1.20μB and 2.66μB, and their respective contribution in the eg and t2g sub-bands are in excellent agreement with the earlier reported neutron-diffraction measurements. It is also seen from our calculated results that the Co and Fe moment are mainly eg in character.

  4. Creep Void Detection for Low Alloy Steel Using AC Magnetic Method

    SciTech Connect

    Shiwa, M.; Cheng, W.; Kume, R.

    2004-02-26

    Nondestructive detection of creep void was developed for low alloy steel by using AC magnetic method. Two types of 2.25Cr-1Mo steel specimens, base metal (BM) and simulated heat affected zone (HAZ) under aging and creep damage, were prepared for the tests. A differential type probe was used to detect AC magnetic signals. The exciting and detecting coils were coaxially arranged with a ferrite core. Signals were recorded using a 2-channel waveform recorder. The equivalent hysteresis loss (HL) was analyzed. It was observed that the HL of BM and HAZ changed in opposite direction, that is, HL of BM increased and HL of HAZ decreased with aging time. On the other hand, the HLs of both BM and HAZ decreased with creep time. The HL of creep samples was affected by both aging and stress-induced damage. In order to evaluate creep damage, stress-induced damage (SID) parameter was proposed to remove aging factor of materials from HL. Creep void were observed by scanning electron microscope (SEM) for all creep damage samples of SID value under 0.8.

  5. Macrosegregation of GeSi Alloys Grown in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ritter, T. M.; Volz, M. P.; Cobb, S. D.; Szofran, F. R.

    1999-01-01

    Axial and radial macrosegregation profiles have been determined for GeSi alloy crystals grown by the vertical Bridgman technique. An axial 5 Tesla magnetic field was applied to several samples during growth to decrease the melt velocities by means of the Lorentz force. Compositions were measured with either energy dispersive X-ray spectroscopy (EDS) on a scanning electron microscope (SEM) or by wavelength dispersive X-ray spectroscopy (WDS) on a microprobe. The crystals were processed in graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN) ampoules, which produced various solid-liquid interface shapes during solidification. Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. Possible explanations for the apparent insufficiency of the magnetic field to achieve diffusion controlled growth conditions are discussed.

  6. Influence of thermal debinding on the final properties of Fe-Si soft magnetic alloys for metal injection molding (MIM)

    NASA Astrophysics Data System (ADS)

    Páez-Pavón, A.; Jiménez-Morales, A.; Santos, T. G.; Quintino, L.; Torralba, J. M.

    2016-10-01

    Metal injection molding (MIM) may be used to produce soft magnetic materials with optimal mechanical and magnetic properties. Unlike other techniques, MIM enables the production of complex and small Fe-Si alloy parts with silicon contents greater than 3% by weight. In MIM process development, it is critical to design a proper debinding cycle not only to ensure complete removal of the binder system but also to obtain improved properties in the final part. This work is a preliminary study on the production of Fe-3.8Si soft magnetic parts by MIM using pre-alloyed powders and a non-industrialized binder. Two different heating rates during thermal debinding were used to study their effect on the final properties of the part. The final properties of the sintered parts are related to thermal debinding. It has been demonstrated that the heating rate during thermal debinding has a strong influence on the final properties of Fe-Si soft magnetic alloys.

  7. Spin-orbit torques in Ta/TbxCo100-x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ueda, Kohei; Mann, Maxwell; Pai, Chi-Feng; Tan, Aik-Jun; Beach, Geoffrey S. D.

    2016-12-01

    We quantified the bulk perpendicular magnetic anisotropy (PMA) and spin-orbit torques (SOTs) in bilayer Ta/TbxCo100-x ferrimagnetic alloy films with varying Tb concentration. The coercivity increases dramatically with increasing TbxCo100-x thickness and is enhanced by the presence of a Ta underlayer. The Ta underlayer simultaneously serves as a source of SOT due to the spin Hall effect, which we show provides an efficient means to manipulate the magnetization in bulk PMA materials. It is further shown that the sign of the anomalous Hall voltage is different for rare-earth (RE) and transition-metal (TM) dominated alloy compositions, whereas the sign of the SOT effective field remains the same, suggesting that the former is related to the TM sublattice magnetization whereas the latter is related to the net magnetization. Our results suggest that Ta/TbxCo100-x is a potential candidate for spin-orbitronic device applications and give insight into spin transport and SOTs in rare-earth/transition-metal alloys.

  8. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    SciTech Connect

    Salazar Mejía, C. Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  9. Effect of magnetic field on the crystalline structure of magnetostrictive TbFe2 alloy solidified unidirectionally in microgravity.

    PubMed

    Okutani, Takeshi; Nakata, Yoshinori; Nagai, Hideaki

    2004-11-01

    We performed unidirectional solidification experiments on TbFe(2) alloy in a static magnetic field in microgravity of 10(-4) g for 10 sec obtained by a 490 m free fall of the Japan microgravity center (JAMIC). When the magnetic field strength was increased from zero to 4.5 x 10(-2) T during unidirectional solidification in microgravity, a [1 1 1] crystallographic alignment dominated, and the maximum magnetostriction constant increased from 1,000 ppm to 4,000 ppm. For unidirectional solidification in normal gravity, the maximum magnetostriction constant remained at 2,000 ppm with increasing magnetic field. The columnar structure grows and orients along the magnetic field. TbFe(2) crystals grow in microgravity predominantly in the same direction as the magnetic field.

  10. Thermodynamics-based models for the magneto-mechanical response of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    LaMaster, Douglas H.

    Magnetic shape memory alloys (MSMAs) are a relatively new class of smart material that exhibit large recoverable strain (up to 10%) [1] and fast response time (higher than 1 kilohertz) [2]. MSMAs are comprised of martensitic variants arranged as tetragonal unit cells with one short side, denoted by c, and two longer sides, denoted by a. With single crystal MSMAs, these variants align with one of the three Cartesian directions, and the volume fraction of variants with short side aligned in the i-direction is given by ξi. The boundary between two variants, called the twin boundary, moves as one variant volume fraction grows at the expense of the other. Under an applied compressive stress in the i-direction, variants will reorient into the ξi configuration to align the short side of the unit cell with the compressive stress. Each variant has an internal magnetization vector of length Msat that is approximately [3] aligned with the short length of the unit cell in the absence of an external applied magnetic field. This internal magnetization vector tends to align with an externally applied field to minimize the energy in the MSMA. The magnetization vector may align with the external field by: 1) changing internal magnetic domains, 2) rotating magneti- zation vectors away from the easy axis, or 3) variant reorientation . The fraction of the magnetic domains in the ξi variant with easy-axis in the i-direction is denoted by αi, and the domain fraction of the ξi variants with easy axis in the direction opposite to the i-direction is given by (1 - αi). Under an applied field in the i-direction, the αi domain will grow at the expense of the (1 - αi) domain, and vice versa for an applied field in the -i-direction. When the volume fraction αi reaches either 1 or 0, this domain wall motion ceases and the domains are said to be saturated. After domains in ξi have saturated, increasing the magnetic field further may rotate the magnetization vectors in other variants

  11. Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys

    NASA Astrophysics Data System (ADS)

    Jiao, Zengbao; Li, Hongxiang; Wu, Yuan; Gao, Jingen; Wang, Shanlin; Yi, Seonghoon; Lu, Zhaoping

    2010-03-01

    Glass formation, mechanical and magnetic properties of the Fe76- x C7.0Si3.3B5.0P8.7Mo x ( x=0, 1 at.%, 3 at.% and 5 at.%) alloys prepared using an industrial Fe-P master alloy have been studied. With the substitution of Mo for Fe, glass-forming ability (GFA) was significantly enhanced and fully amorphous rods with a diameter of up to 5 mm were produced in the alloy with 3% Mo. The Mo-containing amorphous alloys also exhibited high fracture strength of 3635-3881 MPa and excellent magnetic properties including a high saturation magnetization of 1.10-1.41 T, a high Curie temperature and a low coercive force. The unique combination of high GFA, high fracture strength and excellent magnetic properties make the newly developed bulk metallic glasses viable for practical engineering applications.

  12. Magnetic Properties of Fe{sub x}Mn{sub 1-x}In{sub 2}S{sub 4} Alloy Single Crystals

    SciTech Connect

    Bodnar, I. V.; Trukhanov, S. V.

    2011-11-15

    This study concerns the magnetic properties of single crystals of Fe{sub x}Mn{sub 1-x}In{sub 2}S{sub 4} alloys. The basically antiferromagnetic character of indirect exchange interactions between Fe{sup 2+} and Mn{sup 2+} cations is established. As the concentration of Fe{sup 2+} cations is increased, the magnetic ordering temperature increases from {approx}12 K (x = 0) to {approx}22 K (x = 1). Short-range-order ferromagnetic correlations are observed. The basic magnetic phase state of the alloys is the spin glass state, with the freezing temperature increasing from {approx}5 K (x = 0) to {approx}12 K (x = 1). As the external magnetic field is increased, the magnetic ordering temperature slightly decreases. The most probable causes and mechanisms of formation of the magnetic state of the alloys are discussed.

  13. Magnetic AC susceptibility study of the cobalt segregation process in melt-spun Cu-Co alloys

    NASA Astrophysics Data System (ADS)

    López, A.; Lázaro, F. J.; von Helmolt, R.; García-Palacios, J. L.; Wecker, J.; Cerva, H.

    1998-08-01

    Temperature and frequency-dependent AC susceptibility has been used to characterize Cu 90Co 10 melt-spun ribbons, about 15 μm thick, in order to see to what extent this technique yields information about the segregation of cobalt in this alloy. The interpretation of the results includes, as a prerequisite, a transmission electron microscopy (TEM) characterization and makes use of previous field-dependent magnetization data on the same samples. Due to their different dynamical magnetic properties, the large intergrain precipitates, the small intragrain aggregates and the remaining Cu-Co solid solution, previously detected in these alloys, are independently observed by AC susceptibility as ferromagnetic, superparamagnetic and spin-glass species. Contrary to other, mostly local, microstructural characterization techniques of use with nanostructured materials, the AC susceptibility yields information about the whole sample. Furthermore, unlike the measurement of the temperature-dependent magnetization which is the magnetic technique mostly used until now, the results are basically independent of the thermal history. The correlation between microstructure and magnetic properties is illustrated by a scheme which includes magnetization, AC susceptibility and TEM data.

  14. Theoretical study of magnetic properties and x-ray magnetic circular dichroism of the ordered Fe{sub 0.5}Pd{sub 0.5} alloy

    SciTech Connect

    Galanakis, I.; Ostanin, S.; Alouani, M.; Dreysse, H.; Wills, J. M.

    2000-01-01

    A detailed theoretical study of magnetic and structural properties of Fe{sub 0.5}Pd{sub 0.5} ordered face-centered tetragonal (fct) alloy, using both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA), is presented. The total energy surface as a function of the lattice parameters a and c shows a long valley where stable structures may exist. Our calculation using the GGA predicts a magnetic phase transition from perpendicular to parallel magnetization as a function of the lattice parameter, whereas LSDA favors always the [001] magnetization axis for all values of the lattice parameters. The spin and orbital magnetic moments and x-ray magnetic circular dichroism spectra are calculated for the easy [001] and the hard [100] magnetization axis and for three sets of experimental lattice parameters, and are compared to the available experimental results on these films. A supercell calculation for a 4 monolayer Fe{sub 0.5}Pd{sub 0.5} thin film produced similar results. While the spin magnetic moments are in fair agreement with experiment, the orbital magnetic moments are considerably underestimated. To improve the agreement with experiment we included an atomic orbital polarization term; however, the computed orbital moments scarcely changed. (c) 2000 The American Physical Society.

  15. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  16. Annealing effects on the structural and magnetic properties of off-stoichiometric Fe-Mn-Ga ferromagnetic shape memory alloys

    DOE PAGES

    Chen, Yan; Bei, Hongbin; Dela Cruz, Clarina R; ...

    2016-05-07

    Annealing plays an important role in modifying structures and properties of ferromagnetic shape memory alloys (FSMAs). The annealing effect on the structures and magnetic properties of off-stoichiometric Fe45Mn26Ga29 FSMA has been investigated at different elevated temperatures. Rietveld refinements of neutron diffraction patterns display that the formation of the γ phase in Fe45Mn26Ga29 annealed at 1073 K increases the martensitic transformation temperature and reduces the thermal hysteresis in comparison to the homogenized sample. The phase segregation of a Fe-rich cubic phase and a Ga-rich cubic phase occurs at the annealing temperature of 773 K. The atomic occupancies of the alloys aremore » determined thanks to the neutron's capability of differentiating transition metals. The annealing effects at different temperatures introduce a different magnetic characteristic that is associated with distinctive structural changes in the crystal.« less

  17. Real-space phase field investigation of evolving magnetic domains and twin structures in a ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Wu, H. H.; Pramanick, A.; Ke, Y. B.; Wang, X.-L.

    2016-11-01

    A real-space phase field model combining Landau-Lifshitz-Gilbert equation and time-dependent Ginzburg-Landau equation is developed to investigate the evolution of ferromagnetic domains and martensitic twin structures in a ferromagnetic shape memory alloy at different lengthscales. Both domain and twin structures are obtained by simultaneously solving for minimization of magnetic, elastic, and magnetoelastic coupling energy terms via a nonlinear finite element method. The model is applied to simulate magneto-structural evolution within a nanoparticle and a bulk single-crystal of the alloy Ni2MnGa, which are subjected to mechanical strains. It is shown that a nanoparticle contains magnetic vortex structures within a single twin variant, whereas for a bulk crystal both 90° and 180° domain structures are present within multiple twin variants.

  18. Magnetic properties and magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Mai, Nguyen Thi; Dan, Nguyen Huy; Phan, The-Long; Yu, Seong-Cho

    2014-11-01

    In this work, we present a detailed study of the magnetic properties and the magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys with x = 1, 2, and 4, which were prepared by using an arc-melting method. Experimental results reveal that a partial replacement of Ag for Ni leads to a decrease in the anti-FM phase in the alloys. In addition, the martensitic-austenitic phase transition shifts towards lower temperature and is broaded. The Curie temperature ( T C A ) for the austenitic phase also shifts toward to lower temperature, but not by much. The Curie temperature was found to be 308, 305, and 298 K for x = 1, 2, and 4, respectively. The magnetic entropy change (Δ S m ) of the samples was calculated by using isothermal magnetization data. Under an applied magnetic field change of 10 kOe, the maximum value of Δ S m (|Δ S max |) was achieved at around room temperature and did not change much (~0.8 J·kg-1·K-1) with increasing Ag-doping concentration. Particularly, the M 2 vs. H/ M curves prove that all the samples exhibited a second-order magnetic phase transition. Based on Landau's phase-transition theory and careful analyses of the magnetic data around the T C A , we have determined the critical parameters β, γ, δ, and T C . The results show that the β values are located between those expected for the 3D-Heisenberg model ( β = 0.365) and mean-field theory ( β = 0.5). Such a result proves the coexistence of short-range and long-range ferromagnetic interactions in Ni50- x Ag x Mn37Sn13 alloys. The nature of the changes in the critical parameters and the |Δ S max | is thoroughly discussed by means of structural analyses.

  19. Time of isothermal holding in the course of in-air heat treatment of soft magnetic Fe-based amorphous alloys and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.

    2011-12-01

    On the example of soft magnetic Fe81B13Si4C2 and Fe77Ni1Si9B13 amorphous alloys, the relation between the level of magnetic properties and duration of isothermal holding in the course of heat treatment in air has been studied. The optimum temperature-dependent time τ of isothermal holding has been shown to be related to the volume fraction of domains ( V orth) with orthogonal magnetization in the initial (quenched) ribbon by equation V orth = ττ1/3. A temperature dependence of the proportionality coefficient α, which determines the degree of diffusion-process activity, has been determined. The results obtained allow us to substantially simplify the choice of optimum conditions of atmospheric heat treatment of soft magnetic Fe-based amorphous ribbons.

  20. Effect of atomic order on the martensitic and magnetic transformations in Ni-Mn-Ga ferromagnetic shape memory alloys.

    PubMed

    Sánchez-Alarcos, V; Pérez-Landazábal, J I; Recarte, V; Rodríguez-Velamazán, J A; Chernenko, V A

    2010-04-28

    The influence of long-range L2(1) atomic order on the martensitic and magnetic transformations of Ni-Mn-Ga shape memory alloys has been investigated. In order to correlate the structural and magnetic transformation temperatures with the atomic order, calorimetric, magnetic and neutron diffraction measurements have been performed on polycrystalline and single-crystalline alloys subjected to different thermal treatments. It is found that both transformation temperatures increase with increasing atomic order, showing exactly the same linear dependence on the degree of L2(1) atomic order. A quantitative correlation between atomic order and transformation temperatures has been established, from which the effect of atomic order on the relative stability between the structural phases has been quantified. On the other hand, the kinetics of the post-quench ordering process taking place in these alloys has been studied. It is shown that the activation energy of the ordering process agrees quite well with the activation energy of the Mn self-diffusion process.

  1. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Roy, Tufan; Chakrabarti, Aparna

    2017-04-01

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping.

  2. Nanopatterns induced by pulsed laser irradiation on the surface of an Fe-Al alloy and their magnetic properties

    SciTech Connect

    Yoshida, Yutaka; Oosawa, Kazuya; Watanabe, Seiichi; Kaiju, Hideo; Kondo, Kenji; Ishibashi, Akira; Yoshimi, Kyosuke

    2013-05-06

    We have studied nanopatterns induced by nanosecond pulsed laser irradiation on (111) plane surfaces of a polycrystalline iron-aluminum alloy and evaluated their magnetic properties. Multiple nanosecond pulsed laser irradiation induces a wavelength-dependent surface transformation of the lattice structure from a B2-type to a supersaturated body centered cubic lattice. The selective formation of surface nanopatterns consisting of holes, stripes, polygonal networks, and dot-like nanoprotrusions can be observed. Furthermore, focused magneto-optical Kerr effect measurements reveal that the magnetic properties of the resultant nanostructured region changes from a paramagnetic to a ferromagnetic phase in accordance with the number of laser pulses.

  3. Nanocrystalline Fe88-2xCoxNixZr7B4Cu1 alloys: Soft magnets for vehicle electrification technologies (invited)

    NASA Astrophysics Data System (ADS)

    Knipling, K. E.; Daniil, M.; Willard, M. A.

    2015-05-01

    We report on the effect of substituting Co and Ni for Fe on the crystallization behavior, crystal structure, and magnetic properties of Fe88-2xCoxNixZr7B4Cu1 (x = 0-22.00). The magnetization generally decreases and the coercivity increases with increasing x, whereas the Curie temperature of the amorphous phase increases significantly (from 73 °C at x = 0 to 570 °C at x = 22.00). There is thus an optimum composition near x = 5.50 exhibiting excellent soft magnetic properties at 300-500 °C. The higher magnetization and Curie temperature as compared with Fe-based alloys, and smaller Co content as compared with (Fe,Co)-based alloys, make this alloy attractive as an affordable high-temperature soft magnetic material.

  4. Effect of external applied steady magnetic field on the morphology of laser welding joint of 4-mm 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Zhou, Junjie; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-01-01

    Additional external steady magnetic fields were applied to investigate the influence of a steady magnetic field aligned perpendicular to the welding direction during laser beam welding of 2024 aluminum alloy. The flow pattern in the molten pool and the weld seam geometry were significantly changed by the induced Lorentz force distribution in the liquid metal. It revealed that the application of a steady magnetic field to laser beam welding was helpful to the suppression of the characteristic wineglass-shape and the depth-to-width ratio because of the Marangoni convection. The microstructures and component distributions at various laser power and magnetic field intensity were analyzed too. It was indicated that the suppression of the Marangoni convection by Lorentz force was beneficial to accumulation of component and grain coarsening near the fusion line.

  5. Static and dynamic magnetic properties of epitaxial Co{sub 2}FeAl Heusler alloy thin films

    SciTech Connect

    Ortiz, G.; Gabor, M. S.; Petrisor, T. Jr.; Boust, F.; Issac, F.; Tiusan, C.; Hehn, M.; Bobo, J. F.

    2011-04-01

    Structural and magnetic properties of epitaxial Co{sub 2}FeAl Heusler alloy thin films were investigated. Films were deposited on single crystal MgO (001XS) substrates at room temperature, followed by an annealing process at 600 deg. C. MgO and Cr buffer layers were introduced in order to enhance crystalline quality, and improve magnetic properties. Structural analyses indicate that samples have grown in the B2 ordered epitaxial structure. VSM measures show that the MgO buffered sample displays a magnetization saturation of 1010 {+-} 30 emu/cm{sup 3}, and Cr buffered sample displays a magnetization saturation of 1032 {+-} 40 emu/cm{sup 3}. Damping factor was studied by strip-line ferromagnetic resonance measures. We observed a maximum value for the MgO buffered sample of about 8.5 x 10{sup -3}, and a minimum value of 3.8 x 10{sup -3} for the Cr buffered one.

  6. Magnetic properties of Ho{sub 1-x}Er{sub x}Al{sub 2} alloys

    SciTech Connect

    Khan, Mahmud; Paudyal, D.; Gschneidner, K. A. Jr.; Pecharsky, V. K.

    2013-05-07

    HoAl{sub 2} exhibits a first order spin reorientation transition at 20 K. Heat capacity measurements showed that when Ho is partially replaced by Er in Ho{sub 1-x}Er{sub x}Al{sub 2}, the spin reorientation transition is gradually suppressed, while slowly shifting to higher temperatures with increasing Er concentration. In this paper, we investigate the magnetic properties of pseudo binary Ho{sub 1-x}Er{sub x}Al{sub 2} alloys by ac and dc magnetization measurements. The magnetization data show that the magnetic interactions below T{sub C} are dramatically modified when Er is added in Ho{sub 1-x}Er{sub x}Al{sub 2}. For a better explanation of the experimental data, results of first principles calculations have been presented as well.

  7. Influence of the Cr and Ni concentration in CoCr and CoNi alloys on the structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Aubry, E.; Liu, T.; Billard, A.; Dekens, A.; Perry, F.; Mangin, S.; Hauet, T.

    2017-01-01

    The crystalline and magnetic properties of micron thick magnetron sputtered Co1-xCrx and Co1-xNix alloy films are analyzed in the view of their implementation as semi-hard magnets. All of the tested films crystallize in an hcp lattice, at least up to 35 at% of alloying elements (Cr or Ni). The structural study shows that the ratio of hcp phase with [0001] axis orientated perpendicular to the film as compared with in-plane orientation increases (resp. decreases), when Ni (resp. Cr) concentration increases independently of the post-annealing temperature. The orientation of the magnetization results from the competition between the demagnetization field which tends to align the magnetization in plane and the crystalline anisotropy which tends to maintain the magnetization along the [0001] axis. Interestingly, we find that, although Co and Ni are very similar atoms, Co1-xNix alloys crystalline anisotropy can be strongly increased and reach up to twice the anisotropy of the best Co1-xCrx alloy, while maintaining a magnetization at saturation above 1200 kA/m. The thermal stability of the structural and magnetic properties of both alloys is demonstrated for an annealing temperature up to 300 °C.

  8. Magnetic characterisation of large grain, bulk Y-Ba-Cu-O superconductor-soft ferromagnetic alloy hybrid structures

    NASA Astrophysics Data System (ADS)

    Philippe, M. P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2014-07-01

    Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume.

  9. Preferred site occupation and magnetic properties of Ni-Fe-Ga-Co ferromagnetic shape memory alloys by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, Jing; Chen, Yue; Li, Ze; Jiang, Pan; Wei, Pu; Zhao, Xiang

    2016-12-01

    First-principles calculations have been used to investigate the effects of Co addition on the preferred site occupation and magnetic properties of Ni-Fe-Ga-Co ferromagnetic shape memory alloys. The formation energy results indicate that the excess Ni constituent preferentially occupies the Fe sites in the off-stoichiometric Ni-Fe-Ga ternary alloy. The added Co tends to take the normal-Ni sites in the Ni-Fe-Ga-Co quaternary alloy during composition adjustment process. The total magnetic moment increases with Co content of the Ni36-xFe12Ga16Cox (x=0, 1, 2, 3 and 4) alloys. The difference between the up and down electronic density of states at the Fermi level gives rise to the increased magnetic property.

  10. Preparation of soft magnetic films of nanocrystalline Fe-Cu-Nb-Si-B alloy by facing targets sputtering

    NASA Astrophysics Data System (ADS)

    Naoe, Masahiko; Matsumiya, Hiroaki; Ichihara, Takayuki; Nakagawa, Shigeki

    1998-06-01

    Soft magnetic thin films of nanocrystalline Fe-Cu-Nb-Si-B alloy were deposited using the facing targets sputtering (FTS) apparatus. It was found that the Fe-Cu-Nb-Si-B single layers thinner than 100 nm revealed good soft magnetic properties, of which the saturation magnetization 4πMs and the relative permeability μr were 11.3 kG and 500, respectively. However, when these films were thicker than 100 nm, their soft magnetic properties degraded due to the perpendicular magnetic anisotropy. On the other hand, the soft magnetic properties of the post-annealed films were improved owing to the release of stress in the films. Especially, μr of the post-annealed films with thickness of 120 nm increased drastically up to around 6200. Furthermore, Fe-Cu-Nb-Si-B/Al multilayers revealed superior soft magnetic properties due to the magnetostatic coupling between the two ferromagnetic layers. These multilayers post-annealed at 300 °C revealed softer magnetic properties than single layers. They exhibited very low coercivity Hc of 0.63 Oe, large 4πMs of 13.2 kG and high μr of 4600.

  11. FePtCu alloy thin films: Morphology, L1{sub 0} chemical ordering, and perpendicular magnetic anisotropy

    SciTech Connect

    Brombacher, C.; Schletter, H.; Daniel, M.; Matthes, P.; Joehrmann, N.; Makarov, D.; Hietschold, M.; Albrecht, M.; Maret, M.

    2012-10-01

    Rapid thermal annealing was applied to transform sputter-deposited Fe{sub 51}Pt{sub 49}/Cu bilayers into L1{sub 0} chemically ordered ternary (Fe{sub 51}Pt{sub 49}){sub 100-x}Cu{sub x} alloys with (001) texture on amorphous SiO{sub 2}/Si substrates. It was found that for thin film samples, which were processed at 600 Degree-Sign C for 30 s, the addition of Cu strongly favors the L1{sub 0} ordering and (001) texture formation. Furthermore, it could be revealed by transmission electron microscopy and electron backscatter diffraction that the observed reduction of the ordering temperature with Cu content is accompanied by an increased amount of nucleation sites forming L1{sub 0} ordered grains. The change of the structural properties with Cu content and annealing temperature is closely related to the magnetic properties. While an annealing temperature of 800 Degree-Sign C induces strong perpendicular magnetic anisotropy (PMA) in binary Fe{sub 51}Pt{sub 49} films, the addition of Cu systematically reduces the PMA. However, due to the enhancement of both the A1-L1{sub 0} phase transformation and the development of the (001) texture with increasing Cu content, lowering of the annealing temperature leads to a shift of the maximum perpendicular magnetic anisotropy towards alloys with higher Cu content. Thus, for an annealing temperature of 600 Degree-Sign C, the highest perpendicular magnetic anisotropy energy is found for the (Fe{sub 51}Pt{sub 49}){sub 91}Cu{sub 9} alloy. The smooth surface morphology, adjustable PMA, and high degree of intergranular exchange coupling make these films suitable for post-processing required for specific applications such as for sensorics or magnetic data storage.

  12. A metallurgical approach toward alloying in rare earth permanen magnet systems

    SciTech Connect

    Branagan, Daniel J.

    1995-02-23

    The approach was developed to allow microstructural enhancement and control during solidification and processing. Compound additions of Group IVA, VA, or VIA transition metals (TM) and carbon were added to Nd2Fe14B (2-14-1). Transition metal carbides formed in IVA (TiC, ZrC, HfC) and Group VA (VC, NbC, TaC) systems, but not in the VIA system. The alloying ability of each TM carbide was graded using phase stability, liquid and equilibrium solid solubility, and high temperature carbide stability. Ti with C additions was chosen as the best system. The practically zero equilibrium solid solubility means that the Ti and C additions will ultimately form TiC after heat treatment which allows the development of a composite microstructure consisting of the 2-14-1 phase and TiC. Thus, the excellent intrinsic magnetic properties of the 2-14-1 phase remain unaltered and the extrinsic properties relating to the microstructure are enhanced due to the TiC stabilized microstructure which is much more resistant to grain growth. When Ti + C are dissolved in the liquid melt or solid phases, such as the glass or 2-14-1 phase, the intrinsic properties are changed; favorable changes include increased glass forming ability, reduced optimum cooling rate, increased optimum energy product, and enhanced nucleation kinetics of crystallization.

  13. The origin of magnetic alloy core buckling in J-PARC 3 GeV RCS

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Yamamoto, M.; Schnase, A.; Shimada, T.; Suzuki, H.; Tamura, F.; Hara, K.; Hasegawa, K.; Ohmori, C.; Toda, M.; Yoshii, M.

    2010-11-01

    We have been operating ten RF cavities loaded with magnetic alloy (MA) cores with a high field gradient of more than 20 kV/m in Japan Proton Accelerator Research Complex (J-PARC) 3 GeV Rapid Cycling Synchrotron (RCS) since September 2007. During 3 years operation, we detected three times the impedance reductions of RF cavities resulting from the buckling of MA cores. To find out the origin of the MA core buckling, we evaluated the thermal stress inside the MA cores in operation and studied the relationship between the MA core buckling and core structure. We figured out that the MA core buckling was caused by the thermal stress that was enhanced due to the impregnation with low viscosity epoxy resin. We improved the MA cores without the low viscosity epoxy resin impregnation and replaced all the cores in one RF cavity with them in March 2010. Up to now we operated the RF cavity loaded with the improved MA cores for 1500 h, it showed no impedance reduction and no buckling.

  14. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.

  15. Effect of Induced Magnetic Field on Electrocrystallization of Zn-Ni Alloy and Their Corrosion Study

    NASA Astrophysics Data System (ADS)

    Rao, Vaishaka R.; Hegde, A. Chitharanjan

    2014-06-01

    Zn-Ni alloy coatings have been deposited galvanostatically on mild steel under the effect of induced magnetic field ( B), using gelatin and glycerol as additives. The effect of field intensity (from 0.05 to 0.4 T) and direction (both parallel and perpendicular) on electrocrystallization process has been studied considering the magnetohydrodynamic effect. The corrosion behaviors of coatings, deposited under different conditions of B, were evaluated by electrochemical AC and DC methods. Under optimal condition of B (perpendicular), Zn-Ni coatings showed about 3 times less corrosion rate (CR) than the one developed under natural convection ( B = 0 T), deposited from same bath for same duration. The significant decrease of CR was attributed to unique electrocrystallization process during deposition, favoring increased γ-Ni5Zn21 (321) and decreased γ-Ni5Zn21 (330) phase. Progressive decrease of CR with increase of B showed that corrosion protection efficacy of the coatings bears close relation with their crystallographic orientations and surface topography, evidenced by XRD study and SEM analysis. The effect of B on thickness, microhardness, surface morphology, phase structure, and the corrosion resistance of coatings was analyzed and results were discussed.

  16. Experimental characterization and modeling of a three-variant magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Heidi P.; Ciocanel, Constantin; Eberle, J. Lance; Dikes, Jason L.

    2016-10-01

    Researchers have attempted to characterize and predict the magneto-mechanical behavior of magnetic shape memory alloys (MSMAs) for over a decade. However, all prior experimental investigations on MSMA have been performed on samples accommodating two martensite variants and generally the MSMA is only exposed to two-dimensional magneto-mechanical loading. As efforts have been underway to develop models able to predict the most general (i.e. 3D) loading conditions for MSMAs with three-varints, there is also a need for experimental data to support the calibration and validation of these models. This paper presents magneto-mechanical data from experiments where MSMA specimens, whose microstructure accommodates three martensite variants, is subjected to three-dimensional magneto-mechanical loading, along with model predictions of these experimental results. The 3D magneto-mechanical model deployed here is a modified version of the model developed by our group (LaMaster et al 2015 J. Intell. Mater. Syst. Struct. 26 663-79), and assumes that three martensite variants coexist in the material. The LaMaster et al model captures some of the general trends seen in the experimental data, but does not predict the data with a high degree of accuracy. Possible reasons for the mismatch between experimental data and model predictions are discussed.

  17. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  18. Experimental and ab initio studies on sub-lattice ordering and magnetism in Co2Fe(Ge1-xSix) alloys

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Kundu, Ashis; Ghosh, Subhradip; Srinivasan, A.

    2015-10-01

    Crystallographic and magnetic properties of bulk Co2Fe(Ge1-xSix) alloys with 0 ≤ x ≤ 1, synthesized by arc melting method, have been studied. Co2FeSi alloy has been found to crystallize with L21 structure, but the super-lattice peaks are absent in the X-ray diffraction patterns of alloys containing high Ge concentration. Unit cell volume of this series of alloys decreased from 185.2 to 178.5 Å3 as Si content was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (TC). TC showed a systematic variation with x. A comparison between the values of saturation magnetization (Ms) and effective moment per magnetic atom pc estimated from the temperature dependent susceptibility data above TC, shows that the alloys have half-metallic character. The alloy with x = 0 follows Slater-Pauling (S-P) rule with Ms of 5.99μB. However, Ms for the alloy with x = 1.00 was found to be 5.42μB, which is lower than the value of 6.0μB predicted by S-P rule. Since atomic disorder is known to affect the Ms and electronic structure of these alloys, ab initio calculations were carried out to explain the deviation in observed Ms from S-P rule prediction and the half-metallic character of the alloys. Ab initio calculations reveal that alloys with L21 structure have Ms value as predicted by S-P rule. However, introduction of 12.5% DO3 disorder, which occurs due to swapping of Co and Fe atoms in the unit cell, decreases Ms of alloys with x > 0 from the S-P prediction to values obtained experimentally. The results analyzed from the view point of electronic structure of the alloys in different ordered states bring out the influence of disorder on the observed magnetic properties of these technologically important alloys.

  19. The results of the space technological experiments performed with the suprconducting and magnetic alloys

    NASA Astrophysics Data System (ADS)

    Michailov, B. P.; Torchinova, R. S.; Bychkova, M. I.

    On board the orbital complex "Salyut-6-Soyuz" during long-term near 0-gravity space flight the technological experiments on synthesis of the superconducting MoGa 5, MO 3Ga and Nb 3Sn intermetallic compounds by means of liquid-phase diffusion and on bulk crystallization of the hypoeutectic superconducting Pb-Sn alloy and magnetically ordered Gd 3Co and (Gd 0.2Tb 0.8) 3Co compounds have been performed. During the process of the liquid-phase diffusion considerable changes of the formation of the reaction layers (mechanisms, phase composition, thickness, etc.) in the superconducting Mo-Ga and Nb-Sn systems were observed. MoGa 5, Nb 6Sn 5 and NbSn 2 phases were found in the ground-based samples while in the flight samples the formation of MoGa 5, Mo 3Ga, Nb 3Sn and Nb 6Sn 5 phases was observed. As a result of the changes of the phase composition of the diffusion layers in the flight samples two superconducting transitions at 18.3 and 5.7 K were established (only one transition at 6.9K was measured for the ground-based sample) (Savitsky et al., Izv. Akad. Nauk SSSR, Metals5, 224-232, 1982; Zemskov et al., Izv. Akad. Nauk SSSR, Physics49, 673-680, 1985). Considerable increasing of the critical current measured for the Pb-Sn flight sample has been observed (Savitsky et al., Dokl. Akad. Nauk SSSR257, 102-104, 1981; Zemskov et al., 1985). Better homogeneity and crystal structure perfection of the flight Gd 3Co and (Gd 0.2Tb 0.8) 3Co samples have been established by means of the micro-zonde and low-temperature X-ray technique (Savitsky et al., Acta Astronautica11, 691-696, 1984; Zemskov et al., 1985). Different behaviour of the ground-based and flight samples in the process of magnetization and the displacements of the temperatures of the magnetic phase transitions have been observed.

  20. Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Lužnik, J.; Koželj, P.; Vrtnik, S.; Jelen, A.; Jagličić, Z.; Meden, A.; Feuerbacher, M.; Dolinšek, J.

    2015-12-01

    Rare earth based equimolar Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy (HEA) is a prototype of an ideal HEA, stabilized by the entropy of mixing at any temperature with random mixing of elements on the hexagonal close-packed lattice. In order to determine intrinsic properties of an ideal HEA characterized by the enormous chemical (substitutional) disorder on a weakly distorted simple lattice, we have performed measurements of its magnetic and electrical response and the specific heat. The results show that the Ho-Dy-Y-Gd-Tb hexagonal HEA exhibits a rich and complex magnetic field-temperature (H ,T ) phase diagram, as a result of competition among the periodic potential arising from the electronic band structure that favors periodic magnetic ordering, the disorder-induced local random potential that favors spin glass-type spin freezing in random directions, the Zeeman interaction with the external field that favors spin alignment along the field direction, and the thermal agitation that opposes any spin ordering. Three characteristic temperature regions were identified in the (H ,T ) phase diagram between room temperature and 2 K. Within the upper temperature region I (roughly between 300 and 75 K), thermal fluctuations average out the effect of local random pinning potential and the spin system behaves as a pure system of compositionally averaged spins, undergoing a thermodynamic phase transition to a long-range ordered helical antiferromagnetic state at the Néel temperature TN=180 K that is a compositional average of the Néel temperatures of pure Tb, Dy, and Ho metals. Region II (between 75 and 20 K) is an intermediate region where the long-range periodic spin order "melts" and the random ordering of spins in the local random potential starts to prevail. Within the low-temperature region III (below 20 K), the spins gradually freeze in a spin glass configuration. The spin glass phase appears to be specific to the rare earths containing hexagonal HEAs, sharing

  1. Electrodeposition and magnetic characterization of iron and iron-silicon alloys from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate.

    PubMed

    Giridhar, Pulletikurthi; Weidenfeller, Bernd; El Abedin, Sherif Zein; Endres, Frank

    2014-11-10

    The electrodeposition of soft magnetic iron and iron-silicon alloys for magnetic measurements is presented. The preparation of these materials in 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C with FeCl2 and FeCl2 +SiCl4 was studied by using cyclic voltammetry. Constant-potential electrolysis was carried out to deposit either Fe or FeSi, and deposits of approximately 10 μm thicknesses were obtained. By using scanning electron microscopy and X-ray diffraction, the microstructure and crystallinity of the deposits were investigated. Grain sizes in the nanometer regime (50-80 nm) were found and the presence of iron-silicon alloys was verified. Frequency-dependent magnetic polarizations, coercive forces, and power losses of some deposits were determined by using a digital hysteresis recorder. Corresponding to the small grain sizes, the coercive forces are around 950-1150 A m(-1) and the power losses were at 6000 J m(-3), which is much higher than in commercial Fe(3.2 wt %)Si electrical steel. Below a polarization of 1.8 T, the power losses are mainly caused by domain wall movements and, above 1.8 T, by rotation of magnetic moments as well as domain wall annihilation and recreation.

  2. Effect of diffusion and alloying on the magnetic and transport properties of Fe/V/Fe trilayers

    NASA Astrophysics Data System (ADS)

    Iuşan, Diana; Alouani, M.; Bengone, O.; Eriksson, O.

    2007-01-01

    The magnetic and transport properties of the Fe/V/Fe(001) trilayers were studied using the self-consistent Green’s function technique based on the tight-binding linear muffin-tin orbital method in the atomic-sphere approximation. The coherent potential approximation was used to describe the effects of interdiffusion and alloying at the interfaces on the properties of the semi-infinite bcc Fe(001)/mFe/nV/mFe/Fe(001) trilayers. The electric conductance was calculated using the Kubo-Landauer formalism, in the current-perpendicular-to-plane geometry. It is shown that a dipole moment is created at the Fe/V interface due to the charge transfer from vanadium to iron, and a small induced magnetic moment is present in the first vanadium layer and is antiparallel to that of iron. The interlayer exchange coupling shows rapid oscillations for small spacer thicknesses, and the interdiffusion and alloying at the interface stabilize the ferromagnetic coupling. Moreover, the interdiffusion reduces the vanadium-induced magnetic moment and increases the iron magnetic moment at the interface. The giant magnetoresistance (GMR) ratio presents damped oscillations as a function of the vanadium spacer thickness. The interdiffusion and the presence of Mn impurities at the interface reduce considerably the GMR ratio and produce results that are in agreement with experimental data.

  3. Effect of Nickel Content on the Crystallization Behavior in Nanocrystalline (CO1-XNIX)88ZR7B4CU1 Soft Magnetic Alloys

    DTIC Science & Technology

    2012-01-01

    Gomez-Polo, J.I. Perez -Landazabal, & V. Recarte, “Temperature dependenceof magnetic properties in Fe-Co and Fe-Cr base nanocrystalline alloys.” IEEE...Near-Zero Magnetostriction.” IEEE Transactions on Magnetics. Vol. 38 (#5) (2002): 3045-50. [21] C.F. Conde , A. Conde , P. Svec, & P. Ochin, “Influence

  4. A Study of the Magnetic and Metallurgical Properties of Sm(Co,Fe,Cu,Zr) z Alloys with z = 8.5.

    DTIC Science & Technology

    1981-01-28

    of Gs is easily obtained S from the highest moment value measured, and pycnometric determination of the density, p, permits calculation of MS or B S... Pycnometric rather than x-ray densities must be used because the alloys and magnets typically contain several phases. (e) Magnetic Characterization

  5. Investigation on the crystallization mechanism difference between FINEMET and NANOMET type Fe-based soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yaocen; Zhang, Yan; Takeuchi, Akira; Makino, Akihiro; Kawazoe, Yoshiyuki

    2016-10-01

    In this article, the atomic behaviors of Nb and P in Fe-based amorphous alloys during nano-crystallization process were studied by the combination of ab initio molecular dynamics simulations and experimental measurements. The inclusion of Nb is found to be tightly bonded with B, resulting in the formation of diffusion barrier that could prevent the over-growth of α-(Fe, Si) grains and the promotion of larger amount of α-(Fe, Si) participation. The P inclusion could delay the diffusion of the metalloids that have to be expelled from the α-(Fe, Si) crystallization region so that the grain growth could be reduced with fast but practically achievable heating rates. The combined addition of P and Nb in high Fe content amorphous alloys failed in exhibiting the potential of good magnetic softness with slow heating (10 K/min) annealing at various temperatures. The sample with optimum crystallization process with confined grain size was annealed at 653 K, with the grain size of 31 nm and a coercivity of ˜120 A/m, much too large to meet the application requirements and to be compared with the currently well-studied alloy systems. This attempt suggests that the inclusion of early transition metal elements might not be effective enough to suppress grain growth in crystallizing high Fe content amorphous alloys.

  6. Effect of heat treatment in air and a chemically active environment on the magnetic properties of cobalt-based soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Stepanova, E. A.; Blinova, O. V.; Kuznetsov, P. A.; Mazeeva, A. K.

    2016-10-01

    The influence of heat treatment in air on the level of magnetic properties has been studied on the example of a ribbon of an amorphous cobalt-based (Co-Fe-Ni-Cr-Si-B) soft-magnetic alloy with a nearzero saturation magnetostriction. The investigation of the interaction of the ribbon surface with water and water vapor and its influence on the magnetization distribution showed the possibility of applying surface treatment to determine the sign of saturation magnetostriction. The sign of saturation magnetostriction in the initial (quenched) state confirmed the presence of a negative magnetostriction in the ribbon. Based on the results obtained, the dependence of the sign of saturation magnetostriction on the structural state that is obtained upon heat treatment has been revealed.

  7. Effect of addition of soft magnetic alloy particles on the flux trapping in Gd123 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tsuzuki, K.; Zhang, Y.; Kimura, Y.; Izumi, M.

    2010-06-01

    Pinning stability and the introduction of magnetic flux pinning is an essential problem in applications of high-Tc superconductors. Study on the role of addition of a variety of metal oxides into GdBa2Cu3O7-δ (Gd123) bulk superconductors was carried out. We found that the addition of 0.05 wt. % of soft magnetic alloy particles Fe-Cu-Nb-Si-Cr-B (Fe-B) into the Gd123 contributes to the enhancement of the critical current density (Jc) under a wide range of applied magnetic fields up to 3 T. The Fe-B particles refined less than 10 μm by ball milling indicate no remarkable contribution on the Jc under the magnetic field. The reduction of the Ba content resulted in the appearance of a peak of Jc which has been observed in the Gd/Ba solid solution with rich Ba content. These results let us discriminate the effect of the magnetic particles from other conventional flux pinning mechanism. The peak of Jc under magnetic field was not only observed in the part along the c-axis under the seed of the sample but also in the growth sector around the periphery of the Gd123 bulk with Fe-B addition. It indicates that the magnetic particles inclusions play an important role on the homogeneous enhancement of Jc and the high flux pinning performance.

  8. Normal Spectral Emissivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ueno, Shoya; Nakamura, Yuki; Sugioka, Ken-Ichi; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki

    2017-02-01

    The normal spectral emissivity of molten Cu-Co alloy with different compositions was measured in the wavelength range of 780 nm to 920 nm and in the temperature range of 1430 K to 1770 K including the undercooled condition by an electromagnetic levitator superimposed with a static magnetic field. The emissivity was determined as the ratio of the radiance from a levitated molten Cu-Co droplet measured by a spectrometer to the radiance from a blackbody calculated by Planck's law at a given temperature, where a static magnetic field of 2.5 T to 4.5 T was applied to the levitated droplet to suppress the surface oscillation and translational motion of the sample. We found little temperature dependence of the normal spectral emissivity of molten Cu-Co alloy. Concerning the composition dependence, the emissivity decreased markedly above 80 at%Cu and reached that of pure Cu, although its dependence was low between 20 at%Cu and 80 at%Cu. In addition, this composition dependence of the emissivity of molten Cu-Co alloy can be explained well by the Drude free-electron model.

  9. Magnetic response in the vicinity of magnetic compensation: a case study in spin ferromagnetic Sm1 - xGdxAl2 intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Venkatesh, S.; Vaidya, Ulhas; Rakhecha, Veer Chand; Ramakrishnan, S.; Grover, A. K.

    2010-12-01

    A compensated magnetic state in an ideally homogeneous system with long range magnetic order is characterized by a net zero magnetization (M) throughout the sample (macroscopic). In the pristine state of the sample (i.e. with no external field, H = 0), this implies that at the magnetic compensation temperature (Tcomp) we must have M = 0 at H = 0 irrespective of any thermal and magnetic history of the sample and any underlying physics. This simple fact voids the usual identification (and interpretation) of M-H loop parameters at and in the vicinity of magnetic compensation temperature, specifically the coercivity, the remanence, and the exchange bias characteristics. The physics of coercivity and exchange bias continues to be fully relevant, but its manifestation in an M-H loop would get camouflaged at (and near) a magnetic compensation because M \\to 0 at H = 0. We present an experimental elucidation of the above premise through a case study in the spin ferromagnetic Sm1 - xGdxAl2 alloys [x = 0.01-0.06], where the specimens with x <= 0.03 show compensation below the Curie temperature Tc, while those with x >= 0.03 have rather small magnetization due to near cancellation of opposing contributions, but are otherwise devoid of compensation. The experiments comprised low field (near zero) as well as high field (70 kOe) magnetization measurements from the paramagnetic state down to 5 K in the ordered regime (Tc ~ 125 K) and isothermal M-H loop studies on the remnant magnetic state of polycrystalline samples.

  10. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    SciTech Connect

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.

  11. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE PAGES

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; ...

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  12. Magnetic properties of (FeIn{sub 2}S{sub 4}){sub 1-x}(In{sub 2}S{sub 3}){sub x} alloy single crystals

    SciTech Connect

    Bodnar, I. V. Novikova, M. A.; Trukhanov, S. V.

    2013-05-15

    (FeIn{sub 2}S{sub 4}){sub 1-x}(In{sub 2}S{sub 3}){sub x} alloy single crystals are grown by oriented crystallization in the entire range of component concentrations. For the single crystals, studies of the magnetic properties are carried out in the temperature range 4-300 K and the magnetic-field range 0-14 T. It is established that almost all of the alloys are paramagnetic materials at temperatures down to the lowest achievable temperatures ({approx}4 K). It is shown that the ground magnetic phase state of the alloys is the spin-glass state with the freezing temperature steadily increasing with increasing Fe{sup 2+} cation content. The most probable causes and mechanism of formation of the magnetic state of the (FeIn{sub 2}S{sub 4}){sub 1-x}(In{sub 2}S{sub 3}){sub x} crystals are discussed.

  13. Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons

    NASA Astrophysics Data System (ADS)

    Xu, J.; Yang, Y. Z.; Li, W.; Chen, X. C.; Xie, Z. W.

    2016-11-01

    The dependency of phosphorous content on the glass forming ability, thermal stability and soft magnetic properties of Fe83.4Si2B14-xPxCu0.5C0.1 (x=0,1,2,3,4) alloys was investigated. The experimental results showed that the substitution of B by P increased the glass forming ability in this alloy system. The Fe83.4Si2B10P4Cu0.5C0.1 alloy shows a fully amorphous character. Thermal stability of melt-spun ribbons increases and temperature interval between the first and second crystallization peaks enlarges with the increase of P content. And the saturation magnetic flux density (Bs) shows a slight increase with the increase of P content. The Fe83.4Si2B11P3Cu0.5C0.1 nanocrystalline alloy exhibits a high Bs about 200.6 emu/g. The Bs of fully amorphous alloy Fe83.4Si2B10P4Cu0.5C0.1 drops dramatically to 172.1 emu/g, which is lower than that of other nanocrystallines. Low material cost and excellent soft magnetic properties make the FeSiBPCuC alloys promise soft magnetic materials for industrial applications.

  14. Growth temperature dependent structural and magnetic properties of epitaxial Co{sub 2}FeAl Heusler alloy films

    SciTech Connect

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2013-06-21

    The structural and magnetic properties of a series of Co{sub 2}FeAl Heusler alloy films grown on GaAs(001) substrate by molecular beam epitaxy have been studied. The epitaxial Co{sub 2}FeAl films with an ordered L{sub 21} structure have been successfully obtained at growth temperature of 433 K, with an in-plane cubic magnetic anisotropy superimposed with an unusual uniaxial magnetic anisotropy. With increasing growth temperature, the ordered L{sub 21} structure degrades. Meanwhile, the uniaxial anisotropy decreases and eventually disappears above 673 K. The interfacial bonding between As and Co or Fe atom is suggested to be responsible for the additional uniaxial anisotropy.

  15. Changes in the magnetic and mechanical properties of thermally aged Fe-Cu alloys due to nano-sized precipitates

    NASA Astrophysics Data System (ADS)

    Li, Yi; Li, Yuanfei; Deng, Shanquan; Xu, Ben; Li, Qiulin; Shu, Guogang; Liu, Wei

    2016-01-01

    The changes in the magnetic properties, mechanical properties, and microstructural parameters of Fe-Cu alloys due to thermal aging have been investigated to improve the fundamental understanding of using magnetic technology for the nondestructive evaluation (NDE) of irradiation embrittlement in the reactor pressure vessel (RPV). Nano-sized Cu particles precipitated from a Fe matrix after thermal aging at 500 °C for various times, and the microstructure parameters were determined. The coercivity, Barkhausen noise (BN), Vickers hardness, and yield stress were also measured for these samples. These properties show the same hardening-softening trend with increasing aging time, which can be interpreted in terms of the microstructure parameters evolution based on the model of the pinning of precipitates on domain walls and dislocations. These results suggest the practicability of using magnetic technology for the NDE of the irradiation embrittlement of the RPV.

  16. Effect of compositional and antisite disorder on the electronic and magnetic properties of Ni-Mn-In Heusler alloy.

    PubMed

    Borgohain, Parijat; Sahariah, Munima B

    2015-05-08

    A systematic study has been done on the electronic and magnetic properties of metamagnetic Ni-Mn-In Heusler alloy with compositional and structural (anti-site) disorder at high temperature austenite phase. The electronic structure calculation shows an increasing Mn-Ni hybridization which occurs due to the decrease in Mn-Ni bond length as the system approaches martensite phase. The results obtained from magnetic moment calculations follow a similar trend to the previous experimental and theoretical results. The magnetic coupling parameters, Jij, obtained from the ab initio calculation explains the presence of competing ferromagnetic (FM) and antiferromagnetic (AFM) interactions in the system and the dominating AFM interactions nearer to the martensite phase.

  17. Effects of micro-magnetic field at the surface of 316L and NiTi alloy on blood compatibility.

    PubMed

    Liu, Qiang; Cheng, Xiao Nong; Fei, Huang Xia

    2011-03-01

    We have established the micro-magnetic field on the surfaces of 316L stainless steel and NiTi alloy through the magnetization process of sol-gel prepared TiO(2) thin film with the powder of SrFe(12)O(19). The nano-sized with brown color of SrFe(12)O(19) powder was verified by transmission electron microscope. By using X-ray diffraction, surface roughometer, and corrosion experimental test, the deposited thin film can decrease the etching of body fluid as well as prevent the hazardous Ni ions released from the metal. Moreover, with evaluation of dynamic cruor time test and blood platelets adhesion test, we found the micro-magnetic field of the thin film can improve the blood compatibility.

  18. Effect of Zr Addition on the Magnetization Reversal Behavior for α-Fe/Pr2Fe14B Nanocomposite Alloys

    NASA Astrophysics Data System (ADS)

    Pan, Minxiang; Zhang, Pengyue; Ge, Hongliang; Hong, Zhanglian; Wu, Qiong; Jiao, Zhiwei; Yang, Hangfu

    2011-09-01

    The microstructure and magnetic properties of the Zr-doped α-Fe/Pr2Fe14B nanocomposite magnets prepared by melt-spinning method have been studied by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements. The magnetization reversal behavior during the recoil processes of nanocomposite alloys has been investigated by analyzing the hysteresis curves and recoil loops of demagnetization curves. An enhanced magnetic properties has been obtained by the addition of 1 at. % Zr in α-Fe/Pr2Fe14B alloys, where the coercivity Hc increases from 470.7 to 793.2 kA/m, the maximum energy product (BH)max from 66.8 to 90.8 kJ/m3, the remanence ratio Mr/Ms from 0.74 to 0.77. The recoil loop results show that the maximum value of the integrated recoil loop area for 1 at. % Zr doped sample is quietly low of 1.87×10-3, only 1/2 for the Zr-free and 1/3 for 5 at. % Zr doped samples respectively. This result indicates that the 1 at. % Zr doped sample has a lower energy loss, resulting from a low recoverable portion of the magnetization remaining as long as the applied reversal field is below the coercivity Hc. This study provides a promising guideline for the future fabrication of low-energy-loss nanocomposite magnets for electric machines and generators.

  19. Abnormal variation of magnetic properties with Ce content in (PrNdCe)2Fe14B sintered magnets prepared by dual alloy method

    NASA Astrophysics Data System (ADS)

    Xue-Feng, Zhang; Jian-Ting, Lan; Zhu-Bai, Li; Yan-Li, Liu; Le-Le, Zhang; Yong-Feng, Li; Qian, Zhao

    2016-05-01

    Resource-saving (PrNdCe)2Fe14B sintered magnets with nominal composition (PrNd)15-x Ce x Fe77B8 (x = 0-10) were prepared using a dual alloy method by mixing (PrNd)5Ce10Fe77B8 with (PrNd)15Fe77B8 powders. For Ce atomic percent of 1% and 2%, coercivity decreases dramatically. With further increase of Ce atomic percent, the coercivity increases, peaks at 6.38 kOe in (PrNd)11Ce4Fe77B8, and then declines gradually. The abnormal dependence of coercivity is likely related to the inhomogeneity of rare earth chemical composition in the intergranular phase, where PrNd concentration is strongly dependent on the additive amount of (PrNd)5Ce10Fe77B8 powders. In addition, for Ce atomic percent of 8%, 7%, and 6% the coercivity is higher than that of magnets prepared by the conventional method, which shows the advantage of the dual alloy method in preparing high abundant rare earth magnets. Project supported by the National Natural Science Foundation of China (Grant Nos. 51461033, 51571126, 51541105, and 11547032), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2013MS0110), and the Inner Mongolia University of Science and Technology Innovation Fund, China.

  20. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  1. Synthesis and magnetization studies of nanopowder Fe₇₀Ni₂₀Cr₁₀ alloys prepared by high energy milling

    SciTech Connect

    Chater, R.; Bououdina, M.; Chaanbi, D.; Abbas, H.

    2013-05-01

    Nanocrystalline Fe{sub 1–x–y}NixCry (x=20, y=10% in Wt)) alloy samples were prepared by mechanical alloying process. Fe, Ni and Cr elemental powders have been ball milled in a planetary mill for various periods of time, up to 27 h. XRD analysis allowed the determination of the structure of the mixture, the average crystallite size and the lattice parameter as a function of milling time. The complete formation of FeNiCr is observed after 27 h milling. With increasing milling time from 0 to 27 h, it is observed that the lattice parameter increases from 0.3515 to 0.3593 nm as well as an increase of microstrain from 0.15 to 0.40%, whereas the grain size decreases from 48 to 13 nm. Grain morphology of the powders at different formation stages was examined using SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time. - Graphical abstract: Fe₇₀Ni₂₀Cr₁₀ nanopowders were prepared using a planetary ball mill. The structure and microstructure vary with milling time; thereby important modifications of the magnetic properties were observed and discussed. Highlights: • Nanocrystalline Fe₇₀Ni₂₀Cr₁₀ alloy were prepared by the mechanical alloying process. • The complete formation of Fe₇₀Ni₂₀Cr₁₀ is observed after 24 h milling. • With increasing milling time, the grain size decreases, while the strain increases. • The SEM images allowed following the morphology of the materials at different stages. • Ms and HC derived from the hysteresis are discussed as a function of milling time.

  2. Glass formation and magnetic properties in the Co and Fe-based amorphous alloy with small Mo or Nb additions

    NASA Astrophysics Data System (ADS)

    Jo, Hye-In; Choi-Yim, Haein

    2012-02-01

    The ferromagnetic metallic glass alloys in the Co-Fe-B-Si-M (M = Mo or Nb) system were investigated. Ingots of [(Co1- x Fe x )0.75B0.2Si0.05]96Mo4 ( x = 0, 0.2, 0.5, 0.8, 1.0) and [(Co1- x Fe x )0.75 B0.2Si0.05]96Nb4 ( x = 0, 0.2, 0.5, 0.8, 1.0) alloys were cast into about 30 µm-thick ribbons by using a melt spinning method. As-spun ribbons were identified as being fully amorphous by using X-ray diffraction (XRD). The thermal stability parameters, such as the supercooled liquid region (Δ T x = T g - T x ) and the exothermic heat (Δ H Exo ), were measured by using differential scanning calorimetry (DSC). For Co-Fe-B-Si-Mo alloys, Δ T x and Δ H Exo were in the range of 41.4-81.7 K and 23.40-104.21 J/g, and for Co-Fe-B-Si-Nb alloys, Δ T x and Δ H Exo were in the range of 60.4-88.0 K and 18.45-62.05 J/g, respectively. These glassy ribbons also exhibited semi-hard magnetic properties, i.e., a coercive force ( H c ) of 67.26-100.68 Oe and a saturation magnetization ( M s ) of 341.288-746.176 emu·cm3.

  3. Influence of Ti additions on martensitic transformation and magnetic properties of cast Ni51Fe22-xGa27Tix shape memory alloys

    NASA Astrophysics Data System (ADS)

    El-Bagoury, Nader; Mohsen, Q.; Kaseem, M. A.; Hessien, M. M.

    2013-09-01

    The effect of Ti addition on the microstructure, martensitic transformation, magnetic and mechanical properties of polycrystalline Ni51Fe22- x Ga27Ti x ( x=0, 2 and 4) ferromagnetic shape memory alloy was investigated by scanning electron microscope, differential scanning calorimetry and X-ray diffraction. The results showed that the martensitic transformation temperature increases monotonously with the increase of fraction of Ti substitution for Fe. The increase in the martensite transformation temperatures should be related to the change of the electron concentration after the addition of Ti to Ni51Fe22- x Ga27Ti x alloys. According to the results of X-ray diffraction and magnetic properties, Ti has significant effect the structure of Ni51Fe22- x Ga27Ti x . Adding of 4 at% Ti altered the structure of the matrix from five-layered tetragonal martensite of Ni51Fe22Ga27 and Ni51Fe20Ga27Ti2 alloys to non-modulated tetragonal martensite. Magnetic properties proved that the alloy transits from ferromagnetic, five-layered tetragonal martensite, to paramagnetic, non-modulated martensite structure, with increasing Ti content to 4 at.%. Saturation magnetization, remnant magnetization and coercivity of the alloy were significantly influenced by Ti additions. Hardness values of Ni51Fe22Ga27 increased by the addition of Ti.

  4. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    PubMed

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  5. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  6. Influence of a high pulsed magnetic field on the tensile properties and phase transition of 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Gui-Rong; Cheng, Jiang-Feng; Wang, Hong-Ming; Li, Pei-Si; Li, Chao-Qun

    2016-10-01

    The effect of a high pulsed magnetic field on the tensile properties and microstructure of 7055 alloy were investigated. In the tensile properties test, the pulsed magnetic field was applied to improve the tensile strength and elongation via the magnetoplasticity effect. The results show that when the magnetic induction intensity (B) is 3 T, the tensile strength and elongation arrives at the maximum synchronously, which has been enhanced by 7.9% and 20% compared to the relevant 576.5 MPa (σ b), 7.5% (δ) of the initial sample without magnetic field treatment. The high magnetic field takes effect by altering the spin state of free electrons stimulated between the dislocations and obstacles; afterwards, the structural state of the radical pair is converted from the singlet state with high bonding energy to the triplet state with low bonding energy. Under this condition, the dislocation mobility is enhanced and it becomes easier for a dislocation to surmount the obstacles. The residual stress in the sample is connected closely with the long distance stress generated from the dislocation behavior. At 3 T, the residual stress arrived at the minimum of 16 MPa. Moreover, in the presence of a magnetic field, the common η (MgZn2) in the grain boundary dissolved and moved to internal grains because of the concentration difference, which helped to enhance the tensile strength and toughness of the materials. Finally, the fracture morphology was analyzed by scanning electronic microscopy. The fracture characteristic matches with the plasticity property.

  7. Magnetic Compton scattering study of Ni2+xMn1-xGa ferromagnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Ahuja, B. L.; Sharma, B. K.; Mathur, S.; Heda, N. L.; Itou, M.; Andrejczuk, A.; Sakurai, Y.; Chakrabarti, Aparna; Banik, S.; Awasthi, A. M.; Barman, S. R.

    2007-04-01

    In this paper, we report the spin-polarized momentum densities of Ni2+xMn1-xGa ( x=0.03 , 0.26, and 0.35) Heusler alloys at various temperatures and magnetic fields using magnetic Compton scattering technique. Magnetization studies are also performed for comparison. It is seen that the variation of magnetic effect (ratio of magnetic to charge intensities) is consistent with the martensitic transition, as shown by the differential scanning calorimetry data. The magnetic Compton profiles have been analyzed mainly in terms of the contributions from the 3d electrons of Mn to determine their role in the formation of total spin moment. The full potential linearized augmented plane-wave method has been used to calculate the spin-polarized energy bands and the spin moments of Ni2MnGa and Ni2.25Mn0.75Ga . Ni2MnGa exhibits half metallicity along certain high-symmetry directions of the Brillouin zone. For Ni2MnGa , the total and Mn local moments obtained from Compton scattering are in excellent agreement with theory.

  8. Energy-dispersive neutron imaging and diffraction of magnetically driven twins in a Ni2MnGa single crystal magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton

    2016-09-01

    Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.

  9. Fe{sub 2-x}Co{sub x}MnSi (x = 0, 1 and 2) Heusler alloys: Structural, magnetic and atomic site disorder properties

    SciTech Connect

    Bhatt, Harsh; Mukadam, M. D.; Meena, S. S.; Yusuf, S. M.

    2015-06-24

    The Heusler alloy series Fe{sub 2-x}Co{sub x}MnSi (x = 0, 1 and 2) is theoretically predicted to be half metallic. We prepared the sample series and determined the structural and magnetic properties to check if these materials are suitable for spintronics applications. The Curie temperatures of two of the alloys have been found to be well above the room temperature. But the presence of elements with atoms of similar size leads to atomic site disorder in these alloys, which may destroy the half metallic nature. The atomic site disorder has been confirmed by Mössbauer spectroscopy.

  10. Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties.

    PubMed

    Singh, S; Wanderka, N; Kiefer, K; Siemensmeyer, K; Banhart, J

    2011-05-01

    Splat-quenched, as-cast and aged (2h at 600 °C after casting) AlCoCrCuFeNi high entropy alloys were investigated by means of transmission electron microscopy and three-dimensional atom probe (3D-AP). 3D-AP revealed anti-correlated fluctuations of the Cr and Fe-Co compositions in Cr-Fe-Co-rich regions of the as-cast alloy. The ferromagnetic behavior of AlCoCrCuFeNi high entropy alloy was correlated with the decomposition of the Cr-Fe-Co-rich regions into ferromagnetic Fe-Co-rich and antiferromagnetic Cr-rich domains, the size of which was determined by statistical analysis of 3D-AP data. The splat-quenched alloy showed a softer magnetic behavior as compared to the as-cast and aged alloys. The aged alloy possessed a higher saturation magnetization and coercivity as compared to the as-cast alloy.

  11. Tensile properties and microstructure of 2024 aluminum alloy subjected to the high magnetic field and external stress

    NASA Astrophysics Data System (ADS)

    Li, Gui-Rong; Xue, Fei; Wang, Hong-Ming; Zheng, Rui; Zhu, Yi; Chu, Qiang-Ze; Cheng, Jiang-Feng

    2016-10-01

    In order to explore the dependence of plasticity of metallic material on a high magnetic field, the effects of the different magnetic induction intensities ( H = 0 T, 0.5 T, 1 T, 3 T, and 5 T) and pulses number (N = 0, 10, 20, 30, 40, and 50) on tensile strength (σ b) and elongation (δ) of 2024 aluminum alloy are investigated in the synchronous presences of a high magnetic field and external stress. The results show that the magnetic field exerts apparent and positive effects on the tensile properties of the alloy. Especially under the optimized condition of H * = 1 T and N* = 30, the σ b and δ are 410 MPa and 17% that are enhanced by 9.3% and 30.8% respectively in comparison to those of the untreated sample. The synchronous increases of tensile properties are attributed to the magneto-plasticity effect on a quantum scale. That is, the magnetic field will accelerate the state conversion of radical pair generated between the dislocation and obstacles from singlet to the triplet state. The bonding energy between them is meanwhile lowered and the moving flexibility of dislocations will be enhanced. At H * = 1 T and N* = 30, the dislocation density is enhanced by 1.28 times. The relevant minimum grain size is 266.1 nm, which is reduced by 35.2%. The grain refining is attributed to the dislocation accumulation and subsequent dynamic recrystallization. The (211) and (220) peak intensities are weakened. It is deduced that together with the recrystallization, the fine grains will transfer towards the slip plane and contribute to the slipping deformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51174099, and 51001054) and the Industrial Center of Jiangsu University, China (Grant No. ZXJG201586).

  12. Phase alignment and crystal orientation of Al 3Ni in Al-Ni alloy by imposition of a uniform high magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Chunjiang; Wang, Qiang; Wang, Zhongying; Li, Hutian; Nakajima, Keiji; He, Jicheng

    2008-03-01

    Solidification experiments of aluminum-nickel binary alloys under uniform high magnetic fields have been conducted. The effects of high magnetic fields on the crystal orientation of Al 3Ni were investigated by XRD and the alignment of primary phases Al 3Ni were also analyzed. Experimental results showed that the easy magnetization axis of Al 3Ni crystal oriented parallel to the imposed magnetic fields and the primary phase Al 3Ni aligned perpendicular to the magnetic fields. Magnetic orientation of crystal was determined by magnetic anisotropy energy. Whereas the phase alignment should be contributed to the combined effects of magnetic orientation, crystal growth and the effects of magnetic fields on mass transport during solidification.

  13. Effect of morphology on exchange bias in NiMnSn and NiCoMnIn magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lapa, Pavel N.; Monroe, James A.; Franco, Brian E.; Karaman, Ibrahim; Roshchin, Igor V.

    2014-03-01

    Exchange bias (EB) is one of puzzling magnetic properties of magnetic shape memory alloys (MSMA). Despite a few attempts to explain the mechanism, there is no comprehensive model describing it. The main obstacle is the lack of information about the magnetic structure of martensitic and austenite phases. In contrast to classical EB systems where the exchange coupling happens at the interface between ferromagnetic and antiferromagnetic layers, the EB in MSMA is attributed to coexistence of ferromagnetic and antiferromagnetic regions. We report the results of structural analysis obtained using wavelength-dispersive X-ray spectroscopy (WDS) and magnetic characterization of these samples. We observe a correlation of EB with the secondary heat treatment for NiCoMnIn alloys. Comparative first order reversal curve (FORC) analysis for NiMnSn samples with different heat treatment suggests a correlation between morphology and distribution of exchange bias values. Additionally, exchange bias in these alloys can be induced even after zero-field cooling by applying a constant field for 2 hours before measuring the magnetization curve. This behavior is consistent with magnetic glassiness observed in these alloys at low temperatures. The work is funded by TAMU and US NSF-DMR MMN program/MWN initiative grant 1108396.

  14. Effect of the Crystallization Conditions of Alloy Mn54Al43C3 on the Magnetic Properties of Mechanically Milled Powder

    NASA Astrophysics Data System (ADS)

    Volkov, K. D.; Tarasov, E. N.; Zinin, A. V.

    2017-01-01

    Results of formation of a ferromagnetic τ-phase and an antiferromagnetic ɛ-phase in alloys of type Mn54Al43C3 obtained by induction and arc melting and by rapid hardening of the melt are presented. The magnetic hysteresis properties of powders produced by high-power mechanical milling of the synthesized alloys are studied. The optimum temperature conditions for transformation of the ɛ-phase into a ferromagnetic τ-phase are determined for the alloys and for their ultrafine powders. The resulting powders of Mn54Al43C3 have an ultimate specific magnetization σ m = 81 (G · cm3)/g and a coercive force H c = 3 kOe in a magnetic field of 12 kOe.

  15. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    NASA Astrophysics Data System (ADS)

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  16. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less

  17. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    SciTech Connect

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  18. Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy

    NASA Astrophysics Data System (ADS)

    Lin, T. T.; Dai, X. F.; Guo, R. K.; Cheng, Z. X.; Wang, L. Y.; Wang, X. T.; Liu, G. D.

    2017-02-01

    The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder.

  19. Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy.

    PubMed

    Lin, T T; Dai, X F; Guo, R K; Cheng, Z X; Wang, L Y; Wang, X T; Liu, G D

    2017-02-07

    The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder.

  20. Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains

    NASA Astrophysics Data System (ADS)

    Panneer Muthuselvam, I.; Bhowmik, R. N.

    2010-04-01

    We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (˜805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.

  1. Magnetic properties of Sm-Co thin films grown on MgO(100) deposited from a single alloy target

    SciTech Connect

    Verhagen, T. G. A.; Boltje, D. B.; Ruitenbeek, J. M. van; Aarts, J.

    2014-08-07

    We have grown epitaxial Sm-Co thin films by sputter deposition from a single alloy target with a nominal SmCo{sub 5} composition on Cr(100)-buffered MgO(100) single-crystal substrates. By varying the Ar gas pressure, we can change the composition of the film from a SmCo{sub 5}-like to a Sm{sub 2}Co{sub 7}-like phase. The composition, crystal structure, morphology, and magnetic properties of these films have been determined using Rutherford Backscattering, X-ray diffraction, and magnetization measurements. We find that we can grow films with, at room temperature, coercive fields as high as 3.3 T, but with a remanent magnetization which is lower than can be expected from the texturing. This appears to be due to the Sm content of the films, which is higher than expected from the content of the target, even at the lowest possible sputtering pressures. Moreover, we find relatively large variations of film properties using targets of nominally the same composition. At low temperatures, the coercive fields increase, as expected for these hard magnets, but in the magnetization, we observe a strong background signal from the paramagnetic impurities in the MgO substrates.

  2. Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy

    PubMed Central

    Lin, T. T.; Dai, X. F.; Guo, R. K.; Cheng, Z. X.; Wang, L. Y.; Wang, X. T.; Liu, G. D.

    2017-01-01

    The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder. PMID:28169311

  3. Dependence of grain size and defect density on the magnetic properties of mechanically alloyed Fe90W10 powder

    NASA Astrophysics Data System (ADS)

    Yamoah, N. K.; Koten, M. A.; Thompson, D.; Nannuri, C.; Narayan, J.; Shield, J. E.; Kumar, D.

    2016-10-01

    Mechanical alloying was used to synthesize nanocrystalline Fe90W10 powders from high purity Fe and W powders. X-ray diffraction measurements showed that the formation of BCC Fe-W solid solution occurred after 32 h of milling. The Scherrer-Debye and Williamson-Hall equations revealed that grain size reduction and defect creation were achieved during the milling process. There is a decrease of grain size from about 53 nm to about 6 nm after 80 h of milling. Williamson and Smallman's equation was also used to calculate the dislocation density. The result shows an increase in the dislocation density with increasing milling time. The grain size and defect characteristics were correlated with magnetic measurements. Magnetization versus magnetic field curves recorded using a vibrating sample magnetometer were utilized to obtain coercivity and saturation magnetization at different temperatures. As W is continually dissolved in the Fe lattice, the change in coercivity seems to be minimal until the completion of solid solution when there is a sudden increase in coercivity. The increase in coercivity is explained by an increase in anisotropy due to an additional source of anisotropy arising from strain during the milling process. There was also a decrease in saturation magnetization as a result of the grain size reduction.

  4. Structural and mechanical properties of 7075 alloy strips fabricated by roll-casting in a static magnetic field

    NASA Astrophysics Data System (ADS)

    Su, Xin; Xu, Guang-ming; Jiang, Jiu-wen

    2014-07-01

    The influences of a 0.2 T static magnetic field on the microstructure of 7075 aluminum alloys sheets produced with a twin-roll continuous caster at 675°C were investigated in this paper. Under a uniform magnetic field, the primary dendrites were refined and tended to be equiaxed. The microstructure consisted of an intermediate case between dendritic and equiaxed grains. Moreover, the use of an external static field in the twin-roll casting process can reduce heat discharge, resulting in a decrease in undercooling, and may also account for the abatement of segregation bands. In addition, the static magnetic field effectively improved the solute mixing capacity, and the added atoms more easily diffused from precipitates to the α-Al matrix, which resulted in an increase in the mechanical properties of the rolled sheets. Specimens prepared both in the presence of a static magnetic field and in the absence of a static magnetic field exhibited brittle-fracture characteristics.

  5. Morphology and magnetic behavior of cobalt rich amorphous/nanocrystalline (Co-Ni)70Ti10B20 alloyed powders

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Mohammad-Hosseini, Vahid

    2016-09-01

    The effect of milling time on microstructural and magnetic behavior of mechanically alloyed Co49Ni21Ti10B20 is investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry and vibrating sample magnetometer. It is shown, with increasing milling time, the crystallite size decreases and finally reaches to a low value after 190 h of milling time. The increase in microstrain is also observed during the milling process. The results indicate the coexistence between amorphous and nanocrystalline phases after 190 h of milling time. Moreover, the lowest magnetic coercivity of about 39 Oe at the final milling stage is observed. The results of annealed sample reveal structural ordering of constituent elements.

  6. Magnetic properties of Co50-xNixMn25Al25 alloys with B2 structure

    NASA Astrophysics Data System (ADS)

    Okubo, A.; Xu, X.; Umetsu, R. Y.; Kanomata, T.; Ishida, K.; Kainuma, R.

    2011-04-01

    Magnetic properties of the B2 phase in Co50-xNixMn25Al25 alloys were investigated. Spontaneous magnetization Ms measured at 4.2 K increases linearly with increasing x in the region of x ≤ 30 in accordance with following the generalized Slater-Pauling (GSP) line. However, Ms abruptly decreases with increasing x and deviates from the GSP line in the Ni-rich region of x > 30, suggesting a drastic change in the density of states at the Fermi energy. The Curie temperature TC decreases monotonically with increasing x and significantly decreases in the region of x > 30. Antiferromagnetic evidence is clearly observed at x > 45, and the Néel temperature TN increases with increasing x, in reaching the value of the B2 phase in Ni2MnAl.

  7. Casting Atmosphere Effects on the Precipitates, Magnetism, and Corrosion Resistance of Fe78Si9B13 Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Meng, L. L.; Li, X. Y.; Pang, J.; Wang, L.; An, B.; Yin, L. J.; Song, K. K.; Wang, W. M.

    2013-11-01

    The precipitates, magnetism, and corrosion resistance of Fe78Si9B13 glassy samples fabricated in vacuum and air atmospheres (labeled as VAC and AIR samples, respectively) were studied. The findings show that the fraction of the amorphous phase in VAC samples is lower than that in the AIR counterparts. The Fe phase in VAC samples grows preferentially along the <200> orientation. The distribution of magnetization M 4000 of VAC samples oriented parallel and orthogonal to the field ( H // and H ⊥) at H = 4000 Oe is more scattered than AIR samples. The corrosion resistance of VAC samples is lower than AIR counterparts, which can be attributed to the minor alloying effect of oxygen and the passive effect of silicon atoms supplied from the amorphous phase.

  8. Thermal annealing induced modification of structural and soft magnetic properties of Fe33.8Co50.7Nb5B8.5P2 alloy

    NASA Astrophysics Data System (ADS)

    Shah, M.; Modak, S. S.; Ghodke, N.; Araujo, J. P.; Varga, L. K.; Kane, S. N.

    2016-10-01

    Effect of thermal annealing treatment aimed to optimize the soft magnetic properties of Fe33.8Co50.7Nb5B8.5P2 alloy system has been investigated. Information on the correlation between micro-structure and magnetic properties have been obtained using differential scanning calorimetry (DSC), x-ray diffraction (XRD), and hysteresis measurements. Annealing treatment enhances the saturation induction in studied alloy composition. Whereas there is a moderate increment in the coercive behaviour with annealing temperature that may be ascribed to weakly exchange coupled nano grains.

  9. Structural analysis and magnetic properties of solid solutions of Co-Cr system obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Betancourt-Cantera, J. A.; Sánchez-De Jesús, F.; Bolarín-Miró, A. M.; Betancourt, I.; Torres-Villaseñor, G.

    2014-03-01

    In this paper, a systematic study on the structural and magnetic properties of Co100-xCrx alloys (0alloying is presented. Co and Cr elemental powders were used as precursors, and mixed in an adequate weight ratio to obtain Co1-xCrx (0magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co40Cr60. For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co10Cr90, it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions.

  10. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods

    PubMed Central

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-01-01

    The keeper and cast dowel–coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt–chromium, CoCr; silver–palladium–gold, PdAu; gold–platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr–keeper complex but not to the AuPt–keeper complex. Only the keeper area of cast CoCr–keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt–keeper complexes had the highest free corrosion potential, followed by the PdAu–keeper complex. We concluded that although the corrosion resistance of the CoCr–keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr– and PdAu–keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt–keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. PMID:27388806

  11. Theoretical investigation of the magnetic and structural transitions of Ni-Co-Mn-Sn metamagnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Li, Chun-Mei; Hu, Qing-Miao; Yang, Rui; Johansson, Börje; Vitos, Levente

    2015-07-01

    The composition-dependent crystal structure, elastic modulus, phase stability, and magnetic property of Ni2 -xCoxMn1.60Sn0.40 (0 ≤x ≤0.50 ) are studied by using first-principles calculations in combination with atomistic spin dynamics method. It is shown that the present lattice parameters and Curie temperature (TC) are in agreement with the available experimental data. The martensitic phase transformation (MPT) occurs for x <0.43 , where the austenite is in the ferromagnetic (FM) state whereas the martensite is in the antiferromagnetic (AFM) one at 0 K. The x dependence of the lattice parameter, elastic modulus, and energy difference between the FM austenite and the AFM martensite well accounts for the decrease of the MPT temperature (TM) with the Co addition. With increasing x , the increase of the magnetic excitation energy between the paramagnetic and FM austenite of these alloys is in line with the TC˜x . The Ni 3 d as well as the Co 3 d electronic states near the Fermi level are confirmed mainly dominating the phase stability of the studied alloys.

  12. Annealing effects on the structural and magnetic properties of off-stoichiometric Fe-Mn-Ga ferromagnetic shape memory alloys

    SciTech Connect

    Chen, Yan; Bei, Hongbin; Dela Cruz, Clarina R; Wang, Yandong; An, Ke

    2016-05-07

    Annealing plays an important role in modifying structures and properties of ferromagnetic shape memory alloys (FSMAs). The annealing effect on the structures and magnetic properties of off-stoichiometric Fe45Mn26Ga29 FSMA has been investigated at different elevated temperatures. Rietveld refinements of neutron diffraction patterns display that the formation of the γ phase in Fe45Mn26Ga29 annealed at 1073 K increases the martensitic transformation temperature and reduces the thermal hysteresis in comparison to the homogenized sample. The phase segregation of a Fe-rich cubic phase and a Ga-rich cubic phase occurs at the annealing temperature of 773 K. The atomic occupancies of the alloys are determined thanks to the neutron's capability of differentiating transition metals. The annealing effects at different temperatures introduce a different magnetic characteristic that is associated with distinctive structural changes in the crystal.

  13. Effect of Nb Concentration on Thermal Stability and Glass-Forming Ability of Soft Magnetic (Fe,Co)-Gd-Nb-B Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jia, Fei; Zhang, Xingguo; Xie, Guoqiang; Inoue, Akihisa

    2010-07-01

    Addition of a small amount of Nb to the (Fe,Co)-Gd-B glassy alloy in (Fe0.9Co0.1)71.5- x Nb x Gd3.5B25 increased the stabilization of supercooled liquid. The largest supercooled liquid region of 104 K was obtained for the x = 2 alloy. A distinct two-stage-like glass transition was observed with further incresing Nb content. The nanoscale (Fe,Co)23B6 phase precipitated in the glassy matrix after annealing, while the two-stage-like glass transition disappeared, indicating that the anomalous glass transition behavior originates from the exothermic reaction for the formation of the (Fe,Co)23B6 phase in the supercooled liquid region. The glass-forming ability (GFA) also increased by addition of Nb, leading to formation of the bulk glass form for the Nb-doped alloys. The best GFA with a diameter of over 3 mm was achieved for the x = 4 alloy. The (Fe,Co)-Gd-Nb-B glassy alloys exhibited good magnetic properties, i.e., rather high saturation magnetization of 0.81 to 1.22 T, low coercive force of 2.5 to 5.8 A/m, and low saturated magnetostriction of 9 to 19 × 10-6. In addition, the glassy alloys also possessed very high compressive fracture strength of 3842 to 3916 MPa and high Vickers hardness of 1025 to 1076.

  14. Study of the structural, electronic and magnetic properties of ScFeCrT (T=Si, Ge) Heusler alloys by first principles approach

    NASA Astrophysics Data System (ADS)

    Rasool, Muhammad Nasir; Hussain, Altaf; Javed, Athar; Khan, Muhammad Azhar

    2017-03-01

    Spin polarized structural, electronic, magnetic and bonding properties of ScFeCrT (T=Si, Ge) Heusler alloys are studied by employing density functional theory. The total energy calculation (for a static lattice) shows that both alloys are structurally stable in ferromagnetic phase with compressibility CScFeCrSi>CScFeCrGe. The electronic and band structure analysis show that the ScFeCrT alloys exhibit half-metallic ferromagnetic (HMF) behaviour for spin ↑ channel while semiconducting behaviour in spin ↓ channel. Both alloys exhibit total magnetic moment, MTotal=3.0 μB/cell obeying the Slater Pauling rule, MSPR=(Nv -18)μB. For ScFeCrSi and ScFeCrGe alloys, the charge density and interatomic bonding character show highly covalent and polar covalent character, respectively. For both alloys, 100% spin polarization (for spin ↑ state) is expected which is an indication of their suitability for applications in spintronic devices.

  15. Effects of magnetic field on the shape memory behavior of single and polycrystalline magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Turabi, Ali Sadi

    Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).

  16. Magnetic, Caloric and Crystallographic Properties of Dy5(SixGe1-x)4 Alloys

    SciTech Connect

    Ivchenko, Vitaliy Vladislavovich

    2002-01-01

    A study of a series of Dy5(SixGe1-x)4 alloys using dc and ac magnetic susceptibility, magnetization, heat capacity, and x-ray powder diffraction techniques revealed that the variation of the magnetic properties and crystal structures with composition is similar to that observed in the Gd5(SixGe1-x)4 system, except that the magnetic ordering temperatures are lower. The magnetic phase transition temperatures vary from ~ 46K (Dy5Ge4) to ~ 137K (Dy5Si4). The intermediate ternary phase Dy5Si3Ge undergoes a first order magnetic phase transition at ~ 65K. The value of magnetic entropy change for this composition is quite large (-34J/kgK for magnetic field change from 0 to 50kOe), compared to the values for the two end members (-7 J/kgK for Dy5Ge4 and -12.5J/kgK for Dy5Si4). The magnetization and ac susceptibility measurements showed that alloys with monoclinic crystal structure have a non-collinear ordering of the magnetic moments at low temperatures. The alloy Dy5Si3Ge appears to exhibit a FM phase transition below the Curie temperature at 65K. Also a series of critical fields are observed at low temperature during magnetization vs magnetic field measurements in all of the Dy5(SixGe1-x)4 alloys regardless type of crystal structure. The Dy5(SixGe1-x)4 alloys, where 0.67≤x≤1, may be useful magnetic refrigerant materials in the ~50 to ~160K temperature range.

  17. Magnetic properties of Mn1-xAl1-yNi alloys in the B2 (CsCl-type) structure

    NASA Astrophysics Data System (ADS)

    Paduani, C.; Schaf, J.; Ardisson, J. D.; Takeuchi, A. Y.

    2010-02-01

    In this work is investigated structural and magnetic properties of ferromagnetic Mn1-xAl1-yNi alloys in the κ phase which has a B2 (CsCl-type) structure. The Curie temperatures are above room temperature and decrease with the substitution of Ni for Mn. The magnetic measurements indicate the existence of ferrimagnetism originated from Mn atoms which carry unequal and opposite magnetic moments in different sublattices. A larger average magnetic moment is observed in the Ni-doped system, as compared to the Fe-system, which is due to the formation of larger moment on Mn atoms at the cube corners.

  18. Thermal stability of magnetic properties of nanocrystalline (Fe0.7Co0.3)88Hf4Mo2Zr1B4Cu1 alloy with induced magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Dmitrieva, N. V.; Lukshina, V. A.; Filippov, B. N.; Potapov, A. P.

    2016-10-01

    The effect of nanocrystallizing annealing in the presence of an ac magnetic field (magnetic heat treatment) and tensile stresses (thermomechanical treatment), as well as in the presence of both tensile stresses and an ac magnetic field (complex thermomechanical magnetic treatment) on the magnetic properties of the nanocrystalline (Fe0.7Co0.3)88Hf4Mo2Zr1B4Cu1 alloy and their thermal stability has been studied. It has been found that the nanocrystallization of the studied (Fe0.7Co0.3)88Hf4Mo2Zr1B4Cu1 alloy in the course of magnetic heat treatment, thermomechanical treatment, and thermomechanical magnetic treatment at low tensile stresses (6-30 MPa) leads to about a threefold decrease in the coercive force, but does not ensure the thermal stability of magnetic properties at high temperatures. In nanocrystallization, in the course of thermomechanical treatment at 620°C for 20 min under tensile stresses σ = 250 MPa has been found to be optimum for the high-temperature application (up to 550°C) of the studied alloy.

  19. Magnetic characterization of nanocrystalline Fe14Nd2B1 alloy during melt spinning and subsequent annealing

    NASA Astrophysics Data System (ADS)

    Sarafrazian, S.; Ghasemi, A.; Tavoosi, M.

    2016-03-01

    The magnetic characterization of amorphous/nanocrystalline Fe14Nd2B1 alloy during melt spinning and subsequent annealing was the goal of this study. The melt spinning process was done at different wheel speeds in the range of 20 to 40 m s-1. To achieving the desired microstructure, the annealing process was also done in melt spun ribbons at temperature range of 500 to 700 °C for different periods of time. The melt spun and annealed samples were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC) and vibrating scanning magnetometer (VSM). According to achieved results, the microstructure of melt spun ribbons were combination of Nd2Fe14B, Fe-α and amorphous phases with the coercivity and saturation of magnetization in the range of 11.2-125.6 kA/m and 65-120 A m2/kg, respectively. By annealing the ribbons, the coercivity and saturation of magnetization increased and decreased, respectively. The highest values of coercivity (752 kA/m) and stored magnetic energy (about 267.68 kJ/m3) were achieved in annealed sample at 600 °C for 6 h.

  20. Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.; Mejia, C. Salazar; D'Souza, S. W.; Chadov, S.; Skourski, Y.; Felser, C.; Nicklas, M.

    2014-12-01

    We present a pulsed magnetic field study on the magnetic and magnetostriction properties of Ni-Mn-Z (Z =In , Sn, and Sb) based Heusler shape-memory alloys. These materials generally display a field-induced magnetostructural transition that could lead to an irreversible phase transition, when measured near the martensitic transition temperature. Here, we show that independently of the transition temperature, the critical field for the phase transition sensitively depends on the main-group element in the sample. Irrespective of their compositions, all samples display a magnetization of around 2 μB/f .u . in the martensite phase and about 6 μB/f .u . in the cubic austenite phase. Our magnetic and magnetostriction measurements at low temperatures exhibit a partial or complete arrest of the high-field austenite phase below the reverse martensitic transition. This results in a large irreversibility with a hysteresis width as high as 24 T. We introduce a theoretical model to discuss the experimental results.

  1. Magnetic characterization of nanocrystalline Fe80-xCrxCo20 (15≤x≤35) alloys during milling and subsequent annealing

    NASA Astrophysics Data System (ADS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Sodaee, Tahmineh

    2016-10-01

    Magnetic characterization of nanocrystalline Fe-Cr-Co alloys during milling and annealing process was the goal of this study. To formation of Fe80-xCrxCo20 (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500-640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe-Cr-Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40-150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents.

  2. Magnetic properties and magnetostriction of PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tang, Shao-Long; Li, Yu-Long; Xie, Ren; Du, You-Wei

    2013-03-01

    The crystal structure, magnetic and magnetostrictive properties of high-pressure synthesized PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys were studied. The alloys exhibit single cubic Laves phase with MgCu2-type structure. The initial magnetization curve reveals that Pr0.2Nd0.8Fe1.9 has a minimum magnetocrystalline anisotropy at 5 K. The magnetostriction curve at 5 K shows that Pr0.2Nd0.8Fe1.9 has a very good low-field magnetostrictive property, and the magnetostriction of the PrxNd1-xFe1.9 alloy in high magnetic field is attributable mainly to Pr. The temperature dependence of the magnetostriction (λ‖) at the field of 5 kOe shows that the substitution of Nd reduces the K1 remarkably, and the values of λ‖ of Pr0.2Nd0.8Fe1.9 and Pr0.8Nd0.2Fe1.9 alloys are nearly five times larger than that of the PrFe1.9 alloy below 50 K; the λ‖ of Pr0.8Nd0.2Fe1.9 reaches up to 1082 ppm at 100 K, which makes it a potential candidate for application in this temperature range.

  3. Magnetic Ni-Co alloys induced by water gas shift reaction, Ni-Co oxides by CO oxidation and their supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Lee, Seungwon; Kang, Jung-Soo; Leung, Kam Tong; Kim, Seog K.; Sohn, Youngku

    2016-11-01

    Ni-Co alloys and oxides have attracted considerable attention in diverse fields, such as magnetic materials, energy storage and environmental/energy producing catalysts. Herein, the formation of magnetic Ni-Co alloys was induced by the water-gas shift reaction (WGSR) and the oxides were prepared by post-annealing and a CO oxidation reaction. The materials were characterized using a range of techniques. The annealed and post-CO oxidation Ni and Co-rich samples showed the crystal structures of NiCo2O4(Co3O4)/NiO and NiCo2O4/Co3O4, respectively. The Ni-Co oxides showed better supercapacitor performance than the corresponding Ni-Co alloys. The Co-rich samples exhibited better supercapacitor performance and CO oxidation activity than the Ni-rich sample. In addition, the Co-rich alloy showed a magnetization of 114 emu/g, which was approximately 2× larger than that of the Ni-rich alloy. The WGS reaction and the wide application tests are useful for designing new materials applicable to a wide range of areas.

  4. Theoretical investigations of electronic structures, magnetic properties and half-metallicity in Heusler alloys Zr2VZ (Z = Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Gao, Y. C.; Wang, X. T.; Rozale, H.; Lu, J. W.

    2015-09-01

    The electronic structures, magnetic properties and half-metallicity of Zr2VZ (Z = Al, Ga, In) bulk materials were investigated through first-principles calculations. Band structure calculations showed that Zr2VZ (Z = Al, Ga, In) alloys with an AlCu2Mn-type structure were conventional ferrimagnents. However, Zr2VZ (Z = Al, Ga, In) alloys with a CuHg2Ti-type structure were predicted to be half-metallic ferrimagnets that were quite robust against hydrostatic strain and tetragonal deformation. The total magnetic moment of the Zr2VZ (Z = Al, Ga, In) alloys with a CuHg2Ti-type structure was 2 µB per formula unit and followed the conventional Slater-Pauling rule: M t = 18 - Z t . (M t is the total magnetic moment per unit cell and Z t is the valence concentration) Furthermore, the origin of the band gap in the Zr2VZ (Z = Al, Ga, In) alloys was also well studied. All of these results indicate that these alloys, when they are successfully prepared, are good candidates for practical applications in spintronics.

  5. Temperature and concentration dependent magnetic properties of epitaxial Fe{sub 1−x}Cr{sub x}-alloy films in the high Cr-concentration regime

    SciTech Connect

    Brüssing, F.; Abrudan, R.; Zabel, H.

    2014-07-21

    Soft magnetic materials with a Curie temperature (T{sub c}) close to room temperature are suitable candidates for device applications and for more fundamental aspects of magnetism. Promising candidates are Fe{sub 1−x}Cr{sub x}-alloys with a Fe concentration of about 25%–35%. We have grown by molecular beam epitaxy methods a number of epitaxial Fe{sub 1−x}Cr{sub x} alloys on MgO[100] and MgO[110] substrates, and we report on their structural and magnetic properties in this concentration range, including the dependence of the Curie temperature (T{sub c}) on the concentration, the magnetocrystalline anisotropy, and the development of the magnetic moment.

  6. First-principles calculation of the effects of partial alloy disorder on the static and dynamic magnetic properties of Co2MnSi

    NASA Astrophysics Data System (ADS)

    Pradines, B.; Arras, R.; Abdallah, I.; Biziere, N.; Calmels, L.

    2017-03-01

    On the basis of fully relativistic Korringa-Kohn-Rostoker calculations and in conjunction with the coherent potential approximation and the linear response formalism, we present a complete ab initio study of the influence of alloy disorder on the static and dynamic (Gilbert damping) magnetic properties and on the electronic structure of the half-metallic full-Heusler alloy Co2MnSi . We discuss in particular partial atomic disorders intermediate between the main crystal phases L21 , B2, A2, and D03 of this alloy. We compare our results with homemade experiments and measurements from the literature, and conclude that the presence of a partial D03 -like disorder could explain the relatively high value of the Gilbert damping parameter and the lack of half-metallicity measured in real samples, in which alloy disorder cannot be totally avoided.

  7. Evolution of magnetic properties and microstructure of Hf{sub 2}Co{sub 11}B alloys

    SciTech Connect

    McGuire, Michael A. Rios, Orlando

    2015-02-07

    Amorphous Hf{sub 2}Co{sub 11}B alloys produced by melt-spinning have been crystallized by annealing at 500–800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo{sub 7}, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo{sub 7} phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo{sub 3}B{sub 2}, Hf{sub 6}Co{sub 23}, and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf{sub 2}Co{sub 11}B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo{sub 7} and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  8. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  9. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1 -xCox alloys

    NASA Astrophysics Data System (ADS)

    Steiner, Soner; Khmelevskyi, Sergii; Marsmann, Martijn; Kresse, Georg

    2016-06-01

    The magnetic anisotropy energy of tetragonally distorted disordered alloys Fe 1 -xCox is calculated by two different virtual crystal approximation methods and an averaged supercell method within the projected-augmented-wave (PAW) methodology and the magnetic force theorem. The details of the spin-orbit coupling implementation in the PAW methodology are given. We compare our results to the recent coherent potential approximation (CPA) studies, results of full potential calculations, and to the available experiments.

  10. Single magnetic domain precipitates of Fe/Co and Fe and Co in Cu matrix produced from (Fe-Co)/Cu metastable alloys

    NASA Astrophysics Data System (ADS)

    Nascimento, V. P.; Passamani, E. C.; Takeuchi, A. Y.; Larica, C.; Nunes, E.

    2001-01-01

    Structural and magnetic properties of nanocrystalline Fe2Co and (Fe2Co)0.30 Cu0.70 alloys prepared by high energy ball milling have been studied basically by x-ray, Mössbauer spectroscopy and magnetization measurements. For the Fe2Co alloy case, the Mössbauer measurements indicate that the sample with 160 hours of milling has two magnetic components with the same average hyperfine parameters: one magnetic crystalline component associated with the bcc Fe2Co phase and another component attributed to the small particles of the same bcc Fe2Co phase (SP-Fe2Co). (Fe2Co)0.30Cu0.70 alloys have been prepared by milling in two different ways: (1) starting from the mixture of Fe2Co milled alloy and pure Cu powders (sample I) and (2) milling of the elemental powder mixture of Fe, Co and Cu (sample II). The x-ray diffraction and bulk magnetization results of samples I and II indicate the formation of a (Fe2Co)0.30Cu0.70 supersaturated solid solution, with features of a ferromagnetic material and Tc at about (420+/-1) K. High temperature magnetization measurements of the (Fe/Co)Cu milled materials show particle precipitation effects. Heat treatment at 675 and 875 K of the final milled materials leads to different results: in the sample I case to the precipitation of single magnetic Fe/Co particles into the Cu matrix, and in the case of sample II the precipitation of single magnetic particles of Fe and of Co into the Cu matrix.

  11. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  12. Molar volume, thermal expansion, and bulk modulus in liquid Fe-Ni alloys at 1 bar: Evidence for magnetic anomalies?

    NASA Astrophysics Data System (ADS)

    Nasch, P. M.; Manghnani, M. H.

    New experimental data on the molar volume Ω, thermal expansion coefficient α, and ultrasonic sound velocity vp in liquid Fe-Ni systems at temperatures between melting and 1975 K are reported. The molar volume and thermal expansion data were acquired using a penetrating γ radiation method; the sound velocity data were obtained by ultrasonic interferometry. In the temperature range of this study, the molar volume Ω increases and the sound velocity vp decreases, both linearly with temperature. The adiabatic bulk modulus KS ∝ v2p/Ωp of liquid Fe-Ni alloys is nearly independent of composition at Fe content greater than 65 wt%. The temperature derivative ∂K/∂T of both adiabatic and isothermal bulk modulus of pure liquid Fe decreases by approximately 50% upon being alloyed with 15 wt% Ni. The mixing behavior of thermodynamic and cohesive properties of liquid Fe-Ni is interpreted as resulting from the existence of disordered and localized magnetic states and correlations in the liquid state, i.e., well above the Curie temperature and extending from pure Fe into the Fe-Ni stability field. These magnetic contributions have strong mechanical effects on the structure in modifying the volume and elastic modulus by as much as 13% and 31%, respectively, in the case of pure liquid Fe. It is believed that the magnetic contribution, which is likely to be absent at core temperatures, should be removed from the measured 1-bar values of density and elastic moduli if these latter were to be used as precise anchoring points in high pressure-temperature EOS.

  13. Ab initio construction of magnetic phase diagrams in alloys: The case of Fe1-xMnxPt

    SciTech Connect

    Pujari, B. S.; Larson, P.; Antropov, V. P.; Belashchenko, K. D.

    2015-07-28

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe1–xMnxPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of the magnetic phase diagram is demonstrated.

  14. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  15. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    SciTech Connect

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-17

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  16. Substitution effect on magnetic and electrical properties of half-Heusler alloy Ni{sub 1−x}Co{sub x}Mn{sub 1−y}Fe{sub y}Sb

    SciTech Connect

    Kushwaha, Varun Sharma, Himanshu Dixit, Dinesh Tomy, C. V.; Tulapurkar, Ashwin

    2014-04-24

    We have studied the effects of Co and Fe doping on the magnetic and electrical properties of half-Heusler compound NiMnSb. The alloys were prepared by arc-melting method in the presence of Argon gas. The powder X-ray diffraction of the each alloy was performed in air at room temperature. The magnetic and electrical properties were performed in the temperature range 2–400 K and in magnetic field up to 1 T.

  17. An in-situ study of magnetic domain structures in undercooled Fe-29.5 at. %Pd magnetostrictive alloys by Lorentz microscopy and electron holography

    SciTech Connect

    Sun, Wen; Xu, Xianhui; Liu, Jian E-mail: xiawxing@nimte.ac.cn; Xia, Weixing E-mail: xiawxing@nimte.ac.cn; Yan, Aru

    2015-04-28

    Understanding of correlation between magnetic domain structure and functional properties is of importance for the magnetic field driven phase transition (e.g., martensitic transformation) or microstructure variation (e.g., twin boundary motion) materials. In this work, we report a Fe-29.5 at. %Pd shape memory alloy treated by undercooling processing upon a degree of 320 K below the liquid temperature. The effect of high undercooling on the solidified microstructure and martensitic transformation temperatures was investigated. By in-situ Lorentz transmission electron microscopy and electron holography, magnetic domain structure and the field-induced domain wall motion behavior in as-cast and undercooled samples have been schematically studied. The irregular domain structure can be observed in these alloys. On the application of a field up to 300 Oe, the domain walls for both samples are able to move along the direction of the external magnetic field, but structural transition and rearrangement of variants are not observed in the undercooled alloy. The large magnetostriction of Fe-29.5 at. %Pd undercooled alloy originates from the irregular domain walls motion instead of the rearrangement of martensitic twin variants.

  18. Volume dependence of magnetic properties in Co2Cr1-xYx Ga (Y=Ti-Ni) Heusler alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. N.; Fortunato, N. M.; Amaral, J. S.; Amaral, V. S.

    2017-04-01

    The magnetic properties tuning and volume dependence in the series of quaternary full Heusler alloys with formula Co2Cr1-xYx Ga (Y=Ti, V, Mn, Fe, Co, Ni) were studied with a detailed first-principles exploration. We employ the density functional KKR method with the coherent potential approximation, estimating effective Heisenberg exchange constants via the magnetic force theorem together with mean-field Curie temperature (TC) and magnetic moment for compositions in the whole concentration range. The volumetric dependency of these magnetic properties is studied, particularly the pressure derivatives of TC at equilibrium. Our ternary alloy calculations show good agreement with local-density and generalized gradient approximations in the literature. The quaternary alloys show a wide range of tunable magnetic properties, where magnetic moments range from 0.8 to 4.9 μB, TC from 130 K to 1250 K, and dTC / dV values range from -7 to + 6.3 KÅ-3 .

  19. Magnetic Field-Induced Phase Transformation in Magnetic Shape Memory Alloys with High Actuation Stress and Work Output

    DTIC Science & Technology

    2010-05-03

    Ferromagnetic Shape Memory Alloy Single Crystals,” Journal of Materials Science, Vol. 43, pp. 6890-6901, 2008. 10. Karaca H.E., Karaman I., Brewer A...Krishnendu Haldar 1.00 Ruixian Zhu 0.00 Cengiz Yegin 0.00 Sadegh Badakhshan Raz 1.00 Andrew L. Brewer 1.00 6.00FTE Equivalent: 8Total Number: Names...degrees NAME Ruixian Zhu Andrew L. Brewer 2Total Number: Names of personnel receiving PHDs NAME Bjoern Kiefer Haluk Ersin Karaca Burak Basaran 3Total

  20. Interfacial magnetic coupling between Fe nanoparticles in Fe–Ag granular alloys.

    PubMed

    Alonso, J; Fdez-Gubieda, M L; Sarmiento, G; Chaboy, J; Boada, R; García Prieto, A; Haskel, D; Laguna-Marco, M A; Lang, J C; Meneghini, C; Fernández Barquín, L; Neisius, T; Orue, I

    2012-01-20

    The role of the interface in mediating interparticle magnetic interactions has been analysed in Fe50Ag50 and Fe55Ag45 granular thin films deposited by the pulsed laser deposition technique (PLD). These samples are composed of crystalline bcc Fe (2–4 nm) nanoparticles and fcc Ag (10–12 nm) nanoparticles, separated by an amorphous Fe50Ag50 interface, occupying around 20% of the sample volume, as determined by x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and high resolution transmission electron microscopy (HRTEM). Interfacial magnetic coupling between Fe nanoparticles is studied by dc magnetization and x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and Ag L2,3 edges. This paper reveals that these thin films present two magnetic transitions, at low and high temperatures, which are strongly related to the magnetic state of the amorphous interface, which acts as a barrier for interparticle magnetic coupling.

  1. Magnetization distribution in a soft magnetic amorphous alloy ribbon in as-quenched state and efficiency of heat treatment

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Shubina, L. N.; Blinova, O. V.

    2016-11-01

    The effect of heat treatment in air on the formation of magnetic properties has been studied based on the example of soft magnetic Fe77Ni1Si9B13 and Fe81B13Si4C2 amorphous ribbons characterized by positive magneto-striction. The magnetization distribution in the ribbons in the as-quenched state was shown to affect the efficiency of annealing. Under certain conditions, heat treatment, which results in the formation of mainly amorphous state of ribbon surface, is more efficient for samples characterized by high volume of orthogonally magnetized domains. This can be related to high in-plane tensile stresses, which are induced by hydrogen and oxygen atoms introduced into the ribbon surface upon its interaction with atmospheric water vapor.

  2. Microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys observed by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Pang, Z. Y.; Han, S. H.; Wang, Y. T.; Wang, W. H.; Han, B. S.

    2005-03-01

    The microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys have been achieved simultaneously by employing a magnetic force microscope directly on the as-cast cylinder rod surface for the first time. By varying the content of Fe, the microstructure of the Pr-based alloy changes progressively from a full glassy state to a composite state with nanocrystalline particles embedded in the glassy matrix, and finally into a nanostructured state. The accompanying magnetic property gradually changes from paramagnetic to hard. The experiment directly evidences the existence of exchange coupling between the crystallites and the variety of the grain-size-dependent magnetic properties can be well explained by Löffler et al.'s new random-anisotropy model (Löffler, et al., Phys. Rev. Lett. 85 (9) (2000) 1990).

  3. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  4. Direct evidence of the anisotropy of magnetization in rare-earth metals and rare-earth/Fe2 alloys

    NASA Astrophysics Data System (ADS)

    Benito, L.; Dumesnil, K.; Ward, R. C. C.

    2014-08-01

    We report on the genuine origin of the anisotropy of the magnetization M in rare-earth (RE) metals and RE-based alloys. Taking Ho-based layered nanostructures as testing ground, we prove that the anisotropy of M is substantial despite that the sixfold magnetic anisotropy constant K66 vanishes, which contradicts the established wisdom [E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310 (1960), 10.1016/0022-3697(60)90161-X]. Furthermore, we show that the symmetric anisotropic contributions to M and K66 vary with temperature distinctively from one another, which indicates that both anisotropic effects are unrelated and stem from dissimilar microscopic sources. Our findings are discussed according to the theory [R. J. Elliott and M. F. Thorpe, J. Appl. Phys. 39, 802 (1968), 10.1063/1.2163622] that predicts the emergence of symmetric anisotropic indirect-exchange terms under the presence of orbital moments. We show evidence that the anisotropy of M is caused by the indirect-exchange coupling among localized 4f magnetic moments mediated by spin-orbit coupled conduction electrons, which ultimately generates a spatially nonuniform spin polarization that replicates the lattice symmetry.

  5. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel.

    PubMed

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  6. Thermal and magnetic properties of the Co-Fe-B-Si-Ta alloy system for several Fe/Co ratios

    NASA Astrophysics Data System (ADS)

    Oh, Jiyun; Choi-Yim, Haein; Kang, Ki Hoon

    2016-12-01

    We studied the thermal and the magnetic properties of (Co1- x Fe x )72B19.2Si4.8Ta4 (0 ≤ x ≤ 1.0) alloy ribbons. These Co-based and Fe-based melt-spun ribbons were produced by using an arc-melting furnace and the melt-spinning technique. X-ray diffraction (XRD) peaks indicated that the ribbons had both an amorphous phase and a partial crystalline phase. The thermal properties, such as the crystallization temperatures (Tx), were determined by using differential scanning calorimetry (DSC). The magnetic properties, such as the saturation magnetization (Ms), were measured by using a vibration sample magnetometer (VSM). The Ms values increased to 1.39 T for Co43.2Fe28.8B19.2Si4.8Ta4 ( x = 0.4), decreased for Co36Fe36B19.2Si4.8Ta4 ( x = 0.5), and then increased again to 1.5 T for Fe72B19.2Si4.8Ta4 ( x = 1.0).

  7. Stress-induced changes in the magnetic properties of some nickel-copper and nickel-cobalt alloys

    SciTech Connect

    Jiles, D.C.; Chang, T.T.; Hougen, D.R.; Ranjan, R.

    1988-10-01

    This paper presents results on the magnetic properties of NiCu and NiCo alloys with compositions in the range 70%--100% Ni. Measurements include coercivity initial susceptibility, maximum differential susceptibility, magnetostriction, and Barkhausen effect emissions. Results revealed a surprising increase in the magnetostriction as a function of magnetic induction B as the copper content increased. The saturation magnetostriction lambda/sub s/ was nevertheless found to decrease with copper content. The addition of cobalt reduced the magnitude of the magnetostriction resulting in a change of sign from negative to positive at between 20% and 30% cobalt. Coercivity was found to be little affected by elastic stress, but strongly affected by plastic deformation such as occurs, for example, in cold working. A similar result was true for initial susceptibility. Maximum differential susceptibility was, however, found to be strongly dependent on elastic stress. Results were interpreted in terms of stress induced uniaxial anisotropy. As the tensile stress increased the magnetization became more reversible, but the susceptibility decreased.

  8. Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys

    NASA Astrophysics Data System (ADS)

    Salazar Mejía, C.; Küchler, R.; Nayak, A. K.; Felser, C.; Nicklas, M.

    2017-02-01

    Combined strain and magnetization measurements on the Heusler shape-memory alloys Ni45Co5Mn38Sb12 and Ni44Co6Mn38Sb12 give evidence for strong magneto-structural coupling. The sample length changes up to 1% at the martensitic transformation, between a ferromagnetic, austenitic phase at high temperatures and a weakly magnetic, low-symmetry martensitic phase at lower temperatures. Under moderate uniaxial stress, the change in the sample length increases to and saturates at about 3%, pointing to stabilization of a single martensitic variant. A reverse martensitic transformation can also be induced by applying magnetic field: we find that within the temperature range of thermal hysteresis of the martensitic transformation, applying a field can induce a metastable expansion of the sample, while at slightly lower temperatures, the field response is reversible. These findings provide key information for future use of Ni(Co)-Mn-Sb-based Heusler compounds in, e.g., actuators and mechanical switches.

  9. Microstructure Of Multistage Annealed Nanocrystalline SmCo2Fe2B Alloy With Enhanced Magnetic Properties

    SciTech Connect

    Jiang, Xiujuan; Devaraj, Arun; Balamurugan, B.; Cui, Jun; Shield, Jeffrey E.

    2014-02-11

    The microstructure and chemistry of SmCo2Fe2B melt-spun alloy after multistage annealing was investigated using high resolution transmission electron microscopy (HRTEM) and 3D atom probe tomography. The multistage annealing resulted in an increase in both the coercivity and magnetization. The presence of Sm(Co,Fe)4B (1:4:1) and Sm2(Co,Fe)17Bx (2:17:x) magnetic phases were confirmed using both techniques. Fe2B at a scale of ~ 5 nm was found by HRTEM precipitating within the 1:4:1 phase after the second-stage annealing. Ordering within the 2:17:x phase was directly identified both by the presence of antiphase boundaries observed by TEM and the interconnected isocomposition surface network found in 3D atom probe results in addition to radial distribution function analysis. The variations in the local chemistry after the secondary annealing were considered pivotal in improving the magnetic properties.

  10. Microstructure of multistage annealed nanocrystalline SmCo{sub 2}Fe{sub 2}B alloy with enhanced magnetic properties

    SciTech Connect

    Jiang, Xiujuan Shield, Jeffrey E.; Devaraj, Arun; Balamurugan, B.; Cui, Jun

    2014-02-14

    The microstructure and chemistry of SmCo{sub 2}Fe{sub 2}B melt-spun alloy after multistage annealing was investigated using high resolution transmission electron microscopy (HRTEM) and 3D atom probe tomography. The multistage annealing resulted in an increase in both the coercivity and magnetization. The presence of Sm(Co,Fe){sub 4}B (1:4:1) and Sm{sub 2}(Co,Fe){sub 17}B{sub x} (2:17:x) magnetic phases were confirmed using both techniques. Fe{sub 2}B at a scale of ∼5 nm was found by HRTEM precipitating within the 1:4:1 phase after the second-stage annealing. Ordering within the 2:17:x phase was directly identified both by the presence of antiphase boundaries observed by TEM and the interconnected isocomposition surface network found in 3D atom probe results in addition to radial distribution function analysis. The variations in the local chemistry after the secondary annealing were considered pivotal in improving the magnetic properties.

  11. Influence of Applied Thermal Gradients and a Static Magnetic Field on Bridgman-Grown GeSi Alloys

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Ritter, T. M.

    1999-01-01

    The effect of applied axial and radial thermal gradients and an axial static magnetic field on the macrosegregation profiles of Bridgman-grown GeSi alloy crystals has been assessed. The axial thermal gradients were adjusted by changing the control setpoints of a seven-zone vertical Bridgman furnace. The radial thermal gradients were affected by growing samples in ampoules with different thermal conductivities, namely graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN). Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. All of the samples were grown on Ge seeds. This resulted in a period of free growth until the Si concentration in the solid was in equilibrium with the Si concentration in the liquid. The length of crystal grown during this period was inversely proportional to the applied axial thermal gradient. Several samples were grown in an axial 5 Tesla magnetic field. Measured macroscopic segregation profiles on these samples indicate that the magnetic field did not, in general, reduce the melt flow velocities to below the growth velocities.

  12. Magnetocaloric effect over a wide temperature range due to multiple magnetic transitions in GdNi0.8Al1.2 alloy

    NASA Astrophysics Data System (ADS)

    Rashid, T. P.; Nallamuthu, S.; Arun, K.; Curlik, Ivan; Ilkovic, Sergej; Dzubinska, Andrea; Reiffers, Marian; Nagalakshmi, R.

    2016-05-01

    The magnetic properties, magnetocaloric effect (MCE) and refrigerant capacity (RC) of the novel polycrystalline GdNi0.8Al1.2 alloy are investigated. The temperature dependence of magnetization exhibits multiple magnetic transitions at T1=17.7 K, T2=46.7 K and T3=256 K thereby displaying a complex magnetic behaviour. The magnetocaloric effect is calculated in terms of the magnetic entropy change ( -Δ SM), from isothermal magnetization data using Maxwell relations. The maximum magnetic entropy change at major transitions T2 is 9.15 J kg-1K-1 (for a field change of 0-9 T) and 4.20 Jkg-1K-1 (0-5 T) and at T3 is 1.10 Jkg-1K-1 (0-9 T) and 0.67 Jkg-1K-1 (0-5 T). The overlap of the two -Δ SM peaks expeditiously expand the working temperature range of this material with substantial MCE which in turn yields moderate RC value of 120 J/kg for a field change of 0-5T. These results suggest that the GdNi0.8Al1.2 alloy may be a meaningful candidate for magnetic refrigeration working in a wide temperature range.

  13. Thermodynamic analysis of binary Fe85B15 to quinary Fe85Si2B8P4Cu1 alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Takeuchi, A.; Zhang, Y.; Takenaka, K.; Makino, A.

    2015-05-01

    Fe-based Fe85B15, Fe84B15Cu1, Fe82Si2B15Cu1, Fe85Si2B12Cu1, and Fe85Si2B8P4Cu1 (NANOMET®) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (Bs) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔHx1 and ΔHx2) and their crystallization temperatures (Tx1 and Tx2), respectively. The ratio ΔHx1/ΔHx2 measured by DSC experimentally tended to be extremely high for the Fe85Si2B8P4Cu1 alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (Vf) of α-Fe tends to increase from 0.56 for the Fe85B15 to 0.75 for the Fe85Si2B8P4Cu1 alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (Gα-Fe and Gamor) shows that a relationship Gα-Fe ˜ Gamor holds for the Fe85Si2B12Cu1, whereas Gα-Fe < Gamor for the Fe85Si2B8P4Cu1 alloy at Tx1 and that an extremely high Vf = 0.75 was achieved for the Fe85Si2B8P4Cu1 alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe85Si2B8P4Cu1 alloy barely forms amorphous phase, which, in turn, leads to high Vf and resultant high Bs.

  14. First-principles study of martensitic transformation and magnetic properties of carbon doped Ni-Mn-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xiao, Haibo; Yang, Changping; Wang, Ruilong; Xu, Linfang; Liu, Guozhen; Marchenkov, V. V.

    2016-10-01

    The magnetic properties, structural stabilities and martensitic transformation of carbon doped Ni-Mn-Sn Heusler alloys are investigated by means of ab initio calculations in framework of the density functional theory. The results of calculations have shown that the martensitic transformation can be realized in all series of carbon doped Ni2Mn1.5Sn0.5 - xCx alloys with tetragonal ratio of 1.34, 1.40,1.42 and 1.44, respectively for x = 0.125 , 0.25 , 0.375 and 0.5. The DOS peak at the Fermi level almost disappearing in the tetragonal phase near the Fermi level is the evidence of triggering martensitic transformation which is due to the structural Jahn-Teller effect. We have also found that the difference between the austenitic and martensitic phases increases with increasing carbon content, which implies an enhancement of the martensitic phase transition temperature (TM). Besides, the electron density difference shows the enhancement of bonding between Mn and carbon atoms with the distortion taken place.

  15. Transformation Temperatures, Shape Memory and Magnetic Properties of Hafnium Modified Ti-Ta Based High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Khan, W. Q.; Wang, Q.; Jin, X.

    2017-02-01

    In this study the modification effect of Hf content on the shape memory properties and magnetic permeability of a 75.5-77Ti-20Ta-3-4.5Hf alloy system has been systematically studied by DSC, three-point bend test, vector network analyzer and XRD. The martensitic transformation temperature, heat of reaction and recovery strain increases with the increase of hafnium and tantalum content. A stable high temperature shape memory effect was observed (Ms = 385-390 °C) during the two thermal cycles between 20 °C and 725 °C. Transformation temperatures and heats of reaction were determined by DSC measurements. Recovery strain was determined by three-point bend testing. Also an alloy, 70Ti-26Ta-4Hf, with higher tantalum content was produced to observe the effect of Ta on the shape memory properties. Permeability increases gradually from 1.671 to 1.919 with increasing content of hafnium modification and remains stable in the frequency range of 450 MHz to 1 GHz.

  16. Exploration of new multifunctional magnetic materials based on a variety of Heusler alloys and rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun Kumar

    2011-12-01

    Magnetic, magnetocaloric, magnetotransport and magnetoelastic properties of Ni-Mn-X (X = In, and Ga) Heusler alloys and La-Fe-Si based rare earth compounds have been synthesized and investigated by x-ray diffraction, magnetization, strain, and electrical resistivity measurements. The phase transitions, magnetic, magnetocaloric, magnetotransport and magnetoelastic properties strongly depend on the composition of these systems. In Ni50Mn50-xInx with x = 13.5, magnetocaloric and magnetotransport properties associated with the paramagnetic martensitic to paramagnetic austenitic transformation were studied. It was shown that magnetic entropy changes (DeltaSM) and magnetoresistance (MR) associated with this transformation are larger and the hysteresis effect is significantly lower when compared to that associated with paramagnetic-ferromagnetic transitions or ferromagnetic-antiferromagnetic/paramagnetic transitions in other systems. The Hall resistivity and the Hall angle shows unusual behavior in the vicinity of the martensitic phase transition for Ni50Mn 50-xInx with x = 15.2. The observed Hall resistivity and Hall angle are 50 μO·cm and tan-1 0.5, respectively. It was observed that the presence of Ge, Al and Si atoms on the In sites strongly affects the crystal structure, and the electric and magnetic behaviors of Ni50Mn35In15. It was found that the partial substitution of In atoms by Si in Ni50Mn35In15 results in an increase in the magnetocaloric effect, exchange bias and shape memory effect. In Ni50Mn35In15-xSi x, the peak values of positive DeltaSM for magnetic field changes H = 5 T were found to depend on composition and vary from 82 J·kg -1·K-1 for x = 1 (at T = 275 K) to 124 J·kg -1·K-1 for x = 3 (at T = 239 K). The partial substitution of Ni by Co in Ni50Mn35In15 significantly improves the magnetocaloric effect and MR in the vicinity of martensitic transition. In addition, significantly large inverse DeltaS M and MR were observed at the inverse

  17. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen

    PubMed Central

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-01-01

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g−1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases. PMID:27876878

  18. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen

    NASA Astrophysics Data System (ADS)

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-01

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g‑1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  19. Phase stability, band gap, and electronic and magnetic properties of quaternary heusler alloys FeMnScZ (Z = Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Gao, Y. C.; Zhang, Y.; Wang, X. T.

    2015-03-01

    By using the first-principles calculations, we have systematically investigated the phase stability, band gap, and electronic structures and magnetic properties of quaternary Heusler alloys FeMnScZ (Z = Al, Ga, In). We found that FeMnScZ (Z = Al, Ga, In) alloys are half-metallic ferrimagnets at their equilibrium lattice constants and retain a high spin polarization over a quite wide range of lattice distortions. The half-metallic band gap in the FeMnScZ (Z = Al, Ga, In) alloys arises from t 1u- t 2g splitting but not e u- t 1u splitting. The total magnetic moments are 3 µB per unit cell for FeMnScZ (Z = Al, Ga, In) alloys, following the Slater-Pauling rule with the total number of valence electrons minus 18 rather than 24. Moreover, all of these alloys have a negative formation energy, which implies that they can be synthesized experimentally.

  20. Undercooling growth and magnetic characterization of ferromagnetic shape memory alloy Ni2FeGa single crystals

    NASA Astrophysics Data System (ADS)

    Qian, J. F.; Zhang, H. G.; Chen, J. L.; Wang, W. H.; Wu, G. H.

    2014-02-01

    Ni2FeGa single crystals have been grown in undercooling conditions provided by a glass-purification method. It has been found that trace amounts of γ phase embededin the single crystalline matrix preferentially orients in the <1 0 0> orientation along the growth direction. This γ phase generates directional residual stress and results in an anisotropic two-way shape memory effect. Large strains of -2.5% in the [0 0 1] and 1.5% in the [0 1 0] directions have been observed. This trace γ phase also improves the ductility of the material, thus the crystals could be plastically deformed at room temperature in the parent phase. The <1 1 0> and <1 1 1> orientations in Ni2FeGa alloy were identified as the easy and hard magnetization directions, respectively, in the parent phase by using low field M-T measurements.

  1. Relationships between magnetization and dynamic stress for Galfenol rod alloy and its application in force sensor

    NASA Astrophysics Data System (ADS)

    Weng, Ling; Wang, Bowen; Dapino, M. J.; Sun, Ying; Wang, Li; Cui, Baozhi

    2013-05-01

    Magnetization versus dynamic stress of Fe81.6Ga18.4 is measured at 4.0 kA/m bias magnetic field and -7.0 MPa compressive pre-stress. The magnetization and stress curves show that magnetization decreases with increasing compressive stress. Magnetization increases with increasing stress frequency at -20 MPa compounded stress. The output voltage from the pickup coil of a Galfenol force sensor is measured when the frequency and amplitude of dynamic force vary. The measurements show that the output voltage increases proportionally with increasing force frequency and amplitude. When the bias magnetic field is 4.0 kA/m, a maximum output voltage of 57 mV is measured at -7.0 MPa compressive pre-stress.

  2. Magnetic and Magnetooptical Properties of Co-Al Alloy Thin Films on a Nanostructured Substrate

    NASA Astrophysics Data System (ADS)

    Nakatani, Morio; Suzuki, Yoshihisa; Sumi, Satoshi; Tanemura, Sakae

    2005-01-01

    We investigated magnetic and magnetooptical properties of Co-Al magnetic thin films on a nanostructured substrate. The nanostructured substrate was made of polycarbonate by injection molding. The stamper was made by electron beam cutting. The nanostructured substrate contributed a perpendicular magnetic anisotropy component to the film and decreased the reflectance of the film. The Kerr rotation angle on the nanostructured substrate was greater than that on a glass substrate.

  3. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    SciTech Connect

    Emre, Baris; Bruno, Nickolaus M.; Yuce Emre, Suheyla; Karaman, Ibrahim

    2014-12-08

    The effect of Nb substitution for Ni in Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloys potential candidates for solid state refrigeration near room temperature.

  4. Competition of magnetization mechanisms in (NdDy)(FeCo)B alloys, doped with samarium

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Ospennikova, O. G.; Piskorskii, V. P.; Korolev, D. V.; Kunitsina, E. I.; Dmitriev, A. I.; Morgunov, R. B.

    2016-01-01

    It is found that magnetic hysteresis in sintered magnets (Nd0.62Dy0.33Sm0.05)16.2(Fe0.77Co0.23)78.1B5.7 for the temperature range T = 150-350 K, is caused by a mechanism associated with the displacement of domain walls, which ceases at temperatures below 150 K. In addition, the formation of magnetic hysteresis in this temperature range is affected by the mechanism involving the nucleation of the reverse magnetization phase, which is observed at temperatures down to 36 K.

  5. Crystallographic parameters of magnetic Pr2Fe14-xCoxB-type alloys determined using anomalous x-ray diffraction with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Galego, E.; Serna, M. M.; Ramanathan, L. V.; Faria, R. N.

    2017-02-01

    Anomalous x-ray synchrotron diffraction was used to determine the crystallographic parameters of PrFeCoB-based magnetic alloys. The effect of cobalt concentration on the crystallographic parameters of the magnetically hard Pr2Fe14-xCoxB phase was studied. The results indicate that addition of cobalt has a marked effect on crystal structure. Variation of the c parameter decreased twice as much as the a parameter with increase in Co content. The positions of inequivalent atoms of the magnetically hard matrix phase ϕ in the Pr-based alloys were determined using Rietveld refinement. This permitted determination of the relative distance of each inequivalent atom from its nearest neighbors. Cobalt occupied the 16k2 site and Fe had a tendency to occupy the 8j2 sites located between the Kagomé layers.

  6. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    SciTech Connect

    Akiya, T. Sepehri-Amin, H.; Ohkubo, T.; Liu, J.; Hono, K.; Hioki, K.; Hattori, A.

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened in the c-axis direction.

  7. Effect of Recrystallization and Phase Transitions on the Mechanical Properties of Semihard Magnetic FeCo-7.15V Alloy During the Thermomechanical Process

    NASA Astrophysics Data System (ADS)

    Hasani, Saeed; Shamanian, Morteza; Shafyei, Ali; Nezakat, Majid; Mostaan, Hossein; Szpunar, Jerzy A.

    2017-04-01

    FeCo alloys (with 7 to 14 wt pct V) are industrially key engineering materials that play an outstanding role in applications requiring semihard magnetic materials. In this study, the effects of recrystallization and phase transitions on the mechanical properties of FeCo-7.15 wt pct V alloy, in the cold-rolled and annealed conditions, were investigated. Hence, cold-rolled Fe-Co-7.15V alloy (with 90 pct reduction in thickness) was annealed at different temperatures. The microstructural evolutions were observed by scanning electron microscopes, and mechanical properties were examined using microhardness and tensile tests. Experimental results showed that the mechanical properties of the alloy depend on several phase transitions, including recrystallization, allotropy, and ordering. It was found that this alloy is too brittle and difficult to fabricate in ordered condition, and depending on the annealing temperature, the order/disorder transition is responsible for the mechanical properties. Also, after annealing at temperatures higher than 723 K (450 °C) and up to 1023 K (750 °C), the γ phase was observed in the structure, so that by annealing at 973 K (700 °C), the microstructural observation showed a duplex structure consisting of α + γ phases. In this condition, elongation was increased by an increase in the volume fraction of γ phase. Furthermore, the Young's modulus of this alloy changed at various annealing temperatures as a function of texture evolutions.

  8. Effect of Recrystallization and Phase Transitions on the Mechanical Properties of Semihard Magnetic FeCo-7.15V Alloy During the Thermomechanical Process

    NASA Astrophysics Data System (ADS)

    Hasani, Saeed; Shamanian, Morteza; Shafyei, Ali; Nezakat, Majid; Mostaan, Hossein; Szpunar, Jerzy A.

    2017-01-01

    FeCo alloys (with 7 to 14 wt pct V) are industrially key engineering materials that play an outstanding role in applications requiring semihard magnetic materials. In this study, the effects of recrystallization and phase transitions on the mechanical properties of FeCo-7.15 wt pct V alloy, in the cold-rolled and annealed conditions, were investigated. Hence, cold-rolled Fe-Co-7.15V alloy (with 90 pct reduction in thickness) was annealed at different temperatures. The microstructural evolutions were observed by scanning electron microscopes, and mechanical properties were examined using microhardness and tensile tests. Experimental results showed that the mechanical properties of the alloy depend on several phase transitions, including recrystallization, allotropy, and ordering. It was found that this alloy is too brittle and difficult to fabricate in ordered condition, and depending on the annealing temperature, the order/disorder transition is responsible for the mechanical properties. Also, after annealing at temperatures higher than 723 K (450 °C) and up to 1023 K (750 °C), the γ phase was observed in the structure, so that by annealing at 973 K (700 °C), the microstructural observation showed a duplex structure consisting of α + γ phases. In this condition, elongation was increased by an increase in the volume fraction of γ phase. Furthermore, the Young's modulus of this alloy changed at various annealing temperatures as a function of texture evolutions.

  9. Investigation into the Origin of Magnetic Properties of Amorphous Metallic Alloys.

    DTIC Science & Technology

    1981-10-01

    alloys investigated. Rksums-Nous avons trouve que certains verres metalliques etaient fragilises par un recuit a basse temperature, comme certains aciers ...article, nous pr sentons les effets de I’addition de Sb, Sc and Te, qui sont des elements fragilisant des aciers , sur des verres metalliques dont les...les aciers . On augmente l’effect d’un element fragilisant en remplaqant du Ni par du Fe. Nous n’avons pas vu de changement notable du DSC ou des

  10. Effect of the substitution of Fe by Co on the magnetic properties and microstructure of nanocrystalline (Fe 1-xCo x) 86Hf 7B 6Cu 1 alloys

    NASA Astrophysics Data System (ADS)

    Liang, Xiubing; Ferenc, Jarosław; Kulik, Tadeusz; Slawska-Waniewska, Anna; Xu, Binshi

    2004-12-01

    (Fe1-xCox)86Hf7B6Cu1 (x = 0 - 1) alloys were investigated as candidates for soft magnetic materials for elevated temperature applications. The lattice parameter of nanoscale precipitate decreases with the increasing of Co content because of the large Co solubility in the α (α‧) -Fe(Co) solid solution. However, it is a little larger than that of the crystalline phase in the Fe(Co) binary alloy. The Curie temperature of amorphous alloys studied monotonously increases with the increase of Co content. The nanocrystallized alloy with Co content of x = 0.4 exhibits both the higher magnetization and lower coercivity at the elevated temperature, being the optimum alloy among the alloys studied for high temperature applications.

  11. Influence of ternary addition of transition elements (Cr, Si and Mn) on the microstructure and magnetic properties of nano-structured CuCo alloy

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Basumallick, A.; Chattopadhyay, P. P.

    2012-09-01

    The current state of studies presents the effect of ternary addition of transition elements such as Mn, Cr and Si (10 wt%) on the mechanically driven non-equilibrium solubility of 40 wt% Co containing Cu-Co alloy. X-ray powder diffraction analysis indicates that addition of Mn has been found to be the most effective in enhancing the solubility and formation of a complete solid solution between Co and Cu in a short duration (30 h) of ball milling. The microstructure of the ball milled CuCoMn alloy was found to be stable after the isothermal annealing up to a temperature of 450 °C for 1 h. The magnetic properties such as magnetic saturation, coercivity and remanence of ball milled CuCo alloy in the presence of Mn significantly altered after annealing in the temperature range 350-650 °C for 1 h. The best combination of magnetic properties of CuCoMn alloy has been found after annealing at 550 °C for 1 h.

  12. Magnetization of ultrathin [Fe1-cNic]n alloy nanojunctions between Fe or Co leads using an Ising EFT-MFT model

    NASA Astrophysics Data System (ADS)

    Moujaes, Elie A.; Aguiar, L. V.; Ghantous, M. Abou

    2017-02-01

    The Fe and Ni sublattice magnetizations of ultrathin iron-nickel alloy nanonjunctions [Fe1-cNic] between Fe and Co leads are inspected. For c ≤ 0.4 , the alloy has a bcc structure and becomes fcc otherwise. A combined EFT and MFT treatment is used to obtain the sublattice magnetizations of Fe and Ni in the individual layers as a function of temperature and concentration. This is achieved by calculating single site spin correlations within EFT and making use of reliable experimental data such as lattice parameters a, stiffness spin constants D, and Curie temperatures Tc leading to reasonable values of the exchange parameters J. According to our model, the alloys forming the bcc nanojunctions we examine (c = 0.0841 , 0.204 , 0.268) are ferrimagnetic with the absence of a compensation temperature while those for the fcc structures (c = 0.5 , 0.81) are ferromagnetic. These EFT results feed the MFT calculations for the nanojunction from the interface inwards. The effect of adding several alloy layers to both bcc and fcc types is also considered. The sublattice magnetizations are necessary elements for certain spin dynamic computations, such as ballistic magnon transport across embedded nanojunctions in magnonics.

  13. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    SciTech Connect

    Kekalo, I. B.; Mogil’nikov, P. S.

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  14. Magneto-Mechanical Response in Ni-Mn-Ga Magnetic Shape Memory Alloys

    DTIC Science & Technology

    2004-12-01

    3 Figure 3. Motion of twin boundaries due... twin boundaries such that the easy axis align with the magnetic field, rather than rotating the magnetizations with respect to their local crystal...through(c) twinning and (d) dislocation slip. DRDC Atlantic TM 2004-267 3 Figure 3. Motion of twin boundaries due to the

  15. Irreversible magnetization reversal in some Co-based alloy thin films

    NASA Astrophysics Data System (ADS)

    Admon, U.; Dariel, M. P.; Grunbaum, E.; Lodder, J. C.

    1989-07-01

    Irreversible magnetization reversal occurs either by coherent or incoherent spin rotation or by wall displacement. In electrodeposited Co-W, Co-Fe, and Co-P 300-500-Å films, vibrating sample magnetometer hysteresis loop analyses indicate that magnetization reversal takes place by wall displacement. The formation and movement of domain walls has been put in evidence by Lorentz electron microscopy.

  16. Magnetic properties and magnetocaloric effect in Ni0.5Mn0.5-xSb x alloys

    NASA Astrophysics Data System (ADS)

    Duc, N. H.; Thanh, T. D.; Yen, N. H.; Thanh, P. T.; Dan, N. H.; Phan, T. L.

    2012-02-01

    Ni0.5Mn0.5- x Sb x ( x = 0.1, 0.2, 0.3, and 0.4) ingots fabricated by arc-melting high-pure metals have been studied to determine their structure and magnetic properties and to identify the magnetocaloric effect. X-ray diffraction analyses reveal that the sample with x = 0.2 is close to a single phase in a cubic structure while the others have the secondary phases. This influences strongly the magnetic properties of Ni0.5Mn0.5- x Sb x . With increasing Sb content, the Curie temperature ( T C ) increases from ˜210 (for x = 0.1) to 435 K (for x = 0.4). Among the studied alloys, two samples, x = 0.2 and 0.3, have the greatest saturation magnetization values, which were recorded at 300 K. Under an applied field of 12.0 kOe, the maximum magnetic entropy changes are about 1.0 and 0.5 J.kg-1·K-1 for x = 0.2 and 0.3, respectively. Detailed analyses related to isothermal M-H curves in the vicinity of T C by using the modified Arrott method reveal that these samples undergo a second-order phase transition with critical exponents of β = 0.40 ± 0.01 and γ = 1.27 ± 0.08 for x = 0.2 and of β = 0.69 ± 0.09 and γ = 0.85 ± 0.10 for x = 0.3. The differences in the critical parameters are likely related to the presence of Ni-related secondary phases.

  17. Structural and magnetic properties of magnetron sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films

    SciTech Connect

    Vishnoi, Ritu; Kaur, Davinder

    2010-05-15

    In the present study, structural and magnetic properties of Mn-rich, off-stoichiometric, nanocrystalline Ni-Mn-Sn ferromagnetic shape memory alloy thin films, grown on Si (100) substrates at 550 deg. C by dc magnetron sputtering have been systematically investigated. The crystallization, surface morphology, and structural features were studied using x-ray diffraction, atomic force microscopy, and field emission scanning electron microscopy. The structural transition from austenite to martensite was observed with an increase of Mn content. Austenitic phase with mixed L2{sub 1}/A2+B2 structure has been observed at room temperature in Ni{sub 52.6}Mn{sub 23.7}Sn{sub 23.6} (S{sub 1}) and Ni{sub 51.5}Mn{sub 26.1}Sn{sub 22.2} (S{sub 2}) films, while those with composition of Ni{sub 58.9}Mn{sub 28.0}Sn{sub 13.0} (S{sub 3}) and Ni{sub 58.3}Mn{sub 29.0}Sn{sub 12.6} (S{sub 4}) show martensitic phase with 14M modulated monoclinic structures. Field induced martensite-austenite transformation has been observed in magnetization studies using superconducting quantum interference device magnetometer. Temperature dependent magnetization measurements demonstrate the influence of magnetic field on the structural phase transition temperature. The investigations reveal an increase of martensitic transformation temperature (T{sub M}) with corresponding increase in substitution of Mn. The films exhibit ferromagnetic behavior at low temperatures below Curie temperature (T{sub C}). The decrease in saturation moment with increasing Mn content, indicates the existence of antiferromagnetic correlations within ferromagnetic matrix.

  18. Directional solidification of Bi-Mn alloys using an applied magnetic field

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.

  19. Effects of the interplay between atomic and magnetic order on the properties of metamagnetic Ni-Co-Mn-Ga shape memory alloys

    NASA Astrophysics Data System (ADS)

    Seguí, C.

    2014-03-01

    Ni-Co-Mn-Ga ferromagnetic shape memory alloys show metamagnetic behavior for a range of Co contents. The temperatures of the structural and magnetic transitions depend strongly on composition and atomic order degree, in such a way that combined composition and thermal treatment allows obtaining martensitic transformation between any magnetic state of austenite and martensite. This work presents a detailed analysis of the effect of atomic order on Ni-Co-Mn-Ga alloys through the evolution of structural and magnetic transitions after quench from high temperatures and during post-quest ageing. It is found that the way in which the atomic order affects the martensitic transformation temperatures and entropy depends on the magnetic order of austenite and martensite. The results can be explained assuming that improvement of atomic order decreases the free energy of the structural phases according to their magnetic order. However, it is assumed in this work that changes in the slope—that is, the entropy—of the Gibbs free energy curves are also decisive to the stability of the two-phase system. The experimental transformation entropy values have been compared with a phenomenological model, based on a Bragg-Williams approximation, accounting for the magnetic contribution. The excellent agreement obtained corroborates the magnetic origin of changes in transformation entropy brought about by atomic ordering.

  20. Effects of the interplay between atomic and magnetic order on the properties of metamagnetic Ni-Co-Mn-Ga shape memory alloys

    SciTech Connect

    Seguí, C.

    2014-03-21

    Ni-Co-Mn-Ga ferromagnetic shape memory alloys show metamagnetic behavior for a range of Co contents. The temperatures of the structural and magnetic transitions depend strongly on composition and atomic order degree, in such a way that combined composition and thermal treatment allows obtaining martensitic transformation between any magnetic state of austenite and martensite. This work presents a detailed analysis of the effect of atomic order on Ni-Co-Mn-Ga alloys through the evolution of structural and magnetic transitions after quench from high temperatures and during post-quest ageing. It is found that the way in which the atomic order affects the martensitic transformation temperatures and entropy depends on the magnetic order of austenite and martensite. The results can be explained assuming that improvement of atomic order decreases the free energy of the structural phases according to their magnetic order. However, it is assumed in this work that changes in the slope—that is, the entropy—of the Gibbs free energy curves are also decisive to the stability of the two-phase system. The experimental transformation entropy values have been compared with a phenomenological model, based on a Bragg–Williams approximation, accounting for the magnetic contribution. The excellent agreement obtained corroborates the magnetic origin of changes in transformation entropy brought about by atomic ordering.