Science.gov

Sample records for cofecu magnetic alloy

  1. Magnetic behavior of as-deposited and annealed CoFe and CoFeCu nanowire arrays by ac-pulse electrodeposition

    NASA Astrophysics Data System (ADS)

    Ramazani, A.; Almasi-Kashi, M.; Golafshan, E.; Arefpour, M.

    2014-09-01

    CoFe and CoFeCu self-organized alloy nanowires were grown into anodic aluminum oxide template by potentiostatic mode of ac-pulse electrodeposition technique and subsequently annealed at 580 °C. The influence of bath composition, off-time between pulses and annealing treatment on the Cu content, microstructure and magnetic properties of CoFeCu nanowire arrays have been discussed. Increasing the off-time between pulses decreased the coercivity and saturation magnetization of the CoFeCu nanowires due to substitution of Co and Fe with Cu atoms which resulted in electroless process. Coercivity and squareness of the annealed samples increased due to improvement of samples crystallinity. Magnetic measurements showed high perpendicular magnetic anisotropy of the nanowires with easy axis parallel to nanowires axis. X-ray diffraction results indicated that annealed CoFeCu nanowires were polycrystalline with two distinct CoFe and Cu phases.

  2. Microstructural and magnetic characterizations of CoFeCu electrodeposited in self-assembled mesoporous silicon

    NASA Astrophysics Data System (ADS)

    Fortas, G.; Haine, N.; Sam, S.; Gabouze, N.; Saifi, A.; Ouir, S.; Menari, H.

    2015-03-01

    Self-assembled mesoporous silicon with quasi-regular pore arrangements has been fabricated by the electrochemical anodization process in hydrofluoric acid solution. CoFeCu was electrodeposited in this structure from a bath containing sodium acetate as a complexing agent with a pH value of 5. The effect of current density on the morphology, the structure and the magnetic properties of CoFeCu deposit was studied by SEM, EDS, DRX and VSM. It has been shown that the morphology and structure of samples were strongly influenced by the current density and etching duration. The micrographs show the vertical and branched nanowires and also a discontinuous growth of wires. Further, the growth of a thick layer from the grain boundaries of released CoFeCu wires is produced. The magnetic hysteresis loops demonstrate that the CoFeCu nanowires exhibit easy magnetic axis perpendicular to the PS channels axis when the current density varied from 3 to 10 mA/cm2. Nevertheless, they reveal a no magnetic anisotropy of CoFeCu nanostructures deposited only in the outside of porous silicon, probably due to the vanishing the shape anisotropy.

  3. The effect of Fe content in electrodeposited CoFe/Cu multilayers on structural, magnetic and magnetoresistance characterizations.

    PubMed

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan; Safak, Mürşide; Karaagac, Oznur

    2010-11-01

    A series of CoFe/Cu multilayers were electrodeposited on Ti substrates from the electrolytes containing their metal ion under potentiostatic control, but the Fe concentration in the electrolytes was changed from 0.0125 M to 0.2 M. The deposition was carried out in a three-electrode cell at room temperature. The deposition of Cu layers was made at a cathode potential of -0.3 V with respect to saturated calomel electrode (SCE), while the ferromagnetic CoFe layers were deposited at -1.5 V versus SCE. The structural studies by X-ray diffraction revealed that the multilayers have face-centered-cubic structure. The magnetic characteristics of the films were investigated using a vibrating sample magnetometer and their easy-axis was found to be in film plane. Magnetoresistance measurements were carried out using the Van der Pauw method at room temperature with magnetic fields up to +/- 12 kOe. All multilayers exhibited giant magnetoresistance (GMR) and the GMR values up to 8% were obtained.

  4. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  5. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  6. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  7. Fluoride technology of obtaining REM magnetic alloys and master alloys

    NASA Astrophysics Data System (ADS)

    Sophronov, V. L.; Zhiganov, A. N.; Makaseev, Yu N.; Rusakov, I. Yu; Verkhoturova, V. V.

    2016-02-01

    Rare earth permanent magnets (REPM) based on neodymium-Fe-boron system are the most promising, since they have the highest magnetic and satisfactory mechanical characteristics. The paper covers physical-chemical principles and shows the results of experimental studies of the process of obtaining REM alloys and master alloys using fundamentally new fluoride technology based on ladle calciothermal REM fluorides and Fe reduction.

  8. Magnetic Characteristics of Two Metglas Alloys

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; SNS nEDM Collaboration

    2016-09-01

    Magnetic shielding is gaining greater significance as precision experiments become more sensitive, such as for the Spallation Neutron Source nEDM [neutron electric dipole moment] measurement. Targeting a sensitivity of 10-28 e-cm, the SNS nEDM collaboration minimizes magnetic shield gradients and magnetic noise with a superconducting lead shield and several shield layers that include using a Metglas layer as a primary component. Metglas is a thin ribbon of proprietary engineered alloy that comes in many varieties. One alloy with high (as cast) permeability is Metglas alloy 2705M, which is primarily composed of Cobalt. However, this alloy will activate under neutron radiation and is therefore unsuitable. However, another high-performance Metglas alloy, 2826 MB, contains only trace amounts of Cobalt. A study of the shielding characteristics of the two alloys was performed, paying close attention to field oscillation frequency and magnitude.

  9. Controlling magnetic interfaces using ordered surface alloys

    NASA Astrophysics Data System (ADS)

    Ji, Chenlu; Wang, Zhe; Wu, Qiang; Huang, Li; Altman, M. S.

    2016-10-01

    We have investigated the growth and magnetic properties of Fe thin films on the clean W(100) surface and W(100)-M c(2 × 2) (M =Cu , Ag, Au) surface alloy substrates. The influence of the interface on magnetism is assessed experimentally by studying sensitive threshold behavior in magnetic ordering using spin-polarized low-energy electron microscopy. The onset of ferromagnetic order that occurs with increasing film thickness at room temperature due to finite-sized scaling of the Curie temperature varies reproducibly among films on W(100) and the surface alloys. Magnetic moments and exchange coupling constants of the magnetic ground states are also determined theoretically for films with ideal interfaces by first-principles density functional theory calculations. These microscopic quantities are consistently enhanced in Fe films on the noble metal-induced surface alloys compared to their values in films on the clean W(100) surface. We attribute the systematic variation of magnetic onset observed experimentally to the competition between the intrinsically enhanced magnetic coupling and moments on the surface alloy substrates and several extrinsic factors that could suppress magnetic ordering, including intermixing, substrate and film roughness, and surface alloy disorder. Tendencies for intermixing are explored theoretically by determining the energy barrier for noble metal segregation. Despite these possible extrinsic effects, the results suggest that the use of the broad class of ordered surface alloys as alternative substrates may offer greater opportunities for manipulating thin film magnetism.

  10. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  11. Magnetic Phases in Amorphous Alloys.

    NASA Astrophysics Data System (ADS)

    Mazumdar, Prosenjit

    In magnetic amorphous alloy with competiting exchange interactions, there exists a multicritical point (MCP) in the temperature (T) vs. concentration (x) phase diagram (x(,c), (theta)(,c)). In the present work, the static (equilibrium) magnetic response near the MCP is thoroughly investigated using low, d.c. fields (B(,a) < 10 Oe) in two systems of alloys: (I) Fe(,x)Ni(,75-x)P(,16)B(,6)Al(,3) and (II) Fe(,x)Ni(,80-x)P(,14)B(,6). From the measurements of the reversible magnetization M(x, T, B(,a)), the following notable results are found: (1) The phase diagram exhibits a non-montonic FM-SG transition line (i.e. T(,f)'s) in both the systems. (2) There is a dramatic change in the magnetic response as x goes across x(,c). (3) The magnetization collapses as M(,P) (TURN) (x - x(,c))('0.3(+OR-)0.1) when x (--->) x(,c)('+). (4) The peak susceptibility diverges as (chi)(,P) (TURN) (x(,c) - x)('-1.5(+OR-)0.2) when x (--->) x(,c)('-). (5) The results (2), (3), and (4) are highly suggestive of a percolation transition in the magnetic network at the critical concentration for ferromagnetism (i.e. x(,c)). (6) Dramatic changes in the transition temperatures and a perceptible shift in x(,c) are observed when normal boron is replaced by enriched boron ((TURN)100% B('11)) in the series (I) samples. (7) The non-linear susceptibility ((chi)(,H)) exhibits the expected divergence at T(,g) with 'universal' exponents in concentrated spin glasses. (8) In the latter, a divergence in the linear susceptibility ((chi)(,o)) is observed for the first time. This is attributed to the close proximity of the ferromagnetic phase at x(,c). The study of the irreversible moment M(,i) (x, T, B(,a)) reveals the following: (9) Depending on the various methods of preparation, it is possible to generate states with different values of M(,i) at low T, all of which are stable (metastable) in time. This implies non -ergodic behavior. (10) For re-entrants (x > x(,c)), the amount of freezing achieved viz. M

  12. Reduction Expansion Synthesis for Magnetic Alloy Powders

    DTIC Science & Technology

    2015-12-01

    21 1. Preparation of Precursors ...19 Magnetic Agglomeration of AlNiCo Alloys..............................................20 Figure 9. Metal Powder Precursors in Mortar...Prior to Mixing .................................22 Figure 10. Precursor Slurry in Alumina Boat for Heating ..........................................23

  13. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  14. Flow Caster Produces Custom Alloy Magnetic Ribbon

    NASA Image and Video Library

    2016-12-21

    NASA Glenn’s large-scale, 5 kg planar flow caster cools a vat of molten metallic alloy, producing a magnetic ribbon that spouts into a collection bin. The caster has the ability to produce a magnetized ribbon that measures up to one mile long and 50 mm wide to support NASA’s hybrid electric aircraft propulsion and power management work.

  15. Hyperfine magnetic fields in substituted Finemet alloys

    NASA Astrophysics Data System (ADS)

    Brzózka, K.; Sovák, P.; Szumiata, T.; Gawroński, M.; Górka, B.

    2016-12-01

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  16. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  17. Joint properties of cast Fe-Pt magnetic alloy laser welded to gold alloys.

    PubMed

    Watanabe, Ikuya; Nguyen, Khoi; Benson, P Andrew; Tanaka, Yasuhiro

    2006-01-01

    This study investigated the joint properties of a cast Fe-Pt magnetic alloy (Fe-36 at % Pt) laser welded to three gold alloys. The gold alloys used were ADA Type II and Type IV gold alloys, and an Ag-based (Ag-Au) gold alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared for each alloy. After the cast Fe-Pt plates were heat treated, they were butted against each of the three alloys and then laser welded with Nd:YAG laser at 200 V. Homogeneously welded specimens were also prepared for each alloy. Tensile testing was conducted at a crosshead speed of 1 mm/min. Failure load (N) and elongation (%) were recorded. After tensile testing, the fractured surfaces were examined with the use of SEM. The failure-load values of the group of alloys welded homogeneously were ranked in the order of: Ag-Au alloy > Type IV alloy > Type II alloy > Fe-Pt alloy. The Type IV alloy welded to Fe-Pt alloy had the highest failure-load value among the three alloys tested. The elongation results tended to follow a similar pattern. The results of this study indicated that Type IV gold alloy is a suitable alloy for metal frameworks to which cast Fe-Pt magnetic alloy is laser welded.

  18. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1999-01-01

    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.

  19. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Corell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1998-01-01

    The objective of this study is to conduct the Earth-based research sufficient to successfully propose a flight experiment (1) to experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in conductive melts as this applies to the bulk growth of solid solution semiconducting materials in the reduced gravitational levels available in low Earth orbit and (2) to assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during space processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system was chosen because it has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit high growth rates compared to many other commonly studied alloy semiconductors. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. Some compositional anomalies observed by us in magnetic grown crystals can only be explained by TEMC; this has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface.

  20. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    NASA Astrophysics Data System (ADS)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  1. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zheng, Zhou; Xu, Jing; Wang, Yan

    2014-04-01

    In this paper, the effects of milling duration and composition on the microstructure and magnetic properties of equi-atomic FeSiBAlNi and FeSiBAlNiNb high entropy alloys during mechanical alloying have been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy and alternating gradient magnetometry. The amorphous high entropy alloys have been successfully fabricated using the mechanical alloying method. The results show that the Nb addition prolongs the milling time for the formation of the fully FeSiBAlNi amorphous phase and decreases the glass forming ability. However, FeSiBAlNiNb amorphous high entropy alloy has the higher thermal stability and heat resisting properties. Moreover, the as-milled FeSiBAlNi(Nb) powders are soft-magnetic materials indicated by their low coercivity. The saturation magnetization of the as-milled FeSiBAlNi(Nb) powders decreases with prolonging of the milling time and shows the lowest value when the amorphous high entropy alloys are formed. It suggests that the as-milled products with solid solution phases show the better soft-magnetic properties than those with fully amorphous phases. The Nb addition does not improve the soft-magnetic properties of the FeSiBAlNi high entropy alloys. Rather, both amorphous high entropy alloys have similar soft-magnetic properties after a long milling time.

  2. Galvanic corrosion between dental precious alloys and magnetic stainless steels used for dental magnetic attachments.

    PubMed

    Takahashi, Noriko; Takada, Yukyo; Okuno, Osamu

    2008-03-01

    In this study, we examined the corrosion behavior of dental precious alloys and magnetic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, used for dental magnetic attachments. Their galvanic corrosion behavior was evaluated from the viewpoint of corrosion potentials when they were in contact with each other. Rest potentials of the precious alloys were constantly higher than those of magnetic stainless steels. Since most gold alloys raised the corrosion potential more significantly than silver alloys did, silver alloys seemed to be better suited than gold alloys for combination with magnetic stainless steels. However, all corrosion potential values were sufficiently lower than the breakdown potentials of the stainless steels and existed within their passive regions. Based on the findings of this study, SUS XM27 and SUS 447J1--which exhibited higher breakdown potentials than SUS 444--emerged as the preferred choices for combination with gold alloys.

  3. Magnetic properties of the binary Nickel/Bismuth alloy

    NASA Astrophysics Data System (ADS)

    Keskin, Mustafa; Şarlı, Numan

    2017-09-01

    Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  4. Magnetic anisotropy of FeGa alloys

    NASA Astrophysics Data System (ADS)

    Rafique, Sadia; Cullen, James R.; Wuttig, Manfred; Cui, Jun

    2004-06-01

    Cubic magnetocrystalline anisotropy constants, K1 and K2, for Fe1-xGax alloys were measured using magnetization curves with x=0.05, 0.125, 0.14, 0.18, and 0.20. Thin circular (110) disks all with <100>, <110>, and <111> in the plane of the disk were used to measure K1 and K2. K1 was also measured with (100) circular disks. K1 for 5 at. % Ga content was found to be larger than that of pure Fe. (All compositions mentioned hereafter are atomic percents.) K1 and K2 both drop gradually up to 18 at. % Ga substitution. Then there is a sharp drop in the magnitude of both constants. K2 was found to be equal to -9K1/4 and the <110> and <111> directions were equally hard magnetically for all compositions considered in this study. Calculation of the anisotropy energy density verifies this result. K1 measured from both (110) and (100) disks was reasonably consistent.

  5. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    SciTech Connect

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A.

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  6. Magnetic-doped alloys with very large Seebeck coefficients

    NASA Technical Reports Server (NTRS)

    Sellmeyer, D. J.; Zagarins, J.

    1972-01-01

    Preliminary results of this study show that, based on selection of magnetic solute and nonmagnetic solvent from periodic table, alloys having Seebeck coefficients approaching 100 micron V/K can be obtained.

  7. Magnetic properties of rapidly quenched Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Rossiter, P. L.; Jago, R. A.; Jenkins, B. M.

    1983-01-01

    The magnetic properties of Fe-29 at.% Ni and Fe-50 at.% Ni alloys prepared by chill block melt spinning (CMBS) have been determined and compared with those of the bulk alloys. It has been found that atomic diffusion is enhanced by CMBS and that magnetic properties can change markedly even after annealing at relatively low temperatures. The increases in T c observed are attributed to heterogeneous short range atomic ordering.

  8. Composition dependence of magnetic properties in perpendicularly magnetized epitaxial thin films of Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Mizukami, S.; Kubota, T.; Wu, F.; Zhang, X.; Miyazaki, T.; Naganuma, H.; Oogane, M.; Sakuma, A.; Ando, Y.

    2012-01-01

    Mn-Ga binary alloys show strong magnetism and large uniaxial magnetic anisotropy even though these alloys do not contain any noble, rare-earth metals or magnetic elements. We investigate the composition dependence of saturation magnetization MS and uniaxial magnetic anisotropy Ku in epitaxial films of MnxGa1-x alloys (x˜0.5-0.75) grown by magnetron sputtering. The MS values decrease linearly from approximately 600 to 200 emu/cm3 with increasing x, whereas the Ku values decrease slightly from approximately 15 to 10 Merg/cm3 with increasing x. These trends are distinct from those for known tetragonal hard magnets obtained in a limited composition range in Mn-Al and Fe-Pt binary alloys. These data are analyzed using a localized magnetic moment model.

  9. A new class of natural magnetic materials - The ordering alloys

    NASA Technical Reports Server (NTRS)

    Wasilewski, Peter

    1988-01-01

    It is shown that tetrataenite (approximately FeNi), found in many meteorites, and Josephinite (approximately FeNi3), found in many serpentinized peridotites and possibly in Allende, are atomically ordered alloys. Data are presented, showing magnetic hysteresis loops, coercivity-temperature behavior at cryogenic temperatures, and thermomagnetic curves, that show that these ordered magnetic materials have unique magnetic properties and do not fit the conventional rock magnetism paradigms represented by Fe3O4 serpentinites. The ordered state is characterized by induced magnetic anisotropy, reaching the extreme for the tetragonal truly uniaxial anisotropy in FeNi. It is suggested that these ordered magnetic alloys should be considered a new class of natural magnetic materials.

  10. Magnetic losses in Si-Fe alloys for avionic applications

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Pompei, M.; Quondam Antonio, S.

    2017-05-01

    This paper presents an experimental analysis of the rotational power losses of the magnetic materials of transformers, motors and actuators used in avionic environment. A large frequency range is investigated using a suitable experimental test frame developed to measure the power losses for a circular magnetization. The results about different silicon iron alloys with different textures and thickness are considered and compared.

  11. Magnetic properties of electrodeposited Ni‒P alloys with varying phosphorus content

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Fishgoit, L. A.; Chernavskii, P. A.; Safonov, V. A.; Filippova, S. E.

    2017-02-01

    The effect thermal treatment has on the magnetic properties (magnetization, saturation magnetization, and coercivity) of Ni‒P alloys prepared via electrodeposition is studied. The process of amorphous Ni‒P alloys devitrification is investigated by differential scanning calorimetry. The effects of chemical composition and thermal treatment on magnetic properties of the alloys are revealed.

  12. A Study of the Causes of Failure of Permanent Magnets from Cast Hard Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Kamenskaya, N. I.; Sein, V. A.; Zvereva, M. I.

    2017-07-01

    The microstructure and magnetic properties of permanent magnets fabricated from cast hard magnetic alloys of the Fe - Ni - Al system with cobalt addition of type YuNDK are studied. The causes of failure of such magnets in operation are determined. Recommendations are given for correcting the melting process and the modes of heat treatment of magnets in order to provide the required properties without disturbing the integrity of the magnets.

  13. Phase transformation and magnetic properties of Nd-Fe-V-Nb alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Cui, B. Z.; Sun, X. K.; Sui, Y. C.; Geng, D. Y.; Zhang, Z. D.

    2002-09-01

    The phase transformation and magnetic properties of the NdFe 11.35- xV xNb 0.65 ( x=0-1.35) alloys prepared by mechanical alloying (MA) have been studied. Phases of 2:17, 1:7 and 1:12 are formed in the as-annealed alloys with x=0, 0.3-0.7 and 1.0-1.35, respectively. With increasing V content in the NdFe 11.35- xV xNb 0.65 ( x=0.3-0.7) alloys, the Curie temperatures of the matrix 1:7 phases monotonically increase. Upon nitrogenation, with increasing V content, the intrinsic coercivity μ0Hc of the nitrided alloys monotonically increases. The increase becomes sharp at x=1.0 due to the formation of a great amount of Nd(Fe, V) 12N δ. The remanence Jr and the maximum magnetic energy product (BH) max of the nitrided alloys monotonically decrease with increasing V content. The 1:12 phases are formed in all the NdFe 11- xNb xV 1 ( x=0, 0.3, 0.65, 1.0) alloys annealed at 850 oC for 20 min. With increasing Nb content, the crystallization of the 1:12 phase is improved and the relative volume fraction of the 1:12 phase tends to be higher. While μ0Hc of the nitrided alloys monotonically increase, and Jr and (BH) max of the nitrided alloys monotonically decrease. With increasing Nb content in the nitrided alloys, the average grain size of α-Fe decrease while the nitrogen content increases.

  14. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    NASA Astrophysics Data System (ADS)

    Buot, Felix A.; Otadoy, Roland E. S.; Rivero, Karla B.

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  15. Fundamental magnetic studies of iron-rare-earth-metalloid alloys

    SciTech Connect

    Hadjipanayis, G.C.

    1990-01-01

    Objective was to understand strongly magnetic rare earth-transition metal compounds and alloys, with potential use as hard or semi-hard permanent magnet materials. Efforts were focused on three areas: search for Fe-rich new phases and compounds with high magnetization, anisotropy, and Curie temperature; use of rapid solidification (melt-spinning) to produce fine grain and high coercivity; and relation of hard magnetic properties to microstructure and domain structure. Coercivities of up to 10 to 15 kOe have been produced.

  16. Magnetic Domains in Magnetostrictive Fe-Ga Alloys

    SciTech Connect

    Q. Xing; T.A. Lograsso

    2008-11-03

    Lorentz microscopy was applied to the observation of magnetic domains in iron-gallium (Fe-Ga) alloys. Results did not show any link between the magnetic domains and the magnetostriction enhancement by Ga addition, but did reveal that the drastic decrease in magnetostriction for Fe-31.2 at. % Ga was due to the presence of large scale precipitates. Magnetic domain features did not change in the alloys of A2, D0{sub 3}, A2+D0{sub 3}, A2+B2+D0{sub 3}, and A2+fine scale precipitates. Large scale precipitates within the slow-cooled Fe-31.2 at. % Ga affected both the distribution and wall motion of magnetic domains.

  17. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Alikhani, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2017-05-01

    Nanoscale magnetic alloy wires are being actively investigated, providing fundamental insights into tuning properties in magnetic data storage and processing technologies. However, previous studies give trivial information about the crossover angle of magnetization reversal process in alloy nanowires (NWs). Here, magnetic alloy NW arrays with different compositions, composed of Fe, Co and Ni have been electrochemically deposited into hard-anodic aluminum oxide templates with a pore diameter of approximately 150 nm. Under optimized conditions of alumina barrier layer and deposition bath concentrations, the resulting alloy NWs with aspect ratio and saturation magnetization (Ms) up to 550 and 1900 emu cm-3, respectively, are systematically investigated in terms of composition, crystalline structure and magnetic properties. Using angular dependence of coercivity extracted from hysteresis loops, the reversal processes are evaluated, indicating non-monotonic behavior. The crossover angle (θc) is found to depend on NW length and Ms. At a constant Ms, increasing NW length decreases θc, thereby decreasing the involvement of vortex mode during the magnetization reversal process. On the other hand, decreasing Ms decreases θc in large aspect ratio (>300) alloy NWs. Phenomenologically, it is newly found that increasing Ni content in the composition decreases θc. The angular first-order reversal curve (AFORC) measurements including the irreversibility of magnetization are also investigated to gain a more detailed insight into θc.

  18. Hexaferrite magnetic materials prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ding, J.; Maurice, D.; Miao, W. F.; McCormick, P. G.; Street, R.

    1995-02-01

    The structure and properties of hexaferrites in the form of MFe 12O 19 with M = Ba, Sr and Pb prepared by mechanical alloying and heat treatment have been studied. Coercivities of 6-7 kOe were measured for Ba- and Sr-hexaferrite powders. The high values of coercivities have been associated with small particle sizes (˜ 0.1 μm) resulting from the mechanical alloying and subsequent heat treatment. High-coercivity anisotropic samples have been synthesized using hot-pressing, with remanences of 70-75% of the saturation magnetisation being obtained.

  19. Accelerated discovery of new magnets in the Heusler alloy family

    PubMed Central

    Sanvito, Stefano; Oses, Corey; Xue, Junkai; Tiwari, Anurag; Zic, Mario; Archer, Thomas; Tozman, Pelin; Venkatesan, Munuswamy; Coey, Michael; Curtarolo, Stefano

    2017-01-01

    Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, TC, was estimated by a regression calibrated on the experimental TC of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed. PMID:28439545

  20. Accelerated discovery of new magnets in the Heusler alloy family.

    PubMed

    Sanvito, Stefano; Oses, Corey; Xue, Junkai; Tiwari, Anurag; Zic, Mario; Archer, Thomas; Tozman, Pelin; Venkatesan, Munuswamy; Coey, Michael; Curtarolo, Stefano

    2017-04-01

    Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, TC, was estimated by a regression calibrated on the experimental TC of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed.

  1. Structural and magnetic properties of nanocrystalline Fe-Co-Ni alloy processed by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Eskandari, Hossein; Mohammad-Hosseini, Vahid

    2016-01-01

    In this present work, a nanostructured iron-cobalt-nickel alloy with Fe50Co30Ni20 composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe3O4 crystalline phase.

  2. Magnetic properties and magnetic hardening mechansim of Pt-Co-B alloys

    NASA Technical Reports Server (NTRS)

    Qiu, Ning; Flanagan, F.; Wittig, James E.

    1994-01-01

    The intrinsic coercivity is found to be maximized in the Pt42Co45B13 ternary alloy which is undercooled and rapidly solidified (quenched using a 70 m/s wheel speed after undercooling), and then annealed (800 C for 2400 min). The same alloy, processed at slower cooling rates and annealed in the same way, has a much larger scale microstructure and a much lower resulting magnetic coercivity. The microstructure which would optimize the coercitvity of this coercivity of this ternary alloy is a completely ordered L1(sub zero) Pt-Co matrix with a submicron magnetic single-domion Co-boride precipitate. The L1(sub zero) phase is highly anistropic magnetically while the Co-boride precipate is somewhat less so. Annealing treatments designed to produced single-domain Co-boride precipitates enhance the coercivity. This suggests that the refined microstructures is responsible for the high coercivities found in the rapidly solidified and annealed alloy. The magnetic domain wall thickness for a Co-boride precipitate is determined from both experimental observation and theoretical calculation in order to evaluate its influence on the coercivity of the alloy. The effects of the pinning of domain walls and the barrier to the nucleation of reverse domains on the coercivity are discussed. Both microstrucutral analysis and theoretical calculation indicate that the high coercivities in the Pt42Co45B13 alloy are due to the difficult nucleation of reverse magnetic domains.

  3. Magnetic properties and magnetic hardening mechansim of Pt-Co-B alloys

    NASA Technical Reports Server (NTRS)

    Qiu, Ning; Flanagan, F.; Wittig, James E.

    1994-01-01

    The intrinsic coercivity is found to be maximized in the Pt42Co45B13 ternary alloy which is undercooled and rapidly solidified (quenched using a 70 m/s wheel speed after undercooling), and then annealed (800 C for 2400 min). The same alloy, processed at slower cooling rates and annealed in the same way, has a much larger scale microstructure and a much lower resulting magnetic coercivity. The microstructure which would optimize the coercitvity of this coercivity of this ternary alloy is a completely ordered L1(sub zero) Pt-Co matrix with a submicron magnetic single-domion Co-boride precipitate. The L1(sub zero) phase is highly anistropic magnetically while the Co-boride precipate is somewhat less so. Annealing treatments designed to produced single-domain Co-boride precipitates enhance the coercivity. This suggests that the refined microstructures is responsible for the high coercivities found in the rapidly solidified and annealed alloy. The magnetic domain wall thickness for a Co-boride precipitate is determined from both experimental observation and theoretical calculation in order to evaluate its influence on the coercivity of the alloy. The effects of the pinning of domain walls and the barrier to the nucleation of reverse domains on the coercivity are discussed. Both microstrucutral analysis and theoretical calculation indicate that the high coercivities in the Pt42Co45B13 alloy are due to the difficult nucleation of reverse magnetic domains.

  4. Modelling the phase diagram of magnetic shape memory Heusler alloys

    NASA Astrophysics Data System (ADS)

    Entel, P.; Buchelnikov, V. D.; Khovailo, V. V.; Zayak, A. T.; Adeagbo, W. A.; Gruner, M. E.; Herper, H. C.; Wassermann, E. F.

    2006-03-01

    We have modelled the phase diagram of magnetic shape memory alloys of the Heusler type by using the phenomenological Ginzburg-Landau theory. When fixing the parameters by realistic values taken from experiment we are able to reproduce most details of, for example, the phase diagram of Ni2+xMn1-xGa in the (T, x) plane. We present the results of ab initio calculations of the electronic and phonon properties of several ferromagnetic Heusler alloys, which allow one to characterize the structural changes associated with the martensitic instability leading to the modulated and tetragonal phases. From the ab initio investigations emerges a complex pattern of the interplay of magic valence electron per atom numbers (Hume-Rothery rules for magnetic ternary alloys), Fermi surface nesting and phonon instability. As the main result, we find that the driving force for structural transformations is considerably enhanced by the extremely low lying optical modes of Ni in the Ni-based Heusler alloys, which interfere with the acoustical modes enhancing phonon softening of the TA2 mode. In contrast, the ferromagnetic Co-based Heusler alloys show no tendency for phonon softening.

  5. Magnetic properties of Co-Cu metastable solid solution alloys

    NASA Astrophysics Data System (ADS)

    Fan, Xu; Mashimo, Tsutomu; Huang, Xinsheng; Kagayama, Tomoko; Chiba, Akira; Koyama, Keiichi; Motokawa, Mitsuhiro

    2004-03-01

    Metastable solid solution alloy powders and bulk alloys in the cobalt(Co)-copper(Cu) (10 90 mol % Co) system, which is an almost immiscible system at the ambient state, were prepared by mechanical alloying (MA) and shock compression. All MA-treated powders showed the x-ray diffraction patterns of a single phase of fcc structure. The lattice parameter increases with Cu concentration and is fundamentally on the line with Vegard’s law. The magnetization curves of CoxCu100-x (x=20 80) metastable bulk alloys at room temperature showed ferromagnetism, while the one of Co10Cu90 system showed paramagnetism. The saturation magnetic moment (Ms) curve versus electron numbers per atom at 0 K was found to be similar to the Slater-Pauling curves of other transition-metal binary systems and decreased with increasing Cu concentration and approached zero at about 28.8 electrons per atom. The magnetoresistance ratio at room temperature increased with Cu content in the ferromagnetic region, while the one of the paramagnetic Co10Cu90 alloy was negligibly small.

  6. Production of Ni100-x-yMnxGay magnetic shape memory alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hatchard, T. D.; Thorne, J. S.; Farrell, S. P.; Dunlap, R. A.

    2008-11-01

    Powdered samples of a variety of compositions of the off-stoichiometric magnetic shape memory alloy Ni2MnGa have been prepared by mechanical alloying from elemental precursors. As-milled powders are highly disordered and show very weak ferromagnetic order. Annealing produces a well-ordered L21 Heusler phase with high saturation magnetization. Annealing results in a consistent loss of Ga of about 1-4 at.% (of total sample composition). Structural and magnetic properties of a range of compositions have been measured and are reported in the present work. A magnetically oriented metal-polymer composite has been prepared by mixing the powdered sample in epoxy and curing under an externally applied magnetic field. The magnetic anisotropy energy of the composite sample has been measured and found to be about 20% of the value expected for a single crystal of similar composition. Possibilities for increasing the magnetic anisotropy of metal-polymer composites are discussed. Results are discussed in terms of the effects of structural and chemical order on the resulting magnetic properties in the context of a model based on indirect exchange interactions.

  7. Cobalt-Free Permanent Magnet Alloys.

    DTIC Science & Technology

    1984-10-01

    CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE October 1984 13. NUMBER OF PAGES 62 14. MONITORING AGENCY NAME & ADDRESS(II different from...1:2u c-d ole: its 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different , froal Ripp t).. - le. SUPPLEMENTARY NOTES 0 • 19. KEY...Curie Temperature in the Nickel ii Substituted Y2 Fe 1 7 Alloys. 4 Fluid Convection Cathode set-up used for 15 powder production. 5 Sketch of fluid

  8. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    PubMed Central

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg−1 K−1 or 22 J kg −1 K−1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed. PMID:28091551

  9. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys.

    PubMed

    Bruno, N M; Wang, S; Karaman, I; Chumlyakov, Y I

    2017-01-16

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg(-1) K(-1) or 22 J kg (-1) K(-1), and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  10. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg‑1 K‑1 or 22 J kg ‑1 K‑1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  11. Magnetically driven three-dimensional manipulation and inductive heating of magnetic-dispersion containing metal alloys

    PubMed Central

    Calabro, Joshua D.; Huang, Xu; Lewis, Brian G.; Ramirez, Ainissa G.

    2010-01-01

    Fundamental to the development of three-dimensional microelectronic fabrication is a material that enables vertical geometries. Here we show low-melting-point metal alloys containing iron dispersions that can be remotely manipulated by magnetic fields to create vertical geometries and thus enable novel three-dimensional assemblies. These iron dispersions enhance the mechanical properties needed for strong, reliable interconnects without significantly altering the electrical properties of the alloys. Additionally, these iron dispersions act as susceptors for magnetic induction heating, allowing the rapid melting of these novel alloys at temperatures lower than those usually reported for conventional metal alloys. By localizing high temperatures and by reducing temperature excursions, the materials and methods described have potential in a variety of device fabrication applications. PMID:20194786

  12. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  13. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  14. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  15. Electron Mobility in Wide-Gap Semiconducting Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Kuivalainen, P.; Sinkkonen, J.

    1982-12-01

    Electrical transport in wide band-gap semimagnetic semiconductos is studied by calculating the charge carrier relaxation times due to various scattering mechanisms. Special attention is paid to the spin disorder and alloy scatterings caused by the randomly distributed magnetic ions. The numerical estimations show that in the ferromagnetic case such as Sr1-cEucS the spin disorder scattering may dominate near the magnetic transition temperature even at concentrations C < 1.0. In antiferromagnetic semiconductors such as Cd1-cMncTe the spin disorder scattering seems to be masked by other scattering mechanisms, i.e., alloy scattering, deformation potential scattering and polar optical phonon scattering. The relation of the calculated mobilities to the results of the photomagnetoresistance measurements on Cd1-cMncTe is discussed.

  16. Magnetic properties in MnBi alloy of small crystallites for permanent magnet devices

    SciTech Connect

    Sharma, S. K.; Prakash, H. R.; Ram, S.

    2016-05-06

    A rare-earth free alloy like MnBi is a potential candidate for developing small magnets and devices. In a commercially viable method, a MnBi alloy was prepared by arc melting Mn and Bi metals in a 1:1 ratio. In terms of the X-ray diffraction a single crystalline MnBi phase is formed of the as prepared alloy. FESEM images delineate thin MnBi layers (25 – 40 nm thickness) of average EDX composition throughout the specimen. A large coercivity 5.501 kOe (6.5 emu/g magnetization) observed in an M-H at 300 K is decreased to 0.171 (9.0 emu/g magnetization) at 100 K in decreasing upon cooling.

  17. Abnormal magnetization behaviors in Sm-Ni-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Yang, W. Y.; Zhang, Y. F.; Zhao, H.; Chen, G. F.; Zhang, Y.; Du, H. L.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Yang, Y. C.; Yang, J. B.

    2016-06-01

    The magnetization behaviors in Sm-Ni-Fe-Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu5-type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu5-type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (Hcm) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10-15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion.

  18. First principles statistical mechanics of alloys and magnetism

    NASA Astrophysics Data System (ADS)

    Eisenbach, Markus; Khan, Suffian N.; Li, Ying Wai

    Modern high performance computing resources are enabling the exploration of the statistical physics of phase spaces with increasing size and higher fidelity of the Hamiltonian of the systems. For selected systems, this now allows the combination of Density Functional based first principles calculations with classical Monte Carlo methods for parameter free, predictive thermodynamics of materials. We combine our locally selfconsistent real space multiple scattering method for solving the Kohn-Sham equation with Wang-Landau Monte-Carlo calculations (WL-LSMS). In the past we have applied this method to the calculation of Curie temperatures in magnetic materials. Here we will present direct calculations of the chemical order - disorder transitions in alloys. We present our calculated transition temperature for the chemical ordering in CuZn and the temperature dependence of the short-range order parameter and specific heat. Finally we will present the extension of the WL-LSMS method to magnetic alloys, thus allowing the investigation of the interplay of magnetism, structure and chemical order in ferrous alloys. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and it used Oak Ridge Leadership Computing Facility resources at Oak Ridge National Laboratory.

  19. Magnetism, elasticity, and magnetostriction of FeCoGa alloys

    NASA Astrophysics Data System (ADS)

    Dai, Liyang; Cullen, James; Wuttig, Manfred; Lograsso, T.; Quandt, Eckhard

    2003-05-01

    It is known that the substitution of Co for Fe gives rise to increases in magnetization and Curie temperature, not only in the bcc metals, but also in intermetallic compounds and alloys as well. With the expectation that this is the case in Co-substituted FeGa, we measured magnetization, Curie temperature, magnetostriction and elastic constants of a series of polycrystalline FeCoGa ternary alloys with up to 17% Ga and up to 10% Co. The magnetostriction at saturation for Fe0.93-xCo.07Gax increases to 90 ppm for x=0.17. For larger percentages of Co, the rise in magnetostriction is not as sharp as it is in the 7% case. The shear elastic modulus decreases with Ga, again in keeping with the results for FeGa. The magnetostriction and the elastic constants are sensitive to sample preparation for the high-Ga material. We conclude that the substitution of small (<0.10) percentages of Co for Fe in bcc FeCoGa alloys enhances the magnetic and magnetostrictive properties of the parent FeGa material.

  20. Magnetic properties of mechanically alloyed Mn-Al-C powders

    NASA Astrophysics Data System (ADS)

    Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.

    2011-01-01

    We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.

  1. Stability of the magnetomechanical problem in magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Chatzigeorgiou, George; Haldar, Krishnendu; Lagoudas, Dimitris C.

    2010-04-01

    In this work we study the unstable phenomena that occur on Magnetic Shape Memory Alloys (MSMAs) during compression tests. Solving the coupled magnetomechanical problem we observe that during the reorientation process the material presents strong non-uniformity, in the form of localized zones, in the distribution of the magnetic, the stress and the strain field. This non-uniformity is due to loss of ellipticity of the coupled problem during the martensitic reorientation and affects significantly the reorientation process. The identification of the stability conditions of the magnetomechanical problem is achieved by performing stability analysis.

  2. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    SciTech Connect

    Lavrentiev, M. Yu. Nguyen-Manh, D.; Dudarev, S. L.; Wróbel, J. S.; Ganchenkova, M. G.

    2016-07-28

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rather than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.

  3. Magnetization of nano-fine particles of Pd/Ni alloys

    NASA Astrophysics Data System (ADS)

    Nunomura, N.; Teranishi, T.; Miyake, M.; Oki, A.; Yamada, S.; Toshima, N.; Hori, H.

    1998-01-01

    In order to investigate the giant magnetic moment problem in nano-fine Pd alloys particles, enough amount of Pd/Ni fine particles with quite narrow diameter distribution have been prepared by chemical method. The magnetization of Pd/Ni alloy ultrafine particles has been systematically investigated by using a SQUID magnetometer. The magnetization remarkably increases above the concentration of 8% of Ni. This result indicates the giant moment in the ultrafine Pd/Ni alloy particles.

  4. New Fe-Co-Ni-Cu-Al-Ti Alloy for Single-Crystal Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Bazhenov, V. E.; Moiseev, A. V.; Kireev, A. V.

    2016-03-01

    A new alloy intended for single-crystal permanent magnets has been suggested. The new alloy has been designed based on the well-known Fe-Co-Ni-Cu-Al-Ti system and contains to 1 wt % Hf. The alloy demonstrates an enhanced potential ability for single-crystal forming in the course of unidirectional solidification of ingot. Single-crystal permanent magnets manufactured from this alloy are characterized by a high level of magnetic properties. When designing the new alloy, computer simulation of the phase composition and calculations of solidification parameters of complex metallic systems have been performed using the Thermo-Calc software and calculation and experimental procedures based on quantitative metallographic analysis of quenched structures. After the corresponding heat treatment, the content of high-magnetic phase in the alloy is 10% higher than that in available analogous alloys.

  5. Magnetic x-ray linear dichroism in the photoelectron spectroscopy of ultrathin magnetic alloy films

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Goodman, K. W.; Mankey, G. J.; Willis, R. F.; Denlinger, J. D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    The magnetic structure of nanoscale alloy films has been probed using the magnetic x-ray linear dichroism in photoelectron spectroscopy. FeNi and CoFe epitaxial films were grown on Cu(001), in situ and using molecular beam epitaxy techniques. The magnetic x-ray linear dichroism measurements were made at the Spectromicroscopy Facility of the Third Generation Advanced Light Source. Because soft x-rays were used to generate photoemission from the 3p core levels, both elemental selectivity and magnetic sensitivity were achieved simultaneously.

  6. Structural and magnetic properties of samarium iron and related alloys

    NASA Astrophysics Data System (ADS)

    Meacham, Brian Eugene

    There were three research objectives. The first objective was to determine what controls the structural scale of the microstructure in Sm-Fe alloys. The second objective was to study the morphological development of antiphase domains. The last objective was to determine the effect of the microstructural state on the coercivity and magnetization reversal of Sm2Fe 17Nx. The as-solidified alloys had large grains with irregular shape but the metal carbide modified alloys had a refinement of the microstructural scale and improved homogeneous grain shape. The magnitude of the scale reduction depended on the additives. It was determined that an important factor for the refinement was the glass forming ability of the alloy composition. The evidence points to solute segregation at the solidification boundary as the dominant mechanism that controls the grain size. The as-solidified binary alloy had significant strain. As annealing occurs the development of antiphase domains causes the reduction of strain, which reduces the defect density. A similar morphology occurs in the TiC modified alloy. It was discovered that order pattern in the antiphase domains has a twin symmetry. This is a new structural feature that has not been seen in antiphase domains before and is called rebel ordering. The recoil data showed that nucleation of reversed domains causes a peak in the remanent susceptibility curve. However, when domain wall pinning occurs there are fluctuations. It was discovered that as the loop shape improves, the separation between the coercivity and the peak center decreases linearly with either the squareness ratio or the fullness factor. The nitrided binary alloy coercivity decreases with increasing ordering. However, there is a narrow order parameter region where the antiphase structure effectively pins domain walls resulting in an enhancement of the coercivity. The microstructural scale affects the coercivity. The single domain limit was determined to be about 300 nm

  7. Magnetic Properties of MnFe2Ga Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Elgendy, Ahmed A.; Salehi-Fashami, Mohammad; Sellmyer, David; Hadjipanayis, George

    2015-03-01

    Recently, MnFe2Ga Heusler alloys have attracted significant attention due to their interesting physical properties such as large magnetic-field-induced strain, giant magnetocaloric effects,large magnetoresistance, and exchange bias behavior. These properties make them promising candidates for various practical applications in the field of smart materials, magnetic refrigeration and spintronics. In this work, we prepared MnFe2Ga alloys by melt-spinning and sputtering and studied the structural and magnetic properties. The melt-spun ribbons were prepared with a wheel speed of 30 m/s. The ribbons were annealed at different temperatures for 1 hour and grinded to make fine powders. The grinded powders were also used to make the target that is used in the cluster gun for the fabrication of MnFe2Ga nanoparticles. The structure of the as made, annealed ribbons, and powders displayed a face-centered-cubic structure. The microstructure of the as-made ribbons showed equiaxed grains with an average size of 3-5 μm while the annealed ribbons showed bigger grains with small particles covering homogeneously their surface. The magnetic properties show an enhancement of magnetization while coercivity remains the same with values M(3T) and HC of 85 emu/g and 150 Oe, respectively Transmission electron microscopy with elemental mapping is currently underway to determine the structure and composition of the surface nanoparticles. The work was supported by DOE-BES-DMSE (Grant No. DE-FG02-04ER4612).

  8. Applications of the directional solidification in magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Liu, J.; Hu, Q. D.; Liu, Q. H.; Karaman, I.; Li, J. G.

    2016-03-01

    A zone melting liquid metal cooling (ZMLMC) method of directional solidification was applied to prepare highly-oriented Ni52Fe17Ga27Co4 magnetic shape memory alloys. At high temperature gradient and low growth velocity, the well-developed preferred orientation for coarse columnar crystals was obtained. Such a structure leads to a large complete pseudoelastic recovery of 5% at 348 K. Moreover, the pseudoelastic behaviours and the kinetics of the martensitic transformation (MT) are significantly affected by the intersection angle between the loading direction and the grain boundaries.

  9. Magnetic properties of ball milled Fe-40Al at.% alloys

    SciTech Connect

    Amils, X.; Nogues, J.; Surinach, S.; Baro, M.D.; Munoz, J.S.

    1998-07-01

    A direct correlation between the lattice parameter and the saturation magnetization, during the disordering (ball milling) and posterior reordering (annealing) processes, has been found in Fe-40Al At.% compounds. These results indicate that the paramagnetic-ferromagnetic-paramagnetic transitions induced by ball milling and subsequent annealing could be related to the changes in volume, and not only to nearest neighbors effects as is commonly assumed. Moreover, these alloys have been found to become spin glass at low temperatures, independently of their structural state (ordered or disordered).

  10. [Electrochemical behavior of 3 magnetic alloys used for prosthetic retention].

    PubMed

    Pezzoli, M; Angelini, E; Zucchi, F; Re, G

    1989-06-01

    By means of potentiodynamic techniques the electrochemical behaviour of a ferromagnetic alloy Pd-Co and three types of caps (AISI 316 stainless steel, Pd, Ti) for permanent Sm-Co magnets has been investigated in artificial saliva and in Ringer's solution. In addition short-circuit measurements were performed on several couples Pd-Co/AISI 316, Ti, Pd caps. From our findings a good corrosion resistance of all the materials is evidenced in artificial saliva. In Ringer's solution, which is more aggressive, Pd-Co shows no tendency to passivity.

  11. Critical adsorption on defects in ising magnets and binary alloys

    PubMed

    Hanke

    2000-03-06

    Long-range correlations in a magnet close to its critical point or in a binary alloy close to a continuous order-disorder transition can substantially enhance the effect of local perturbations. It is demonstrated using a position-space renormalization procedure that quasi-one-dimensional defects which break the symmetry of the order parameter have pronounced effects: They cause long-range critical adsorption profiles and give rise to new universal critical exponents, which are identified and calculated using field-theoretical methods.

  12. Critical Adsorption on Defects in Ising Magnets and Binary Alloys

    NASA Astrophysics Data System (ADS)

    Hanke, Andreas

    2000-03-01

    Long-range correlations in a magnet close to its critical point or in a binary alloy close to a continuous order-disorder transition can substantially enhance the effect of local perturbations. It is demonstrated using a position-space renormalization procedure that quasi-one-dimensional defects which break the symmetry of the order parameter have pronounced effects: They cause long-range critical adsorption profiles and give rise to new universal critical exponents, which are identified and calculated using field-theoretical methods.

  13. Magnetism and ultrafast magnetization dynamics of Co and CoMn alloys at finite temperature

    NASA Astrophysics Data System (ADS)

    Chimata, R.; Delczeg-Czirjak, E. K.; Szilva, A.; Cardias, R.; Kvashnin, Y. O.; Pereiro, M.; Mankovsky, S.; Ebert, H.; Thonig, D.; Sanyal, B.; Klautau, A. B.; Eriksson, O.

    2017-06-01

    Temperature-dependent magnetic experiments such as pump-probe measurements generated by a pulsed laser have become a crucial technique for switching the magnetization in the picosecond time scale. Apart from having practical implications on the magnetic storage technology, the research field of ultrafast magnetization poses also fundamental physical questions. To correctly describe the time evolution of the atomic magnetic moments under the influence of a temperature-dependent laser pulse, it remains crucial to know if the magnetic material under investigation has magnetic excitation spectrum that is more or less dependent on the magnetic configuration, e.g., as reflected by the temperature dependence of the exchange interactions. In this paper, we demonstrate from first-principles theory that the magnetic excitation spectra in Co in fcc, bcc, and hcp structures are nearly identical in a wide range of noncollinear magnetic configurations. This is a curious result of a balance between the size of the magnetic moments and the strength of the Heisenberg exchange interactions, that in themselves vary with configuration, but put together in an effective spin Hamiltonian results in a configuration-independent effective model. We have used such a Hamiltonian, together with ab initio calculated damping parameters, to investigate the magnon dispersion relationship as well as ultrafast magnetization dynamics of Co and Co-rich CoMn alloys.

  14. Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys

    NASA Astrophysics Data System (ADS)

    Kirilyuk, Andrei; Kimel, Alexey V.; Rasing, Theo

    2013-02-01

    This review discusses the recent studies of magnetization dynamics and the role of angular momentum in thin films of ferrimagnetic rare-earth-transition metal (RE-TM) alloys, e.g. GdFeCo, where both magnetization and angular momenta are temperature dependent. It has been experimentally demonstrated that the magnetization can be manipulated and even reversed by a single 40 fs laser pulse, without any applied magnetic field. This switching is found to follow a novel reversal pathway, that is shown however to depend crucially on the net angular momentum, reflecting the balance of the two opposite sublattices. In particular, optical excitation of ferrimagnetic GdFeCo on a time scale pertinent to the characteristic time of the exchange interaction between the RE and TM spins, i.e. on the time scale of tens of femtoseconds, pushes the spin dynamics into a yet unexplored regime, where the two exchange-coupled magnetic sublattices demonstrate substantially different dynamics. As a result, the reversal of spins appears to proceed via a novel transient state characterized by a ferromagnetic alignment of the Gd and Fe magnetic moments, despite their ground-state antiferromagnetic coupling. Thus, optical manipulation of magnetic order by femtosecond laser pulses has developed into an exciting and still expanding research field that keeps being fueled by a continuous stream of new and sometimes counterintuitive results. Considering the progress in the development of plasmonic antennas and compact ultrafast lasers, optical control of magnetic order may also potentially revolutionize data storage and information processing technologies.

  15. Energy harvesting from structural vibrations of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Farsangi, Mohammad Amin Askari; Cottone, Francesco; Sayyaadi, Hassan; Zakerzadeh, Mohammad Reza; Orfei, Francesco; Gammaitoni, Luca

    2017-03-01

    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating voltage in a vibrating MSMA. In particular, 15 μW power is harvested for acceleration of 0.3 g RMS at a frequency of 19.1 Hz, which is comparable with piezoelectric energy harvesters. It is also found that the optimum bias magnetic field for maximum voltage is lower than the starting field of pseudo elastic behavior.

  16. (Magnetic studies of iron-rare-earth-metalloid alloys)

    SciTech Connect

    Not Available

    1991-01-01

    This research is focused on studying new phases and microstructures of rare-earth and transition-metal alloys and compounds. In particular we investigate several classes of materials which are expected to have high magnetizations and coercivities, which are necessary conditions for high performance permanent magnet and related applications. Hard and semi-hard magnetic materials form the basis of much of the electric power and information storage industries and the discovery of new and less expensive materials with outstanding properties is of great interest. Our work is centered on two general types of problems. One is the growth and control of the microstructure of thin films with specified magnetic anisotropies. Particular attention is paid to nanoscale variations in atomic order in multilayered samples to achieve the desired properties. The second type of problem involves fundamental electronic structure and its relation to the magnetic properties of new Fe-and Co-rich phases containing rare earths. These studies involve a variety of experimental measurements and theoretical calculations.

  17. Frequency-dependent energy harvesting via magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sayyaadi, Hassan; Askari Farsangi, Mohammad Amin

    2015-11-01

    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday’s law of magnetic field induction. It has been shown that, in order to harvest the maximum RMS voltage in the MSMA-based energy harvester, an optimum value of bias magnetic field exists, which is the corresponding magnetic field for the start of pseudoelasticity behavior. In addition, to achieve a more compact energy harvester with higher energy density, a specimen with a lower aspect ratio can be chosen. As the main novelty of the paper, it is found that the dynamic effects play a major role in determining the harvested voltage and power, especially for high excitation frequency or specimen thickness.

  18. A novel inertial energy harvester using magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Askari Farsangi, Mohammad Amin; Sayyaadi, Hassan; Zakerzadeh, Mohammad Reza

    2016-10-01

    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli model and von Kármán theory are derived. A thermodynamics-based constitutive model is used to predict the nonlinear strain and magnetization response of the MSMAs. Also, the induced voltage during martensite variant reorientation in MSMAs is investigated with the help of Faraday’s law of induction. Finally, the effect of different parameters including bias magnetic field, pre-strain and number of MSMA elements are investigated in details. The results show that this novel energy harvester has the capability of using as an alternative to the current piezoelectric and magnetostrictive ones for harvesting energy from ambient vibration.

  19. Measured iron-gallium alloy tensile properties under magnetic fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Flatau, Alison B.

    2004-07-01

    Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.

  20. High field magnetic behavior in Boron doped Fe2VAl Heusler alloys

    NASA Astrophysics Data System (ADS)

    Venkatesh, Ch.; Vasundhara, M.; Srinivas, V.; Rao, V. V.

    2016-11-01

    We have investigated the magnetic behavior of Fe2VAl1-xBx (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the Tc, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (MS) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble MS at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method.

  1. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Ruochen; Qian, Mingfang; Zhang, Xuexi; Qin, Faxiang; Wei, Longsha; Xing, Dawei; Cui, Xiping; Sun, Jianfei; Geng, Lin; Peng, Huaxin

    2017-04-01

    Giant magnetocaloric effect in Ni-Mn-X (X=In, Sn, Sb) Heusler alloys has been revealed due to the significant shift of the martensite transformation temperatures under a bias magnetic field. However, the magnetic hysteresis during the magnetization and demagnetization cycles creates a large hysteresis loss and reduces the refrigeration capacity. Here we demonstrated that the magnetic hysteresis loss in Ni-Mn-Sb alloys was effectively reduced by Si-doping. The quaternary Ni49.0Mn38.4Sb11.7Si0.9 alloy exhibited martensite and magnetic transitions around room temperature. Maximum magnetic entropy change ΔSm 9.4 J/kg K and working temperature interval 7.0 K were achieved attributed to the martensite transformation under a magnetic field of 5 T. Meanwhile, the average magnetic hysteresis loss for Ni49.0Mn38.4Sb11.7Si0.9 alloy was 2.1 J/kg, much smaller than that for Ni49.0Mn38.5Sb12.5 alloy, 11.4 J/kg. As a result, a refrigeration capacity of 50.2 J/kg was obtained in the Ni49.0Mn38.4Sb11.7Si0.9 alloy. This result shows that Si-doped Ni-Mn-Sb alloys may act as a potential material system for magnetic refrigeration.

  2. Composition dependence of magnetic properties in amorphous rare-earth-metal-based alloys

    NASA Astrophysics Data System (ADS)

    Foldeaki, M.; Giguère, A.; Gopal, B. R.; Chahine, R.; Bose, T. K.; Liu, X. Y.; Barclay, J. A.

    1997-10-01

    Magnetic refrigeration is an emerging new technology for cooling and gas liquefaction. The proper selection of magnetic working materials plays a key role in any design of a magnetic refrigerator. Properly fabricated amorphous rare-earth-metal-based alloys may be promising candidates for magnetic refrigeration applications. Their advantages include tailorable composition, low eddy current and hysteresis losses, improved corrosion resistance, and large specific area. To optimize the composition, bulk magnetic properties of selected Re70M30-xTx (with Re = Gd, Dy, Er, Ho, Tb and M, T = Ni, Fe, Cu, Al) alloys have been investigated in the 5-350 K temperature and 0-7 T DC field range. Far above the magnetic transition, all investigated alloys display a Curie-Weiss behavior consistent with the effective atomic moment of the Re-atoms present. The composition dependence of the Weiss constant reveals that although influenced by the presence of transition metals, the Resbnd Re exchange plays the main role in magnetic interactions. Gd-based alloys display a tendency to form multiple phases, which is supported by the presence of Fe and suppressed by the addition of Al. Single-phase amorphous Re70M30-xTx alloys are characterized by transition temperatures below 200 K, and in spite of their inherently broad transitions, they often display a magnetic entropy change superior or comparable to that of crystalline alloys with similar transition temperatures. Consequently, rare-earth-based amorphous alloys are promising candidates for magnetic refrigeration applications.

  3. Chemically synthesized magnetic Co-Fe-Ga alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Imai, Takatomo; Shima, Mutsuhiro

    2017-01-01

    Magnetic properties of Co2Fe x Ga y alloy nanoparticles in the L21 ordered phase produced by chemical synthesis and post annealing have been investigated. Structural analyses of the Co2Fe x Ga y samples by X-ray diffraction show that both ordered B2 and L21 phases are formed when Ga composition is in the range 0.66 ≤ y ≤ 1.42. With increasing y from 0.58 to 1.4 at x = 1.0, the coercivity increases from 7.1 to 23 mT, while the saturation magnetization decreases from 970 to 410 kA/m. Microstructural analyses using TEM reveal that the alloy particles annealed at 973 K are agglomerated by sintering. When Al(NO3)3 was added during the synthesis, the average particle size significantly decreases from 84 to 12 nm, presumably due to the formation of aluminum oxides, resulting in the decrease in coercivity from 29 to 5.1 mT.

  4. 4-d magnetism: Electronic structure and magnetism of some Mo-based alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2017-02-01

    We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

  5. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Vergniory, M. G.; Kushwaha, S.; Hirschberger, Max; Chulkov, E. V.; Ernst, A.; Ong, N. P.; Cava, Robert J.; Bernevig, B. Andrei

    2016-12-01

    Weyl fermions have recently been observed in several time-reversal-invariant semimetals and photonics materials with broken inversion symmetry. These systems are expected to have exotic transport properties such as the chiral anomaly. However, most discovered Weyl materials possess a substantial number of Weyl nodes close to the Fermi level that give rise to complicated transport properties. Here we predict, for the first time, a new family of Weyl systems defined by broken time-reversal symmetry, namely, Co-based magnetic Heusler materials X Co2Z (X =IVB or VB; Z =IVA or IIIA). To search for Weyl fermions in the centrosymmetric magnetic systems, we recall an easy and practical inversion invariant, which has been calculated to be -1 , guaranteeing the existence of an odd number of pairs of Weyl fermions. These materials exhibit, when alloyed, only two Weyl nodes at the Fermi level—the minimum number possible in a condensed matter system. The Weyl nodes are protected by the rotational symmetry along the magnetic axis and separated by a large distance (of order 2 π ) in the Brillouin zone. The corresponding Fermi arcs have been calculated as well. This discovery provides a realistic and promising platform for manipulating and studying the magnetic Weyl physics in experiments.

  6. Fe-based nanocrystalline FeBCCu soft magnetic alloys with high magnetic flux density

    NASA Astrophysics Data System (ADS)

    Fan, Xingdu; Ma, Aibin; Men, He; Xie, Guoqiang; Shen, Baolong; Makino, Akihiro; Inoue, Akihisa

    2011-04-01

    In this study, the magnetic properties and crystalline behavior of Fe84-xB10C6Cux (x = 0-1.3) alloys prepared by annealing the melt-spun ribbon have been investigated. A Cu element was added to this system with the aim of decreasing the coercivity because the addition of Cu clusters prior to the crystallization stimulates the nucleation of α-Fe primary crystals, which greatly influences the final microstructure. It is found that in the Fe84-xB10C6Cux alloy system, the coercivity decreases with increasing x and exhibits a minimum at around x = 1.0. When x = 1.0, the alloy exhibits excellent magnetic properties after the appropriate heat treatment with a high Bs of 1.78 T, low Hc of 5.1 A/m, and low core loss less than 4.3 W/kg at 1.0 T and 400 Hz that is about 55% of that of oriented Si-steel. These results indicate that the application of this alloy to power transformers will produce very large energy savings.

  7. Unexpected magnetic behavior in amorphous Co{sub 90}Sc{sub 10} alloy

    SciTech Connect

    Ghafari, M. E-mail: skamali@utsi.edu; Gleiter, H.; Sakurai, Y.; Itou, M.; Peng, G.; Fang, Y. N.; Feng, T.; Hahn, H.; Kamali, S. E-mail: skamali@utsi.edu

    2015-09-28

    An amorphous alloy Co{sub 90}Sc{sub 10} has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co{sub 90}Sc{sub 10} appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co{sub 90}Sc{sub 10} alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co{sub 90}Sc{sub 10} alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co.

  8. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    DOE PAGES

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less

  9. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E. Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  10. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  11. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-05-01

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  12. Magnetic patterning using ion irradiation for highly ordered CoPt alloys with perpendicular anisotropy

    SciTech Connect

    Abes, M.; Venuat, J.; Muller, D.; Carvalho, A.; Schmerber, G.; Beaurepaire, E.; Dinia, A.; Pierron-Bohnes, V.

    2004-12-15

    We used a combination of ion irradiation and e-beam lithography to magnetically pattern an ordered CoPt alloy with strong perpendicular magnetic anisotropy. Ion irradiation disorders the alloy and strongly reduces the magnetic anisotropy. Magnetic force microscopy showed a regular array of 1 {mu}m{sup 2} square dots with perpendicular anisotropy separated by 1 {mu}m large ranges with in-plane anisotropy. This is further confirmed by magnetic measurements, which showed that arrays protected by a 200 nm Pt layer present the same coercive field and the same perpendicular anisotropy as before irradiation. This is promising for applications in magnetic recording technologies.

  13. Orientation Relationship Between Magnetic Domains and Twins in Ni52Fe17Ga27Co4 Magnetic Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Hu, Qiaodan; Yang, Liang; Zhou, Zhenni; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-06-01

    The orientation relationship between magnetic domain and twins in the directional solidified Ni52Fe17Ga27Co4 magnetic shape memory alloy was analyzed by electron backscatter diffraction and magnetic force microscopy. The twin interface plane was determined to be { \\bar{1}10} plates. The magnetic domains walls with a misorientation about 5 deg belong to low angle boundaries. According to the orientation relationship between twins and magnetic domains, the intersection angle on the observed surface can be estimated.

  14. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Mankey, G.J.; Willis, R.F.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    We have begun a program to characterize magnetic alloy overlays using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  15. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    SciTech Connect

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-06-15

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and <10 % of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic momentm was measured for each sample as a function of applied external field H{sub 0} and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy

  16. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy.

    PubMed

    Kolling, Stefan; Oborn, Bradley M; Keall, Paul J; Horvat, Joseph

    2014-06-01

    Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Sintered heavy tungsten alloys typically contain >90% tungsten and <10% of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic moment m was measured for each sample as a function of applied external field H0 and the BH curve derived. The iron content of the alloys was found to play a dominant role, directly influencing the magnetization M and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%-16% was measured. The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys.

  17. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect

    2012-01-01

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  18. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    SciTech Connect

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-06-15

    The influence of annealing on the microstructural evolution and magnetic properties of Ni{sub 50}Fe{sub x}Al{sub 50-x} alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type {beta}-phase and typical off eutectic microstructure consisting of proeutectic B2 type {beta} dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC {gamma}-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC {gamma}-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T{sub C}). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T{sub C} of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC {alpha}-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the {beta}-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: {yields} Evolution of microstructure and magnetic properties with varying Fe content. {yields} Transient rise in magnetization via the formation of ferromagnetic phase. {yields} Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. {yields} Nanoscale

  19. Magnetic properties of Co2Fe(Ga1-xSix) alloys

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Chakraborty, Dibyashree; Srinivasan, Ananthakrishnan

    2014-09-01

    Magnetic and crystallographic properties of bulk Co2Fe(Ga1-xSix) alloys with 0≤x≤1 are reported in this work. The alloys with x=0.75 and 1.00 exhibit L21 structure whereas the alloys with x=0, 0.25 and 0.50 crystallized in the disordered A2 phase. Unit cell volume of this series of alloys decreased from 189.1 to 178.5 Å3 as x was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (TC) which showed a systematic variation with x (1089 K, 1075 K, 1059 K, 1019 K and 1015 K for x=0, 0.25, 0.5, 0.75 and 1.00, respectively). The saturation magnetization moment Ms for the alloys with x=0, 0.25 and 0.50 are 5.05μB, 5.23μB, 5.49μB, respectively, in accordance with the Slater-Pauling rule, but alloys with x=0.75 and 1.00 deviated from this rule. The effective moment per magnetic atom (pc) of the alloys was estimated from the inverse DC magnetic susceptibility data above TC. A comparison of Ms with pc reveals the half-metallic character of the alloys.

  20. Nanocrystalline films of soft magnetic iron-based alloys

    NASA Astrophysics Data System (ADS)

    Sheftel', E. N.; Bannykh, O. A.

    2006-10-01

    The physicochemical and structural aspects of designing soft magnetic alloys Fe- MX (where M is a Group III V metal of the periodic table and X = C, N, O) in the form of nanocrystalline films precipitation-hardened by refractory interstitial phases are discussed and developed. The results of studying the structure and magnetic properties of Fe78Zr10N12 films are reported. The films in the amorphous state are produced by reactive magnetron sputtering. Upon annealing at 300 600°C, the amorphous films crystallize to form mainly a bcc α-Fe-based phase and the fcc ZrN phase. The grain size of the bcc phase is shown to increase from ˜3 nm to ˜30 nm as the annealing temperature increases; the grain size of the fcc phase does not exceed 2 3 nm. Films annealed at 400°C exhibit a record level of magnetic properties: H c = 5 6 A/m and B s = 1.7 1.8 T. The experimental results obtained confirm the validity of our scientific approach.

  1. Electrodeposition of quaternary alloys in the presence of magnetic field.

    PubMed

    Ebadi, Mehdi; Basirun, Wan Jeffrey; Alias, Yatimah; Mahmoudian, Mohammadreza

    2010-07-06

    Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Gamma%) was increased in the presence of PPMF, with results of Gamma% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF.

  2. Electrodeposition of quaternary alloys in the presence of magnetic field

    PubMed Central

    2010-01-01

    Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Γ%) was increased in the presence of PPMF, with results of Γ% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF. PMID:20604934

  3. Half-metallic alloys: electronic structure, magnetism and spin polarization.

    PubMed

    Dederichs, P H; Galanakis, I; Mavropoulos, Ph

    2005-01-01

    Using the state-of-the-art screened Korringa-Kohn-Rostoker Green function method we study the electronic and magnetic properties of NiMnSb and similar Heusler alloys. We show that all these compounds are half-metals, e.g. the minority-spin band is semiconducting and the Fermi level falls within this gap resulting in 100% spin polarization at the Fermi level. The total spin moment M(t) shows the so-called Slater-Pauling behaviour and scales with the total valence charge Z(t) following the rule M(t) = Z(t) - 18 for half and M(t) = Z(t) - 24 for full Heusler alloys. These rules are connected to the origin of the gap. Finally we show that the inclusion of the spin-orbit interaction in our calculations kills the half-metallic gap but the spin-polarization at the Fermi level can be still very high, approximately 99% for NiMnSb, but much lower for a half-metallic compound like zinc-blende MnBi (77%).

  4. The effect of magnetic annealing on the magnetostriction for Sm-Dy-Fe rod alloys

    NASA Astrophysics Data System (ADS)

    Wang, Bowen; Wang, Zhihua; Weng, Ling; Huang, Wenmei; Sun, Ying; Cui, Baozhi

    2013-05-01

    The Sm0.86Dy0.14Fex (x = 1.85-2.05) magnetostrictive alloys have been prepared with arc-melting and then cast into a copper mold with a diameter of 8 mm. It is found that the magnetostriction (λ// - λ⊥) increases from -900 × 10-6 for untreated rod alloys to -1200 × 10-6 for magnetically annealed rod alloys at the magnetic field of 640 kA/m. In the magnetic annealing temperature range of 483-643 K, the magnetostriction value exhibits a peak at 543 K. The variation of magnetostriction and magnetization with magnetic fields has been determined and the mechanism of domains' movements has been discussed. This result is very important to improve the magnetostrictive property of Sm-Dy-Fe rod alloys.

  5. Structural and magnetic transformations in Ni51 - x Mn36 + x Sn13 alloys

    NASA Astrophysics Data System (ADS)

    Kaletina, Yu. V.; Gerasimov, E. G.; Schastlivtsev, V. M.; Gaviko, V. S.; Terentev, P. B.

    2015-02-01

    The structural and magnetic phase transitions in Ni-Mn-Sn-based alloys have been studied. The temperature dependences of the martensitic and magnetic phase transformations in Ni51 - x Mn36 + x Sn13 alloys (0 ≤ x ≤ 4) have been determined in the case where manganese atoms substitute for nickel atoms. For the studied alloys, the concentration phase diagram has been constructed and the temperature regions of the existence of the high-temperature austenite phase L21 and the low-temperature martensite phase in different magnetic states have been determined.

  6. Magnetic, magnetocaloric properties and phenomenological model in amorphous Fe60Ru20B20 alloy

    NASA Astrophysics Data System (ADS)

    Boutahar, A.; Lassri, H.; Hlil, E. K.

    2015-11-01

    Magnetic, magnetocaloric properties and phenomenological model of amorphous Fe60Ru20B20 alloy are investigated in detail. The amorphous alloy has been synthesized using melt spinning method. The magnetic transition nature undergoes a second-order magnetic phase transition from ferromagnetic to paramagnetic states with a Curie temperature of 254 K. Basis on the thermodynamic Maxwell's relation, magnetic entropy change (-ΔSM) is calculated. Further, we also report a theoretical investigation of the magnetocaloric effect using a phenomenological model. The best model parameters and their variation with temperature and the magnetic field were determined. The theoretical predictions are found to agree closely with experimental measurements.

  7. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge) alloys

    NASA Astrophysics Data System (ADS)

    Shimakura, Hironori; Tahara, Shuta; Okada, Tatsuya; Ohno, Satoru

    2017-08-01

    For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge) was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  8. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  9. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  10. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-04-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10‑6 cm3·g‑1–1.29 × 10‑6 cm3·g‑1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10‑6 cm3·g‑1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10‑6 cm3·g‑1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10‑6 cm3·g‑1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments.

  11. Structural, thermal and magnetic investigations on immiscible Ag-Co nanocrystalline alloy with addition of Mn

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Sardar, G.; Nath, D. N.; Chattopadhyay, P. P.

    2016-08-01

    50Ag-50Co (at%) and 40Ag-40Co-20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350-650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag-Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag-Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag-Co-Mn alloy obtained after annealing at 550 °C for 1 h.

  12. Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications.

    PubMed

    Uyama, Emi; Inui, Shihoko; Hamada, Kenichi; Honda, Eiichi; Asaoka, Kenzo

    2013-09-01

    Metal devices in the human body induce serious metal artifacts in magnetic resonance imaging (MRI). Metals artifacts are mainly caused by a volume magnetic susceptibility (χv) mismatch between a metal device and human tissue. In this research, Au-xPt-yNb alloys were developed for fabricating MRI artifact-free biomedical metal devices. The magnetic properties, hardness and phase constitutions of these alloys were investigated. The Au-xPt-8Nb alloys showed satisfactory χv values. Heat treatments did not clearly change the χv values for Au-xPt-8Nb alloys. The Vickers hardness (HV) of these two alloys was much higher than that of high-Pt alloys; moreover, aging at 700°C increased the HV values of these two alloys. A dual phase structure consisting of face-centered cubic α1 and α2 phases was observed and aging at 700°C promoted phase separation. The Au-5Pt-8Nb and Au-10Pt-8Nb alloys showed satisfactory χv values and high hardness and are thus suggested as candidates for MRI artifact-free alloys for biomedical applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Magnetic Properties of Liquid RE-Co (RE = Dy, Er) Alloys

    NASA Astrophysics Data System (ADS)

    Ohno, Satoru; Shimakura, Hironori; Tahara, Shuta; Okada, Tatsuya

    2017-08-01

    The magnetic susceptibilities χ of liquid Dy-Co and Er-Co alloys have a large and negative temperature coefficient, which suggests that the Dy, Er, and Co ions in their liquid alloys are in the magnetic state. However, the temperature dependence of χ in both systems becomes weak near the content of 70 at% Co. It is interesting that the compositional dependence of χ for liquid Dy-Co and Er-Co alloys has a minimum at content of 80 at% Co, respectively. On the Co-rich side, the magnetic susceptibility of liquid Dy-Co and Er-Co alloys obeyed the Curie-Weiss law with regard to their temperature dependence of χ. On the rare earth-rich side, the magnetic susceptibilities of liquid Dy-Co and Er-Co alloys also exhibited Curie behavior with a reasonable value for the effective number of Bohr magnetons. The compositional dependence of χ4f for liquid Dy-Co and Er- Co alloys was extracted by subtracting the corresponding data for liquid La-Co alloys from χ for the liquid Dy-Co and Er-Co alloys, respectively.

  14. Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.

    PubMed

    Lavrentiev, M Yu; Wróbel, J S; Nguyen-Manh, D; Dudarev, S L

    2014-08-14

    A model lattice ab initio parameterized Heisenberg-Landau magnetic cluster expansion Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. The thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range extending well over 1000 K. The predicted face-centered cubic-body-centered cubic coexistence curve, the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted temperatures of magnetic transitions simulated as functions of alloy composition agree well with experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic phase of Fe-Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding to the occurrence of the Invar effect.

  15. Optimizing Magnetocaloric Properties of Heusler-Type Magnetic Shape Memory Alloys by Tuning Magnetostructural Transformation Parameters

    NASA Astrophysics Data System (ADS)

    Huang, Lian; Qu, Yuhai; Cong, Daoyong; Sun, Xiaoming; Wang, Yandong

    2017-08-01

    Heusler-type magnetic shape memory alloys show a magnetostructural transformation from the low-magnetization phase to the high-magnetization phase upon the application of external magnetic fields. As a result, these alloys exhibit fascinating multifunctional properties, such as magnetic shape memory effect, magnetocaloric effect, magnetoresistance, and magnetic superelasticity. All these functional properties are intimately related to the coupling of the structural and magnetic transitions. Therefore, deliberate tuning of the magnetostructural transformation parameters is essential for obtaining optimal multifunctional properties. Here, we show that by tuning the magnetostructural transformation parameters, we are able to achieve a variety of novel magnetocaloric properties with different application potentials: (1) large magnetic entropy change of 31.9 J kg-1 K-1 under a magnetic field of 5 T; (2) giant effective magnetic refrigeration capacity (251 J kg-1) with a broad operating temperature window (33 K) under a magnetic field of 5 T; (3) large reversible field-induced entropy change (about 15 J kg-1 K-1) and large reversible effective magnetic refrigeration capacity (77 J kg-1) under a magnetic field of 5 T. The balanced tuning of magnetostructural transformation parameters of magnetic shape memory alloys may provide an instructive reference to the shape memory and magnetic refrigeration communities.

  16. Magnetic field and atomic order effect on the martensitic transformation of a metamagnetic alloy.

    PubMed

    Barandiaran, J M; Chernenko, V A; Cesari, E; Salas, D; Gutierrez, J; Lazpita, P

    2013-12-04

    The martensitic transformation (MT) of metamagnetic shape memory alloys is very sensitive to the applied magnetic field and atomic order. We analyze the alloy Ni50Mn34.5In15.5 in magnetic fields up to 13 T. The alloy has been prepared both in an ordered state by slow cooling, and in a disordered state by rapid quenching. In both cases the dependence of the martensitic transition temperature on the field is highly nonlinear. Such departure from linearity is due to a decrease of the entropy change at the transition, ΔS, with the applied field. This can be explained by the ordering effect of the magnetic field on the frustrated magnetic structure of the alloy in the martensitic phase. Compliance with a recent model, relying on the strong magnetoelastic interactions in these compounds, is very satisfactory.

  17. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  18. Mechanochemical synthesis of nanocrystalline Fe and Fe-B magnetic alloys

    NASA Astrophysics Data System (ADS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-12-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe-B magnetic alloys was the goal of this study. In this regard, different Fe2O3-B2O3 powder mixtures with sufficient amount of CaH2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe95B5 and Fe85B15 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe95B5 and Fe85B15 alloys can be successfully synthesized by the reduction reaction of Fe2O3 and B2O3 with CaH2 during mechanical alloying. The structure of produced Fe95B5 and Fe85B15 alloys was a combination of Fe and Fe2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170-240 Oe and 9-28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe-B alloys.

  19. Saturation magnetization in supersaturated solid solution of Co-Cu alloy

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Kajikawa, Kota; Hakamada, Masataka; Mabuchi, Mamoru

    2009-10-01

    The magnetovolume effect has been investigated using a supersaturated solid solution of a Co-19 at. %Cu alloy processed by electrodeposition. The enhanced saturation magnetization of the Co-Cu alloy was attributed to both metastable fcc Co and lattice expansion. The density functional theory using the CASTEP code revealed that an enhanced magnetic moment due to the magnetovolume effect is obtained in fcc Co, but not in hcp Co.

  20. Enhancement of superconductivity by an external magnetic field in magnetic alloys

    NASA Astrophysics Data System (ADS)

    Borycki, Dawid

    2014-05-01

    An infinite-volume limit solution of the thermodynamics of a BCS superconductor containing spin 1/2 and 7/2 magnetic impurities, obtained recently in [D. Borycki, J. Maćkowiak, Supercond. Sci. Technol. 24, 035007 (2011)] is exploited to derive the expressions for critical magnetic field ( T). The credibility of the resulting thermodynamically limited theoretical equations, which depend on the magnetic coupling constant g and impurity concentration c, is verified on the experimental data for the following superconducting alloys: LaCe, ThGd and SmRh4B4. Good quantitative agreement with experimental data is found for sufficiently small values of c. The discrepancies between theoretical and experimental values of ( T) for larger values of c in case of LaCe and ThGd are reduced by introducing the concept of the effective temperature , which accounts for the Coulomb interactions between the electron gas and impurity ions. At low temperatures, the critical magnetic field is found to increase with decreasing temperature T. This enhancement of the critical magnetic field provides evidence of the Jaccarino-Peter effect, which was experimentally observed in the Kondo systems like LaCe, (La1 - x Ce x )Al2 and also in the pseudoternary compounds, including Sn1 - x Eu x Mo6S8, Pb1 - x Eu x Mo6S8 and La1.2 - x Eu x Mo6S8. The effect of an external magnetic field on a BCS superconductor perturbed by magnetic impurities was also studied. On these grounds, by analyzing the dependence of superconducting transition temperature T c on of (La1 - x Ce x )Al2, we have shown, that for certain parameter values, external magnetic field compensates the destructive effect of magnetic impurities.

  1. Solubility and magnetic properties enhancement in bi-phase nanostructure Cu-Fe-Mn alloy

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Basumallick, A.; Nath, D. N.; Chattopadhyay, P. P.

    2013-09-01

    In order to improve solubility and magnetic properties, the ball milling technology was used for the production of 50Cu-40Fe-10Mn (wt%) alloy. The effect of Mn content on the microstructure and magnetic properties of Cu-Fe alloy was also investigated in detail. Microstructure and magnetic properties of the alloy were analyzed by X-ray diffraction, differential scanning calorimetry, high resolution transmission electron microscopy and superconducting quantum interface device magnetometry. The results showed that a complete solid solution of the alloy was produced after 30 h of milling. Quantitative phase analysis of X-ray diffraction data revealed that the milled alloy obtained after isothermal annealing at 550 °C for 1 h consisted of Cu (54.52 wt%), α-Fe (36.49 wt%) and MnO (8.99 wt%). The milled alloy obtained after annealing at 450 °C for 1 h leads to the maximum values of magnetic properties such as coercivity=438 Oe, remanent magnetization=14.3 emu/g, and saturation magnetization=51 emu/g.

  2. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys

    PubMed Central

    Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming

    2016-01-01

    Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265

  3. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys.

    PubMed

    Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C

    2010-08-11

    Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.

  4. Tetragonal Heusler-Like Mn-Ga Alloys Based Perpendicular Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ma, Qinli; Sugihara, Atsushi; Suzuki, Kazuya; Zhang, Xianmin; Miyazaki, Terunobu; Mizukami, Shigemi

    2014-10-01

    Films of the Mn-based tetragonal Heusler-like alloys, such as Mn-Ga, exhibit a large perpendicular magnetic anisotropy (PMA), small damping constant, small saturation magnetization and large spin polarizations. These properties are attractive for the application to the next generation high density spin-transfer-torque (STT) magnetic random access memory (STT-MRAM). We reviewed the structure, magnetic properties and Gilbert damping of the alloy films with large PMA, and the current status of research on tunnel magnetoresistance (TMR) in perpendicular magnetic tunnel junctions (p-MTJs) based on Mn-based tetragonal Heusler-like alloy electrode, and also discuss the issues for the application of those to STT-MRAM.

  5. Magnetic susceptibility of Inconel alloys 718, 625, and 600 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira B.; Mitchell, Michael R.; Murphy, Allan R.; Goldfarb, Ronald B.; Loughran, Robert J.

    1990-01-01

    After a hydrogen fuel bleed valve problem on the Discovery Space Shuttle was traced to the strong magnetization of Inconel 718 in the armature of the linear variable differential transformer near liquid hydrogen temperatures, the ac magnetic susceptibility of three samples of Inconel 718 of slightly different compositions, one sample of Inconel 625, and on sample of Inconel 600 were measured as a function of temperature. Inconel 718 alloys are found to exhibit a spin glass state below 16 K. Inconel 600 exhibits three different magnetic phases, the lowest-temperature state (below 6 K) being somewhat similar to that of Inconel 718. The magnetic states of the Inconel alloys and their magnetic susceptibilities appear to be strongly dependent on the exact composition of the alloy.

  6. Magnetic properties of Fe-Cu alloys prepared by pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Noce, R. D.; Gomes, O. D. M.; de Magalhães, S. D.; Wolf, W.; Guimarães, R. B.; de Castro, A. C.; Pires, M. J. M.; Macedo, W. A. A.; Givord, D.; Barthem, V. M. T. S.

    2009-11-01

    FexCu100-x metastable alloys were prepared by pulsed electrodeposition for 5alloys crystallize in the bcc structure of α-Fe and the Fe-poor ones in the fcc structure of Cu. The magnetic properties of the ferromagnetic Fe-rich alloys (x>50) are reminiscent of those observed in Fe-Cu alloys prepared by other methods. The Curie temperature decreases regularly with decreasing x. In the Fe-poor alloys (x≤30), the observed properties indicate that Fe-rich clusters form within a Cu-rich matrix. In the x=10 alloy, the Fe clusters are found to be superparamagnetic at room temperature, but a superferromagnetic order develops below a critical temperature of about 120 K. It is suggested that the intercluster coupling is mediated by Ruderman-Kittel-Kasuya-Yosida interactions which are predominantly positive due to the very short intercluster distances.

  7. Orientation magnetic phase transition induced by shock loading of the Fe-Cr-Co alloy

    NASA Astrophysics Data System (ADS)

    Sud'enkov, Yu. V.; Sarnatskii, V. M.; Smirnov, I. V.

    2017-02-01

    The strength characteristics of Fe-Cr-Co alloys have been investigated under high-strain-rate deformation of samples. It has been found that, under shock-wave loading, a significant remanent magnetization appears in the samples and their fragments due to the orientation magnetic phase transition. The threshold pressures of the magnetic phase transition have been determined, and the distribution of the remanent magnetization in the samples has been analyzed.

  8. Granular magnetic composites employing cobalt based amorphous alloys in a polymeric host

    NASA Astrophysics Data System (ADS)

    Göktürk, Halit S.; Fiske, Thomas J.; Kalyon, Dilhan M.

    1993-05-01

    Cobalt based soft ferromagnetic amorphous alloys have unique properties which make these materials good candidates to be employed in magnetic composites prepared by dispersing granules of the alloy in a polymeric host. These alloys have excellent soft magnetic properties which are minimally affected by external stresses induced during the processing operations involved in the preparation of such a composite. Continuous ribbons of a cobalt based amorphous alloy, Metglas 2705M, were cut into large aspect ratio flakes and blended into a polyethylene host in volume fractions ranging from 0.001 to 0.15. The relative magnetic permeability values of the composites increased with increasing volume fraction of the amorphous alloy, reaching a value of 26 at the volume fraction 0.15. The magnetic properties of the composites exhibited two distinguishing features: The permeability values of these composite samples were found to vary only slightly, about 10%, as a function of frequency in the range 10 Hz-100 kHz; the samples remained unsaturated up to magnetic fields of 5800 A/m. These features are believed to be a result of the magnetic properties of the composite being heavily influenced by the polymeric gaps between the magnetic filler particles.

  9. Enhancement of magnetic properties of Co2MnSi Heusler alloy prepared by mechanical alloying method

    NASA Astrophysics Data System (ADS)

    Rabie, Naeemeh; Gordani, Gholam Reza; Ghasemi, Ali

    2017-07-01

    Ferromagnetic Heusler alloys of Co2MnSi were synthesized by mechanical alloying method at low temperature. The effect of milling time and annealing process on structural and magnetic properties of ferromagnetic alloy samples were studied by X-ray diffraction, scanning electron microscopy and vibration sample magnetometer methods, respectively. Structural characteristics such as crystallite size, phase percentage, and lattice parameter determined using the Rietveld method. The values of these parameters were obtained 362.9 nm, 5.699 Å and 98.7%, respectively for annealed sample. Magnetization studies show that the Co2MnSi phase is formed at 15 h of milling and is optimized after 20 h of milling. VSM results showed that saturation magnetization (Ms) of milled samples reduces from 112 to 75 (emu/g) with increasing milling time and then increased gradually to 95 emu/g. The effect of post-annealing on the structural and magnetic properties of milled samples was also investigated. The saturation magnetization of annealed sample (120 emu/g) is higher than the optimum milled sample (95 emu/g) due to increasing preferential ordered L21 structure.

  10. Material dependence of anomalous Nernst effect in perpendicularly magnetized ordered-alloy thin films

    NASA Astrophysics Data System (ADS)

    Hasegawa, K.; Mizuguchi, M.; Sakuraba, Y.; Kamada, T.; Kojima, T.; Kubota, T.; Mizukami, S.; Miyazaki, T.; Takanashi, K.

    2015-06-01

    Material dependence of the anomalous Nernst effect (ANE) in perpendicularly magnetized ordered-alloy thin films is systematically investigated. The ANE was found to have a tendency to increase simply as uniaxial magnetic anisotropy increased at room temperature. The ANE increases as temperature increases from 10 to 300 K for all the materials. However, the signs of the ANE in Fe-based ordered-alloys (L10-FePt and L10-FePd) and in a Co/Ni multilayer are opposite to those in Mn-based ordered-alloys (L10-MnGa and D022-Mn2Ga). Ordered-alloys with larger uniaxial magnetic anisotropies reveal larger ANE and might be desirable for thermoelectric applications.

  11. Tunnel magnetoresistance effect and magnetic damping in half-metallic Heusler alloys.

    PubMed

    Oogane, M; Mizukami, S

    2011-08-13

    Some full-Heusler alloys, such as Co(2)MnSi and Co(2)MnGe, are expected to be half-metallic ferromagnetic material, which has complete spin polarization. They are the most promising materials for realizing half-metallicity at room temperature owing to their high Curie temperature. We demonstrate a huge tunnel magnetoresistance effect in a magnetic tunnel junction using a Co(2)MnSi Heusler alloy electrode. This result proves high spin polarization of the Heusler alloy. We also demonstrate a small magnetic damping constant in Co(2)FeAl epitaxial film. The very high spin polarization and small magnetic constant of Heusler alloys will be a great advantage for future spintronic device applications.

  12. Effect of Electronic and Magnetic Valences on Phase Transition and Magnetic Properties in Co-Ni-Al-RE (RE = Gd, Dy and Er) Alloys

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Lou, Shuting; Yang, Liu; Li, Tao; Hao, Shuai; Yan, Chen

    2017-02-01

    The effect of the electronic and magnetic valence state on the phase transition and magnetic properties of several Co-Ni-Al-RE (RE = Gd, Dy and Er) ferromagnetic shape memory alloys were investigated. The martensitic transformation temperature showed a distinct increase with increasing the valence electron concentration, but no obvious change in the magnetic properties of the alloys was observed with increasing the valence electron concentration. On the other hand, the magnetic properties of the sample increased with the magnetic valence number of the alloy, while no change was observed in the phase transformation temperature with the magnetic valence number.

  13. Producing Low-Oxygen Samarium/Cobalt Magnet Alloy

    NASA Technical Reports Server (NTRS)

    Das, Dilip K.; Kumar, Kaplesh; Frost, Robert T.; Chang, C. W.

    1987-01-01

    Experiments aimed at producing SmCo5 alloy with low oxygen contamination described in report. Two methods of alloying by melting without contact with crucible walls tested. Lowest oxygen contamination, 70 parts per million achieved by dc arc melting on water-cooled, tantalum-clad copper hearth in purified quiescent argon atmosphere. Report includes photographs of equipment, photomicrographs of alloy samples, detailed descriptions of procedures tried, and tables of oxygen contamination and intrinsic coercivities of samples produced.

  14. Producing Low-Oxygen Samarium/Cobalt Magnet Alloy

    NASA Technical Reports Server (NTRS)

    Das, Dilip K.; Kumar, Kaplesh; Frost, Robert T.; Chang, C. W.

    1987-01-01

    Experiments aimed at producing SmCo5 alloy with low oxygen contamination described in report. Two methods of alloying by melting without contact with crucible walls tested. Lowest oxygen contamination, 70 parts per million achieved by dc arc melting on water-cooled, tantalum-clad copper hearth in purified quiescent argon atmosphere. Report includes photographs of equipment, photomicrographs of alloy samples, detailed descriptions of procedures tried, and tables of oxygen contamination and intrinsic coercivities of samples produced.

  15. Magnetic Properties of Liquid Gd-TM (TM = Mn, Fe, Co, Ni) Alloys

    NASA Astrophysics Data System (ADS)

    Ohno, Satoru; Shimakura, Hironori; Tahara, Shuta; Okada, Tatsuya

    2016-12-01

    Liquid Gd-TM (TM = Mn, Fe, Ni) alloys on the TM-rich side have relatively small and negative temperature coefficients of the magnetic susceptibility χ, which become large and negative with increasing Gd content. The large and negative temperature coefficient of χ for liquid Co gradually weakens at up to 70 at. % Co with the addition of Gd. Liquid Gd and GdcCo1-c alloys with c ≥ 0.5 also have a relatively large and negative temperature coefficient of χ. Liquid Gd-TM alloys on the Gd-rich side obey the Curie law. The magnetic susceptibilities of liquid Gd-Fe and Gd-Co alloys exhibit Curie-Weiss behavior on the TM-rich side. The dependence of χ on the composition for liquid Gd-TM (TM = Mn, Fe, Ni) alloys gradually increases with the Gd content, and that for liquid Gd-Co alloys has a minimum at the composition of 20 at. % Gd. The dependences of χ3d and χ4f on the composition due to the 3d- and 4f-electrons were analyzed by subtracting the corresponding data for liquid La-TM alloys from χ for the liquid Gd-TM alloys.

  16. Magnetic Properties of Hard Magnetic Alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si

    NASA Astrophysics Data System (ADS)

    Vompe, T. A.; Milyaev, I. M.; Yusupov, V. S.

    2017-01-01

    The method of regression analysis is used to obtain equations describing the dependences of magnetic hysteresis properties of magnetically hard powder alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si on regimes of thermomagnetic treatment (the temperatures of the start of the treatment and the rates of cooling in magnetic field). The determined treatment modes make it possible to obtain in an alloy with a coercive force H c up to 40 kA/m, a residual induction B r up to 1.2 T, and a maximum energy product ( BH)max up to 25 kJ/m3. The alloy may find application in the production of rotors of synchronous hysteresis-reluctance motors.

  17. Co{sub 2}MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions

    SciTech Connect

    Kaemmerer, S.; Thomas, A.; Huetten, A.; Reiss, G.

    2004-07-05

    As a consequence of the growing theoretical predictions of 100% spin-polarized half- and full-Heusler compounds over the past six years, Heusler alloys are among the most promising materials class for future magnetoelectronic and spintronic applications. We have integrated Co{sub 2}MnSi, as a representative of the full-Heusler compound family, as one magnetic electrode into magnetic tunnel junctions. The preparation strategy has been chosen so as to sputter Co{sub 2}MnSi at room temperature onto a V-buffer layer, which assists in (110) texture formation, and to deposit the Al-barrier layer directly thereafter. After plasma oxidizing the Al-barrier layer, subsequent annealing leads (1) to the texture formation and (2) to the appropriate atomic ordering within the Co{sub 2}MnSi, and (3) homogenizes the AlO{sub x} barrier. It is shown that the magnetic switching of the ferromagnetic electrodes is well controlled from room temperature down to 10 K. The resulting tunnel magnetoresistance-effect amplitude of the Co{sub 2}MnSi containing magnetic tunnel junctions has been determined as a function of temperature and the spin polarization of the Co{sub 2}MnSi Heusler compound has been estimated to be 61% at 10 K. Thus, the spin polarization of the Co{sub 2}MnSi layer at 10K exceeds that of conventional transition metals.

  18. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    SciTech Connect

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  19. Preferential magnetic orientation in amorphous alloys determined by NFS and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Procházka, Vít; Vrba, Vlastimil; Šretrová, Pavla; Smrčka, David; Miglierini, Marcel

    2016-10-01

    Amorphous and nanocrystalline alloys frequently exhibit anisotropic behavior, which is a consequence of magnetic moments preferential orientation. This study reports the results obtained from a set of nuclear forward scattering experiments and transmission Mössbauer spectroscopy experiments that we have run in order to determine the degree of crystallization and the preferential orientation of magnetic moments in the material. The nuclear forward scattering of synchrotron radiation and the transmission Mössbauer spectroscopy were performed on the nanocrystalline alloy of the composition Fe79Mo8Cu1B12. The experimental data were evaluated and magnetic texture was determined. Relevance of the results was confronted with transmission Mössbauer experiments.

  20. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  1. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys.

    PubMed

    Suyalatu; Nomura, Naoyuki; Oya, Kei; Tanaka, Yuko; Kondo, Ryota; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2010-03-01

    The microstructures and magnetic susceptibilities of Zr-Mo alloys were investigated to develop a Zr alloy with a low magnetic susceptibility for magnetic resonance imaging (MRI). The microstructure was evaluated with an X-ray diffractometer (XRD), an optical microscope (OM) and a transmission electron microscope (TEM), and the magnetic susceptibility was measured with a magnetic susceptibility balance. The alpha' phase with acicular structure was dominant in Zr-1Mo alloys, while the omega and beta phases with the equiaxed and relatively flat (no acicular) microstructure was dominant in Zr-3Mo. The mixed microstructural features of Zr-1Mo and Zr-3Mo were observed in Zr-2Mo, which consists of the alpha', omega and beta phases. The beta phase is stabilized when the Mo content exceeds over 3 mass% Mo. As-cast Zr-Mo alloys showed a minimum value of magnetic susceptibility at 3 mass% Mo, and the value abruptly increased up to 10% Mo before remaining stable up to 15 mass% Mo. XRD, OM and TEM revealed that the minimum value of the susceptibility was closely related to the appearance of the athermal omega phase in the beta phase. As the Mo content decreases from 3 mass%, the alpha' phase appears with the omega and beta phases. On the other hand, as the Mo content increases from 3 mass%, the beta phase increases and the omega phase decreases. Thus the appearance of the alpha' and beta phase leads to an increase in magnetic susceptibility. The magnetic susceptibility of as-cast Zr-3Mo alloy was almost one-third that of Ti-6Al-4V, which is commonly used for medical implant devices. Zr-Mo alloys are useful for medical devices used under MRI.

  2. Recent progress in perpendicularly magnetized Mn-based binary alloy films

    NASA Astrophysics Data System (ADS)

    Zhu, Li-Jun; Nie, Shuai-Hua; Zhao, Jian-Hua

    2013-11-01

    In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxAl thin films with perpendicular magnetic anisotropy. First, we present a brief introduction to the demands for perpendicularly magnetized materials in spintronics, magnetic recording, and permanent magnets applications, and the most promising candidates of tetragonal MnxGa and MnxAl with strong perpendicular magnetic anisotropy. Then, we focus on the recent progress of perpendicularly magnetized MnxGa and MnxAl respectively, including their lattice structures, bulk synthesis, epitaxial growth, structural characterizations, magnetic and other spin-dependent properties, and spintronic devices like magnetic tunneling junctions, spin valves, and spin injectors into semiconductors. Finally, we give a summary and a perspective of these perpendicularly magnetized Mn-based binary alloy films for future applications.

  3. Local magnetic effects of interface alloying in Fe/Co superlattices.

    PubMed

    Kamali-M, S; Bergman, A; Andersson, G; Stanciu, V; Häggström, L

    2006-07-05

    Effects of interface alloying and the thickness dependence of magnetic properties of Fe/Co(001) multilayers have been investigated. The thicknesses of the Fe layers have been varied between two and 14 monolayers while the Co layers have been held constant at 7 ML. From conversion electron Mössbauer spectroscopy (CEMS) measurements and electronic structure calculations it is found that the magnitude of the Fe magnetic hyperfine field is larger close to the interface and smaller in the middle of thick (≥9 ML) Fe layers. For a thinner Fe layer (≤5 ML) the largest field is found in the centre of the Fe layer. By modelling the effects of interface alloying from earlier data for bulk Fe-Co alloys, and comparing with the experimental results, the degree of interface alloying is estimated to be 2-3 ML at each interface.

  4. Magnetically induced electrodeposition of Zn-Ni alloy coatings and their corrosion behaviors

    NASA Astrophysics Data System (ADS)

    Rao, Vaishaka R.; Bangera, Kasturi V.; Hegde, A. Chitharanjan

    2013-11-01

    The less magnetic features of Zn-Ni alloy compared to Fe-Ni and Fe-Co alloys made it interesting to develop them under the influence of applied magnetic field. In this regard, the effects of a magnetic field (B) applied in a direction parallel and perpendicular to the nominal current, during electrodeposition process of Zn-Ni alloy have been investigated by means of X-ray diffraction and EDX analysis. The modification of crystal orientation by superimposition of a varying magnetic field is studied for alloys of constant nickel content (8 a %.), deposited at optimal current density (j) of 3.0 A dm-2. The effect of magnetic field on crystallographic orientation and hence the corrosion behaviors of the coatings were studied. The preferential orientations (101) and (002) of the zinc phase and (330) γ-Ni5Zn21 phase are always favored to exist with parallel and perpendicular magnetic field. The preferential (321) γ-Ni5Zn21 orientation is found to be the characteristic of perpendicular magnetic field. Further, Zn (100) orientation is found to be non-responsive to the effect of parallel magnetic field. The coatings developed using perpendicular magnetic field is more corrosion resistant compare to that for parallel magnetic field. This is attributed to the additional (321) γ-Ni5Zn21 orientations. The changes in the phase structure of the coatings deposited at different magnetic field are attributed to the effect caused by the magnetic convection induced in the electrolytic solution, called MHD effect (magneto-hydrodynamic effect). The chemical composition of the alloy was found to be same in both natural and magnetically induced deposition due to constant Ni content in the bath. The variation in the surface morphology of the coatings was studied by scanning electron microscopy (SEM). The Zn-Ni alloy coating deposited at 0.8 T perpendicular B showed the highest corrosion resistance (with corrosion rate=0.26×10-2 mm y-1) compared to the one with no B (corrosion rate=14

  5. Films of Soft-Magnetic Fe-Based Nanocrystalline Alloys for High-Density Magnetic Storage Application

    NASA Astrophysics Data System (ADS)

    Shefteľ, E. N.; Bannykh, O. A.

    This paper presents a review of works related to the problem of development of soft-magnetic film Fe-based alloys exhibiting the combination of properties, such as the high saturation inductance, high level of soft-magnetic parameters over a wide range of MHz-frequencies, high wear-resistance and thermal stability, and an ability to be prepared by thin-film technologies. Magnetic cores of high-density recording heads are the principal application of these materials. Physical fundamentals of explanation of ferromagnetic behavior of a material with nano-sized structure, which have been developed for FINEMETs (Fe-Nb-Cu-Si-B) with the mixed amorphous + nanocrystalline structure, are considered. A new class of alloys Fe-Me-X (Me=Metal of III-V groups of the Periodic Table and X=C, N, O, and B) whose properties are higher that those of FINEMETs are discussed. The structure of these alloys consists of two nanocrystalline phases, such as the ferromagnetic α-Fe-based and nonmagnetic MeX phases. This structure provides the dispersion strengthening of the alloys. Metal science approaches to the selection of both chemical compositions and conditions of structure formation for these film alloys have been developed by authors and are discussed in this article.

  6. The formation of hysteretic magnetic properties in amorphous alloys of various classes upon thermomagmetic treatment in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2016-06-01

    In this paper, we have studied the effects of the thermomagnetic treatment in a transverse magnetic field (TMaT⊥) on the permeability of the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 with such a low saturation magnetostriction ( λ s 10-7) that, in the ribbons of this alloy rolled into a toroid, a sharp longitudinal magnetic texture is observed ( K sq > 0.90). It has been revealed that the permeability μ4 ( H = 4 mOe, f = 1 kHz) as a function of the annealing temperature or time of holding at a temperature is described by a curve with a maximum. This maximum is observed at a coefficient of the squareness of the hysteresis loop K sq,m in the range of 0.2 ≤ K sq,m ≤ 0.4. The regimes of the TMaT have been determined that provide optimum values of the permeability μ4 (15000) without a loss of the ductile state of the ribbons of this alloy. Based on the example of an iron-based alloy of composition Fe57Co31Si2.9B9.1 with λs = 35 × 10-6, it has been shown that the formation of the hysteretic magnetic properties upon the TMaT⊥ depends substantially on the magnitude of the magnetostriction and the Curie temperature of the amorphous alloys.

  7. Magnetic properties of Fe-Cu alloys grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Grigorov, I. L.; Freeland, J. W.; Walker, J. C.

    1996-03-01

    Magnetic properties of Fe_xCu_1-x alloys are difficult to study due to the low mutual solid solubility of the components. These alloys can be formed by co-sputtering onto a cold substrate, however, they retain fcc phase only for x < 0.6footnote[1]C.L. Chien et. al. Phys.Rev. B 33, 3247 (1986). In this work Fe_xCu_1-x alloys were grown epitaxially by co-deposition onto the Cu(100) substrate. Using this technique we can stabilize the alloy in fcc phase across the entire Fe concentration range. During growth, the substrate was maintained at 0^0C to prevent clustering. Crystal structure was monitored by in-situ RHEED and ex-situ X-ray diffraction. The correlation between structural and magnetic properties of the alloys as well as their dependence on the film thickness were studied by SQUID magnetometry and Mössbauer spectroscopy. Initial results showed a non-zero quadrupole splitting of the room temperature Mössbauer absorption line indicating the random distribution of iron in the Cu matrix. Both low temperature Mössbauer and SQUID measurements on the alloys with low iron concentration showed significant reduction of the average magnetic moment and T_c.

  8. -Interface effects on the magnetic moment of Co and Cu in CoCu granular alloys

    SciTech Connect

    Garcia Prieto, A.; Fdez-Gubieda, M.L.; Chaboy, J.; Laguna-Marco, M.A.; Muro, T.; Nakamura, T.

    2005-12-01

    We report on x-ray magnetic circular dichroism experiments performed on Co{sub 5}Cu{sub 95} annealed granular alloys with giant magnetoresistance. Results on the Co-L{sub 2,3} edge evidence a direct correlation between the Co orbital and spin magnetic moment and the Co clusters interfacial roughness. On the other hand, we have found dichroism on the Cu-L{sub 2,3} edge, revealing an induced magnetic polarization of the Cu interfacial atoms. The magnetic moment of the Cu atoms is mainly of spin character and is ferromagnetically coupled with the Co magnetic moment.

  9. Hf--Co--B alloys as permanent magnet materials

    DOEpatents

    McGuire, Michael Alan; Rios, Orlando; Ghimire, Nirmal Jeevi

    2017-01-24

    An alloy composition is composed essentially of Hf.sub.2-XZr.sub.XCo.sub.11B.sub.Y, wherein 0alloy composition is composed essentially of ferromagnetic Hf.sub.2-XZr.sub.XCo.sub.11B.sub.Y, wherein 0.ltoreq.X<2 and 0alloys can be melt-spun with in-situ and/or ex-situ annealing to produce the nanoscale crystalline structure.

  10. Phase structure and magnetic properties of Mn{sub 3}Ga{sub 2} alloy

    SciTech Connect

    Lu, Q. M. Yu, F.; Yue, M.; Zhang, H. G.; Li, Y. Q.; Liu, Y. Q.; Zhang, J. X.; Yan, X. L.

    2014-05-07

    In this paper, Mn{sub 3}Ga{sub 2} alloys with high saturation magnetization and high Curie temperatures were prepared by levitation melting high pure Mn and Ga elements followed by annealing. The effect of annealing temperature on phase structure and magnetic properties was investigated by means of x-ray diffraction and a vibrating sample magnetometer. A single phase alloy Mn{sub 3}Ga{sub 2}, which has tetragonal P4/mmm structure, was obtained with an annealing temperature of 773 K and annealing time of 24 h. The hysteresis curve of its easy axis for this single phase alloy shows that the room temperature coercivity and saturation magnetization are 4.18 kOe and 50.81 emu/g, respectively. The thermomagnetic curves indicate that the Curie temperature is about 650 K and a phase transformation occurs above 823 K.

  11. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    NASA Astrophysics Data System (ADS)

    Santhi, Kalavathy; Kumarsan, Dhanapal; Vengidusamy, Naryanan; Arumainathan, Stephen

    2017-07-01

    Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  12. (Fundamental studies of strongly magnetic rare earth-transition metal alloys)

    SciTech Connect

    Holmes, G.

    1990-01-01

    The aim of this research is to deepen our understanding of new strongly magnetic rare earth-transition metal compounds and alloys. Such materials have high potential as hard or semi-hard permanent magnet materials with energy-related and other applications. The phases investigated generally are based on iron or cobalt, often include light rare earths, and often are ternary alloys with anisotropic hexagonal or tetragonal structures. Several types of system are studied including new Fe-rich ternary phases, melt-spun and heat treated alloys containing disorder which are reached by intermediate metastable phases, and sputtered thin films and multilayers. Our aim is to understand these relatively complex materials on the basis of fundamental electronic structure, theories of itinerant magnetism, and the microstructural effects which control the extrinsic properties. To this end a broad range of experiments and calculations are performed.

  13. Microstructural Evolution and Magnetic Properties of Aged CoNiGaAl Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    El-Bagoury, N.; Rashad, M. M.

    2016-05-01

    A study on the influence of aging heat treatment conditions at 823 K for 3 h, 24 h, and 120 h, on microstructure, martensitic transformation, and magnetic and mechanical properties of Co50Ni23Ga27- X Al X alloys ( X = 0 and 1 at.%) was performed by using x-ray diffraction (XRD) analysis, optical microscopy (OM), energy-dispersive spectrometer (EDS), differential scanning calorimeter (DSC), and vibrating sample magnetometer (VSM). The results show that the microstructure of both aged alloys consists of martensite and fcc second γ phase in addition to ordered cubic gamma prime ( γ') phase precipitates in martensite. The martensitic transformation temperature peak ( M p) elevates with prolonging aging time and decreasing valence electron concentration ( e v/ a). Saturation magnetization ( M s) decreases, whereas both remanence magnetization ( M r) and coercivity ( H c) increase with aging time. Meanwhile, the aging time enhances the hardness property ( H v) of the investigated alloys.

  14. Recent progress in high Bs Fe-based nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Yoshizawa, Y.

    2011-02-01

    High saturation magnetic flux density (high-Bs) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m-1 and a high Bs of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe80.5Cu1.5Si4B14 nanocrystalline alloy is 0.46 W kg-1, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg-1, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  15. Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment

    SciTech Connect

    Brown, Daniel R.; Han, Ke; Niu, Rongmei; Siegrist, Theo; Besara, Tiglet

    2016-05-15

    Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealed Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.

  16. Concertation-Inhomogeneous Hard Magnetic Alloys of the Fe - Cr - Co System with Elevated Content of Cobalt and Boron

    NASA Astrophysics Data System (ADS)

    Shatsov, A. A.; Ryaposov, I. V.; Kozvonin, V. A.

    2017-05-01

    The structure and magnetic properties of a powder alloy based on the Fe - Cr - Co system with elevated content of cobalt and boron are studied. The dependences of the magnetic induction and of the coercivity on the aging temperature are determined experimentally. It is shown that the introduction of boron into the alloy hinders precipitation of σ-phase and makes it possible to raise the cobalt content by 4% as compared to standard alloy 30Kh23K.

  17. Investigation of magnetic domains in Ni Mn Ga alloys with a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Heczko, O.; Söderberg, O.; Hannula, S.-P.; Lindroos, V. K.

    2005-10-01

    The magnetic domains of martensite have been investigated with a scanning electron microscope in three Ni-Mn-Ga alloys with five-layered, seven-layered and non-layered (T) martensite structure. Type I magnetic contrast provides an overview of the domain pattern. This contrast arises from the stray field of the specimen and it is observed in a secondary-electron image. The type II magnetic contrast of a backscattered electron image gives the detailed magnetic microstructure together with the crystal morphology. A stripe domain pattern is formed in all the alloys when there is one dominant martensite variant in the sample. The second minor variant might be distorted due to interaction with the magnetic domain structure of the major variant. The mechanism of the deformation is not entirely clear and a tentative explanation for this deformation is suggested.

  18. Tailoring the magnetic properties of CoFeNi alloys with variations in copper contents

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Oh; Kim, Hyun Kyung; Kim, Gyeung Ho; Jeung, Won Young

    2006-04-01

    CoFeNi alloys are some of the most studied soft magnetic materials because of their superior properties over FeNi alloys as write head core materials in hard disk drives. Pulsed electrodeposition was shown to be an interesting approach to vary the crystalline structure of the fcc-bcc mixed phase CoFeNi and CoFeNiCu films without changing the composition and the grain size by using a single bath. The permeability μ of CoFeNiCu films plated from bath composition exceeded 4.6×106. Coercivity Hc was 20-73 A/m. The high saturation magnetic flux Bs was 1.8 T. The soft magnetic CoFeNiCu film prepared satisfies all the requirements needed for the preparation of magnetic recording heads, as all magnetic properties were improved in this direction.

  19. Nanocrystallinity and magnetic property enhancement in melt-spun iron-rare earth-base hard magnetic alloys

    SciTech Connect

    Davies, H.A.; Manaf, A.; Zhang, P.Z. . Dept. of Engineering Materials)

    1993-08-01

    Refinement of the grain size below [approximately]35 nm mean diameter in melt-spun FeNdB-base alloys leads to enhancement of remanent polarization, J[sub r], above the level predicted by the Stoner-Wohlfarth theory for an aggregate of independent, randomly oriented, and uniaxial magnetic particles. This article summarizes the results of the recent systematic research on this phenomenon, including the influence of alloy composition and processing conditions on the crystallite size, degree of enhancement of J[sub r], and maximum energy product (BH)[sub max]. It has been shown that the effect can also occur in ternary FeNdB alloys, without the addition of silicon or aluminum, which was originally thought necessary, providing the nanocrystallites are not magnetically decoupled by a paramagnetic second phase. Values of (BH)[sub max] above 160 kJ. m[sup [minus]3] have been achieved. The relationship between grain size, J[sub r], intrinsic coercivity, [sub J]H[sub c], and (BH)[sub max] are discussed in terms of magnetic exchange coupling, anisotropy, and other parameters. Recent extension of this work to the enhancement of properties in Fe-Mischmental-Boron-base alloys and to bonded magnets with a nanocrystalline structure is also described.

  20. Phase equilibria of Fe-C binary alloys in a magnetic field

    NASA Astrophysics Data System (ADS)

    England, Roger Dale

    The deployment of high flux magnetic processing in industry requires the ability to model the expected results of a proposed processing, and the current assumptions in the literature did not reflect the actual outcome in measurements of ductile iron. Simple binary iron-carbon alloys of less than one weight percent carbon were thermo-magnetically processed and then compared with Gibbs free energy phase transformation predictions. The data was used to quantify the change in the Gibbs free energy associated with the addition of a static high flux magnetic field, which is complicated by the change in magnetic response as the iron carbon alloys pass through the Curie point. A current common practice is to modify Gibbs free energy by -12J per mole per Tesla applied, as has been reported in the literature. This current prediction practice was employed in initial experiments for this work and the experimental data did not agree with these predicted values. This work suggests two specific influences that affect the model, chemistry and magnetic dipole changes. First, that the influence of alloying elements in the original chemistry, as the samples in the literature were a manganese alloy with 0.45 weight percent carbon, as well as not being precisely controlled for tramp elements that commonly occur in recycled material, created a change that was not predicted and therefore the temperatures were incorrect. Also, the phase transformation in a high flux magnetic field was measured to have a different response under warming versus cooling than the normal hysteresis under ambient magnetism. The change in Gibbs free energy for the binary alloys was calculated as -3J per mole per Tesla in warming, and -8J per mole per tesla in cooling. The change from these values to the -12J per mole per Tesla previously reported is attributed to the change in chemistry. This work attributes the published increase in physical properties to the Hall-Petch relation as a result of the finer product

  1. Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Lou, Shuting; Yan, Chen; Yang, Liu; Li, Tao; Hao, Shuai; Wang, Xingyi; Liu, Huan

    2017-04-01

    A large magnetic field-induced strain (MFIS) was discovered in single-crystal alloys, whereas it is proven difficult for such apparent strain values to be obtained in polycrystalline alloys. In order for an apparent strain discovery to occur, the polycrystalline Co-Ni-Al system was doped by 0-1 at.% of Er and the effects of doping on microstructure, magnetism and MFIS were studied via scanning electron microscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometer in the present work. The microstructure of the alloy was a dual-phase microstructure, including the matrix and the γ phase. Following the Er doping, the γ phase was continuously coarsened, forming a network of precipitates surrounding the grains. Also, a Co-Er-rich intermetallic compound was formed in the Co-rich γ phase when the Er content exceeded 0.1 at.%. The martensitic transformation temperature has a decreasing tendency during the Er being doped from 0 at.% to 1 at.% and the martensitic structure of the sample is of the L10 type, forming twin grains in the (111) twinning plane. On the contrary, the magnetic properties were improved by Er doping, especially saturation magnetization and magneto-crystalline anisotropy constantly increased to 60.45 emu/g and 3.13 × 106 erg/cm3 when the Er content reached 1 at.%, respectively. Also, the strain recovery ratio ( R s) of Co-Ni-Al-Er alloys can be enhanced by thermo-mechanical cycles and Er doping. At 5% of the total strain, the R s value exceeded 83% following thermo-mechanical cycles when the Er doping was 1 at.%. The strain in the applied magnetic field was increased by Er doping and an excess of 140 ppm of MFIS was obtained in the polycrystalline Co-Ni-Al-Er alloys.

  2. Recent breakthrough development of the magnetic shape memory effect in Ni Mn Ga alloys

    NASA Astrophysics Data System (ADS)

    Söderberg, O.; Ge, Y.; Sozinov, A.; Hannula, S.-P.; Lindroos, V. K.

    2005-10-01

    Magnetic shape memory (MSM) alloys or ferromagnetic shape memory alloy (FSMA) materials discovered by Ullakko et al (1996 Appl. Phys. Lett. 69 1966-8) have received increasing interest, since they can produce a large strain with rather high frequencies without a change in the external temperature. These materials have potential for actuator and sensor applications. MSM materials exhibit giant magnetic field induced strain (MFIS) based on the rearrangements of the crystallographic domains (twin variants). The magnetization energy of the material is lowered when such twin variants that have the easy axis of magnetization along the field start to grow due to twin boundary motion. Currently, the best working MSM materials are the near-stoichiometric Ni2MnGa Heusler alloys in which the properties are highly composition dependent. Their modulated martensitic structures, 5M and 7M, show 6% or 10% response respectively in a magnetic field less than 800 kA m-1. The MSM service temperature of the 5M alloys is between 150 and 333 K, and the optimal frequency region is up to 500 Hz. The fatigue life of the MSM elements has been shown to be at least 50 × 106 shape change cycles. This paper reviews the research work carried out at Helsinki University of Technology on MSM materials since 1998.

  3. Magnetic-Field Dependence of Thermoelectric Properties of Sintered Bi90Sb10 Alloy

    NASA Astrophysics Data System (ADS)

    Murata, Masayuki; Yamamoto, Atsushi; Hasegawa, Yasuhiro; Komine, Takashi

    2016-03-01

    The magnetic-field dependence of the thermoelectric properties and dimensionless figure of merit ( ZT) of a sintered Bi90Sb10 alloy were experimentally and theoretically evaluated. The Bi-Sb alloy was synthesized in a quartz ampule using the melting method, and the resultant ingot was then ground via ball milling. A sintered Bi90Sb10 alloy with a particle size in the range of several to several tens of micrometers was prepared using the spark plasma sintering (SPS) method. The magnetic-field dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity were experimentally evaluated at temperatures of 77-300 K for magnetic fields of up to 2.9 T. The results showed that ZT increased by 37% at 300 K under a 2.5-T magnetic field. A theoretical calculation of the magneto-Seebeck coefficient based on the Boltzmann equation with a relaxation time approximation was also performed. Hence, the experimental result for the magneto-Seebeck coefficient of the Bi90Sb10 alloy at 300 K was qualitatively and quantitatively explained. Specifically, the carrier scattering mechanism was shown to be acoustic phonon potential scattering and the carrier mobility ratio between the L- and T-points was found to be 3.3, which corresponds to the characteristics of a single crystal. It was concluded that the effect of the magnetic field on the Seebeck coefficient was demonstrated accurately using the theoretical calculation model.

  4. Pressure dependence on the remanent magnetization of Fe-Ni alloys and Ni metal

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; Gilder, Stuart Alan; Maier, Bernd

    2014-10-01

    We measured the acquisition of magnetic remanence of iron-nickel alloys (Fe64Ni36, Fe58Ni42, and Fe50Ni50) and pure Ni under pressures up to 23 GPa at room temperature. Magnetization decreases markedly for Fe64Ni36 between 5 and 7 GPa yet remains ferromagnetic until at least 16 GPa. Magnetization rises by a factor of 2-3 for the other compositions during compression to the highest applied pressures. Immediately upon decompression, magnetic remanence increases for all Fe-Ni alloys while magnetic coercivity remains fairly constant at relatively low values (5-20 mT). The amount of magnetization gained upon complete decompression correlates with the maximum pressure experienced by the sample. Martensitic effects best explain the increase in remanence rather than grain-size reduction, as the creation of single domain sized grains would raise the coercivity. The magnetic remanence of low Ni Invar alloys increases faster with pressure than for other body-centered-cubic compositions due to the higher magnetostriction of the low Ni Invar metals. Thermal demagnetization spectra of Fe64Ni36 measured after pressure release broaden as a function of peak pressure, with a systematic decrease in Curie temperature. Irreversible strain accumulation from the martensitic transition likely explains the broadening of the Curie temperature spectra, consistent with our x-ray diffraction analyses.

  5. Elastic and chemical contributions to the stability of magnetic surface alloys on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Marathe, Madhura; Imam, Mighfar; Narasimhan, Shobhana

    2009-02-01

    We have used density-functional theory to study the miscibility and magnetic properties of surface alloys. Our systems consist of a single pseudomorphic layer of MxN1-x on the Ru(0001) surface, where M=Fe or Co, and N=Pt , Au, Ag, Cd, or Pb. Several of the combinations studied by us display a preference for atomically mixed configurations over phase-segregated forms. We have also performed further ab initio calculations to obtain the parameters describing the elastic interactions between atoms in the alloy layer, including the effective atomic sizes at the surface. We find that while elastic interactions favor alloying for all the systems considered by us, in some cases chemical interactions disfavor atomic mixing. We show that a simple criterion (analogous to the Hume-Rothery first law for bulk alloys) need not necessarily work for strain-stabilized surface alloys because of the presence of additional elastic contributions to the alloy heat of formation that will tend to oppose phase segregation. We find that magnetic moments are significantly enhanced with respect to the bulk elements.

  6. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    NASA Astrophysics Data System (ADS)

    Lou, Chang-Sheng; Liu, Tie; Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang

    2017-02-01

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials.

  7. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    DOE PAGES

    Huang, L.; Cong, D. Y.; Ma, L.; ...

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore,more » good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less

  8. Texture effects on magnetic properties in high-alloyed non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Chang, Sam K.

    2007-11-01

    In high-alloyed non-oriented electrical steels with the addition of Co, Mo, and an increased quantity of Ni, a very low level of core loss ( W 15/50 = 2.2 W/kg) and high magnetic induction ( B 50 = 1.7 T) were obtained. However, Co and Mo degrade the magnetic properties substantially. With respect to the texture effect on magnetic properties, core loss decreases and magnetic induction increases proportionally to the texture factor (the ratio of the sum of cubic and Goss texture volumes to the volume of the γ-phase fibrous texture).

  9. Magnetic structure of martensite in Ni-Mn-Ga-Co alloys

    NASA Astrophysics Data System (ADS)

    Cesari, Eduard; Seguí, Concepció; Lázpita, Patricia

    Ni50-xCoxMn30Ga20 (x=6-9) alloys undergo martensitic transformation between ferromagnetic (FM) austenite and weak-magnetic martensite. However, the type of magnetism of martensite remains unclear. In this work, the results of a detailed study of the magnetic state of martensite in a Ni43Co7Mn30Ga20 are shown. The evolution with post-quench ageing indicates that improvement of atomic order increases the FM contributions to the weak-magnetic martensite, major changes occurring as the austenite switches from paramagnetic (PM) to FM. The results are consistent with the presence of FM clusters inside a PM matrix.

  10. Development of soft magnetic amorphous alloys with distinctly high Fe content

    NASA Astrophysics Data System (ADS)

    Chen, PingBo; Wang, AnDing; Zhao, ChengLiang; He, AiNa; Wang, Gang; Chang, ChunTao; Wang, XinMin; Liu, Chain-Tsuan

    2017-10-01

    This paper reports on the preparation of Fe82.7-85.7Si2-4.9B9.2-11.2P1.5-2.7C0.8 soft magnetic amorphous alloys with a distinctly high Fe content of 93.5-95.5 wt.% by component design and composition adjustment. All alloys can be readily fabricated into completely amorphous ribbon samples with good surface quality by the single copper roller melt-spinning method. These alloys show good bending ductility and excellent magnetic properties after annealing, i.e., low coercivity ( H c) of 3.3-5.9 A/m, high permeability ( μ e) of 5000-10000 and high flux saturation density ( B s) of 1.63-1.66 T. The mechanism of the good glass forming ability (GFA) and soft-magnetic properties are explored. The amorphous alloys with the high Fe content comparable to that of the desired high Si alloy can be promising candidates for the potential application in electric devices.

  11. Superior magnetic softness at elevated temperature of Si-rich Fe-based nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Shi, Rui-min; Wang, Zhi; Jia, Yun-yun; Wen, Zhuan-ping; Wang, Bo-wen; Zhang, Tao

    2012-10-01

    An excellent high-temperature magnetic softness was observed in a Si-rich nanocrystalline Fe74.5Cu1Nb2Si17.5B5 alloy. The Curie temperatures of amorphous and crystal phases, TCA* and TCcry, for this alloy were detected to be 365 °C and 580 °C, respectively. For the 480 °C-annealed alloy, the initial permeability μi drops to nearly zero just above TCA*; however, for the 540 °C-annealed alloy, the μi of about 10 000 at f = 10 kHz has no perceivable decline in this temperature range and can hold up to more than 400 °C. Such a magnetic softness at elevated temperature is superior to that of Finemet-type Fe-based nanocrystalline alloys ever reported. The origin of the high temperature magnetic softness was interpreted by the enhancement effect of Curie temperature in residual amorphous matrix.

  12. Relativistic Effects on Electron Transport in Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Drchal, Václav; Kudrnovský, Josef; Turek, Ilja

    We study the relativistic effects on electron transport in spin-polarized metals and random alloys on ab initio level using the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO) method. We employ a Kubo linear-response approach adapted to disordered multisublattice systems in which the chemical disorder is described in terms of the coherent potential approximation (CPA). The CPA vertex corrections are included. We calculate both the Fermi surface and Fermi sea terms of the full conductivity tensor. We find that in cubic ferromagnetic 3d transition metals (Fe, Co, Ni) and their random binary alloys (Ni-Fe, Fe-Si) the Fermi sea term in the anomalous Hall conductivity is small in comparison with the Fermi surface term, however, in more complicated structures, such as hexagonal Co and selected Co-based Heusler alloys, it becomes important. We find an overall good agreement between the theory and experimental data.

  13. Technology of melting REM-Fe-Co-B alloys for thermally stable magnets

    NASA Astrophysics Data System (ADS)

    Min, P. G.; Vadeev, V. E.; Evgenov, A. G.; Piskorskii, V. P.

    2015-11-01

    A technology of making REM-Fe-Co-B (REM = rare-earth metal) alloys for thermally stable magnets is developed. This technology ensures a stable chemical composition (REM content deviation of ±1.0 wt % from the calculated value, Co and B content deviation of ±0.5 wt %) and a low impurity content (Al or Ni ≤ 0.2 wt %, [O] ≤ 0.1 wt %). This technology makes it possible to make Pr-Dy-Fe-Co-B alloys and more complex compositions with additional REM, e.g., gadolinium. Fe-Pr and Fe-Dy master alloys are chosen and melted, and the possibility of using them to make Pr-Dy-Fe-Co-B alloys is studied.

  14. Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2016-12-01

    Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.

  15. Magnetic behavior of the nanophase of YbNi2 alloys

    NASA Astrophysics Data System (ADS)

    Ivanshin, V. A.; Gataullin, E. M.; Sukhanov, A. A.; Ivanshin, N. A.; Rojas, D. P.; Fernández Barquín, L.

    2017-04-01

    Variations in magnetic properties of the heavy-fermion YbNi2 alloy when milled in a high energy ball milling system have been investigated. The ferromagnetic transition ( T C = 10.4 K) in the initial sample almost vanishes after milling, which leads to the appearance of a magnetic transition at T* = 3.2 K in nanocrystallites. Before milling, processes of spin-lattice relaxation of the Orbach-Aminov type with the participation of the first excited Stark sublevel of the Yb3+ ion located at 75 K are dominating in the electron spin dynamics in the paramagnetic phase of the alloy. A comparative study of the temperature dependence of the magnetic properties and spectra of electron paramagnetic resonance in poly- and nanocrystalline samples indicates the existence of a magnetic inhomogeneity of the compound arising upon milling.

  16. Fe-Zr-Nd-Y-B permanent magnet derived from crystallization of bulk amorphous alloy

    NASA Astrophysics Data System (ADS)

    Tan, Xiaohua; Xu, Hui; Bai, Qin; Dong, Yuanda

    2007-12-01

    The microstructure and magnetic properties of Nd2Fe14B/(Fe3B,α-Fe) nanocomposite magnet derived form crystallization of bulk amorphous Fe68Zr2Y4B21Nd5 alloy, which was prepared by copper mold casting, have been investigated. The obtaining maximum values of Ms, Mr, Hci, and (BH)max annealed at 963K for Fe68Zr2Nd5Y4B21 alloy are 86Am2/kg, 49Am2/kg, 380kA/m, and 43kJ/m3, respectively. δM plot, high resolution transmission electron microscopy observation, and three-dimensional atom probe technique clarified that the hard magnetic behavior is due to the exchange coupling between soft and hard magnetic nanophases.

  17. Magnetic entropy change and refrigerant capacity of rapidly solidified TbNi2 alloy ribbons

    NASA Astrophysics Data System (ADS)

    Sánchez Llamazares, J. L.; Sánchez-Valdes, C. F.; Ibarra-Gaytan, P. J.; Álvarez-Alonso, Pablo; Gorria, P.; Blanco, J. A.

    2013-05-01

    The magnetocaloric effect in TbNi2 alloy ribbons synthesized by rapid solidification was investigated. This material crystallizes in a superstructure of the cubic Laves phase structure type C15 (space group F-43m). The saturation magnetization and Curie temperature are MS = 134 ± 2 A m2 kg-1 and TC = 37 ± 1 K, respectively. For a magnetic field change of 5 T, the material shows a maximum magnetic entropy change |ΔSMpeak| = 13.9 J kg-1 K-1, with a full-width at half-maximum δTFWHM = 32 K, and a refrigerant capacity RC = 441 J kg-1. The RC value is similar to those reported for other magnetic refrigerants operating within the temperature range of 10-80 K. Finally, it is worth noting that the use of rapid solidification circumvents the necessity for long-term high-temperature homogenization processes normally needed with these RNi2 alloys.

  18. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  19. MR measurement of alloy magnetic susceptibility: towards developing tissue-susceptibility matched metals.

    PubMed

    Astary, Garrett W; Peprah, Marcus K; Fisher, Charles R; Stewart, Rachel L; Carney, Paul R; Sarntinoranont, Malisa; Meisel, Mark W; Manuel, Michele V; Mareci, Thomas H

    2013-08-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7T and 11.1T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device.

  20. MR Measurement of Alloy Magnetic Susceptibility: Towards Developing Tissue-Susceptibility Matched Metals

    PubMed Central

    Astary, Garrett W.; Peprah, Marcus K.; Fisher, Charles R.; Stewart, Rachel L.; Carney, Paul R.; Sarntinoranont, Malisa; Meisel, Mark W.; Manuel, Michele V.; Mareci, Thomas H.

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7 T and 11.1 T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7 T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device. PMID:23727587

  1. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  2. Martensitic and magnetic transformation in Mn50Ni50-xSnx ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ma, L.; Wang, S. Q.; Li, Y. Z.; Zhen, C. M.; Hou, D. L.; Wang, W. H.; Chen, J. L.; Wu, G. H.

    2012-10-01

    A martensitic transformation (MT) from a body-centered-cubic austenitic phase to a tetragonal martensitic phase has been found in Mn50Ni50-xSnx (0 ≤ x ≤ 11) alloys. The martensitic transformation temperature can be decreased by about 71.6 K by increasing the Sn concentration by 1 at. %. For 9 ≤ x ≤ 11, Mn50Ni50-xSnx ferromagnetic shape memory alloys are obtained. Due to the large magnetization difference (ΔM = 60 emu/g) and small thermal hysteresis (ΔT = 6 K) in the Mn50Ni40Sn10 alloy, a two-way magnetic-field-induced martensitic transformation is observed with dT/dH = 2 K/T.

  3. Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets.

    PubMed

    Balamurugan, B; Das, B; Zhang, W Y; Skomski, R; Sellmyer, D J

    2014-02-12

    The structural and magnetic properties of nanostructured Co-rich transition-metal alloys, Co(100-x)TMx (TM = Hf, Zr and 10 ≤ x ≤ 18), were investigated. The alloys were prepared under non-equilibrium conditions using cluster-deposition and/or melt-spinning methods. The high-anisotropy HfCo7 and Zr2Co11 structures were formed for a rather broad composition region as compared to the equilibrium bulk phase diagrams, and exhibit high Curie temperatures of above 750 K. The composition, crystal structure, particle size, and easy-axis distribution were precisely controlled to achieve a substantial coercivity and magnetization in the nanostructured alloys. This translates into high energy products in the range of about 4.3-12.6 MGOe, which are comparable to those of alnico.

  4. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liping, Mao; Yongfan, Shi; yu, Han

    2014-11-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti2FeZ (Z=Al, Ga, Ge) alloys with Hg2CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti2FeZ follow the μt=Zt-18 rule and agree with the Slater-Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)-Ti(B) coupling and Fe atom.

  5. Itinerant magnetism and spin glass states of iron rich amorphous alloys

    NASA Astrophysics Data System (ADS)

    Krey, U.; Krompiewski, S.; Krauss, U.

    1990-04-01

    We generalize our self-consistent treatment of the itinerant magnetism of disordered or amorphous transition metal alloys, given in a series of recent papers, in such a way that now also itinerant spin glasses can be treated; i.e. not only the local magnitude, as before, also the local polarization direction can now differ from site, due to a subtle interplay between the isotropic intra-atomic Coulomb interaction and the anisotropic hopping terms in the Hamiltonian. Using a realistic approach with all relevant orbitals, this theory is then applied to a detailed numerical study of the magnetism of iron-rich amorphous Fe-Zr alloys, including hydrogenated samples, and of fictitious amorphous Fe at various densities. As a result we find that in the non-hydrogenated Fe-Zr alloys and in amorphous Fe the transverse components, although summing up to zero, can locally be almost comparable to the longitudinal polarization per atom.

  6. Magnetic configurations of Ni-Cu alloy nanowires obtained by the template method

    NASA Astrophysics Data System (ADS)

    Matei, Elena; Enculescu, Ionut; Toimil-Molares, Maria Eugenia; Leca, Aurel; Ghica, Corneliu; Kuncser, Victor

    2013-08-01

    High aspect ratio nanowires of Ni-Cu alloys have been synthesized by potentiostatic electrochemical deposition in etched ion-track membranes. The nickel-to-copper ratio in the nanowires was controlled via the deposition potential and electrochemical bath composition. We present a detailed study of nanowire properties including morphology, composition, and magnetic behavior. We report the magnetic configurations measured as function of the nanowire composition and discuss domain formation, anisotropy aspects, and local easy axis distributions.

  7. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  8. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    NASA Astrophysics Data System (ADS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-01-01

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments.

  9. Structural and magnetic properties of MnCo1-xFexSi alloys

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Wei, Z. Y.; Liu, E. K.; Qi, X.; Wang, W. H.; Wu, G. H.

    2015-08-01

    The crystal structures, martensitic structural transitions and magnetic properties of MnCo1-xFexSi (0≤x≤0.50) alloys were studied by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and magnetic measurements. In high-temperature paramagnetic state, the alloys undergo a martensitic structural transitions from the Ni2In-type hexagonal parent phase to the TiNiSi-type orthorhombic martensite. Both the martensitic transition temperature (TM) and Curie temperatures of martensite (TCM) decrease with increasing Fe content. The introduced Fe atoms establish ferromagnetic (FM) coupling within Fe-6Mn atom configurations and destroy the double spiral antiferromagnetic (AFM) coupling in MnCoSi compound, resulting in a magnetic change in the martensite phase from a spiral AFM state to an FM state. For the alloys with x=0.10, 0.15 and 0.20, a metamagnetic transition was observed in between the two magnetic states. A magnetostructural phase diagram of MnCo1-xFexSi (0≤x≤0.50) alloys was proposed.

  10. First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aly, Samy H.; Shabara, Reham M.

    2014-06-01

    We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.

  11. Strong, non-magnetic, cube textured alloy substrates

    DOEpatents

    Goyal, Amit

    2011-02-01

    A warm-rolled, annealed, polycrystalline, cube-textured, {100}<100>, FCC-based alloy substrate is characterized by a yield strength greater than 200 MPa and a biaxial texture characterized by a FWHM of less than 15.degree. in all directions.

  12. Magnetic and structural characteristics of PrCo13-xSiO alloys and their nitrides

    SciTech Connect

    Huang, M.Q.; Wallace, W.E.; Obermyer, R.T.; Simizu, S.; Sankar, S.G.

    1996-01-31

    PrCo13-xSix alloys with 0 <= x <= 4.5 have been synthesized and studied at temperatures from 10 to 1273 K and in fields up to 17 kOe. The structure and magnetic properties of the alloys vary significantly with changes in Si content x. In the alloys with x = 0, TMA and XRD studies show the phases present to be Pr2Co17 and Co. For x = 1.5 or 2.0, the alloys are essentially single-phase fcc materials (NaZn13 structure type). At larger values of x the ternary alloy formed in a bet structure (Ce2Ni17Si0 structure type). Replacement of Co by Si in PrCo13 results in a drop in T{sub c} from 1318 K (for LaCo13) to approx. 900 K for fcc Pr(Co.Si)13 alloy and to approx. 20 K for bct Pr(Co.Si)sub 13 alloys. There is also a large drop in magnetization from 104.6 emu/g for the alloy with x = 1.5 to 19.2 emu/g for the alloys with x = 4.0. A bct alloy (x = 3.5) showed negligible magnetic anisotropy. Si doping sharply reduces the Co moment. Si doping also reduces tbe Pr moment to 1.5 micrometer sub s (fcc alloys) and to 1.8 micrometers sub s (bct alloys). Nitrogenation fails to improve Pr(Co.Si)13 alloys as permanent magnet materials.

  13. Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys.

    PubMed

    D'Souza, Sunil Wilfred; Roy, Tufan; Barman, Sudipta Roy; Chakrabarti, Aparna

    2014-12-17

    Influence of disorder, antisite defects, martensite transition and compositional variation on the magnetic properties and electronic structure of Mn(2)NiGa and Mn(1+x)Ni(2-x)Ga magnetic shape memory alloys have been studied by using full potential spin-polarized scalar relativistic Korringa-Kohn-Rostocker (FP-SPRKKR) method. Mn(2)NiGa is ferrimagnetic and its total spin moment increases when disorder in the occupancy of MnNi (Mn atom in Ni position) is considered. The moment further increases when Mn-Ga antisite defect [1] is included in the calculation. A reasonable estimate of TC for Mn(2)NiGa is obtained from the exchange parameters for the disordered structure. Disorder influences the electronic structure of Mn(2)NiGa through overall broadening of the density of states and a decrease in the exchange splitting. Inclusion of antisite defects marginally broaden the minority spin partial DOS (PDOS), while the majority spin PDOS is hardly affected. For Mn(1+x)Ni(2-x)Ga where 1 ⩾ x ⩾ 0, as x decreases, Mn(Mn) moment increases while Mn(Ni) moment decreases in both austenite and martensite phases. For x ⩾ 0.25, the total moment of the martensite phase is smaller compared to the austenite phase, which indicates possible occurrence of inverse magnetocaloric effect. We find that the redistribution of Ni 3d- Mn(Ni) 3d minority spin electron states close to the Fermi level is primarily responsible for the stability of the martensite phase in Mn-Ni-Ga.

  14. Effect of Processing of HIPERCO® 50 Alloy Laminates on Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Jayaraman, Tanjore V.

    2015-11-01

    Fe-Co-based soft-magnetic materials form an important class of high-induction alloys that are widely used in energy conversion applications in the aerospace industry. In this work, the effect of processing—cut method [stamping and wire-electrical discharge machining (EDM)] and annealing (cut unannealed, cut followed by annealing, and annealing followed by cut)—on the magnetic properties of the HIPERCO® 50 Alloy laminates was investigated. A cold-rolled ˜0.006-in (˜150-μm)-thick strip of HIPERCO® 50 Alloy was cut into ring laminations and final-annealed in dry hydrogen. Scanning electron microscopy (SEM) and x-ray diffraction analysis indicated the presence of extraneous Cu on the cut edge of the wire-EDM cut ring laminates, along with the expected Fe-Co phase for HIPERCO® 50 alloy. SEM micrographs of the cut edge showed the typical sheared surface and irregular surface for stamped and wire-EDM cut ring laminates respectively. The rings that were stamped followed by annealing (STfA) showed superior direct current (DC) and alternating current (AC) magnetic properties. The presence of Cu (diamagnetic) in wire-EDM cut rings adversely affects induction ( B) and core loss ( P T), compared to the stamped rings for corresponding annealing conditions. The difference in the DC magnetic properties between the ring laminates STfA and annealed followed by stamping (AfST) was significantly large compared to that between the ring laminates that were wire-EDM cut followed by annealing (EDfA) and annealing followed by wire-EDM (AfED). This suggests that, for certain applications where the differences in DC magnetic properties between EDfA and AfED are acceptable, the AfED rings may be put to application/service after the wire-EDM cut operation, i.e. wire-EDM may be performed after `final-annealing'. However, the AC properties between EDfA and AfED rings were significantly different, hence for AC applications, the `final annealing', post-cutting, is critical irrespective

  15. Effective magnetic anisotropy and internal demagnetization investigations in soft magnetic nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Varga, L. K.; Novák, L.; Mazaleyrat, F.

    2000-02-01

    In order to clarify the effect of the initial anisotropy K1 of the nanograins on the effective < K> of two-phase nanocrystalline Fe 73.5Si 13.5B 9Nb 3Cu 1 (Finemet) and Fe 86Zr 7B 6Cu 1 alloys, the coercivity, virgin and anhysteretic curves have been studied at room temperature after different annealing. The experimental determination of the effective < K> was found to be 280 and 500 J/m 3, respectively, instead of the order of unity J/m 3 expected by random anisotropy model calculations. The internal demagnetization factor, as a measure of magnetic heterogeneities was found to have a negligible contribution to the effective < K> in both materials although it is higher in the FeZr-based one. The coercivity results are explained well by our adaptation of the Friedberg and Paul formula in which the ratio of the Curie temperatures are considered for the ratio of the two local exchange constants. Further more calculations are developed from this formula in order to connect qualitatively the coercivity and the internal demagnetizing factor

  16. Surface magnetism of L10 CoPt alloy: first principles predictions.

    PubMed

    Liu, Zhenyu; Wang, Guofeng

    2017-09-06

    We used the first-principles density functional theory (DFT) to predict the magnetic properties of (1 0 0), (0 0 1), (1 0 1), (1 1 0), and (1 1 1) surfaces of L10 ordered CoPt alloy. Our results indicate that bulk-terminated CoPt surfaces exhibit magnetic moment higher than that of bulk CoPt crystal and surface magnetic anisotropy favoring in-plane magnetization. Moreover, our DFT calculations predict that Pt prefers to segregate to the outermost layer of all these five CoPt surfaces with energy gain in the range of 0.05-0.47 eV for each segregated Pt atom. Comparing the structural and magnetic properties of the bulk-terminated and Pt-segregated CoPt surfaces, we found that Pt surface segregation led to larger contraction relaxation, reduced magnetic moments (with the exception of (1 1 0) surface), smaller spin canting angles, and an out-of-plane contribution to the surface magnetic anisotropy energy of the CoPt surfaces. Furthermore, our electronic structure analysis suggests that the change in the density of [Formula: see text] minority spin states of surface Co atoms mainly underlies the observed phenomena related to the surface magnetism of L10 CoPt alloy.

  17. Surface magnetism of L10 CoPt alloy: first principles predictions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Wang, Guofeng

    2017-09-01

    We used the first-principles density functional theory (DFT) to predict the magnetic properties of (1 0 0), (0 0 1), (1 0 1), (1 1 0), and (1 1 1) surfaces of L10 ordered CoPt alloy. Our results indicate that bulk-terminated CoPt surfaces exhibit magnetic moment higher than that of bulk CoPt crystal and surface magnetic anisotropy favoring in-plane magnetization. Moreover, our DFT calculations predict that Pt prefers to segregate to the outermost layer of all these five CoPt surfaces with energy gain in the range of 0.05-0.47 eV for each segregated Pt atom. Comparing the structural and magnetic properties of the bulk-terminated and Pt-segregated CoPt surfaces, we found that Pt surface segregation led to larger contraction relaxation, reduced magnetic moments (with the exception of (1 1 0) surface), smaller spin canting angles, and an out-of-plane contribution to the surface magnetic anisotropy energy of the CoPt surfaces. Furthermore, our electronic structure analysis suggests that the change in the density of {{d}{{z2}}} minority spin states of surface Co atoms mainly underlies the observed phenomena related to the surface magnetism of L10 CoPt alloy.

  18. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  19. Fundamental magnetic studies of iron-rare-earth-metalloid alloys

    SciTech Connect

    Hadjipanayis, G.C.

    1991-02-19

    This project is focussed on the study of magnetic and structural properties of new phases and special microstructures that have potential for relatively high coercivity. Hard and semihard magnets find wide applications in industry including electric power and information storage devices. The discovery of new and less expensive materials with better properties is of great interest. Our efforts are focused in the following three areas: (1) The search of Fe-rich new phases and compounds with high magnetization, anisotropy and Curie temperature that can be used for permanent magnet development. (2) The use of rapid solidification techniques (melt-spinning) to prepare these phases into fine grain microstructures that can lead to high coercivities. (3) The relationships of hard magnetic properties to microstructures and magnetic domain structure determined by transmission electron microscopy.

  20. Jahn-Teller-like origin of the tetragonal distortion in disordered Fe-Pd magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Opahle, Ingo; Koepernik, Klaus; Nitzsche, Ulrike; Richter, Manuel

    2009-02-01

    The electronic structure and magnetic properties of disordered FexPd100-x alloys (50magnetization data. The origin of the tetragonal distortion in the Fe-Pd magnetic shape memory alloys is found to be a Jahn-Teller-like effect, which allows the system to reduce its band energy in a narrow composition range. Prospects for an optimization of the alloys' properties by adding third elements are discussed.

  1. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    NASA Astrophysics Data System (ADS)

    Quan, Ningtao; Luo, Yang; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18-30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM13Fe81B6 were obtained. Microstructural analyses indicate that the grain size is approximately 30-50 nm in the alloys with the optimum characteristics. In the MM16Fe78B6 alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe2 content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as the potential isotropy magnetic powders in the bonded magnets.

  2. Electronic structure and magnetism on FeSiAl alloy: A DFT study

    NASA Astrophysics Data System (ADS)

    Cardoso Schwindt, V.; Sandoval, M.; Ardenghi, J. S.; Bechthold, P.; González, E. A.; Jasen, P. V.

    2015-09-01

    Density functional theory (DFT) calculation has been performed to study the electronic structure and chemical bonding in FeSiAl alloy. These calculations are useful to understand the magnetic properties of this alloy. Our results show that the mean magnetic moment of Fe atoms decreases due to the crystal structure and the effect of Si and Al. Depending on the environment, the magnetic moment of one Fe site (Fe1) increases to about 14.3% while of the other site (Fe2) decreases to about 25.9% (compared with pure bcc Fe). All metal-metal overlap interactions are bonding and slightly weaker than those found in the bcc Fe structure. The electronic structure (DOS) shows an important hybridization among Fe, Si and Al atoms, thus making asymmetric the PDOS with a very slight polarization of Al and Si atoms. Our study explains the importance of crystal structure in determining the magnetic properties of the alloys. FeSiAl is a good candidate for electromagnetic interference shielding combining low price and good mechanical and magnetic properties.

  3. Growth, structure and magnetism of self-organized epitaxial nano-alloys on a metallic substrate

    NASA Astrophysics Data System (ADS)

    Rousset, S.; Moreau, N.; Repain, V.; Chacon, C.; Girard, Y.; Klein, J.; Lagoute, J.; Bulou, H.; Scheurer, F.; Goyhenex, C.; Ohresser, Ph.

    2013-03-01

    The CoPt alloy is one of the most studied bimetallic compounds, due to its potential application for magnetic recording. We report here on CoxPt1-x nano-alloys deposited on the well-known Au(111) reconstructed surface since it has been recognized as a powerful substrate in order to investigate the magnetic properties of metallic nano-clusters. The growth of CoxPt1-x clusters on the Au(111) surface observed by STM revealed a morphological transition from single layer to bilayer islands with the Co concentration x. Using molecular dynamics calculations, we show that this transition is driven by the local strain due to Co atoms. These results are interpreted by a competition between the interface energy, the mixing energy and the elastic energy. Using X-ray Magnetic Circular Dichroism, we have studied the magnetic properties of these nano-alloys. The out-of-plane anisotropy of pure Co clusters strongly decreases, until it goes in-plane for 40% of Pt. This spin reorientation transition is interpreted by a phenomenological pair model for magnetic anisotropy.

  4. Change of magnetic properties of nanocrystalline alloys under influence of external factors

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik

    2016-10-01

    Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.

  5. Effects of tensile stress on the magnetic Barkhausen effect in 2605 Co amorphous alloy

    SciTech Connect

    Mitra, A.; Jiles, D.C.

    1995-11-01

    A study of the magnetic Barkhausen effect emissions in 2605 Co amorphous alloys has been made. These emissions, which appear as magnetization pulses in the material, can be detected by a pick-up coil and analyzed in a variety of ways. In this study the Barkhausen effect signals were found to be dependent on both magnetic field and applied tensile stress. This dependence was in accordance with a theoretical model of the Barkhausen effect developed previously. The analysis and modeling of the resulting behavior was found to be particularly simple because amorphous alloys have no crystalline anisotropy, and therefore the effects of stress on the Barkhausen emission were not masked by competing effects.

  6. Magnetic-field-induced transformation in FeMnGa alloys

    SciTech Connect

    Zhu, W.; Liu, E. K.; Feng, L.; Tang, X. D.; Chen, J. L.; Wu, G. H.; Liu, H. Y.; Meng, F. B.; Luo, H. Z.

    2009-11-30

    A kind of ferromagnetic shape memory alloy with off-stoichiometric composition of Heusler alloy Fe{sub 2}MnGa has been synthesized. By optimizing composition, the martensitic transformation has been modified to occur at about 163 K accompanying spontaneous magnetization, which enables a magnetic field-induced structural transition from a paramagnetic parent phase to a ferromagnetic martensite with high magnetization of 93.8 emu/g. The material performs a quite large lattice distortion through the transformation, (c-a)/c=33.5%, causing a shape memory strain upto 3.6%. Such large lattice distortions strongly influence the electron structures, and thus some special physical behavior related to the transport and conductive properties is investigated.

  7. Electronic structure and magnetic properties of disordered Co{sub 2}FeAl Heusler alloy

    SciTech Connect

    Jain, Vishal Jain, Vivek Sudheesh, V. D. Lakshmi, N. Venugopalan, K.

    2014-04-24

    The effects of disorder on the magnetic properties of Co{sub 2}FeAl alloy are reported. X-ray diffraction exhibit A2-type disordered structure. Room temperature Mössbauer studies show the presence of two sextets with hyperfine field values of 31T and 30T along with a nonmagnetic singlet. The electronic structure of ordered and disordered Co{sub 2}FeAl alloys, investigated by means of the KKR Green's-function method shows that the magnetic moment of the ordered structure is 5.08μ{sub B} and is 5.10μ{sub B} when disordered. However, a much higher magnetic moment of 5.74μ{sub B} is observed experimentally.

  8. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-01

    Heulser alloys Fe2Cr1-xCoxSi (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 106 erg/cm3. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe2CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  9. Magnetic ground state and giant spontaneous exchange bias in Ni46Mn43In11 alloy

    NASA Astrophysics Data System (ADS)

    Ray, Mayukh K.; Maji, Bibekananda; Modak, M.; Banerjee, S.

    2017-05-01

    We report non-equilibrium dynamics and giant spontaneous exchange bias obtained in zero field cooled mode for Ni46Mn43In11 alloy. The dc magnetic measurements indicate a super spin glass type magnetic ground state in the system. This SSG state is formed when superparamagnetic domains are collectively frozen inside strong antiferromagnetic matrix at low temperature. The ZFCEB arises due to the development of strong superferromagnetic unidirectional anisotropy at the interface of SSG and AFM during the initial magnetization processes. The temperature variation of field cooled exchange bias and ZFCEB is almost similar whilst their field dependency is different. Possible reasons for observed behaviors are comprehensively discussed in this article.

  10. Magnetic Nondestructive Investigation of Ferromagnetic Alloys Subjected to Stress and Fatigue

    SciTech Connect

    Melikhov, Y.; Lo, C.C.H.; Jiles, D.C.

    2004-02-26

    The influence of stress and fatigue under various stress amplitudes on the magnetic properties of a range of magnetic alloys (Ni, Fe55Ni45, Fe64Ni36 and Fe54Ni29Co17) was studied. Barkhausen effect signal and symmetrical minor hysteresis loops were measured at various stages during the tensile and fatigue tests. The data were analyzed using the Preisach model formalism in order to identify parameters which better described the structural changes in the materials. The results obtained from this work has enhanced the applicability of magnetic measurements for non-destructive testing of materials.

  11. Fundamental studies of strongly magnetic rare earth-transition metal alloys

    SciTech Connect

    Sellmyer, D.J. ); Hadjipanayis, G.C. . Dept. of Physics and Astronomy)

    1992-01-01

    The goal of this project is to advance our understanding of new phases and microstructures of rare-earth and transition-metal alloys and compounds. In particular we investigate several classes of materials which are expected to have high magnetizations and coercivities, which are necessary conditions for high performance permanent magnet and related applications. Hard and semi-hard magnetic materials form the basis of much of the electric power and information storage industries and the discovery of new and less expensive materials with outstanding properties is of great interest.

  12. Microstructural, mechanical and magnetic properties of high-strength low-alloy steel

    NASA Astrophysics Data System (ADS)

    Narayan, S. Prakash; Rao, V.; Mohanty, O. N.

    1991-06-01

    Studies have been carried out on commercial grade high-strength low-alloy steel, microalloyed with Nb, V and Ti with a view to developing high-strength material with moderate soft magnetic properties. In order to obtain a suitable microstructure necessary for achieving the desired mechanical strength and magnetic properties, spheroidisation annealing (SA) as well as quenching and tempering (QT) treatments have been employed. At longer annealing or tempering time (⩾ 30 h), both the SA and QT samples have shown ample spheroidisation of carbides resulting in considerable improvement in the magnetic properties without much deterioration in mechanical strength.

  13. Magnetic properties of amorphous Fe 78P 22 alloy obtained by mechanical grinding

    NASA Astrophysics Data System (ADS)

    Yelsukov, E. P.; Konygin, G. N.; Zagainov, A. V.; Barinov, V. A.

    1999-06-01

    The amorphous Fe 78P 22 alloy obtained by mechanical grinding was studied by X-ray analysis, Mössbauer spectroscopy and magnetic measurements. The measured values of the average hyperfine magnetic field H, mean magnetic moment per Fe atom mFe and Curie temperature Tc agree with those obtained earlier for electrodeposited and then ground samples and are in good qualitative agreement with the model describing macroscopic characteristics through the parameters of local environment but essentially disagree with the literature data for the samples obtained by rapidly quenching and only by electrochemical deposition.

  14. Electrodeposition of iron and iron-aluminium alloys in an ionic liquid and their magnetic properties.

    PubMed

    Giridhar, P; Weidenfeller, B; El Abedin, S Zein; Endres, F

    2014-05-28

    In this work we show that nanocrystalline iron and iron-aluminium alloys can be electrodeposited from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C. The study comprises CV, SEM, XRD, and magnetic measurements. Two different sources of iron(ii) species, Fe(TfO)2 and FeCl2, were used for the electrodeposition of iron in [Py1,4]TfO. Cyclic voltammetry was employed to evaluate the electrochemical behavior of FeCl2, Fe(TfO)2, and (FeCl2 + AlCl3) in the employed ionic liquid. Thick iron deposits were obtained from FeCl2/[Py1,4]TfO at 100 °C. Electrodeposition of iron-aluminium alloys was successful in the same ionic liquid at 100 °C. The morphology and crystallinity of the obtained deposits were investigated using SEM and XRD, respectively. XRD measurements reveal the formation of iron-aluminium alloys. First magnetic measurements of some deposits gave relatively high coercive forces and power losses in comparison to commercial iron-silicon samples due to the small grain size in the nanometer regime. The present study shows the feasibility of preparing magnetic alloys from ionic liquids.

  15. O[N] Simulations of Disordered Alloys: Charge and Correleations and Non-Collinear Magnetism

    NASA Astrophysics Data System (ADS)

    Stocks, G. Malcolm

    1997-03-01

    First principles order-N (O[N]) LDA methods capable of dealing with transition metal elements make direct simulation of the properties of disordered alloys and complex inhomogeneous systems possible. Calculations based on these methods not only provide new physical insights but also provide a data base against which previous approximate theories can be analyzed. I will outline the recently developed O[N] locally self-consistent multiple scattering (LSMS) method(Yang Wang et al. Phys. Rev. Letters, 75), 2867, (1995) and its application to the study of charge(J. S. Faulkner, Yang Wang, and G. M. Stocks, Phys. Rev. 52), 17106, (1995) and Phys. Rev. B. (in press) and magnetic moment correlations in substitutional alloys based on large cell (several hundred atom) models of the disordered state. I will outline the generalization of the LSMS method to treat alloys in which the orientations of magnetic moments associated with individual atomic sites can be non-collinear. Results for several systems having competing ferromagnetic and antiferromagnetic interactions, e.g. fcc Ni_cFe_(1-c) alloys near the Ivar composition, show complex non-collinear ground states. Finally, I will assess the outlook for applying the non-collinear LSMS method to finite temperature magnetism based on the recently proposed spin dynamics(V. P. Antropov et al. Phys. Rev. 54), 1019, (1996)

  16. Microstructural and magnetic property evolution with different heat-treatment conditions in an alnico alloy

    DOE PAGES

    Zhou, Lin; Tang, Wei; Ke, Liqin; ...

    2017-05-08

    Further property enhancement of alnico, an attractive near-term, non-rare-earth permanent magnet alloy system, primarily composed of Al, Ni, Co, and Fe, relies on improved morphology control and size refinement of its complex spinodally decomposed nanostructure that forms during heat-treatment. Using a combination of transmission electron microscopy and atom probe tomography techniques, this study evaluates the magnetic properties and microstructures of an isotropic 32.4Fe-38.1Co-12.9Ni-7.3Al-6.4Ti-3.0Cu (wt.%) alloy in terms of processing parameters such as annealing temperature, annealing time, application of an external magnetic field, as well as low-temperature “draw” annealing. Optimal spinodal morphology and spacing is formed within a narrow temperature andmore » time range (~840 °C and 10 min) during thermal-magnetic annealing (MA). The ideal morphology is a mosaic structure consisting of periodically arrayed ~40 nm diameter (Fe-Co)-rich rods (α1 phase) embedded in an (Al-Ni)-rich (α2 phase) matrix. A Cu-enriched phase with a size of ~3–5 nm is located at the corners of two adjacent {110} facets of the α1 phase. The MA process significantly increased remanence (Br) (~40–70%) of the alloy due to biased elongation of the α1 phase along the <100> crystallographic direction, which is closest in orientation to the applied magnetic field. As a result, the optimum magnetic properties of the alloy with an intrinsic coercivity (Hcj) of 1845 Oe and a maximum energy product (BHmax) of 5.9 MGOe were attributed to the uniformity of the mosaic structure.« less

  17. Microstructure Formation in Strip-Cast RE-Fe-B Alloys for Magnets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiko; Matsuura, Masashi; Sugimoto, Satoshi

    2017-07-01

    During the manufacturing of sintered NdFeB magnets, it is well known that the microstructure of the starting alloy has a strong influence on the processing and the magnetic properties of the product. In this study, we clarify the microstructure formation in strip-cast rare earth (R)-Fe-B alloys used to produce magnets. The microstructure of the alloy surface in contact with the cooling roll and its cross-section were observed using laser microscopy, field emission electron microprobe analysis, and transmission electron microscopy. The orientations of crystal grains were determined by X-ray diffraction and electron backscatter diffraction analyses. Petal-shaped structures were found to cover the alloy surface in contact with the cooling roll, each consisting of a central nucleation region and radially grown Nd2Fe14B dendritic structures. The nucleation region, consisting of a "disc" and "predendrites", occurs in the super-cooled region of the contact area between the cooling roll and melt. In the disc region, spherical Nd2Fe14B particles <100 nm in size are formed in the amorphous R-rich phase, with the overall atomic composition of rare earth:Fe = 1:2. During the primary growth stage of the dendritic structure, each Nd2Fe14B rod with a different crystal orientation (around 2 to 3 μm in diameter) forms one radially extending crystal grain. As these structures extend to the free surface, crystal grains with orientations close to <100> in the thickness direction increase in volume. These discs and predendrites observed in the super-cooled area negatively influence the magnetic orientation and sinterability in the produced magnets. Therefore, it is important to avoid excessive super-cooling to obtain optimum magnetic properties.

  18. Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy.

    PubMed

    Mizukami, S; Wu, F; Sakuma, A; Walowski, J; Watanabe, D; Kubota, T; Zhang, X; Naganuma, H; Oogane, M; Ando, Y; Miyazaki, T

    2011-03-18

    Spin precession with frequencies up to 280 GHz is observed in Mn(3-δ)Ga alloy films with a perpendicular magnetic anisotropy constant K(u)∼15  M erg/cm(3). The damping constant α, characterizing macroscopic spin relaxation and being a key factor in spin-transfer-torque systems, is not larger than 0.008 (0.015) for the δ=1.46 (0.88) film. Those are about one-tenth of α values for known materials with large K(u). First-principles calculations well describe both low α and large K(u) for these alloys.

  19. Structural and magnetic properties of mechanically alloyed Co 20Cu 80 solid solution

    NASA Astrophysics Data System (ADS)

    Yoo, Y. G.; Yang, D. S.; Yu, S. C.; Kim, W. T.; M. Lee, J.

    1999-08-01

    Microstructural change during the mechanical alloying of Co 20Cu 80 has been studied by X-ray diffractometry (XRD) and extended X-ray absorption fine structure (EXAFS) techniques. EXAFS analysis shows clearly the formation of supersaturated Co 20Cu 80 solid solution with FCC crystal structure during mechanical alloying, which is in good agreement with XRD analysis. Magnetic properties also have been studied by SQUID magnetometer from 4 to 290 K. The supersaturated Co 20Cu 80 solid solution shows wide distribution in Co cluster size due to the continuous blocking of Co cluster as a function of temperature.

  20. Magnetic properties and magnetocaloric effect in Dy(Co 1-xFe x) 2 alloys

    NASA Astrophysics Data System (ADS)

    Han, Zhida; Hua, Zhenghe; Wang, Dunhui; Zhang, Chengliang; Gu, Benxi; Du, Youwei

    2006-07-01

    Polycrystalline samples of Laves-phase alloys Dy(Co 1-xFe x) 2( x=0, 0.02,0.04,0.06,0.08) have been prepared by arc-melting method. No first order phase transition was observed for samples with x≠0. With the increase of Fe content, the Curie temperature increases greatly, while the calculated magnetic entropy change, Δ SM, shows an obvious decrease with a broader peak. The origin of the magnetocaloric effect in Dy(Co 1-xFe x) 2 alloys has been discussed.

  1. The role of nickel content and the magnetic remanence in iron-nickel alloys of lunar composition

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1974-01-01

    Lunar samples are magnetic primarily due to the body centered cubic (BCC) iron and iron-nickel alloys they contain. Presented for the first time are results which demonstrate that the magnitude of the martensitic thermal remanence (MTRM) induced on quenching iron-nickel alloy in the geomagnetic field depends on the nickel content of the alloy. High magnetic stability is due to the increasing dislocation density and increasingly complex microstructures associated with increasing nickel content in the alloys. The results agree with the mechanical and structural properties of the alloys. The characteristic quench martensite microstructure observed on metallographic examination provides a recognition criterion for the MTRM mechanism. These results are important for lunar and meteoritic research intending to ascertain the paleofield responsible for the observed remanent magnetization.-

  2. Magnetic entropy changes and exchange bias effects associated with phase transitions in ferromagnetic Heusler alloys

    NASA Astrophysics Data System (ADS)

    Khan, Mahmud

    Magnetic entropy changes and exchange bias effect associated with magnetostructural phase transitions of several Mn based ferromagnetic Heusler alloys have been investigated by x-ray diffraction, magnetization, thermal expansion, and electrical resistivity measurements. The alloys include Ni2+xMn1-xGa (0.16 ≤ x ≤ 0.20), Ni2Mn1-xCuxGa (0.245 ≤ x ≤ 0.26), Ni2Mn0.75Cu0.25-xCo xGa (0.245 ≤ x ≤ 0.26), Ni2Mn0.71Cu 0.27Fe0.02Ga, Ni2Mn0.70Cu0.30 Ga0.95Ge0.05, Ni50Mn25+xSb 25-x (0 ≤ x ≤ 15), and Ni50Mn50-xSn x (10 ≤ x ≤ 17). The study of the Ga based Heusler alloys listed above shows that the alloys possess the cubic Heusler L21 structure or the lower symmetry martensitic structure (tetragonal/orthorhombic) at room temperature. Each alloy undergoes a first order martensitic structural phase transition and a second order ferromagnetic phase transition at the same temperature. This coupled magnetostructural phase transition occurs at different temperatures ranging from 295 K to 375 K. In the vicinity of each of these transitions large magnetic entropy changes have been observed. The maximum peak magnetic entropy change value, DeltaSM, is found to be around -64 J/kg.K. Except the Ni2+xMn1-xGa alloys, all of the other alloys exhibit the large magnetic entropy changes at temperatures near room temperature. The study of the Ni50Mn25+xSb25-x and Ni50Mn50-xSnx reveals many interesting properties of the alloys. For some critical Sb and Sn concentrations, martensitic transitions are observed in the samples, in the vicinity of which large inverse magnetic entropy changes have been observed. X-ray diffraction patterns of the alloys suggest that the martensitic phases possess 10M modulated orthorhombic structures, while the high temperature phase is purely cubic with the L21 structure. The martensitic phases in these alloys are found to host both ferromagnetic and antiferromagnetic coupling. Due to this coexistence of both ferromagnetic and antiferromagnetic coupling

  3. Isochronal Annealing Studies in Pu and Pu Alloys Using Magnetic Susceptibility

    SciTech Connect

    McCall, S. K.; Fluss, M. J.; Chung, B. W.; McElfresh, M. W.; Chapline, G.F.; Jackson, D. D.; Haire, Richard {Dick} G

    2007-01-01

    The isochronal annealing of the low temperature accumulated damage from the radioactive decay of plutonium in {alpha}-Pu, {delta}-Pu{sub 1-x}Ga{sub x} (x = 0.043) and {delta}-Pu{sub 1-x}Am{sub x} (x = 0.224) was characterized using magnetic susceptibility. In each specimen, thermal annealing, as tracked by magnetic susceptibility, only commenced when T > 33 K and the magnetic susceptibility changes due to defects were fully annealed at T not, vert, similar 300 K. The {alpha}-Pu magnetic susceptibility isochronal annealing data is similar to earlier measurements of resistivity characterized isochronal annealing. However, the {delta}-Pu{sub 1-x}Ga{sub x} (x = 0.043) magnetic susceptibility isochronal annealing data, when compared with similar resistivity data, indicates that for this alloy magnetic susceptibility studies are more sensitive to vacancies than to the interstitials accumulated at low temperatures. The Pu{sub 1-x}Am{sub x} (x = 0.224) alloy shows a remarkable change in properties, over a limited temperature range beginning where interstitial defects are first mobile, and characterized by an induced effective moment of order 1.1 {mu}{sub B}/Pu. This transient behavior may be evidence for a disorder driven low temperature phase transition, perhaps indicative of a compositional and structural proximity to a state possessing significant magnetic moments.

  4. Magnetic glass in shape memory alloy: Ni45Co5Mn38Sn12.

    PubMed

    Lakhani, Archana; Banerjee, A; Chaddah, P; Chen, X; Ramanujan, R V

    2012-09-26

    The first order martensitic transition in the ferromagnetic shape memory alloy Ni(45)Co(5)Mn(38)Sn(12) is also a magnetic transition and has a large field induced effect. While cooling in the presence of a field this first order magnetic martensite transition is kinetically arrested. Depending on the cooling field, a fraction of the arrested ferromagnetic austenite phase persists down to the lowest temperature as a magnetic glassy state, similar to the one observed in various intermetallic alloys and in half doped manganites. A detailed investigation of this first order ferromagnetic austenite (FM-A) to low magnetization martensite (LM-M) state transition as a function of temperature and field has been carried out by magnetization measurements. Extensive cooling and heating in unequal field (CHUF) measurements and a novel field cooled protocol for isothermal MH measurements (FC-MH) are utilized to investigate the glass like arrested states and show a reverse martensite transition. Finally, we determine a field-temperature (HT) phase diagram of Ni(45)Co(5)Mn(38)Sn(12) from various magnetization measurements which brings out the regions where thermodynamic and metastable states coexist in the HT space, clearly depicting this system as a 'magnetic glass'.

  5. Magnetic and microstructural properties of nanocrystalline Fe-25 at% Al and Fe-25 at% Al +0.2 at%B alloys prepared by mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Ibn Gharsallah, H.; Makhlouf, T.; Escoda, L.; Suñol, J. J.; Khitouni, M.

    2016-04-01

    In the present work, structural and magnetic properties of nanocrystalline Fe-25at%Al and Fe-25at%Al+0.02at%B alloys produced by mechanical alloying were studied. Their microstructural properties were investigated by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. A BCC-nanostructured Fe(Al,B) solid solution with an average crystallite size of about 18nm has been produced by milling for 4h. Whereas in Fe-25at%Al the alloying process has been accomplished after 16h of milling. It is found that B speeds up the formation of a bcc phase with finer microstructure (around 5nm) after 40h of milling. When increasing the milling time, the crystallite size decreases for all powders. An increase in microstrain was observed with increasing the milling time and also with addition of boron. Coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. The magnetic measurements show a contrasting saturation magnetization and coercivity ( Hc) in both alloys. These variations are explained by crystallite size and strain variations in the samples during milling.

  6. Magnetic and Distribution of Magnetic Moments in Amorphous Fe89.7 P10.3 Alloy Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Shi, Hui-Gang; Xue, De-Sheng

    2008-01-01

    Binary amorphous Fe89.7P10.3 alloy nanowire arrays in diameter of about 40nm and length of about 3 μm have been fabricated in an anodic aluminium oxide template by electrodeposition. Magnetic properties of the samples are investigated by mean of vibrating sample magnetometer, transmission Mössbauer spectroscopy and conversion electron Mössbauer spectroscopy at room temperature. It is found that the nanowire arrays have obvious perpendicular magnetic anisotropy and are ferromagnetic at room temperature, with its Mössbauer spectra consisting of six broad lines. The average angles between the Fe magnetic moment and the wire axis are about 14° inside and 28° at the end of the amorphous Fe89.7P10.3 alloy nanowire arrays, respectively. The magnetic behaviour is decided by the shape anisotropy and the dipolar interaction between wires. In addition, the magnetic moments distribution is theoretically demonstrated by using the symmetric fanning mechanism of the spheres chain model.

  7. Effect of atomic disorder on magnetization and half-metallic character of Cr2CoGa alloy

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Modak, Rajkumar; Paul, Pralay; Srinivasan, A.

    2016-11-01

    Crystallographic, magnetic and transport properties of bulk Cr2CoGa alloy are reported in this work. The alloy exhibits inverse Heusler (or XA) structure. Analysis of XRD pattern reveals the presence of 10% Cr(B)-Ga disorder in the alloy. Lattice constant of the alloy was found to be 5.80 Å. The alloy exhibits ferrimagnetic behavior with Curie temperature (TC) of 320 K as obtained from the thermo-magnetic measurement and temperature dependent inverse susceptibility for the alloy. The saturation magnetization Ms for the alloy was found to be 0.26 μB/f.u. at 25 K against the value of 0 μB/f.u. predicted by Slater-Pauling rule. This deviation is attributed to the presence of Cr(B)-Ga disorder along with a small amount of Cr(B)-Co disorder in the alloy. The temperature dependent resistivity data shows a T2 dependency in low temperature region predicting that the charge carriers are not completely spin polarized at Fermi level due to the presence of sub-lattice disorder. Linear variation of resistivity above 100 K indicates the main contribution is from scattering of electrons by phonons. The effective anisotropy of the alloy was low (1.2×104 Jm-3 at 25 K) mainly due to its low Ms.

  8. Structure, Magnetic, and Electrical Properties of Heusler-Type Fe3- x Co x Si Ferromagnetic Alloys

    NASA Astrophysics Data System (ADS)

    Raja, M. Manivel; Kamat, S. V.

    2015-10-01

    The effect of substitution of Co for Fe on structure, magnetic, and electrical resistivity of Heusler-type Fe3- x Co x Si (0 ≤ x ≤ 1) alloys was investigated using X-ray powder diffraction, 57Fe Mössbauer spectroscopy, magnetic, and electrical transport measurements. The results revealed that these alloys consist of ordered DO3 phase and some L21 phase up to x ≤ 0.5. However, for x > 0.5, the alloys consisted of L21 ordered phase and B2 disordered phase. The magnetization value was close to that predicted from Slater-Pauling rule for x ≥ 0.5 alloys. The Curie temperature increased from 832 K (559 °C) for x = 0 (Fe3Si) alloy to 1016 K (743 °C) for x = 1 (Fe2CoSi) alloy. Electrical transport studies revealed the presence of half-metallic behavior at low temperatures in x ≥ 0.5 alloys. No half-metallic behavior was observed for x = 0 and 0.25 alloys; however, a high resistivity with ferromagnetism was observed in these alloys, which is desirable for ferromagnetic metal/semiconductor spintronic devices.

  9. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-18

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (-8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  10. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-01

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (˜8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  11. Disorder influenced magnetic phase transition in the Ce(Fe 0.9 Ru 0.1)2 alloy.

    PubMed

    Chattopadhyay, M K; Roy, S B

    2010-06-16

    We have studied a 10% Ru-doped CeFe(2) alloy, Ce(Fe(0.9)Ru(0.1))(2), through magnetization, magnetotransport, and heat capacity measurements. This study shows that, while this alloy is antiferromagnetic at low temperatures and paramagnetic at high temperatures, there exists evidence of ferromagnetic ordering in the intermediate temperature regime. We show here that with 10% Ru doping the first order magnetic transition observed in the Ce(Fe(1 - x)Ru(x))(2) alloys with x < 0.08 is reduced to a quasi-continuous phase transition. The characteristic thermomagnetic history effects associated with the ferromagnetic-antiferromagnetic phase transition in the Ce(Fe(1 - x)Ru(x))(2) alloys with x < 0.08 are not observed in the Ce(Fe(0.9)Ru(0.1))(2) alloy. This alloy continues to exhibit the large magnetoresistance and large magnetocaloric effect associated with this first order magnetic transition in the alloys with smaller Ru concentration, but it does not show any energy loss due to thermomagnetic hysteresis. The present work thus shows how the introduction of quenched disorder due to alloying effects may be used to tune the first order magnetic transition in a material for more efficient functional use.

  12. Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High B s and Good Manufacturability

    NASA Astrophysics Data System (ADS)

    Wan, Fangpei; He, Aina; Zhang, Jianhua; Song, Jiancheng; Wang, Anding; Chang, Chuntao; Wang, Xinmin

    2016-10-01

    In order to develop Fe-based nanocrystalline soft magnetic alloys with high saturation magnetic flux density ( B s) and good manufacturability, the effect of the Nb content on the thermal stability, microstructural evolution and soft magnetic properties of Fe78- x Si13B8Nb x Cu1 ( x = 0, 1, 2 and 3) alloys were investigated. It is found that proper Nb addition is effective in widening the optimum annealing temperature range and refining the α-Fe grain in addition to enhancing the soft magnetic properties. For the representative Fe76 Si13B8Nb2Cu1 alloy, the effective annealing time can be over 60 min in the optimal temperature range of 500-600°C. FeSiBNbCu nanocrystalline soft magnetic alloys with desirable soft magnetic properties including high B s of 1.39 T, low coercivity ( H c) of 1.5 A/m and high effective permeability ( μ e) of 21,500 at 1 kHz have been developed. The enhanced soft magnetic performance and manufacturability of the FeSiBNbCu nanocrystalline alloys are attributed to the high activated energy for the precipitation of α-Fe(Si) and the second phase. These alloys with excellent performance have promising applications in electromagnetic fields like inductors.

  13. Icosahedral and Other Quasicrystal Phases in Magnetic Alloy Systems

    DTIC Science & Technology

    1990-09-12

    comoositions at slower wheel speeds we fabrica t ed single-phase quasicrystals with no x-ray evidence of amorphous or crystalline structures present. The...experimental work confirmed that Mn itself shows a larger local moment in quasicrystalline alloys (1.2 - 1.5 IB/Mn, average) than in related crystalline ... structures (0 - 0.5 ItB/Mn), possibly because some of the Mn atoms them occupy the Ih site. The need existed to 1) find QC’s that more readily

  14. Electromagnetic induced voltage signal to magnetic variation through torquing textured Fe81Ga19 alloy

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Li, Jiheng; Bao, Xiaoqian; Mu, Xing; Gao, Xuexu

    2017-07-01

    The results of a study on the suitability of Fe-Ga alloys for torque sensor applications are presented. A Fe81Ga19 rod with a ⟨100⟩ preferred orientation along the length direction is prepared for the torque shaft and as the electromagnetic induction sensitive element, which is wound with three coils for signal excitation, signal pickup, and applied bias magnetic field, respectively. An apparent decrease in the induced voltage signal (peak voltage) of 3.88 mV is observed as the torque loading is 50 N m in the presence of a sine excitation signal (10 V, 1 kHz) and a bias current of 0.5 A. Meanwhile, a good repeatability and stress sensitivity are obtained, especially in the low torque range. These behaviors stem from the stress induced decrease in the magnetic permeability and the rotation of the arranged magnetic moment. Here, we use the Fe81Ga19 alloy as the shaft material; nevertheless, in practical use, the same effect can be achieved by forming a Fe-Ga layer with large magnetostriction on the surface of the torsion shaft. This work shows the prospect of Fe-Ga alloys for non-contact torque sensing, for the large magnetostriction and high sensitivity of magnetization to stress.

  15. Magnetic properties and magnetocaloric effect in Fe90- x Sn x Zr10 alloy ribbons

    NASA Astrophysics Data System (ADS)

    Phan, T. L.; Dan, N. H.; Thanh, T. D.; Mai, N. T.; Ho, T. A.; Yu, S. C.; Le, Anh-Tuan; Phan, M. H.

    2015-04-01

    This work points out the possibility of tuning the magnetocaloric (MC) effect in Fe90- x Sn x Zr10 alloy ribbons in the temperature range from 235 to 315 K by changing the Sn-doping content ( x). Under an applied field change from 0 to 50 kOe, the maximum magnetic-entropy changes around the ferromagnetic-paramagnetic phase transition are about 3.6, 4.1 and 3.3 J kg-1·K-1 for x = 0, 2 and 4, respectively, which correspond to relative cooling powers of 280 ˜ 410 J·kg-1. Studying the magnetic properties of the alloy ribbons based on Banerjee's criteria and assessing the magneticordering parameter n = dLn|Δ S m |/dLn H (where Δ S m and H are the magnetic-entropy change and the magnetic field, respectively) reveals that the alloys undergo a second-order phase transition and exhibit a short-range ferromagnetic order. The nature of these phenomena is further analyzed by means of the results obtained from the analyses of the crystal structure, the Curie-Weiss law, and the Griffith phase.

  16. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    SciTech Connect

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  17. Atomic structure and magnetic properties of Cu 80Co 20 nanocrystalline compound produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.; Uimin, M. A.; Yermakov, A. Ye; Korobeinikov, A. Yu

    1999-10-01

    Direct observation of the atomic structure of the mechanically alloyed Cu 80Co 20 compounds has been made using the field ion microscope (FIM). Phase composition, defect structure and morphology of material on the atomic scale have been determined. It has been established that the studied material is chemically inhomogeneous, presenting a mixture of two main phases: heterogeneous solid solution of cobalt in copper, and pure cobalt. Phase volume ratios, particle and cluster sizes have been estimated. An evaluation of Co content in CuCo solid solution has been made. The width of interfaces in this mechanically alloyed material was revealed to be at least twice the width of phase boundaries in metals and alloys. Superparamagnetism of the compound studied at elevated temperatures and saturation magnetization deficit at low temperatures are discussed on the basis of the above-mentioned structural data.

  18. Magnetic properties of carbon-encapsulated Fe-Co alloy nanoparticles.

    PubMed

    Wu, Aibing; Yang, Xuwei; Yang, Hua

    2013-04-14

    Carbon-encapsulated Fe-Co alloy nanoparticles (Fe-Co(C)) have been fabricated with different Co/Fe ratios by an efficient solid-state route using melamine as carbon source. The structure and morphology of Fe-Co(C) nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The XRD characterization results reveal that all products are alloys with no carbide impurity. The TEM and HRTEM observations show that the alloy nanoparticles are encapsulated in carbon shells. Additionally, the reactions involved in the syntheses are postulated. The variation of magnetic properties of Fe-Co(C) with Co/Fe has been discussed according to the room temperature VSM measurement results.

  19. Cytocompatibility evaluation of NiMnSn meta-magnetic shape memory alloys for biomedical applications.

    PubMed

    Guiza-Arguello, Viviana R; Monroe, James A; Karaman, Ibrahim; Hahn, Mariah S

    2016-07-01

    Recently, magnetic shape memory alloys (MSMAs) have emerged as an interesting extension to conventional shape memory alloys (SMAs) due to their capacity to undergo reversible deformation in response to an externally applied magnetic field. Meta-magnetic SMAs (M-MSMAs) are a class of MSMAs that are able to transform magnetic energy to mechanical work by harnessing a magnetic-field induced phase transformation, and thus have the capacity to impose up to 10 times greater stress than conventional MSMAs. As such, M-MSMAs may hold substantial promise in biomedical applications requiring extracorporeal device activation. In the present study, the cytotoxicity and ion release from an Ni50 Mn36 Sn14 atomic percent composition M-MSMA were evaluated using NIH/3T3 fibroblasts. Initial studies showed that the viability of cells exposed to NiMnSn ion leachants was 60 to 67% of tissue culture polystyrene (TCP) controls over 10 to 14 days of culture. This represents a significant improvement in cytocompatibility relative to NiMnGa alloys, one of the most extensively studied MSMA systems, which have been reported to induce 80% cell death in only 48 h. Furthermore, NiMnSn M-MSMA associated cell viability was increased to 80% of TCP controls following layer-by-layer alloy coating with poly(allylamine hydrochloride)/poly(acrylic acid) [PAH/PAA]. Ion release measures revealed that the PAH/PAA coatings decreased total Sn and Mn ion release by 50% and 25%, respectively, and optical microscopy evaluation indicated that the coatings reduced NiMnSn surface oxidation. To our knowledge, this study presents the first cytotoxicity evaluation of NiMnSn M-MSMAs and lays the groundwork for their further biological evaluation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 853-863, 2016. © 2015 Wiley Periodicals, Inc.

  20. Variation of magnetic domain structure during martensite variants rearrangement in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xingzhe; Li, Fang

    2012-07-01

    Studies of magnetic domain and anisotropy in ferromagnetic shape memory alloys (FSMAs) are crucial for both understanding their ferromagnetism and engineering in applications. The experimental measurements showed that magnetization rotations and domain-wall motions exhibit distinct characteristics in the field-preferred variants and stress-preferred variants of FSMAs [Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz, and J. McCord, Appl. Phys. Lett. 90, 192504 (2007)]. Aiming at characterization of formation and variation of the complex magnetic microstructure in FSMAs, we present an analytical approach based on the energy minimization theory and Boltzmann relation on magnetic domains. The magnetic domain behavior during the martensite variants rearrangement is captured to show a good agreement with the experimental observations.

  1. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging.

    PubMed

    Bomatí-Miguel, Oscar; Morales, María P; Tartaj, Pedro; Ruiz-Cabello, Jesús; Bonville, Pierre; Santos, Martín; Zhao, Xinqing; Veintemillas-Verdaguer, Sabino

    2005-10-01

    Pharmaceutical grade magnetic colloidal dispersions have been prepared from iron alloys synthesized by laser pyrolysis. The colloids were obtained by simultaneous dispersion and coating of the particles with dextran in a strong alkaline solution. Both powders and dispersions have been analyzed in terms of microstructural characteristics, chemical composition and magnetic properties. The powders consist of uniform spherical nanoparticles (12 nm of diameter) showing a metallic core encapsulated into an iron-oxide shell. On the other hand, the colloidal dispersions consist of magnetic particles-aggregates with hydrodynamic sizes of approximately 75 nm. Magnetic resonance images of rats were taken after the intravenously administration of the Fe colloidal dispersions, and compared with those obtained using a commercial iron oxide magnetic resonance imaging contrast agent. The results showed a contrast improvement of 60% in the liver with respect to the commercial sample, which suggests that this product could be a suitable contrast agent for NMR imaging of liver and spleen.

  2. The thermoelectric power of Al-0.99 wt.% Fe alloys in the AC magnetic field

    NASA Astrophysics Data System (ADS)

    Lan, Qing; Zhang, Jianfeng; Liu, Xuan; Le, Qichi; Yin, Siqi; Liu, Yiting; Cui, Jianzhong

    2017-04-01

    The melt structure of Al-0.99 wt.% Fe alloys in the AC magnetic field have been studied with thermoelectric power by the four-point probe technique and microstructure with the liquid quenching method. The melt temperature is in the range of 913 K–1013 K. The thermoelectric power increases due to the AC magnetic field and decreases after the AC magnetic field stops, then keeps stable. Some characteristic parameters of thermoelectric power in the recovery process are used to represent the variation of melt structure. The α-Al phase refinement in the AC magnetic field is attributed to the persistent variation of melt structure. The persistent variation of thermoelectric power can be used to characterize the variation of the α-Al phase size. The hardness increases and the diffraction peaks of some planes reduce, which can reflect the uniform and disorder melt structure in the AC magnetic field.

  3. Magnetic and magnetocaloric properties of ferromagnetic shape memory alloy Mn50Ni40In10-xSbx

    NASA Astrophysics Data System (ADS)

    Liu, Hongyan; Liu, Zhuhong; Li, Getian; Ma, Xingqiao

    2016-10-01

    Magnetic properties of Mn50Ni40In10-xSbx alloys and thermal history effect on the magnetization behavior and magnetic entropy change of Mn50Ni40In9Sb1 have been systematically studied. It indicates that the martensitic transformation temperature gradually increases with the increase of Sb content. Meanwhile, the overall magnetization of austenite decreases and that of martensite increases. The magnetization behavior, the critical magnetic field for martensite-to-austenite transformation and the magnetic entropy are very sensitive to the thermal history effect. The maximum magnetic entropy change is up to 27.1 J kg-1 K-1 in Mn50Ni40In9Sb1 alloy under a magnetic field of 30 kOe with continuous heating method.

  4. Perpendicular magnetic anisotropy induced by tetragonal distortion of FeCo alloy films grown on Pd(001).

    PubMed

    Winkelmann, Aimo; Przybylski, Marek; Luo, Feng; Shi, Yisheng; Barthel, Jochen

    2006-06-30

    We grew tetragonally distorted FexCo1-x alloy films on Pd(001). Theoretical first-principles calculations for such films predicted a high saturation magnetization and a high uniaxial magnetic anisotropy energy for specific values of the lattice distortion c/a and the alloy composition x. The magnetic anisotropy was investigated using the magneto-optical Kerr effect. An out-of-plane easy axis of magnetization was observed for Fe0.5Co0.5 films in the thickness range of 4 to 14 monolayers. The magnetic anisotropy energy induced by the tetragonal distortion is estimated to be almost 2 orders of magnitude larger than the value for bulk FeCo alloys. Using LEED Kikuchi patterns, a change of the easy axis of magnetization can be related to a decrease of the tetragonal distortion with thickness.

  5. Investigation of the structural, electronic, and magnetic properties of Ni-based Heusler alloys from first principles

    NASA Astrophysics Data System (ADS)

    Qawasmeh, Yasmeen; Hamad, Bothina

    2012-02-01

    Density functional theory (DFT) calculations are performed to investigate the structural, electronic, magnetic, and elastic properties of Ni2MnZ (Z = B, Al, Ga, In) and Ni2FeZ (Z = Al, Ga) full Heusler alloys. The alloys are found to be metallic ferromagnets with total magnetic moments of about 4μB/f.u. and 3μB/f.u for Ni2MnZ and Ni2FeZ alloys, respectively. The Ni2MnAl and Ni2MnIn alloys are found to be stable at L21 phase, while the other alloys are more stable in the tetragonal phase with c/a ratios of 1.38 and 1.27 for Ni2MnB and Ni2MnGa, respectively and 1.35 for both Ni2FeAl and Ni2FeGa. The Ni2MnB alloy exhibits the highest electron spin polarization in its tetragonal phase, which is about 88% greater than that of L21 structure. However, the Ni2MnGa, Ni2FeAl, and Ni2FeGa alloys exhibit lower spin polarizations in their tetragonal phase than those at the L21. The most contribution of the total magnetic moments comes from Mn or Fe atoms, whereas Ni atoms exhibit much smaller magnetic moments. However, Z atoms have small induced magnetic moments, which are coupled antiferromagnetically with Ni, Mn and Fe.

  6. Magnetic properties of Nd-Fe-Co(Cu)-Al-B amorphous alloys prepared by nonequilibrium techniques

    NASA Astrophysics Data System (ADS)

    Kumar, G.; Eckert, J.; Roth, S.; Löser, W.; Ram, S.; Schultz, L.

    2002-03-01

    The amorphous alloys Nd40Fe40Co5Al8B7, Nd57Fe20Co5Al10B8, and Nd57Fe20Cu5Al10B8 were prepared by copper mold casting, melt spinning, and mechanical alloying. Despite their similar x-ray diffraction patterns, samples display different magnetic and thermal behavior correlated with the method of preparation. The fully amorphous melt-spun ribbons exhibit relatively soft magnetic properties with coercivities ≈40 kA/m at room temperature and a Curie temperature (TC)≈474 K. Apparently only the mold-cast cylinders of 3 mm diameter show hard magnetic behavior with a coercivity in the range of 258-270 kA/m (depending on composition) and have approximately the same TC as that of the melt-spun ribbons. An additional magnetic transition at 585 K due to the presence of Nd2Fe14B phase in the case of Nd40Fe40Co5Al8B7 cast rod has been observed. Heat treatment above crystallization temperature in as-cast Nd57Fe20Co5Al10B8 and Nd57Fe20Cu5Al10B8 samples destroys the hard magnetic properties. In contrast, mechanically alloyed amorphous samples are soft magnetic with maximum coercivity up to 11 kA/m but show an entirely different TC≈680-740 K, which is rather characteristic of an Fe solid solution. The magnetic properties are discussed in terms of different local atomic environment and cluster sizes in amorphous samples prepared by different methods.

  7. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  8. Ageing effects on structural and magnetic transformations in a Ni-Co-Mn-Ga alloy

    NASA Astrophysics Data System (ADS)

    Seguí, C.; Cesari, E.

    Partial substitution of Ni by Co in Mn-rich Ni-Mn-Ga alloys has been found to modify the magnetic ordering of the phases, improving in this way the possibility to obtain large magnetization difference between austenite and martensite, an essential requirement to induce the martensitic transformation by application of a magnetic field. Particularly, Ni50-xCoxMnyGa50-y alloys undergo, for Co content below x = 9, structural transformation between ferromagnetic austenite and paramagnetic martensite, thus leading to enhanced magnetization difference values. The martensitic transformation temperatures as well as the martensite and austenite Curie temperatures depend on composition, but significant changes can be brought about by selected thermal treatments. In this work, the composition is chosen as Ni42Co8Mn32Ga18 in order to obtain concurrent martensitic transformation and austenite Curie temperature, and the effect of quench and subsequent ageing on the structural and magnetic transitions is studied. Aside from the monotonic transformation temperatures change, which is mostly attributed to atomic ordering taking place upon post-quench ageing, the results show the effect of the relative position of the structural and magnetic ordering reactions on the transformation entropy change.

  9. Microstructural and magnetic characterization of rapidly solidified and annealed Pt-Co-B alloys

    NASA Technical Reports Server (NTRS)

    Qiu, N.; Teubert, J. A.; Overfelt, R. A.; Wittig, J. E.

    1991-01-01

    Significant increases in intrinsic coercivity (Hic) of Pt-Co alloys have been obtained by the addition of boron and the application of rapid solidification processing. After rapid solidification by double anvil splat quenching with subsequent annealing at 650 C for 30 min, an alloy of Pt42Co45B13 exhibits an Hic as high as 14 kOe. Annealing of the Pt-Co-B influences the L1(0) superlattice structure and grain size of the matrix, the crystal structure and size of Co-boride precipitate, and the distribution of magnetic domain walls. A microstructural analysis shows that the maximum H(ic) occurs when Co borides, having the Co3B structure, are within the single magnetic domain size. The magnetic hardening mechanism in Pt-Co-B is believed to be a combination of inhibited magnetic domain nucleation and difficult reverse magnetic domain growth caused by the interaction of the magnetically anisotropic Co borides with the L1(0) Pt-Co matrix.

  10. Structure and magnetic properties of Co2(Cr1-xFex)Al, (0 ≤ x ≤ 1) Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Srivastava, Yogesh; Vajpai, Sanjay Kumar; Srivastava, Sanjay

    2017-07-01

    In the present study, a series of nanocrystalline Co2(Cr1-xFex)Al Heusler alloy powders were successfully prepared by high energy ball milling and the effect of substitution of Fe for Cr on the microstructure and magnetic properties was investigated in detail. The Co2CrAl alloy powder consisted of only A2 type disordered structure whereas the substitution of Cr by Fe led to the appearance of increasing amounts of B2 type disordered structure along with A2 type structure. All the Co2(Cr1-xFex)Al Heusler alloy powders demonstrated high spontaneous magnetization together with a very small hysteresis losses. The saturation magnetization, remanence, coercivity, and Curie temperature increased with increasing Fe content. The increasing magnetization with increasing Fe content was attributed to the replacement of antiferromagnetic Cr by strongly ferromagnetic Fe and an increasing amounts of relatively more ordered, atomically as well as ferromagnetically, B2 structure as compared to that of A2 phase. The increment in remanence and coercivity with increasing Fe content were associated with the variation in microstructural characteristics, such as grain size, lattice defects, and the presence of small amounts of magnetic/nonmagnetic secondary phases. The increment in Curie temperature with increasing Fe content was attributed to the enhancement of d-d exchange interaction due to the possible occupancy of vacant sites by Fe atoms. All the Heusler alloys indicated extremely low magnetic anisotropy and the relative anisotropy decreased with increasing Fe content.

  11. Mössbauer studies of magnetic phase transitions in the alloy series ?

    NASA Astrophysics Data System (ADS)

    Hutchings, J. A.; Thomas, M. F.; Al-Kanani, H. J.; Booth, J. G.

    1998-07-01

    The crystal structure of the parent alloy 0953-8984/10/27/014/img8 of the series under investigation has four distinct iron sites. Mössbauer spectra of the series 0953-8984/10/27/014/img9 with 0953-8984/10/27/014/img10 recorded at 293 and 4.2 K and fitted with four components show little site preference for Mn substitution up to x = 0.15. At x = 0.20 evidence for site preference is observed. The magnetic phases at 4.2 K were deduced from changes in the Mössbauer spectra in applied fields. The alloy with x = 0.20 is found to be ferromagnetic. Alloys with x = 0.05, 0.10 and 0.15 show evidence of a canted spin phase. A transition from a canted to a ferromagnetic phase is observed at applied fields 0953-8984/10/27/014/img11 T for the x = 0.15 alloy. Phase diagrams constructed from Mössbauer and magnetization results are compared with the predictions of a generalized theoretical model which incorporates ferromagnetic and antiferromagnetic interactions.

  12. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    SciTech Connect

    Benafan, O. E-mail: raj@ucf.edu; Vaidyanathan, R. E-mail: raj@ucf.edu; Chen, S.-Y.; Kar, A.

    2015-12-15

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell’s equations and heat conduction.

  13. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Chen, S.-Y.; Kar, A.; Vaidyanathan, R.

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  14. Induced magnetic ordering in alloyed compounds based on Pauli paramagnet YCo{sub 2}

    SciTech Connect

    Śniadecki, Z.; Werwiński, M.; Szajek, A.; Idzikowski, B.; Rößler, U. K.

    2014-05-07

    Intermetallic YCo{sub 2} compound is a Pauli exchange-enhanced paramagnet. Structural and magnetic properties melt-spun YCo{sub 2} pure and alloyed with Nb or Ti are presented. The samples crystallize in MgCu{sub 2}-type phase with lattice constant a changing from 7.223 Å for YCo{sub 2}, through 7.213 Å for Y{sub 0.9}Nb{sub 0.1}Co{sub 2} to 7.192 Å for Y{sub 0.9}Ti{sub 0.1}Co{sub 2}, where Y atoms are replaced by Nb or Ti atoms. Nanocrystalline phases can be produced by appropriate cooling rates for the solidification process. By the synthesis process free volumes, vacancies, and alloyed atoms are introduced into the YCo{sub 2} intermetallic. Ab-initio calculations have been performed to investigate the effects of substitution on the spin-split electronic band structure in the ordered YCo{sub 2}. A ferrimagnetic ground state is found in the alloyed systems with substitution on the Y-site which is energetically favorable compared to point defects on Co-sites. However, the experimentally found increased magnetic ordering in alloyed YCo{sub 2} appears to be based on microstructure effects.

  15. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Liu, H.; Zhang, X. X.; Zhang, M.; Dai, X. F.; Hu, H. N.; Chen, J. L.; Wu, G. H.

    2004-08-01

    The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni 50+ xFe 25- xGa 25 ( x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L2→B2 transition occurs in the samples treated at 873 K, while the γ phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni 2FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni 2FeGa on the saturation magnetization and exchange interaction are also discussed.

  16. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment.

    PubMed

    Benafan, O; Chen, S-Y; Kar, A; Vaidyanathan, R

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  17. Combined Time-Resolved X-ray Magnetic Circular Dichroism and Ferromagnetic Resonance Studies of Magnetic Alloys and Multilayers (invited)

    SciTech Connect

    Arena,D.; Vescovo, E.; Kao, C.; Guan, Y.; Bailey, W.

    2007-01-01

    We present measurements of element- and time-resolved ferromagnetic resonance (FMR) in magnetic thin films at gigahertz frequencies via an implementation of time-resolved x-ray magnetic circular dichroism (TR-XMCD). By combining TR-XMCD and FMR, using a rf excitation that is phase locked to the photon bunch clock, the dynamic response of individual layers or precession of individual elements in an alloy can be measured. The technique also provides extremely accurate measurements of the precession cone angle (to 0.1{sup o}) and the phase of oscillation (to 2{sup o}, or {approx}5 ps at 2.3 GHz). TR-XMCD combined with FMR can be used to study the origins of precessional damping by measuring the relative phase of dissimilar precessing magnetic moments. We have used the technique to measure the response of specific elements and separate layers in several alloys and structures, including a single Ni{sub 81}Fe{sub 19} layer, a pseudo-spin-valve structure (Ni{sub 81}Fe{sub 19}/Cu/Co{sub 93}Zr{sub 7}), magnetic bilayers consisting of low damping (Co{sub 93}Zr{sub 7}) and high damping (Tb-doped Ni{sub 81}Fe{sub 19}) layers joined across a common interface, and elemental moments in Tb-doped Ni{sub 81}Fe{sub 19}.

  18. Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoxia; Zhou, Xuan; Yu, Shuaishuai; Wei, Congcong; Xu, Jing; Wang, Yan

    2017-05-01

    The effects of annealing treatment on the microstructure, thermal stability, and magnetic properties of the mechanical alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys (HEAs) have been investigated in this project. The simple crystallization products in FeSiBAlNi amorphous HEAs with Co and Ag addition reveal the high phase stability during heating process. At high annealing treatment, the crystallized HEAs possess the good semi-hard magnetic property. It can conclude that crystallization products containing proper FeSi-rich and FeB-rich phases are beneficial to improve the magnetic property. Annealing near the exothermic peak temperature presents the best enhancing effect on the semi-hard magnetic property of FeSiBAlNiCo. It performs both large saturated magnetization and remanence ratio of 13.0 emu/g and near 45%, which exhibit 465% and 105% enhancement compared with as-milled state, respectively.

  19. Feedforward-Feedback Hybrid Control for Magnetic Shape Memory Alloy Actuators Based on the Krasnosel'skii-Pokrovskii Model

    PubMed Central

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010

  20. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  1. The influence of plastic deformation on the magnetic properties of ? alloy

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Li, X. G.; Chiba, A.

    1996-07-01

    Magnetization is measured in plastically deformed 0953-8984/8/27/018/img2 alloy in the temperature range from 4.5 to 80 K.The temperature dependence of spontaneous magnetization 0953-8984/8/27/018/img3 has been analysed according to the self-consistent renormalization theory of spin fluctuation. The value of 0953-8984/8/27/018/img4 decreases from 0953-8984/8/27/018/img5 to 0953-8984/8/27/018/img6 and the Curie temperature 0953-8984/8/27/018/img7 declines from 57.8 to 50.1 K with 50% strain. The decreases in 0953-8984/8/27/018/img4 and 0953-8984/8/27/018/img7 can be explained by the introduction of the antiphase boundary, which reveals the existence of an atomically ordered structure in the Ni - Cu alloys.

  2. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.

    PubMed

    Lee, Chung-Hyo

    2016-02-01

    Solid-state reduction has occurred during mechanical alloying of a mixture of Fe2O3 and Mg powders at room temperature. It is found that magnetic nanocomposite in which MgO is dispersed in alpha-Fe matrix with nano-sized grains is obtained by mechanical alloying of Fe2O3 with Mg for 30 min. Consolidation of the ball-milled powders was performed in a spark plasma sintering (SPS) machine up to 800-1000 degrees C. X-ray diffraction result shows that the average grain size of alpha-Fe in a-Fe/MgO nanocomposite sintered at 800 degrees C is in the range of 110 nm. It can be also seen that the coercivity of SPS sample sintered at 800 degrees C is still high value of 88 Oe, suggesting that the grain growth of magnetic alpha-Fe phase during SPS process tends to be suppressed.

  3. Effects of High Magnetic Fields on Microstructures and Thermoelectric Properties of Zn-Sb Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Mao, Jun; Liu, Tie; Tahashi, Masahiro; Wang, Qiang; He, Jicheng

    2015-07-01

    Several samples of Zn-Sb alloys, composed with β-Zn4Sb3 and Zn phases, were prepared by solidification under high magnetic fields (HMFs). The microstructure evolution and thermoelectric (TE) properties of the alloys were then investigated. Zn phase precipitated as strip and presented reticulation structure in the samples without HMFs. When the HMFs were imposed, Zn became disperse and the strip of Zn became thinner and shorter. In addition, the c-axis of Zn crystals showed a tendency to orientate toward the direction perpendicular to the magnetic field direction. The samples prepared under HMFs had higher resistivity and Seebeck coefficient and lower thermal conductivity. When compared to the solidified samples without HMFs, the application of 8.8 T of HMF increased the maximum figure of merit 3.7 times. In addition, the relationship between microstructure and TE properties was also analyzed.

  4. Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles

    PubMed Central

    Ricolleau, Christian; Langlois, Cyril; Le Bouar, Yann; Loiseau, Annick

    2010-01-01

    Summary We propose an original route to prepare magnetic alloy nanoparticles with uniform size and shape by using nanosecond annealing under pulsed laser irradiation. As demonstrated here on CoPt nanoparticles, flash laser annealing gives an unprecedented opportunity to control the size and the shape of bimetallic nanoparticles without changing their composition. The mechanisms involved in the complete reshaping of the nanoparticle thin films are discussed and it is also shown that order-disorder phase transformations occur under laser irradiation. This technique is then very interesting for magnetic alloy nanoparticles studies and applications because it opens up a new way to fabricate size-controlled spherical nanoparticles with narrow size dispersion. PMID:21977394

  5. Spontaneous and external magnetic field-induced magnetostriction in RCo2-based multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Politova, G. A.; Chzhan, V. B.; Tereshina, I. S.; Burkhanov, G. S.; Manakov, A. A.; Alekseeva, O. A.; Filimonov, A. V.; Ilyushin, A. S.

    2015-12-01

    The spontaneous and external magnetic field-induced magnetostrictions have been studied in multicomponent Tb0.3Dy0.35Ho0.35Co2 and Tb0.8Dy0.1Gd0.1Co2 alloys whose structures are isotypical to the C15 Laves phases. The temperature dependences of the lattice parameters have been measured in the range of 110-280 K. It has been found that the crystal lattice undergoes rhombohedral distortions at temperatures lower than the temperatures of magnetic ordering in these alloys (148.5 and 243 K, respectively). The temperature (4.2-280 K) and field (0-8 T) dependences of the longitudinal and transverse magnetostrictions have been studied. The high magnetoelastic effects have been detected.

  6. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    SciTech Connect

    Incropera, F.P.; Prescott, P.J.

    1995-12-31

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, by reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.

  7. Magnetization reversal, coercivity, and the process of thermomagnetic recording in thin films of amorphous rare earth--transition metal alloys

    SciTech Connect

    Mansuripur, M.

    1987-02-15

    A model is proposed for the mechanism of magnetization reversal in thin films of amorphous alloys with perpendicular magnetic anisotropy. Examples of these alloys are TbFe, GdCo, DyFe, and GdTbFeCo, which are currently under investigation as storage media for erasable optical recording applications. The model exhibits the observed behavior of the media such as nucleation and growth of reverse-magnetized domains under external magnetic fields; square hysteresis loops; temperature dependence of coercivity; formation and stability of domains under conditions of thermomagnetic recording; and incomplete erasure with insufficient applied fields.

  8. Remanent magnetization and structural effects due to shock in natural and man-made iron-nickel alloys

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Doan, A. S., Jr.

    1973-01-01

    Explosive shock or meteorite impact are significant remagnetization processes. The mechanisms of remagnetization associated with the dynamic processes depend on the peak shock pressure, the nature of the shocked materials, and the behavior of the shock in the material. Magnetic measurements can be used to classify products formed during a shock process, and magnetic measurements can be used to investigate the process itself because of the special characteristics of the remanent magnetization vectors. The magnetic coercive force increases more rapidly in quenched and annealed iron-nickel alloys as nickel is added than it does in the alloys which have been shocked.

  9. Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys

    SciTech Connect

    Skomski, R; Manchanda, P; Takeuchi, I; Cui, J

    2014-05-31

    The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.

  10. Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys

    SciTech Connect

    Skomski, Ralph; Manchanda, Priyanka; Takeuchi, Ichiro; Cui, Jun

    2014-06-11

    The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.

  11. Magnetic properties of Ba- and Sr-hexaferrite prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ding, J.; Street, R.; Nishio, H.

    1996-12-01

    Samples of Ba- and Sr-hexaferrite were prepared by mechanical alloying and subsequent heat treatment were found to consist of single domain particles of the single hexaferrite phase. The particles had a wide distribution of anisotropy fields. Study of irreversible magnetisation suggested, that the demagnetisation process is mainly controlled by the Wohlfarth rotation. It was deduced from the results of measurements of magnetic viscosity, that the activation volume was of same order of magnitude as the cube of the domain wall thickness.

  12. Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries

    PubMed Central

    Haldar, K.; Lagoudas, D. C.

    2014-01-01

    A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials. PMID:25197247

  13. Magnetic micromechanical structures based on CoNi electrodeposited alloys

    NASA Astrophysics Data System (ADS)

    Cojocaru, P.; Magagnin, L.; Gomez, E.; Vallés, E.; Liu, F.; Carraro, C.; Maboudian, R.

    2010-12-01

    Electrodeposited CoNi magnetic microstructures compatible with silicon microfabrication technology have been developed using a sulfamate acidic bath, as an alternative to a less environmentally friendly chloride bath. The galvanostatic electrodeposition in the formulated electrolyte allows the deposition of cobalt-rich CoNi films and microstructures defined by photoresist at high deposition rates. Microstructures are adherent to the substrate, with a good lateral definition and resistance to the wet etching for the release of the sacrificial layer. The released structures respond to applied magnetic fields and no breakage occurred during large deformation.

  14. Magnetocaloric Effect with Very Small Magnetic Hysteresis Losses of CoMn1-x Ti x Ge Alloys

    NASA Astrophysics Data System (ADS)

    Yildirim, Oguz; Tozkoparan, Onur; Yuzuak, Ercument; Elerman, Yalcin; Dincer, Ilker

    2017-08-01

    The effects of Ti substitution for Mn and heat treatment on structural, magnetic, and magnetocaloric properties of CoMnGe alloy have been investigated using electron microscopy, X-ray diffraction, calorimetric, and magnetic measurements. According to X-ray diffraction measurements, CoMn1-x Ti x Ge alloys are in a single phase hexagonal structure at room temperature. It is found that the as-cast CoMn0.95Ti0.05Ge alloy shows a magnetostructural phase transition close to room temperature. The transition shows a large magnetic entropy change and a small hysteresis in the isothermal magnetic field-dependent magnetization measurements. After annealing, the phase transition temperature decreases slightly and the magnetization is sharply decreasing at Curie temperature. The sharp change of magnetization at phase transition temperature is accompanied by a significant increase in the magnetic entropy change, i.e., magnetic entropy change value for the magnetic field change of 1 T was increased from -3.3 to -6.3 J kg-1 K-1. Moreover, after annealing, hysteresis losses reduced significantly for ΔH = 7 T. Accordingly, the heat treatment has a significant effect on magnetocaloric properties of the CoMn0.95Ti0.05Ge alloy.

  15. Electron transport behaviour and soft magnetic properties of bulk amorphous Fe72Si4B20Nb4 alloy

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Ghosh Chowdhury, S.; Mitra, A.; Nishiyama, N.; Inoue, A.

    2006-08-01

    The crystallization behaviour, electrical resistivity, magnetic and mechanical properties of as-quenched bulk amorphous Fe72Si4B20Nb4 alloy was investigated. The alloy, prepared in the form of rods by a copper mould casting technique, revealed an amorphous structure as observed from x-ray diffractometry. Differential scanning calorimetry and thermal variation of electrical resistivity measurements showed distinct glass transition temperature, Tg occurring 50-60 K below the crystallization onset (TX). Such a wide supercooled range was also attributed to the highly reduced glass transition temperature, Trg which was in the range of 0.56-0.58 found to be prevalent in good glass forming alloys. The alloy also showed a non-linear decrease in stability time at different temperatures between Tg and TX. The bulk amorphous alloy exhibited a drastic decrease in electrical resistivity around the glass transition temperature which was attributed to high electron propagation due to enhanced stress relaxation as result of a decrease in viscosity. The material exhibited superior soft magnetic properties with a coercivity value of 212 mOe, which is fairly low with respect to reported bulk amorphous alloys. The amorphous alloy also showed saturation induction of 12 kG and a moderate Curie temperature of 595 K. The as-quenched bulk amorphous alloy exhibited a high mechanical hardness of 1250 HV (Vickers). The superior soft magnetic properties coupled with high mechanical hardness opens up the scope for bulk amorphous Fe-Si-B systems with Nb incorporation.

  16. Improvement of microstructure and magnetic properties of Nd-Fe-B alloys by Nb and Co additions

    NASA Astrophysics Data System (ADS)

    Ahmed, F. M.; Harris, I. R.

    In order to establish the role of niobium on the hydrogenation, disproportionation, desorption and recombination (HDDR) behavior of near-stoichiometric alloys, two alloys: NdI3Fe8OB7 and Nd13Fe78Nb1Co1B7 (at%) were investigated before, during and after the HDDR process. The microstructure of the as-cast Nb-free alloy before employing the HDDR process was found to consist of three phases, the matrix Nd 2Fe 14B (φ) phase, Nd-rich phase and a significant amount of free iron; whereas, the microstructure of the Nb-containing alloy consisted of only the first two phases. The HDDR behavior of the above alloys was characterized using a high-resolution scanning electron microscope (HRSEM). The disproportionation of the Nd 2Fe 14B (φ) matrix phase starts at the Nd-rich/φ phase interface, resulting in the formation of a sub-micron structure consisting of Fe, Fe 2B and Nd-hydride. The disproportionated structures of the Nb-free alloy contained large arms of free iron dendrites, which were retained from the as-cast structures. In the niobium-containing alloy, the recombined grains appear finer and with more rounded shapes in comparison with those of the NdFeB alloy. Promising magnetic properties have been obtained for bonded magnets using the HDDR powder. The magnetic properties, especially the intrinsic coercivity, improved significantly by using ˜1% Nd in excess of the stoichiometric content.

  17. Directional solidification of Al-8 wt. %Fe alloy under high magnetic field gradient

    NASA Astrophysics Data System (ADS)

    Wu, Mingxu; Liu, Tie; Dong, Meng; Sun, Jinmei; Dong, Shulin; Wang, Qiang

    2017-02-01

    We investigated applying a magnetic field (up to 6 T) during directional solidification of a hypereutectic Al-8 wt. %Fe alloy, finding that it dramatically affected the final microstructure. A eutectic area appeared at the top of the samples, and as the magnetic flux density increased, the eutectic area clearly enlarged. In addition, the Al3Fe phase was twisted and fractured, and some phases aggregated and distributed randomly in the samples. We also investigated the volume fraction distribution of the Al3Fe phase, revealing that applying the magnetic field during solidification caused dramatic disorder in the solute and phase distributions. The magnetic force induced by the interaction between the magnetic field gradient and the magnetic materials appeared to be the main reason not only for the occurrence and enlargement of the eutectic area but also for the movement of Fe-enriched zones during directional solidification. Otherwise, the deformation and fracture of the Al3Fe phase, the morphological instability in the interface between the eutectic area and the Al3Fe phase, and the random distribution of the aggregated Al3Fe phase appeared to come from the thermoelectric magnetic force/thermoelectric magnetic convection under the magnetic field.

  18. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Schneeweiss, Oldřich; Friák, Martin; Dudová, Marie; ...

    2017-07-28

    In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006more » ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μB), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.« less

  19. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  20. Industrialization of nanocrystalline Fe-Si-B-P-Cu alloys for high magnetic flux density cores

    NASA Astrophysics Data System (ADS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-03-01

    Nanocrystalline Fe-Si-B-P-Cu alloys exhibit high saturation magnetic flux density (Bs) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe-Si-B-P-Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe85.7Si0.5B9.5P3.5Cu0.8)99C1 ribbons exhibit low coercivity (Hc)~4.5 A/m, high Bs~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60-100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors

  1. Lattice dynamics and external magnetic-field effects in Ni-Fe-Ga alloys

    NASA Astrophysics Data System (ADS)

    Pérez-Landazábal, J. I.; Recarte, V.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.; Jiménez-Ruiz, M.; Link, P.; Cesari, E.; Chumlyakov, Y. I.

    2009-10-01

    Precursor phenomena were investigated in a Ni-Fe-Ga alloy close to the stoichiometric Heusler composition Ni2FeGa . In particular, the phonon-dispersion curves, the diffuse scattering and the magnetic properties of a single crystalline Ni51.5Fe21.5Ga27 alloy were measured as a function of temperature. The TA2 branch along the [110] direction of the L21 phase shows a significant phonon softening around ξ=0.35 resulting in a marked dip which becomes more pronounced as the temperature decreases. Diffuse neutron-scattering measurements performed along [ξ¯ξ0] direction around Bragg reflections also reveal the presence of small satellite peaks at ξ=0.33 whose intensity increases on approaching the martensitic transformation temperature. Both elastic and inelastic-scattering anomalies confirm the occurrence of premartensitic phenomena in Ni-Fe-Ga alloys. The influence of an external magnetic field (6 T) on the anomalous phonon is shown to be negligible and just a small shift of the transformation temperature takes place because of the magnetic field.

  2. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jing; Khan, U.; Irfan, Muhammad; Javed, K.; Liu, P.; Ban, S. L.; Han, X. F.

    2017-06-01

    CoNiGa ternary alloy nanowire arrays were successfully fabricated by simple DC electrodeposition into the anodized aluminum oxide (AAO) templates. A systematic study of the potential and components of the electrolyte were conducted to obtain different components of CoNiGa nanowires. The largest Ga content in the prepared alloy nanowires was about 17%, while for Co and Ni contents which can be controlled in a wide range by adjusting the composition and pH value of the electrolyte appropriately. X-ray diffraction analysis confirmed that the as-grown CoNiGa nanowire arrays were polycrystal with fcc phase of Co where Co atoms partially substituted by Ni and Ga. Magnetization curves of samples with different composition were measured at room temperature as well as low temperature. The results showed that the components of the alloy nanowires have a great impact on its magnetic properties. For Co55Ni28Ga17 nanowires, the magnetization reversal mode changes from curling mode to coherent rotation as the angle increases, and the temperature dependence of coercivity can be well described by the thermal activation effect.

  3. Ultrathin films of polycrystalline MnGa alloy with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ono, Atsuo; Suzuki, Kazuya Z.; Ranjbar, Reza; Sugihara, Atsushi; Mizukami, Shigemi

    2017-02-01

    Room temperature growth of textured polycrystalline films of MnGa alloys using a CoGa buffer layer on a thermally oxidized Si substrate is demonstrated. MnGa thin films with a thickness of 2 nm exhibit out-of-plane rectangular hysteresis loops. A small saturation magnetization of about 200 emu/cm3 and a large perpendicular magnetic anisotropy of up to 3–5 Merg/cm3 were achieved for 2- and 3-nm-thick MnGa ultrathin films; such values have never been reported before, and they provide a pathway for integration with conventional Si technology.

  4. Ordered states in binary alloys with one magnetic component: A binomial description

    NASA Astrophysics Data System (ADS)

    Rodríguez-Alba, R.; Acosta Ortíz, S. E.; Morán-López, J. L.

    2015-09-01

    A description of chemically and magnetically ordered states, based on the binomial formalism, is presented. By this method, one can analyze all possible configurations that depend on the crystalline structure and the size of the basic cluster used for the description of the system. The procedure is outlined for a cluster of n sites and its application is illustrated for a 4-point cluster in fcc and bcc lattices. This cluster size is big enough to describe ordered alloys with magnetic atoms forming decorated ferromagnetic, antiferromagnetic, superantiferromagnetic and other more complex arrangements.

  5. The magnetic and transport properties of the Co2FeGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Brück, Ekkes; de Boer, Frank R.; Li, Zhuangzhi; Wu, Guangheng

    2004-08-01

    The magnetic and transport properties of the Co2FeGa Heusler alloy have been investigated. The results show that the temperature dependence of the magnetization follows the spin-wave behaviour at low temperature. The electrical resistivity behaves according to a ~T2 power law, which may be mainly attributed to electron-electron scattering, and the contribution of electron-phonon scattering to the resistivity seems to be small. We have not observed remarkable magnetoresistance in our measurements. Point contact Andreev reflection measurements of the spin-polarization yield a polarization of 59%, which is consistent with the theoretical prediction by a first-principles calculation.

  6. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  7. Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys

    NASA Astrophysics Data System (ADS)

    Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.; Pękała, M.; Kowalczyk, M.

    2017-07-01

    The influence of Co content on the structural and hard magnetic properties of two sets of nanocrystalline Fe52-xCoxPt28B20 (x = 0-26) and Fe60-yCoyPt25B15 (y = 0-40) alloys was studied. The alloys were prepared as ribbons by the rapid quenching technique. The nanocomposite structure in the alloys was obtained by annealing at 840-880 K for 30 min. Structural characterization of the samples was performed using the Mössbauer spectroscopy and X-ray diffraction. Magnetic properties of the samples were studied by the measurements of the hysteresis loops and of the magnetization at increasing temperatures. An amorphous phase prevailed in the as-quenched Fe52-xCoxPt28B20 alloys while a disordered solid solution of fcc-(Fe,Co)Pt was a dominating phase in the Fe60-yCoyPt25B15 ribbons. Differential scanning calorimetry measurements revealed one or two exothermic peaks at temperatures up to 993 K, depending on the composition of the alloys. Thermal treatment of the samples led to the formation of the magnetically hard ordered L10 tetragonal (Fe,Co)Pt nanocrystallites and magnetically softer phases of (Fe,Co)B (for Fe52-xCoxPt28B20) or (Fe,Co)2B (for Fe60-yCoyPt25B15). Detailed Mössbauer spectroscopy studies revealed that cobalt substituted for iron in both the L10 phase and in iron borides. The nanocomposite Fe60-yCoyPt25B15 alloys exhibited significantly larger magnetic remanence and maximum energy products but a smaller coercivity than those observed for the Fe52-xCoxPt28B20 alloys. Co addition caused a reduction of the magnetization and the energy product in both series of the alloys. The largest magnetic remanence of 0.87 T and the highest energy product (BH)max = 80 kJ/m3 were obtained for the Co-free Fe52Pt28B20 alloy while the largest coercivity (HC > 950 kA/m) was observed for the Fe50Co10Pt25B15 and Fe30Co30Pt25B15 alloys. Differences in the hard magnetic properties of the nanocomposite alloys were related to different phase compositions influencing the strength of

  8. Perpendicular magnetization of Co2FeAl full-Heusler alloy films induced by MgO interface

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Mitani, Seiji; Inomata, Koichiro

    2011-06-01

    The perpendicular magnetization of Co2FeAl (CFA) full-Heusler alloy films was achieved in the structures of CFA/MgO and MgO/CFA with the perpendicular magnetic anisotropy energy density (KU) of 2-3×106 erg/cm3, which can be used as the perpendicular ferromagnetic electrodes of MgO-based magnetic tunnel junctions (MTJs) with high thermal stability at sub-50-nm dimension. The CFA thickness dependence of KU was investigated at different annealing temperatures, indicating that the perpendicular anisotropy of CFA is contributed by the interfacial anisotropy between CFA and MgO. This letter will open up a way for obtaining perpendicular magnetization of Co-based full-Heusler alloys, which is promising for further reduction in the critical current of current induced magnetization switching in MgO-based MTJ nanopillars with perpendicular full-Heusler alloy electrodes.

  9. Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping

    PubMed Central

    Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei

    2017-01-01

    Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152

  10. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability.

    PubMed

    Zhang, Yong; Zuo, TingTing; Cheng, YongQiang; Liaw, Peter K

    2013-01-01

    Soft magnetic materials (SMMs) find important applications in a number of areas. The diverse requirements for these applications are often demanding and challenging for the design and fabrication of SMMs. Here we report a new class of FeCoNi(AlSi)x (0 ≤ x ≤ 0.8 in molar ratio) SMMs based on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which the combination of saturation magnetization (1.15 T), coercivity (1,400 A/m), electrical resistivity (69.5 μΩ·cm), yield strength (342 MPa), and strain without fracture (50%) makes the alloy an excellent SMM. Ab initio calculations are used to explain the high magnetic saturation of the present HEAs and the effects of compositional structures on magnetic characteristics. The HEA-based SMMs point to new directions in both the application of HEAs and the search for novel SMMs.

  11. High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability

    PubMed Central

    Zhang, Yong; Zuo, TingTing; Cheng, YongQiang; Liaw, Peter K.

    2013-01-01

    Soft magnetic materials (SMMs) find important applications in a number of areas. The diverse requirements for these applications are often demanding and challenging for the design and fabrication of SMMs. Here we report a new class of FeCoNi(AlSi)x (0 ≤ x ≤ 0.8 in molar ratio) SMMs based on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which the combination of saturation magnetization (1.15 T), coercivity (1,400 A/m), electrical resistivity (69.5 μΩ·cm), yield strength (342 MPa), and strain without fracture (50%) makes the alloy an excellent SMM. Ab initio calculations are used to explain the high magnetic saturation of the present HEAs and the effects of compositional structures on magnetic characteristics. The HEA-based SMMs point to new directions in both the application of HEAs and the search for novel SMMs. PMID:23492734

  12. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field

    PubMed Central

    Ohtsuka, Hideyuki

    2008-01-01

    A magnetic field has a remarkable influence on solid/solid phase transformations and it can be used to control the structure and function of materials during phase transformations. The effects of magnetic fields on diffusional solid/solid phase transformations, mainly from austenite to ferrite, in Fe-based alloys are reviewed. The effects of magnetic fields on the transformation temperature and phase diagram are explained thermodynamically, and the transformation behavior and transformed structures in magnetic fields are discussed. PMID:27877922

  13. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field.

    PubMed

    Ohtsuka, Hideyuki

    2008-01-01

    A magnetic field has a remarkable influence on solid/solid phase transformations and it can be used to control the structure and function of materials during phase transformations. The effects of magnetic fields on diffusional solid/solid phase transformations, mainly from austenite to ferrite, in Fe-based alloys are reviewed. The effects of magnetic fields on the transformation temperature and phase diagram are explained thermodynamically, and the transformation behavior and transformed structures in magnetic fields are discussed.

  14. On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy

    NASA Astrophysics Data System (ADS)

    Hu, Qiaodan; Zhou, Zhenni; Yang, Liang; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-08-01

    The magnetic anisotropy energy (MAE) in the ferromagnetic shape memory alloys (FSMAs) provides the driving forces to obtain large magnetic field induced strain (MFIS) by rearranging the martensitic variants. However, to date, no significant MAE was observed in the new class of Ni-Mn-Z (Z = In, Sn, Sb) metamagnetic shape memory alloys (MSMAs). Here, we report a significant magnetic anisotropy in Ni48Mn35In17 Heusler alloy with a [110]A fiber texture prepared by the directional solidification. In this case, when the applied magnetic field is along the [110]A direction, a larger magnetization change is obtained compared with that of the randomly oriented samples, which increases the driving forces for the magnetically induced martensitic transformation (MIMT). In contrast, along the [110]A direction, the magnetocaloric effect (MCE) is enhanced by 60 pct, the MFIS is improved by 20 pct, and the critical field for the MFIS is reduced by 0.5 T. Such a peculiar magnetic behavior could be well explained by a proposed model on the viewpoint of the transformation of ferromagnetic austenite phase. Furthermore, considering the thermodynamics aspects, we demonstrate that two main magnetic energies of the Zeeman energy and the MAE in the MSMAs assist each other to promote the MIMT, instead of opposing each other in the FSMAs. This discovery of the strong magnetic anisotropy in highly textured polycrystals provides a feasible route to enhance the MIMT, and new insights to design and prepare the Ni-Mn-based Heusler alloys for practical applications.

  15. Magnetic indication of the stress-induced martensitic transformation in ferromagnetic Ni Mn Ga alloy

    NASA Astrophysics Data System (ADS)

    Heczko, O.; L'vov, V. A.; Straka, L.; Hannula, S.-P.

    2006-07-01

    A quantitative study of the stress-induced martensitic transformation in Ni 49.7Mn 29.1Ga 21.2 magnetic shape memory alloy has been carried out in two different ways: the first way is based on the measurements of saturation magnetization under variable mechanical stress and the second one is founded on the quantitative theoretical treatment of experimental stress-strain loops. A functional dependence between the volume fraction of transformed martensite and applied stress has been determined from both magnetization and strain values. A quantitative agreement between the functions determined in two different ways has been observed, and hence, the effectiveness of the magnetic indication of the stress-induced martensitic transformations has been proved. This method can be used to monitor stress-induced transformations in martensitic films, needles and small specimens.

  16. High-field magnetization measurements on a ferromagnetic amorphous alloy from 295 to 5K

    SciTech Connect

    Szymczak, P. ); Graham, C.D. Jr. ); Gibbs, M.R.J. )

    1994-11-01

    Magnetization measurements on an amorphous ferromagnetic alloy Fe[sub 78](SiB)[sub 22] have been made over the temperature range from 5 to 295K and in fields to 5T, using a SQUID magnetometer and a superconducting magnet. As-received and field-annealed samples were measured. Having data over a range of temperatures allows the spin-wave contribution to the magnetization to be determined, and then subtracted. When the spin-wave contribution is removed, a substantial high-field susceptibility remains, which is independent of temperature. Attempts to fit the corrected curves to one of two theoretical equations were not conclusive, but the best fit seems to be to M = M[sub 0] + aH[sup [minus]0.5] + bH. The annealing treatment has no significant effect on the high-field magnetization.

  17. The structural and magnetic properties of Fe2-xNiGa1+x Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhang (张玉洁), Y. J.; Xi (郗学奎), X. K.; Meng (孟凡斌), F. B.; Wang (王文洪), W. H.; Liu (刘恩克), E. K.; Chen (陈京兰), J. L.; Wu (吴光恒), G. H.

    2015-04-01

    The structural and magnetic properties of Fe2-xNiGa1+x (x=0~1) Heusler alloys have been investigated by experimental observation and calculation. In this system, a structural transition is found as a function of composition. A higher Ga content leads to an atomic-order transformation from Hg2CuTi to B2. The magnetization decreases due to the dilution effect and the competition between the magnetic interactions and enhanced covalent bonding. The calculation of electronic structure indicates that adding Ga enhances the p-d orbital hybridization between the transition-metal and main-group-element atoms at nearest-neighbor distance. A magnetic and a structural phase diagram have been obtained in which the composition dependences of the lattice constant, the ordering temperature and the Curie temperature show cusps at a critical composition of x=0.32.

  18. Observation of clusters in Re60Fe30Al10 alloys and the associated magnetic properties

    NASA Astrophysics Data System (ADS)

    Z, Kong H.; J, Ding; L, Dong Z.; L, Wang; T, White; Y, Li

    2002-03-01

    Magnetic properties and microstructure of melt-spun ribbons of RE60Fe30Al10 alloys with RE{} = {}Nd, Sm, Dy, Gd and Y were studied in detail. High coercivity values in the range of MA m-1 were observed at low temperatures for amorphous ribbons. Presence of Fe-rich clusters and nanoscale rare-earth crystallites in the amorphous matrix in the ribbons were revealed by high-resolution transmission electron microscopy studies. The magnetic transition temperatures were estimated experimentally and compared with fitting results based on the cluster ferromagnetism model (Wang L et al 2001 Phys. Rev. B 64 214410). Possible mechanisms for the magnetic behaviour observed due to the presence of Fe-rich magnetic clusters are discussed.

  19. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, M.; Wang, W. Q.; Wang, W. H.; Chen, J. L.; Wu, G. H.; Meng, F. B.; Liu, H. Y.; Liu, B. D.; Qu, J. P.

    2002-11-01

    Quaternary Heusler alloy Ni2)(Mn,FeGa has been studied systematically for the structure, martensitic transformation, and magnetic properties in two systems of Ni50.5Mn25-xFexGa24.5 and Ni50.4Mn28-xFexGa21.6. Substituting Fe for Mn up to about 70%, the pure L21 phase and the thermoelastic martensitic transformation still can be observed in these quaternary systems. Iron doping dropped the martensitic transformation temperature from 220 to 140 K, increased the Curie temperature from 351 to 429 K, and broadened the thermal hysteresis from about 7 to 18 K. Magnetic analysis revealed that Fe atoms contribute to the net magnetization of the material with a moment lower than that of Mn. The temperature dependence of magnetic-field-induced strains has been improved by this doping method.

  20. Tunable exchange bias in dilute magnetic alloys – chiral spin glasses

    PubMed Central

    Hudl, Matthias; Mathieu, Roland; Nordblad, Per

    2016-01-01

    A unidirectional anisotropy appears in field cooled samples of dilute magnetic alloys at temperatures well below the cusp temperature of the zero field cooled magnetization curve. Magnetization measurements on a Cu(13.5 at% Mn) sample show that this anisotropy is essentially temperature independent and acts on a temperature dependent excess magnetization, ΔM. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of ΔM at larger fields, thus instead appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. This two faced nature of the anisotropy has been empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction. PMID:26817418

  1. Energetics of variant conversion in ferromagnetic shape memory alloys by external magnetic fields

    NASA Astrophysics Data System (ADS)

    Steuwer, Axel; Mori, Tsutomu; Kato, Hiroyuki; Wada, Taishi

    2003-08-01

    Using energetics, we examine the occurrence of large strains, so-called giant magnetostriction, in ferromagnetic shape memory alloys by the application of an external magnetic field. It is claimed that these strains originate from the conversion of one martensite variant to another. In this article, we attempt to show that magnetic work cannot supply the work required for the conversion of martensite variants in most cases. It is also pointed out that the latter work dissipates, while most of the magnetic work is conserved, as indicated by almost hysteresis-free magnetization curves. Therefore, simple energy conservation arguments rule out the suggested variant conversion mechanism not only quantitatively, but also qualitatively. A possible explanation for the occurrence of large strains is offered.

  2. Magnetic hyperfine interaction studies of isolated Ni impurities in Pd and Pd-Pt alloys

    NASA Astrophysics Data System (ADS)

    Müller, W.; Bertschat, H. H.; Haas, H.; Spellmeyer, B.; Zeitz, W.-D.

    1989-10-01

    The magnetic hyperfine fields at isolated Ni impurities in Pd and Pd-Pt alloys were studied with the perturbed-angular-distribution (PAD) method by measuring the temperature, magnetic field, and concentration dependence of the nuclear-spin Larmor precession of isomeric states in 63Ni. The recoil-implanted Ni nuclei, as products of heavy-ion nuclear reactions, are present in extreme dilution (<1 ppm) in the hosts. The positive Larmor frequency shift (Knight shift) observed for Ni impurities in Pd follows a Curie-Weiss-like temperature dependence with a large Curie constant indicating a giant moment behavior. For Ni impurities in the Pd-Pt alloys a considerable positive shift remains even at 30 at. % Pt content. The variation of the shift with Pt concentration and temperature reflects the variation of the Pd-Pt alloy susceptibility. The different contributions to the hyperfine field could be differentiated by comparing the Knight shift for Ni in Pd with its susceptibility contribution obtained from extrapolated susceptibility measurements in dilute Pd-Ni alloys. The negative core-polarization field of the impurity spin moment is compensated for by a transferred hyperfine field correlated with the host polarization in the neighborhood of the impurity. The remaining positive hyperfine field is due to a weak orbital moment of 0.3μB at the impurity site. The values obtained for the different contributions are compared with results of the Korringa-Kohn-Rostoker-coherent-potential-approximation calculations for concentrated Pd-Ni alloys extrapolated to the dilute limit.

  3. Effect of annealing on structural and magnetic properties of Al substituted nanocrystalline Fe-Si-Co alloy powders

    NASA Astrophysics Data System (ADS)

    Shyni, P. C.; Alagarsamy, Perumal

    2016-11-01

    We report effects of annealing and substitution of Al on structural and magnetic properties of nanocrystalline Fe80-xAlxCo5Si15 (x=0-10) alloy powders prepared by mechanical alloying process using a planetary ball mill technique. All the as-milled powders exhibit non-equilibrium solid solution of α-Fe (Si,Co,Al). While the average size of crystals decreases, the lattice constant and dislocation density increase with increasing Al content. On the other hand, the annealing at elevated temperatures increases the size of the crystals and decreases the dislocation density. In addition, the substitution of Al in FeAlCoSi alloy powders controls growth of the crystals during annealing. As a result, coercivity (HC) of the annealed powders decreases considerably. However, the variation in HC is dominated by the dislocation density. Fe70Al10Co5Si15 powder annealed at 900 °C exhibits improved magnetic properties (HC~14 Oe and moderate magnetization of 160 emu/g) due to optimum nanocrystalline microstructure with fine nanocrystals (~18 nm) and reduced dislocation density. Systematic correlations observed between structural and magnetic properties for Fe80-xAlxCo5Si15 powders reveal a promising approach to control the growth of the crystals in the annealed nanocrystalline alloys and to improve the magnetic properties of mechanically alloyed Fe-Si based nanocrystalline alloys by adding suitable substituting elements.

  4. Magnetic Shape Memory Alloys with High Actuation Forces

    DTIC Science & Technology

    2006-01-29

    0.3 Tesla [16], but rare earth metals are expensive [14]. PZT (lead-zirconate-titanate) piezoceramics result in a maximum strain of about 0.1% and...maximum actuation stress level of about 100 MPa [17] in an electric field of several hundred V/cm [15]. However, PZT is an oxide and thus brittle. By...Fabricate textured polycrystalline materials from selected Fe based compositions using powder consolidation under magnetic field via Equal channel

  5. Structural and magnetic properties of a chemically ordered face-centered-cubic (111) Mn alloy film

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuowei; Li, Qiangyong; Venus, D.

    2006-04-01

    A 4 ML Ni/W(110) substrate is used to establish a (111) face-centered-cubic (fcc) template upon which 3 ML of Fe is deposited and annealed to 580 K to form a substrate with very good short and long range fcc (111) order, that is Fe rich at the surface. Mn alloy films are formed by annealing a subsequent Mn deposit of 0.3-1.6 ML. Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and directional AES show that an ordered alloy is not formed until an annealing temperature of 580 K, upon which a multilayer alloy with a P(23×23)R30° LEED pattern is created. The alloy films formed from 0.3 to 0.5 ML of Mn have magnetic properties similar to the FeNi substrate. Hysteresis loops and ac-susceptibility curves measured using the Kerr effect give square loops with a ferromagnetic moment along the in-plane fcc [-211] direction and a Curie temperature TC of about 460 K. There is an increase in coercive field likely due to the inhomogeneities introduced by the Mn. Alloy films formed from 0.8 to 1.6 ML of Mn show a marked increase in the width of the susceptibility peak, and a decrease in the peak temperature. The hysteresis loop becomes slanted with a reduced coercive field. The measurements are consistent with a paramagnetic or antiferromagnetic Mn alloy forming an uneven interface within the FeNi film, so that the remaining FeNi film has a wide distribution in TC.

  6. Microstructure and magnetic properties of Cu0.8(Fe1 - xCox)0.2 alloy powders manufactured by a mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Yoo, Yong Goo; Yu, Seong Cho; Kim, Won Tae

    1996-04-01

    Changes in structural and magnetic properties during mechanical alloying and heat treatment were studied in Cu0.8(Fe1-xCox)0.2 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) alloys using x-ray diffractometry, transmission electron microscopy, and magnetometry. Supersaturated solid solutions with a fcc crystal structure were obtained in all alloys by mechanical alloying. The grain sizes of the solid solutions were about 20 nm. Magnetization of the supersaturated solid solutions could be explained by a mixture of two types of particles showing paramagnetism and ferromagnetism. The variation in magnetization with Co content in the solutions was similar to the Slater-Pauling curve. Fe-Co with a bcc structure precipitates during annealing of the Cu0.8Fe0.1Co0.1 alloy. With increasing annealing temperature ferromagnetic behavior becomes dominant due to a coarsening of the precipitates.

  7. Magnetism of Body-Centered Tetragonal FeRh1-xPdx Alloys (I) Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Yuasa, Shinji; Miyajima, Hideki; Otani, Yoshichika; Sakuma, Akimasa

    1995-12-01

    Crystalline structures and magnetic properties of the FeRh1-xPdx system were investigated. Substitution of Pd for Rh stabilized body-centered tetragonal (bct) structure of the ordered CuAu-type with increasing axial ratio c/a from 1.18 to 1.36. The bctalloys in the range x=0.530˜0.61 exhibited a first-order phase transition from antiferromagnetic to ferromagnetic state, while the bct alloys with x<0.530 exhibited a first-order phase transition from antiferromagnetic to Curie paramagnetic state. Both the axial ratio and the volume increased abruptly at the transitions. A new ferromagnetic phase with orthorhombic structure with the space group Cmmm was found in the bct alloys with x=0.525˜0.61 below room temperature. This ferromagnetic phase possesses a larger magnetic moment than that of the bct phase. Reduction of the crystalline symmetry may have enhanced the magnetic moment.

  8. Magnetic and magnetotransport properties of nanocrystalline Ag 0.85Fe 0.15 and Ag 0.70Fe 0.30 alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Gómez, J. A.; Xia, S. K.; Passamani, E. C.; Giordanengo, B.; Baggio-Saitovitch, E. M.

    2001-01-01

    The magnetic and magnetotransport properties of nanocrystalline Ag 0.85Fe 0.15 and Ag 0.70Fe 0.30 alloys have been studied by Mössbauer spectroscopy, magnetization and resistivity measurements. The samples were prepared by mechanical alloying of Fe and Ag powders in a high-energy ball mill. Mössbauer spectroscopy and magnetic measurements of the final milled samples indicate the presence of single-domain 'Fe' particles. The magnetoresistance values, at 4.2 K and for a magnetic field of 8 T, are 2.5% and 5.7% for samples Ag 0.85Fe 0.15 and Ag 0.70Fe 0.30, respectively. The magnetoresistance behavior indicates the cluster-glass-like features in both the final milled samples.

  9. In-situ neutron scattering studies of magnetic shape memory alloys under stress, temperature, and magnetic fields

    SciTech Connect

    Brown, Donald W; Sisneros, Thomas A; Kabra, Saurabh; Schlagel, Deborah

    2010-01-01

    We have utilized the SMARTS engineering neutron diffractometer to study the crystallographic orientation and phase transformations in the ferromagnetic shape memory alloy Ni 2MnGa under conditions of temperature (200-600K), stress (500MPa), and magnetic field (2T). Neutrons are uniquely suited to probe the crystallographic response of materials to external stimuli because of their high penetration, which allows them to sample the bulk of the material (as opposed to the surface) as well as pass through environmental chambers. A single crystal of Ni{sub 5}MnGa was repeatedly thermally cycled through the Austenitic-Martensitic phase transformation under varying conditions of applied stress, magnetic field or both. In-situ neutron diffraction was used to quantitatively monitor the population of the crystallographic variants in the martensitic phase as a function of the external stimuli during cooling. Neutron diffraction was used to monitor variant selection in the Ferromagnetic Shape Memory Alloy Ni{sub 2}Mn Ga during austenitic to martensitic transformation under varying conditions of externally applied stress and magnetic field. Qualitatively, the results were to be expected in this simple example. The shorter and magnetically soft c-axis of the tetragonal martensitic phase aligned with the compressive stress or magnetic field. However, neutron diffraction proved useful in directly quantifying the selection of the preferred variant by external influence. For instance, by quantifying the variant selection, the neutron diffraction results made apparent that the sample 'remembered' a loading cycle following a 'reset' cycle with no external applied stress. Moreover, the power of in-situ neutron diffraction will become more apparent when applied to more complex, less understood, samples such as polycrystalline samples or composite samples.

  10. Development of magnetic shape memory alloy actuators for a swashplateless helicopter rotor

    NASA Astrophysics Data System (ADS)

    Couch, Ronald Newton

    Actuator concepts utilizing NiMnGa, ferromagnetic shape memory alloy are investigated for potential use on a smart rotor for trailing edge flap actuation. With their high energy density, large dynamic stroke, and wide operating bandwidth, ferromagnetic shape memory alloys (FSMA) like NiMnGa, seem like attractive candidates for smart rotor actuators, potentially able to fulfill the requirements for both primary rotor control and vibration suppression. However, because of the recent discovery of the material, current experimental data and analytical tools are limited. To rectify these shortcomings, an extensive set of detailed experiments were conducted on samples of NiMnGa to characterize the response of the alloy for a wide variety of mechanical and magnetic loading conditions. Measurements of the material performance parameters such as power density, damping properties, magneto-mechanical coupling, and transduction efficiency were included. Once characterized, the experimental data were used to develop a series of analytical tools to predict the behavior of the material. A model, developed in parallel to thermal shape memory alloy models is proposed to predict the quasi-static stress-strain behavior. A simple, low frequency, parameter based model was also developed to predict the alloy's dynamic strain response. A method for developing conceptual actuators utilizing NiMnGa as the actuation element was proposed. This approach incorporates experimental data into a process that down-selects a series of possible actuator configurations to obtain a single configuration optimized for volumetric and weight considerations. The proposed actuator was designed to deliver 2 mm of stroke and 60 N of force at an actuation frequency of 50 Hz. However, to generate the 1.0 T magnetic field, the actuator mass was determined to be 2.8 kg and required a minimum of 320 Watts of power for operation. The mass of the NiMnGa element was only 18.3 g. It was concluded that although the Ni

  11. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  12. Effect of disorder on electronic and magnetic properties of Co{sub 2}VGa Heusler alloy

    SciTech Connect

    Seema, K.; Kumar, Ranjan

    2015-08-28

    This paper presents the effect of disorder on electronic, magnetic and half-metallic properties of Co{sub 2}VGa Heusler alloy using density functional theory. Binary mixing is the most common form of atomic disorder in these compounds. We have considered three types of disorders: DO{sub 3}, A2 and B2 disorder which corresponds to X-Y, X-Z and Y-Z mixing respectively. After structural optimization, we found that A2 disorder has high formation energy and is most unlikely to occur. The half-metallic nature of the alloy is destroyed in presence of DO{sub 3} and A2 disorder. The destruction of half-metallicity is due to reconstruction of energy states. Also the loss of half-metallicity is accompanied by reversal of spin-polarization at the Fermi level. B2 disorder retains the half-metallic nature of the alloy but spin-polarization value is reduced as compared to the ordered alloy.

  13. Low-cost Ce1-xSmx(Fe, Co, Ti)12 alloys for permanent magnets

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Martín-Cid, A.; Barandiaran, J. M.; Salazar, D.; Hadjipanayis, G. C.

    2016-05-01

    Ce1-xSmxFe9Co2Ti alloys based on the ThMn12-type crystal structure have been synthesized via melt-spinning of prefabricated alloys and via mechanochemical processing of CeO2- Sm2O3- Fe2O3-TiO2- Co - Ca - CaO powder mixtures. Coercive fields up to 0.8 kOe and 2.1 kOe were obtained in annealed melt-spun alloys with x = 0 and x = 0.5, respectively. Submicron, partially anisotropic particles collected after the mechanochemical synthesis for x = 0.5 and x = 1 exhibited coercivity (energy product) of 1.8 kOe (5.4 MGOe) and 5.8 kOe (9.9 MGOe), respectively. The low magnetic anisotropy field of CeFe9Co2Ti alloy requires at least a partial Sm-substitution for Ce in order to develop a reasonably high coercivity.

  14. Influence of Sn on the magnetic ordering of Ni-Sn alloy synthesized using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Dhanapal, K.; Narayanan, V.; Stephen, A.

    2016-05-01

    The Ni-Sn alloy was synthesized using borohydride assisted chemical reduction method. The composition of the synthesized alloy was determined using atomic absorption spectroscopy which revealed that the observed composition of Sn is high when compared to the initial composition. The ultrafine particles are clearly observed from field emission scanning electron microscope for all the sample. The X-ray diffraction measurement confirmed that the as-synthesized samples are of amorphous like nature while the samples annealed at 773 K showed crystalline nature. The Fourier transform infrared spectroscopy confirmed metallic bond stretching in the alloy samples. The crystallization and phase transition temperature was observed from differential scanning calorimetry. The shift in the crystallization temperature of Ni with increasing percentage of Sn was observed. The vibrating sample magnetometer was employed to understand the magnetic behavior of the Ni-Sn alloy. As-synthesized alloy samples showed paramagnetic nature while the annealed ones exhibit the soft ferromagnetic, antiferromagnetic and paramagnetic nature. The saturation magnetization value and magnetic ordering in the Ni-Sn alloys depend on the percentage of Sn present in the alloy.

  15. Hard magnetic properties of melt-spun Mn-Al-C alloys

    NASA Astrophysics Data System (ADS)

    Pasko, A.; Mazaleyrat, F.; LoBue, M.; Fazakas, E.; Varga, L. K.

    2013-01-01

    Structural and magnetic characterization of Mnx-yAl100-x-yC2y (x = {50, 55}; y = {0, 1}) melt­spun ribbons is reported. To obtain the metastable ferromagnetic τ­phase, rapidly solidified alloys were annealed either in a vacuum furnace at 823 K or directly in the vibrating sample magnetometer under applied magnetic field. Optimal magnetic properties were demonstrated by Mn54Al44C2 samples proved to be single­phase with a coercivity of 0.19 T measured in both cases. For this composition the structural ɛ→τ phase transformation has been magnetically detected at 786 K, Curie temperature of τ­phase (Tc = 592 K, Tp = 610 K) has been determined using mean field approximations in ferromagnetic and paramagnetic regions. Rietveld refinement of X­ray diffraction spectra was employed to analyse the phase constitution of annealed alloys, lattice parameters as a function of chemical composition and mean grain size for the phases involved.

  16. HfCo7-Based Rare-Earth-Free Permanent-Magnet Alloys

    SciTech Connect

    Das, B; Balamurugan, B; Kumar, P; Skomski, R; Shah, VR; Shield, JE; Kashyap, A; Sellmyer, DJ

    2013-07-01

    This study presents the structural and magnetic properties of melt-spun HfCo7, HfCo7-xFex (0.25 <= x <=), and HfCo7Six (0.2 <= x <= 1.2) alloys. Appreciable permanent-magnet properties with a magnetocrystalline anisotropy of about 9.6-16.5, Mergs/cm(3), a magnetic polarization J(s) approximate to 7.2-10.6 kG, and coercivities H-c = 0.5-3.0 kOe were obtained by varying the composition of these alloys. Structural analysis reveals that the positions of x-ray diffraction peaks of HfCo7 show good agreement with those corresponding to an orthorhombic structure having lattice parameters of about a = 4.719 angstrom, b = 4.278 angstrom, and c = 8.070 angstrom. Based on these results, a model crystal structure for HfCo7 is developed and used to estimate the magnetic properties of HfCo7 using density-functional calculations, which agree with the experimental results.

  17. One-Step Synthesis and Magnetic Phase Transformation of Ln-TM-B Alloy by Chemical Reduction.

    PubMed

    Kim, Chang Woo; Kim, Young Hwan; Cha, Hyun Gil; Lee, Don Keun; Kang, Young Soo

    2007-04-11

    Binary and ternary intermetallic alloy systems are of interest for a variety of academic and technological applications. Despite recent advances in synthesizing binary alloy, there are very few reports of ternary alloy related to lanthanide series. The purpose of this work is to contribute to ternary alloy systems such as lanthanide-transition metal-boron with a simple chemical method and analysis of its magnetic behavior. Ternary Nd-Fe-B amorphous alloy was successfully synthesized with borohydride. The magnetic behavior in the process of formation of ternary Nd-Fe-B alloy and Nd2Fe14B from amorphous phase alloy is reported. Compared with the synthesis of a transition metal, the existence of a lanthanide ion makes aggregates-like particles with a diameter of 2 nm possible in the formation of a nanosphere, which is a significantly important result in terms of acceleration of the reduction-diffusion reaction for the formation of ternary alloy. In the process of reduction and diffusion, the Nd phase is diffused into the Fe-based phase, and then the ternary Nd2Fe14B intermetallic compound is fabricated.

  18. Hyperfine magnetic field on Cd-111 in Heusler alloys Co2MnZ (Z = Si, Ga, Ge, Sn)

    NASA Technical Reports Server (NTRS)

    Jha, S.; Mitros, C.; Lahamer, Amer; Yehia, Sherif; Julian, Glenn M.

    1989-01-01

    The time differential perturbed angular correlation method has been used to measure, as a function of temperature, the hyperfine magnetic field at Cd sites in the Heusler alloys Co2MnZ (Z = Si, Ga, Ge, Sn). The hyperfine fields, normalized to the total magnetic moment per formula unit, show an approximately linear trend toward more positive values with increasing lattice parameter.

  19. Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Axinte, Eugen; Zhao, Zhengfeng; Wang, Yan

    2016-09-01

    The effects of elemental addition, C and Ce, on the microstructure, thermal property and magnetic property of mechanically alloyed FeSiBAlNi (based-W5) high entropy alloys (HEAs) have been investigated in depth in the present work. The amorphous HEAs have been successfully fabricated by mechanical alloying. The results reveal that Ce addition obviously shortens the formation time of fully amorphous phase, therefore leading to the enhanced glass forming ability (GFA) of the based-W5. The final products of as-milled FeSiBAlNiC alloy consist of the main amorphous phase and a small amount of Si nanocrystals. In addition, C and Ce addition are both beneficial to enhance the thermal stability. The coercivity force (Hc) of the tested samples lies in the range of 50-378 Oe, suggesting the semi-hard magnetic property. The saturation magnetization (Ms) becomes decreased with increasing the milling time. C addition effectively increases Ms exhibiting the good magnetic property, however, Ce addition presents the negative effect. It should be noted that the amorphous phase tends to be formed when the radius ratio (Rr) is larger than 1, and the GFA is enhanced with increasing Rr and valence electron concentration.

  20. Strong perpendicular magnetic anisotropy energy density at Fe alloy/HfO2 interfaces

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Ralph, D. C.; Buhrman, R. A.

    2017-05-01

    We report on the perpendicular magnetic anisotropy (PMA) behavior of heavy metal (HM)/Fe alloy/MgO thin film heterostructures when an ultrathin HfO2 passivation layer is inserted between the Fe alloy and MgO. This is accomplished by depositing one to two atomic layers of Hf onto the Fe alloy before the subsequent rf sputter deposition of the MgO layer. This Hf layer is fully oxidized during the subsequent deposition of the MgO layer, as confirmed by X-ray photoelectron spectroscopy measurements. The HfO2 insertion generates a strong interfacial perpendicular anisotropy energy density without any post-fabrication annealing treatment, for example, 1.7 erg / cm 2 for the Ta/Fe60Co20B20/HfO2/MgO heterostructure. We also demonstrate PMA even in Ni80Fe20/HfO2/MgO structures for low-damping, low-magnetostriction Ni80Fe20 thin films. Depending on the choice of the HM, further enhancements of the PMA can be realized by thermal annealing to at least 400 o C . We show that ultra-thin HfO2 layers offer a range of options for enhancing the PMA properties of magnetic heterostructures for spintronics applications.

  1. Structural state and magnetic properties of Nd2Fe14 B-type rapidly quenched alloys

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, N. V.; Andreev, S. V.; Bogatkin, A. N.; Bogdanov, S. G.; Kozlov, A. I.; Markin, P. E.; Milyaev, O. A.; Pirogov, A. N.; Pushin, V. G.; Teplykh, A. E.

    2008-02-01

    Using X-ray, elastic neutron diffraction (END) and small angular neutron scattering (SANS) methods (Diffractometers D2 and D3 respectively), transmitting electronic microscopy (JEOL JEM-200CX) and magnetometry technique (vibrating sample magnetometer -VSM) the structure and magnetic properties of the rapidly quenched (RQ) alloys of the following compositions: A) Nd14Fe78B8; B) Y12Fe82B6; C) Nd13.3 Co6.6 Fe72.6Ge0.9B6.6; D)Nd9Fe85B6; E) Nd9Fe79B12; F) Nd9Fe74Ti4C B12 have been studied. At some quenching conditions or after consequent heat treatments of these alloys the nanoscale state of the main 2-14-1 phase and ?-Fe grains can be formed. Their size depends on the sample-preparation conditions and lies in the interval of 10-200 nm. Their influence on magnetic properties of alloys under study is discussed.

  2. Effect of Mn on the Microstructure and Magnetic Properties in Cu-Fe-Co Alloys

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Basu Mallick, A.; Nath, D. N.; Chattopadhyay, P. P.

    2011-02-01

    An attempt was made to study the effect of Mn addition on the formation of supersaturated solid solution of Co and Fe in Cu during ball milling and precipitation of the solute-rich phases during subsequent annealing of the ball-milled product. It is demonstrated that the addition of Mn in the ternary CuFeCo powder blend enhances the metastable solubility of Fe and Co in Cu and facilitates the formation of the nanocrystalline supersaturated single-phase solid solution. Field emission-scanning electron microscopy (FE-SEM) also revealed notable influence of Mn on the morphological evolution of the ball-milled and annealed alloy powders. X-ray diffraction (XRD) analysis revealed that the FeCo phase having the bcc Bravais lattice forms after annealing at and above 620 K (350 °C) in both alloys. Estimation of magnetic properties showed that Mn addition in the CuFeCo alloy improved the coercivity, remanence, and magnetic saturation.

  3. Continuous-annealing method for producing a flexible, curved, soft magnetic amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Francoeur, Bruno; Couture, Pierre

    2012-04-01

    A method has been developed for continuous annealing of an amorphous alloy ribbon moving forward at several meters per second, giving a curved shape to the ribbon that remains flexible afterward and can be easily wound into a toroidal core with excellent soft magnetic properties. A heat pulse was applied by a compact system on a Metglas 2605HB1 ribbon moving forward at 5 m/s to initiate a thermal treatment at 460 °C, near crystallization onset. The treatment duration was less than 0.1 s, and the heating and cooling rates were above 10 000 °C/s, which helped preserve most of the alloy as-cast ductility state. Such high temperature rates were achieved by forcing a static contact between the moving ribbon and a temperature-controlled roller. A tensile stress and a series of bending configurations were applied on the moving ribbon during the treatment to induce the development of magnetic anisotropy and to obtain the desired natural curvature radius. The core losses at 60 Hz of a toroidal test core wound with the resulting ribbon are lower than the specific values reported by the alloy manufacturer. This method can be implemented at the casting plant for supplying a low-cost, ready-to-use ribbon, easy to handle and cut, for mass production of toroidal cores for distribution transformer kernels (core and coil only), pulse power cores, etc.

  4. The structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Li; Zhang, Jian-Min; Xu, Ke-Wei

    2016-04-01

    Employing the first-principles calculations, we have investigated the structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn. The TiZrCoIn alloy with type (I) configuration is predicted to be half-metallic ferromagnet at its equilibrium lattice constant 6.525 Å with an indirect band gap of 0.930 eV in minority spin channel. The total magnetic moment is 2 μB/f.u., following the Slater-Pauling rule μt=Zt-18. Moreover, the negative formation energy indicates the thermodynamical stability of this alloy. The band gap of minority spin channel is determined by the bonding (t2g) and antibonding (t1u) states created from the hybridizations of the d states of transition metal atoms Ti, Zr and Co. In addition, the HM, character is kept as hydrostatic strain ranged from -10% to 7.6% and tetragonal strain ranged from -19% to 27%.

  5. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  6. The giant effect of magnetic ordering on a sound velocity in a σ-Fe55Cr45 alloy

    NASA Astrophysics Data System (ADS)

    Dubiel, S. M.; Chumakov, A. I.

    2017-03-01

    We studied atomic dynamics of σ\\text-\\text{Fe}100-x\\text{Cr}x (x = 45 and 49.5) alloys using nuclear inelastic scattering of synchrotron radiation. For the σ-Fe55Cr45 alloy, the derived reduced iron partial density of phonon states reveals a huge difference in the low-energy region between magnetic and paramagnetic states. The latter implies a ∼36% increase of the sound velocity in the magnetic phase, which testifies to a magnetically induced hardening of the lattice. Estimations of the longitudinal and transverse components of the sound velocity based on theoretically calculated elastic constants for the σ-CoMo alloys imply that both components are affected by magnetism.

  7. Intrinsic magnetic properties of single-phase Mn1+xGa (0 < x < 1) alloys

    PubMed Central

    Lu, Q. M.; Yue, M.; Zhang, H. G.; Wang, M. L.; Yu, F.; Huang, Q. Z.; Ryan, D. H.; Altounian, Z.

    2015-01-01

    Magnetization measurements have been carried out on a series of carefully prepared single-phase Mn1 + xGa (0 < x < 1) alloys. The saturation magnetization Ms, measured at 5 K, has a value of 92.0 emu/g for x = 0.15. This is the highest value reported in these alloys and is close to the calculated value of 116 emu/g for the stoichiometric compound (x = 0). Ms decreases gradually with x and has a value of 60.7 emu/g for x = 0.86. This behavior is consistent with the extra Mn atoms occupying Ga sites and coupling antiferromagnetically with the rest of the Mn atoms. The intrinsic magnetic properties of the Mn-Ga alloys indicate their great potential as novel, rare-earth free permanent magnetic materials. PMID:26597458

  8. High strength and high induction Co27-Fe-Co0.23 soft magnetic alloy for forge application

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2000-05-01

    In magnetic bearing or flywheel technologies, there is a demand for high induction soft magnetic alloys for forged components rotating at high speed (50 000-80 000 rpm). Hiperco® Alloy 27 (Co27-Fe) is ductile and has high magnetic saturation (24 kG) but with low yield stress (35-55 ksi). This work reports a carbon strengthened Co27Fe-C0.23 alloy with high yield stress (75-85 ksi), high induction (B=20 and 21 kG at H=100 and 150 Oe, respectively), and good ductility (1 in. elongation=21%). Postforge annealing is critical to achieve desired combination of high magnetic induction, high yield stress, and good ductility.

  9. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  10. Optimization of Temperatures Heating Melt and Annealing Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Tsepelev, Vladimir; Starodubtsev, Yuri

    2017-05-01

    Taking into account the concept of the quasi-chemical model of the liquid micro-non-uniform composition and the research made on the physical properties of the Fe-based melts being crystallized, the unique technology of the melt time-temperature treatment has been developed. Amorphous ribbons produced using this technology require optimal annealing temperatures to be specifically selected. Temperature dependences of the kinematic viscosity of a multicomponent Fe72.5Cu1Nb2Mo1.5Si14B9 melt have been studied. A critical temperature is detected above which the activation energy of viscous flow of the melt changes. Upon cooling the overheated melt, the temperature curves of the kinematic viscosity become linear within the given coordinates. In amorphous ribbon produced in the mode with overheating the melt above the critical temperature, the enthalpy of crystallization grows, the following heat treatment results in an increase in magnetic permeability.

  11. A three-dimensional constitutive model for magnetic shape memory alloys under magneto-mechanical loadings

    NASA Astrophysics Data System (ADS)

    Mousavi, Mohammad Reza; Arghavani, Jamal

    2017-01-01

    This paper presents a three-dimensional phenomenological constitutive model for magnetic shape memory alloys (MSMAs), developed within the framework of irreversible continuum thermodynamics. To this end, a proper set of internal variables is introduced to reflect the microstructural consequences on the material macroscopic behavior. Moreover, a stress-dependent thermodynamic force threshold for variant reorientation is introduced which improves the model accuracy. Preassumed kinetic equations for magnetic domain volume fractions, decoupled equations for magnetization unit vectors and appropriate presentation of the limit function for martensite variant reorientation lead to a simple formulation of the proposed constitutive model. To show the model capability in reproducing the main features of MSMAs, several numerical examples are solved and compared with available experimental data as well as available three-dimensional constitutive models in the literature. Demonstrating good agreement with experimental data besides possessing computational advantages, the proposed constitutive model can be used for analysis of MSMA-based smart structures.

  12. Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy

    NASA Astrophysics Data System (ADS)

    Barandiaran, J. M.; Chernenko, V. A.; Cesari, E.; Salas, D.; Lazpita, P.; Gutierrez, J.; Orue, I.

    2013-02-01

    We study the martensitic transformation (MT) of metamagnetic shape memory alloy Ni50Mn34.5In15.5 in the magnetic fields up to 12 T. The observed dependence of the MT temperature, Tm, on the field is highly nonlinear. As far as magnetization change, ΔM, remains field-independent, a depart from linearity of Tm(H) function is attributed to a decrease of the transformation entropy, ΔS. This decrease correlates with the parameter (TC-Tm), controlled by magnetic field, where TC is the Curie temperature of austenite, and with the dependence of ΔS on the width of the MT temperature interval deduced from a ferroelastic model of MT.

  13. A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys

    NASA Astrophysics Data System (ADS)

    Blázquez, J. S.; Franco, V.; Conde, A.; Gottschall, T.; Skokov, K. P.; Gutfleisch, O.

    2016-09-01

    Different excitations, like temperature, magnetic field, or pressure, can drive a martensitic transition in Heusler alloys. Coupled phenomena in these materials lead to interesting magnetocaloric and barocaloric effects ascribed to this transition. In this work, we demonstrate that isothermal transformations induced by a magnetic field and isofield transformations induced by the temperature can be described using the same framework. By defining an effective temperature that relates field and temperature through the properties of the system (magnetic moment and entropy of the transition), both kinds of loops can be transformed into the other kind, therefore providing a more effective way of characterizing hysteretic samples. The validity of this effective temperature approach to describe the transition holds for martensite to austenite transformations as well as reversal ones, and thus, the hysteresis phenomena can be described using this single general excitation.

  14. Polymorphic MnAs nanowires of a magnetic shape memory alloy.

    PubMed

    Echeverría-Arrondo, C; Pérez-Conde, J; Ayuela, A

    2014-03-28

    We describe a magnetic shape memory alloy, in which it is the nanostructural confinement that influences both the crystal geometry and the electronic and magnetic properties. We use calculations from first-principles on shape memory MnAs nanowires to study the influence of strain on the resulting crystallographic phases, which arise at their surfaces. We show that MnAs nanowires as thin as two nanometers can be stable in a new crystal geometry which is induced by one-dimensionality and hence is unknown in the bulk, typically hexagonal. The changes between phases caused by differences in strain require the existence of twin domains. Our analysis suggests that the strain-induced structural transition - which is here described for MnAs compounds - could be applied to other (magnetic) shape memory nanowire systems for applications in a range of devices from mechanical to magneto-electronic.

  15. Magnetic vortex in epitaxially-grown Co{sub 2}(Fe,Mn)Si alloy

    SciTech Connect

    Yamamoto, T. Takanashi, K.; Seki, T.; Kotsugi, M.

    2016-04-11

    We report magnetic vortex formation in epitaxially grown Co{sub 2}Fe{sub 0.4}Mn{sub 0.6}Si (CFMS) Heusler alloy discs that was confirmed using photoemission electron microscopy and the magneto-optical Kerr effect. The phase diagram of magnetic domain structures as functions of the disc thickness (t) and diameter (D) indicates that the magnetic vortex is stable in wide ranges of t and D even for the epitaxial CFMS. The annihilation field of vortex core depended not only on the disc aspect ratio but also on t. Numerical simulation suggests that this t dependence results from extrinsic pinning of a vortex core due to the epitaxial growth.

  16. Effect of magnetic field on Fe - Si - Al alloy properties with zero magnetostriction

    NASA Astrophysics Data System (ADS)

    Naimi, E. K.; Kaputkin, D. E.

    2012-09-01

    A method and results for a study of the effect of permanent and variable (up to about 1.5 kHz) magnetic fields with intensity H = 0-1050 A/m on internal friction Q -1 and Young's modulus defect ∆ E/ E in magnetically-soft alloy of the system Fe - Si - Al (sendast type) with mechanical vibration frequency about 105 Hz are provided. The range of strain rate amplitudes ɛ0 within which Q -1 and ∆ E/ E are independent of H, and the range where they increase linearly with an increase in S0 over the whole range of change in H are determined. Results obtained are analyzed within the framework of existing relaxation theory and hysteresis mechanism of elastic vibration damping within magnetically soft materials.

  17. Structure and Magnetic Properties of Mechanical Alloyed Mn-15at.%Al

    NASA Astrophysics Data System (ADS)

    Hannora, Ahmed E.; Hanna, Faried F.; Marei, Lotfy K.

    2013-04-01

    Mechanical alloying (MA) method has been used to produce nanocrystallite Mn-15at.%Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α-Mn and aluminum powder samples show a mixture of α + β-MnAl phases after 20 h of milling and changes to a dominant β-MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall-Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are 2.1 emu/g and 92 Oe, respectively.

  18. Structure and magnetic properties of surface alloyed Fe nanocapsules prepared by arc discharge

    NASA Astrophysics Data System (ADS)

    Si, P. Z.; Choi, C. J.; Brück, E.; Geng, D. Y.; Zhang, Z. D.

    2005-12-01

    C-Fe-Si alloy encapsulating Fe nanocapsules were fabricated by arc evaporating the mixture of Fe and SiC powders. The high temperature of the electric arc results in a surface reaction between SiC and Fe nanoparticles and therefore a uniform encapsulation of the Fe nanoparticles with its alloy. The size of the nanocapsules ranges from 10 to 60 nm while most shells are approximately 7 nm in thickness. Air oxidation to the as-prepared sample does not change the shell/core structure but the saturation magnetization and the coercivity are reduced. The characteristics of the nanocapsules were investigated systematically by using X-ray diffraction, transmission electron microscopy, energy dispersive spectra, X-ray photoelectron spectroscopy, and superconducting quantum interference device magnetometer.

  19. The deposit stress behavior and magnetic properties of electrodeposited Ni-Co-Fe ternary alloy films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Kwak, Jun-Ho; Na, Seong-Hun; Lim, Seung-Kyu; Suh, Su-Jeong

    2012-08-01

    Ni-Co-Fe ternary alloy films were electrodeposited from a sulfate bath. The effects of the saccharin concentration on the deposit stress behavior of these films were investigated. When the saccharin concentration was 0.004 M, the deposit stress was the lowest (61 MPa, tensile stress mode). Then, the relation between the deposit stress and the magnetic properties was investigated. As the deposit stress of the Ni-Co-Fe thin films decreased from 307 to 61 MPa, the coercivity and the squareness decreased from 6.17 to 1.35 Oe and from 0.65 to 0.18, respectively. The dependence of the deposit stress on the temperature in the plating bath was investigated. As the temperature in the plating bath was increased from 25 to 50 °C the deposit stress of the Ni-Co-Fe alloy films decreased from 61 to 32 MPa.

  20. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy

    NASA Astrophysics Data System (ADS)

    Gautam, Ravi; Prabhu, D.; Chandrasekaran, V.; Gopalan, R.; Sundararajan, G.

    2016-05-01

    We report a new (Fe-P)-Si based alloy with relatively high induction (1.8-1.9 T), low coercivity (< 80 A/m), high resistivity (˜38 μΩ cm) and low core loss (217 W/kg @ 1 T/1 kHz) comparable to the commercially available M530-50 A5 Si-steel. The attractive magnetic and electrical properties are attributed to i) the two phase microstructure of fine nano precipitates of Fe3P dispersed in α-Fe matrix achieved by a two-step heat-treatment process and ii) Si addition enhancing the resistivity of the α-Fe matrix phase. As the alloy processing is by conventional wrought metallurgy method, it has the potential for large scale production.

  1. Tunable magnetization dynamics in disordered FePdPt ternary alloys: Effects of spin orbit coupling

    SciTech Connect

    Ma, L.; Fan, W. J. Chen, F. L.; Zhou, S. M.; Li, S. F.; Lai, T. S.; He, P.; Xu, X. G.; Jiang, Y.

    2014-09-21

    The magnetization dynamics of disordered Fe₀.₅(Pd{sub 1–x}Pt{sub x})₀.₅ alloy films was studied by time-resolved magneto-optical Kerr effect and ferromagnetic resonance. The intrinsic Gilbert damping parameter α₀ and the resonance linewidth change linearly with the Pt atomic concentration. In particular, the induced in-plane uniaxial anisotropy constant K{sub U} also increases for x increasing from 0 to 1. All these results can be attributed to the tuning effect of the spin orbit coupling. For the disordered ternary alloys, an approach is proposed to control the induced in-plane uniaxial anisotropy, different from conventional thermal treat methods, which is helpful to design and fabrications of spintronic devices.

  2. Designing magnetic compensated states in tetragonal Mn3Ge-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    You, Yurong; Xu, Guizhou; Hu, Fang; Gong, Yuanyuan; Liu, Er; Peng, Guo; Xu, Feng

    2017-05-01

    Magnetic compensated materials attracted much interests due to the observed large exchange bias and large coercivity, and also their potential applications in the antiferromagnetic spintronics with merit of no stray field. In this work, by using ab-initio studies, we designed several Ni (Pd, Pt) doped Mn3Ge-based D022-type tetragonal Heusler alloys with fully compensated states. Theoretically, we find the total moment change is asymmetric across the compensation point (at x=0.3) in Mn3-xYxGe (Y=Ni, Pd, Pt). In addition, an uncommon discontinuous jump is observed across the critical zero-moment point, indicating that some non-trivial properties may emerge at this point. Further electronic analyses of these compensated alloys reveal high spin polarizations at the Fermi level, which is advantageous for spin transfer torque applications.

  3. Bandgap engineering through nanocrystalline magnetic alloy grafting on reduced graphene oxide.

    PubMed

    De, D; Chakraborty, M; Majumdar, S; Giri, S

    2014-09-28

    High conductivity and the absence of ferromagnetism in pristine graphene fail to satisfy primary criteria for possible technological application in spintronics. Opening of the bandgap in graphene is primarily desirable for such applications. We report a simplified and novel approach of controlled grafting of a magnetic alloy on reduced graphene oxide. This eventually leads to ferromagnetism of the stable hybrid material at room temperature, with a large moment (∼1.2 μB) and a remarkable decrease in conductivity (∼10 times) compared to highly ordered pyrolytic graphite. Our model band-structure calculation indicates that the combined effect of controlled vacancies and impurities attributed to the nanocrystalline alloy grafting leads to a promising step toward band gap engineering.

  4. Hard Magnetic, Low Neodymium Nd-Fe-B Melt-Spun Alloys Containing Refractory Metals

    NASA Astrophysics Data System (ADS)

    Leonowicz, Marcin; Spyra, Marzena; Jezierska, ElŻbieta

    2011-06-01

    The effect of selected refractory metals addition on the structure and magnetic properties was studied for the nanocomposite Nd9Fe77-xB14Mx (M = Ti, Mo, Nb, Mn), Nd8Fe78-xB14Mx (M = Ti, Mo, Nb, Mn) and Nd7Fe79-xB14Tix systems. It was found that the addition of 2 and 4 at % of refractory metals leads to a substantial increase of the coercivity and maximum energy product for each of the nanocomposite systems while maintaining the remanence unchanged. The highest properties were obtained for the alloys containing 4-5 at% of the refractory metals. The maximum energy product of 143 kJ/m3 was achieved for the Nd8Fe74B14Ti4 alloy.

  5. Synthesis of metal, metal oxide and alloy nanostructures for magnetic and catalytic applications

    NASA Astrophysics Data System (ADS)

    Teng, Xiaowei

    There is a research interest in high quality monodisperse magnetic nanoparticles and nanocomposites in recent years driven by their broad technological ramifications. A new approach is proposed in this thesis to synthesize transition metal-containing core-shell nanoparticles including Pt Fe2O3, CoPt3 Fe2O3, and SmCo5 Fe2O3. The core-shell nanoparticles can be converted into high magneto-crystalline compounds through a reduction and alloy formation process at enhanced temperature. By controlling the synthetic condition, the magnetic property of the products can be tuned. Through this approach, magnetic FePt and CoFePt nanoparticles were synthesized and FePt-containing nanocomposites were also obtained. These nanomaterials are important to the practical applications in ultrahigh density data storage and magnetic nano device. At last, the oxidation-resistant property of SmCo5 Fe 2O3 core-shell nanoparticles was also studied. Magnetic nanoparticles of metal oxide, such as iron oxide, are particularly useful in various magnetic and biological applications. By changing the surfactant, reaction time and seed, monodisperse gamma-Fe2O3 nanoparticles were synthesized with diameters range from 3 nm to 25 nm. The shape evolution of those particles was also studied. Shape and size also play important roles in the catalytic properties of platinum nanoparticles. In this thesis, a systemic study of the synthesis and electrocatalytic property of Pt and Pt alloy nanostructures was presented. Effect of surfactants, reaction temperature and heterogeneous species on shape and compositions control of the final products was studied. The effect of size and shapes of platinum-containing cubic, spherical, porous nanoparticles on the electrocatalytic property was investigated using direct methanol oxidation as the model reaction.

  6. Soft x-ray magnetic circular dichroism of L21-type Co2FeGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Umetsu, R. Y.; Nakamura, T.; Kobayashi, K.; Kainuma, R.; Sakuma, A.; Fukamichi, K.; Ishida, K.

    2010-03-01

    Spin and orbital magnetic moments of the L21-type Co2FeGa Heusler alloy have been investigated using x-ray magnetic circular dichroism spectra in the soft x-ray region. From the spectra of the L2,3-edge of Co and Fe, the ratios of the orbital magnetic moment to the spin magnetic moment Morb/Mspin are estimated to be 0.06 for Co and 0.02 for Fe, in agreement with the available theoretical values. The orbital magnetic moments of these two elements are small in line with theoretical results, reflecting the high symmetry of the L21-type crystal structure. Furthermore, it has been confirmed that the magnetic moment of Ga is induced in the present alloy.

  7. Structure, magnetic properties and magnetocaloric effects of Fe50Mn15- x Co x Ni35 alloys

    NASA Astrophysics Data System (ADS)

    Zhong, XiChun; Tian, HuaCun; Tang, PengFei; Liu, ZhongWu; Zheng, ZhiGang; Zeng, DeChang

    2014-03-01

    Fe50Mn15- x Co x Ni35 ( x=0, 1, 3, 5, 7) alloys were prepared by arc melting under purified argon atmosphere. The ingots were homogenized at 930°C for 90 h followed by water quenching. The crystal structure, magnetic properties and magnetocaloric effects of the alloys were studied by X-ray diffraction (XRD) and MPMS-7-type SQUID. The results show that all samples still maintained a single γ-(Fe, Ni)-type phase structure. With the increase of the content of Co, the Curie temperatures of these alloys increased and exhibited a second-order magnetic transition from ferromagnetic (FM) to paramagnetic (PM) state near Curie temperature. The maximum magnetic entropy change and the relative cooling power of Fe50Mn10Co5Ni35 alloy was 2.55 J/kg·K and 181 J/kg, respectively, for an external field change of 5 T. Compared with rare earth metal Gd, Fe50Mn15- x Co x Ni35 series of alloys have obvious advantage in resource price; their Curie temperatures can be tuned to near room temperature, maintain a relatively large magnetic entropy change at the same time and they are a type of potential magnetic refrigeration materials near room temperature.

  8. Magnetic and anomalous electronic transport properties of the quaternary Heusler alloys Co2Ti1-xFexGe

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, B.; Midhunlal, P. V.; Babu, P. D.; Kumar, N. Harish

    2016-06-01

    The half-metallic Heusler alloy Co2TiGe has a ferromagnetic ground state with a low magnetic moment (2 μB). It is free of atomic antisite disorder but has low Curie temperature (~390 K). In contrast the other cobalt based Heusler alloy Co2FeGe has high Curie temperature (~980 K) and high magnetic moment (5.6 μB) while exhibiting antisite disorder and lack of half-metallicity. Hence it is of interest to investigate the magnetic and transport properties of solid solutions of these two materials with contrasting characteristics. We report the structural, magnetic and electronic transport properties of quaternary Co2Ti1-x FexGe (x=0.2, 0.4, 0.6, 0.8) Heusler alloys. The alloys crystallize in L21 structure but with antisite disorder. The magnetization measurements revealed that the alloys were of soft ferromagnetic type with high Curie temperatures. Deviation from Slater-Pauling behavior and drastic change in electronic transport properties with some anomalous features were observed.The complex electronic transport properties have been explained using different scattering mechanisms.

  9. Magnetic and magnetotransport properties of MnCo0.8V0.2Ge alloy

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Pramanick, S.; Das, D.; Chatterjee, S.

    2017-05-01

    Different magnetic and magnetotransport properties of a hexagonal Ni2In-type MnCo0.8V0.2Ge magnetic shape memory alloy are investigated. The parent MnCoGe alloy undergoes first order martensitic phase transition (MPT) at 650 K during cooling and orders ferromagnetically (FM) below 345 K. V-doping at the cobalt site decreases the MPT temperature and affects the lattice parameters that induces a short range antiferromagnetic (AFM) interaction in this intrinsically FM system at low temperature. The studied alloy shows three important magnetofunctional properties namely exchange bias effect, magnetocaloric effect, and magnetoresistance which indicate that the alloy may be a potential candidate for practical applications.

  10. Structural and magnetic properties of Mn50Fe50-xSnx (x=10, 15 and 20) alloys

    NASA Astrophysics Data System (ADS)

    Ghosh, Tanmoy; Agarwal, Sandeep; Mukhopadhyay, P. K.

    2016-11-01

    In this work we report measurements and comparisons of the structural, magnetic and transport properties of a series of Mn50Fe50-xSnx alloys (x=10, 15 and 20). We found that while the lower Sn composition sample stabilized in β-Mn-type crystallographic phase, the higher Sn composition alloys contained both β-Mn-type as well as Mn3Sn-type hexagonal DO19 phases. Through d.c. and a.c. magnetic property measurements we have established the existence of a ferromagnetic transition near room temperature followed by a spin reorientation at lower temperature in the Mn3Sn-type crystallographic phase of the alloys. Our resistivity study also revealed an interesting behavior with negative temperature coefficient (TCR) in these alloys.

  11. Structural and magnetization behavior of highly spin polarized Co{sub 2}CrAl full Heusler alloy

    SciTech Connect

    Saha, S. N. Panda, J. Nath, T. K.

    2014-04-24

    The half metallic ferromagnet Co{sub 2}CrAl full Huesler alloy was successfully prepared by arc melting process. The electrical and magnetic properties of Co{sub 2}CrAl alloy have been studied in the temperature range of 5 – 300 K. The ferromagnetic Curie temperature T{sub c} of the same alloy has been observed at 329.8 K. The alloy shows semiconducting like electronic transport behavior throughout the studied temperature range. The origin of the semiconducting behavior of Co{sub 2}CrAl alloy can be best explained by the localization of conduction electrons and the presence of an energy gap in the electronic spectrum near the Fermi level E{sub F}.

  12. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  13. Structure and magnetic properties of amorphous Fe-(Zr,Nb)-B melt spun alloys

    NASA Astrophysics Data System (ADS)

    Zamora, J.; Betancourt, I.

    2017-04-01

    In this work, we report the structure and magnetic behavior of an amorphous Fe81Zr5Nb4B10 melt-spun alloy. The radial distribution function (RDF) afforded the resolution of the nearest-neighbor configuration on the basis of the atom-pair distance information, for which the positions of each peak indicated the atom-to-atom separation involved for short-range ordering. The first peaks of RDF were attributed to the distances of B-B, Fe-Fe and Zr-Nb atomic pairs, indicating a glassy structure equivalent to a distorted bcc-Fe cluster. From magnetic measurements, a magnetic moment of 0.65 Bohr magneton per Fe atom was established, together with a Curie temperature of 334 K and an initial ac permeability of 550 for frequencies as high as 250 kHz. In addition, the magnetocaloric effect, quantified from isothermal magnetization measurements through the magnetic entropy variation, reached a maximum of 2.0 J/kg K for a magnetic field change of 2.0 T.

  14. Magnetization hysteresis studies in Sm1-xGdxAl2 alloys

    NASA Astrophysics Data System (ADS)

    Vaidya, U. V.; Venkatesh, S.; Rakhecha, V. C.; Ramakrishnan, S.; Grover, A. K.

    2009-03-01

    SmAl2 (Tc ˜ 125 K, μsat= 0.23 μB/f.u.) is known to exhibit magnetic compensation when doped with Gd (< 3 at.%). In such stoichiometries though the magnetization gets closer to zero, there exists a large spin polarization. This makes such materials attractive candidates for applications. We have performed detailed magnetization hysteresis and other studies in the series Sm1-xGdxAl2. In x=0.02 alloy, the loops are shifted (notion of exchange bias) along negative H-axis for temperatures just above Tcomp , and along positive H-axis for temperatures T < Tcomp. We argue that the change in the sign of exchange bias is due to the magnetic contribution of conduction electron polarization as well as that of local magnetic moments reversing the signs. At Tcomp the width of the hysteresis loop collapses. In the given series, one can set up the system in either spin-surplus or orbital-surplus state and control the exchange bias field. The compositions with 0.03 <= x < 0.06 do not exhibit zero cross over of magnetization and remain spin surplus. Our various studies and analysis shall be presented.

  15. Magnetic phase transition and magnetocaloric properties of Mn1-xSnxCoGe alloys

    NASA Astrophysics Data System (ADS)

    Si, Xiaodong; Zhou, Keyi; Zhang, Rui; Liu, Yongsheng; Qi, Jing

    2017-05-01

    Magnetic phase transitions and the magnetocaloric effect of the polycrystalline Mn1-xSnxCoGe samples with x = 0.02, 0.04, and 0.06 have been investigated. The transformation temperature, room temperature magnetocaloric effect and magnetic orders of these alloys could be effectively tuned by Sn substitution. A detailed study on the critical behavior was performed by various techniques, such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis, to determine the critical exponents (β, γ, and δ). Those exponents calculated from the critical magnetization isotherm were found to obey the Widom scaling relation remarkably well and the validity of the obtained critical exponents was also verified by the prediction of the scaling theory in the critical region. All the results are similar to the theoretical values of the mean-field model, indicating the presence of long-range ferromagnetic coupling in this system. Moreover, we made an attempt to contrast the universal curve for magnetocaloric effect in the present system, finding that rescaled entropy data for all alloys collapse into a universal curve.

  16. Magnetic and thermal properties of amorphous TbFeCo alloy films

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-01

    Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  17. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    SciTech Connect

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  18. Compressive Response of Polycrystalline NiCoMnGa High-Temperature Meta-magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Karaca, H. E.; Turabi, A. S.; Basaran, B.; Pathak, A. K.; Dubenko, I.; Ali, N.; Chumlyakov, Y. I.; Li, P.

    2013-10-01

    The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect.

  19. Influence of boron on the magnetic and transport properties of FeZr amorphous and nanocrystalline alloys

    SciTech Connect

    Barandiaran, J.M.; Gorria, P. . Dept. de Electricidad y Electronica); Sal, J.C.G.; Brquin, L.F. ); Kaul, S.N. . School of Physics)

    1994-11-01

    The magnetic properties and electrical resistivity of amorphous and nanocrystalline FeZr and FeZrB(Cu) alloys are compared in a wide range of temperatures (4 to 1,000 K). The addition of boron increases the Curie temperature of the alloys and induces a broad minimum in the resistivity vs temperatures. A first step of crystallization occurs around 700 K in all the alloys, giving rise to [alpha]-Fe crystallites of very small size. Small amounts of boron greatly influence the exchange interactions, enhancing the ferromagnetic character of these compounds.

  20. Metastable Zr-Nb alloys for spinal fixation rods with tunable Young's modulus and low magnetic resonance susceptibility.

    PubMed

    Zhao, X L; Li, L; Niinomi, M; Nakai, M; Zhang, D L; Suryanarayana, C

    2017-10-15

    Good ductility, low magnetic susceptibility, and tunable Young's modulus are highly desirable properties for materials usage as spinal fixation rods. In this study, the effects of niobium content on the microstructure, magnetic susceptibility, and mechanical properties of Zr-xNb (13≤x≤23wt%) alloys were investigated. For the Zr-15Nb and Zr-17Nb alloys, a remarkable increase in Young's modulus was achieved due to the occurrence of deformation-induced ω phase transformation. This was the result of the competition of two factors associated with the Nb content: an increase of the stability of β phase and a decrease of the amount of athermal ω phase with increasing Nb content. When the Nb content was 15% or 17%, the amount of deformation-induced ω phase was maximum. Moreover, the magnetic susceptibility decreased with the deformation-induced β→ω phase transformation, and the Zr-17Nb alloy with apparent kink bands exhibited a smaller amount of springback than the Zr-15Nb alloy with {332} 〈113〉 mechanical twins. Furthermore, the ions released from the Zr-xNb alloys in accelerated immersion tests were at a very low level. The combination of low initial Young's modulus, and its remarkable variation induced by deformation, low magnetic susceptibility, good ductility, and smaller springback make the Zr-17Nb alloy a potential candidate for spinal fixation rods. For the rods of spinal fixation devices, it is important but difficult to lower the springback for bending formativeness while keeping the low initial Young's modulus for biocompatibility and lower the magnetic susceptibility for postoperative examination simultaneously. In this study, Zr-17Nb alloy was successfully developed via deformation-induced ω phase transformation during loading, simultaneously meeting the abovementioned properties for spinal fixation rods. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOEpatents

    Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  2. The electronic and magnetic properties of quaternary Heusler alloy CoFeMnGe

    NASA Astrophysics Data System (ADS)

    Seema, K.

    2016-05-01

    We present study of quaternary Heusler alloy CoFeMnGe using density functional theory. The compound is half-metallic with half-metallic gap of 0.13 eV. The total magnetic moment of this compound is 3.96 μB which is in close agreement with Slater-Pauling rule. The effect of lattice compression and expansion shows the robustness of half-metallicity. A large value of half-metallic gap and 100% spin-polarization makes this material interesting for spin dependent applications.

  3. Investigation of non-magnetic alloys for the suppression of tritium permeation

    SciTech Connect

    1980-07-01

    The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: problem definition, and literature search and analysis. Task I was complicated by the incomplete status of fusion reactor development, particularly with respect to selection of coolant and blanket materials and temperatures. The approach taken was to establish a probable range of requirements.

  4. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente

    2015-12-01

    We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.

  5. Atomic structure, alloying behavior, and magnetism in small Fe-Pt clusters

    NASA Astrophysics Data System (ADS)

    Chittari, Bheema Lingam; Kumar, Vijay

    2015-09-01

    We report results of the atomic structure, alloying behavior, and magnetism in F emP tn(m +n =2 -10 ) clusters using projector augmented wave (PAW) pseudopotential method and spin-polarized generalized gradient approximation (GGA) for the exchange-correlation energy. These results are compared with those obtained by using HCTH exchange-correlation functional and LANL2DZ basis set in the Gaussian program and the overall trends are found to be similar. As in bulk Fe-Pt alloys, clusters with equal composition of Fe and Pt have the largest binding energy and the largest heat of nanoalloy formation for a given number of atoms in the cluster. There are some deviations due to the different symmetries in clusters and in cases where the total number of atoms is odd. The lowest energy isomers tend to maximize bonds between unlike atoms with Fe (Pt) atoms occupying high (low) coordination sites in the core (surface) of the cluster. The binding energy, heat of formation, and the second order difference of the total energy show F e2P t2 , F e4P t4 , and F e4P t6 clusters to be the most stable ones among the different clusters we have studied. The magnetic moments on Fe atoms are high in Pt-rich clusters as well as in small Fe-rich clusters and decrease as the aggregation of Fe atoms and the cluster size increases. The maximum value of the magnetic moments on Fe atoms is ˜3.8 μB , whereas for Pt atoms it is 1 μB. These are quite high compared with the values for bulk Fe as well as bulk FePt and F e3Pt phases while bulk Pt is nonmagnetic. There is significant charge transfer from those Fe atoms that interact directly with Pt atoms. We discuss the hybridization between the electronic states of Pt and Fe atoms as well as the variation in the magnetic moments on Fe and Pt atoms. Our results provide insight into the understanding of the nanoalloy behavior of Fe-Pt and we hope that this would help to design Fe based nanoalloys and their assemblies with high magnetic moments for

  6. Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys.

    PubMed

    Suyalatu; Kondo, Ryota; Tsutsumi, Yusuke; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2011-12-01

    The effects of the microstructures and phases of Zr-rich Mo alloys on their magnetic susceptibilities and mechanical properties were investigated in order to develop a Zr alloy with low magnetic susceptibility for use in magnetic resonance imaging (MRI). The magnetic susceptibility was measured with a magnetic susceptibility balance, while mechanical properties were evaluated by a tensile test. The microstructure was evaluated with an X-ray diffractometer, an optical microscope, and a transmission electron microscope. Evaluation of the microstructures revealed that the α' phase was the dominant form at less than 2% Mo content in the as-cast alloy. The ω phase was formed in as-cast Zr-3Mo but disappeared with aging at 973 K. Magnetic susceptibility was reflected in the phase constitution: the susceptibility showed a local minimum at Zr-(0.5-1)Mo with mostly α' phase and a minimum at Zr-3Mo with mostly β and ω phases. The magnetic susceptibility of as-cast Zr-3Mo increased at 973 K due to disappearance of the ω phase. However, the susceptibility was still as low as that of as-cast Zr-1Mo. The ultimate tensile strength of α'-based Zr-Mo alloys was tailored from 674 to 970 MPa, and the corresponding elongation varied from 11.1% to 2.9%. Because Zr-Mo alloys containing ω phase were found, through tensile tests, to be brittle this phase should be avoided, irrespective of the low magnetic susceptibility, in order to maintain mechanical reliability. Elongation of the Zr-3Mo alloy was dramatically improved when the phase constitution was changed to α and β phases by aging at 973 K for 86.4 ks. The magnetic susceptibilities of the α'-based Zr-Mo alloys are one-third those of Ti-6Al-4V and Ti-6Al-7Nb, and thus these Zr alloys are useful for medical devices under MRI. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Xue, Lin; Yang, Weiming; Liu, Haishun; Men, He; Wang, Anding; Chang, Chuntao; Shen, Baolong

    2016-12-01

    Through gradient substitution of Co for Fe, the magnetic properties and microstructures of (Fe1-xCox)83Nb2B14Cu1 (x=0.1, 0.2, 0.3, 0.4, 0.5) nanocrystalline alloys were investigated. Because of the strong ferromagnetic exchange coupling between Co and Fe, substantial improvement in saturation magnetization was achieved with proper levels of Co addition. Meanwhile, the Curie temperature increased noticeably with increasing Co addition. After heat treatment, the (Fe0.9Co0.1)83Nb2B14Cu1 nanocrystalline alloy showed a refined microstructure with an average grain size of 10-20 nm, exhibiting a comparatively high saturation magnetization of 1.82 T and a lower coercivity of 12 A/m compared to other Hitperm-type alloys with higher Co contents. Additionally, the Curie temperature reached 1150 K upon introduction of Co. As the soft magnetic properties are strengthened by adding a small amount of Co, the combination of fine, soft magnetic properties and low cost make this nanocrystalline alloy a potential magnetic material.

  8. Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization

    SciTech Connect

    He, Lizi; Li, Xiehua; Zhu, Pei; Cao, Yiheng; Guo, Yaping; Cui, Jianzhong

    2012-09-15

    The evolutions of coarse constituent phases in homogenized 7085 aluminum alloy at different conditions with or without the application of 12 T high magnetic field were examined by using differential scanning calorimetry, scanning electronic microscope, energy dispersive spectroscopy and X-ray diffraction. It is found that the main constituent phases including quaternary phase T(AlZnMgCu), Al{sub 7}Cu{sub 2}Fe, and AlTiCuFeSi are present in as-cast 7085 alloy. During homogenization, {alpha} + T eutectics become discontinuous and spheroidized, and Al{sub 2}CuMg phase nucleates and grows along {alpha} + T eutectics. High magnetic field significantly accelerates the melting of quaternary phase T and Al{sub 2}CuMg phase. When the alloy homogenized at 460 Degree-Sign C/10 h + 480 Degree-Sign C/8 h with 12 T magnetic field, the least amount of constituent phases is obtained. - Highlights: Black-Right-Pointing-Pointer Most of published reports of magnetic field are focused on ferrous alloys. Black-Right-Pointing-Pointer Effect of magnetic field on microstructure of 7085 during homogenization is studied. Black-Right-Pointing-Pointer Magnetic field accelerates the melting of AlZnMgCu and S phase.

  9. Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy

    PubMed Central

    Zuo, Xiaowei; Zhao, Congcong; Zhang, Lin; Wang, Engang

    2016-01-01

    We report the influence of growth rate and external magnetic field on the eutectic lamellar spacing and properties of directionally-solidified Ag-Cu eutectic alloys. The results indicated that the relationship between the lamellar spacing of directionally-solidified Ag-Cu alloys and the growth rate matched the prediction of the Jackson-Hunt model, and the constant was 5.8 µm3/s. The increasing external magnetic field during solidification tilted the growth direction of the lamellar eutectics, and coarsened the eutectic lamellar spacing. These decreased the microhardness and strength of Ag-Cu alloys, but increased their electrical conductivity. The competitive strengthening contributions between the refinement of the eutectic lamellar spacing and the change in growth direction of the eutectics resulted in higher strength in the as-rolled sample with a 0.8 T magnetic field than with other samples, which was confirmed from higher relieved deformation energy using differential scanning calorimetry. PMID:28773691

  10. Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy.

    PubMed

    Zuo, Xiaowei; Zhao, Congcong; Zhang, Lin; Wang, Engang

    2016-07-13

    We report the influence of growth rate and external magnetic field on the eutectic lamellar spacing and properties of directionally-solidified Ag-Cu eutectic alloys. The results indicated that the relationship between the lamellar spacing of directionally-solidified Ag-Cu alloys and the growth rate matched the prediction of the Jackson-Hunt model, and the constant was 5.8 µm³/s. The increasing external magnetic field during solidification tilted the growth direction of the lamellar eutectics, and coarsened the eutectic lamellar spacing. These decreased the microhardness and strength of Ag-Cu alloys, but increased their electrical conductivity. The competitive strengthening contributions between the refinement of the eutectic lamellar spacing and the change in growth direction of the eutectics resulted in higher strength in the as-rolled sample with a 0.8 T magnetic field than with other samples, which was confirmed from higher relieved deformation energy using differential scanning calorimetry.

  11. Magnetically controlled thermoelastic martensite transformations and properties of a fine-grained Ni54Mn21Ga25 alloy

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Marchenkova, E. B.; Korolev, A. V.; Kourov, N. I.; Belosludtseva, E. S.; Pushin, A. V.; Uksusnikov, A. N.

    2017-07-01

    Comparative studies of physical characteristics (the electrical resistivity, the magnetic susceptibility, the magnetization, the bending deformation, and the degree of shape recovery during subsequent heating) of the Ni54Mn21Ga25 ferromagnetic alloy as-cast and rapidly quenched from melt have been performed in the temperature range 2-400 K. The results are compared to the results of studying the structural-phase transformations by transmission and scanning electron microscopy and X-ray diffraction. It is found that the rapid quenching influences the microstructure, the magnetic state, the critical temperatures, and the specific features of thermoelastic martensite transformations in the alloy. It is found that the resource of the alloy plasticity and thermomechanical bending cyclic stability demonstrates a record-breaking increase in the intercritical temperature range and during subsequent heating.

  12. The effect of defects on the magnetic properties and spin polarization of Ti2FeAl Heusler alloy

    NASA Astrophysics Data System (ADS)

    Fang, Qing-Long; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent

    2014-02-01

    The effect of antisite, swap and vacancy defects on the magnetic properties and spin-polarization of the full-Heusler Ti2FeAl alloy with the Hg2CuTi-type structure is studied by using the first-principles calculations within density functional theory. The perfect Ti2FeAl Heusler alloy exhibits a ferromagnetic half-metallic behavior with the total magnetic moment of 1µΒ and indirect band gap of 0.543 eV. Among swap defect, only the total magnetic moment of the Ti2-Al swap defected is close to the perfect alloy. All defected structures destroy the half-metallicity and only AlTi1 and AlTi2 antisite and Fe vacancy defects maintain relatively high spin polarization.

  13. Temperature Dependence of the Magnetization of the Ni52Mn24Ga24 Alloy in Various Structural States

    NASA Astrophysics Data System (ADS)

    Musabirov, I. I.; Sharipov, I. Z.; Mulyukov, R. R.

    2015-10-01

    are presented of a study of the temperature dependence of the magnetization σ(Т) of the polycrystalline Ni52Mn24Ga24 alloy in various structural states: in the initial coarse-grained state, after severe plastic deformation by high pressure torsion, and after stepped annealing of the deformed specimen at temperatures from 200 to 700°С for 30 min. As a study of the σ(Т) curve shows, in an alloy possessing a coarse-grained initial structure, a martensitic phase transition and a magnetic phase transition are observed in the room temperature interval. The martensitic transformation takes place in the ferromagnetic state of the alloy. This transformation is accompanied by an abrupt lowering of the magnetization of the material, associated with a lowering of the symmetry of the crystalline lattice and a high value of the magnetocrystalline anisotropy constant of the alloy in the martensitic phase. It is shown that as a result of plastic deformation there takes place a destruction of ferromagnetic order and a suppression of the martensitic transformation. Consecutive annealing after deformation leads to a gradual recovery of ferromagnetic order and growth of the magnetization of the material. Recovery of the martensitic transformation begins to be manifested only after annealing of the alloy at a temperature of 500°C, when the mean grain size in the recrystallized structure reaches a value around 1 μm.

  14. The effect of transverse magnetic field treatment on wave-absorbing properties of FeNi alloy powders

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhu, Zhenghou; Xiong, Chao; Xu, Xing; Lin, Qianying

    2017-01-01

    The Fe50Ni50 alloy powders were successfully synthesized with the liquid phase reduction method and then treated with the transverse magnetic field of 200 kA/m. The influences of transverse magnetic field treatment on microstructures and radar absorbing properties of the powders were mainly investigated. Whether the powders were treated with the transverse magnetic field or not, the main phases of Fe50Ni50 alloy powders were FeNi3 and a small amount of Fe2O3. Results showed that the real part of complex permeability μʹ; of the Fe50Ni50 alloy powders in 1-5 GHz increased significantly, especially at the frequency of 1 GHz, the μʹ; increased from 2.2 to 2.8 after transverse magnetic field treatment. The magnetic loss tanδm of the Fe50Ni50 alloy powders after transverse magnetic field treatment was ≥0.3 in the frequency range of 1-13 GHz and 0.7-1.05 in the frequency range of 3.5-9.0 GHz. Compared with those of the untreated powders, the wave-absorbing properties of the powders after transverse magnetic field treatment were significantly improved. The Fe50Ni50 alloy powders coatings with thickness of 1.5 mm exhibited excellent wave-absorbing properties after transverse magnetic field treatment, and the qualified absorption band width reached nearly 3 GHz when the reflectivity |R| was ≥10 dB.

  15. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    PubMed

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  16. Premartensitic transition and relevant magnetic effects in Ni50Mn34In15.5Al0.5 alloy.

    PubMed

    Wu, Yuqin; Guo, Shaopu; Yu, Shuyun; Cheng, Hui; Wang, Ruilong; Xiao, Haibo; Xu, Lingfang; Xiong, Rui; Liu, Yong; Xia, Zhengcai; Yang, Changping

    2016-05-16

    Resistance measurement, in situ optical microscopic observation, thermal and magnetic measurements have been carried out on Ni50Mn34In15.5Al0.5 alloy. The existence of a pronounced premartensitic transition prior to martensitic transition can be characterized by microstructure evolution as well as exothermic peak and smooth decrease of resistance and magnetization with obvious hysteresis over a wide temperature range upon cooling. Consequently, the alloy undergoes two successive magneto-structural transitions consisting of premartensitic and martensitic transitions. Magnetoelastic coupling between magnetic and structural degrees of freedom would be responsible for the appearance of premartensitic transition, as evinced by the distinct shift of transitions temperatures to lower temperature with external applied field of 50 kOe. The inverse premartensitic transition induced by magnetic field results in large magnetoresistance, and contributes to the enhanced inverse magnetocaloric effect through enlarging the peak value and temperature interval of magnetic entropy change ΔSm.

  17. Premartensitic transition and relevant magnetic effects in Ni50Mn34In15.5Al0.5 alloy

    PubMed Central

    Wu, Yuqin; Guo, Shaopu; Yu, Shuyun; Cheng, Hui; Wang, Ruilong; Xiao, Haibo; Xu, Lingfang; Xiong, Rui; Liu, Yong; Xia, Zhengcai; Yang, Changping

    2016-01-01

    Resistance measurement, in situ optical microscopic observation, thermal and magnetic measurements have been carried out on Ni50Mn34In15.5Al0.5 alloy. The existence of a pronounced premartensitic transition prior to martensitic transition can be characterized by microstructure evolution as well as exothermic peak and smooth decrease of resistance and magnetization with obvious hysteresis over a wide temperature range upon cooling. Consequently, the alloy undergoes two successive magneto-structural transitions consisting of premartensitic and martensitic transitions. Magnetoelastic coupling between magnetic and structural degrees of freedom would be responsible for the appearance of premartensitic transition, as evinced by the distinct shift of transitions temperatures to lower temperature with external applied field of 50 kOe. The inverse premartensitic transition induced by magnetic field results in large magnetoresistance, and contributes to the enhanced inverse magnetocaloric effect through enlarging the peak value and temperature interval of magnetic entropy change ΔSm. PMID:27183331

  18. Interacting Stoner-Wohlfarth behavior in hysteresis curves of Sm(CoFeCuZr) z magnets

    NASA Astrophysics Data System (ADS)

    Romero, S. A.; de Campos, M. F.; Rechenberg, H. R.; Missell, F. P.

    Several magnets with different Zr contents were studied: Sm(Co balFe 0.2Cu 0.1Zr x) 8 (bal=balance; x=0, 0.02, 0.04, 0.06 and 0.08). The microstructure of the magnets includes three main phases, all crystallographically coherent: the cell phase Sm 2(Co,Fe) 17, the cell boundary phase Sm(Co,Cu) 5 and a lamellar Zr-rich phase, rhombohedral (ZrSm) 1Co 3. The hysteresis curves were compared with the Callen, Liu and Cullen (CLC) modification of the Stoner-Wohlfarth model for an isotropic distribution of interacting single-domain particles. Choosing reasonable values for the saturation magnetization Ms, the anisotropy field Ha, and the mean-field interactions of the CLC model, we were able to reproduce the main features of the hysteresis curves for the x=0.02 and 0.04 samples. For higher x values, X-ray diffraction Rietveld analysis revealed the presence of other "impurity" phases, among them cubic Zr 6(Co,Fe) 23, rhombohedral (SmZr) 5(CoFeCu) 19 and rhombohedral (SmZr) 2(CoFeCu) 7.

  19. Preparation of A357 Alloy Slurry by Pulsed Magnetic Field Processing

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Yao, J. P.; Qiu, H.; Zhou, Q.

    2012-06-01

    Pulsed magnetic field (PMF) processing was employed for preparing semi-solid A357 alloy slurry in this study. The effects of pouring temperature and vibration power on the microstructure of the primary phase in semi-solid A357 alloy slurry were studied, and some characteristic parameters characterized the morphology and the grain size of the primary α-Al particles were obtained. The results show that the primary α-Al particles became finer and rounder with the decrease of pouring temperature and/or the increase of vibration power. However, over a certain vibration power, coarse structures appeared again. The slurry with the primary α-Al particles of average diameter of approximately 92 μm and average shape factor of 0.56 can be prepared under the action of a PMF at a vibration power of 250 W with pouring temperature of 903 K (630 °C). It was feasible to use PMF processing to prepare semi-solid alloy slurry because of its strong forced convection within the whole bulk melt.

  20. Hot workability of R-Fe-B alloys and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Akioka, K.; Kobayashi, O.; Yamagami, T.; Arai, A.; Shimoda, T.

    1991-04-01

    The hot workability of R-Fe-B alloys and their magnetic properties were extensively investigated. Modified hot pressing employing a ring which constrains an alloy ingot enabled hot working without cracking at high strain rates up to ɛ˙ = 1 × 10-1/s. Excessive discharging of the liquid R-rich phase was controlled and the refinement of crystal grains occurred at high strain rate hot pressing. Through these effects the maximum Hci reached 18 kOe, and a (BH)max of 33.3 MGOe with a moderate Hci of 15 kOe was obtained in a composition of the Pr-Fe-B-Cu system. Post-heat treatment at 475-525 °C was effective for enhancing Hci. It was found that even in Nd-based alloys, a (BH)max of more than 30 MGOe was achieved by hot pressing at a high strain rate, because the change in composition during pressing is minimized.

  1. Magnetic properties of polycrystalline Co2Cr1-xFexAl alloys

    NASA Astrophysics Data System (ADS)

    Buchmeier, M.; Schneider, C. M.; Werner, J.; Elefant, D.; Teresiak, A.; Behr, G.; Schumann, J.; Arushanov, E.

    2007-06-01

    We have investigated the magnetic properties of the Heusler phase Co2Cr1-xFexAl in the composition regime (x=0.3-0.5) in the disordered B2 phase. Both bulk and surface static and dynamic magnetic aspects were addressed by employing alternating gradient magnetometry (AGM), magneto-optical Kerr effect (MOKE) and Brillouin light scattering (BLS). All samples show ferromagnetic hysteresis loops and a tendency of increasing saturation magnetization Ms with the iron content. With BLS the behavior of bulk spin waves and the Damon Eshbach (DE) surface spin wave mode have been studied. The spectra are typical for opaque bulk ferromagnetic samples with strong exchange. The measured spin wave frequencies as a function of magnetic field are in good agreement with the calculated values. Saturation magnetization and gyromagnetic ratio g have been determined from the field-dependent peak positions of the bulk and the DE modes. The g-factor extracted from the DE mode shows a clear tendency of increase with increasing Fe-content. However, we could not find any peculiarities of the alloy with x=0.4, which had been proposed as a Heusler phase on the basis of electronic structure calculations [T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, R.J. Cava, J. Solid State Chem. 176 (2003) 646].

  2. Magnetic softness and high-frequency characteristics of Fe65Co35-O alloy films

    NASA Astrophysics Data System (ADS)

    Wang, W.; Chen, Y.; Yue, G. H.; Sumiyama, K.; Hihara, T.; Peng, D. L.

    2009-07-01

    The effects of oxygen concentration and film thickness were studied on the microstructural, electrical, and magnetic properties of Fe65Co35-O alloy films prepared by dc magnetron sputtering at room temperature. The films showed the best magnetic softness with a large saturation magnetization of 21.5 kG, low coercivities of 2.8 and 2.1 Oe in easy and hard axes, respectively, and a high resistivity of 2215 μΩ cm at an optimized condition of an oxygen gas flow ratio of 1.0% and a film thickness of 105 nm. Such an excellent magnetic softness can be attributed to grain refinement caused by the addition of very low dose of oxygen, which basically did not lead to the full formation of Fe and/or Co oxide phases with low saturation magnetizations. The microwave permeability measurement indicated that the addition of very low dose of oxygen could improve the response of real permeability to frequency. A high real permeability of 525 at frequency up to 1.2 GHz was obtained for the Fe65Co35-O films deposited at the optimized condition above.

  3. Tunneling Spectroscopy of Amorphous Magnetic Rare Earth-Si Alloys near the Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Xiong, P.; Zink, B. L.; Tran, M. Q.; Gebala, A. E.; Wilcox, E. M.; Hellman, F.; Dynes, R. C.

    1997-03-01

    Amorphous dilute magnetic semiconductors exhibit striking differences in the electrical and magneto-transport behavior from their crystalline or nonmagnetic analogs.(F. Hellman et al., Phys. Rev. Lett. 77, 4652 (1996).) Magnetic impurities cause a large suppression of conductivity below 50 K in a-Si_xGd_1-x and a-Si_xTb_1-x relative to the nonmagnetic a-Si_xY_1-x (x ~ 0.85-0.9). Application of a magnetic field increases the conductivity by orders of magnitude. We have fabricated good quality tunnel junctions on a-Si:Gd and the nonmagnetic a-Si:Y to probe the electronic density of states in these two systems. We present the results of the tunneling spectroscopy and its magnetic field dependence for a series of the two alloys at different compositions. We will discuss the correlation between the tunneling spectra and the transport properties and its implications on the possible origin of the magnetic field tuned insulator-metal transition in a-Si:Gd. Research Supported by ONR Grant No. N000149151320 and NSF Grant No. DMR-9208599.

  4. Evaluation of magnetic behaviour and in vitro biocompatibility of ferritic PM2000 alloy.

    PubMed

    Flores, M S; Ciapetti, G; González-Carrasco, J L; Montealegre, M A; Multigner, M; Pagani, S; Rivero, G

    2004-05-01

    PM2000 is a ferritic alloy obtained by powder metallurgy and is being investigated for potential applications as a biomaterial. This work aimed to assess the biological compatibility and to determine the influence of the processing route and further recrystallisation treatment on the magnetic behaviour. The magnetic behaviour has been analysed as a function of the hysteresis loop obtained by using an inductive method. The biocompatibility has been tested using human osteoblast-like cells seeded onto discs of PM2000. The ability of cells, on its surface, to attach, grow, and produce alkaline phosphatase (ALP) was determined. It is shown that PM2000 is a soft magnetic material irrespective of its material condition, its remanent magnetisation being very low (up to about 3% for the recrystallised swaged material). Fields close to 200 Oe are required to saturate the material. The saturation magnetisation is about 135 emu g(-1). In vitro tests indicate that cells are able to attach and grow onto its surface, and produce ALP, a specific marker of cells with bone-forming activity. In this respect, PM2000 holds promise as a suitable substrate for bone integration. These properties could make PM2000 a useful candidate for the preparation of medical devices where biocompatible and soft magnetic materials are sought. Applications for dental magnetic attachments could be envisaged.

  5. Atomic disorder and the magnetic, electrical, and optical properties of a Co{sub 2}CrAl Heusler alloy

    SciTech Connect

    Svyazhin, A. D. Shreder, E. I.; Voronin, V. I.; Berger, I. F.; Danilov, S. E.

    2013-03-15

    Two Co{sub 2}CrAl alloy samples subjected to different heat treatment regimes are studied. An exact distribution of atoms over the sublattices in the samples is determined by X-ray diffraction and neutron diffraction methods. These data are used to perform ab initio density of states calculations and to calculate the magnetic moments of the samples in a coherent potential approximation. The calculated magnetic moments are compared to the experimental values. The effect of atomic ordering on the electronic structure near the Fermi level is analyzed using optical methods. The possible causes of the detected temperature dependence of the electrical resistivity, unusual for metallic alloys, are discussed.

  6. Effects of an Applied Magnetic Field on the Directional Solidification of Hg(1-x)Zn(x)Se Alloys

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Lehoczky, S. L.; Szofran, F. R.; Jones, K. S.

    1999-01-01

    Directionally solidified Hg(0.9)Zn(0.1)Se alloys were studied as an alternative to HgCdTe for the detection of electromagnetic radiation because of predicted improvements in lattice stability. Several boules were grown using a modified Bridgman-Stockbarger method and in an applied magnetic field. Axial compositional profiles showed mass transfer was primarily diffusion controlled. Radial compositional variations were greatly reduced when solidification occurred in an applied magnetic field. Microstructural characteristics and dislocation etch pit densities were greatly improved over HgTe based alloys. The extreme importance of processing conditions on defect generation was illustrated by comparing ampoule configurations and thermal profiles.

  7. Effects of an Applied Magnetic Field on the Directional Solidification of Hg(1-x)Zn(x)Se Alloys

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Lehoczky, S. L.; Szofran, F. R.; Jones, K. S.

    1999-01-01

    Directionally solidified Hg(0.9)Zn(0.1)Se alloys were studied as an alternative to HgCdTe for the detection of electromagnetic radiation because of predicted improvements in lattice stability. Several boules were grown using a modified Bridgman-Stockbarger method and in an applied magnetic field. Axial compositional profiles showed mass transfer was primarily diffusion controlled. Radial compositional variations were greatly reduced when solidification occurred in an applied magnetic field. Microstructural characteristics and dislocation etch pit densities were greatly improved over HgTe based alloys. The extreme importance of processing conditions on defect generation was illustrated by comparing ampoule configurations and thermal profiles.

  8. Magnetic properties and structure of (Co-Ni)3Pt alloy films

    NASA Astrophysics Data System (ADS)

    Lauhoff, G.; Suzuki, T.; Toporov, A.

    2006-09-01

    A study of the magnetic and structural properties of (Co-Ni)3Pt alloy thin films epitaxially grown onto Al2O3(00•1) substrates has been carried out. The (CoNi)3Pt and Ni3Pt films deposited in a temperature range of 300-450°C show a partial superlattice ordering. The perpendicular magnetic anisotropy Ku is found to increase with order parameter S. For deposition temperatures of about TS=400°C, the Ku becomes 8×105erg/cc at S =0.3 for Ni3Pt and 4×106erg/cc for (CoNi)3Pt at S =0.4 compared to 2×107erg/cc at S =0.7 for Co3Pt films.

  9. Relation between the magnetization and the electrical properties of alloy GaSb-MnSb films

    SciTech Connect

    Koplak, O. V.; Polyakov, A. A.; Davydov, A. B.; Morgunov, R. B.; Talantsev, A. D.; Kochura, A. V.; Fedorchenko, I. V.; Novodvorskii, O. A.; Parshina, L. S.; Khramova, O. D.; Shorokhova, A. V.; Aronzon, B. A.

    2015-06-15

    The influence of the charge carrier concentration on the magnetic properties of GaSb-MnSb alloys is studied. The ferromagnetism of GaSb-MnSb films is caused by the presence of MnSb granules and manifests itself in both magnetometric measurements and the presence of an anisotropic magnetoresistance and the anomalous Hall effect. Electric conduction is executed by charge carriers (holes) in a GaSb matrix. The magnetization of clusters depends on stoichiometry and the concentration of Mn{sup 2+} and Mn{sup 3+} ions, which is specified by the film growth conditions. At high film growth temperatures, ferromagnetic clusters containing Mn{sup 2+} ions mainly form. At low growth temperatures, an antiferromagnetic phase containing Mn{sup 3+} ions forms.

  10. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    SciTech Connect

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  11. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  12. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  13. Soft Magnetic Alloy-Polymer Composite for High-Frequency Power Electronics Application

    NASA Astrophysics Data System (ADS)

    Calata, Jesus N.; Lu, Guo-Quan; Ngo, Khai

    2014-01-01

    Soft magnetic alloys are limited to lower frequencies because of increased eddy-current losses at higher frequencies. A simple low-temperature solvent-based process was developed to coat permalloy powder with a benzocyclobutene insulating layer to reduce interparticle eddy-current loss. Low-signal measurements show that the permeability of the cured composite exhibits a bandwidth beyond 10 MHz. In contrast, the permeability of the pure powder rolled off well below 1 MHz with a corresponding increase in the imaginary permeability. Measurements of the core loss density at 5 MHz on pressed composite cores show a core loss of 300 mW/cm3 at more than 90 gauss, while the pure powder core achieved the same core loss density at just over 10 gauss. The results demonstrate that the polymer coating process is an effective way of reducing the interparticle eddy-current loss in powdered magnetic cores at high frequencies.

  14. Structural and magnetic investigation on tetragonal R-Fe alloy with 1:12 stoechiometry

    NASA Astrophysics Data System (ADS)

    Khazzan, S.; Mliki, N.; Bessais, L.

    2012-02-01

    Structure and magnetic proprieties of ball-milled Sm(Fe,Mo)12 compounds were carried out under an Ar atmosphere. Milled powders were subsequently annealed at a temperature ranging from 700°C up to 1200°C. The effects of heat treatment, on structure and magnetic property changes, have been investigated by means of x-ray diffraction using the Rietveld method, and differential sample magnetometer. At low temperature, Rietveld analysis has revealed the presence of new phase with the 1:10 stoechiometry. Insertion of carbon atoms was carried out via a solid - solid reaction either. Upon carbonation, the Curie temperature of samarium based alloy was enhanced. Besides, systematic analyses of the structural aspects have been undertaken upon insertion.

  15. Atomic level characterization of the morphology of phases in Chromindur magnetic alloys

    SciTech Connect

    Miller, M.K. ); Camus, P.P . Applied Superconductivity Center); Hetherington, M.G. . Dept. of Materials)

    1991-01-01

    The atom probe field ion microscope has been used to characterize the morphology and determine the compositions of the iron-rich {alpha} and chromium-enriched {alpha}{prime} phases produced during isothermal and step cooled heat treatments in a Chromindur 2 ductile permanent magnet alloy. The good magnetic properties of this material are due to a combination of the composition of the two phases and the isolated nature and size of the ferromagnetic {alpha} phase. The morphology of the {alpha} phase is produced as a result of the shape of the miscibility gap and the step-cooled heat treatment and is distinctly different from that formed during isothermal heat treatments. 6 refs., 3 figs., 4 tabs.

  16. Change in magnetic properties of a cold rolled and thermally aged Fe-Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, D. G.; Ryu, K. S.; Kobayashi, S.; Takahashi, S.; Cheong, Y. M.

    2010-05-01

    The variation in magnetic properties of a Fe-1%Cu model alloy due to a cold rolling and a thermal aging has been evaluated to simulate the radiation damage of reactor pressure vessel of nuclear power plant. The thermal aging was conducted at 500 °C with different aging times in series. The hysteresis loops, magnetic Barkhausen noise (BN) and Vickers microhardness were measured for prestrained, strained, and thermal aged samples. The coercivity increased by a plastic strain and decreased by thermal aging, The BN decreased in the prestrained and strained samples but large changes were observed in the strained sample. These results were interpreted in terms of the domain wall motion signified by a change in the mean free path associated with microinternal stress and copper rich precipitates.

  17. A new hard magnetic phase in binary Nd-Fe and Pr-Fe alloys

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, G. C.; Tsoukatos, A.; Strzeszewski, J.; Long, Gary J.; Pringle, O. A.

    1989-01-01

    A new magnetic phase has been observed in as-cast and melt-spun Nd-Fe and Pr-Fe alloys with a Curie temperature around 265°C. SEM studies show the presence of this phase in the form of spherical and elongated particles 5 μ m in size with a composition having a ratio of Fe/Nd=4:1. This phase is believed to be a ternary Nd-Fe-O phase stabilized with oxygen. The phase appears to have a high anisotropy leading to coercivities of about 6 kOe in as-cast samples at room temperature. The Mössbauer spectra of this phase can be fitted to four Fe sites with magnetic moments ranging from 1.7 to 2.54μ B.

  18. Magnetic properties and atomic ordering of BCC Heusler alloy Fe2MnGa ribbons

    NASA Astrophysics Data System (ADS)

    Xin, Yuepeng; Ma, Yuexing; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan

    2016-05-01

    The electronic structure, atomic disorder and magnetic properties of the Heusler alloy Fe2MnGa have been investigated experimentally and theoretically. BCC Fe2MnGa ribbon samples were prepared. Experimentally, a saturation magnetic moment (3.68 μB at 5 K) much larger than the theoretical value (2.04 μB) has been reported. First-principles calculations indicate that the difference is related to the Fe-Mn disorder between A, B sites, as can also be deduced from the XRD pattern. L21 type Fe2MnGa is a ferrimagnet with antiparallel Fe and Mn spin moments. However, when Fe-Mn disorder occurs, part of Mn moments will be parallel to Fe moments, and the Fe moments also clearly increase simultaneously. All this results in a total moment of 3.74 μB, close to the experimental value.

  19. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    PubMed

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  20. Magnetic properties of ultrathin 3 d transition-metal binary alloys. I. Spin and orbital moments, anisotropy, and confirmation of Slater-Pauling behavior

    NASA Astrophysics Data System (ADS)

    Schoen, Martin A. W.; Lucassen, Juriaan; Nembach, Hans T.; Silva, T. J.; Koopmans, Bert; Back, Christian H.; Shaw, Justin M.

    2017-04-01

    The structure and static magnetic properties—saturation magnetization, perpendicular anisotropy, spectroscopic g factor, and orbital magnetization—of thin-film 3 d transition metal alloys are determined over the full range of alloy compositions via x-ray diffraction, magnetometry, and ferromagnetic resonance measurements. We determine the interfacial perpendicular magnetic anisotropy by use of samples sets with varying thickness for specific alloy concentrations. The results agree with prior published data and theoretical predictions. They provide a comprehensive compilation of the magnetic properties of thin-film N ixC o1 -x , N ixF e1 -x , and C oxF e1 -x alloys that goes well beyond the often-cited Slater-Pauling dependence of magnetic moment on alloy concentration.

  1. Lattice dynamics in magnetic superelastic Ni-Mn-In alloys. Neutron scattering and ultrasonic experiments

    SciTech Connect

    Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis; Planes, A.; Lograsso, Tom; Schlagel, D. L.; Zarestky, Jerel L.; Acet, Mehmet; Garlea, Vasile O

    2009-01-01

    Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni50Mn34In16 magnetic superelastic composition. The paper reports the experimental determination of the low-lying phonon dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA2 branch are relatively low and it exhibits a small dip anomaly at a wave number n= 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C0 = (C11 C12)=2. Both temperature softenings are typical for bcc based solids which undergo martensitic transformations and re ect the dynamical instability of the cubic lattice against shearing of f110g planes along h1 10i directions. Additionally, we measured low-lying phonon dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling.

  2. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    NASA Astrophysics Data System (ADS)

    He, Jinghua; Wang, Wei; Wang, Aimin; Guan, Jianguo

    2012-09-01

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under -10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T.

  3. Structural, morphological, magnetic and hydrogen absorption properties of LaNi5 alloy: A comprehensive study

    NASA Astrophysics Data System (ADS)

    Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz

    2014-04-01

    A comprehensive study of structural, morphological, magnetic and hydrogen absorption properties of LaNi5-H system was investigated. The X-ray diffraction patterns show that as-synthesized LaNi5 alloy is single phase with CaCu5-type structure while some weak peaks of elemental nickel also appeared after several hydrogenation/dehydrogenation (H/D) cycling. The presence of pure Ni was also followed using the room temperature magnetic measurements. After H/D cycling, the particle size decreases and particle size distribution was found nearly uniform compared to noncycled alloy. The pressure-composition isotherms (PCIs) of the hydrogen absorption reaction were determined in the temperature range 20-80°C using a homemade Sievert's type experimental apparatus, and then the enthalpy and entropy of hydride formation were calculated. The hydriding kinetic mechanism of LaNi5 was evaluated using the different fitting models: Jander diffusion model (JDM), Johnson-Mehl-Avrami (JMA) and Chou models. All employed models confirm an increase in the hydriding reaction rate with temperature. However, the calculated results using JMA model show a better agreement with the experimental data and hence we believe that diffusion along with nucleation and growth is the rate-controlling step for the hydriding reaction. The values of activation energy for hydriding reaction were also obtained by JD and JMA models.

  4. Field and temperature dependence of magnetization in FeCu-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Crespo, P.; Multigner, M.; Castaño, F. J.; Casero, R.; Hernando, A.; García Escorial, A.; Schultz, L.; Kaul, S. N.

    2000-06-01

    In this paper, the production of FeCu-based FeCuZr amorphous alloys by ball milling is reported. The thermal dependence of magnetization for the (Fe0.5Cu0.5)85Zr15 (at. %) amorphous alloy has been found to show a dramatic field dependence of the kink point of the magnetization. This kink corresponds to a temperature different from the Curie temperature, above 400 K, of the ferromagnetic phase, which, according to spin waves fitting, can be induced by applying external fields. Just above 235 K, the thermoremanence increases sharply, and this feature strongly suggests an increase of the ferromagnetic ordering under zero field heating. Neutron diffraction experiments seem to confirm the enhancement of spin alignment. The thermal expansion above the compensation temperature is proposed to be the origin of the thermoremanence enhancement through the anti-Invar effect as might be explained within the framework of recent ab initio calculations [M. van Schilfgaarde et al., Nature (London) 400, 46 (1999)].

  5. Microstructure and magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5 alloy

    NASA Astrophysics Data System (ADS)

    Tan, X. H.; Xu, H.; Man, H.; Tang, Y. J.; Yang, L. P.; Bai, Q.

    2011-04-01

    The microstructure and magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5,prepared by suction casting the molten alloy into a copper mold under an argon atmosphere, have been investigated. The results show that clusters with size 3-5 nm are found to be embedded in the amorphous matrix of as-cast bulk amorphous Nd60Fe20Al5Co10B5 alloy. The Nd60Fe20Al5Co10B5 alloy shows hard magnetic behavior at room temperature, with an intrinsic coercivity of 360 kA/m and a remanence of 69.39 mT. The magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5 has been investigated on the major hysteresis loop, and simple logarithmic time dependence is observed. A value for the fluctuation field of 8.24 kA/m is obtained. Analysis based on a Henkel plot is used to confirm the existence of magnetic interaction among clusters. The coercivity mechanism responsible for the hard magnetic behavior of bulk amorphous Nd60Fe20Al5Co10B5 alloy is also discussed.

  6. Effect of Co content on structure and magnetic behaviors of high induction Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Roy, Rajat K.; Panda, Ashis K.; Mitra, Amitava

    2016-11-01

    The replacement of Fe with Co is investigated in the (Fe1-xCox)79Si8.5B8.5Nb3Cu1 (x=0, 0.05, 0.2, 0.35, 0.5) amorphous alloys. The alloys are synthesized in the forms of ribbons by single roller melt spinning technique, and the structural and magnetic properties of annealed ribbons are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), B-H curve tracer, respectively. All as-cast alloys are structurally amorphous, however, their magnetic properties are varying with Co addition. The Co addition within 5-20 at% results in moderate thermal stability, saturation induction, Curie temperature and lowest coercivity, while 35 at% Co causes highest saturation induction, coercivity, Curie temperature and lowest thermal stability. On devitrification, the magnetic properties change with the generation of α-FeCo nanocrystallites and (FeCo)23B6, Fe2B phases during primary and secondary crystallization stages, respectively. A small amount Co is advantageous for maintaining finer nanocrystallites in amorphous matrix even after annealing at 600 °C, leading to high saturation magnetization (>1.5 T) and low coercivity (~35 A/m). The improved magnetic properties at elevated temperatures indicate these alloys have a potential for high frequency transformer core applications.

  7. Beneficial effect of Co substitution on the structure and magnetic properties of mechanically alloyed (Pr,Tb) Fe (C,B) magnets

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Liu, W.; Zhao, X. G.; Zhang, Z. D.

    2006-07-01

    The effect of Co substitution on the structure and magnetic properties of mechanically alloyed Pr 14Tb 2Fe 76-xCo xC 6B 2 and Pr 16Fe 76-xCo xC 6B 2 ( x=0-20) alloys has been studied systematically. The main phase in the alloys is Pr 2Fe 14C-type carbide, coexisting with a small amount of α-Fe and rare-earth-rich phases. In addition to the increasing of the Curie temperature of the Pr 2Fe 14C-type phase, Co substitution can affect the magnetic properties by adjusting the α-Fe fraction of the alloys. The increase of both coercivity and remanence has been realized in a certain composition range. This increase may be attributed mainly to the enhancement of the effective anisotropy constant K of the magnets due to the reduced α-Fe fraction with a small Co addition. The highest coercivity iHc of 20.3 kOe and the optimum energy product (BH) max of 10.3 MG Oe have been obtained for the Pr 14Tb 2Fe 69.5Co 6.5C 6B 2 alloy.

  8. Magnetic properties of Fe-Cu-Nb-Si-B nanocrystalline magnetic alloys

    SciTech Connect

    Garcia del Muro, M.; Batlle, X.; Zquiak, R.; Tejada, J.; Polak, C.; Groessinger, R.

    1994-03-01

    Several ribbons of composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 16.5}B{sub 6} and Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} were prepared by annealing the as-quenched samples between 525 C and 700 C, which induced nucleation of nanocrystallites of Fe bcc-type composition. Mean grain sizes were obtained from X-ray diffraction. Static magnetic properties were measured with both a Magnet Physik Hysteresis-Graph (up to 200 Oe) and a SHE S.Q.U.I.D. Magnetometer (up to 50 kOe). Soft magnetic parameters (coercive field and initial permeability) were very sensitive to grain size. The ZFC magnetization at low field showed a broad peak at a temperature T{sub M}, thus signaling a certain distribution of nanocrystalline sizes, and T{sub M} strongly decreased when the mean grain size decreased. Isothermal magnetization curves at low temperature showed the expected asymptotic behavior of a random magnet material at low and high fields.

  9. Magnetic and Mechanical Properties of Hard Magnetic Alloys 30Kh21K3M and 30Kh20K2M2V

    NASA Astrophysics Data System (ADS)

    Stel'mashok, S. I.; Milyaev, I. M.; Yusupov, V. S.; Milyaev, A. I.

    2017-01-01

    The magnetic and mechanical properties of two hard magnetic alloys (30Kh21K3M and 30Kh20K2M2V) of the Fe - Cr - Co system in anisotropic and isotropic conditions produced by traditional induction melting and by the method of powder metallurgy with subsequent pressure treatment of the metal are studied. The obtained regression equations for B r , H cB and ( BH )max describe the quantities adequately in the used range of variation of factors. The response surfaces and their sections in the phase space of the heat treatment factors are plotted. The results of the analysis of the proportion of residual induction in anisotropic and isotropic states are used to infer that the model of the mechanism of magnetization reversal of hard magnetic alloys of the class considered needs amending.

  10. The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Permanent Magnetic Alloys.

    PubMed

    Ren, Kezhi; Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke

    2017-03-20

    We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.

  11. Effect of samarium impurity on the relaxation of the magnetization of a (NdDy)(FeCo)B alloy

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. I.; Kucheryaev, V. V.; Kunitsyna, E. I.; Valeev, R. A.; Morgunov, R. B.; Piskorskii, V. P.; Ospennikova, O. G.; Kablov, E. N.

    2016-08-01

    Small Sm additions (~1-3 at %) have been found to slow down the relaxation of the magnetization in a magnetic field in the (NdDy)(FeCo)B alloy by several times. The effective "freezing" of the spontaneous relaxation of the magnetic moment is related to the substantial increase in the potential barriers for motion of domain walls when introducing Sm ions that have other symmetry of the single-ion anisotropy than that of Nd and Dy ions. The results can be used to stabilize the properties of hard magnets.

  12. Evolution of microstructure and defect structure in manganese-aluminum-based permanent magnet alloys

    NASA Astrophysics Data System (ADS)

    Yanar, Cagatay

    In this study, the transformation behavior of MnAl-based ferromagnetic alloys was investigated. The low-cost and availability of the Mn-Al base metals along with their high mechanical strength, machineability and high magnetic energy product (BH) per unit weight make these materials attractive candidates for permanent magnet applications. These alloys derive their magnetic properties from the metastable L10 tau-phase, which generally appears towards the Mn-rich side of the near equiatomic composition. The magnetic properties of these materials are strongly influenced by the microstructure and characteristic defect structure of the tau-phase. The tau-phase exhibits a unique defect structure, which includes twins, stacking faults, anti-phase domain boundaries and dislocations. Understanding the true nature of defect generation is necessary in order to be able to develop processing techniques to enhance and optimize the properties of these materials. The tau-phase derives from a phase mixture of ε(hcp) and ε '(B19) phases through various heat treatment processes. Controversial mechanisms are reported in the literature regarding the nature of the ε + ε' → tau transformation. Phase transformation mechanisms that are displacive and those involving a massive transformation have been reported. In this study, the true nature of the tau-phase formation was investigated experimentally by utilizing techniques such as transmission electron microscopy (TEM), high-resolution electron microscopy (HREM) and in-situ TEM heating experiments. It was shown that both of the transformation modes, i.e. massive and displacive mechanisms, can operate and result in tau-phase formation. The atomic nature of the displacive transformation was studied in detail to elucidate the viability of transformation of a two-phase mixture into a single phase through a shear transformation. In the absence of stress, the massive mode was shown to dominate microstructural evolution in bulk materials

  13. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  14. Fluxing purification and its effect on magnetic properties of high-Bs FeBPSiC amorphous alloy

    NASA Astrophysics Data System (ADS)

    Pang, Jing; Wang, Anding; Yue, Shiqiang; Kong, Fengyu; Qiu, Keqiang; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-07-01

    A high-Bs amorphous alloy with the base composition Fe83B11P3Si2C1 was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe83B11P3Si2C1 ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-Bs of 1.65 T, low Hc of 2.0 A/m, and high μe of 9.7 × 103 at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-Bs FeBPSiC amorphous alloys.

  15. Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn-Ni-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Suresh, K. G.

    2016-12-01

    In this report, effect of Fe substitution on martensitic transition, magnetic, magnetocaloric and exchange bias (EB) properties of Mn50Ni40-xFexSn10 (x=0, 0.5, 1, 1.5, 2 and 3) Heusler alloys series has been investigated systematically. Fe substitution has been found to affect the ferromagnetic/antiferromagnetic interactions significantly in both the martensite and austenite phases. Martensitic transition temperature decreases with increasing Fe content, which is attributed to the decrease in number of average valence electrons per atom (e/a ratio) of these alloys. Large magnetic entropy change (ΔSM) and refrigerant capacity (RC) have been observed in these alloys, as a maximum ΔSM of 12.6 J/kg. K is observed for composition x=0.5. Present alloys have also been found to show large exchange bias properties, as maximum exchange bias fields (HEB) of 890 Oe and 810 Oe are observed for x=0 and 0.5, respectively at 5 K. Composition and temperature dependencies of EB are associated with the change in exchange anisotropy at interfaces of competing magnetic phases. Study of minor loop and training effect also corroborates with the presence of EB in these alloys.

  16. Influence of phase transformation on the permanent-magnetic properties of Fe-Pt based alloys

    NASA Astrophysics Data System (ADS)

    Brück, E.; Xiao, Q. F.; Thang, P. D.; Toonen, M. J.; de Boer, F. R.; Buschow, K. H. J.

    2001-07-01

    We have studied the effect of the atomic disorder-order transformation on remanence enhancement and coercivity in Fe-Pt-based materials by isothermal annealing at temperatures well below the transformation point. We also investigated the effect of the annealing temperature and the effect of various types of additives. The relative amount of the low-temperature hard-magnetic face-centered-tetragonal (FCT) phase precipitated in the high-temperature magnetically soft face-centered-cubic (FCC) phase was determined by means of X-ray diffraction. As a function of annealing time and annealing temperature, particle size and relative amount of the FCT phase increased at the cost of the FCC phase. These changes were followed by means of magnetic measurements. We observed a continuous increase in coercivity with increasing annealing time, eventually reaching a maximum. The Kneller-Hawig model was used to explain the occurrence of remanence enhancement and the continuously changing degree of exchange coupling between the magnetically soft and hard phase. The suitability of Fe-Pt based alloys in dental applications is discussed.

  17. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy "NANOMET®" cores

    NASA Astrophysics Data System (ADS)

    Nishiyama, N.; Tanimoto, K.; Makino, A.

    2016-05-01

    Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys "NANOMET®" exhibit high saturation magnetic flux density (Bs > 1.8 T), low coercivity (Hc < 10 A/m) and low core loss (W1.7/50 ˜ 0.4 W/kg) even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

  18. Magnetic properties of Nd-Ga-Fe{sub bal}-Nb-B alloy

    SciTech Connect

    Kim, Hyunkyu; Sung Kim, Chul; Yong An, Sung; Ryong Choi, Kang; Choi, Moonhee

    2014-05-07

    Here, we have synthesized Nd-Ga-Fe{sub bal}-Nb-B alloy by strip casting method. The crystalline and magnetic properties of sample were investigated with x-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectrometer. The XRD pattern was analyzed with the Rietveld refinement method, indicating a tetragonal structure and the space group of P4{sub 2}/mnm. The temperature dependence of zero-field cooled (ZFC) magnetization curve was measured under applied field at temperature ranging from 4.2 to 740 K. From the ZFC curve, Curie temperature and spin reorientation temperature are determined to be 615 K and 130 K, respectively. Also, Mössbauer spectra were measured at various temperatures ranging from 4.2 to 620 K. Each spectrum was fitted with 6-sextets for Fe site (8j{sub 1}, 8j{sub 2}, 16k{sub 1}, 16k{sub 2}, 4c, and 4e), and magnetic hyperfine field, Isomer shift, electric quadrupole shift, and area ratio values were obtained from the fit. We observed the change in slope of magnetic hyperfine field and electric quadrupole shift at 130 K while the Curie temperature was determined to be 615 K from the measurement of zero velocity counter, agreeing with the values obtained from VSM measurements.

  19. First-principles calculation on dilute magnetic alloys in zinc blend crystal structure

    NASA Astrophysics Data System (ADS)

    Ullah, Hamid; Inayat, Kalsoom; Khan, S. A.; Mohammad, S.; Ali, A.; Alahmed, Z. A.; Reshak, A. H.

    2015-07-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III-V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga1-xMnxX (X=P, As) compounds reveal that Ga0.75Mn0.25P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga0.75Mn0.25As and Ga0.5Mn0.5As and tune Ga0.25Mn0.75As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga0.75Mn0.25P, Ga0.75Mn0.25As and Ga0.5Mn0.5As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III-V semiconductors can be effectively used in spintronic devices.

  20. Investigating Magnetic and Structural Changes of Thin FeNi Alloy Films

    NASA Astrophysics Data System (ADS)

    Hochstrasser, M.; Tobin, J. G.; Morton, S. A.; Wadill, G. D.; Gilman, N. A. R.; Willis, R. F.

    2002-03-01

    Bulk FeNi alloys exhibit the "Invar effect", a sudden arresting of the Wigner-Seitz cell volume and a zero expansion coefficient. Simultaneously, the crystal structure changes from fcc to bcc while Curie temperature goes to zero. This structural transformation can be arrested in films grown on a Cu(001) substrate. Theoretical work predicts that the fcc phase can exist in two possible states: a ferromagnetic high volume state or a antiferromagnetic low volume state showing a 1% volume change between a non-collinear equilibrium state and the high spin state. We measured elemental magnetic properties with x-ray circular and linear dichroism on FeNi films grown on Cu(100). Our measurements show a change in the local magnetic moments of Fe as well as Ni, which corresponds very well with the Slater-Pauling curve. We also observe the collapse of the magnetic moments, as previously reported in bulk materials, in these thin films. Exchange splitting measured with angular and spin-resolved measurements confirm the magnetic measurements done with dichroism.

  1. Relationship between Magnetocrystalline Anisotropy and Orbital Magnetic Moment in L10-Type Ordered and Disordered Alloys

    NASA Astrophysics Data System (ADS)

    Kota, Yohei; Sakuma, Akimasa

    2012-08-01

    The magnetocrystalline anisotropy energy and orbital magnetic moment in L10-type transition metal alloys such as FePt, FePd, FeNi, CoPt, CoPd, and MnAl are evaluated while continuously varying the degree of order. The electronic structure with spin--orbit interaction is calculated by employing the tight-binding linear muffin-tin orbital method based on the local spin-density approximation. To control the degree of order, we consider a substitutional disorder and then adopt the coherent potential approximation. The magnetocrystalline anisotropy energy Δ E is roughly proportional to the power of the long-range order parameter S, i.e., Δ E \\propto Sn (n ˜ 1.6{--}2.4). We also discuss the relationship between the magnetocrystalline anisotropy energy and the orbital magnetic moment. In the same compositional system with different degrees of order, the difference between the orbital magnetic moment in the magnetic easy axis and that in the hard one is proportional to Δ E. However, the coefficient corresponding to the effective spin--orbit coupling is inconsistent with the intrinsic one in some cases.

  2. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-04-01

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe73.5Cu1Nb3Si15.5B7 alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  3. Preparation of Soft Magnetic Fe-Ni-Pb-B Alloy Nanoparticles by Room Temperature Solid-Solid Reaction

    PubMed Central

    Zhong, Qin

    2013-01-01

    The Fe-Ni-Pb-B alloy nanoparticles was prepared by a solid-solid chemical reaction of ferric trichloride, nickel chloride, lead acetate, and potassium borohydride powders at room temperature. The research results of the ICP and thermal analysis indicate that the resultants are composed of iron, nickel, lead, boron, and PVP, and the component of the alloy is connected with the mole ratio of potassium borohydride and the metal salts. The TEM images show that the resultants are ultrafine and spherical particles, and the particle size is about a diameter of 25 nm. The largest saturation magnetization value of the 21.18 emu g−1 is obtained in the Fe-Ni-Pb-B alloy. The mechanism of the preparation reaction for the Fe-Ni-Pb-B multicomponent alloys is discussed. PMID:24348196

  4. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    SciTech Connect

    Zhang, R. L.; Damewood, L.; Fong, C. Y.; Yang, L. H.; Peng, R. W.; Felser, C.

    2016-11-02

    For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. In conclusion, the challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  5. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    DOE PAGES

    Zhang, R. L.; Damewood, L.; Fong, C. Y.; ...

    2016-11-02

    For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constantmore » of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. In conclusion, the challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.« less

  6. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    NASA Astrophysics Data System (ADS)

    Zhang, R. L.; Damewood, L.; Fong, C. Y.; Yang, L. H.; Peng, R. W.; Felser, C.

    2016-11-01

    For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  7. Chemical synthesis, characterizations and magnetic properties of nanocrystalline Fe{sub 50}Co{sub 50} alloy

    SciTech Connect

    Dalavi, Shankar B.; Panda, Rabi Narayan; Raja, M. Manivel

    2014-04-24

    Nanocrystalline Fe{sub 50}Co{sub 50} alloy has been synthesized successfully by chemical reduction route using superhydride as reducing agent and oleic acid and oleylamine as capping agents. Phase purity, crystallite size and lattice parameters of the synthesized NPs are determined by X-ray powder diffraction method. FeCo alloy crystallizes in body centered cubic (bcc) structure having crystallite size equal to 29 nm and lattice parameters equal to 2.8546 Å. The size and shape morphologies of the material were studied by SEM analysis. SEM micrograph study shows the average particle size to be 60 nm and indicates the appearance of agglomerates of the nano-particles consisting of several crystallites. The room temperature magnetic hysteresis studies indicate ferromagnetic behavior of the materials. The values of saturation magnetization and coercivity were 65 emu/g and 460 Oe, respectively. Magnetic properties of the material were interpreted on the basis of fine particle magnetism.

  8. Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film

    NASA Astrophysics Data System (ADS)

    Ueda, Kohei; Mann, Maxwell; de Brouwer, Paul W. P.; Bono, David; Beach, Geoffrey S. D.

    2017-08-01

    The temperature dependence of spin-orbit torques (SOTs) and spin-dependent transport parameters is measured in bilayer Ta/TbCo ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. We find that the dampinglike (DL)-SOT effective field diverges as temperature is swept through the magnetic compensation temperature (TM), where the net magnetization vanishes due to the opposing contributions from the Tb and Co sublattices. We show that DL-SOT scales with the inverse of the saturation magnetization (Ms), whereas the spin-torque efficiency is independent of the temperature-dependent Ms. Our findings provide insight into spin transport mechanisms in ferrimagnets and highlight low-Ms rare-earth/transition-metal alloys as promising candidates for SOT device applications.

  9. Unusual lattice constant changes and tunable magnetic moment compensation in Mn50-xCo25Ga25+x alloys

    NASA Astrophysics Data System (ADS)

    Li, G. J.; Liu, E. K.; Zhang, H. G.; Qian, J. F.; Zhang, H. W.; Chen, J. L.; Wang, W. H.; Wu, G. H.

    2012-09-01

    We report on unusual lattice parameter changes and tunable magnetic moment compensation in Mn50-xCo25Ga25+x (x = 0-25) Heusler alloys by substituting Ga for Mn. The observed lattice parameter first increases with increasing Ga content x, showing a maximum at x = 12.5, and then abnormally decreases due to the enhanced covalence effect between transition-metal and main-group atoms. Moreover, a tunable magnetic moment compensation was also observed due to the diversification in role of the main magnetic contributor when the structure varies from Hg2CuTi-type Mn2CoGa to Cu2MnAl-type CoMnGa2. These results provide an alternative way to simultaneously tune both the structural and magnetic properties of Heusler alloys, which is particularly important for developing flexible spintronics devices.

  10. Difference in Magnetic Field Threshold for Thermal Plasma Formation between Copper Alloys 145 and 101 Pulsed to Multi-Megagauss Surface Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bauer, B. S.; Fuelling, S.; Ivanov, V. V.; Hutchinson, T. M.; Yates, K. C.; Awe, T. J.

    2016-10-01

    Understanding the impact of choice of metal alloy on plasma formation is important for plasma physics and applications (e.g., fusion energy). Thermal ionization by pulsed ohmic heating of Cu-145 (99.5% Cu, 0-0.7% Te, 0-0.012% P) has been compared with that of a purer alloy, Cu-101 (>99.99% Cu), via well-characterized experiments that avoided contamination by arcing. Copper rods were pulsed to 1.0-MA peak current in 100 ns, with the applied magnetic field rising linearly at 50-80 MG/ μs, depending on the rod initial diameter (0.49-1.59 mm). The initial magnetic skin depth was much smaller than the rod radius, so surface plasma formation was observed while current was propagating into the conductor as a nonlinear diffusion wave. The rod surface finish was controlled (electropolished or not) and examined with optical and scanning electron microscopy. The expansion and ionization of the rod were observed with visible and EUV radiometry, time-resolved imaging, and laser shadowgraphy. Rods of both alloys explode when the applied magnetic field reaches 2 MG, well before plasma formation. Rods of both alloys expand at 3.5 km/s surface velocity. However, Cu-145 undergoes bulk surface ionization at 3.0 MG, whereas Cu-101 only turns to plasma when the magnetic field exceeds 3.5 MG.

  11. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    SciTech Connect

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23 and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  12. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    DOE PAGES

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23 andmore » Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.« less

  13. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Rios, Orlando

    2015-02-01

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23, and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  14. Magnetic properties of Ce-Nd-Fe-Mo alloys and their nitrides

    SciTech Connect

    Zhou, C; Pinkerton, FE

    2014-11-01

    New quaternary alloys of Ce-1 xNdxFe12 Mo-y(y) with x=0, 0.2, 0.4, 0.6, 0.8, 1 and y=0, 1.5, 2 have been prepared and magnetically hardened by melt spinning. X-ray diffraction indicates that the as-spun materials exhibit the tetragonal ThMn12-type structure. Prior to nitriding, the coercivity H-ci is less than 0.6 kOe in all alloys and is independent of Nd content, while the magnetization 4 pi M-19 (measured in an applied held of 19 kOe) and Curie temperature T-c increase with added Nd content x. The effects of nitriding pressure P, time t, and temperature TOR magnetic properties have been carefully evaluated on NdFe10Mo2 in order to identify the optimal nitriding parameters. The optimized nitriding profile was subsequently adopted to nitride the remaining samples. After nitrogenation, T-c and 4 pi M-19 have been substantially enhanced primarily due to the increased Fe-Fe exchange from nitrogen induced lattice dilation. Benefitting from the positive contribution from Nd, H-ci has been greatly improved in the Nd containing samples. As a result, Ce0.2Nd0.8Fe10Mo2 nitride features H-ci=2.9 kOe and (BH)(max) = 1.6 MGOe and Ce0.2Nd0.8Fe10.5Mo1.5 nitride demonstrates H-ci=2.5 kOe, (BH)(max) = 1.5 MGOe at room temperature, and T-c=337 degrees C. which are substantial advancements compared to the pure Ce based ThMn12-type materials previously reported. (C) 2014 Published by Elsevier B.V.

  15. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.

    PubMed

    Dunand, David C; Müllner, Peter

    2011-01-11

    The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.

  16. Effect of sputtering pressure on stacking fault density and perpendicular magnetic anisotropy of CoPt alloys

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Woong; Oh, Young-Wan; Kim, Dae-Hoon; Kim, Jai-Young; Park, Byong-Guk

    2016-09-01

    We report the effects of Ar sputtering pressure on perpendicular magnetic anisotropy in disordered CoPt alloys via the modulation of stacking fault density. The coercivity and anisotropy field of CoPt alloys are gradually enlarged with an increase in Ar sputtering pressure from 3 mTorr to 30 mTorr. Structural analyses using transmission electron microscopy, atomic force microscopy and x-ray reflectivity show that the structural properties of the samples, such as roughness or grain size, are not significantly changed by variations in Ar sputtering pressure. On the other hand, in-plane x-ray diffraction measurements reveal that the stacking fault density is reduced in films grown under higher pressure, and instead favors HCP stacking. Our results suggest that perpendicular magnetic anisotropy in CoPt alloys can be enhanced by the growth of the sample under a high Ar sputtering pressure, which decreases stacking fault density.

  17. Pressure dependence of magnetic properties in Fe-Mn-B amorphous alloys: evidence for inhomogeneous ferromagnetism.

    PubMed

    Kiss, L F; Kemény, T; Bednarčík, J; Kamarád, J; Arnold, Z; Konôpková, Z; Liermann, H-P

    2013-08-28

    The pressure dependence of the saturation magnetization and Curie temperature was studied in melt-spun Fe60Mn20B20, Fe56Mn24B20 and Fe75B25 amorphous alloys up to 0.9 GPa, corresponding to volume changes up to 0.45%. In addition, in situ high-pressure (up to 40 GPa) x-ray diffraction was performed to determine the compressibility of the latter two alloys. Both the Curie temperature TC (at atmospheric pressure TC = 201 ± 3 and 159 ± 3 K) and the low-temperature saturation magnetization M5 K,5 T decrease remarkably with increasing pressure: dTC/dp =- 31 ± 0.5 and -32 ± 5 K GPa(-1) and dlnM5 K,5 T/dp =- 0.15 ± 0.02 and -0.13 ± 0.03 GPa(-1) for xMn = 20 and 24 at.%, respectively. Compared to dlnM5 K,5 T/dp =- 0.016 ± 0.003 GPa(-1) measured for Fe75B25, the pressure dependence of M5 K,5 T is one order of magnitude larger in the ternary alloys. The bulk moduli for the Fe56Mn24B20 and Fe75B25 glasses were measured to be 152 GPa and 173 GPa, respectively. These data are also compared with the pressure dependence of the hyperfine field and theoretical calculations of the saturation moment for Fe-B alloys reported in the literature. The results were interpreted within an inhomogeneous itinerant-electron model of ferromagnetism.

  18. Highly coercive sintered magnets from (Nd, Dy) - Fe - B alloys fabricated by the method of strip casting

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Vasilenko, D. Yu.; Puzanova, T. Z.; Vlasyuga, A. V.; Vyatkin, V. P.

    2013-05-01

    The properties of sintered permanent magnets produced by the traditional process (TP) and by a low-oxygen process (LOP) with the use of (Nd, Dy) - Fe - B rapidly hardened plate alloys are compared. Optimization of the LOP gives highly coercive magnets with world-level properties, i.e., B r ≥ 12.7 kGs, H c ≥ 25.0 kOe, and ( BH )max ≥ 38 MGs • Oe.

  19. Ab initio construction of magnetic phase diagrams in alloys: The case of Fe1-xMnxPt

    DOE PAGES

    Pujari, B. S.; Larson, P.; Antropov, V. P.; ...

    2015-07-28

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe1–xMnxPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of the magnetic phasemore » diagram is demonstrated.« less

  20. Ab Initio Construction of Magnetic Phase Diagrams in Alloys: The Case of Fe1 -xMnx Pt

    NASA Astrophysics Data System (ADS)

    Pujari, B. S.; Larson, P.; Antropov, V. P.; Belashchenko, K. D.

    2015-07-01

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. Application to the Fe1 -xMnx Pt "magnetic chameleon" system yields the sequence of magnetic phases at T =0 and the c -T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of the magnetic phase diagram is demonstrated.

  1. Electrolytic hydriding of LaFe(13-x)Si(x) alloys for energy efficient magnetic cooling.

    PubMed

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P; Cohen, Lesley F

    2012-04-17

    An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe(13-x)Si(x)-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state.

  2. Fluoride technology for obtaining high-energy magnetic alloys and ligatures based on rare-earth metals

    SciTech Connect

    Buinovskii, A.S.; Sofronov, V.L.; Chizhikov, V.S.; Shtefan, Yu.P.

    1995-10-20

    Unique specific properties of rare-earth metals (REMs) are to a large extent responsible for the technical progress in many branches of industry, science, and technology. A new fluoride procedure for obtaining high-energy magnetic alloys and ligatures based on rare-earth and transition metals has been proposed.

  3. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe80-xCrxCo20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe55Cr25Co20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5.

  4. Exploring the pathways for enhancing the hard magnetic properties of binary Al-55at.%Mn Heusler alloy through mechanical alloying

    NASA Astrophysics Data System (ADS)

    Palanisamy, Dhanalakshmi; Madras, Giridhar; Chattopadhyay, Kamanio

    2017-10-01

    This work reports enhancing the hard magnetic properties of a binary ferromagnetic Heusler alloy based on Mn-Al system through mechanical milling. We report the processing induced evolution of magnetic properties for two sets of alloys, both having the same stoichiometric composition of Al-55at.%Mn with one of them containing high temperature ε phase while the other consisting of only metastable ferromagnetic τ phase. No effect of milling on the magnetic properties of ε phase could be detected due to its nonmagnetic nature. However, subsequent annealing at 350 °C for 30 min after milling results in structural change and exhibits magnetic response. The phase transitions were found to depend on prior milling history. The highest saturation magnetization and coercivity were obtained for 4 h milled sample that is annealed at 350 °C for 30 min with values of 23 emu/g and 5.2 KOe, respectively. In the case of samples with initial microstructure consisting of grains of only metastable τ phase, no decomposition could be observed when milled for a period up to 9 h. Additionally, it was observed that after 3 h of milling, the saturation magnetization value reduces to 24 emu/g and coercivity increases to 5.2 KOe from an initial values of 116 emu/g and 0.98KOe respectively. Further milling causes a decrease in both the values. Annealing of the 3 h milled powder at 350 °C for 30 min, resulted in a slight decrease in coercivity (Hc = 4.9 KOe) while a significant increase in saturation magnetization (34 emu/g) value could be observed. Experimental results suggest that magnetization reversal is domain nucleation controlled and that the nonmagnetic phases (β + γ2) present can act as the pinning sites.

  5. Effect of the nanocrystallization of a soft magnetic amorphous Fe-P-Mo alloy on its corrosion resistance in a damp industrial SO2-contaminated atmosphere

    NASA Astrophysics Data System (ADS)

    Vavilova, V. V.; Korneev, V. P.; Anosova, M. O.

    2016-09-01

    The study of the electrochemical behavior of a soft magnetic amorphous Fe-P-Mo alloy in a 0.1M Na2SO4 solution, which simulates a damp SO2-contaminated atmosphere, shows that the corrosion resistance of the nanocrystalline Fe80.2P17.1Mo2.7 alloy is comparable to that of a FINEMET alloy. No molybdenum is required for manufacturing the Fe80.2P17.1Mo2.7 alloy, because it can be prepared using natural alloy ferrophosphorus containing molybdenum.

  6. Joint properties of cast Fe-Pt magnetic alloy laser-welded to Co-Cr alloy.

    PubMed

    Baba, Naoki; Watanabe, Ikuya; Tanaka, Yasuhiro; Hisatsune, Kunihiro; Atsuta, Mitsuru

    2005-12-01

    This study investigated the joint properties of Fe-Pt alloy laser-welded to Co-Cr alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared with Fe-Pt and Co-Cr alloys. Fe-Pt plates were butted against Co-Cr plates and laser-welded using Nd:YAG laser. Control and homogeneously welded specimens were also prepared. Laser welding was performed with and without argon shielding. Tensile testing was conducted, and both fracture force (Ff: N) and elongation (El: %) were recorded. There were no differences in the Ff value between the specimens with and without argon shielding for the welded Fe-Pt/Co-Cr. Lower Ff value of the welded specimen was obtained in the order of Fe-Pt alloy < Fe-Pt/Co-Cr < Co-Cr alloy. The results indicated that Fe-Pt welded to Co-Cr had Ff values between the values of homogeneously welded Fe-Pt and Co-Cr alloys. Argon shielding, on the other hand, had no effect on the weld strength between Fe-Pt and Co-Cr alloys.

  7. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    NASA Astrophysics Data System (ADS)

    Scheunert, G.; Ward, C.; Hendren, W. R.; Lapicki, A. A.; Hardeman, R.; Mooney, M.; Gubbins, M.; Bowman, R. M.

    2014-10-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature.

  8. A theoretical study of the cluster glass-Kondo-magnetic disordered alloys

    NASA Astrophysics Data System (ADS)

    Zimmer, F. M.; Magalhães, S. G.; Coqblin, B.

    2009-10-01

    The physics of disordered alloys, such as typically the well known case of CeNi1-xCux alloys, showing an interplay among the Kondo effect, the spin glass state and a magnetic order, has been studied firstly within an average description like in the Sherrington-Kirkpatrick model. Recently, a theoretical model [S.G. Magalhaes, F.M. Zimmer, P.R. Krebs, B. Coqblin, Phys. Rev. B 74 (2006) 014427] involving a more local description of the intersite interaction has been proposed to describe the phase diagram of CeNi1-xCux. This alloy is an example of the complex interplay between Kondo effect and frustration in which there is in particular the onset of a cluster-glass state. Although the model given in Magalhaes et al. [Phys. Rev. B 74 (2006) 014427] has reproduced the different phases relatively well, it is not able to describe the cluster-glass state. We study here the competition between the Kondo effect and a cluster glass phase within a Kondo-lattice model with an inter-cluster random Gaussian interaction. The inter-cluster term is treated within the cluster mean-field theory for spin glasses [C.M. Sokoulis, Phys. Rev. B 18 (1978) 3757], while, inside the cluster, an exact diagonalisation is performed including inter-site ferromagnetic and intra-site Kondo interactions. The cluster glass order parameters and the Kondo correlation function are obtained for different values of the cluster size, the intra-cluster ferromagnetic coupling and the Kondo intra-site coupling. We obtain that the increase of the Kondo coupling tends clearly to destroy the cluster glass phase.

  9. Magnetic Field-Induced Precipitation Behaviors of Alloy Carbides M2C, M3C, and M6C in a Molybdenum-Containing Steel

    NASA Astrophysics Data System (ADS)

    Hou, T. P.; Li, Y.; Zhang, Y. D.; Wu, K. M.

    2014-05-01

    The effect of a 12-T high magnetic field on alloy carbide precipitation in an Fe-C-Mo alloy during tempering at an intermediate temperature was investigated. Thin foils and carbon extraction replicas of the treated specimens were examined by transmission electron microscopy (TEM). The results show that the applied high field effectively promoted the precipitation of (Fe,Mo)6C alloy carbide. The concentration of Fe atom in Fe6- x Mo x C carbide is increased whereas that of Mo atom decreased when the high magnetic field was applied. However, the high magnetic field almost had no detectable influence on the atom concentration in (Fe,Mo)2C and (Fe,Mo)3C carbides. First principle calculations have been performed to calculate the magnetic moment per iron atom of the carbides to explore the origin of the effect of the magnetic field. The influence of the high magnetic field on the precipitation behaviors of alloy carbides was closely related to the magnetic moment of (Fe,Mo)2C, (Fe,Mo)3C, and (Fe,Mo)6C. The magnetic field promotes the formation of the carbides with high total magnetic moment. The effect of the high magnetic field on the substitutional solute atom (Fe and Mo) concentration change in the three alloy carbides was attributed to their magnetization differences per Fe atom.

  10. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  11. Bridgman Growth of GeSi Alloys in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Vujisic, L.; Motakef, S.

    1998-01-01

    Ge(0.95)Si(0.050 alloy crystals have been grown by the vertical Bridgman technique, both with and without an axial 5 Tesla magnetic field. The crystals were processed in a constant axial thermal gradient and the effects of graphite, hot pressed boron nitride, and pyrolitic boron nitride ampoule materials on interface shapes and macrosegregation profiles were investigated. The sample grown in a graphite ampoule at 5 Tesla exhibited a macroscopic axial concentration profile close to that of complete mixing and strong striation patterns. In samples grown in boron nitride ampoules, both with and without a 5 Tesla magnetic field applied, measured macroscopic axial concentration profiles were intermediate between those expected for a completely mixed melt and diffusion-controlled growth, and striation patterns were also observed. Possible explanations for the apparent inability of the magnetic field to reduce the flow velocities to below the growth velocities are discussed, and results of growth experiments in pyrolitic boron nitride ampoules are also described.

  12. Localized magnetic moments in the Heusler alloy Rh2MnGe

    NASA Astrophysics Data System (ADS)

    Klaer, P.; Kallmayer, M.; Elmers, H. J.; Basit, L.; Thöne, J.; Chadov, S.; Felser, C.

    2009-04-01

    X-ray magnetic circular dichroism (XMCD) of core-level absorption (x-ray absorption spectroscopy, XAS) spectra in the soft x-ray region has been measured for the ferromagnetic Heusler alloy Rh2MnGe at the Rh M3,2 and Mn L3,2 edges. The ratio of Rh and Mn spin moments amounts to 0.05 which is smaller than the ratio of 0.1 determined by a local density approximation electronic band structure calculation. We have found that the orbital moments of the Rh 4d and Mn 3d states are very small. The observed Rh 2p XAS spectrum can be understood on the basis of the Rh 3d partial density of unoccupied states as is typical for metals. The observed features of the Mn 2p XAS and XMCD spectra are dominated by final state multiplets as is typical for oxides. The comparison of experimental and ab initio calculated XAS/XMCD spectra reveals a strong narrowing of the Mn 3d bands, indicating strongly localized Mn moments. The magnetic moments are considerably more localized for Rh2MnGe in comparison with the isoelectronic compound Co2MnGe. In spite of the strong localization of the Mn moment, the temperature dependences of sublattice magnetization are equal for the Mn and Rh sublattices in contrast to the prediction by a Heisenberg model. This might be attributed to the remaining itinerant character of the Rh moment.

  13. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  14. Structural and magnetic studies of the nanocrystalline Nd-Fe-B-Nb alloy ribbons

    NASA Astrophysics Data System (ADS)

    Szwaja, M.; Pawlik, K.; Pawlik, P.; Kaszuwara, W.; Wysłocki, J. J.; Gębara, P.

    2013-01-01

    A detailed studies of the phase constitution, microstructure and magnetic properties of the nanocrystalline Nd9.2Fe61.64B21.16Nb8 alloy ribbons, are reported. It was shown that the rapidly solidified ribbons have partially amorphous structure and soft magnetic properties in the as-cast state. The heat treatment at temperatures higher than 923 K led to the growth of the hard magnetic Nd2Fe14B phase and the metastable Nd2Fe23B3 phase. The Mössbauer confirmed that during annealing of the samples at temperature higher than 923 K the paramagnetic Nd1+ɛFe4B4 phase was also formed. The microstructure consisting of mixture of constituent phases was observed with transmission electron microscopy (TEM). Furthermore, with increasing annealing temperature the decrease of the saturation polarization Js was observed. The maximum values of coercivity JHc = 1175 kA/m was obtained for a sample annealed at 1023K. However, annealing at 1003 K resulted in the improvement of remanence polarization Jr = 0.35 T and the maximum energy product (BH)max = 21 kJ/m3.

  15. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    SciTech Connect

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F; Thompson, James R; Krcmar, Maja; Wang, Xun-Li

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. The theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.

  16. Effect of stress and plastic deformation on hysteresis and anhysteretic magnetization of Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Lofland, Sam

    2004-03-01

    We report on the low-field magnetic properties of thin FeNi alloys films and ribbons under tensile stress. The magnetization was measured using a conventional vibrating sample magnetometer using a special designed fixture allowing applying forces as large as 250 N providing sizable uniaxial stresses on thin film and wires. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal (parallel to the stresses) dc field. We discuss results of the measurements of steel and invar samples of FeNi samples leads to higher susceptibility and lower coercivity for low tensile stress. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops were characterized. Larger stresses result in plastic strain of the sample which induces an increase in dislocation density and subsequently domain wall pinning. This causes an increase in coercivity and decrease in anhysteretic permeability at the highest stresses. We also discuss the effect of composition and processing on these results.

  17. Magnetic characterization of dual phase FeZrB soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Kong, L. H.; Chen, R. R.; Song, T. T.; Gao, Y. L.; Zhai, Q. J.

    2011-12-01

    The magnetic properties and the annealing process of Fe78Zr7B15 amorphous ribbons are investigated by X-ray diffraction (XRD), differential scanning calorimetry, and vibrating sample magnetometer. The fully amorphous structure of the as-quenched ribbons is confirmed by the XRD pattern. The Curie temperature and the saturation magnetization Ms of the ribbons are 305 °C and 124.3 emu/g, respectively. Annealing at 550 °C can result in an increase in Ms with annealing time due to the increasing crystallized volume fraction of α-Fe phase. The optimized annealing process is established at 550 °C for 20-30 min with maximum Ms of 146.6 emu/g. The morphology of the ribbons annealed at 550 °C is observed by scanning electron microscopy, showing that nanocrystalline α-Fe grains are dispersed in an amorphous matrix.

  18. Magnetism and magnetic anisotropy of Ni xPd 1-x alloy

    NASA Astrophysics Data System (ADS)

    Tang, Z. B.; Tian, C. S.; Yin, L. F.; Dong, G. S.; Jin, Xiaofeng

    2007-03-01

    Single-crystalline Ni xPd 1-x thin films with a face-centered cubic structure for the whole stoichiometry 0⩽ x⩽1 have been achieved on Cu(1 0 0) via molecular beam epitaxy (MBE). The ferromagnetism shows up at x⩾0.25 at 300 K and the total magnetization decreases as the Pd concentration increases, which confirms our earlier first-principles calculations (Y.S. Shi, M.F. Wang, D. Qian, G.S. Dong, X.F. Jin, D.S. Wang, J. Magn. Magn. Mater. 277 (2004) 71). The magnetocrystalline anisotropy of Ni xPd 1-x is determined to be cubic with a negative K1, as measured by the magneto-optical Kerr effect (MOKE) technique with a rotating magnetic field (ROTMOKE).

  19. Critical behavior and magnetic entropy change at magnetic phase transitions in Ni50Mn35In14Si1 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Das, R.; Alagarsamy, P.; Srinivasan, A.

    2014-12-01

    We have investigated critical behaviour and magnetocaloric effect in polycrystalline Ni50Mn35In14Si1 alloy near the second-order ferromagnetic phase transitions (SOPT) at austenite Curie temperature (TC,A) and at martensite Curie temperature (TC,M) by determining the critical exponents, β, γ and δ corresponding to the temperature dependence of spontaneous magnetization, initial susceptibility and isothermal magnetization, respectively. The field dependence of the maximum value of the magnetic entropy change (Δ SM) at the two TC's was estimated using the Maxwell relation as well as from the values of the critical exponents. Values of Δ SM obtained by these two methods at both the SOPT are in remarkable agreement with each other. The critical exponents have been determined by analysing isothermal magnetization data using two different methods, viz., the modified Arrott plot method and the Widom scaling relation. The scaling plots depicted on linear as well as logarithmic scales confirm the reliability of the values of critical exponents obtained. The values of the critical exponents of polycrystalline Ni50Mn35In14Si1 alloy at both the TC's are close to those predicted by mean-field theory confirming the presence of long-range magnetic ordering in the investigated alloy.

  20. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  1. Evidence of half-metallic interface magnetism via local moment formation in Co based Heusler alloys

    SciTech Connect

    Telling, N. D.; Keatley, P.S.; van der Laan, G.; Hicken, R.J.; Arenholz, E.; Sakuraba, Y.; Oogane, M.; Ando, Y.; Miyazaki, T.

    2008-08-18

    In this work we use a combination of x-ray magnetic circular and linear dichroism (XMCD and XMLD) techniques to examine the formation of local moments in Heusler alloys of the composition Co{sub 2}MnX (where X=Si or Al). The existence of local moments in a half-metallic system is reliant upon the band gap in the minority-spin states. By utilizing the element-specific nature of x-ray techniques we are able to explore the origin of the minority-spin band gap in the partial density of states (PDOS), via the degree of localization of moments on Co and Mn atoms. We observe a crucial difference in the localization of the Co moment when comparing Co{sub 2}MnSi (CMS) and Co{sub 2}MnAl (CMA) films that is consistent with the predicted larger minority-spin gap in the Co PDOS for CMS. These results provide important evidence for the dominant role of the Co minority-spin states in realizing half-metallic ferromagnetism (HMF) in these Heusler alloys. They also demonstrate a direct method for measuring the degree of interfacial HMF in the raw materials without the need for fabricating spin-transport devices.

  2. Structure and magnetic properties of Heusler alloy Co2RuSi melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Xin, Yuepeng; Ma, Yuexing; Hao, Hongyue; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan; Liu, Enke; Wu, Guangheng

    2017-08-01

    Heusler alloy Co2RuSi has been synthesized by melt-spinning technology successfully. Co2RuSi bulk sample after annealing is composed of an HCP Co-rich phase and a BCC Ru-Si phase, but melt-spinning can suppress the precipitation of the HCP phase and produce a single Co2RuSi Heusler phase. In the XRD pattern, it is found that Ru has a strong preference for the (A, C) sites, though it has fewer valence electrons compared with Co. This site preference is different from the case in Heusler alloys containing only 3d elements and is supported further by first-principles calculations. Melt-spun Co2RuSi has a Ms of 2.67 μB/f.u. at 5 K and a Tc of 491 K. An exothermic peak is observed at 871 K in the DTA curve, corresponding to the decomposition of the Heusler phase. Finally, the site preference and magnetic properties of Co2RuSi were discussed based on electronic structure calculation and charge density difference.

  3. Magnetic properties of Fe80-xCoxZr7Si13 (x = 0 - 30) amorphous alloys

    NASA Astrophysics Data System (ADS)

    Kopcewicz, M.; Grabias, A.; Latuch, J.

    2011-11-01

    Amorphous Fe80-xCoxZr7Si13 (x = 0 - 30) alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared by melt quenching. Partial substitution of iron by cobalt causes the increase of the hyperfine fields from about 19 to 27 T for x = 0 and 30, respectively, as revealed by conventional Mössbauer spectroscopy. The specialized rf-Mössbauer technique permitted us to estimate the soft magnetic properties of the alloys. The rf-collapse effect, which is very sensitive to the local anisotropy field, is observed for all amorphous FeCoZrSi alloys revealing that they are magnetically very soft. The rf-sidebands intensities, which are related to the magnetostriction, increase with the increase of Co content in the alloys. In Fe60Co20Zr7Si13 and Fe50Co30Zr7Si13 samples the rf field exposure induced partial crystallization that was attributed to mechanical deformations related to high frequency magnetostrictive vibrations forced by the rf field. The magnetostrictive origin of this effect was supported by the measurements of magnetostriction constants of the studied alloys. Measurements of the hysteresis loops revealed that coercivity increases for higher Co content.

  4. Investigation of non-magnetic alloys for the suppression of tritium permeation. Final report

    SciTech Connect

    Turnbull, John C.; Kessler, S. William; Eastman, G. Yale

    1980-07-01

    This report describes a small (300 man hour) literature survey relating to the suppression of tritium loss by permeation through the walls of fusion reactors. The program was based on prior in-house Thermacore work to suppress hydrogen permeation into high temperature (800/sup 0/C) heat pipes. The Thermacore approach involves selection of a steel with a small (.5 to 5%) aluminum content. The aluminum is diffused to the surface and oxidized. The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: Problem Definition and Literature Search and Analysis.

  5. Study of the effect of magnetic ordering on order-disorder transitions in binary alloys

    NASA Astrophysics Data System (ADS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-06-01

    We set up a mean-field approximation in a random Ising model characterized by two order parameters: the local sublattice magnetization and a mean-field occupation variable which act as an order parameter for the order-disorder transition. In the effective model Hamiltonian the two order-parameters are coupled. We solve the coupled equations arising from this to describe the total phase diagram. The exchange energies for FeCo alloys have then been accurately obtained from first-principles based on the technique of orbital peeling and a Monte Carlo analysis using a coupled Metropolis-Kawasaki updating has been carried out. Our results reasonably successfully agree with earlier experimental data.

  6. Magnetic field effects on the electrodeposition of CoNiMo alloys

    NASA Astrophysics Data System (ADS)

    Aaboubi, Omar; Msellak, Khalid

    2017-02-01

    In this work we have examined the influence of applying homogeneous magnetic field (MF) up to 1.2T, on Cobalt- Nickel-Molybdenum (CoNiMo) alloys electrodeposition from citric bath. The surface morphology, chemical composition and the crystallographic texture has been investigated by X-ray diffraction (XRD), X-ray composition mapping and scanning electron microscopy (SEM) images. The mass transport behaviour during the electrodeposition process has been examined through the polarization curves and electrochemical impedance methods. As expected, under MF control an enhancement in the mass transport rate was observed leading to grains refinement and homogeneous distribution of the Co, Mo and Ni atoms in the obtained CoNiMo films. These findings highlight the synergistic combination of Ni, Co and Mo by promoting the MHD convection due to the Lorentz force acting during the Ni(II) and Co(II) ions reduction.

  7. Switching of bistable magnetic states in (NdSmDy)(FeCo)B alloy in the vicinity of a spin-reorientation transition

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. I.; Kostyuchenko, S. A.

    2017-07-01

    Bistable magnetic states with two equiprobable orientations of the magnetization vector (corresponding to opposite polarities of a permanent magnet) exist in (NdSmDy)(FeCo)B magnetic alloy in the vicinity of a spin-reorientation transition. A critical value of the magnetic field strength 1 kOe is determined, at which switching of these bistable magnetic states takes place. It is established that the polarity of polycrystalline sintered magnets of the Nd2Fe14B family in the vicinity of a spin-reorientation transition can be stabilized by a small external bias magnetic field, which opens up new possibilities for using these magnets in cryomagnetic systems.

  8. The structural, electronic and magnetic properties of a novel quaternary Heusler alloy TiZrCoSn

    NASA Astrophysics Data System (ADS)

    Kang, Xu-Hui; Zhang, Jian-Min

    2017-06-01

    The structural, electronic and magnetic properties of the quaternary Heusler alloy TiZrCoSn have been investigated firstly by using the first-principles calculations within GGA and GGA+U methods. The structural study shows the Y-type (I) is the most stable configuration among three possible configurations of the TiZrCoSn alloy in FM phase. The GGA calculation shows the TiZrCoSn alloy at its equilibrium lattice constant 6.536 Å is HM ferromagnet with an indirect band gap of 1.043 eV and a HM gap of 0.353 eV in the spin-down channel. The formation energy of -1.041 eV and the cohesion energy of 24.402 eV indicate the stability of the TiZrCoSn alloy. The Curie temperature of the TiZrCoSn alloy is higher than room temperature shows the TiZrCoSn alloy is suitable for spintronic applications. The band gap in the spin-down channel is formed by the bonding (t2g) states and nonbonding (tu) states created from the d states hybridisation of transition metal atoms Ti, Zr and Co. The TiZrCoSn alloy has an integer total magnetic moment of 3 μB / f.u. , satisfying the Slater-Pauling rule μt=Zt - 18 . In addition, the HM character is kept as hydrostatic strain ranges from -10.3% to 8.4% and tetragonal strain ranges from -16.3% to 20.8%. The similar results are also obtained by GGA+U calculation.

  9. Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  10. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    PubMed

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content

  11. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  12. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    NASA Astrophysics Data System (ADS)

    Ćakιr, Aslι; Righi, Lara; Albertini, Franca; Acet, Mehmet; Farle, Michael; Aktürk, Selçuk

    2013-11-01

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni50Mn50-xGax in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L10, 5M →7M, and 5M→7M→L10 with decreasing temperature. The L10 non-modulated structure is most stable at low temperature.

  13. The electronic and magnetic properties of defects on half-metallic Ti2NiIn alloy

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Ping; Zhang, Ya-Ling; Sun, Xiao-Wei; Song, Ting; Guo, Peng

    2016-01-01

    Using full-potential local-orbital minimum-basis method within density functional theory (DFT), we study the electronic and magnetic properties of ideal and defective Ti2NiIn Heusler alloy. The ideal Ti2NiIn exhibits a half-metallic ferromagnetic behavior with a total magnetic moment of 3.000 μB and a band gap 0.394 eV, which is promising for fabricating spin injection devices as the Fermi level is located in the middle of band gap. Among these studied defects, only NiIn antisite as well as Ti(A) and Ti(B) vacancies retain the half-metallicity. However, the remaining defects destroy the half-metallicity. The calculations of formation energy indicate that Ti(A) vacancy can be spontaneously formed during the fabrications of the alloy. In addition, we also discuss the electronic and magnetic properties under different defects.

  14. Influence of external magnetic fields on the freezing temperature Tf of Ni 79Mn 21 alloys: Evidence for anisotropy rotation

    NASA Astrophysics Data System (ADS)

    Öner, Y.; Firat, T.; Ercan, İ.; Aktaş, B.

    1988-04-01

    DC magnetization measurements have been performed for Ni 79Mn 21 alloys in the temperature range of 4.2 to 50 K. Taking the demagnetizing field into account, the influence of an external magnetic field, Hext, on the re-entrant spin-glass transition temperature Tf of this alloy has been investigated. It has been observed that Tf is independent of Hext if Hext is sma ller than the demagnetizing field HD ( = NMs) where N is the demagnetizing factor; Ms is the value of the saturation magnetization. However, for higher fields, Tf is displaced towards lower temperatures. These results are interpreted in terms of anisotropy rotation based on the "domain-anisotropy" model.

  15. Analysis of Magnetic Minor Hysteresis Loops in Thermally Aged and Cold-rolled Fe-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, F.; Kobayashi, S.; Murakami, T.; Takahashi, S.; Kamada, Y.; Kikuchi, H.

    2011-01-01

    Neutron irradiation causes the formation of Cu precipitate in reactor pressure vessel steel and makes the steel susceptible to rupture. In the present study, we have examined magnetic minor hysteresis loops of Fe-1wt%Cu alloy after thermally ageing at 753 K and subsequent cold rolling to elucidate the effects of Cu precipitation on magnetic properties. Minor-loop coefficients, obtained from scaling power laws between field-dependent parameters of minor hysteresis loops, decrease with ageing time and show a local maximum around 200 min, reflecting the growth of Cu precipitates with ageing. For the alloy cold-rolled after ageing, the minor-loop properties linearly increase with reduction and show a good relationship with mechanical properties such as DBTT and hardness. These observations indicate that the analysis method using magnetic minor loops can be an useful technique of nondestructive evaluation of irradiation embrittlement and subsequent deformation hardening in reactor pressure vessel steels.

  16. Effect of the low magnetic field on the electrodeposition of Co{sub x}Ni{sub 100−x} alloys

    SciTech Connect

    Olvera, S.; Arce Estrada, E.M.; Sanchez-Marcos, J.; Palomares, F.J.; Vazquez, L.; Herrasti, P.

    2015-07-15

    Magnetic, chemical and structural properties of electrosynthesized Co{sub x}Ni{sub 100−x} have been studied. The electrodeposition has been conducted both in the presence and absence of a low magnetic field. The application of a perpendicular magnetic field during the synthesis modified slightly the morphology of the alloys. These changes depend more on the film composition than on the applied field, as demonstrated by AFM images. In the absence of magnetic field, the Co{sub x}Ni{sub 100−x} film grows along the (200) direction. However, when the magnetic field was applied, a preferential orientation along the (111) direction was observed. No important magnetic changes are induced by the presence of the magnetic field during the growth. Based on X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) experiments, the chemical composition of the films was preserved during preparation regardless of whether or not magnetic field is applied. There has been observed an increase in deposition rate in the presence of field even at these low magnetic fields. - Highlights: • CoNi alloys were electrosynthesized in the absence and presence of a low magnetic field. • Application of a magnetic field produced an orientation in the (111) plane of the alloy. • An external field changes the voltammetric curves reducing the energy required for the alloy formation. • The composition and magnetic properties were constant in the absence and presence of magnetic field.

  17. Fundamental studies of strongly magnetic rare earth-transition metal alloys. Technical progress report, [June 19, 1991--June 18, 1992

    SciTech Connect

    Sellmyer, D.J.; Hadjipanayis, G.C.

    1992-07-01

    The goal of this project is to advance our understanding of new phases and microstructures of rare-earth and transition-metal alloys and compounds. In particular we investigate several classes of materials which are expected to have high magnetizations and coercivities, which are necessary conditions for high performance permanent magnet and related applications. Hard and semi-hard magnetic materials form the basis of much of the electric power and information storage industries and the discovery of new and less expensive materials with outstanding properties is of great interest.

  18. Nuclear Magnetic Resonance Studies of II-Vi and Iii-V Semiconductor Alloys

    NASA Astrophysics Data System (ADS)

    Shi, Jian-Hui

    In this thesis, I show how the basic solid-state NMR techniques can be used to study the local electronic structures of II-VI and III-V semiconductor alloys on an atomic scale. We have focused our studies on a few high quality samples, mainly Hg_{rm 1-x}Cd_{rm x} Te in the II-VI group, In-based binary III-V bulk semiconductors InP, InAs and InSb, and the III-V alloys Ga_{rm 1-x}In _{rm x}As. For solid-state-recrystallized device-quality bulk Hg_{rm 1-x}Cd _{rm x}Te samples, with x equal to 0.2, 0.22 and 0.28, corresponding to the narrow-gap semiconducting side of the band-inversion configurations, we have obtained detailed band-edge symmetry information, and site-selective quantitative charge carrier orbital characteristics on an atomic scale. Our study also indicated that a random cation distribution model well described the materials. We have investigated ^{115 }In magnetic resonance frequency shifts and the temperature dependence of these shifts in In-based III-V binary semiconductors. We have extracted the chemical shifts from the total shifts for these III-V semiconductors at 303K and 77K. Our NMR study of these binary semiconductors not only enhanced the understanding of electronic properties of these compounds, but also served as a reference for our NMR studies of III-V alloys. We performed ^{115}In NMR studies for dilute III-V semiconductor alloy Ga _{rm 1-x}In_ {rm x}As with x equal to 0.72%. Spectra clearly indicating the local electronic configurations were obtained. We carried out a series of field orientation studies, and determined the field gradient which is due to In-In pairs. This study provided evidence of local clustering of In atoms.

  19. Magnetic hysteresis loop technique as a tool for the evaluation of σ phase embrittlement in Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kamada, Y.; Murakami, T.; Echigoya, J.; Kikuchi, H.; Kobayashi, S.

    2013-02-01

    Fe-48 wt% Cr alloy was isothermally aged at 700 °C up to 250 h for the formation and growth of σ phase. Micro Vicker's hardness and magnetic hysteresis loop (MHL) measurements were carried out at various lengths of time by interrupting the test to observe the change in mechanical and magnetic properties respectively. A small volume fraction of σ phase did not produce any change in the hardness whereas a drastic decrease in remanence was found for its demagnetizing effect. The existence of σ phase was confirmed by transmission electron microscopy. The maximum induction of the alloy decreased with thermal ageing as the volume of ferrites decreased for the formation of non-magnetic σ phase. The volume fraction of σ phase was estimated from the maximum induction. The results showed that MHL technique can even detect 1% of σ phase in the alloy considering remanence as a measuring parameter. Hence MHL would be a powerful non-destructive evaluation technique for the evaluation of σ phase embrittlement in Fe-Cr alloys.

  20. Study on the microstructures and the magnetic properties of precipitates in a Cu75-Fe5-Ni20 alloy.

    PubMed

    Kang, Sung; Takeda, Mahoto; Takeguchi, Masaki; Hiroi, Zenji; Kim, Geun-Woo; Bae, Dong-Sik; Lee, Chan-Gyu; Koo, Bon-Heun

    2012-02-01

    The microstructural evolutions of precipitates formed in a Cu75-Fe5-Ni20 alloy on isothermal annealing at 873 K and 1073 K have been investigated by means of transmission electron microscopy (TEM). Nano-scale magnetic particles were formed randomly in the Cu-rich matrix after receiving a short annealing due to phase decomposition in the alloy. With increasing the isothermal annealing time, however, the striking features that two or more nano-scale particles with a cubic shape and a rod shape were aligned linearly along (100) directions were observed on isothermal annealing at 873 K and 1073 K, respectively. To investigate electro-magnetic properties of precipitates in a Cu-Fe-Ni alloy, the superconducting quantum interference device (SQUID) magnetometer and physical property measurement system (PPMS) were also complemented. The present study revealed significant influences that the magnetic properties of the specimens were closely related to the microstructures in the Cu-Fe-Ni alloy, which microstructures significantly depend on the isothermal annealing temperature.

  1. Study of the magnetic properties, structure, and phase transformation in the alloys of the Co-Al-W system

    SciTech Connect

    Davidov, D. I. Stepanova, N. N. Kazantseva, N. V. Rigmant, M. B. Shishkin, D. A.

    2015-10-27

    An experimental study of phase transformations in the system of Co-Al-W in the concentration area of the intermetallic compound Co{sub 3}(Al, W) is presented. The structure and phase composition of the Co–9 at % Al–X at % W (X = 4.5, 6.8, 8.5, 10, 12.5) alloys in depending on the tungsten content are analyzed. The Curie temperature and magnetic properties of the alloys with the different phase composition are determined.

  2. Consecutive magnetic and magnetocaloric transitions in herringbone nanostructured Heusler Mn50Ni41Sn9 alloy.

    PubMed

    Prasanna, A A; Ram, S; Fecht, H J

    2013-08-01

    A herringbone nanostructured Mn-rich Heusler Mn50Ni50-Sndelta (8 - 9) alloy exhibits tailored magnetocaloric properties in the martensite and ferro <-> paramagnetic transitions concur in a narrow temperature window. In a Sn --> Ni substitution 8 - 9, the martensite (M) <-- austenite (A) transition up-lifts adequately well above the room temperature - 310.5 K in the DSC thermogram and magnetization scanned with temperature. A noninterrupted heating following a cooling in DSC at a given rate gives a smaller enthalpy change deltaH(M <-- A) - deltaH(M --> A approximately equal to 282 mJ/g (deltaC(P)(M <-- A) - deltaC(P)(M --> A) approximately equal to 0.025 mJ/g-K in the heat capacity), i.e., the M <-> A transition process lacks a complete reversibility. Warming a zero-field cooled sample retains lower magnetization (sigma) at low fields B, e.g., by 58% over the field cooled value at 5 mT, wherein merely low field magnetic susceptibility imparts the magnetization process. A reversible thermal hysteresis thus the transition traces in cooling and heating. The field diminishes difference in two sigma-values progressively, e.g., only - 12% lasts at 5 T. The two curves bifurcate below 160 K (B-5 mT) and the gap grows exponentially over lower temperatures before sigma(M <-- A) gets steady near 60 K in a superparamagnetic (SPM) behavior. The SPM feature (follows the Langevin model) below a paramagnetic regime begins (> or = 250 K) before a ferromagnetic A-state lines-up the successive transitions. Temperature and frequency dependence ac and dc susceptibilities describe the surface spins dynamics.

  3. Proton and deuteron nuclear magnetic resonance studies of amorphous hydrogenated silicon, carbon, and carbon alloys

    NASA Astrophysics Data System (ADS)

    Kernan, Mary Jane Wurth

    Despite the profound influence of semiconductors and the changes they have produced, many fundamental questions remain unanswered. We have used proton and deuteron nuclear magnetic resonance (NMR) to explore the role of hydrogens in amorphous silicon and amorphous carbon and carbon alloy films. In the carbon films, dipolar filtering techniques reveal a two-component shifted lineshape in the proton NMR spectra and deuteron magnetic resonance (DMR) data demonstrate a feedstock gas dependence in the film deposition process. In these measurements, DMR is used to examine the effect of hydrogen on the photovoltaic properties of amorphous silicon thin films. We have measured the effects of photoillumination on amorphous silicon, particularly with respect to the process of metastable defect formation (the Staebler-Wronski effect). The creation and passivation of dangling silicon bonds is observed and quantified. We report large-scale light-induced atomic rearrangements which produce shifts and broadenings of the DMR lineshapes. The deuterium NMR lineshape component most affected by atomic rearrangements is a broad central feature which is shown to be molecular in origin. This spectral feature includes hydrogens trapped and immobile on surfaces created by strains and dislocations in the material. Narrowing of the lineshape at elevated temperatures indicates motion with a small activation energy. The substantial population represented by this feature is shown to account for at least 15% of the total hydrogens in high-quality amorphous silicon samples.

  4. Macrosegregation of GeSi Alloys Grown in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ritter, T. M.; Volz, M. P.; Cobb, S. D.; Szofran, F. R.

    1999-01-01

    Axial and radial macrosegregation profiles have been determined for GeSi alloy crystals grown by the vertical Bridgman technique. An axial 5 Tesla magnetic field was applied to several samples during growth to decrease the melt velocities by means of the Lorentz force. Compositions were measured with either energy dispersive X-ray spectroscopy (EDS) on a scanning electron microscope (SEM) or by wavelength dispersive X-ray spectroscopy (WDS) on a microprobe. The crystals were processed in graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN) ampoules, which produced various solid-liquid interface shapes during solidification. Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. Possible explanations for the apparent insufficiency of the magnetic field to achieve diffusion controlled growth conditions are discussed.

  5. Design, modelling and control of a micro-positioning actuator based on magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Minorowicz, Bartosz; Leonetti, Giuseppe; Stefanski, Frederik; Binetti, Giulio; Naso, David

    2016-07-01

    This paper presents an actuator based on magnetic shape memory alloys (MSMAs) suitable for precise positioning in a wide range (up to 1 mm). The actuator is based on the spring returned operating mode and uses a Smalley wave spring to maintain the same operating parameters of a classical coil spring, while being characterized by a smaller dimension. The MSMA element inside the actuator provides a deformation when excited by an external magnetic field, but its behavior is characterized by an asymmetric and saturated hysteresis. Thus, two models are exploited in this work to represent such a non-linear behavior, i.e., the modified and generalized Prandtl-Ishlinskii models. These models are particularly suitable for control purposes due to the existence of their analytical inversion that can be easily exploited in real time control systems. To this aim, this paper investigates three closed-loop control strategies, namely a classical PID regulator, a PID regulator with direct hysteresis compensation, and a combined PID and feedforward compensation strategy. The effectiveness of both modelling and control strategies applied to the designed MSMA-based actuator is illustrated by means of experimental results.

  6. Creep Void Detection for Low Alloy Steel Using AC Magnetic Method

    SciTech Connect

    Shiwa, M.; Cheng, W.; Kume, R.

    2004-02-26

    Nondestructive detection of creep void was developed for low alloy steel by using AC magnetic method. Two types of 2.25Cr-1Mo steel specimens, base metal (BM) and simulated heat affected zone (HAZ) under aging and creep damage, were prepared for the tests. A differential type probe was used to detect AC magnetic signals. The exciting and detecting coils were coaxially arranged with a ferrite core. Signals were recorded using a 2-channel waveform recorder. The equivalent hysteresis loss (HL) was analyzed. It was observed that the HL of BM and HAZ changed in opposite direction, that is, HL of BM increased and HL of HAZ decreased with aging time. On the other hand, the HLs of both BM and HAZ decreased with creep time. The HL of creep samples was affected by both aging and stress-induced damage. In order to evaluate creep damage, stress-induced damage (SID) parameter was proposed to remove aging factor of materials from HL. Creep void were observed by scanning electron microscope (SEM) for all creep damage samples of SID value under 0.8.

  7. Magnetic Compton scattering study of the Co2FeGa Heusler alloy: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Deb, Aniruddha; Itou, M.; Sakurai, Y.; Hiraoka, N.; Sakai, N.

    2001-02-01

    The spin density in Co2FeGa Heusler alloy has been measured in a magnetic Compton scattering experiment using 274-keV circularly polarized synchrotron radiation at the high energy inelastic scattering beamline (BL08W) at SPring-8, Japan. A detailed band-structure calculation including hyperfine field study was performed utilizing the generalized gradient corrected full-potential linear augmented plane-wave (FLAPW-GGA) method. The magnetic Compton profiles for the [100], [110], and [111] principal directions, reported here, show anisotropy in the momentum density which is in good agreement with the FLAPW-GGA results based on ferromagnetic ground state. The conduction electrons were found to have a negative spin polarization of 0.60μB, which is at variance with the prediction of a positive moment from the recent neutron data. In the calculation, 3d spin moment at the Co and Fe site was found to be 1.20μB and 2.66μB, and their respective contribution in the eg and t2g sub-bands are in excellent agreement with the earlier reported neutron-diffraction measurements. It is also seen from our calculated results that the Co and Fe moment are mainly eg in character.

  8. Spin-orbit torques in Ta/TbxCo100-x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ueda, Kohei; Mann, Maxwell; Pai, Chi-Feng; Tan, Aik-Jun; Beach, Geoffrey S. D.

    2016-12-01

    We quantified the bulk perpendicular magnetic anisotropy (PMA) and spin-orbit torques (SOTs) in bilayer Ta/TbxCo100-x ferrimagnetic alloy films with varying Tb concentration. The coercivity increases dramatically with increasing TbxCo100-x thickness and is enhanced by the presence of a Ta underlayer. The Ta underlayer simultaneously serves as a source of SOT due to the spin Hall effect, which we show provides an efficient means to manipulate the magnetization in bulk PMA materials. It is further shown that the sign of the anomalous Hall voltage is different for rare-earth (RE) and transition-metal (TM) dominated alloy compositions, whereas the sign of the SOT effective field remains the same, suggesting that the former is related to the TM sublattice magnetization whereas the latter is related to the net magnetization. Our results suggest that Ta/TbxCo100-x is a potential candidate for spin-orbitronic device applications and give insight into spin transport and SOTs in rare-earth/transition-metal alloys.

  9. Effect of magnetism on the vibrational properties of the Ni-Cu alloy: a first-principles study

    NASA Astrophysics Data System (ADS)

    de La Pena-Seaman, Omar; Bustamante-Romero, Ivan; Heid, Rolf; Bohnen, Klaus-Peter

    2013-03-01

    We have studied the lattice dynamical properties of the Ni1-xCux magnetic alloy within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the virtual crystal approximation for modeling the alloy. The system has been investigated for both non-magnetic (NM) and ferromagnetic (FM) phases. The performance of LDA and GGA exchange-correlation functionals on the properties under study was analyzed. The structural optimization for each magnetic phase, NM and FM, in the full range of concentrations (0 <= x <= 1) was performed. By studying the electronic structure and its evolution as a function of x, we determined the FM-NM phase transition at x ~ 0 . 45 . The calculated full phonon dispersion for NM and FM phases are compared between each other and with experimental data available in the literature at different concentrations. In addition, a detailed analysis of the force constants average coupling was performed, finding a clear signature of the magnetism effects on the vibrational properties for the Ni-Cu alloy. This research was supported by PROMEP/103.5/12/4367 under project BUAP-PTC-299

  10. Influence of thermal debinding on the final properties of Fe-Si soft magnetic alloys for metal injection molding (MIM)

    NASA Astrophysics Data System (ADS)

    Páez-Pavón, A.; Jiménez-Morales, A.; Santos, T. G.; Quintino, L.; Torralba, J. M.

    2016-10-01

    Metal injection molding (MIM) may be used to produce soft magnetic materials with optimal mechanical and magnetic properties. Unlike other techniques, MIM enables the production of complex and small Fe-Si alloy parts with silicon contents greater than 3% by weight. In MIM process development, it is critical to design a proper debinding cycle not only to ensure complete removal of the binder system but also to obtain improved properties in the final part. This work is a preliminary study on the production of Fe-3.8Si soft magnetic parts by MIM using pre-alloyed powders and a non-industrialized binder. Two different heating rates during thermal debinding were used to study their effect on the final properties of the part. The final properties of the sintered parts are related to thermal debinding. It has been demonstrated that the heating rate during thermal debinding has a strong influence on the final properties of Fe-Si soft magnetic alloys.

  11. Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys

    NASA Astrophysics Data System (ADS)

    Jiao, Zengbao; Li, Hongxiang; Wu, Yuan; Gao, Jingen; Wang, Shanlin; Yi, Seonghoon; Lu, Zhaoping

    2010-03-01

    Glass formation, mechanical and magnetic properties of the Fe76- x C7.0Si3.3B5.0P8.7Mo x ( x=0, 1 at.%, 3 at.% and 5 at.%) alloys prepared using an industrial Fe-P master alloy have been studied. With the substitution of Mo for Fe, glass-forming ability (GFA) was significantly enhanced and fully amorphous rods with a diameter of up to 5 mm were produced in the alloy with 3% Mo. The Mo-containing amorphous alloys also exhibited high fracture strength of 3635-3881 MPa and excellent magnetic properties including a high saturation magnetization of 1.10-1.41 T, a high Curie temperature and a low coercive force. The unique combination of high GFA, high fracture strength and excellent magnetic properties make the newly developed bulk metallic glasses viable for practical engineering applications.

  12. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    SciTech Connect

    Salazar Mejía, C. Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  13. Model of thermally activated magnetization reversal in thin films of amorphous rare-earth-transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Lyberatos, A.; Earl, J.; Chantrell, R. W.

    1996-03-01

    Monte Carlo simulations on a two-dimensional lattice of magnetic dipoles have been performed to investigate the magnetic reversal by thermal activation in rare-earth-transition-metal (RE-TM) alloys. Three mechanisms of magnetization reversal were observed: nucleation dominated growth, nucleation followed by the growth of magnetic domains containing no seeds of unreversed magnetization, and nucleation followed by dendritic domain growth by successive branching in the motion of the domain walls. The domain structures are not fractal; however, the fractal dimension of the domain wall was found to be a good measure of the jaggedness of the domain boundary surface during the growth process. The effects of the demagnetizing field on the hysteretic and time-dependent properties of the thin films were studied and some limitations in the application of the Fatuzzo model on magneto-optic media are identified.

  14. Effect of magnetic field on the crystalline structure of magnetostrictive TbFe2 alloy solidified unidirectionally in microgravity.

    PubMed

    Okutani, Takeshi; Nakata, Yoshinori; Nagai, Hideaki

    2004-11-01

    We performed unidirectional solidification experiments on TbFe(2) alloy in a static magnetic field in microgravity of 10(-4) g for 10 sec obtained by a 490 m free fall of the Japan microgravity center (JAMIC). When the magnetic field strength was increased from zero to 4.5 x 10(-2) T during unidirectional solidification in microgravity, a [1 1 1] crystallographic alignment dominated, and the maximum magnetostriction constant increased from 1,000 ppm to 4,000 ppm. For unidirectional solidification in normal gravity, the maximum magnetostriction constant remained at 2,000 ppm with increasing magnetic field. The columnar structure grows and orients along the magnetic field. TbFe(2) crystals grow in microgravity predominantly in the same direction as the magnetic field.

  15. Thermodynamics-based models for the magneto-mechanical response of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    LaMaster, Douglas H.

    Magnetic shape memory alloys (MSMAs) are a relatively new class of smart material that exhibit large recoverable strain (up to 10%) [1] and fast response time (higher than 1 kilohertz) [2]. MSMAs are comprised of martensitic variants arranged as tetragonal unit cells with one short side, denoted by c, and two longer sides, denoted by a. With single crystal MSMAs, these variants align with one of the three Cartesian directions, and the volume fraction of variants with short side aligned in the i-direction is given by ξi. The boundary between two variants, called the twin boundary, moves as one variant volume fraction grows at the expense of the other. Under an applied compressive stress in the i-direction, variants will reorient into the ξi configuration to align the short side of the unit cell with the compressive stress. Each variant has an internal magnetization vector of length Msat that is approximately [3] aligned with the short length of the unit cell in the absence of an external applied magnetic field. This internal magnetization vector tends to align with an externally applied field to minimize the energy in the MSMA. The magnetization vector may align with the external field by: 1) changing internal magnetic domains, 2) rotating magneti- zation vectors away from the easy axis, or 3) variant reorientation . The fraction of the magnetic domains in the ξi variant with easy-axis in the i-direction is denoted by αi, and the domain fraction of the ξi variants with easy axis in the direction opposite to the i-direction is given by (1 - αi). Under an applied field in the i-direction, the αi domain will grow at the expense of the (1 - αi) domain, and vice versa for an applied field in the -i-direction. When the volume fraction αi reaches either 1 or 0, this domain wall motion ceases and the domains are said to be saturated. After domains in ξi have saturated, increasing the magnetic field further may rotate the magnetization vectors in other variants

  16. Magnetic Properties of Fe{sub x}Mn{sub 1-x}In{sub 2}S{sub 4} Alloy Single Crystals

    SciTech Connect

    Bodnar, I. V.; Trukhanov, S. V.

    2011-11-15

    This study concerns the magnetic properties of single crystals of Fe{sub x}Mn{sub 1-x}In{sub 2}S{sub 4} alloys. The basically antiferromagnetic character of indirect exchange interactions between Fe{sup 2+} and Mn{sup 2+} cations is established. As the concentration of Fe{sup 2+} cations is increased, the magnetic ordering temperature increases from {approx}12 K (x = 0) to {approx}22 K (x = 1). Short-range-order ferromagnetic correlations are observed. The basic magnetic phase state of the alloys is the spin glass state, with the freezing temperature increasing from {approx}5 K (x = 0) to {approx}12 K (x = 1). As the external magnetic field is increased, the magnetic ordering temperature slightly decreases. The most probable causes and mechanisms of formation of the magnetic state of the alloys are discussed.

  17. Magnetic AC susceptibility study of the cobalt segregation process in melt-spun Cu-Co alloys

    NASA Astrophysics Data System (ADS)

    López, A.; Lázaro, F. J.; von Helmolt, R.; García-Palacios, J. L.; Wecker, J.; Cerva, H.

    1998-08-01

    Temperature and frequency-dependent AC susceptibility has been used to characterize Cu 90Co 10 melt-spun ribbons, about 15 μm thick, in order to see to what extent this technique yields information about the segregation of cobalt in this alloy. The interpretation of the results includes, as a prerequisite, a transmission electron microscopy (TEM) characterization and makes use of previous field-dependent magnetization data on the same samples. Due to their different dynamical magnetic properties, the large intergrain precipitates, the small intragrain aggregates and the remaining Cu-Co solid solution, previously detected in these alloys, are independently observed by AC susceptibility as ferromagnetic, superparamagnetic and spin-glass species. Contrary to other, mostly local, microstructural characterization techniques of use with nanostructured materials, the AC susceptibility yields information about the whole sample. Furthermore, unlike the measurement of the temperature-dependent magnetization which is the magnetic technique mostly used until now, the results are basically independent of the thermal history. The correlation between microstructure and magnetic properties is illustrated by a scheme which includes magnetization, AC susceptibility and TEM data.

  18. Effect of a transverse magnetic field on primary-Si distribution during directional solidification in hypereutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Hu, Shaodong; Dai, Yanchao; Gagnoud, Annie; Fautrelle, Yves; Moreau, Rene; Deng, Kang; Ren, Zhongming; Li, Xi

    2017-06-01

    The effect of a transverse magnetic field on the distribution of the primary Si in a directionally solidified Al-21 wt.% Si alloy is investigated. The results reveal that the application of the magnetic field leads to the appearance of banded structures of primary Si. Furthermore, the inclination of the banded structure decreases with the increase of magnetic-field intensity. The in situ measurement results of the Seebeck signal confirm the existence of a thermoelectric power difference between the solid phase and the liquid phase at the solid/liquid interface in the directionally solidified Al-21 wt.% Si alloy. Thus, the formation of the banded structures should be attributed to the thermoelectric magnetic convection (TEMC) and the resultant force of the primary Si, i.e., gravity force and thermoelectric magnetic force (TEMF). The migration of the primary Si toward the lower left side of the sample is induced by the resultant force, which leads to the formation of banded structures. Moreover, the increase of magnetic-field intensity increases the resultant force of the primary Si, resulting in a decrease of the inclination of banded structure.

  19. Rapid Solidification and Magnetic Properties of (Fe,Co)-(Fe,Co)17Gd2 Pseudo-Binary Eutectic Alloys.

    PubMed

    Yao, W J; Zhang, Y Y; Wang, N; Lee, J H

    2015-03-01

    The (Fe,Co)-(Fe,Co)17Gd2 pseudo-binary eutectic system has been determined by investigating phase compositions on the analysis of DSC, EDS and XRD. The rapid solidification of Gd7.3Fe30.56Co62.14, Gd9Fe30Co61 and Gd9.63Fe29.79Co60.58 ternary alloys is realized by single roller techniques. With a rising cooling rate, the equiaxed zone near the roller surface expands inwards. For Gd7.3Fe30.56Co62.14 hypoeutectic alloy ribbons, the feathery irregular eutectic zone shrinks and the grains (Fe,Co) near the free surface are refined. (Fe,Co) equiaxed dendrites plus the radial, irregular eutectic ultimately fill in the ribbon at the maximum cooling rate. For Gd9Fe30Co61 near-eutectic alloy ribbons, the growth direction of irregular eutectics near the free surface becomes more and more perpendicular to the surface, and finally the whole ribbons are occupied by the fine, irregular eutectic. The dendritic spacing of the (Fe,Co)17Gd2 phase which grows from the roller surface to the free surface in Gd9.63Fe29.79Co60.58 alloy ribbons becomes smaller. The grain size of the (Fe,Co)17Gd2 dendrite and the fraction of (Fe,Co) soft phase in alloy ribbons, which determine coercivity in the pseudo-binary eutectic system, vary with the increase of the cooling rate. Of the three alloys, the Gd9Fe30Co61 alloy has the best hard magnetic properties at Vr = 20 m/s; the maximum coercivity Hc is 431.34 Oe.

  20. Characterization of Alloys with Potential for Application in Cable-in-Conduit Conductors for High-Field Superconducting Magnets

    SciTech Connect

    Walsh, R.P.; Miller, J.R.; Toplosky, V.J.

    2004-06-28

    Since the introduction of the cable-in-conduit conductor (CICC) concept, a variety of alloys have been proposed for fabricating the jacket. The jacket provides primary containment of the supercritical helium coolant and is typically also the primary structural component for the magnet. These functions create requirements for strength, toughness, weldability, and fabricability in tubular form. When the CICC uses Nb3Sn, there are additional requirements to accommodate the manufacturing and heat-treatment processes for the superconductor as well as its strain-sensitive performance during operation. Both of the present favorite jacket alloys, Incoloy 908 and modified (ultra-low carbon) 316LN, have both demonstrated acceptable functionality as well as a few undesirable features. In this paper, we present data from cryogenic mechanical tests on a group of heat-resistant, high-strength superalloys that appear to offer equal or better mechanical performance (e.g. strength, toughness, and modulus) while mitigating the undesirable aspects (e.g. SAGBO in the case of I908 and thermal-expansion mismatch with Nb3Sn in the case of 316LN). Data are presented for each alloy in the as-received and aged conditions. These alloys are presently being considered as candidates for use in the next-generation hybrid magnet for the NHMFL but may also be of interest to the fusion and energy storage communities.