Sample records for coformycin

  1. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    SciTech Connect

    Han, Byung Woo; Bingman, Craig A.; Mahnke, Donna K.; Sabina, Richard L.; Phillips, George N. Jr


    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  2. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V


    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  3. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination.


    Kumar, Amit; Ghate, Vinayak; Kim, Min-Jeong; Zhou, Weibiao; Khoo, Gek Hoon; Yuk, Hyun-Gyun


    The objective of this study was to investigate the effect of 460 nm light-emitting diode (LED) on the inactivation of foodborne bacteria. Additionally, the change in the endogenous metabolic profile of LED illuminated cells was analyzed to understand the bacterial response to the LED illumination. Six different species of bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella Typhimurium) were illuminated with 460 nm LED to a maximum dose of 4080 J/cm(2) at 4, 10 and 25 °C. Inactivation curves were modeled using Hom model. Metabolic profiling of the non-illuminated and illuminated cells was performed using a Liquid chromatography-mass spectrometry system. Results indicate that the 460 nm LED significantly (p < 0.05) reduced the populations of all six bacterial species. For example, the population of S. aureus reached below detection limit within 7 h. B. cereus was most resistant to photo-inactivation and exhibited about 3-log reduction in 9 h. Metabolic profiling of the illuminated cells indicated that several metabolites e.g. 11-deoxycortisol, actinonin, coformycin, tyramine, chitobiose etc. were regulated during LED illumination. These results elucidate the effectiveness of 460 nm LED against foodborne bacteria and hence, its suitability as a novel antimicrobial control method to ensure food safety.

  4. The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: A high-performance liquid chromatography-mass spectrometry analysis

    SciTech Connect

    Polson, A.G.; Crain, P.F.; Pomerantz, S.C.; McCloskey, J.A.; Bass, B.L. )


    The authors have used directly combined high-performance liquid chromatography-mass spectrometry (LC/MS) to examine the mechanism of the reaction catalyzed by the double-stranded RNA unwinding/modifying activity. A double-stranded RNA substrate in which all adenosines were uniformly labeled with {sup 13}C was synthesized. An LC/MS analysis of the nucleoside products from the modified, labeled substrate confirmed that adenosine is modified to inosine during the unwinding/modifying reaction. Most importantly, they found that no carbons are exchanged during the reaction. By including H{sub 2} {sup 18}O in the reaction, they showed that water serves efficiently as the oxygen donor in vitro. These results are consistent with a hydrolytic deamination mechanism and rule out a base replacement mechanism. Although the double-stranded RNA unwinding/modifying activity appears to utilize a catalytic mechanism similar to that of adenosine deaminase, coformycin, a transition-state analogue, will not inhibit the unwinding/modifying activity.

  5. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes.

    PubMed Central

    Bontemps, F; Van den Berghe, G; Hers, H G


    The effect of adenosine on the metabolism of prelabeled adenine nucleotides was investigated in isolated hepatocytes. Adenosine caused an approximately equal to 2-fold increase in the ATP content of the cells. This effect was in part counteracted by an increased rate of adenine nucleotide catabolism that could be explained by a stimulation of both AMP deaminase (AMP aminohydrolase, EC and the cytoplasmic 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC because of the increased concentration of ATP. The unexpected finding that labeled adenosine was formed immediately after the addition of the unlabeled nucleoside could be explained by the trapping effect of adenosine. An accumulation of labeled adenosine was observed also in the presence of 5-iodotubercidin, a potent inhibitor of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC Under these conditions, there was a decrease in the concentration of ATP in the cell and a 2- to 3-fold increase in the rate of formation of allantoin. This formation of adenosine was only slightly decreased by inhibition of the membranous 5'-nucleotidase; it led to the accumulation of S-adenosylhomocysteine in the presence of coformycin and an excess of L-homocysteine. It was concluded that, under basal conditions, the cytoplasmic 5'-nucleotidase present in the liver cell continuously produces adenosine, which is immediately reconverted into AMP by adenosine kinase, without giving rise to allantoin. This futile cycle between AMP and adenosine amounts to at least 20 nmol/min per g of liver and, thus, exceeds the basic rate of allantoin formation. PMID:6304684

  6. Demonstration of adenosine deaminase activity in human fibroblast lysosomes.

    PubMed Central

    Lindley, E R; Pisoni, R L


    Human fibroblast lysosomes, purified on Percoll density gradients, contain an adenosine deaminase (ADA) activity that accounts for approximately 10% of the total ADA activity in GM0010A human fibroblasts. In assays of lysosomal ADA, the conversion of [3H]adenosine into [3H]inosine was proportional to incubation time and the amount of lysosomal material added to reaction mixtures. Maximal activity was observed between pH 7 and 8, and lysosomal ADA displayed a Km of 37 microM for adenosine at 25 degrees C and pH 5.5. Lysosomal ADA was completely inhibited by 2.5 mM Cu2+ or Hg2+ salts, but not by other bivalent cations (Ba2+, Cd2+, Ca2+, Fe2+, Mg2+, Mn2+ and Zn2+). Coformycin (2.5 mM), deoxycoformycin (0.02 mM), 2'-deoxyadenosine (2.5 mM), 6-methylaminopurine riboside (2.5 mM), 2'-3'-isopropylidene-adenosine (2.5 mM) and erythro-9-(2-hydroxy-3-nonyl)adenine (0.2 mM) inhibited lysosomal ADA by > 97%. In contrast, 2.5 mM S-adenosyl-L-homocysteine and cytosine were poor inhibitors. Nearly all lysosomal ADA activity is eluted as a high-molecular-mass protein (> 200 kDa) just after the void volume on a Sephacryl S-200 column, and is very heat-stable, retaining 70% of its activity after incubation at 65 degrees C for 80 min. We speculate that compartmentalization of ADA within lysosomes would allow deamination of adenosine to occur without competition by adenosine kinase, which could assist in maintaining cellular energy requirements under conditions of nutritional deprivation. PMID:8452534

  7. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.


    Pornbanlualap, Somchai; Chalopagorn, Pornchanok


    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus

    SciTech Connect

    Hanvey, J.C.


    The biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus has been investigated. Previous studies indicated that a purine nycleoside is the precursor for ten of the eleven carbons of deoxycoformycin. It was proposed that carbon-7 of the seven-membered, 1,3-diazepine-ring of deoxycoformycin is not derived from the purine ring but by an insertion of a one-carbon unit between N-1 and C-6 of the purine ring. Carbon-1 of D-ribose has now been identified as the precursor for carbon 7 (and 1') of deoxycoformycin. Although the tetrahydrofolate/one-carbon pool contributes one carbon units to carbons-2 and 8 of the purine ring, which become carbons-5 and 2 of deoxycoformycin, it is not involved in the formation of carbon-7. The retention of the tritium on carbon-2 of (2,8-/sup 3/H)-adenosine in deoxycoformycin indicates that guanosine is not the nucleoside precursor of deoxycoformycin. The failure to detect the incorporation of /sup 18/O from (6-/sup 18/O)-inosine in deoxycoformycin suggests that inosine is not the purine nucleoside precursor of deoxycoformycin. Therefore, it is proposed that adenosine and carbon-1 and d-ribose are the carbon-nitrogen precursors of deoxycoformycin. A mechanism for the insertion of carbon-1 of d-ribose into the pyrimidine portion of the purine ring has been proposed. Using cell-free extracts of S. antibioticus, 8-ketodeoxycoformycin and 8-ketocoformycin can be converted to deoxycoformycin and coformycin, respectively. The enzyme which reduces the 8-keto groups has been characterized and partially purified.