46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 35.05-15 - Tank vessel security-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... scuppers, if any, unobstructed; meets any loadline or freeboard requirements; and neither leaks cargo into the water, voids, or cofferdams nor leaks water into the tanks, voids, or cofferdams; (ii) Ensuring... checks are made of every tank barge in the tow for leakage of cargo into the water, voids, or cofferdams...
46 CFR 30.10-13 - Cofferdam-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Cofferdam-TB/ALL. 30.10-13 Section 30.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-13 Cofferdam—TB/ALL. The term cofferdam means a void or empty space separating two or more compartments for the...
46 CFR 30.10-13 - Cofferdam-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Cofferdam-TB/ALL. 30.10-13 Section 30.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-13 Cofferdam—TB/ALL. The term cofferdam means a void or empty space separating two or more compartments for the...
46 CFR 30.10-13 - Cofferdam-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Cofferdam-TB/ALL. 30.10-13 Section 30.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-13 Cofferdam—TB/ALL. The term cofferdam means a void or empty space separating two or more compartments for the...
46 CFR 30.10-13 - Cofferdam-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Cofferdam-TB/ALL. 30.10-13 Section 30.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-13 Cofferdam—TB/ALL. The term cofferdam means a void or empty space separating two or more compartments for the...
46 CFR 30.10-13 - Cofferdam-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Cofferdam-TB/ALL. 30.10-13 Section 30.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-13 Cofferdam—TB/ALL. The term cofferdam means a void or empty space separating two or more compartments for the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...
Code of Federal Regulations, 2014 CFR
2014-10-01
... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...
Code of Federal Regulations, 2011 CFR
2011-10-01
... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...
Code of Federal Regulations, 2010 CFR
2010-10-01
... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...
Code of Federal Regulations, 2012 CFR
2012-10-01
... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2012-10-01 2012-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...
Code of Federal Regulations, 2013 CFR
2013-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2010 CFR
2010-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2014 CFR
2014-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2011 CFR
2011-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2012 CFR
2012-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Stability analysis of Caisson Cofferdam Based on Strength Reduction Method
NASA Astrophysics Data System (ADS)
Xu, B. B.; Zhang, N. S.
2018-05-01
The working mechanism of the caisson cofferdam depends on the self-weight of the structure and internal filling to ensure its skid resistance and overturn resistance stability. Using the strength reduction method, the safety factor of the caisson cofferdam can be obtained. The potential slide surface can be searched automatically without constraining the range of the arc center. According to the results, the slippage surface goes through the bottom of the caisson. Based on the judgement criterion of the strength reduction method, the final safety factor is about 1.65.
Aeppli, Christoph; Reddy, Christopher M; Nelson, Robert K; Kellermann, Matthias Y; Valentine, David L
2013-08-06
We used alkenes commonly found in synthetic drilling-fluids to identify sources of oil sheens that were first observed in September 2012 close to the Deepwater Horizon (DWH) disaster site, more than two years after the Macondo well (MW) was sealed. While explorations of the sea floor by BP confirmed that the well was sound, they identified the likely source as leakage from an 80-ton cofferdam, abandoned during the operation to control the MW in May 2010. We acquired sheen samples and cofferdam oil and analyzed them using comprehensive two-dimensional gas chromatography. This allowed for the identification of drilling-fluid C16- to C18-alkenes in sheen samples that were absent in cofferdam oil. Furthermore, the spatial pattern of evaporative losses of sheen oil alkanes indicated that oil surfaced closer to the DWH wreckage than the cofferdam site. Last, ratios of alkenes and oil hydrocarbons pointed to a common source of oil found in sheen samples and recovered from oil-covered DWH debris collected shortly after the explosion. These lines of evidence suggest that the observed sheens do not originate from the MW, cofferdam, or from natural seeps. Rather, the likely source is oil in tanks and pits on the DWH wreckage, representing a finite oil volume for leakage.
46 CFR 32.65-15 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., 1951 § 32.65-15 Cofferdams—TB/ALL. Tank vessels equipped to carry Grade A, B, C, or D liquids shall have their galleys, living quarters, general cargo spaces, boiler rooms, and enclosed spaces containing... their cargo tanks by cofferdams or equivalent pumprooms, tanks, or air spaces. ...
46 CFR 32.65-15 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., 1951 § 32.65-15 Cofferdams—TB/ALL. Tank vessels equipped to carry Grade A, B, C, or D liquids shall have their galleys, living quarters, general cargo spaces, boiler rooms, and enclosed spaces containing... their cargo tanks by cofferdams or equivalent pumprooms, tanks, or air spaces. ...
46 CFR 32.65-15 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., 1951 § 32.65-15 Cofferdams—TB/ALL. Tank vessels equipped to carry Grade A, B, C, or D liquids shall have their galleys, living quarters, general cargo spaces, boiler rooms, and enclosed spaces containing... their cargo tanks by cofferdams or equivalent pumprooms, tanks, or air spaces. ...
46 CFR 32.65-15 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., 1951 § 32.65-15 Cofferdams—TB/ALL. Tank vessels equipped to carry Grade A, B, C, or D liquids shall have their galleys, living quarters, general cargo spaces, boiler rooms, and enclosed spaces containing... their cargo tanks by cofferdams or equivalent pumprooms, tanks, or air spaces. ...
46 CFR 32.65-15 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., 1951 § 32.65-15 Cofferdams—TB/ALL. Tank vessels equipped to carry Grade A, B, C, or D liquids shall have their galleys, living quarters, general cargo spaces, boiler rooms, and enclosed spaces containing... their cargo tanks by cofferdams or equivalent pumprooms, tanks, or air spaces. ...
46 CFR 151.45-2 - Special operating requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cargo into the water, voids, or cofferdams nor leaks water into the tanks, voids, or cofferdams; (ii... ballasting) substantially free of water. Periodic inspections and necessary pumping shall be carried out to insure maintenance of such water-free condition in order to minimize the free surface effects, both in...
46 CFR 32.70-10 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...
46 CFR 32.70-10 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...
46 CFR 32.70-10 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...
46 CFR 32.70-10 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...
46 CFR 32.70-10 - Cofferdams-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...
Improved corrosion control by coating in the splash zone and subsea
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, R.C.; VanHooff, W.
1989-01-01
The splash zone around offshore structures is without doubt one of nature's most hostile and corrosive environments. Apart from the wave impacts, plentiful supplies of oxygen, lack of cathodic protection, and the salt spray that continually wets and then dries upon objects, the region is difficult and sometimes dangerous to access. This article reviews the performance of two new offshore repair coatings recently installed on North Sea and Gulf of Mexico installations. The first coating, a reinforced heat-shrinkable sleeve, is designed to be installed over properly cleaned and dried steel surfaces. Suitable conditions for the application of this coating existmore » during low tide and calm weather when certain exposed sections of the splash zone are accessible. Alternatively, by using a special remote-controlled cofferdam chamber to create an artificial local environment, subsea coating application can proceed under ideal conditions. Cofferdam chamber installations are diver-free and can be made throughout the entire splash zone, even during rough weather. When a remote-controlled cofferdam is not available and repairs are needed in subsea or wet areas, diver assistance is usually required. The second coating system, a gel-based, diver-applied tape, has been developed specifically for such applications.« less
D Animation Reconstruction from Multi-Camera Coordinates Transformation
NASA Astrophysics Data System (ADS)
Jhan, J. P.; Rau, J. Y.; Chou, C. M.
2016-06-01
Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.
Major, Jon J.; Spicer, Kurt R.; Collins, Rebecca A.
2010-01-01
In 2007, Marmot Dam on the Sandy River, Oregon, was removed and a temporary cofferdam standing in its place was breached, allowing the river to flow freely along its entire length. Time-lapse imagery obtained from a network of digital single-lens reflex cameras placed around the lower reach of the sediment-filled reservoir behind the dam details rapid erosion of sediment by the Sandy River after breaching of the cofferdam. Within hours of the breaching, the Sandy River eroded much of the nearly 15-m-thick frontal part of the sediment wedge impounded behind the former concrete dam; within 24-60 hours it eroded approximately 125,000 m3 of sediment impounded in the lower 300-meter-reach of the reservoir. The imagery shows that the sediment eroded initially through vertical incision, but that lateral erosion rapidly became an important process.
Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.
2009-01-01
Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.
Underwater noise reduction of marine pile driving using a double pile.
DOT National Transportation Integrated Search
2015-12-01
Impact pile driving of steel piles in marine environments produces extremely high sound levels in the water. : It has been shown that current pile driving noise attenuation techniques, such as bubble curtains and : cofferdams, provide limited noise r...
33 CFR 148.5 - How are terms used in this subchapter defined?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and calculations for construction of deepwater ports, conducting inspections, witnessing tests, and..., or naturalization; (2) Any State, State agency, or group of States; or (3) Any corporation... cofferdam or double bottom tank; or (2) Is not designed for continuous occupancy by personnel. Construction...
46 CFR 154.7 - Definitions, acronyms, and terms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Chapter II-2 of the 1974 Safety Convention. Accommodation spaces means public spaces, corridors... appliances, and spaces used in a similar fashion. Boiling point means the temperature at which a substance's... include the cofferdams, ballast spaces, or void spaces at the after end of the aftermost hold space or the...
46 CFR 151.13-5 - Cargo segregation-tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...
46 CFR 154.7 - Definitions, acronyms, and terms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Chapter II-2 of the 1974 Safety Convention. Accommodation spaces means public spaces, corridors... appliances, and spaces used in a similar fashion. Boiling point means the temperature at which a substance's... include the cofferdams, ballast spaces, or void spaces at the after end of the aftermost hold space or the...
46 CFR 151.13-5 - Cargo segregation-tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...
46 CFR 154.7 - Definitions, acronyms, and terms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Chapter II-2 of the 1974 Safety Convention. Accommodation spaces means public spaces, corridors... appliances, and spaces used in a similar fashion. Boiling point means the temperature at which a substance's... include the cofferdams, ballast spaces, or void spaces at the after end of the aftermost hold space or the...
46 CFR 151.13-5 - Cargo segregation-tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...
46 CFR 151.13-5 - Cargo segregation-tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...
46 CFR 154.7 - Definitions, acronyms, and terms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Chapter II-2 of the 1974 Safety Convention. Accommodation spaces means public spaces, corridors... appliances, and spaces used in a similar fashion. Boiling point means the temperature at which a substance's... include the cofferdams, ballast spaces, or void spaces at the after end of the aftermost hold space or the...
46 CFR 151.13-5 - Cargo segregation-tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...
94. Photographic copy of historic photo, December 26, 1929 (original ...
94. Photographic copy of historic photo, December 26, 1929 (original print filed in Record Group 115, National Archives, Washington, D.C.). OWYHEE DAM-LOADING CAR FROM CABLEWAY SKIP. CABLEWAY CONTROL HOUSE IN UPPER RIGHT, PART OF UPPER COFFERDAM AT LEFT. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
46 CFR 132.390 - Added requirements for carriage of flammable or combustible cargo.
Code of Federal Regulations, 2014 CFR
2014-10-01
... if GT ITC is not assigned). (b) Cargo tanks containing flammable or combustible liquids must not be located beneath the accommodations or machinery space. Separation by cofferdams is not acceptable for... cubic meters or more intended for the carriage of flammable or combustible liquids with a closed-cup...
83. Photographic copy of historic photo, December 16, 1929 (original ...
83. Photographic copy of historic photo, December 16, 1929 (original print filed in Record Group 115, National Archives, Washington, D.C.). OWYHEE DAM-LOOKING DOWNSTREAM FROM UPPER COFFERDAM (POINT #15) SHOWING CREVICE AND KEYWAY CUTOFF; ALSO CABLEWAY CONTROL HOUSE AND ENTRANCE ADIT. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
2D Hydrodynamic Investigation of Olmsted Cofferdams
2013-07-01
34 Figure 30. HEC - RAS cross-section locations in the AdH 2012. ........................................................... 34...stress in Pascals for Condition 1 (typical). ........................................................ 40 Figure 43. HEC - RAS cross-section locations in...Then in 2008, CHL used an Adaptive Hydraulics model (AdH) to further evaluate potential impacts on mussel beds. In 2012, LRL used a HEC - RAS model to
46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.
Code of Federal Regulations, 2010 CFR
2010-10-01
... it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... carrying cargoes with which it is incompatible. Except as described in § 150.160, the person in charge of a... any cargo in table I with which it is incompatible by two barriers such as formed by a: (1) Cofferdam...
1992-12-01
problems. Leadership forums were conducted for chiefs of structural design from each office for both military and civil works areas. (Continued) 14...Photographs ....................................... 7 Maintaining Design Quality in the Corps of Engineers .................... II Expedited Design and...25 Portugues Dam Monolith Layout and Survey Control ...................... 33 Cofferdam Design Problems, Point Marion Lock
4. Aerial view (altitude 2,000 ft.) looking north showing Dry ...
4. Aerial view (altitude 2,000 ft.) looking north showing Dry Dock No. 4 (upper left) under construction. Cofferdam is still in place. Note caisson sitting in caisson seat at east end of dock (2/8/43). Photographer: A. E. Weed, CPHoM. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA
Initial fluvial response to the removal of Oregon's Marmot Dam
Jon J. Major; Jim E. O' Connor; Gordon E. Grant; Kurt R. Spicer; Heather M. Bragg; Abagail Rhode; Dwight Q. Tanner; Chauncey W. Anderson; J. Rose Wallick
2008-01-01
A temporary, 14-meter-high earthen cofferdam standing in place of Marmot Dam was breached on 19 October 2007, allowing the 80-kilometer-long Sandy River to flow freely from Mount Hood, Oregon, to the Columbia River for the first time in nearly 100 years. Marmot Dam is one of the largest dams in the Western United States (in terms of height and volume of stored sediment...
Three-Dimensional Finite Element Analysis of Sheet-Pile Cellular Cofferdams
1992-04-01
requirements were in selecting the shell element for this study: * Nodes only at the midsurface of the element. * Higher-order shape functions to...on orthogonal curvilinear coordinate (shell coordinates) system with the ref- erence surface of the element midsurface (Figure 4.13). The formulation...element was selected which allows for: * Nodes at the midsurface of the element only. 150 CHAPTER 4. ADDITIONS TO THE ELEMENT LIBRARY " Higher-order
1988-08-01
washed out several bridges and bridge approaches, flooded large areas of agricultural land, and caused heavy bank erosion along most of the river. In...analyzed. Both alternatives featured a cofferdam on Government Canyon, and a 2,310-foot-long corrugated metal outlet pipe draining through the...losses were determined using plate C-7 in EM 1110-2-1602 (ref. 19). A 90 degree helix was assumed for the corrugated metal pipes. This method resulted in
Working in the Dry: Cofferdams, In-River Construction, and the United States Army Corps of Engineers
2009-01-01
and dams to manage before 1897, but within 10 years, they would have twenty. Many of the MNC engineers had gained practical experience in small lock...America’s water- ways untapped or under-exploited raw mate- rials requiring development, control, and management for human benefit.6 During the colonial...Section , ^ N 6 to sink into position ^ 5ection 5 Gr<eo.test dapth of waiter in which skeleton wa.s a.ctua.1 ly constru_cted wSig_Lfl fee
Environmental effects of the Big Rapids dam remnant removal, Big Rapids, Michigan, 2000-02
Healy, Denis F.; Rheaume, Stephen J.; Simpson, J. Alan
2003-01-01
The U.S. Geological Survey (USGS), in cooperation with the city of Big Rapids, investigated the environmental effects of removal of a dam-foundation remnant and downstream cofferdam from the Muskegon River in Big Rapids, Mich. The USGS applied a multidiscipline approach, which determined the water quality, sediment character, and stream habitat before and after dam removal. Continuous water-quality data and discrete water-quality samples were collected, the movement of suspended and bed sediment were measured, changes in stream habitat were assessed, and streambed elevations were surveyed. Analyses of water upstream and downstream from the dam showed that the dam-foundation remnant did not affect water quality. Dissolved-oxygen concentrations downstream from the dam remnant were depressed for a short period (days) during the beginning of the dam removal, in part because of that removal effort. Sediment transport from July 2000 through March 2002 was 13,800 cubic yards more at the downstream site than the upstream site. This increase in sediment represents the remobilized sediment upstream from the dam, bank erosion when the impoundment was lowered, and contributions from small tributaries between the sites. Five habitat reaches were monitored before and after dam-remnant removal. The reaches consisted of a reference reach (A), upstream from the effects of the impoundment; the impoundment (B); and three sites below the impoundment where habitat changes were expected (C, D, and E, in downstream order). Stream-habitat assessment reaches varied in their responses to the dam-remnant removal. Reference reach A was not affected. In impoundment reach B, Great Lakes and Environmental Assessment Section (GLEAS) Procedure 51 ratings went from fair to excellent. For the three downstream reaches, reach C underwent slight habitat degradation, but ratings remained good; reach D underwent slight habitat degradation with ratings changing from excellent to good; and, in an area affected by a 1966 sediment release, reach E habitat rated fair in April 2000 and remained fair in September 2001. The most noticeable habitat change in the three reaches downstream from the dam site was a measurable increase in siltation and embeddedness. Bed-elevation profiles show that bed material upstream from the dam site was remobilized as suspended sediment and bedload, and was redeposited in the reaches below the cofferdam. Deposition was greater in the deep, slow-moving pools than the shallow, fast-moving riffles. For the most part, where deposition took place, deposits were less than 1 foot in thickness. In the year following the removal of the cofferdam, much of the sediment deposited below the dam was moved out of the study reach.
Hughes, Samantha Jane; Santos, Jose; Ferreira, Teresa; Mendes, Ana
2010-08-01
Bioindicators are essential for detecting environmental degradation and for assessing the success of river restoration initiatives. River restoration projects require the identification of environmental and pressure gradients that affect the river system under study and the selection of suitable indicators to assess habitat quality before, during and after restoration. We assessed the response of benthic macroinvertebrates, fish, bird and macrophyte assemblages to environmental and pressure gradients from sites situated upstream and downstream of a cofferdam on the River Odelouca, an intermittent Mediterranean river in southwest Portugal. The Odelouca will be permanently dammed in 2010. Principal Component Analyses (PCA) of environmental and pressure variables revealed that most variance was explained by environmental factors that clearly separated sites upstream and downstream of the partially built cofferdam. The pressure gradient describing physical impacts to the banks and channel as a result of land use change was less distinct. Redundancy Analysis revealed significant levels of explained variance to species distribution patterns in relation to environmental and pressure variables for all 4 biological assemblages. Partial Redundancy analyses revealed high levels of redundancy for pH between groups and that the avifauna was best associated with pressures acting upon the system. Patterns in invertebrates and fish were associated with descriptors of habitat quality, although fish distribution patterns were affected by reduced connectivity. Procrustean and RELATE (Mantel test) analyses gave broadly similar results and supported these findings. We give suggestions on the suitability of key indicator groups such as benthic macroinvertebrates and endemic fish species to assess in stream habitat quality and appropriate restoration measures, such as the release of peak flow patterns that mimic intermittent Mediterranean systems to combat habitat fragmentation and reduced connectivity.
NASA Astrophysics Data System (ADS)
Hughes, Samantha Jane; Santos, Jose; Ferreira, Teresa; Mendes, Ana
2010-08-01
Bioindicators are essential for detecting environmental degradation and for assessing the success of river restoration initiatives. River restoration projects require the identification of environmental and pressure gradients that affect the river system under study and the selection of suitable indicators to assess habitat quality before, during and after restoration. We assessed the response of benthic macroinvertebrates, fish, bird and macrophyte assemblages to environmental and pressure gradients from sites situated upstream and downstream of a cofferdam on the River Odelouca, an intermittent Mediterranean river in southwest Portugal. The Odelouca will be permanently dammed in 2010. Principal Component Analyses (PCA) of environmental and pressure variables revealed that most variance was explained by environmental factors that clearly separated sites upstream and downstream of the partially built cofferdam. The pressure gradient describing physical impacts to the banks and channel as a result of land use change was less distinct. Redundancy Analysis revealed significant levels of explained variance to species distribution patterns in relation to environmental and pressure variables for all 4 biological assemblages. Partial Redundancy analyses revealed high levels of redundancy for pH between groups and that the avifauna was best associated with pressures acting upon the system. Patterns in invertebrates and fish were associated with descriptors of habitat quality, although fish distribution patterns were affected by reduced connectivity. Procrustean and RELATE (Mantel test) analyses gave broadly similar results and supported these findings. We give suggestions on the suitability of key indicator groups such as benthic macroinvertebrates and endemic fish species to assess in stream habitat quality and appropriate restoration measures, such as the release of peak flow patterns that mimic intermittent Mediterranean systems to combat habitat fragmentation and reduced connectivity.
8 x 10 black and white photographic print made from ...
8 x 10 black and white photographic print made from original 1934, 8 x 10 black and white photographic negative. New 4 x 5 archival negative made from print. Original photographer unknown. Original 8 x 10 negative located in the files of the New Orleans Public Belt Railroad administrative offices at 5100 Jefferson Highway, Jefferson, LA 70123. JANUARY 15, 1934 PHOTOGRAPH NO. 102 OF CONTRACT NO. 3 SHOWING MAIN BRIDGE BUILDING COFFERDAM AT PIER A. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA
8 x 10 black and white photographic print made from ...
8 x 10 black and white photographic print made from original 1934, 8 x 10 black and white photographic negative. New 4 x 5 archival negative made from print. Original photographer unknown. Original 8 x 10 negative located in the files of the New Orleans Public Belt Railroad administrative offices at 5100 Jefferson Highway, Jefferson, LA 70123. JANUARY 22, 1934 PHOTOGRAPH NO. 107 OF CONTRACT NO. 3 SHOWING MAIN BRIDGE ERECTING COFFERDAM AT PIER III. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA
8 x 10 black and white photographic print made from ...
8 x 10 black and white photographic print made from original 1933, 8 x 10 black and white photographic negative. New 4 x 5 archival negative made from print. Original photographer unknown. Original 8 x 10 negative located in the files of the New Orleans Public Belt Railroad administrative offices at 5100 Jefferson Highway, Jefferson, LA 70123. OCTOBER 2, 1933 PHOTOGRAPH NO. 45 OF CONTRACT NO. 3 SHOWING MAIN BRIDGE PLACING COFFERDAM AT PIER NO. V. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA
Huizinga, Richard J.
2013-01-01
Bathymetric and velocimetric data were collected six times by the U.S. Geological Survey, in cooperation with the Kansas Department of Transportation, in the vicinity of Amelia Earhart Bridge on U.S. Highway 59 over the Missouri River at Atchison, Kansas. A multibeam echosounder mapping system and an acoustic Doppler current meter were used to obtain channel-bed elevations and depth-averaged velocities for a river reach approximately 2,300 feet long and extending across the active channel of the Missouri River. The bathymetric and velocimetric surveys provide a “snapshot” of the channel conditions at the time of each survey, and document changes to the channel-bed elevations and velocities during the course of construction of a new bridge for U.S. Highway 59 downstream from the Amelia Earhart Bridge. The baseline survey in June 2009 revealed substantial scour holes existed at the railroad bridge piers upstream from and at pier 10 of the Amelia Earhart Bridge, with mostly uniform flow and velocities throughout the study reach. After the construction of a trestle and cofferdam on the left (eastern) bank downstream from the Amelia Earhart Bridge, a survey on June 2, 2010, revealed scour holes with similar size and shape as the baseline for similar flow conditions, with slightly higher velocities and a more substantial contraction of flow near the bridges than the baseline. Subsequent surveys during flooding conditions in June 2010 and July 2011 revealed substantial scour near the bridges compared to the baseline survey caused by the contraction of flow; however, the larger flood in July 2011 resulted in less scour than in June 2010, partly because the removal of the cofferdam for pier 5 of the new bridge in March 2011 diminished the contraction near the bridges. Generally, the downstream part of the study reach exhibited varying amounts of scour in all of the surveys except the last when compared to the baseline. During the final survey, velocities throughout the study area were the lowest of all the surveys, resulting in overall deposition throughout the reach compared to the baseline survey—despite the presence of the trestle in the final survey. The multiple surveys at the Amelia Earhart Bridge document the effects of moderate- to high-flow conditions on scour, compounded by the effects of adding and removing a constriction in the channel. Additional factors such as pier shape and angle of approach flow also were documented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-09-09
At approximately 10 P.M. on 9 April 1974 while the M/V ELIAS was in the process of completing the discharge of a full cargo of Bachaquero crude oil at the Atlantic Richfield Oil (ARCO) Terminal, Fort Mifflin, Pennsylvania on the Delaware River the vessel sustained a series of three massive explosions, burned and sank. Nine members of the crew and four visitors (relatives of the master) perished or are missing. The M/V ELIAS was a total loss and the SS EDWARD L. STEINGER and the ARCO Terminal sustained extensive damages. The report contains the U.S. Coast Guard Marine Board ofmore » Investigation report and the Action taken by the Commandant to determine the probable cause of the casualty and the recommendations to prevent recurrence. The Commandant concurred with the Marine Board that source, and location of the initial explosion cannot be determined. Evidence of internal explosion in the after pump room, the cofferdam in the number 3 starboard cargo tanks, and in several of the cargo tanks indicate a varied path of the explosions.« less
NASA Astrophysics Data System (ADS)
Krikkis, Rizos N.
2018-06-01
A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.
Using geophysical data to assess scour development
Placzek, Gary; Haeni, Peter F.; Trent, Roy; ,
1993-01-01
The development of scour holes in the Connecticut River near the new Baldwin Bridge has been documented by comparing geophysical records collected before (1989), during (1990), and after (1992) bridge construction. Eight piers that support the 570-m (meter) span over the Connecticut River were protected by 12-m wide cofferdams during construction. The maximum flow during the study was equivalent to a 3-year recurrence-interval flood, indicating no significant floods. Fathometer data indicate that deep scour holes, 1.5 to 6.4 m deep, developed north of piers 6, 7, and 8. Scour holes, less than 1.3 m-deep, developed south of these piers. The deepest scour hole was north of pier 7, where data show a flat river bottom in 1989, a scour 3.3-m deep in 1990, and a scour hole 6.4-m deep in 1992. Continuous seismic-profiling (CSP) data show that a 1.5 -m deep scour hole north of pier 6 in 1990 was filled in with 1.5-m of material by 1992. No infilling was detected in the scour holes north of piers 7 and 8. Numerous subbottom reflectors from geologic layers, up to 7.6 -m deep were identified in the CSP records.
Channel infiltration from floodflows along the Pawnee River and its tributaries, west-central Kansas
Gillespie, James B.; Perry, C.A.
1988-01-01
Most of the streams is west-central Kansas are ephemeral. Natural recharge to the alluvial aquifers underlying these streams occurs during periods of storm runoff in the ephemeral channels. Proposed flood-retarding structures within the basin will alter the downstream runoff characteristics in these channels by reducing the peak flow and increasing the flow duration. Information concerning channel-infiltration rate, unsaturated and saturated flow, and lithology of the unsaturated zone as related to stream stage and duration was collected along the Pawnee River and its tributaries to determine the effects of the flood-retarding structures. The infiltration rate on ephemeral streams was determined at five sites within the Pawnee River Basin. Tests were conducted in channel infiltrometers constructed by isolating a section of channel with two plastic-lined wooden cofferdams. At two of the sites, perched groundwater mounds intersected the bottom of the channel and reduced the infiltration rate. At two other sites where the perched groundwater mounds did not reach the bottom of the channel, the infiltration rate was directly proportional to the stage. Comparison of infiltration from simulated controlled and uncontrolled floodflows at the five sites indicated an average increase of about 2% with the controlled floodflow. Cumulative infiltration for these simulations ranged from 0.5 to 14.8 acre-ft/mi of channel. (USGS)
Superfund Record of Decision (EPA Region 3): Metal Banks, Philadelphia, PA, December 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
This Record of Decision (ROD) presents the final remedial action selected for the Metal Bank Superfund Site (Site), located in northeastern Philadelphia, Pennsylvania. The remedy addresses contaminated soil, sediment, surface water, and groundwater at the Site and includes: installation of an oil collection system consisting of a sheet pile wall around the southern and western perimeter of the property; installation of temporary cofferdams prior to soil/sediment excavation to minimize transport of contamination into the Delaware River; excavation of contaminated soil within the Courtyard Area within two feet of the surface where polychlorinated biphenyl (PCB) concentrations exceed 10 ppm; disposal ofmore » contaminated soils and sediments that are hazardous; removal and disposal of the underground storage tank and its contents from the Southern Portion of the property; backfilling of excavated areas; posting signs prohibiting consumption of fish caught in the Delaware River in the vicinity of the Site; restrictions on the deed to the property to prevent future residential or agricultural use of the Site, use of the groundwater, and intrusive activities into the subsurface soils below the water table in the Southern Portion of the property; additional investigation to determine whether dense non-aqueous phase liquids (DNAPLs) are present at the Site and whether the storm sewer system in the vicinity of the Site is contaminated; and monitoring of groundwater, the Delaware River, and the Baxter Water intake.« less
NASA Astrophysics Data System (ADS)
Li, Junwei; Dong, Shuanglin; Gao, Qinfeng; Zhu, Changbo
2014-06-01
The nitrogen (N) and phosphorus (P) budget and the ecological efficiency of a polyculture system of sea cucumber ( Apostichopus japonicus), jellyfish ( Rhopilema esculenta) and shrimp ( Fenneropenaeus chinensis) were studied in a cofferdam, 120.2 ha in size. The nutrients were supplied by spring tide inflow. In total, 139600 kg N yr-1 and 9730 kg P yr-1 input to the system; while 118900 kg N yr-1 and 2840 kg P yr-1 outflowed from the system concurrently, thus the outflow was 85.7% (N) and 29.2% (P) of inflow. The production of N and P was 889.5 kg yr-1 and 49.28 kg yr-1 (sea cucumber) and 204 kg yr-1 and 18.03 kg yr-1 (jellyfish and shrimp), respectively. The utilization rate of N and P by polycultured animals was 7.8‰ and 6.9‰, respectively, 21.9% and 38% higher than that of monocultured sea cucumber. Our results indicated that the polyculture system was an efficient culture system of animals and a remediation system of coastal environment as well; it scavenged 14.3% and 70.8% of N and P, respectively. Such an ecological efficiency may be improved further by increasing either the stocking density or the size of sea cucumber or both.
Development of an FBG-based low temperature measurement system for cargo containment of LNG tankers
NASA Astrophysics Data System (ADS)
Kim, D. G.; Yoo, W.; Swinehart, P.; Jiang, B.; Haber, T.; Mendez, A.
2007-09-01
Given the growing demand for oil and natural gas to meet the world's energy needs, there is nowadays renewed interest in the use of liquefied natural gas (LNG) systems. For LNG to remain in its liquid phase, the gas has to be kept at cryogenic temperatures (< 160°C). And, as part of the LNG supply process, it becomes necessary to transport it using massive carrier tankers with cargo hulls operating at low temperatures and using special insulating double-wall construction. The safe and reliable storage and transportation of LNG products calls for low temperature monitoring of said containers to detect the onset of any potential leaks and possible thermal insulation degradation. Because of the hazardous nature of this cargo, only intrinsically-safe, explosion proof devices can be used. Optical fiber sensors-- such as fiber Bragg gratings-- are ideal for this application given their dielectric nature and multi-point sensing telemetry capability. In this paper, we describe the development of an on-line, multi-point FBG-based low temperature monitoring system based on a network of specially packaged FBG temperature and strain sensors mounted at critical locations within the inner hull, cofferdam and secondary barriers of a LNG carrier tanker. Given the stringent cryogenic operating temperature conditions, pertinent FBG designs, coatings and packaging approaches were formulated along with adequate installation techniques and integration of the interrogating FBG electronics into the tanker's overall SCADA monitoring system. FBG temperature sensors were demonstrated to be stable and sensitive over the 80-480K range. Stability is +/- 0.25K or better with repeated calibrations, and long term stability at 480K is ~0.2mK/hour.
Evaluation of Terrestrial Laser Scanner Accuracy in the Control of Hydrotechnical Structures
NASA Astrophysics Data System (ADS)
Muszyński, Zbigniew; Rybak, Jarosław
2017-12-01
In many cases of monitoring or load testing of hydrotechnical structures, the measurement results obtained from dial gauges may be affected by random or systematic errors resulting from the instability of the reference beam. For example, the measurement of wall displacement or pile settlement may be increased (or decreased) by displacements of the reference beam due to ground movement. The application of surveying methods such as high-precision levelling, motorized tacheometry or even terrestrial laser scanning makes it possible to provide an independent reference measurement free from systematic errors. It is very important in the case of walls and piles embedded in the rivers, where the construction of reference structure is even more difficult than usually. Construction of an independent reference system is also complicated when horizontal testing of sheet piles or diaphragm walls are considered. In this case, any underestimation of the horizontal displacement of an anchored or strutted construction leads to an understated value of the strut's load. These measurements are even more important during modernization works and repairs of the hydrotechnical structures. The purpose of this paper is to discuss the possibilities of using modern measurement methods for monitoring of horizontal displacements of an excavation wall. The methods under scrutiny (motorized tacheometry and terrestrial laser scanning) have been compared to classical techniques and described in the context of their practical use on the example hydrotechnical structure. This structure was a temporary cofferdam made from sheet pile wall. The research continuously conducted at Wroclaw University of Science and Technology made it possible to collect and summarize measurement results and practical experience. This paper identifies advantages and disadvantages of both analysed methods and presents a comparison of obtained measurement results of horizontal displacements. In conclusion, some recommendations have been formulated, which are relevant from the point of view of engineering practice.
Geomorphic response of the Sandy River, Oregon, to removal of Marmot Dam
Major, Jon J.; O'Connor, Jim E.; Podolak, Charles J.; Keith, Mackenzie K.; Grant, Gordon E.; Spicer, Kurt R.; Pittman, Smokey; Bragg, Heather M.; Wallick, J. Rose; Tanner, Dwight Q.; Rhode, Abagail; Wilcock, Peter R.
2012-01-01
The October 2007 breaching of a temporary cofferdam constructed during removal of the 15-meter (m)-tall Marmot Dam on the Sandy River, Oregon, triggered a rapid sequence of fluvial responses as ~730,000 cubic meters (m3) of sand and gravel filling the former reservoir became available to a high-gradient river. Using direct measurements of sediment transport, photogrammetry, airborne light detection and ranging (lidar) surveys, and, between transport events, repeat ground surveys of the reservoir reach and channel downstream, we monitored the erosion, transport, and deposition of this sediment in the hours, days, and months following breaching of the cofferdam. Rapid erosion of reservoir sediment led to exceptional suspended-sediment and bedload-sediment transport rates near the dam site, as well as to elevated transport rates at downstream measurement sites in the weeks and months after breaching. Measurements of sediment transport 0.4 kilometers (km) downstream of the dam site during and following breaching show a spike in the transport of fine suspended sediment within minutes after breaching, followed by high rates of suspended-load and bedload transport of sand. Significant transport of gravel bedload past the measurement site did not begin until 18 to 20 hours after breaching. For at least 7 months after breaching, bedload transport rates just below the dam site during high flows remained as much as 10 times above rates measured upstream of the dam site and farther downstream. The elevated sediment load was derived from eroded reservoir sediment, which began eroding when a meters-tall knickpoint migrated about 200 m upstream in the first hour after breaching. Rapid knickpoint migration triggered vertical incision and bank collapse in unconsolidated sand and gravel, leading to rapid channel widening. Over the following days and months, the knickpoint migrated upstream more slowly, simultaneously decreasing in height and becoming less distinct. Within 7 months, the knickpoint had migrated 2 km upstream from the dam site and became a riffle-like feature approximately 1 m high and a few tens of meters long. Knickpoint migration, vertical incision, and lateral erosion evacuated about 15 percent of the initial reservoir volume (125,000 m3) within 60 hours following breaching, and by the end of the high flows in May 2008, about 50 percent of the volume had been evacuated. Large stormflows in November 2008 and January 2009 eroded another 6 percent of the original volume of impounded sediment. Little additional sediment eroded during the remainder of the second year following breaching. The rapid erosion of sediment by the modest flow that accompanied dam breaching was driven mainly by the steep hydraulic gradient associated with the abrupt change of base level and knickpoint formation and was aided by the unconsolidated and cohesionless character of the reservoir sediment. In the ensuing months, transport competence diminished as channel geometry evolved and the river gradient through the reservoir reach diminished. Changes in profile gradient in conjunction with channel coarsening and widening led to a rapid slowing of the rate of reservoir erosion. Sediment transport and deposition were strongly controlled by channel-gradient discontinuities and valley morphology downstream of the dam site. Those influences led to a strong divergence of sand and gravel transport and to deposition of a sediment wedge, as much as 4 m thick, that tapered to the preremoval channel bed 1.3 km downstream of the dam site. After 2 years, that deposit contained about 25 percent of the total volume of sediment eroded from the reservoir. The balance was distributed among pools within the Sandy River gorge, a narrow bedrock canyon extending 2 to 9 km downstream of the dam site, and along the channel farther downstream. A two-fraction sediment budget for the first year following breaching indicates that most of the gravel eroded from the reservoir reach was deposited within the sediment wedge and within the gorge, whereas eroded sand largely passed through the gorge and was broadly dispersed farther downstream. The sequence of transporting flows affected the specific trajectory of reservoir erosion and downstream sediment transport during the 2 years following breaching. However, because the overall erosion was largely a consequence of knickpoint retreat and channel widening, which in the 2 years after removal had affected most of the reservoir reach, it is unlikely that the specific sequence of flows significantly affected the overall outcome. Because the knickpoint had largely passed through the reservoir within 2 years, and the remaining reservoir sediment is mostly isolated high above armored or bedrock banks, it is unlikely that substantial additional sediment from the reservoir site will enter the system unless very large flows occur. Continued channel evolution downstream of the dam site is probable as deposits formed in the first 2 years are episodically mobilized. Below the Sandy River gorge, detection of effects related to release of reservoir sediment is challenging, especially in areas of sand deposition, because of the high background supply of sand in the river and substantial channel dynamism.
Grams, P.E.; Schmidt, J.C.; Topping, D.J.
2007-01-01
Closure of Glen Canyon Dam in 1963 transformed the Colorado River by reducing the magnitude and duration of spring floods, increasing the magnitude of base flows, and trapping fine sediment delivered from the upper watershed. These changes caused the channel downstream in Glen Canyon to incise, armor, and narrow. This study synthesizes over 45 yr of channel-change measurements and demonstrates that the rate and style of channel adjustment are directly related to both natural processes associated with sediment deficit and human decisions about dam operations. Although bed lowering in lower Glen Canyon began when the first cofferdam was installed in 1959, most incision occurred in 1965 in conjunction with 14 pulsed high flows that scoured an average of 2.6 m of sediment from the center of the channel. The average grain size of bed material has increased from 0.25 mm in 1956 to over 20 mm in 1999. The magnitude of incision at riffles decreases with distance downstream from the dam, while the magnitude of sediment evacuation from pools is spatially variable and extends farther downstream. Analysis of bed-material mobility indicates that the increase in bed-material grain size and reduction in reach-average gradient are consistent with the transformation of an adjustable-bed alluvial river to a channel with a stable bed that is rarely mobilized. Decreased magnitude of peak discharges in the post-dam regime coupled with channel incision and the associated downward shifts of stage-discharge relations have caused sandbar and terrace erosion and the transformation of previously active sandbars and gravel bars to abandoned deposits that are no longer inundated. Erosion has been concentrated in a few pre-dam terraces that eroded rapidly for brief periods and have since stabilized. The abundance of abandoned deposits decreases downstream in conjunction with decreasing magnitude of shift in the stage-discharge relations. In the downstream part of the study area where riffles controlling channel elevation have not incised, channel narrowing has resulted from decreased magnitude of peak discharges and minor post-dam deposition. These physical changes to the aquatic and riparian systems have supported the establishment and success of an artifact ecosystem dominated by non-native species. Models for the channel response downstream from large dams typically consider factors such as the degree of sediment deficit, the pre-dam surface and subsurface grain size, and the magnitude of post-dam average flows. These results suggest that it is also necessary to consider (1) the possibility of variable responses among different channel elements and (2) the potential importance of exceptional flows resulting from management decisions. ?? 2007 Geological Society of America.