Sample records for cognitive brain systems

  1. The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding.

    PubMed

    Spunt, Robert P; Lieberman, Matthew D

    2013-01-01

    Much social-cognitive processing is believed to occur automatically; however, the relative automaticity of the brain systems underlying social cognition remains largely undetermined. We used functional MRI to test for automaticity in the functioning of two brain systems that research has indicated are important for understanding other people's behavior: the mirror neuron system and the mentalizing system. Participants remembered either easy phone numbers (low cognitive load) or difficult phone numbers (high cognitive load) while observing actions after adopting one of four comprehension goals. For all four goals, mirror neuron system activation showed relatively little evidence of modulation by load; in contrast, the association of mentalizing system activation with the goal of inferring the actor's mental state was extinguished by increased cognitive load. These results support a dual-process model of the brain systems underlying action understanding and social cognition; the mirror neuron system supports automatic behavior identification, and the mentalizing system supports controlled social causal attribution.

  2. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  3. Brain enhancement through cognitive training: a new insight from brain connectome.

    PubMed

    Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios

    2015-01-01

    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions.

  4. Brain enhancement through cognitive training: a new insight from brain connectome

    PubMed Central

    Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios

    2015-01-01

    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners’ learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals’ cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions. PMID:25883555

  5. An Evolutionary Perspective on Learning Disability in Mathematics

    PubMed Central

    Geary, David C.

    2015-01-01

    A distinction between potentially evolved, or biologically-primary forms of cognition, and the culturally-specific, or biologically-secondary forms of cognition that are built from primary systems is used to explore mathematical learning disability (MLD). Using this model, MLD could result from deficits in the brain and cognitive systems that support biologically-primary mathematical competencies, or from the brain and cognitive systems that support the modification of primary systems for the creation of secondary knowledge and secondary cognitive competencies. The former include visuospatial long-term and working memory and the intraparietal sulcus, whereas the latter include the central executive component of working memory and the anterior cingulate cortex and lateral prefrontal cortex. Different forms of MLD are discussed as related to each of the cognitive and brain systems. PMID:17650991

  6. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms.

    PubMed

    Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm

    2018-06-06

    Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.

  7. Fun cube based brain gym cognitive function assessment system.

    PubMed

    Zhang, Tao; Lin, Chung-Chih; Yu, Tsang-Chu; Sun, Jing; Hsu, Wen-Chuin; Wong, Alice May-Kuen

    2017-05-01

    The aim of this study is to design and develop a fun cube (FC) based brain gym (BG) cognitive function assessment system using the wireless sensor network and multimedia technologies. The system comprised (1) interaction devices, FCs and a workstation used as interactive tools for collecting and transferring data to the server, (2) a BG information management system responsible for managing the cognitive games and storing test results, and (3) a feedback system used for conducting the analysis of cognitive functions to assist caregivers in screening high risk groups with mild cognitive impairment. Three kinds of experiments were performed to evaluate the developed FC-based BG cognitive function assessment system. The experimental results showed that the Pearson correlation coefficient between the system's evaluation outcomes and the traditional Montreal Cognitive Assessment scores was 0.83. The average Technology Acceptance Model 2 score was close to six for 31 elderly subjects. Most subjects considered that the brain games are interesting and the FC human-machine interface is easy to learn and operate. The control group and the cognitive impairment group had statistically significant difference with respect to the accuracy of and the time taken for the brain cognitive function assessment games, including Animal Naming, Color Search, Trail Making Test, Change Blindness, and Forward / Backward Digit Span. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Catecholamines and cognition after traumatic brain injury

    PubMed Central

    Jenkins, Peter O.; Mehta, Mitul A.

    2016-01-01

    Abstract Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  9. Embodiment and Performance

    ERIC Educational Resources Information Center

    Bessell, Jacquelyn; Riddell, Patricia

    2016-01-01

    Evidence suggests that some cognitive processes are based on sensorimotor systems in the brain (embodied cognition). The premise of this is that "Biological brains are first and foremost the control systems for biological bodies". It has therefore been suggested that both online cognition (processing as we move through the world) and…

  10. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis.

    PubMed

    Jenkins, Trisha A; Nguyen, Jason C D; Polglaze, Kate E; Bertrand, Paul P

    2016-01-20

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis.

  11. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    ERIC Educational Resources Information Center

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  12. On Cognition, Structured Sequence Processing, and Adaptive Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Petersson, Karl Magnus

    2008-11-01

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.

  13. The Theory of Localist Representation and of a Purely Abstract Cognitive System: The Evidence from Cortical Columns, Category Cells, and Multisensory Neurons.

    PubMed

    Roy, Asim

    2017-01-01

    The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the paper reviews the data from single cell recordings - in cortical columns and of category-selective and multisensory neurons. In neuroscience, columns in the neocortex (cortical columns) are understood to be a basic functional/computational unit. The paper reviews the fundamental discoveries about the columnar organization and finds that it reveals a massively parallel search mechanism. This columnar organization could be the most extensive neurophysiological evidence for the widespread use of localist representation in the brain. The paper also reviews studies of category-selective cells. The evidence for category-selective cells reveals that localist representation is also used to encode complex abstract concepts at the highest levels of processing in the brain. A third major issue is the nature of the cognitive system in the brain and whether there is a form that is purely abstract and encoded by single cells. To provide evidence for a single-cell based purely abstract cognitive system, the paper reviews some of the findings related to multisensory cells. It appears that there is widespread usage of multisensory cells in the brain in the same areas where sensory processing takes place. Plus there is evidence for abstract modality invariant cells at higher levels of cortical processing. Overall, that reveals the existence of a purely abstract cognitive system in the brain. The paper also argues that since there is no evidence for dense distributed representation and since sparse representation is actually used to encode memories, there is actually no evidence for distributed representation in the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel, distributed computing system that is symbolic. The paper also explains how grounded cognition and other theories of the brain are fully compatible with localist representation and a purely abstract cognitive system.

  14. The Theory of Localist Representation and of a Purely Abstract Cognitive System: The Evidence from Cortical Columns, Category Cells, and Multisensory Neurons

    PubMed Central

    Roy, Asim

    2017-01-01

    The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the paper reviews the data from single cell recordings – in cortical columns and of category-selective and multisensory neurons. In neuroscience, columns in the neocortex (cortical columns) are understood to be a basic functional/computational unit. The paper reviews the fundamental discoveries about the columnar organization and finds that it reveals a massively parallel search mechanism. This columnar organization could be the most extensive neurophysiological evidence for the widespread use of localist representation in the brain. The paper also reviews studies of category-selective cells. The evidence for category-selective cells reveals that localist representation is also used to encode complex abstract concepts at the highest levels of processing in the brain. A third major issue is the nature of the cognitive system in the brain and whether there is a form that is purely abstract and encoded by single cells. To provide evidence for a single-cell based purely abstract cognitive system, the paper reviews some of the findings related to multisensory cells. It appears that there is widespread usage of multisensory cells in the brain in the same areas where sensory processing takes place. Plus there is evidence for abstract modality invariant cells at higher levels of cortical processing. Overall, that reveals the existence of a purely abstract cognitive system in the brain. The paper also argues that since there is no evidence for dense distributed representation and since sparse representation is actually used to encode memories, there is actually no evidence for distributed representation in the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel, distributed computing system that is symbolic. The paper also explains how grounded cognition and other theories of the brain are fully compatible with localist representation and a purely abstract cognitive system. PMID:28261127

  15. Cognition, emotion, and attention.

    PubMed

    Müller-Oehring, Eva M; Schulte, Tilman

    2014-01-01

    Deficits of attention, emotion, and cognition occur in individuals with alcohol abuse and addiction. This review elucidates the concepts of attention, emotion, and cognition and references research on the underlying neural networks and their compromise in alcohol use disorder. Neuroimaging research on adolescents with family history of alcoholism contributes to the understanding of pre-existing brain structural conditions and characterization of cognition and attention processes in high-risk individuals. Attention and cognition interact with other brain functions, including perceptual selection, salience, emotion, reward, and memory, through interconnected neural networks. Recent research reports compromised microstructural and functional network connectivity in alcoholism, which can have an effect on the dynamic tuning between brain systems, e.g., the frontally based executive control system, the limbic emotion system, and the midbrain-striatal reward system, thereby impeding cognitive flexibility and behavioral adaptation to changing environments. Finally, we introduce concepts of functional compensation, the capacity to generate attentional resources for performance enhancement, and brain structure recovery with abstinence. An understanding of the neural mechanisms of attention, emotion, and cognition will likely provide the basis for better treatment strategies for developing skills that enhance alcoholism therapy adherence and quality of life, and reduce the propensity for relapse. © 2014 Elsevier B.V. All rights reserved.

  16. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis

    PubMed Central

    Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P.

    2016-01-01

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis. PMID:26805875

  17. Where in the brain is morality? Everywhere and maybe nowhere.

    PubMed

    Young, Liane; Dungan, James

    2012-01-01

    The neuroscience of morality has focused on how morality works and where it is in the brain. In tackling these questions, researchers have taken both domain-specific and domain-general approaches-searching for neural substrates and systems dedicated to moral cognition versus characterizing the contributions of domain-general processes. Where in the brain is morality? On one hand, morality is made up of complex cognitive processes, deployed across many domains and housed all over the brain. On the other hand, no neural substrate or system that uniquely supports moral cognition has been found. In this review, we will discuss early assumptions of domain-specificity in moral neuroscience as well as subsequent investigations of domain-general contributions, taking emotion and social cognition (i.e., theory of mind) as case studies. Finally, we will consider possible cognitive accounts of a domain-specific morality: Does uniquely moral cognition exist?

  18. An Integrated Self-Aware Cognitive Architecture

    DTIC Science & Technology

    2008-03-01

    human-like cognitive growth. Our approach is inspired by studies of the human brain -mind: in particular, by theoretical models of representations of...agency in the higher associative human brain areas. This feature (a theory of mind including representations of one’s self) allows the system to...self-aware cognition that we believe is necessary for human-like cognitive growth. Our approach is inspired by studies of the human brain -mind: in

  19. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children.

    PubMed

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A; Bo, Emily

    2016-09-12

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement.

  20. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children

    PubMed Central

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A.; Bo, Emily

    2016-01-01

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement. PMID:27615029

  1. Brain Morphology Links Systemic Inflammation to Cognitive Function in Midlife Adults

    PubMed Central

    Marsland, Anna L.; Gianaros, Peter J.; Kuan, Dora C-H.; Sheu, Lei K.; Krajina, Katarina; Manuck, Stephen B.

    2015-01-01

    Background Inflammation is linked to cognitive decline in midlife, but the neural basis for this link is unclear. One possibility is that inflammation associates with adverse changes in brain morphology, which accelerates cognitive aging and later dementia risk. Clear evidence is lacking, however, regarding whether inflammation relates to cognition in midlife via changes in brain morphology. Accordingly, the current study examines whether associations of inflammation with cognitive function are mediated by variation in cortical gray matter volume among midlife adults. Methods Plasma levels of interleukin (IL)-6 and C-reactive protein (CRP), relatively stable markers of peripheral systemic inflammation, were assessed in 408 community volunteers aged 30–54 years. All participants underwent structural neuroimaging to assess global and regional brain morphology and completed neuropsychological tests sensitive to early changes in cognitive function. Measurements of brain morphology (regional tissue volumes and cortical thickness and surface area) were derived using Freesurfer. Results Higher peripheral inflammation was associated with poorer spatial reasoning, short term memory, verbal proficiency, learning and memory, and executive function, as well as lower cortical gray and white matter volumes, hippocampal volume and cortical surface area. Mediation models with age, sex and intracranial volume as covariates showed cortical gray matter volume to partially mediate the association of inflammation with cognitive performance. Exploratory analyses of body mass suggested that adiposity may be a source of the inflammation linking brain morphology to cognition. Conclusions Inflammation and adiposity might relate to cognitive decline via influences on brain morphology. PMID:25882911

  2. Dynamic reconfiguration of frontal brain networks during executive cognition in humans

    PubMed Central

    Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.

    2015-01-01

    The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898

  3. Effect of cell therapy on recovery of cognitive functions in rats during the delayed period after brain injury.

    PubMed

    Roshal, L M; Tzyb, A F; Pavlova, L N; Soushkevitch, G N; Semenova, J B; Javoronkov, L P; Kolganova, O I; Konoplyannikov, A G; Shevchuk, A S; Yujakov, V V; Karaseva, O V; Ivanova, T F; Chernyshova, T A; Konoplyannikova, O A; Bandurko, L N; Marey, M V; Sukhikh, G T

    2009-07-01

    We studied the effect of systemic transplantation of human stem cells from various tissues on cognitive functions of the brain in rats during the delayed period after experimental brain injury. Stem cells were shown to increase the efficacy of medical treatment with metabolic and symptomatic drugs for recovery of cognitive functions. They accelerated the formation of the conditioned defense response. Fetal neural stem cells had a stronger effect on some parameters of cognitive function 2 months after brain injury. The efficacy of bone marrow mesenchymal stem cells from adult humans or fetuses was higher 3 months after brain injury.

  4. Final Paper DAT Cognitive Art Therapy System

    ERIC Educational Resources Information Center

    Jacobson, Eric

    2009-01-01

    Del Giacco Art Therapy is a cognitive art therapy process that focuses on stimulating the mental sensory systems and working to stabilize the nervous system and create new neural connections in the brain. This system was created by Maureen Del Giacco, Phd. after recovering from her own traumatic brain injury and is based on extensive research of…

  5. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  6. Luria revisited: cognitive research in schizophrenia, past implications and future challenges.

    PubMed

    Zaytseva, Yuliya; Chan, Raymond C K; Pöppel, Ernst; Heinz, Andreas

    2015-02-27

    Contemporary psychiatry is becoming more biologically oriented in the attempt to elicit a biological rationale of mental diseases. Although mental disorders comprise mostly functional abnormalities, there is a substantial overlap between neurology and psychiatry in addressing cognitive disturbances. In schizophrenia, the presence of cognitive impairment prior to the onset of psychosis and early after its manifestation suggests that some neurocognitive abnormalities precede the onset of psychosis and may represent a trait marker. These cognitive alterations may arise from functional disconnectivity, as no significant brain damage has been found. In this review we aim to revise A.R. Luria's systematic approach used in the neuropsychological evaluation of cognitive functions, which was primarily applied in patients with neurological disorders and in the cognitive evaluation in schizophrenia and other related disorders. As proposed by Luria, cognitive processes, associated with higher cortical functions, may represent functional systems that are not localized in narrow, circumscribed areas of the brain, but occur among groups of concertedly working brain structures, each of which makes its own particular contribution to the organization of the functional system. Current developments in neuroscience provide evidence of functional connectivity in the brain. Therefore, Luria's approach may serve as a frame of reference for the analysis and interpretation of cognitive functions in general and their abnormalities in schizophrenia in particular. Having said that, modern technology, as well as experimental evidence, may help us to understand the brain better and lead us towards creating a new classification of cognitive functions. In schizophrenia research, multidisciplinary approaches must be utilized to address specific cognitive alterations. The relationships among the components of cognitive functions derived from the functional connectivity of the brain may provide an insight into cognitive machinery.

  7. A Functional Cartography of Cognitive Systems

    PubMed Central

    Mattar, Marcelo G.; Cole, Michael W.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2015-01-01

    One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems—including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems—engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual variation in cognitive performance, and fatigue. PMID:26629847

  8. Cognitive accuracy and intelligent executive function in the brain and in business.

    PubMed

    Bailey, Charles E

    2007-11-01

    This article reviews research on cognition, language, organizational culture, brain, behavior, and evolution to posit the value of operating with a stable reference point based on cognitive accuracy and a rational bias. Drawing on rational-emotive behavioral science, social neuroscience, and cognitive organizational science on the one hand and a general model of brain and frontal lobe executive function on the other, I suggest implications for organizational success. Cognitive thought processes depend on specific brain structures functioning as effectively as possible under conditions of cognitive accuracy. However, typical cognitive processes in hierarchical business structures promote the adoption and application of subjective organizational beliefs and, thus, cognitive inaccuracies. Applying informed frontal lobe executive functioning to cognition, emotion, and organizational behavior helps minimize the negative effects of indiscriminate application of personal and cultural belief systems to business. Doing so enhances cognitive accuracy and improves communication and cooperation. Organizations operating with cognitive accuracy will tend to respond more nimbly to market pressures and achieve an overall higher level of performance and employee satisfaction.

  9. A randomised trial to compare cognitive outcome after gamma knife radiosurgery versus whole brain radiation therapy in patients with multiple brain metastases: research protocol CAR-study B.

    PubMed

    Schimmel, Wietske C M; Verhaak, Eline; Hanssens, Patrick E J; Gehring, Karin; Sitskoorn, Margriet M

    2018-02-21

    Gamma Knife radiosurgery (GKRS) is increasingly applied in patients with multiple brain metastases and is expected to have less adverse effects in cognitive functioning than whole brain radiation therapy (WBRT). Effective treatment with the least negative cognitive side effects is increasingly becoming important, as more patients with brain metastases live longer due to more and better systemic treatment options. There are no published randomized trials yet directly comparing GKRS to WBRT in patients with multiple brain metastases that include objective neuropsychological testing. CAR-Study B is a prospective randomised trial comparing cognitive outcome after GKRS or WBRT in adult patients with 11-20 newly diagnosed brain metastases on a contrast-enhanced MRI-scan, KPS ≥70 and life expectancy of at least 3 months. Randomisation by the method of minimization, is stratified by the cumulative tumour volume in the brain, systemic treatment, KPS, histology, baseline cognitive functioning and age. The primary endpoint is the between-group difference in the percentage of patients with significant memory decline at 3 months. Secondary endpoints include overall survival, local control, development of new brain metastases, cognitive functioning over time, quality of life, depression, anxiety and fatigue. Cognitive functioning is assessed by a standardised neuropsychological test battery. Assessments (cognitive testing, questionnaires and MRI-scans) are scheduled at baseline and at 3, 6, 9, 12 and 15 months after treatment. Knowledge gained from this trial may be used to inform individual patients with BM more precisely about the cognitive effects they can expect from treatment, and to assist both doctors and patients in making (shared) individual treatment decisions. This trial is currently recruiting. Target accrual: 23 patients at 3-months follow-up in both groups. The Netherlands Trials Register number NTR5463. ClinicalTrials.gov registration number NCT02953717 , first received October 27, 2016, 8 patients were enrolled in this study on 31 July 2017.

  10. What does the interactive brain hypothesis mean for social neuroscience? A dialogue

    PubMed Central

    Di Paolo, Ezequiel; Adolphs, Ralph

    2016-01-01

    A recent framework inspired by phenomenological philosophy, dynamical systems theory, embodied cognition and robotics has proposed the interactive brain hypothesis (IBH). Whereas mainstream social neuroscience views social cognition as arising solely from events in the brain, the IBH argues that social cognition requires, in addition, causal relations between the brain and the social environment. We discuss, in turn, the foundational claims for the IBH in its strongest form; classical views of cognition that can be raised against the IBH; a defence of the IBH in the light of these arguments; and a response to this. Our goal is to initiate a dialogue between cognitive neuroscience and enactive views of social cognition. We conclude by suggesting some new directions and emphases that social neuroscience might take. PMID:27069056

  11. What does the interactive brain hypothesis mean for social neuroscience? A dialogue.

    PubMed

    De Jaegher, Hanne; Di Paolo, Ezequiel; Adolphs, Ralph

    2016-05-05

    A recent framework inspired by phenomenological philosophy, dynamical systems theory, embodied cognition and robotics has proposed the interactive brain hypothesis (IBH). Whereas mainstream social neuroscience views social cognition as arising solely from events in the brain, the IBH argues that social cognition requires, in addition, causal relations between the brain and the social environment. We discuss, in turn, the foundational claims for the IBH in its strongest form; classical views of cognition that can be raised against the IBH; a defence of the IBH in the light of these arguments; and a response to this. Our goal is to initiate a dialogue between cognitive neuroscience and enactive views of social cognition. We conclude by suggesting some new directions and emphases that social neuroscience might take. © 2016 The Author(s).

  12. Methods of the pharmacological imaging of the cannabinoid system (PhICS) study: towards understanding the role of the brain endocannabinoid system in human cognition.

    PubMed

    van Hell, Hendrika H; Bossong, Matthijs G; Jager, Gerry; Kahn, René S; Ramsey, Nick F

    2011-03-01

    Various lines of (pre)clinical research indicate that cannabinoid agents carry the potential for therapeutic application to reduce symptoms in several psychiatric disorders. However, direct testing of the involvement of cannabinoid brain systems in psychiatric syndromes is essential for further development. In the Pharmacological Imaging of the Cannabinoid System (PhICS) study, the involvement of the endocannabinoid system in cognitive brain function is assessed by comparing acute effects of the cannabinoid agonist Δ9-tetrahydrocannabinol (THC) on brain function between healthy controls and groups of psychiatric patients showing cognitive dysfunction. This article describes the objectives and methods of the PhICS study and presents preliminary results of the administration procedure on subjective and neurophysiological parameters. Core elements in the methodology of PhICS are the administration method (THC is administered by inhalation using a vaporizing device) and a comprehensive use of pharmacological magnetic resonance imaging (phMRI) combining several types of MRI scans including functional MRI (fMRI), Arterial Spin Labeling (ASL) to measure brain perfusion, and resting-state fMRI. Additional methods like neuropsychological testing further specify the exact role of the endocannabinoid system in regulating cognition. Preliminary results presented in this paper indicate robust behavioral and subjective effects of THC. In addition, fMRI paradigms demonstrate activation of expected networks of brain regions in the cognitive domains of interest. The presented administration and assessment protocol provides a basis for further research on the involvement of the endocannabionoid systems in behavior and in psychopathology, which in turn may lead to development of therapeutic opportunities of cannabinoid ligands. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Exposure to Severe Urban Air Pollution Influences Cognitive Outcomes, Brain Volume and Systemic Inflammation in Clinically Healthy Children

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Engle, Randall; Mora-Tiscareno, Antonieta; Styner, Martin; Gomez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardon, Ricardo; Romero, Lina; Monroy-Acosta, Maria E.; Bryant, Christopher; Gonzalez-Gonzalez, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-01-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes,…

  14. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns.

    PubMed

    Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong

    2018-02-01

    The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.

  15. A symbolic/subsymbolic interface protocol for cognitive modeling

    PubMed Central

    Simen, Patrick; Polk, Thad

    2009-01-01

    Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520

  16. Modeling the impact of COPD on the brain.

    PubMed

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable-COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p < or = 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities.

  17. Modeling the impact of COPD on the brain

    PubMed Central

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities. PMID:18990971

  18. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    PubMed

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  19. Genetic variability, individuality and the evolution of the mammalian brain.

    PubMed

    Lipp, H P

    1995-12-01

    The neo-Darwinian theory of evolution has difficulty in explaining the rapid evolution of mammalian brain and behavior. I shall argue that the plasticity mechanisms of the brain (i.e., system homeostasis, developmental reorganization, structural adult plasticity, and cognition and learning) have evolved primarily as genetic buffer systems which protect subtle mutations influencing brain structures from natural selection. These buffer systems permit accumulation of genetic variation in the higher system levels of the brain (simply defined as structures with late differentiation), while low-level systems are kept constant by natural selection. The organization of this intrinsic genetic buffering system provides several features facilitating neo-Darwinian evolution: In conclusion, the evolutionary appearance of cognition and intelligence is an ordinary biological mechanism compensating evolutionary drags such as long lifespans and fewer offspring. The concept has heuristic value for identifying gene-brain-behavior relationships and for explaining behavioral consequences of artifical gene deletions.

  20. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment

    PubMed Central

    Xu, Youhua; Zhou, Hua; Zhu, Quan

    2017-01-01

    Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE). With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment. PMID:28496408

  1. From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure.

    PubMed

    Poldrack, Russell A; Yarkoni, Tal

    2016-01-01

    A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings--for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis--including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience.

  2. From brain maps to cognitive ontologies: informatics and the search for mental structure

    PubMed Central

    Poldrack, Russell A.; Yarkoni, Tal

    2015-01-01

    A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings—for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis—including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience. PMID:26393866

  3. A review on functional and structural brain connectivity in numerical cognition

    PubMed Central

    Moeller, Korbinian; Willmes, Klaus; Klein, Elise

    2015-01-01

    Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075

  4. Space, self, and the theater of consciousness.

    PubMed

    Trehub, Arnold

    2007-06-01

    Over a decade ago, I introduced a large-scale theory of the cognitive brain which explained for the first time how the human brain is able to create internal models of its intimate world and invent models of a wider universe. An essential part of the theoretical model is an organization of neuronal mechanisms which I have named the Retinoid Model [Trehub, A. (1977). Neuronal models for cognitive processes: Networks for learning, perception and imagination. Journal of Theoretical Biology, 65, 141-169; Trehub, A. (1991). The Cognitive Brain: MIT Press]. This hypothesized brain system has structural and dynamic properties enabling it to register and appropriately integrate disparate foveal stimuli into a perspectival, egocentric representation of an extended 3D world scene including a neuronally tokened locus of the self which, in this theory, is the neuronal origin of retinoid space. As an integral part of the larger neuro-cognitive model, the retinoid system is able to perform many other useful perceptual and higher cognitive functions. In this paper, I draw on the hypothesized properties of this system to argue that neuronal activity within the retinoid structure constitutes the phenomenal content of consciousness and the unique sense of self that each of us experiences.

  5. Understanding emotion with brain networks.

    PubMed

    Pessoa, Luiz

    2018-02-01

    Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.

  6. Intelligence Community Forum

    DTIC Science & Technology

    2008-11-05

    Description Operationally Feasible? EEG ms ms cm Measures electrical activity in the brain. Practical tool for applications - real time monitoring or...Cognitive Systems Device Development & Processing Methods Brain activity can be monitored in real-time in operational environments with EEG Brain...biological and cognitive findings about the user to customize the learning environment Neurofeedback • Present the user with real-time feedback

  7. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction.

    PubMed

    Kiehl, Kent A

    2006-06-15

    Psychopathy is a complex personality disorder that includes interpersonal and affective traits such as glibness, lack of empathy, guilt or remorse, shallow affect, and irresponsibility, and behavioral characteristics such as impulsivity, poor behavioral control, and promiscuity. Much is known about the assessment of psychopathy; however, relatively little is understood about the relevant brain disturbances. The present review integrates data from studies of behavioral and cognitive changes associated with focal brain lesions or insults and results from psychophysiology, cognitive psychology and cognitive and affective neuroscience in health and psychopathy. The review illustrates that the brain regions implicated in psychopathy include the orbital frontal cortex, insula, anterior and posterior cingulate, amygdala, parahippocampal gyrus, and anterior superior temporal gyrus. The relevant functional neuroanatomy of psychopathy thus includes limbic and paralimbic structures that may be collectively termed 'the paralimbic system'. The paralimbic system dysfunction model of psychopathy is discussed as it relates to the extant literature on psychopathy.

  8. Cognitive dysfunction and functional magnetic resonance imaging in systemic lupus erythematosus.

    PubMed

    Barraclough, M; Elliott, R; McKie, S; Parker, B; Bruce, I N

    2015-10-01

    Cognitive dysfunction is a common aspect of systemic lupus erythematosus (SLE) and is increasingly reported as a problem by patients. In many cases the exact cause is unclear. Limited correlations between specific autoantibodies or structural brain abnormalities and cognitive dysfunction in SLE have been reported. It may be that the most appropriate biomarkers have yet to be found. Functional magnetic resonance imaging (fMRI) is a technique used in many other conditions and provides sensitive measures of brain functionality during cognitive tasks. It is now beginning to be employed in SLE studies. These studies have shown that patients with SLE often perform similarly to healthy controls in terms of behavioural measures on cognitive tasks. However, SLE patients appear to employ compensatory brain mechanisms, such as increased response in fronto-parietal regions, to maintain adequate cognitive performance. As there have been only a few studies using fMRI in SLE to investigate cognitive dysfunction, many questions remain unanswered. Further research could, however, help to identify biomarkers for cognitive dysfunction in SLE. © The Author(s) 2015.

  9. Mind the fish: zebrafish as a model in cognitive social neuroscience

    PubMed Central

    Oliveira, Rui F.

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed. PMID:23964204

  10. Mind the fish: zebrafish as a model in cognitive social neuroscience.

    PubMed

    Oliveira, Rui F

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed.

  11. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation.

    PubMed

    d'Avila, Joana Costa; Siqueira, Luciana Domett; Mazeraud, Aurélien; Azevedo, Estefania Pereira; Foguel, Debora; Castro-Faria-Neto, Hugo Caire; Sharshar, Tarek; Chrétien, Fabrice; Bozza, Fernando Augusto

    2018-01-30

    Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.

  12. Sleep duration and age-related changes in brain structure and cognitive performance.

    PubMed

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  13. Control-related systems in the human brain

    PubMed Central

    Power, Jonathan D; Petersen, Steven E

    2013-01-01

    A fundamental question in cognitive neuroscience is how the human brain self-organizes to perform tasks. Multiple accounts of this self-organization are currently influential and in this article we survey one of these accounts. We begin by introducing a psychological model of task control and several neuroimaging signals it predicts. We then discuss where such signals are found across tasks with emphasis on brain regions where multiple control signals are present. We then present results derived from spontaneous task-free functional connectivity between control-related regions that dovetail with distinctions made by control signals present in these regions, leading to a proposal that there are at least two task control systems in the brain. This prompts consideration of whether and how such control systems distinguish themselves from other brain regions in a whole-brain context. We present evidence from whole-brain networks that such distinctions do occur and that control systems comprise some of the basic system-level organizational elements of the human brain. We close with observations from the whole-brain networks that may suggest parsimony between multiple accounts of cognitive control. PMID:23347645

  14. Cognitive Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain Communication

    PubMed Central

    Fröhlich, Esther E.; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-01-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-D-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  15. Cognitive neuroimaging: cognitive science out of the armchair.

    PubMed

    de Zubicaray, Greig I

    2006-04-01

    Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some ultra-cognitive scientists assert that these experiments can never be of relevance to the study of cognition. Their reasoning reflects an adherence to a functionalist philosophy that arbitrarily and purposefully distinguishes mental information-processing systems from brain or brain-like operations. This article addresses whether data from properly conducted functional neuroimaging studies can inform and subsequently constrain the assumptions of theoretical cognitive models. The article commences with a focus upon the functionalist philosophy espoused by the ultra-cognitive scientists, contrasting it with the materialist philosophy that motivates both cognitive neuroimaging investigations and connectionist modelling of cognitive systems. Connectionism and cognitive neuroimaging share many features, including an emphasis on unified cognitive and neural models of systems that combine localist and distributed representations. The utility of designing cognitive neuroimaging studies to test (primarily) connectionist models of cognitive phenomena is illustrated using data from functional magnetic resonance imaging (fMRI) investigations of language production and episodic memory.

  16. A Framework for Relating Cognitive to Neural Systems. Cognitive Science Program, Technical Report No. 84-2.

    ERIC Educational Resources Information Center

    Posner, Michael I.

    This paper reviews the aspects of cognitive science that relate best to using electrical and magnetic recording to understand the function of brain systems. It outlines a framework for relating cognitive activities of daily life (typing, reading) to underlying neural systems. The framework uses five levels of analysis: task, elementary operations,…

  17. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis

    PubMed Central

    De Cicco, Vincenzo; Tramonti Fantozzi, Maria P.; Cataldo, Enrico; Barresi, Massimo; Bruschini, Luca; Faraguna, Ugo; Manzoni, Diego

    2018-01-01

    It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders. PMID:29358907

  18. Brain Sex Matters: estrogen in cognition and Alzheimer’s disease

    PubMed Central

    Li, Rena; Cui, Jie; Shen, Yong

    2014-01-01

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer’s disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function. PMID:24418360

  19. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance

    PubMed Central

    Lo, June C.; Loh, Kep Kee; Zheng, Hui; Sim, Sam K.Y.; Chee, Michael W.L.

    2014-01-01

    Study Objectives: To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Design: Community-based longitudinal brain and cognitive aging study using a convenience sample. Setting: Participants were studied in a research laboratory. Participants: Relatively healthy adults aged 55 y and older at study commencement. Interventions: N/A. Measurements and Results: Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. Conclusions: In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Citation: Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance. SLEEP 2014;37(7):1171-1178. PMID:25061245

  20. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system

    PubMed Central

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-01-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595

  1. Parkinsonian gait improves with bilateral subthalamic nucleus deep brain stimulation during cognitive multi-tasking.

    PubMed

    Chenji, Gaurav; Wright, Melissa L; Chou, Kelvin L; Seidler, Rachael D; Patil, Parag G

    2017-05-01

    Gait impairment in Parkinson's disease reduces mobility and increases fall risk, particularly during cognitive multi-tasking. Studies suggest that bilateral subthalamic deep brain stimulation, a common surgical therapy, degrades motor performance under cognitive dual-task conditions, compared to unilateral stimulation. To measure the impact of bilateral versus unilateral subthalamic deep brain stimulation on walking kinematics with and without cognitive dual-tasking. Gait kinematics of seventeen patients with advanced Parkinson's disease who had undergone bilateral subthalamic deep brain stimulation were examined off medication under three stimulation states (bilateral, unilateral left, unilateral right) with and without a cognitive challenge, using an instrumented walkway system. Consistent with earlier studies, gait performance declined for all six measured parameters under cognitive dual-task conditions, independent of stimulation state. However, bilateral stimulation produced greater improvements in step length and double-limb support time than unilateral stimulation, and achieved similar performance for other gait parameters. Contrary to expectations from earlier studies of dual-task motor performance, bilateral subthalamic deep brain stimulation may assist in maintaining temporal and spatial gait performance under cognitive dual-task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Is there a cognitive signature for MS-related fatigue?

    PubMed

    Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut

    2015-04-01

    The compensatory approach of fatigue argues that it is a state caused by task load. The neuropsychiatric approach argues that fatigue is a trait (like depression), unrelated to environmental challenges. We propose that fatigue is an internal state that can be measured behaviorally only by applying specific cognitive tasks. PubMed was searched for articles concerning the relation between fatigue and cognitive performance or brain atrophy or functional MRI, distinguishing between the following cognitive domains: learning/memory, cognitive speed/selective attention, language, visuospatial processing, working memory, alerting/vigilance. Only tasks assessing alerting/vigilance are strongly related to fatigue. Areas with brain atrophy in fatigue patients overlap with brain regions activated in healthy controls performing alerting/vigilance tasks. Fatigue is not a compensatory state, nor a psychogenic trait. It is a feeling with behavioral effects that seems to be caused by brain atrophy or a neurochemical dysfunction of the alerting/vigilance system. © The Author(s), 2014.

  3. Mild Cognitive Impairment as a single sign of brain hemiatrophy in patient with Localized Scleroderma and Parry-Romberg Syndrome.

    PubMed

    Klimiec, Elzbieta; Klimkowicz-Mrowiec, Aleksandra

    2016-01-01

    Neurologic involvement is well recognized in Systemic Scleroderma and increasingly reported in Localized Scleroderma. MRI brain abnormalities are often associated with symptoms such as seizures or headaches. In some cases they may be clinically silent. We describe a 23 years old female with head, trunk and limbs scleroderma who developed Parry-Romberg Syndrome. Brain MRI showed ipsilateral temporal lobe atrophy without any prominent neurologic symptoms. Neuropsychological examination revealed Mild Cognitive Impairment. During the 7 years of follow up we have noticed progression of face atrophy but no progression of brain atrophy. Cognitive functions have been stable. This case highlight that major MRI brain abnormalities in LS may occur with only subtle clinical manifestation such as Mild Cognitive Impairment. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Creative Cognition and Brain Network Dynamics

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.

    2015-01-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223

  5. Regional entropy of functional imaging signals varies differently in sensory and cognitive systems during propofol-modulated loss and return of behavioral responsiveness.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Shanshan; Wang, Lubin; Yang, Zheng; Li, Shi-Jiang; Binder, Jeffrey R; Hudetz, Anthony G

    2018-05-08

    The level and richness of consciousness depend on information integration in the brain. Altered interregional functional interactions may indicate disrupted information integration during anesthetic-induced unconsciousness. How anesthetics modulate the amount of information in various brain regions has received less attention. Here, we propose a novel approach to quantify regional information content in the brain by the entropy of the principal components of regional blood oxygen-dependent imaging signals during graded propofol sedation. Fifteen healthy individuals underwent resting-state scans in wakeful baseline, light sedation (conscious), deep sedation (unconscious), and recovery (conscious). Light sedation characterized by lethargic behavioral responses was associated with global reduction of entropy in the brain. Deep sedation with completely suppressed overt responsiveness was associated with further reductions of entropy in sensory (primary and higher sensory plus orbital prefrontal cortices) but not high-order cognitive (dorsal and medial prefrontal, cingulate, parietotemporal cortices and hippocampal areas) systems. Upon recovery of responsiveness, entropy was restored in the sensory but not in high-order cognitive systems. These findings provide novel evidence for a reduction of information content of the brain as a potential systems-level mechanism of reduced consciousness during propofol anesthesia. The differential changes of entropy in the sensory and high-order cognitive systems associated with losing and regaining overt responsiveness are consistent with the notion of "disconnected consciousness", in which a complete sensory-motor disconnection from the environment occurs with preserved internal mentation.

  6. [The Influence of the Functioning of Brain Regulatory Systems onto the Voluntary Regulation of Cognitive Performance in Children. Report 2. Neuropsychological and Electrophysiological Assessment of Brain Regulatory Functions in Children Aged 10-12 with Learning Difficulties].

    PubMed

    Semenova, O A; Machinskaya, R I

    2015-01-01

    A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.

  7. Cognitive training with action-related verbs induces neural plasticity in the action representation system as assessed by gray matter brain morphometry.

    PubMed

    Ghio, Marta; Locatelli, Matteo; Tettamanti, Andrea; Perani, Daniela; Gatti, Roberto; Tettamanti, Marco

    2018-06-01

    Embodied cognition theories of semantic memory still face the need for multiple sources of converging evidence in support of the involvement of sensory-motor systems in action-related knowledge. Previous studies showed that training manual actions improves semantic processing of verbs referring to the trained actions. The present work aimed to provide complementary evidence by measuring the brain plasticity effects of a cognitive training requiring sustained lexical-semantic processing of action-related verbs. We included two groups of participants, namely the Proximal Group (PG) and the Distal Group (DG), which underwent a 3-week training with verbs referring to actions involving the proximal and the distal upper limb musculature, respectively. Before and after training, we measured gray matter voxel brain morphometry based on T1 structural magnetic resonance imaging. By means of this 2 (Group: PG, DG) × 2 (Time: pre-, post-training) factorial design, we tested whether sustained cognitive experience with specific action-related verbs induces congruent brain plasticity modifications in target regions of interest pertaining to the action representation system. We found significant post- versus pre-training gray matter volume increases, specifically for PG in the left dorsal precentral gyrus, and for DG in the right cerebellar lobule VIIa. These preliminary results suggest that a cognitive training can induce structural plasticity modifications in brain regions specifically coding for the distal and proximal motor actions the trained verbs refer to. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Infant fMRI: A Model System for Cognitive Neuroscience.

    PubMed

    Ellis, Cameron T; Turk-Browne, Nicholas B

    2018-05-01

    Our understanding of the typical human brain has benefitted greatly from studying different kinds of brains and their associated behavioral repertoires, including animal models and neuropsychological patients. This same comparative perspective can be applied to early development - the environment, behavior, and brains of infants provide a model system for understanding how the mature brain works. This approach requires noninvasive methods for measuring brain function in awake, behaving infants. fMRI is becoming increasingly viable for this purpose, with the unique ability to precisely measure the entire brain, including both cortical and subcortical structures. Here we discuss potential lessons from infant fMRI for several domains of adult cognition and consider the challenges of conducting such research and how they might be mitigated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Repeat neurobehavioral study of borderline personality disorder.

    PubMed Central

    van Reekum, R; Links, P S; Finlayson, M A; Boyle, M; Boiago, I; Ostrander, L A; Moustacalis, E

    1996-01-01

    Previous research has tentatively identified a large subgroup of patients with borderline personality disorder (BPD) with histories of developmental or acquired brain insults. Similarly, these studies have demonstrated a possible biological correlation between the severity of BPD and the number of previous brain insults. The possibility of frontal system cognitive dysfunction in BPD has been raised. This single-blind, case-control study of BPD showed that 13 of 24 subjects with BPD had suffered a brain insult. Correlations between neurodevelopmental/acquired brain injury score and the diagnostic interview for borderline (DIB) score (r = 0.47), and between frontal system cognitive functioning and DIB score (r = -0.37) were seen. Neurocognitive testing and comparison with a cohort of subjects with traumatic brain injury (TBI) showed a pattern of similar cognitive functioning between the 2 groups, with the only differences on individual tests being in the direction of worse functioning in the group with BPD on 2 tasks. These results support the hypotheses described above. The main limitation reflects the low numbers of subjects. PMID:8580113

  10. Cognitive memory and mapping in a brain-like system for robotic navigation.

    PubMed

    Tang, Huajin; Huang, Weiwei; Narayanamoorthy, Aditya; Yan, Rui

    2017-03-01

    Electrophysiological studies in animals may provide a great insight into developing brain-like models of spatial cognition for robots. These studies suggest that the spatial ability of animals requires proper functioning of the hippocampus and the entorhinal cortex (EC). The involvement of the hippocampus in spatial cognition has been extensively studied, both in animal as well as in theoretical studies, such as in the brain-based models by Edelman and colleagues. In this work, we extend these earlier models, with a particular focus on the spatial coding properties of the EC and how it functions as an interface between the hippocampus and the neocortex, as proposed by previous work. By realizing the cognitive memory and mapping functions of the hippocampus and the EC, respectively, we develop a neurobiologically-inspired system to enable a mobile robot to perform task-based navigation in a maze environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The embodied brain: towards a radical embodied cognitive neuroscience

    PubMed Central

    Kiverstein, Julian; Miller, Mark

    2015-01-01

    In this programmatic paper we explain why a radical embodied cognitive neuroscience is needed. We argue for such a claim based on problems that have arisen in cognitive neuroscience for the project of localizing function to specific brain structures. The problems come from research concerned with functional and structural connectivity that strongly suggests that the function a brain region serves is dynamic, and changes over time. We argue that in order to determine the function of a specific brain area, neuroscientists need to zoom out and look at the larger organism-environment system. We therefore argue that instead of looking to cognitive psychology for an analysis of psychological functions, cognitive neuroscience should look to an ecological dynamical psychology. A second aim of our paper is to develop an account of embodied cognition based on the inseparability of cognitive and emotional processing in the brain. We argue that emotions are best understood in terms of action readiness (Frijda, 1986, 2007) in the context of the organism’s ongoing skillful engagement with the environment (Rietveld, 2008; Bruineberg and Rietveld, 2014; Kiverstein and Rietveld, 2015, forthcoming). States of action readiness involve the whole living body of the organism, and are elicited by possibilities for action in the environment that matter to the organism. Since emotion and cognition are inseparable processes in the brain it follows that what is true of emotion is also true of cognition. Cognitive processes are likewise processes taking place in the whole living body of an organism as it engages with relevant possibilities for action. PMID:25999836

  12. Bilingualism, Mind, and Brain.

    PubMed

    Kroll, Judith F; Dussias, Paola E; Bice, Kinsey; Perrotti, Lauren

    2015-01-01

    The use of two or more languages is common in most of the world. Yet, until recently, bilingualism was considered to be a complicating factor for language processing, cognition, and the brain. The past 20 years have witnessed an upsurge of research on bilingualism to examine language acquisition and processing, their cognitive and neural bases, and the consequences that bilingualism holds for cognition and the brain over the life span. Contrary to the view that bilingualism complicates the language system, this new research demonstrates that all of the languages that are known and used become part of the same language system. The interactions that arise when two languages are in play have consequences for the mind and the brain and, indeed, for language processing itself, but those consequences are not additive. Thus, bilingualism helps reveal the fundamental architecture and mechanisms of language processing that are otherwise hidden in monolingual speakers.

  13. Bilingualism, Mind, and Brain

    PubMed Central

    Dussias, Paola E.; Bice, Kinsey; Perrotti, Lauren

    2016-01-01

    The use of two or more languages is common in most of the world. Yet, until recently, bilingualism was considered to be a complicating factor for language processing, cognition, and the brain. The past 20 years have witnessed an upsurge of research on bilingualism to examine language acquisition and processing, their cognitive and neural bases, and the consequences that bilingualism holds for cognition and the brain over the life span. Contrary to the view that bilingualism complicates the language system, this new research demonstrates that all of the languages that are known and used become part of the same language system. The interactions that arise when two languages are in play have consequences for the mind and the brain and, indeed, for language processing itself, but those consequences are not additive. Thus, bilingualism helps reveal the fundamental architecture and mechanisms of language processing that are otherwise hidden in monolingual speakers. PMID:28642932

  14. Comparisons of Korsakoff and Non-Korsakoff Alcoholics on Neuropsychological Tests of Prefrontal Brain Functioning

    PubMed Central

    Oscar-Berman, Marlene; Kirkley, Shalene M.; Gansler, David A.; Couture, Ashley

    2014-01-01

    Background Evidence suggests that alcoholics exhibit particular deficits in brain systems involving the prefrontal cortex, but few studies have directly compared patients with and without Korsakoff’s syndrome on measures of prefrontal integrity. Methods Neuropsychological tasks sensitive to dysfunction of frontal brain systems were administered, along with standard tests of memory, intelligence, and visuospatial abilities, to 50 healthy, abstinent, nonamnesic alcoholics, 6 patients with alcohol-induced persisting amnestic disorder (Korsakoff’s syndrome), 6 brain-damaged controls with right hemisphere lesions, and 82 healthy nonalcoholic controls. Results Korsakoff patients were impaired on tests of memory, fluency, cognitive flexibility, and perseveration. Non-Korsakoff alcoholics showed some frontal system deficits as well, but these were mild. Cognitive deficits in non-Korsakoff alcoholics were related to age, duration of abstinence (less than 5 years), duration of abuse (more than 20 years), and amount of alcohol intake. Conclusions Abnormalities of frontal system functioning are most apparent in alcoholics with Korsakoff’s syndrome. In non-Korsakoff alcoholics, factors contributing to cognitive performance are age, duration of abstinence, duration of alcoholism, and amount of alcohol consumed. PMID:15100620

  15. Against Strong Ethical Parity: Situated Cognition Theses and Transcranial Brain Stimulation

    PubMed Central

    Heinrichs, Jan-Hendrik

    2017-01-01

    According to a prominent suggestion in the ethics of transcranial neurostimulation the effects of such devices can be treated as ethically on par with established, pre-neurotechnological alterations of the mind. This parity allegedly is supported by situated cognition theories showing how external devices can be part of a cognitive system. This article will evaluate this suggestion. It will reject the claim, that situated cognition theories support ethical parity. It will however point out another reason, why external carriers or modifications of the mental might come to be considered ethically on par with internal carriers. Section “Why Could There Be Ethical Parity between Neural Tissue and External Tools?” presents the ethical parity theses between external and internal carriers of the mind as well as neurotechnological alterations and established alterations. Section “Extended, Embodied, Embedded: Situated Cognition as a Relational Thesis” will elaborate the different situated cognition approaches and their relevance for ethics. It will evaluate, whether transcranial stimulation technologies are plausible candidates for situated cognition theses. Section “On the Ethical Relevance of Situated Cognition Theses” will discuss criteria for evaluating whether a cognitive tool is deeply embedded with a cognitive system and apply these criteria to transcranial brain stimulation technologies. Finally it will discuss the role diverse versions of situated cognition theory can play in the ethics of altering mental states, especially the ethics of transcranial brain stimulation technologies. PMID:28443008

  16. Against Strong Ethical Parity: Situated Cognition Theses and Transcranial Brain Stimulation.

    PubMed

    Heinrichs, Jan-Hendrik

    2017-01-01

    According to a prominent suggestion in the ethics of transcranial neurostimulation the effects of such devices can be treated as ethically on par with established, pre-neurotechnological alterations of the mind. This parity allegedly is supported by situated cognition theories showing how external devices can be part of a cognitive system. This article will evaluate this suggestion. It will reject the claim, that situated cognition theories support ethical parity. It will however point out another reason, why external carriers or modifications of the mental might come to be considered ethically on par with internal carriers. Section "Why Could There Be Ethical Parity between Neural Tissue and External Tools?" presents the ethical parity theses between external and internal carriers of the mind as well as neurotechnological alterations and established alterations. Section "Extended, Embodied, Embedded: Situated Cognition as a Relational Thesis" will elaborate the different situated cognition approaches and their relevance for ethics. It will evaluate, whether transcranial stimulation technologies are plausible candidates for situated cognition theses. Section "On the Ethical Relevance of Situated Cognition Theses" will discuss criteria for evaluating whether a cognitive tool is deeply embedded with a cognitive system and apply these criteria to transcranial brain stimulation technologies. Finally it will discuss the role diverse versions of situated cognition theory can play in the ethics of altering mental states, especially the ethics of transcranial brain stimulation technologies.

  17. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.

    PubMed

    Foldes, Stephen T; Taylor, Dawn M

    2013-12-21

    Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.

  18. Noradrenergic System in Down Syndrome and Alzheimer's Disease A Target for Therapy.

    PubMed

    Phillips, Cristy; Fahimi, Atoossa; Das, Devsmita; Mojabi, Fatemeh S; Ponnusamy, Ravikumar; Salehi, Ahmad

    2016-01-01

    Locus coeruleus (LC) neurons in the brainstem send extensive noradrenergic (NE)-ergic terminals to the majority of brain regions, particularly those involved in cognitive function. Both Alzheimer's disease (AD) and Down syndrome (DS) are characterized by similar pathology including significant LC degeneration and dysfunction of the NE-ergic system. Extensive loss of NE-ergic terminals has been linked to alterations in brain regions vital for cognition, mood, and executive function. While the mechanisms by which NE-ergic abnormalities contribute to cognitive dysfunction are not fully understood, emergent evidence suggests that rescue of NE-ergic system can attenuate neuropathology and cognitive decline in both AD and DS. Therapeutic strategies to enhance NE neurotransmission have undergone limited testing. Among those deployed to date are NE reuptake inhibitors, presynaptic α-adrenergic receptor antagonists, NE prodrugs, and β-adrenergic agonists. Here we examine alterations in the NE-ergic system in AD and DS and suggest that NE-ergic system rescue is a plausible treatment strategy for targeting cognitive decline in both disorders.

  19. Global brain atrophy is associated with physical performance and the risk of falls in older adults with cognitive impairment.

    PubMed

    Yamada, Minoru; Takechi, Hajime; Mori, Shuhei; Aoyama, Tomoki; Arai, Hidenori

    2013-04-01

    Falls are common in patients with cognitive disorder. The purpose of this study was to determine whether global brain atrophy is associated with cognitive function, physical performance and fall incidents in older adults with mild cognitive disorder. A total of 31 older adults with mild cognitive disorders (mean age 78.9 ± 7.3 years) were studied, and 10 of them had experienced falls and the others had not in the past 1 year. Cognitive function and physical performance were measured in these patients. Global brain atrophy was determined by the Voxel-Based Specific Regional Analysis System for Alzheimer's Disease software. Fallers showed significantly worse scores than the non-fallers in the Global Brain Atrophy Index, Clock Drawing Test (CDT), Verbal Fluency Test (animal), maximum walking time and Timed Up & Go (TUG) Test. The Global Brain Atrophy Index was correlated with the Verbal Fluency Test (animal; r = -0.522), the Verbal Fluency Test with letter (ka; r = -0.337), CDT (r = -0.547), TUG (r = 0.276) and Five Chair Stands Test (r = 0.303) by age-adjusted correlation analyses. Stepwise regression analysis showed that the Global Brain Atrophy Index (β = 1.265, 95% CI 1.022-1.567) was a significant and independent determinant of falls (R(2) = 0.356, P = 0.003). Global brain atrophy might be indicated as one of the risk factors for falls in older adults with mild cognitive disorders. © 2012 Japan Geriatrics Society.

  20. Brain and nervous system (image)

    MedlinePlus

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, ...

  1. White Matter Atrophy and Cognitive Dysfunctions in Neuromyelitis Optica

    PubMed Central

    Blanc, Frederic; Noblet, Vincent; Jung, Barbara; Rousseau, François; Renard, Felix; Bourre, Bertrand; Longato, Nadine; Cremel, Nadjette; Di Bitonto, Laure; Kleitz, Catherine; Collongues, Nicolas; Foucher, Jack; Kremer, Stephane; Armspach, Jean-Paul; de Seze, Jerome

    2012-01-01

    Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients, particularly in the WM. PMID:22509264

  2. Creative Cognition and Brain Network Dynamics.

    PubMed

    Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2016-02-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Face Patch Resting State Networks Link Face Processing to Social Cognition

    PubMed Central

    Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.

    2015-01-01

    Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613

  4. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system.

    PubMed

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-02-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Blockade of AT1 Receptors Protects the Blood–Brain Barrier and Improves Cognition in Dahl Salt-Sensitive Hypertensive Rats

    PubMed Central

    Pelisch, Nicolas; Hosomi, Naohisa; Ueno, Masaki; Nakano, Daisuke; Hitomi, Hirofumi; Mogi, Masaki; Shimada, Kenji; Kobori, Hiroyuki; Horiuchi, Masatsugu; Sakamoto, Haruhiko; Matsumoto, Masayasu; Kohno, Masakazu; Nishiyama, Akira

    2011-01-01

    BACKGROUND The present study tested the hypothesis that inappropriate activation of the brain renin–angiotensin system (RAS) contributes to the pathogenesis of blood–brain barrier (BBB) disruption and cognitive impairment during development of salt-dependent hypertension. Effects of an angiotensin II (AngII) type-1 receptor blocker (ARB), at a dose that did not reduce blood pressure, were also examined. METHODS Dahl salt-sensitive (DSS) rats at 6 weeks of age were assigned to three groups: low-salt diet (DSS/L; 0.3% NaCl), high-salt diet (DSS/H; 8% NaCl), and high-salt diet treated with ARB, olmesartan at 1 mg/kg. RESULTS DSS/H rats exhibited hypertension, leakage from brain microvessels in the hippocampus, and impaired cognitive functions, which were associated with increased brain AngII levels, as well as decreased mRNA levels of tight junctions (TJs) and collagen-IV in the hippocampus. In DSS/H rats, olmesartan treatment, at a dose that did not alter blood pressure, restored the cognitive decline, and ameliorated leakage from brain microvessels. Olmesartan also decreased brain AngII levels and restored mRNA expression of TJs and collagen-IV in DSS/H rats. CONCLUSIONS These results suggest that during development of salt-dependent hypertension, activation of the brain RAS contributes to BBB disruption and cognitive impairment. Treatment with an ARB could elicit neuroprotective effects in cognitive disorders by preventing BBB permeability, which is independent of blood pressure changes. PMID:21164491

  6. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury.

    PubMed

    Martin, Suzanne; Armstrong, Elaine; Thomson, Eileen; Vargiu, Eloisa; Solà, Marc; Dauwalder, Stefan; Miralles, Felip; Daly Lynn, Jean

    2017-07-14

    Cognitive rehabilitation is established as a core intervention within rehabilitation programs following a traumatic brain injury (TBI). Digitally enabled assistive technologies offer opportunities for clinicians to increase remote access to rehabilitation supporting transition into home. Brain Computer Interface (BCI) systems can harness the residual abilities of individuals with limited function to gain control over computers through their brain waves. This paper presents an online cognitive rehabilitation application developed with therapists, to work remotely with people who have TBI, who will use BCI at home to engage in the therapy. A qualitative research study was completed with people who are community dwellers post brain injury (end users), and a cohort of therapists involved in cognitive rehabilitation. A user-centered approach over three phases in the development, design and feasibility testing of this cognitive rehabilitation application included two tasks (Find-a-Category and a Memory Card task). The therapist could remotely prescribe activity with different levels of difficulty. The service user had a home interface which would present the therapy activities. This novel work was achieved by an international consortium of academics, business partners and service users.

  7. Serotonin Modulation of Prefronto-Hippocampal Rhythms in Health and Disease.

    PubMed

    Puig, M Victoria; Gener, Thomas

    2015-07-15

    There is mounting evidence that most cognitive functions depend upon the coordinated activity of neuronal networks often located far from each other in the brain. Ensembles of neurons synchronize their activity, generating oscillations at different frequencies that may encode behavior by allowing an efficient communication between brain areas. The serotonin system, by virtue of the widespread arborisation of serotonergic neurons, is in an excellent position to exert strong modulatory actions on brain rhythms. These include specific oscillatory activities in the prefrontal cortex and the hippocampus, two brain areas essential for many higher-order cognitive functions. Psychiatric patients show abnormal oscillatory activities in these areas, notably patients with schizophrenia who display psychotic symptoms as well as affective and cognitive impairments. Synchronization of neural activity between the prefrontal cortex and the hippocampus seems to be important for cognition and, in fact, reduced prefronto-hippocampal synchrony has been observed in a genetic mouse model of schizophrenia. Here, we review recent advances in the field of neuromodulation of brain rhythms by serotonin, focusing on the actions of serotonin in the prefrontal cortex and the hippocampus. Considering that the serotonergic system plays a crucial role in cognition and mood and is a target of many psychiatric treatments, it is surprising that this field of research is still in its infancy. In that regard, we point to future investigations that are much needed in this field.

  8. The Tractable Cognition Thesis

    ERIC Educational Resources Information Center

    van Rooij, Iris

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the "Tractable Cognition thesis": Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational-level theories…

  9. Teaching to the Brain's Natural Learning Systems.

    ERIC Educational Resources Information Center

    Given, Barbara K.

    This book investigates brain structures and functions of the brain's five major systems (emotional, social, cognitive, physical, and reflective), applying findings from neuro-biology to education. It translates neuroscience into an educational framework for lesson planning and teaching. This framework can serve as a mental model for an ongoing…

  10. Hormones as “difference makers” in cognitive and socioemotional aging processes

    PubMed Central

    Ebner, Natalie C.; Kamin, Hayley; Diaz, Vanessa; Cohen, Ronald A.; MacDonald, Kai

    2015-01-01

    Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems—cortisol, estrogen, testosterone, and oxytocin—as “difference makers” in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: (1) examining both singular actions and interrelations of these four hormonal systems; (2) exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and (3) considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions. PMID:25657633

  11. Mechanisms for widespread hippocampal involvement in cognition

    PubMed Central

    Shohamy, Daphna; Turk-Browne, Nicholas B.

    2014-01-01

    The quintessential memory system in the human brain — the hippocampus and surrounding medial temporal lobe (MTL) — is often treated as a module for the formation of conscious, or declarative memories. However, growing evidence suggests that the hippocampus plays a broader role in memory and cognition and that theories organizing memory into strictly dedicated systems may need to be updated. We first consider the historical evidence for the specialized role of the hippocampus in declarative memory. Then, we describe the serendipitous encounter that motivated this special section, based on parallel research from our labs that suggested a more pervasive contribution of the hippocampus to cognition beyond declarative memory. Finally, we develop a theoretical framework that describes two general mechanisms for how the hippocampus interacts with other brain systems and cognitive processes: the Memory Modulation Hypothesis, in which mnemonic representations in the hippocampus modulate the operation of other systems, and the Adaptive Function Hypothesis, in which specialized computations in the hippocampus are recruited as a component of both mnemonic and non-mnemonic functions. This framework is consistent with an emerging view that the most fertile ground for discovery in cognitive psychology and neuroscience lies at the interface between parts of the mind and brain that have traditionally been studied in isolation. PMID:24246058

  12. Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian

    2015-10-01

    Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Brain Regional Blood Flow and Working Memory Performance Predict Change in Blood Pressure Over 2 Years.

    PubMed

    Jennings, J Richard; Heim, Alicia F; Sheu, Lei K; Muldoon, Matthew F; Ryan, Christopher; Gach, H Michael; Schirda, Claudiu; Gianaros, Peter J

    2017-12-01

    Hypertension is a presumptive risk factor for premature cognitive decline. However, lowering blood pressure (BP) does not uniformly reverse cognitive decline, suggesting that high BP per se may not cause cognitive decline. We hypothesized that essential hypertension has initial effects on the brain that, over time, manifest as cognitive dysfunction in conjunction with both brain vascular abnormalities and systemic BP elevation. Accordingly, we tested whether neuropsychological function and brain blood flow responses to cognitive challenges among prehypertensive individuals would predict subsequent progression of BP. Midlife adults (n=154; mean age, 49; 45% men) with prehypertensive BP underwent neuropsychological testing and assessment of regional cerebral blood flow (rCBF) response to cognitive challenges. Neuropsychological performance measures were derived for verbal and logical memory (memory), executive function, working memory, mental efficiency, and attention. A pseudo-continuous arterial spin labeling magnetic resonance imaging sequence compared rCBF responses with control and active phases of cognitive challenges. Brain areas previously associated with BP were grouped into composites for frontoparietal, frontostriatal, and insular-subcortical rCBF areas. Multiple regression models tested whether BP after 2 years was predicted by initial BP, initial neuropsychological scores, and initial rCBF responses to cognitive challenge. The neuropsychological composite of working memory (standardized beta, -0.276; se=0.116; P =0.02) and the frontostriatal rCBF response to cognitive challenge (standardized beta, 0.234; se=0.108; P =0.03) significantly predicted follow-up BP. Initial BP failed to significantly predict subsequent cognitive performance or rCBF. Changes in brain function may precede or co-occur with progression of BP toward hypertensive levels in midlife. © 2017 American Heart Association, Inc.

  14. Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats.

    PubMed

    Pietrelli, A; Matković, L; Vacotto, M; Lopez-Costa, J J; Basso, N; Brusco, A

    2018-05-23

    Aerobic exercise (AE) benefits brain health and behavior. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known to mediate and shape cognitive processes. Both systems share some actions: BDNF is involved in the maturation and function of 5-HT neurons. In turn, 5-HT is involved in neuroplasticity phenomena mediated by BDNF and stimulated by exercise. The aim of this work was to study the long-term effects of AE on BDNF- 5-HT systems and cognitive function in rats at different ages. A lifelong moderate-intensity aerobic training program was designed, in which aerobically exercised (E) and sedentary control (C) rats were studied at middle (8 months) and old age (18 months) by means of biochemical, immunohistochemical and behavioral assays. The levels and expression of BDNF, 5-HT, serotonin transporter (SERT) and 5-HT 1A receptor were determined in selected brain areas involved in memory and learning. Immunopositive cells to neuronal nuclear protein (NeuN) in the hippocampus CA1 area were also quantified. The cognitive function was evaluated by the object recognition test (ORT). Results indicate that AE enhanced spatial and non-spatial memory systems, modulated by age. This outcome temporarily correlated with a significant upregulation of cortical, hippocampal and striatal BDNF levels in parallel with an increase in the number of hippocampal CA1-mature neurons. AE also increased brain and raphe 5-HT levels, as well as the expression of SERT and 5-HT 1A receptor in the cortex and hippocampus. Old AE rats showed a highly conserved response, indicating a remarkable protective effect of exercise on both systems. In summary, lifelong AE positively affects BDNF-5-HT systems, improves cognitive function and protects the brain against the deleterious effects of sedentary life and aging. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Cognitive Training for Impaired Neural Systems in Neuropsychiatric Illness

    PubMed Central

    Vinogradov, Sophia; Fisher, Melissa; de Villers-Sidani, Etienne

    2012-01-01

    Neuropsychiatric illnesses are associated with dysfunction in distributed prefrontal neural systems that underlie perception, cognition, social interactions, emotion regulation, and motivation. The high degree of learning-dependent plasticity in these networks—combined with the availability of advanced computerized technology—suggests that we should be able to engineer very specific training programs that drive meaningful and enduring improvements in impaired neural systems relevant to neuropsychiatric illness. However, cognitive training approaches for mental and addictive disorders must take into account possible inherent limitations in the underlying brain ‘learning machinery' due to pathophysiology, must grapple with the presence of complex overlearned maladaptive patterns of neural functioning, and must find a way to ally with developmental and psychosocial factors that influence response to illness and to treatment. In this review, we briefly examine the current state of knowledge from studies of cognitive remediation in psychiatry and we highlight open questions. We then present a systems neuroscience rationale for successful cognitive training for neuropsychiatric illnesses, one that emphasizes the distributed nature of neural assemblies that support cognitive and affective processing, as well as their plasticity. It is based on the notion that, during successful learning, the brain represents the relevant perceptual and cognitive/affective inputs and action outputs with disproportionately larger and more coordinated populations of neurons that are distributed (and that are interacting) across multiple levels of processing and throughout multiple brain regions. This approach allows us to address limitations found in earlier research and to introduce important principles for the design and evaluation of the next generation of cognitive training for impaired neural systems. We summarize work to date using such neuroscience-informed methods and indicate some of the exciting future directions of this field. PMID:22048465

  16. BRAIN FUEL METABOLISM, AGING AND ALZHEIMER’S DISEASE

    PubMed Central

    Cunnane, SC; Nugent, S; Roy, M; Courchesne-Loyer, A; Croteau, E; Tremblay, S; Castellano, A; Pifferi, F; Bocti, C; Paquet, N; Begdouri, H; Bentourkia, M; Turcotte, E; Allard, M; Barberger-Gateau, P; Fulop, T; Rapoport, S

    2012-01-01

    Lower brain glucose metabolism is present before the onset of clinically-measurable cognitive decline in two groups of people at risk of Alzheimer’s disease (AD) - carriers of apoE4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and contribute to the neuropathological cascade leading cognitive decline in AD. The reason for brain hypometabolism is unclear but may include defects in glucose transport at the blood-brain barrier, glycolysis, and/or mitochondrial function. Methodological issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization which, in turn, may increase the risk of declining brain glucose uptake, at least in some regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e. that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and, hence, reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to – (i) improve insulin sensitivity by improving systemic glucose utilization, or (ii) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia. PMID:21035308

  17. Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification.

    PubMed

    Wang, Xindi; Lin, Qixiang; Xia, Mingrui; He, Yong

    2018-04-01

    Very little is known regarding whether structural hubs of human brain networks that enable efficient information communication may be classified into different categories. Using three multimodal neuroimaging data sets, we construct individual structural brain networks and further identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive characteristics and reproducibility analyses. We show the three categories of structural hubs in the brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct categories of hubs are primarily located in the default-mode system and additionally in the visual and limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit various distinct characteristics to support their differentiated roles, involving microstructural organization, wiring costs, topological vulnerability, functional modular integration, and cognitive flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three categories of hubs display high across-session spatial similarities and act as structural fingerprints with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we highlight three categories of brain hubs with differential microstructural, functional and, cognitive associations, which shed light on topological mechanisms of the human connectome. © 2018 Wiley Periodicals, Inc.

  18. Nutrients, Microglia Aging, and Brain Aging.

    PubMed

    Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi

    2016-01-01

    As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of "microglia aging." This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.

  19. Nutrients, Microglia Aging, and Brain Aging

    PubMed Central

    Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi

    2016-01-01

    As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of “microglia aging.” This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging. PMID:26941889

  20. REVIEWS OF TOPICAL PROBLEMS: Nonlinear dynamics of the brain: emotion and cognition

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Muezzinoglu, M. K.

    2010-07-01

    Experimental investigations of neural system functioning and brain activity are standardly based on the assumption that perceptions, emotions, and cognitive functions can be understood by analyzing steady-state neural processes and static tomographic snapshots. The new approaches discussed in this review are based on the analysis of transient processes and metastable states. Transient dynamics is characterized by two basic properties, structural stability and information sensitivity. The ideas and methods that we discuss provide an explanation for the occurrence of and successive transitions between metastable states observed in experiments, and offer new approaches to behavior analysis. Models of the emotional and cognitive functions of the brain are suggested. The mathematical object that represents the observed transient brain processes in the phase space of the model is a structurally stable heteroclinic channel. The possibility of using the suggested models to construct a quantitative theory of some emotional and cognitive functions is illustrated.

  1. The effects of tobacco smoke and nicotine on cognition and the brain.

    PubMed

    Swan, Gary E; Lessov-Schlaggar, Christina N

    2007-09-01

    Tobacco smoke consists of thousands of compounds including nicotine. Many constituents have known toxicity to the brain, cardiovascular, and pulmonary systems. Nicotine, on the other hand, by virtue of its short-term actions on the cholinergic system, has positive effects on certain cognitive domains including working memory and executive function and may be, under certain conditions, neuroprotective. In this paper, we review recent literature, laboratory and epidemiologic, that describes the components of mainstream and sidestream tobacco smoke, including heavy metals and their toxicity, the effect of medicinal nicotine on the brain, and studies of the relationship between smoking and (1) preclinical brain changes including silent brain infarcts; white matter hyperintensities, and atrophy; (2) single measures of cognition; (3) cognitive decline over repeated measures; and (4) dementia. In most studies, exposure to smoke is associated with increased risk for negative preclinical and cognitive outcomes in younger people as well as in older adults. Potential mechanisms for smoke's harmful effects include oxidative stress, inflammation, and atherosclerotic processes. Recent evidence implicates medicinal nicotine as potentially harmful to both neurodevelopment in children and to catalyzing processes underlying neuropathology in Alzheimer's Disease. The reviewed evidence suggests caution with the use of medicinal nicotine in pregnant mothers and older adults at risk for certain neurological disease. Directions for future research in this area include the assessment of comorbidities (alcohol consumption, depression) that could confound the association between smoking and neurocognitive outcomes, the use of more specific measures of smoking behavior and cognition, the use of biomarkers to index exposure to smoke, and the assessment of cognition-related genotypes to better understand the role of interactions between smoking/nicotine and variation in genotype in determining susceptibility to the neurotoxic effects of smoking and the putative beneficial effects of medicinal nicotine.

  2. White matter hyperintensities, systemic inflammation, brain growth, and cognitive functions in children exposed to air pollution.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Torres-Jardón, Ricardo; Carlos, Esperanza; Solorio-López, Edelmira; Medina-Cortina, Humberto; Kavanaugh, Michael; D'Angiulli, Amedeo

    2012-01-01

    Air pollution exposures are linked to neuroinflammation and neuropathology in young urbanites. Forty percent of exposed children and young adults exhibit frontal tau hyperphosphorylation and 51% have amyloid-β diffuse plaques compared to 0% in low pollution controls. In older adults, white matter hyperintensities (WMH) are associated with cognitive deficits while inflammatory markers correlate with greater atrophy than expected for age. We investigated patterns of WMH, magnetic resonance imaging (MRI) volume growth, blood inflammatory mediators, and cognition in matched children from two urban cohorts: one severely and one minimally exposed to air pollution. Baseline and one year follow-up measurements of cognitive abilities, brain MRI volumes, and blood were collected in 20 Mexico City (MC) children (10 with WMH+, and 10 without WMH-) and 10 matched controls (WMH-). MC WMH- children display the profile of classical pro-inflammatory defensive responses: high interleukin 12, production of powerful pro-inflammatory cytokines, and low concentrations of key cytokines and chemokines associated with neuroprotection. MC WMH+ children exhibit a response involved in resolution of inflammation, immunoregulation, and tissue remodeling. The MC WMH+ group responded to the air pollution-associated brain volumetric alterations with white and grey matter volume increases in temporal, parietal, and frontal regions and better cognitive performance compared to MC WMH-. We conclude that complex modulation of cytokines and chemokines influences children's central nervous system structural and volumetric responses and cognitive correlates resulting from environmental pollution exposures. Identification of biomarkers associating systemic inflammation to brain growth is critical for detecting children at higher risk for cognitive deficits and neurodegeneration, thereby warranting early implementation of neuroprotective measures.

  3. Changes in Brain Structural Networks and Cognitive Functions in Testicular Cancer Patients Receiving Cisplatin-Based Chemotherapy.

    PubMed

    Amidi, Ali; Hosseini, S M Hadi; Leemans, Alexander; Kesler, Shelli R; Agerbæk, Mads; Wu, Lisa M; Zachariae, Robert

    2017-12-01

    Cisplatin-based chemotherapy may have neurotoxic effects within the central nervous system. The aims of this study were 1) to longitudinally investigate the impact of cisplatin-based chemotherapy on whole-brain networks in testicular cancer patients undergoing treatment and 2) to explore whether possible changes are related to decline in cognitive functioning. Sixty-four newly orchiectomized TC patients underwent structural magnetic resonance imaging (T1-weighted and diffusion-weighted imaging) and cognitive testing at baseline prior to further treatment and again at a six-month follow-up. At follow-up, 22 participants had received cisplatin-based chemotherapy (CT) while 42 were in active surveillance (S). Brain structural networks were constructed for each participant, and network properties were investigated using graph theory and longitudinally compared across groups. Cognitive functioning was evaluated using standardized neuropsychological tests. All statistical tests were two-sided. Compared with the S group, the CT group demonstrated altered global and local brain network properties from baseline to follow-up as evidenced by decreases in important brain network properties such as small-worldness (P = .04), network clustering (P = .04), and local efficiency (P = .02). In the CT group, poorer overall cognitive performance was associated with decreased small-worldness (r = -0.46, P = .04) and local efficiency (r = -0.51, P = .02), and verbal fluency was associated with decreased local efficiency (r = -0.55, P = .008). Brain structural networks may be disrupted following treatment with cisplatin-based chemotherapy. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in patients undergoing chemotherapy. To the best of our knowledge, this is the first study to longitudinally investigate changes in structural brain networks in a cancer population, providing novel insights regarding the neurobiological mechanisms of cancer-related cognitive impairment.

  4. Short- and long-lasting consequences of novelty, deviance and surprise on brain and cognition.

    PubMed

    Schomaker, J; Meeter, M

    2015-08-01

    When one encounters a novel stimulus this sets off a cascade of brain responses, activating several neuromodulatory systems. As a consequence novelty has a wide range of effects on cognition; improving perception and action, increasing motivation, eliciting exploratory behavior, and promoting learning. Here, we review these benefits and how they may arise in the brain. We propose a framework that organizes novelty's effects on brain and cognition into three groups. First, novelty can transiently enhance perception. This effect is proposed to be mediated by novel stimuli activating the amygdala and enhancing early sensory processing. Second, novel stimuli can increase arousal, leading to short-lived effects on action in the first hundreds of milliseconds after presentation. We argue that these effects are related to deviance, rather than to novelty per se, and link them to activation of the locus-coeruleus norepinephrine system. Third, spatial novelty may trigger the dopaminergic mesolimbic system, promoting dopamine release in the hippocampus, having longer-lasting effects, up to tens of minutes, on motivation, reward processing, and learning and memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Moderating Effects of Cortisol on Neural-Cognitive Association in Cognitively Normal Elderly Subjects

    PubMed Central

    Lau, Way K. W.; Leung, Mei Kei; Law, Andrew C. K.; Lee, Tatia M. C.

    2017-01-01

    Cortisol homeostasis is important for healthy brain and cognitive aging. The aim of the current study is to investigate the role of serum cortisol levels in the relationship between regional brain volumes and cognitive processing speed in a group of cognitively normal elderly subjects. Forty-one healthy elderly participants were from a parallel longitudinal study. The reported data in this study reflects baseline measurements. Whole-brain anatomical scanning was performed using a 3.0 Tesla Philips Medical Systems Achieva scanner. Cognitive processing speed was assessed by the digit-symbol and symbol search tests, from the Chinese version of the Wechsler Adult Intelligence Scale—third edition (WAIS-III). Serum cortisol levels (sampled in the late morning) were measured by ELISA kits. Whole-brain regression analysis revealed that serum cortisol levels positively predicted the white matter volumes (WMV) of the right thalamus, the gray matter volumes (GMV) of the left thalamus and right cerebellar tonsil, and negatively predicted the WMV and GMV of the left middle temporal gyrus (MTG) in 41 healthy elderly participants. Furthermore, serum cortisol significantly moderated the relationship between the GMV of the left MTG and processing speed, as well as the GMV of the left thalamus and processing speed. This study provided the first piece of evidence supporting serum cortisol levels in moderating the relationship between regional brain volumes and processing speed in healthy elderly subjects. This observation enriches our understanding of the role of cortisol in brain morphology and cognitive functioning. PMID:28596732

  6. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian

    2015-03-01

    Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.

  7. Driving the brain towards creativity and intelligence: A network control theory analysis.

    PubMed

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    ClinicalTrials.gov

    2017-07-31

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  9. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure

    PubMed Central

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E.; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M.; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5–19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level. PMID:26928125

  10. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure.

    PubMed

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5-19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level.

  11. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions.

    PubMed

    Di Benedetto, Svetlana; Müller, Ludmila; Wenger, Elisabeth; Düzel, Sandra; Pawelec, Graham

    2017-04-01

    It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type

    PubMed Central

    Menning, Sanne; de Ruiter, Michiel B.; Veltman, Dick J.; Boogerd, Willem; Oldenburg, Hester S. A.; Reneman, Liesbeth

    2017-01-01

    Background Cognitive problems in breast cancer patients are common after systemic treatment, particularly chemotherapy. An increasing number of fMRI studies show altered brain activation in breast cancer patients after treatment, suggestive of neurotoxicity. Previous prospective fMRI studies administered a single cognitive task. The current study employed two task paradigms to evaluate whether treatment-induced changes depend on the probed cognitive domain. Methods Participants were breast cancer patients scheduled to receive systemic treatment (anthracycline-based chemotherapy +/- endocrine treatment, n = 28), or no systemic treatment (n = 24) and no-cancer controls (n = 31). Assessment took place before adjuvant treatment and six months after chemotherapy, or at similar intervals. Blood oxygen level dependent (BOLD) activation and performance were measured during an executive functioning task and an episodic memory task. Group-by-time interactions were analyzed using a flexible factorial design. Results Task performance did not differ between patient groups and did not change over time. Breast cancer patients who received systemic treatment, however, showed increased parietal activation compared to baseline with increasing executive functioning task load compared to breast cancer patients who did not receive systemic treatment. This hyperactivation was accompanied by worse physical functioning, higher levels of fatigue and more cognitive complaints. In contrast, in breast cancer patients who did not receive systemic treatment, parietal activation normalized over time compared to the other two groups. Conclusions Parietal hyperactivation after systemic treatment in the context of stable levels of executive task performance is compatible with a compensatory processing account of hyperactivation or maintain adequate performance levels. This over-recruitment of brain regions depends on the probed cognitive domain and may represent a response to decreased neural integrity after systemic treatment. Overall these results suggest different neurobehavioral trajectories in breast cancer patients depending on treatment type. PMID:28267750

  13. Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type.

    PubMed

    Menning, Sanne; de Ruiter, Michiel B; Veltman, Dick J; Boogerd, Willem; Oldenburg, Hester S A; Reneman, Liesbeth; Schagen, Sanne B

    2017-01-01

    Cognitive problems in breast cancer patients are common after systemic treatment, particularly chemotherapy. An increasing number of fMRI studies show altered brain activation in breast cancer patients after treatment, suggestive of neurotoxicity. Previous prospective fMRI studies administered a single cognitive task. The current study employed two task paradigms to evaluate whether treatment-induced changes depend on the probed cognitive domain. Participants were breast cancer patients scheduled to receive systemic treatment (anthracycline-based chemotherapy +/- endocrine treatment, n = 28), or no systemic treatment (n = 24) and no-cancer controls (n = 31). Assessment took place before adjuvant treatment and six months after chemotherapy, or at similar intervals. Blood oxygen level dependent (BOLD) activation and performance were measured during an executive functioning task and an episodic memory task. Group-by-time interactions were analyzed using a flexible factorial design. Task performance did not differ between patient groups and did not change over time. Breast cancer patients who received systemic treatment, however, showed increased parietal activation compared to baseline with increasing executive functioning task load compared to breast cancer patients who did not receive systemic treatment. This hyperactivation was accompanied by worse physical functioning, higher levels of fatigue and more cognitive complaints. In contrast, in breast cancer patients who did not receive systemic treatment, parietal activation normalized over time compared to the other two groups. Parietal hyperactivation after systemic treatment in the context of stable levels of executive task performance is compatible with a compensatory processing account of hyperactivation or maintain adequate performance levels. This over-recruitment of brain regions depends on the probed cognitive domain and may represent a response to decreased neural integrity after systemic treatment. Overall these results suggest different neurobehavioral trajectories in breast cancer patients depending on treatment type.

  14. Autoimmunity as a Driving Force of Cognitive Evolution

    PubMed Central

    Nataf, Serge

    2017-01-01

    In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3). PMID:29123465

  15. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer's disease therapeutics.

    PubMed

    de la Monte, Suzanne M

    Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol . 2011 Sep 12. Alzheimer's disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer's, subsequent neurodegeneration might be prevented. Administering systemic insulin to elderly non-diabetics poses unacceptable risks of inadvertant hypoglycemia. However, intranasal delivery directs the insulin into the brain, avoiding systemic side-effects. This pilot study demonstrates both efficacy and safety of using intranasal insulin to treat early Alzheimer's and mild cognitive impairment, i.e. the precursor to Alzheimer's. Significant improvements in learning, memory, and cognition occured within a few months, but without intranasal insulin, brain function continued to deteriorate in measurable degrees. Intranasal insulin therapy holds promise for halting progression of Alzheimer's disease.

  16. Altered Odor-Induced Brain Activity as an Early Manifestation of Cognitive Decline in Patients With Type 2 Diabetes.

    PubMed

    Zhang, Zhou; Zhang, Bing; Wang, Xin; Zhang, Xin; Yang, Qing X; Qing, Zhao; Lu, Jiaming; Bi, Yan; Zhu, Dalong

    2018-05-01

    Type 2 diabetes is reported to be associated with olfactory dysfunction and cognitive decline. However, whether and how olfactory neural circuit abnormalities involve cognitive impairment in diabetes remains uncovered. This study thus aimed to investigate olfactory network alterations and the associations of odor-induced brain activity with cognitive and metabolic parameters in type 2 diabetes. Participants with normal cognition, including 51 patients with type 2 diabetes and 41 control subjects without diabetes, underwent detailed cognitive assessment, olfactory behavior tests, and odor-induced functional MRI measurements. Olfactory brain regions showing significantly different activation between the two groups were selected for functional connectivity analysis. Compared with the control subjects, patients with diabetes demonstrated significantly lower olfactory threshold score, decreased brain activation, and disrupted functional connectivity in the olfactory network. Positive associations of the disrupted functional connectivity with decreased neuropsychology test scores and reduced pancreatic function were observed in patients with diabetes. Notably, the association between pancreatic function and executive function was mediated by olfactory behavior and olfactory functional connectivity. Our results suggested the alteration of olfactory network is present before clinically measurable cognitive decrements in type 2 diabetes, bridging the gap between the central olfactory system and cognitive decline in diabetes. © 2018 by the American Diabetes Association.

  17. Linking brain, mind and behavior.

    PubMed

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  18. Cognitive Interventions in Older Persons: Do They Change the Functioning of the Brain?

    PubMed Central

    van Os, Yindee; de Vugt, Marjolein E.; van Boxtel, Martin

    2015-01-01

    Background. Cognitive interventions for older persons that may diminish the burden of cognitive problems and could delay conversion to dementia are of great importance. The underlying mechanisms of such interventions might be psychological compensation and neuronal plasticity. This review provides an overview of the literature concerning the evidence that cognitive interventions cause brain activation changes, even in damaged neural systems. Method. A systematic search of the literature was conducted in several international databases, Medline, Embase, Cinahl, Cochrane, and Psychinfo. The methodological quality was assessed according to the guidelines of the Dutch Institute for Health Care Improvement (CBO). Results. Nineteen relevant articles were included with varied methodological quality. All studies were conducted in diverse populations from healthy elderly to patients with dementia and show changes in brain activation after intervention. Conclusions. The results thus far show that cognitive interventions cause changes in brain activation patterns. The exact interpretation of these neurobiological changes remains unclear. More study is needed to understand the extent to which cognitive interventions are effective to delay conversion to dementia. Future studies should more explicitly try to relate clinically significant improvement to changes in brain activation. Long-term follow-up data are necessary to evaluate the stability of the effects. PMID:26583107

  19. A Game System for Cognitive Rehabilitation

    PubMed Central

    Shapi'i, Azrulhizam; Mat Zin, Nor Azan; Elaklouk, Ahmed Mohammed

    2015-01-01

    Brain injury such as traumatic brain injury (TBI) and stroke is the major cause of long-term disabilities in many countries. The increasing rate of brain damaged victims and the heterogeneity of impairments decrease rehabilitation effectiveness and competence resulting in higher cost of rehabilitation treatment. On the other hand, traditional rehabilitation exercises are boring, thus leading patients to neglect the prescribed exercises required for recovery. Therefore, we propose game-based approach to address these problems. This paper presents a rehabilitation gaming system (RGS) for cognitive rehabilitation. The RGS is developed based on a proposed conceptual framework which has also been presented in this paper. PMID:25815320

  20. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    PubMed

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Brain waves-based index for workload estimation and mental effort engagement recognition

    NASA Astrophysics Data System (ADS)

    Zammouri, A.; Chraa-Mesbahi, S.; Ait Moussa, A.; Zerouali, S.; Sahnoun, M.; Tairi, H.; Mahraz, A. M.

    2017-10-01

    The advent of the communication systems and considering the complexity that some impose in their use, it is necessary to incorporate and equip these systems with a certain intelligence which takes into account the cognitive and mental capacities of the human operator. In this work, we address the issue of estimating the mental effort of an operator according to the cognitive tasks difficulty levels. Based on the Electroencephalogram (EEG) measurements, the proposed approach analyzes the user’s brain activity from different brain regions while performing cognitive tasks with several levels of difficulty. At a first time, we propose a variances comparison-based classifier (VCC) that makes use of the Power Spectral Density (PSD) of the EEG signal. The aim of using such a classifier is to highlight the brain regions that enter into interaction according to the cognitive task difficulty. In a second time, we present and describe a new EEG-based index for the estimation of mental efforts. The designed index is based on information recorded from two EEG channels. Results from the VCC demonstrate that powers of the Theta [4-7 Hz] (θ) and Alpha [8-12 Hz] (α) oscillations decrease while increasing the cognitive task difficulty. These decreases are mainly located in parietal and temporal brain regions. Based on the Kappa coefficients, decisions of the introduced index are compared to those obtained from an existing index. This performance assessment method revealed strong agreements. Hence the efficiency of the introduced index.

  2. Sensory Load Incurs Conceptual Processing Costs

    ERIC Educational Resources Information Center

    Vermeulen, Nicolas; Corneille, Olivier; Niedenthal, Paula M.

    2008-01-01

    Theories of grounded cognition propose that modal simulations underlie cognitive representation of concepts [Barsalou, L. W. (1999). "Perceptual symbol systems." "Behavioral and Brain Sciences, 22"(4), 577-660; Barsalou, L. W. (2008). "Grounded cognition." "Annual Review of Psychology, 59", 617-645]. Based…

  3. Improving brain injury cognitive rehabilitation by personalized telerehabilitation services: Guttmann neuropersonal trainer.

    PubMed

    Solana, Javier; Cáceres, César; García-Molina, Alberto; Opisso, Eloy; Roig, Teresa; Tormos, José M; Gómez, Enrique J

    2015-01-01

    Cognitive rehabilitation aims to remediate or alleviate the cognitive deficits appearing after an episode of acquired brain injury (ABI). The purpose of this work is to describe the telerehabilitation platform called Guttmann Neuropersonal Trainer (GNPT) which provides new strategies for cognitive rehabilitation, improving efficiency and access to treatments, and to increase knowledge generation from the process. A cognitive rehabilitation process has been modeled to design and develop the system, which allows neuropsychologists to configure and schedule rehabilitation sessions, consisting of set of personalized computerized cognitive exercises grounded on neuroscience and plasticity principles. It provides remote continuous monitoring of patient's performance, by an asynchronous communication strategy. An automatic knowledge extraction method has been used to implement a decision support system, improving treatment customization. GNPT has been implemented in 27 rehabilitation centers and in 83 patients' homes, facilitating the access to the treatment. In total, 1660 patients have been treated. Usability and cost analysis methodologies have been applied to measure the efficiency in real clinical environments. The usability evaluation reveals a system usability score higher than 70 for all target users. The cost efficiency study results show a relation of 1-20 compared to face-to-face rehabilitation. GNPT enables brain-damaged patients to continue and further extend rehabilitation beyond the hospital, improving the efficiency of the rehabilitation process. It allows customized therapeutic plans, providing information to further development of clinical practice guidelines.

  4. The motivation to control and the origin of mind: exploring the life-mind joint point in the Tree of Knowledge System.

    PubMed

    Geary, David C

    2005-01-01

    The evolved function of brain, cognitive, affective, conscious-psychological, and behavioral systems is to enable animals to attempt to gain control of the social (e.g., mates), biological (e.g., prey), and physical (e.g., nesting spots) resources that have tended to covary with survival and reproductive outcomes during the species' evolutionary history. These resources generate information patterns that range from invariant to variant. Invariant information is consistent across generations and within lifetimes (e.g., the prototypical shape of a human face) and is associated with modular brain and cognitive systems that coalesce around the domains of folk psychology, folk biology, and folk physics. The processing of information in these domains is implicit and results in automatic bottom-up behavioral responses. Variant information varies across generations and within lifetimes (e.g., as in social dynamics) and is associated with plastic brain and cognitive systems and explicit, consciously driven top-down behavioral responses. The fundamentals of this motivation-to-control model are outlined and links are made to Henriques' (2004) Tree of Knowledge System and Behavioral Investment Theory.

  5. User-friendly cognitive training for the elderly: a technical report.

    PubMed

    Boquete, Luciano; Rodríguez-Ascariz, José Manuel; Amo-Usanos, Carlos; Martínez-Arribas, Alejandro; Amo-Usanos, Javier; Otón, Salvador

    2011-01-01

    This article presents a system that implements a cognitive training program in users' homes. The system comprises various applications designed to create a daily brain-fitness regime. The proposed mental training system uses television and a remote control specially designed for the elderly. This system integrates Java applications to promote brain-fitness training in three areas: arithmetic, memory, and idea association. The system comprises the following: Standard television set, simplified wireless remote control, black box (system's core hardware and software), brain-fitness games (language Java), and Wi-Fi-enabled Internet-connected router. All data from the user training sessions are monitored through a control center. This control center analyzes the evolution of the user and the proper performance of the system during the test. The implemented system has been tested by six healthy volunteers. The results for this user group demonstrated the accessibility and usability of the system in a controlled real environment. The impressions of the users were very favorable, and they reported high adaptability to the system. The mean score for usability and accessibility assigned by the users was 3.56 out of 5 points. The operation stress test (over 200 h) was successful. The proposed system was used to implement a cognitive training program in users' homes, which was developed to be a low-cost tool with a high degree of user interactivity. The results of this preliminary study indicate that this user-friendly system could be adopted as a form of cognitive training for the elderly.

  6. The brain's connective core and its role in animal cognition

    PubMed Central

    Shanahan, Murray

    2012-01-01

    This paper addresses the question of how the brain of an animal achieves cognitive integration—that is to say how it manages to bring its fullest resources to bear on an ongoing situation. To fully exploit its cognitive resources, whether inherited or acquired through experience, it must be possible for unanticipated coalitions of brain processes to form. This facilitates the novel recombination of the elements of an existing behavioural repertoire, and thereby enables innovation. But in a system comprising massively many anatomically distributed assemblies of neurons, it is far from clear how such open-ended coalition formation is possible. The present paper draws on contemporary findings in brain connectivity and neurodynamics, as well as the literature of artificial intelligence, to outline a possible answer in terms of the brain's most richly connected and topologically central structures, its so-called connective core. PMID:22927569

  7. Is Empiricism Empirically False? Lessons from Early Nervous Systems.

    PubMed

    Miłkowski, Marcin

    2017-01-01

    Recent work on skin-brain thesis (de Wiljes et al. 2015; Keijzer 2015; Keijzer et al. 2013) suggests the possibility of empirical evidence that empiricism is false. It implies that early animals need no traditional sensory receptors to be engaged in cognitive activity. The neural structure required to coordinate extensive sheets of contractile tissue for motility provides the starting point for a new multicellular organized form of sensing. Moving a body by muscle contraction provides the basis for a multicellular organization that is sensitive to external surface structure at the scale of the animal body. In other words, the nervous system first evolved for action, not for receiving sensory input. Thus, sensory input is not required for minimal cognition; only action is. The whole body of an organism, in particular its highly specific animal sensorimotor organization, reflects the bodily and environmental spatiotemporal structure. The skin-brain thesis suggests that, in contrast to empiricist claims that cognition is constituted by sensory systems, cognition may be also constituted by action-oriented feedback mechanisms. Instead of positing the reflex arc as the elementary building block of nervous systems, it proposes that endogenous motor activity is crucial for cognitive processes. In the paper, I discuss the issue whether the skin-brain thesis and its supporting evidence can be really used to overthrow the main tenet of empiricism empirically, by pointing out to cognizing agents that fail to have any sensory apparatus.

  8. Neuropsychology of humor: an introduction. Part II. Humor and the brain.

    PubMed

    Derouesné, Christian

    2016-09-01

    Impairment of the perception or comprehension of humor is observed in patients with focal brain lesions in both hemispheres, but mainly in the right frontal lobe. Studies by functional magnetic resonance imaging in healthy subjects show that humor is associated with activation of two main neural systems in both hemispheres. The detection and resolution of incongruity, cognitive groundings of humor, are associated with activation of the medial prefrontal and temporoparietal cortex, and the humor appreciation with activation of the orbito-frontal and insular cortex, amygdala and the brain reward system. However, activation of these areas is not humor-specific and can be observed in various cognitive or emotional processes. Event-related potential studies confirm the involvement of both hemispheres in humor processing, and suggest that left prefrontal area is associated with joke comprehension and right prefrontal area with the resolution stage. Humor thus appears to be a complex and dynamic functional process involving, on one hand, two specialized but not specific neural systems linked to humor apprehension and appreciation, and, on the other hand, multiple interconnected functional brain networks including neural patterns underlying the moral framework and belief system, acquired by conditioning or imitation during the cognitive development and social interactions of the individual, and more distributed systems associated with the analysis of the current context of humor occurrence. Disturbances of the sense of humor could then result from focal brain alterations localized in one or two of the specialized areas underlying the comprehension or appreciation of humor, or from perturbations of the network interconnectivity in non-focal brain disorders such as Alzheimer's disease or schizophrenia.

  9. The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience.

    PubMed

    Burgess, Neil

    2014-12-17

    Understanding how the cognitive functions of the brain arise from its basic physiological components has been an enticing final frontier in science for thousands of years. The Nobel Prize in Physiology or Medicine 2014 was awarded one half to John O'Keefe, the other half jointly to May-Britt Moser and Edvard I. Moser "for their discoveries of cells that constitute a positioning system in the brain." This prize recognizes both a paradigm shift in the study of cognitive neuroscience, and some of the amazing insights that have followed from it concerning how the world is represented within the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Operationalizing Cognitive Science and Technologies' Research and Development; the "Brain and Cognition Study Group (BCSG)" Initiative from Shiraz, Iran.

    PubMed

    Ashjazadeh, Nahid; Boostani, Reza; Ekhtiari, Hamed; Emamghoreishi, Masoumeh; Farrokhi, Majidreza; Ghanizadeh, Ahmad; Hatam, Gholamreza; Hadianfard, Habib; Lotfi, Mehrzad; Mortazavi, Seyed Mohammad Javad; Mousavi, Maryam; Montakhab, Afshin; Nili, Majid; Razmkon, Ali; Salehi, Sina; Sodagar, Amir Mohammad; Setoodeh, Peiman; Taghipour, Mousa; Torabi-Nami, Mohammad; Vesal, Abdolkarim

    2014-01-01

    Recent advances in brain and cognitive science studies have revolutionized concepts in neural dynamics, regulating mechanisms, coding systems and information processing networks which govern our function and behavior. Hidden aspects of neurological and psychiatric diseases are being understood and hopes for their treatment are emerging. Although the two comprehensive mega-projects on brain mapping are in place in the United States and Europe; the proportion of science contributed by the developing countries should not be downsized. With the granted supports from the Cognitive Sciences and Technologies Council (CSTC), Iran can take its role in research on brain and cognition further. The idea of research and development in Cognitive Sciences and Technologies (CST) is being disseminated across the country by CSTC. Towards this goal, the first Shiraz interdisciplinary meeting on CST was held on 9 January 2014 in Namazi hospital, Shiraz. CST research priorities, infrastructure development, education and promotion were among the main topics discussed during this interactive meeting. The steering committee of the first CST meeting in Shiraz decided to frame future research works within the "Brain and Cognition Study Group-Shiraz" (BCSG-Shiraz). The study group comprises scientific leaders from various allied disciplines including neuroscience, neurosurgery, neurology, psychiatry, psychology, radiology, physiology, bioengineering, biophysics, applied physics and telecommunication. As the headquarter for CST in the southern Iran, BCSG-Shiraz is determined to advocate "brain and cognition" awareness, education and research in close collaboration with CSTC. Together with CSTC, Shiraz Neuroscience Research center (SNRC) will take the initiative to cross boundaries in interdisciplinary works and multi-centric research projects within the study group.

  11. Individual differences and time-varying features of modular brain architecture.

    PubMed

    Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong

    2017-05-15

    Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Neural Mechanisms of Meditative Practices: Novel Approaches for Healthy Aging.

    PubMed

    Acevedo, Bianca P; Pospos, Sarah; Lavretsky, Helen

    2016-01-01

    Meditation has been shown to have physical, cognitive, and psychological health benefits that can be used to promote healthy aging. However, the common and specific mechanisms of response remain elusive due to the diverse nature of mind-body practices. In this review, we aim to compare the neural circuits implicated in focused-attention meditative practices that focus on present-moment awareness to those involved in active-type meditative practices (e.g., yoga) that combine movement, including chanting, with breath practices and meditation. Recent meta-analyses and individual studies demonstrated common brain effects for attention-based meditative practices and active-based meditations in areas involved in reward processing and learning, attention and memory, awareness and sensory integration, and self-referential processing and emotional control, while deactivation was seen in the amygdala, an area implicated in emotion processing. Unique effects for mindfulness practices were found in brain regions involved in body awareness, attention, and the integration of emotion and sensory processing. Effects specific to active-based meditations appeared in brain areas involved in self-control, social cognition, language, speech, tactile stimulation, sensorimotor integration, and motor function. This review suggests that mind-body practices can target different brain systems that are involved in the regulation of attention, emotional control, mood, and executive cognition that can be used to treat or prevent mood and cognitive disorders of aging, such as depression and caregiver stress, or serve as "brain fitness" exercise. Benefits may include improving brain functional connectivity in brain systems that generally degenerate with Alzheimer's disease, Parkinson's disease, and other aging-related diseases.

  13. A regional consensus recommendation on brain atrophy as an outcome measure in multiple sclerosis.

    PubMed

    Alroughani, Raed; Deleu, Dirk; El Salem, Khalid; Al-Hashel, Jasem; Alexander, K John; Abdelrazek, Mohamed Assem; Aljishi, Adel; Alkhaboori, Jaber; Al Azri, Faisal; Al Zadjali, Nahida; Hbahbih, Majed; Sokrab, Tag Eldin; Said, Mohamed; Rovira, Àlex

    2016-11-24

    Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammatory and neurodegenerative processes leading to irreversible neurological impairment. Brain atrophy occurs early in the course of the disease at a rate greater than the general population. Brain volume loss (BVL) is associated with disability progression and cognitive impairment in patients with MS; hence its value as a potential target in monitoring and treating MS is discussed. A group of MS neurologists and neuro-radiologists reviewed the current literature on brain atrophy and discussed the challenges in assessing and implementing brain atrophy measurements in clinical practice. The panel used a voting system to reach a consensus and the votes were counted for the proposed set of questions for cognitive and brain atrophy assessments. The panel of experts was able to identify recent studies, which demonstrated the correlation between BVL and future worsening of disability and cognition. The current evidence revealed that reduction of BVL could be achieved with different disease-modifying therapies (DMTs). BVL provided a better treatment and monitoring strategy when it is combined to the composite measures of "no evidence of disease activity" (NEDA). The panel recommended a set of cognitive assessment tools and MRI methods and software applications that may help in capturing and measuring the underlying MS pathology with high degree of specificity. BVL was considered to be a useful measurement to longitudinally assess disease progression and cognitive function in patients with MS. Brain atrophy measurement was recommended to be incorporated into the concept of NEDA. Consequently, a consensus recommendation was reached in anticipation for implementation of the use of cognitive assessment and brain atrophy measurements on a regional level.

  14. Cocaine, Appetitive Memory and Neural Connectivity

    PubMed Central

    Ray, Suchismita

    2013-01-01

    This review examines existing cognitive experimental and brain imaging research related to cocaine addiction. In section 1, previous studies that have examined cognitive processes, such as implicit and explicit memory processes in cocaine users are reported. Next, in section 2, brain imaging studies are reported that have used chronic users of cocaine as study participants. In section 3, several conclusions are drawn. They are: (a) in cognitive experimental literature, no study has examined both implicit and explicit memory processes involving cocaine related visual information in the same cocaine user, (b) neural mechanisms underlying implicit and explicit memory processes for cocaine-related visual cues have not been directly investigated in cocaine users in the imaging literature, and (c) none of the previous imaging studies has examined connectivity between the memory system and craving system in the brain of chronic users of cocaine. Finally, future directions in the field of cocaine addiction are suggested. PMID:25009766

  15. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology

    USDA-ARS?s Scientific Manuscript database

    The brain-gut axis allows bidirectional communication between the central nervous system (CNS) and the enteric nervous system (ENS), linking emotional and cognitive centers of the brain with peripheral intestinal functions. Recent experimental work suggests that the gut microbiota have an impact on ...

  16. Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain

    PubMed Central

    Sepulcre, Jorge; Sabuncu, Mert R.; Yeo, Thomas B.; Liu, Hesheng; Johnson, Keith A.

    2012-01-01

    How human beings integrate information from external sources and internal cognition to produce a coherent experience is still not well understood. During the past decades, anatomical, neurophysiological and neuroimaging research in multimodal integration have stood out in the effort to understand the perceptual binding properties of the brain. Areas in the human lateral occipito-temporal, prefrontal and posterior parietal cortices have been associated with sensory multimodal processing. Even though this, rather patchy, organization of brain regions gives us a glimpse of the perceptual convergence, the articulation of the flow of information from modality-related to the more parallel cognitive processing systems remains elusive. Using a method called Stepwise Functional Connectivity analysis, the present study analyzes the functional connectome and transitions from primary sensory cortices to higher-order brain systems. We identify the large-scale multimodal integration network and essential connectivity axes for perceptual integration in the human brain. PMID:22855814

  17. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function.

    PubMed

    Poulose, Shibu M; Miller, Marshall G; Scott, Tammy; Shukitt-Hale, Barbara

    2017-11-01

    Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging. © 2017 American Society for Nutrition.

  18. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  19. The resonant system: Linking brain-body-environment in sport performance☆.

    PubMed

    Teques, Pedro; Araújo, Duarte; Seifert, Ludovic; Del Campo, Vicente L; Davids, Keith

    2017-01-01

    The ecological dynamics approach offers new insights to understand how athlete nervous systems are embedded within the body-environment system in sport. Cognitive neuroscience focuses on the neural bases of athlete behaviors in terms of perceptual, cognitive, and motor functions defined within specific brain structures. Here, we discuss some limitations of this traditional perspective, addressing how athletes functionally adapt perception and action to the dynamics of complex performance environments by continuously perceiving information to regulate goal-directed actions. We examine how recent neurophysiological evidence of functioning in diverse cortical and subcortical regions appears more compatible with an ecological dynamics perspective, than traditional views in cognitive neuroscience. We propose how athlete behaviors in sports may be related to the tuning of resonant mechanisms indicating that perception is a dynamic process involving the whole body of the athlete. We emphasize the important role of metastable dynamics in the brain-body-environment system facilitating continuous interactions with a landscape of affordances (opportunities for action) in a performance environment. We discuss implications of these ideas for performance preparation and practice design in sport. © 2017 Elsevier B.V. All rights reserved.

  20. On the role of general system theory for functional neuroimaging.

    PubMed

    Stephan, Klaas Enno

    2004-12-01

    One of the most important goals of neuroscience is to establish precise structure-function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure-function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure-function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples.

  1. On the role of general system theory for functional neuroimaging

    PubMed Central

    Stephan, Klaas Enno

    2004-01-01

    One of the most important goals of neuroscience is to establish precise structure–function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure–function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure–function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples. PMID:15610393

  2. Brain. Conscious and Unconscious Mechanisms of Cognition, Emotions, and Language

    PubMed Central

    Perlovsky, Leonid; Ilin, Roman

    2012-01-01

    Conscious and unconscious brain mechanisms, including cognition, emotions and language are considered in this review. The fundamental mechanisms of cognition include interactions between bottom-up and top-down signals. The modeling of these interactions since the 1960s is briefly reviewed, analyzing the ubiquitous difficulty: incomputable combinatorial complexity (CC). Fundamental reasons for CC are related to the Gödel’s difficulties of logic, a most fundamental mathematical result of the 20th century. Many scientists still “believed” in logic because, as the review discusses, logic is related to consciousness; non-logical processes in the brain are unconscious. CC difficulty is overcome in the brain by processes “from vague-unconscious to crisp-conscious” (representations, plans, models, concepts). These processes are modeled by dynamic logic, evolving from vague and unconscious representations toward crisp and conscious thoughts. We discuss experimental proofs and relate dynamic logic to simulators of the perceptual symbol system. “From vague to crisp” explains interactions between cognition and language. Language is mostly conscious, whereas cognition is only rarely so; this clarifies much about the mind that might seem mysterious. All of the above involve emotions of a special kind, aesthetic emotions related to knowledge and to cognitive dissonances. Cognition-language-emotional mechanisms operate throughout the hierarchy of the mind and create all higher mental abilities. The review discusses cognitive functions of the beautiful, sublime, music. PMID:24961270

  3. FRIEND: a brain-monitoring agent for adaptive and assistive systems.

    PubMed

    Morris, Alexis; Ulieru, Mihaela

    2012-01-01

    This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.

  4. Robert Sylwester on Electronic Media and Brain Development. Windows to the Mind, Volume 2. [Videotape].

    ERIC Educational Resources Information Center

    Sylwester, Robert

    This videotape explores the influence of electronic media on children's cognitive development. Posing the "cyberworld" as both a window to the greater world and a mirror to the students' world, the first part of the video examines electronic media and the brain's response systems. This part notes the brain's two response systems--the…

  5. Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging.

    PubMed

    Rosano, Caterina; Marsland, Anna L; Gianaros, Peter J

    2012-02-01

    Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests that inflammation is a shared mechanism, contributing to both cognitive decline and abnormalities in brain structure and metabolism. Thus, inflammation may provide a target for intervention. Specifically, circulating inflammatory markers have been associated with declines in cognitive function and worsening of brain structural and metabolic characteristics. Additionally, it has been proposed that older brains are characterized by a sensitization to neuroinflammatory responses, even in the absence of overt disease. This increased propensity to central inflammation may contribute to poor brain health and premature brain aging. Still unknown is whether and how peripheral inflammatory factors directly contribute to decline of brain health. Human research is limited by the challenges of directly measuring neuroinflammation in vivo. This review assesses the role that inflammation may play in the brain changes that often accompany aging, focusing on relationships between peripheral inflammatory markers and brain health among well-functioning, community-dwelling adults seventy years and older. We propose that monitoring and maintaining lower levels of systemic and central inflammation among older adults could help preserve brain health and support successful aging. Hence, we also identify plausible ways and novel experimental study designs of maintaining brain health late in age through interventions that target the immune system.

  6. Cognitive Neuroscience Discoveries and Educational Practices

    ERIC Educational Resources Information Center

    Sylwester, Robert

    2006-01-01

    In this article, the author describes seven movement-related areas of cognitive neuroscience research that will play key roles in shifting the current behavioral orientation of teaching and learning to an orientation that also incorporates cognitive neuroscience discoveries. These areas of brain research include: (1) mirroring system; (2) plastic…

  7. A systemic literature review of neuroimaging studies in women with breast cancer treated with adjuvant chemotherapy

    PubMed Central

    Wiłkość, Monika; Izdebski, Paweł; Żurawski, Bogdan

    2017-01-01

    Chemotherapy-induced cognitive deficits in patients with breast cancer, predominantly in attention and verbal memory, have been observed in numerous studies. These neuropsychological findings are corroborated by the results of neuroimaging studies. The aim of this paper was to survey the reports on cerebral structural and functional alterations in women with breast cancer treated with chemotherapy (CTx). First, we discuss the host-related and disease-related mechanisms underlying cognitive impairment after CTx. We point out the direct and indirect neurotoxic effect of cytostatics, which may cause: a damage to neurons or glial cells, changes in neurotransmitter levels, deregulation of the immune system and/or cytokine release. Second, we focus on the results of neuroimaging studies on brain structure and function that revealed decreased: density of grey matter, integrity of white matter and volume of multiple brain regions, as well as their lower activation during cognitive task performance. Finally, we concentrate on compensatory mechanisms, which activate additional brain areas or neural connection to reach the premorbid cognitive efficiency. PMID:28435392

  8. Changes in Acetylcholine Extracellular Levels during Cognitive Processes

    ERIC Educational Resources Information Center

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2004-01-01

    Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular…

  9. Distinct neural correlates of emotional and cognitive empathy in older adults

    PubMed Central

    Moore, Raeanne C.; Dev, Sheena I.; Jeste, Dilip V.; Dziobek, Isabel; Eyler, Lisa T.

    2014-01-01

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of “cold” cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. PMID:25770039

  10. Distinct neural correlates of emotional and cognitive empathy in older adults.

    PubMed

    Moore, Raeanne C; Dev, Sheena I; Jeste, Dilip V; Dziobek, Isabel; Eyler, Lisa T

    2015-04-30

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of "cold" cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. Published by Elsevier Ireland Ltd.

  11. Estimated maximal and current brain volume predict cognitive ability in old age

    PubMed Central

    Royle, Natalie A.; Booth, Tom; Valdés Hernández, Maria C.; Penke, Lars; Murray, Catherine; Gow, Alan J.; Maniega, Susana Muñoz; Starr, John; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Brain tissue deterioration is a significant contributor to lower cognitive ability in later life; however, few studies have appropriate data to establish how much influence prior brain volume and prior cognitive performance have on this association. We investigated the associations between structural brain imaging biomarkers, including an estimate of maximal brain volume, and detailed measures of cognitive ability at age 73 years in a large (N = 620), generally healthy, community-dwelling population. Cognitive ability data were available from age 11 years. We found positive associations (r) between general cognitive ability and estimated brain volume in youth (male, 0.28; females, 0.12), and in measured brain volume in later life (males, 0.27; females, 0.26). Our findings show that cognitive ability in youth is a strong predictor of estimated prior and measured current brain volume in old age but that these effects were the same for both white and gray matter. As 1 of the largest studies of associations between brain volume and cognitive ability with normal aging, this work contributes to the wider understanding of how some early-life factors influence cognitive aging. PMID:23850342

  12. Role of the endocannabinoid system in brain functions relevant for schizophrenia: an overview of human challenge studies with cannabis or ∆9-tetrahydrocannabinol (THC).

    PubMed

    Bossong, Matthijs G; Jansma, J Martijn; Bhattacharyya, Sagnik; Ramsey, Nick F

    2014-07-03

    Accumulating evidence suggests involvement of the endocannabinoid system in the pathophysiology of schizophrenia, which signifies a potential application for this system in the treatment of this disorder. However, before new research can focus on potential treatments that work by manipulating the endocannabinoid system, it needs to be elucidated how this system is involved in symptoms of schizophrenia. Here we review human studies that investigated acute effects of cannabis or ∆9-tetrahydrocannabinol (THC) on brain functions that are implicated in schizophrenia. Results suggest that the impact of THC administration depends on the difficulty of the task performed. Impaired performance of cognitive paradigms is reported on more challenging tasks, which is associated with both activity deficits in temporal and prefrontal areas and a failure to deactivate regions of the default mode network. Comparable reductions in prefrontal activity and impairments in deactivation of the default mode network are seen in patients during performance of cognitive paradigms. Normal performance levels after THC administration demonstrated for less demanding tasks are shown to be related to either increased neural effort in task-specific regions ('neurophysiological inefficiency'), or recruitment of alternative brain areas, which suggests a change in strategy to meet cognitive demands. Particularly a pattern of performance and brain activity corresponding with an inefficient working memory system is consistently demonstrated in patients. These similarities in brain function between intoxicated healthy volunteers and schizophrenia patients provide an argument for a role of the endocannabinoid system in symptoms of schizophrenia, and further emphasize this system as a potential novel target for treatment of these symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Operationalizing Cognitive Science and Technologies’ Research and Development; the “Brain and Cognition Study Group (BCSG)” Initiative from Shiraz, Iran

    PubMed Central

    Ashjazadeh, Nahid; Boostani, Reza; Ekhtiari, Hamed; Emamghoreishi, Masoumeh; Farrokhi, Majidreza; Ghanizadeh, Ahmad; Hatam, Gholamreza; Hadianfard, Habib; Lotfi, Mehrzad; Mortazavi, Seyed Mohammad Javad; Mousavi, Maryam; Montakhab, Afshin; Nili, Majid; Razmkon, Ali; Salehi, Sina; Sodagar, Amir Mohammad; Setoodeh, Peiman; Taghipour, Mousa; Torabi-Nami, Mohammad; Vesal, Abdolkarim

    2014-01-01

    Recent advances in brain and cognitive science studies have revolutionized concepts in neural dynamics, regulating mechanisms, coding systems and information processing networks which govern our function and behavior. Hidden aspects of neurological and psychiatric diseases are being understood and hopes for their treatment are emerging. Although the two comprehensive mega-projects on brain mapping are in place in the United States and Europe; the proportion of science contributed by the developing countries should not be downsized. With the granted supports from the Cognitive Sciences and Technologies Council (CSTC), Iran can take its role in research on brain and cognition further. The idea of research and development in Cognitive Sciences and Technologies (CST) is being disseminated across the country by CSTC. Towards this goal, the first Shiraz interdisciplinary meeting on CST was held on 9 January 2014 in Namazi hospital, Shiraz. CST research priorities, infrastructure development, education and promotion were among the main topics discussed during this interactive meeting. The steering committee of the first CST meeting in Shiraz decided to frame future research works within the “Brain and Cognition Study Group-Shiraz” (BCSG-Shiraz). The study group comprises scientific leaders from various allied disciplines including neuroscience, neurosurgery, neurology, psychiatry, psychology, radiology, physiology, bioengineering, biophysics, applied physics and telecommunication. As the headquarter for CST in the southern Iran, BCSG-Shiraz is determined to advocate “brain and cognition” awareness, education and research in close collaboration with CSTC. Together with CSTC, Shiraz Neuroscience Research center (SNRC) will take the initiative to cross boundaries in interdisciplinary works and multi-centric research projects within the study group. PMID:25337368

  14. Functional correlates of brain aging: beta and gamma frequency band responses to age-related cortical changes.

    PubMed

    Christov, Mario; Dushanova, Juliana

    2016-01-01

    The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.

  15. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice.

    PubMed

    Habeck, C; Razlighi, Q; Gazes, Y; Barulli, D; Steffener, J; Stern, Y

    2017-08-01

    Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the "hardware," whereas Cognitive Reserve concerns "software," that is, brain functioning explained by factors beyond mere brain structure. We used structural brain data from 368 community-dwelling adults, age 20-80, to derive measures of Brain Maintenance and Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to check our derived measures' statistical robustness. Our approach enables the out-of-sample quantification of Brain Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Dynamical Principles of Emotion-Cognition Interaction: Mathematical Images of Mental Disorders

    PubMed Central

    Rabinovich, Mikhail I.; Muezzinoglu, Mehmet K.; Strigo, Irina; Bystritsky, Alexander

    2010-01-01

    The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Crucially, we will show that some of the fundamental instabilities that arise in these coupled systems are remarkably similar to endogenous activity seen in the brain (using EEG and fMRI). Furthermore, by changing a small subset of the system's parameters we can produce bifurcations and metastable sequential dynamics changing, which bear a remarkable similarity to pathological brain states seen in psychiatry. In what follows, we will consider the coupling of two macroscopic modes of brain activity, which, in a purely descriptive fashion, we will label as cognitive and emotional modes. Our aim is to examine the dynamical structures that emerge when coupling these two modes and relate them tentatively to brain activity in normal and non-normal states. PMID:20877723

  17. Dynamical principles of emotion-cognition interaction: mathematical images of mental disorders.

    PubMed

    Rabinovich, Mikhail I; Muezzinoglu, Mehmet K; Strigo, Irina; Bystritsky, Alexander

    2010-09-21

    The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Crucially, we will show that some of the fundamental instabilities that arise in these coupled systems are remarkably similar to endogenous activity seen in the brain (using EEG and fMRI). Furthermore, by changing a small subset of the system's parameters we can produce bifurcations and metastable sequential dynamics changing, which bear a remarkable similarity to pathological brain states seen in psychiatry. In what follows, we will consider the coupling of two macroscopic modes of brain activity, which, in a purely descriptive fashion, we will label as cognitive and emotional modes. Our aim is to examine the dynamical structures that emerge when coupling these two modes and relate them tentatively to brain activity in normal and non-normal states.

  18. Neuromodulation of Behavioral and Cognitive Development across the Life Span

    ERIC Educational Resources Information Center

    Li, Shu-Chen

    2012-01-01

    Among other mechanisms, behavioral and cognitive development entail, on the one hand, contextual scaffolding and, on the other hand, neuromodulation of adaptive neurocognitive representations across the life span. Key brain networks underlying cognition, emotion, and motivation are innervated by major transmitter systems (e.g., the catecholamines…

  19. Altered Blood-Brain Barrier Permeability in Patients With Systemic Lupus Erythematosus: A Novel Imaging Approach.

    PubMed

    Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W

    2017-02-01

    To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to confirm the findings of this pilot study. © 2016, American College of Rheumatology.

  20. IV. The cognitive implications of obesity and nutrition in childhood.

    PubMed

    Khan, Naiman A; Raine, Lauren B; Donovan, Sharon M; Hillman, Charles H

    2014-12-01

    The prevalence of childhood obesity in the United States has tripled since the 1980s and is strongly linked to the early onset of several metabolic diseases. Recent studies indicate that lower cognitive function may be another complication of childhood obesity. This review considers the research to date on the role of obesity and nutrition on childhood cognition and brain health. Although a handful of studies point to a maladaptive relationship between obesity and aspects of cognitive control, remarkably little is known regarding the impact of fat mass on brain development and cognitive function. Further, missing from the literature is the role of nutrition in the obesity-cognition interaction. Nutrition may directly or indirectly influence cognitive performance via several pathways including provision of key substrates for optimal brain health, modulation of gut microbiota, and alterations in systemic energy balance. However, in the absence of malnutrition, the functional benefits of specific nutrient intake on particular cognitive domains are not well characterized. Here, we examine the literature linking childhood obesity and cognition while considering the effects of nutritional intake. Possible mechanisms for these relationships are discussed and suggestions are made for future study topics. Although childhood obesity prevalence rates in some developed countries have recently stabilized, significant disparities remain among groups based on sex and socioeconomic status. Given that the elevated prevalence of pediatric overweight and obesity may persist for the foreseeable future, it is crucial to develop a comprehensive understanding of the influence of obesity and nutrition on cognition and brain health in the pediatric population. © 2014 The Society for Research in Child Development, Inc.

  1. Neuropsychologists as primary care providers of cognitive health: A novel comprehensive cognitive wellness service delivery model.

    PubMed

    Pimental, Patricia A; O'Hara, John B; Jandak, Jessica L

    2018-01-01

    By virtue of their extensive knowledge base and specialized training in brain-behavior relationships, neuropsychologists are especially poised to execute a unique broad-based approach to overall cognitive wellness and should be viewed as primary care providers of cognitive health. This article will describe a novel comprehensive cognitive wellness service delivery model including cognitive health, anti-aging, lifelong wellness, and longevity-oriented practices. These practice areas include brain-based cognitive wellness, emotional and spiritually centric exploration, and related multimodality health interventions. As experts in mind-body connections, neuropsychologists can provide a variety of evidence-based treatment options, empowering patients with a sense of value and purpose. Multiple areas of clinical therapy skill-based learning, tailor-made to fit individual needs, will be discussed including: brain stimulating activities, restorative techniques, automatic negative thoughts and maladaptive thinking reduction, inflammation and pain management techniques, nutrition and culinary focused cognitive wellness, spirituality based practices and mindfulness, movement and exercise, alternative/complimentary therapies, relationship restoration/social engagement, and trauma healing/meaning. Cognitive health rests upon the foundation of counteracting mind-body connection disruptions from multiple etiologies including inflammation, chronic stress, metabolic issues, cardiac conditions, autoimmune disease, neurological disorders, infectious diseases, and allergy spectrum disorders. Superimposed on these issues are lifestyle patterns and negative health behaviors that develop as ill-fated compensatory mechanisms used to cope with life stressors and aging. The brain and body are electrical systems that can "short circuit." The therapy practices inherent in the proposed cognitive wellness service delivery model can provide preventative insulation and circuit breaking against the shock of illness.

  2. The impact of junk foods on the adolescent brain.

    PubMed

    Reichelt, Amy C; Rank, Michelle M

    2017-12-01

    Adolescence is a significant period of physical, social, and emotional development, and is characterized by prominent neurobiological changes in the brain. The maturational processes that occur in brain regions responsible for cognitive control and reward seeking may underpin excessive consumption of palatable high fat and high sugar "junk" foods during adolescence. Recent studies have highlighted the negative impact of these foods on brain function, resulting in cognitive impairments and altered reward processing. The increased neuroplasticity during adolescence may render the brain vulnerable to the negative effects of these foods on cognition and behavior. In this review, we describe the mechanisms by which junk food diets influence neurodevelopment during adolescence. Diet can lead to alterations in dopamine-mediated reward signaling, and inhibitory neurotransmission controlled by γ-aminobutyric acid (GABA), two major neurotransmitter systems that are under construction across adolescence. We propose that poor dietary choices may derail the normal adolescent maturation process and influence neurodevelopmental trajectories, which can predispose individuals to dysregulated eating and impulsive behaviors. © 2017 Wiley Periodicals, Inc.

  3. Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort

    PubMed Central

    Daunizeau, Jean; Pessiglione, Mathias

    2012-01-01

    Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia. PMID:22363208

  4. Salience network dynamics underlying successful resistance of temptation

    PubMed Central

    Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q

    2017-01-01

    Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582

  5. Dynamics of modularity of neural activity in the brain during development

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Chen, Man

    2014-03-01

    Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.

  6. Effets des radiofréquences sur le système nerveux central chez lʼhomme : EEG, sommeil, cognition, vascularisation

    NASA Astrophysics Data System (ADS)

    Ghosn, Rania; Villégier, Anne-Sophie; Selmaoui, Brahim; Thuróczy, Georges; de Sèze, René

    2013-05-01

    Most of clinical studies on radiofrequency electromagnetic fields (RF) were directed at mobile phone-related exposures, usually at the level of the head, at their effect on some physiological functions including sleep, brain electrical activity (EEG), cognitive processes, brain vascularisation, and more generally on the cardiovascular and endocrine systems. They were frequently carried out on healthy adults. Effects on the amplitude of EEG alpha waves, mainly during sleep, look reproducible. It would however be important to define more precisely whether and how the absence of electromagnetic disturbance between RF exposure and the recording systems is checked. No consensus arises about cognitive effects. Some effects on cerebral vascularisation need complementary work.

  7. Cognition in action: imaging brain/body dynamics in mobile humans.

    PubMed

    Gramann, Klaus; Gwin, Joseph T; Ferris, Daniel P; Oie, Kelvin; Jung, Tzyy-Ping; Lin, Chin-Teng; Liao, Lun-De; Makeig, Scott

    2011-01-01

    We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method.

  8. Gluten-induced cognitive impairment ("brain fog") in coeliac disease.

    PubMed

    Yelland, Gregory W

    2017-03-01

    Much is known about the serious neurological effects of gluten ingestion in coeliac disease patients, such as sporadic ataxia and peripheral neuropathy, although the causal links to gluten are still under debate. However, such disorders are observed in only a small percentage of coeliac patients. Much less is known about the transient cognitive impairments to memory, attention, executive function, and the speed of cognitive processing reported by the majority of patients with coeliac disease. These mild degradations of cognitive functions, referred to as "brain fog," are yet to be formally recognized as a medical or psychological condition. However, subtle tests of cognitive function are measurable in untreated patients with coeliac disease and improve over the first 12 months' therapy with a gluten-free diet. Such deficits also occur in patients with Crohn's disease, particularly in association with systemic inflammatory activity. Thus, cognitive impairments associated with brain fog are psychologically and neurologically real and improve with adherence to a gluten-free diet. There is not yet sufficient evidence to provide a definitive account of the mechanism by which gluten ingestion causes the impairments to cognitive function associated with brain fog, but current evidence suggests that it is more likely that the causal factor is not directly related to exposure to gluten. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  9. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions

    PubMed Central

    Iriki, Atsushi; Taoka, Miki

    2012-01-01

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language—the site of such integration seems to be the parietal and extending opercular cortices. PMID:22106423

  10. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions.

    PubMed

    Iriki, Atsushi; Taoka, Miki

    2012-01-12

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language--the site of such integration seems to be the parietal and extending opercular cortices.

  11. A Child's Brain: The Need for Nurture

    ERIC Educational Resources Information Center

    Sylwester, Robert

    2010-01-01

    The author has written this latest volume to help parents and educators understand children's cognitive development and provide suggestions on how to nurture children to their full potential. A companion to "The Adolescent Brain", this rich resource: (1) Examines the neurobiology of childhood, explaining the body/brain systems that develop during…

  12. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    PubMed

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

  13. Consciousness as a global property of brain dynamic activity

    NASA Astrophysics Data System (ADS)

    Mateos, D. M.; Wennberg, R.; Guevara, R.; Perez Velazquez, J. L.

    2017-12-01

    We seek general principles of the structure of the cellular collective activity associated with conscious awareness. Can we obtain evidence for features of the optimal brain organization that allows for adequate processing of stimuli and that may guide the emergence of cognition and consciousness? Analyzing brain recordings in conscious and unconscious states, we followed initially the classic approach in physics when it comes to understanding collective behaviours of systems composed of a myriad of units: the assessment of the number of possible configurations (microstates) that the system can adopt, for which we use a global entropic measure associated with the number of connected brain regions. Having found maximal entropy in conscious states, we then inspected the microscopic nature of the configurations of connections using an adequate complexity measure and found higher complexity in states characterized not only by conscious awareness but also by subconscious cognitive processing, such as sleep stages. Our observations indicate that conscious awareness is associated with maximal global (macroscopic) entropy and with the short time scale (microscopic) complexity of the configurations of connected brain networks in pathological unconscious states (seizures and coma), but the microscopic view captures the high complexity in physiological unconscious states (sleep) where there is information processing. As such, our results support the global nature of conscious awareness, as advocated by several theories of cognition. We thus hope that our studies represent preliminary steps to reveal aspects of the structure of cognition that leads to conscious awareness.

  14. Modafinil Reverses Phencyclidine-Induced Deficits in Cognitive Flexibility, Cerebral Metabolism, and Functional Brain Connectivity

    PubMed Central

    Dawson, Neil; Thompson, Rhiannon J.; McVie, Allan; Thomson, David M.; Morris, Brian J.; Pratt, Judith A.

    2012-01-01

    Objective: In the present study, we employ mathematical modeling (partial least squares regression, PLSR) to elucidate the functional connectivity signatures of discrete brain regions in order to identify the functional networks subserving PCP-induced disruption of distinct cognitive functions and their restoration by the procognitive drug modafinil. Methods: We examine the functional connectivity signatures of discrete brain regions that show overt alterations in metabolism, as measured by semiquantitative 2-deoxyglucose autoradiography, in an animal model (subchronic phencyclidine [PCP] treatment), which shows cognitive inflexibility with relevance to the cognitive deficits seen in schizophrenia. Results: We identify the specific components of functional connectivity that contribute to the rescue of this cognitive inflexibility and to the restoration of overt cerebral metabolism by modafinil. We demonstrate that modafinil reversed both the PCP-induced deficit in the ability to switch attentional set and the PCP-induced hypometabolism in the prefrontal (anterior prelimbic) and retrosplenial cortices. Furthermore, modafinil selectively enhanced metabolism in the medial prelimbic cortex. The functional connectivity signatures of these regions identified a unifying functional subsystem underlying the influence of modafinil on cerebral metabolism and cognitive flexibility that included the nucleus accumbens core and locus coeruleus. In addition, these functional connectivity signatures identified coupling events specific to each brain region, which relate to known anatomical connectivity. Conclusions: These data support clinical evidence that modafinil may alleviate cognitive deficits in schizophrenia and also demonstrate the benefit of applying PLSR modeling to characterize functional brain networks in translational models relevant to central nervous system dysfunction. PMID:20810469

  15. Estimated maximal and current brain volume predict cognitive ability in old age.

    PubMed

    Royle, Natalie A; Booth, Tom; Valdés Hernández, Maria C; Penke, Lars; Murray, Catherine; Gow, Alan J; Maniega, Susana Muñoz; Starr, John; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

    2013-12-01

    Brain tissue deterioration is a significant contributor to lower cognitive ability in later life; however, few studies have appropriate data to establish how much influence prior brain volume and prior cognitive performance have on this association. We investigated the associations between structural brain imaging biomarkers, including an estimate of maximal brain volume, and detailed measures of cognitive ability at age 73 years in a large (N = 620), generally healthy, community-dwelling population. Cognitive ability data were available from age 11 years. We found positive associations (r) between general cognitive ability and estimated brain volume in youth (male, 0.28; females, 0.12), and in measured brain volume in later life (males, 0.27; females, 0.26). Our findings show that cognitive ability in youth is a strong predictor of estimated prior and measured current brain volume in old age but that these effects were the same for both white and gray matter. As 1 of the largest studies of associations between brain volume and cognitive ability with normal aging, this work contributes to the wider understanding of how some early-life factors influence cognitive aging. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System

    PubMed Central

    Steininger, Stefanie C.; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M.; Prüssmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.

    2014-01-01

    Background: Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. Methods: We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Results: Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Conclusion: Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD. PMID:24672483

  17. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System.

    PubMed

    Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G

    2014-01-01

    Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.

  18. Cingulate, Frontal and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Bush, George

    2011-01-01

    Functional and structural neuroimaging have identified abnormalities of the brain that are likely to contribute to the neuropathophysiology of attention-deficit/hyperactivity disorder (ADHD). In particular, hypofunction of the brain regions comprising the cingulo-frontal-parietal (CFP) cognitive-attention network have been consistently observed across studies. These are major components of neural systems that are relevant to ADHD, including cognitive/attention networks, motor systems and reward/feedback-based processing systems. Moreover, these areas interact with other brain circuits that have been implicated in ADHD, such as the “default mode” resting state network. ADHD imaging data related to CFP network dysfunction will be selectively highlighted here to help facilitate its integration with the other information presented in this special issue. Together, these reviews will help shed light on the neurobiology of ADHD. PMID:21489409

  19. Multiple Brain Markers are Linked to Age-Related Variation in Cognition

    PubMed Central

    Hedden, Trey; Schultz, Aaron P.; Rieckmann, Anna; Mormino, Elizabeth C.; Johnson, Keith A.; Sperling, Reisa A.; Buckner, Randy L.

    2016-01-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65–90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70–80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342

  20. Concepts and Categories: A Cognitive Neuropsychological Perspective

    PubMed Central

    Mahon, Bradford Z.; Caramazza, Alfonso

    2010-01-01

    One of the most provocative and exciting issues in cognitive science is how neural specificity for semantic categories of common objects arises in the functional architecture of the brain. More than two decades of research on the neuropsychological phenomenon of category-specific semantic deficits has generated detailed claims about the organization and representation of conceptual knowledge. More recently, researchers have sought to test hypotheses developed on the basis of neuropsychological evidence with functional imaging. From those two fields, the empirical generalization emerges that object domain and sensory modality jointly constrain the organization of knowledge in the brain. At the same time, research within the embodied cognition framework has highlighted the need to articulate how information is communicated between the sensory and motor systems, and processes that represent and generalize abstract information. Those developments point toward a new approach for understanding category specificity in terms of the coordinated influences of diverse regions and cognitive systems. PMID:18767921

  1. A network engineering perspective on probing and perturbing cognition with neurofeedback

    PubMed Central

    Khambhati, Ankit N.

    2017-01-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. PMID:28445589

  2. Neural circuitry of emotional and cognitive conflict revealed through facial expressions.

    PubMed

    Chiew, Kimberly S; Braver, Todd S

    2011-03-09

    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference.

  3. Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2011-01-01

    Background Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Methodology/Principal Findings Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. Conclusions/Significance These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference. PMID:21408006

  4. HDL and Cognition in Neurodegenerative Disorders

    PubMed Central

    Hottman, David A.; Chernick, Dustin; Cheng, Shaowu; Wang, Zhe; Li, Ling

    2014-01-01

    High-density lipoproteins (HDL) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function. PMID:25131449

  5. Light-sensitive brain pathways and aging.

    PubMed

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-03-15

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.

  6. Top-down predictions in the cognitive brain

    PubMed Central

    Kveraga, Kestutis; Ghuman, Avniel S.; Bar, Moshe

    2007-01-01

    The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead, it is proposed tat the brain continuously employs memory of past experiences to interpret sensory information and predict the immediately relevant future. This review concentrates on visual recognition as the model system for developing and testing ideas about the role and mechanisms of top-down predictions in the brain. We cover relevant behavioral, computational and neural aspects. These ideas are then extended to other domains. The basic elements of this proposal include analogical mapping, associative representations and the generation of predictions. Connections to a host of cognitive processes will be made and implications to several mental disorders will be proposed. PMID:17923222

  7. [Introduction of neuroethics: out of clinic, beyond academia in human brain research].

    PubMed

    Fukushi, Tamami; Sakura, Osamu

    2008-11-01

    Higher cognitive function in human brain is one of well-developed fields of neuroscience research in the 21st century. Especially functional magnetic resonance imaging (fMRI) and near infrared recording system have brought so many non-clinical researchers whose background is such as cognitive psychology, economics, politics, pedagogy, and so on, to the human brain mapping study. Authors have introduced the ethical issues related to incidental findings during the fMRI recording for non-clinical purpose, which is a typical problem derived from such expanded human brain research under non clinical condition, that is, neuroethics. In the present article we would introduce neuroethical issues in contexts of "out of clinic" and "beyond academia".

  8. Stress modulation of cognitive and affective processes

    PubMed Central

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  9. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    PubMed Central

    Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan

    2017-01-01

    Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.

  10. Changes in brain entropy are related to abstract temporal topology. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    NASA Astrophysics Data System (ADS)

    Çankaya, Mehmet Niyazi; Déli, Eva

    2017-07-01

    It is a great aspiration to consider biological systems, especially the notoriously unpredictable brain, with mathematical tools, because of their reliable predictive power. The classic idea that the brain can be compartmentalized into operational modules, such as vision, movement, emotions or consciousness has come up empty. A new surge of publications sets out the mathematical analysis of this highly integrated, complex and self-regulating system. For example, the resting brain's recurring electromagnetic activities form a highly reproducible harmonic function [1], which permits the use of matrix formulation, borrowed from quantum mechanics, to assess the probabilities of measurable properties, or ;observables;. It has also been suggested that resting state electric activities might take the form of a hypersphere [2], and even the particle-like formalism of the self-regulatory nature of consciousness has even been proposed [3]. The 'TOPODYNAMICS OF METASTABLE BRAINS' by Tozzi et al. [4] is part of the growing wave of publications that seeks to explain the brain's global dynamics within a physical framework. This fast growing literature has uncovered that the oscillatory networks of local electromagnetic potential differences, which are highly responsive to the environment, formulate according to non-classical principles and can be best modeled by the mathematical framework of dynamic and complex physical systems. However, the ability to connect the oscillatory dynamics of the brain to the global cognitive processes of the mind has been difficult. The TOPODYNAMICS OF METASTABLE BRAINS is a pioneering attempt to approach these seemingly disparate areas and bridge their conceptual, methodological divide. Specifically, topodynamics examines how the changing electric signals of the brain form an abstract topology during evoked and resting potential, and give rise to cognitive processes. For example, rapid transitional periods intercept the stable, operational modules of the brain's electric activities that parallel changes in thoughts or evolution of concepts. Within the framework of operational architectonics, Tozzi et al. applied the methods of the Bursuk-Ulam theorem (BUT) to uncover the detailed dynamics of brain activities, such as dimensionality, entropy changes, and information accumulation. The authors find that ripples of rapid transitional periods, with sudden changes and reorganization of the information and entropy, parallels shifts both in dimensionality of temporal dynamics, as well as in cognitive processes. The method therefore can uncover how entropic and dimensionality changes are interconnected with emerging mental concepts. It also highlights the differences between lower conceptual processes, such as sensory processing, and higher cognitive synthesis, such as semantics, for example. In physical systems, information, dimensionality and entropy are related according to well-established formulas. In this direction, the entropy values of the volume and surface area are added into the evaluation of brain functionings [5-7]. If the same relationship is true in the wet and constantly changing biological complexity of the brain, then it would give us predictive capability toward the understanding of cognition, aid the treatment of mental problems and diseases in psychiatry and psychology, and facilitate the design of a new generation of artificial intelligent machines.

  11. An information theory account of cognitive control.

    PubMed

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  12. Effect of virtual reality on cognitive dysfunction in patients with brain tumor.

    PubMed

    Yang, Seoyon; Chun, Min Ho; Son, Yu Ri

    2014-12-01

    To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment.

  13. Effect of Virtual Reality on Cognitive Dysfunction in Patients With Brain Tumor

    PubMed Central

    Yang, Seoyon; Son, Yu Ri

    2014-01-01

    Objective To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Methods Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. Results The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. Conclusion VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment. PMID:25566470

  14. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2013-01-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143

  15. Brain mechanisms of social comparison and their influence on the reward system.

    PubMed

    Kedia, Gayannée; Mussweiler, Thomas; Linden, David E J

    2014-11-12

    Whenever we interact with others, we judge them and whenever we make such judgments, we compare them with ourselves, other people, or internalized standards. Countless social psychological experiments have shown that comparative thinking plays a ubiquitous role in person perception and social cognition as a whole. The topic of social comparison has recently aroused the interest of social neuroscientists, who have begun to investigate its neural underpinnings. The present article provides an overview of these neuroimaging and electrophysiological studies. We discuss recent findings on the consequences of social comparison on the brain processing of outcomes and highlight the role of the brain's reward system. Moreover, we analyze the relationship between the brain networks involved in social comparisons and those active during other forms of cognitive and perceptual comparison. Finally, we discuss potential future questions that research on the neural correlates of social comparison could address.

  16. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  17. A multilevel analysis of cognitive dysfunction and psychopathology associated with chromosome 22q11.2 deletion syndrome in children

    PubMed Central

    SIMON, TONY J.; BISH, JOEL P.; BEARDEN, CARRIE E.; DING, LIJUN; FERRANTE, SAMANTHA; NGUYEN, VY; GEE, JAMES C.; McDONALD–McGINN, DONNA M.; ZACKAI, ELAINE H.; EMANUEL, BEVERLY S.

    2006-01-01

    We present a multilevel approach to developing potential explanations of cognitive impairments and psychopathologies common to individuals with chromosome 22q11.2 deletion syndrome. Results presented support our hypothesis of posterior parietal dysfunction as a central determinant of characteristic visuospatial and numerical cognitive impairments. Converging data suggest that brain development anomalies, primarily tissue reductions in the posterior brain and changes to the corpus callosum, may affect parietal connectivity. Further findings indicate that dysfunction in “frontal” attention systems may explain some executive cognition impairments observed in affected children, and that there may be links between these domains of cognitive function and some of the serious psychiatric conditions, such as attention-deficit/hyperactivity disorder, autism, and schizophrenia, that have elevated incidence rates in the syndrome. Linking the neural structure and the cognitive processing levels in this way enabled us to develop an elaborate structure/function mapping hypothesis for the impairments that are observed. We show also, that in the case of the catechol-O-methyltransferase gene, a fairly direct relationship between gene expression, cognitive function, and psychopathology exists in the affected population. Beyond that, we introduce the idea that variation in other genes may further explain the phenotypic variation in cognitive function and possibly the anomalies in brain development. PMID:16262991

  18. Strategic cognitive sequencing: a computational cognitive neuroscience approach.

    PubMed

    Herd, Seth A; Krueger, Kai A; Kriete, Trenton E; Huang, Tsung-Ren; Hazy, Thomas E; O'Reilly, Randall C

    2013-01-01

    We address strategic cognitive sequencing, the "outer loop" of human cognition: how the brain decides what cognitive process to apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present four preliminary neural network models. The first addresses how the prefrontal cortex (PFC) and basal ganglia (BG) cooperate to perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward, and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or "self-instruction"). The last shows how a constraint satisfaction process can find useful plans. The PFC maintains current and goal states and associates from both of these to find a "bridging" state, an abstract plan. We discuss how these processes could work together to produce strategic cognitive sequencing and discuss future directions in this area.

  19. Generality and specificity in cognitive aging: a volumetric brain analysis.

    PubMed

    Staff, Roger T; Murray, Alison D; Deary, Ian J; Whalley, Lawrence J

    2006-05-01

    To investigate whether, in old age, brain volume differences are associated with age-related change in general mental ability and/or specific cognitive abilities. The authors investigate the association between brain volumes and current cognitive function in a well-characterized sample of healthy old people (aged 79-80) whose intelligence was recorded at age 11. This allowed estimation of intellectual change over the life span. After accounting for childhood intelligence, associations were found between specific cognitive measures and brain volumes. An association was also found between volumes and the general intelligence factor g. After removing the influence of g from each of the specific cognitive measures, no remaining significant associations were found between brain volumes and the specific part of each test. Generalized cognitive aging is associated with brain volume differences, but there is no evidence in this sample that specific components of cognitive aging are associated with differences in brain volume.

  20. Third International Congress on Epilepsy, Brain, and Mind: Part 2.

    PubMed

    Rektor, Ivan; Schachter, Steven C; Arya, Ravindra; Arzy, Shahar; Braakman, Hilde; Brodie, Martin J; Brugger, Peter; Chang, Bernard S; Guekht, Alla; Hermann, Bruce; Hesdorffer, Dale C; Jones-Gotman, Marilyn; Kanner, Andres M; Garcia-Larrea, Luis; Mareš, Pavel; Mula, Marco; Neufeld, Miri; Risse, Gail L; Ryvlin, Philippe; Seeck, Margitta; Tomson, Torbjörn; Korczyn, Amos D

    2015-09-01

    Epilepsy is both a disease of the brain and the mind. Here, we present the second of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Humanistic, biologic, and therapeutic aspects of epilepsy, particularly those related to the mind, were discussed. The extended summaries provide current overviews of epilepsy, cognitive impairment, and treatment, including brain functional connectivity and functional organization; juvenile myoclonic epilepsy; cognitive problems in newly diagnosed epilepsy; SUDEP including studies on prevention and involvement of the serotoninergic system; aggression and antiepileptic drugs; body, mind, and brain, including pain, orientation, the "self-location", Gourmand syndrome, and obesity; euphoria, obsessions, and compulsions; and circumstantiality and psychiatric comorbidities. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. COGNITION AS A THERAPEUTIC TARGET IN LATE-LIFE DEPRESSION: POTENTIAL FOR NICOTINIC THERAPEUTICS

    PubMed Central

    Zurkovsky, Lilia; Taylor, Warren D.; Newhouse, Paul A.

    2013-01-01

    Depression is associated with impairments to cognition and brain function at any age, but such impairments in the elderly are particularly problematic because of the additional burden of normal cognitive aging and in some cases, structural brain pathology. Individuals with late-life depression exhibit impairments in cognition and brain structural integrity, alongside mood dysfunction. Antidepressant treatment improves symptoms in some but not all patients, and those who benefit may not return to the cognitive and functional level of nondepressed elderly. Thus, for comprehensive treatment of late-life depression, it may be necessary to address both the affective and cognitive deficits. In this review, we propose a model for the treatment of late-life depression in which nicotinic stimulation is used to improve cognitive performance and improve the efficacy of an antidepressant treatment of the syndrome of late-life depression. The cholinergic system is well-established as important to cognition. Although muscarinic stimulation may exacerbate depressive symptoms, nicotinic stimulation may improve cognition and neural functioning without a detriment to mood. While some studies of nicotinic subtype specific receptor agonists have shown promise in improving cognitive performance, less is known regarding how nicotinic receptor stimulation affects cognition in depressed elderly patients. Late-life depression thus represents a new therapeutic target for the development of nicotinic agonist drugs and parallel treatment of cognitive dysfunction along with medical and psychological approaches to treating mood dysfunction may be necessary to ensure full resolution of depressive illness in aging. PMID:23933385

  2. Estrogen-cholinergic interactions: Implications for cognitive aging.

    PubMed

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  3. Family-Based Training Program Improves Brain Function, Cognition, and Behavior in Lower Socioeconomic Status Preschoolers

    ERIC Educational Resources Information Center

    Pakulak, Eric; Stevens, Courtney; Bell, Theodore A.; Fanning, Jessica; Klein, Scott; Isbell, Elif; Neville, Helen

    2013-01-01

    Over the course of several years of research, the authors have employed psychophysics, electrophysiological (ERP) and magnetic resonance imaging (MRI) techniques to study the development and neuroplasticity of the human brain. During this time, they observed that different brain systems and related functions display markedly different degrees or…

  4. Cognitive processes and neural basis of language switching: proposal of a new model.

    PubMed

    Moritz-Gasser, Sylvie; Duffau, Hugues

    2009-12-09

    Although studies on bilingualism are abundant, cognitive processes and neural foundations of language switching received less attention. The aim of our study is to provide new insights to this still open question: do dedicated region(s) for language switching exist or is this function underlain by a distributed circuit of interconnected brain areas, part of a more general cognitive system? On the basis of recent behavioral, neuroimaging, and brain stimulation studies, we propose an original 'hodological' model of language switching. This process might be subserved by a large-scale cortico-subcortical network, with an executive system (prefrontal cortex, anterior cingulum, caudate nucleus) controlling a more dedicated language subcircuit, which involves postero-temporal areas, supramarginal and angular gyri, Broca's area, and the superior longitudinal fasciculus.

  5. Interaction between lexical and grammatical language systems in the brain

    NASA Astrophysics Data System (ADS)

    Ardila, Alfredo

    2012-06-01

    This review concentrates on two different language dimensions: lexical/semantic and grammatical. This distinction between a lexical/semantic system and a grammatical system is well known in linguistics, but in cognitive neurosciences it has been obscured by the assumption that there are several forms of language disturbances associated with focal brain damage and hence language includes a diversity of functions (phoneme discrimination, lexical memory, grammar, repetition, language initiation ability, etc.), each one associated with the activity of a specific brain area. The clinical observation of patients with cerebral pathology shows that there are indeed only two different forms of language disturbances (disturbances in the lexical/semantic system and disturbances in the grammatical system); these two language dimensions are supported by different brain areas (temporal and frontal) in the left hemisphere. Furthermore, these two aspects of the language are developed at different ages during child's language acquisition, and they probably appeared at different historical moments during human evolution. Mechanisms of learning are different for both language systems: whereas the lexical/semantic knowledge is based in a declarative memory, grammatical knowledge corresponds to a procedural type of memory. Recognizing these two language dimensions can be crucial in understanding language evolution and human cognition.

  6. Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice.

    PubMed

    Chen, Zu-Lin; Revenko, Alexey S; Singh, Pradeep; MacLeod, A Robert; Norris, Erin H; Strickland, Sidney

    2017-05-04

    Vascular abnormalities and inflammation are found in many Alzheimer disease (AD) patients, but whether these changes play a causative role in AD is not clear. The factor XII (FXII) -initiated contact system can trigger both vascular pathology and inflammation and is activated in AD patients and AD mice. We have investigated the role of the contact system in AD pathogenesis. Cleavage of high-molecular-weight kininogen (HK), a marker for activation of the inflammatory arm of the contact system, is increased in a mouse model of AD, and this cleavage is temporally correlated with the onset of brain inflammation. Depletion of FXII in AD mice inhibited HK cleavage in plasma and reduced neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. Moreover, FXII-depleted AD mice showed better cognitive function than untreated AD mice. These results indicate that FXII-mediated contact system activation contributes to AD pathogenesis, and therefore this system may offer novel targets for AD treatment. © 2017 by The American Society of Hematology.

  7. Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging

    PubMed Central

    Madden, David J.; Bennett, Ilana J.; Song, Allen W.

    2009-01-01

    The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281

  8. Significance of the Feuerstein approach in neurocognitive rehabilitation.

    PubMed

    Lebeer, Jo

    2016-06-18

    The theory of Structural Cognitive Modifiability and Mediated Learning Experience of Reuven Feuerstein states that individuals with brain impairment, because of congenital or acquired origin, may substantially and structurally improve their cognitive functioning, by a systematic intervention based on a specific, criteria-based type of interaction ("mediated learning"). Three application systems are based on it: a dynamic-interactive assessment of learning capacity and processes of learning, the LPAD (Learning Propensity Assessment Device); a cognitive intervention program called "Instrumental Enrichment Program", which trains cognitive, metacognitive and executive functions; and a program, which is oriented at working in context, Shaping Modifying Environments. These programs have been applied in widely different target groups: from children and young adults with learning and developmental disabilities, at risk of school failure, or having failed at school, because of socio-economic disadvantage or congenital neurological impairment; disadvantaged youngsters and adults in vocational training, to elderly people at the beginning of a dementia process. Experience with cognitive rehabilitation of children and adults with acquired brain damage, has been relatively recent, first in the Feuerstein Institute's Brain Injury Unit in Jerusalem, later in other centers in different parts of the world; therefore scientific data are scarce. The purpose of this paper is to examine how the Feuerstein-approach fits into the goals and proposed approaches of cognitive rehabilitation, and to explore its relevance for assessment and intervention in individuals with congenital or acquired brain damage. The methodology of the Feuerstein approach consists of four pillars: dynamic assessment, cognitive activation, mediated learning and shaping a modifying environment. The criteria of mediated learning experience are explained with specific reference to people with acquired brain injury. The procedure of learning propensity assessment device uses visuo-spatial and verbal tasks known from neuropsychological assessment (such as Rey's complex figure drawing), as well as a in a pre-test - brief intervention - post-test format. Cognitive activation is done in various ways: a paper-and-pencil relatively content-free program called "instrumental enrichment", with transfer of learned principles into daily life situations, followed by metacognitive feedback. Four case histories of acquired brain damage are analyzed: a 19 year old man with extensive post-astrocytoma frontotemporal brain lesions; a 19 year old man with bilateral frontal and right temporal and parieto-occipital parenchymatous destruction after a traumatic brain injury; a 24 year old man with hemispherectomy for intractable epilepsy because of Sturge-Weber syndrome; and a 30-year old man with left porencephalic cyst after cerebral hemorrhage. Structural cognitive improvement could be demonstrated in positive change scores in visuo-spatial memory, associative and verbal memory, abstract thinking, and organizing tasks, even more than 10 years post-TBI. In some cases a rise in IQ has been documented. Improvement in daily life functioning and academic skills (re)learning has also been seen. Though impossible to claim scientific evidence, the case histories nevertheless suggest the importance of interactive assessment in designing intervention programs which have sufficient intensity, frequency, duration and consistency of mediation; furthermore, an essential ingredient is the ecological approach which requires working with the patient and the whole network around; a firm "belief system" or that modifiability is possible even with severe brain damage and many years after the injury; a cognitive, metacognitive and executive approach, and a quality of interaction according to criteria of mediated learning. They suggest that Feuerstein approach may offer interesting perspectives to cognitive rehabilitation. More extensive research is needed to provide a broader scientific evidence base.

  9. mTOR drives cerebral blood flow and memory deficits in LDLR-/- mice modeling atherosclerosis and vascular cognitive impairment.

    PubMed

    Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica

    2018-01-01

    We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.

  10. Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats.

    PubMed

    He, Hui-Juan; Wang, Yi; Le, Yuan; Duan, Kai-Ming; Yan, Xue-Bin; Liao, Qin; Liao, Yan; Tong, Jian-Bin; Terrando, Niccolò; Ouyang, Wen

    2012-12-01

    Postoperative cognitive dysfunction (POCD) is a growing and largely underestimated problem without defined etiology. Herein, we sought to determine the relationship between cognitive decline, blood-brain barrier (BBB) permeability, and inflammation, namely high mobility group box-1 (HMGB1), after surgery in aged rats. Aged rats were randomly assigned as surgery group (n = 45, splenectomy under general anesthesia), anesthesia (n = 45, 2% isoflurane for 2 h), and naïve control (n = 15). Markers of inflammation were measured in plasma and brain. Blood-brain barrier ultrastructure and permeability were measured by transmission electron microscope (TEM) and IgG immunohistochemistry. Cognitive function was assessed in a reversal learning version of the Morris water maze (MWM). Surgical trauma under general anesthesia caused distinct changes in systemic and central proinflammatory cytokines. Levels of HMGB1 and the receptor for advanced glycation end products (RAGE) were significantly upregulated in the hippocampus of operated animals. Immunohistochemistry and TEM showed BBB disruption induced by surgery and anesthesia. These molecular changes were associated with cognitive impairment in latency with the MWM up to postoperative day 3. HMGB1 and RAGE signaling appear pivotal mediators of surgery-induced cognitive decline and may contribute to the changes in BBB permeability after peripheral surgical trauma. © 2012 Blackwell Publishing Ltd.

  11. Social cognition and the brain: a meta-analysis.

    PubMed

    Van Overwalle, Frank

    2009-03-01

    This meta-analysis explores the location and function of brain areas involved in social cognition, or the capacity to understand people's behavioral intentions, social beliefs, and personality traits. On the basis of over 200 fMRI studies, it tests alternative theoretical proposals that attempt to explain how several brain areas process information relevant for social cognition. The results suggest that inferring temporary states such as goals, intentions, and desires of other people-even when they are false and unjust from our own perspective--strongly engages the temporo-parietal junction (TPJ). Inferring more enduring dispositions of others and the self, or interpersonal norms and scripts, engages the medial prefrontal cortex (mPFC), although temporal states can also activate the mPFC. Other candidate tasks reflecting general-purpose brain processes that may potentially subserve social cognition are briefly reviewed, such as sequence learning, causality detection, emotion processing, and executive functioning (action monitoring, attention, dual task monitoring, episodic memory retrieval), but none of them overlaps uniquely with the regions activated during social cognition. Hence, it appears that social cognition particularly engages the TPJ and mPFC regions. The available evidence is consistent with the role of a TPJ-related mirror system for inferring temporary goals and intentions at a relatively perceptual level of representation, and the mPFC as a module that integrates social information across time and allows reflection and representation of traits and norms, and presumably also of intentionality, at a more abstract cognitive level.

  12. 78 FR 26642 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ..., Functional and Cognitive Neuroscience Integrated Review Group; Somatosensory and Chemosensory Systems Study..., [email protected] . Name of Committee: Integrative, Functional and Cognitive Neuroscience Integrated... personal privacy. Name of Committee: Brain Disorders and Clinical Neuroscience Integrated Review Group...

  13. Effects of a cognitive training on spatial learning and associated functional brain activations

    PubMed Central

    2013-01-01

    Background Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Results Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Conclusions Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults. PMID:23870447

  14. Adolescent Emotional Maturation through Divergent Models of Brain Organization

    PubMed Central

    Oron Semper, Jose V.; Murillo, Jose I.; Bernacer, Javier

    2016-01-01

    In this article we introduce the hypothesis that neuropsychological adolescent maturation, and in particular emotional management, may have opposing explanations depending on the interpretation of the assumed brain architecture, that is, whether a componential computational account (CCA) or a dynamic systems perspective (DSP) is used. According to CCA, cognitive functions are associated with the action of restricted brain regions, and this association is temporally stable; by contrast, DSP argues that cognitive functions are better explained by interactions between several brain areas, whose engagement in specific functions is temporal and context-dependent and based on neural reuse. We outline the main neurobiological facts about adolescent maturation, focusing on the neuroanatomical and neurofunctional processes associated with adolescence. We then explain the importance of emotional management in adolescent maturation. We explain the interplay between emotion and cognition under the scope of CCA and DSP, both at neural and behavioral levels. Finally, we justify why, according to CCA, emotional management is understood as regulation, specifically because the cognitive aspects of the brain are in charge of regulating emotion-related modules. However, the key word in DSP is integration, since neural information from different brain areas is integrated from the beginning of the process. Consequently, although the terms should not be conceptually confused, there is no cognition without emotion, and vice versa. Thus, emotional integration is not an independent process that just happens to the subject, but a crucial part of personal growth. Considering the importance of neuropsychological research in the development of educational and legal policies concerning adolescents, we intend to expose that the holistic view of adolescents is dependent on whether one holds the implicit or explicit interpretation of brain functioning. PMID:27602012

  15. An information theory account of cognitive control

    PubMed Central

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875

  16. Education amplifies brain atrophy effect on cognitive decline: implications for cognitive reserve.

    PubMed

    Mungas, Dan; Gavett, Brandon; Fletcher, Evan; Farias, Sarah Tomaszewski; DeCarli, Charles; Reed, Bruce

    2018-08-01

    Level of education is often regarded as a proxy for cognitive reserve in older adults. This implies that brain degeneration has a smaller effect on cognitive decline in those with more education, but this has not been directly tested in previous research. We examined how education, quantitative magnetic resonance imaging-based measurement of brain degeneration, and their interaction affect cognitive decline in diverse older adults spanning the spectrum from normal cognition to dementia. Gray matter atrophy was strongly related to cognitive decline. While education was not related to cognitive decline, brain atrophy had a stronger effect on cognitive decline in those with more education. Importantly, high education was associated with slower decline in individuals with lesser atrophy but with faster decline in those with greater atrophy. This moderation effect was observed in Hispanics (who had high heterogeneity of education) but not in African-Americans or Caucasians. These results suggest that education is an indicator of cognitive reserve in individuals with low levels of brain degeneration, but the protective effect of higher education is rapidly depleted as brain degeneration progresses. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Robust Transient Dynamics and Brain Functions

    PubMed Central

    Rabinovich, Mikhail I.; Varona, Pablo

    2011-01-01

    In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework – heteroclinic sequential dynamics – to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory – a vital cognitive function –, and to find specific dynamical signatures – different kinds of instabilities – of several brain functions and mental diseases. PMID:21716642

  18. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    PubMed Central

    Chen, Yeong-Chang; Wei, Tsui-Shan; Sun, Ding-Ping; Wang, Jhi-Joung; Yeh, Ching-Hua

    2015-01-01

    Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release. Trichostatin A (TSA), an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS-) induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p.) injected with vehicle or TSA (0.3 mg/kg). One hour later, they were injected (i.p.) with saline or Escherichia coli LPS (1 mg/kg). We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal) was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO), TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression. PMID:26273133

  19. Chemo brain or tumor brain - that is the question: the presence of extracranial tumors profoundly affects molecular processes in the prefrontal cortex of TumorGraft mice

    PubMed Central

    Kovalchuk, Anna; Ilnytskyy, Yaroslav; Rodriguez-Juarez, Rocio; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Katz, Amanda; Sidransky, David; Kovalchuk, Olga; Kolb, Bryan

    2017-01-01

    Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain. PMID:28758896

  20. Neuronal Correlation Parameter and the Idea of Thermodynamic Entropy of an N-Body Gravitationally Bounded System.

    PubMed

    Haranas, Ioannis; Gkigkitzis, Ioannis; Kotsireas, Ilias; Austerlitz, Carlos

    2017-01-01

    Understanding how the brain encodes information and performs computation requires statistical and functional analysis. Given the complexity of the human brain, simple methods that facilitate the interpretation of statistical correlations among different brain regions can be very useful. In this report we introduce a numerical correlation measure that may serve the interpretation of correlational neuronal data, and may assist in the evaluation of different brain states. The description of the dynamical brain system, through a global numerical measure may indicate the presence of an action principle which may facilitate a application of physics principles in the study of the human brain and cognition.

  1. [Brain metastases: Focal treatment (surgery and radiation therapy) and cognitive consequences].

    PubMed

    Reygagne, Emmanuelle; Du Boisgueheneuc, Foucaud; Berger, Antoine

    2017-04-01

    Brain metastases represent the first cause of malignant brain tumor. Without radiation therapy, prognosis was poor with fast neurological deterioration, and a median overall survival of one month. Nowadays, therapeutic options depend on brain metastases presentation, extra brain disease, performance status and estimated prognostic (DS GPA). Therefore, for oligometastatic brain patients with a better prognosis, this therapeutic modality is controversial. In fact, whole-brain radiation therapy improves neurological outcomes, but it can also induce late neuro-cognitive sequelae for long-term survivors of brain metastases. Thus, in this strategy for preserving good cognitive functions, stereotactic radiation therapy is a promising treatment. Delivering precisely targeted radiation in few high-doses in one to four brain metastases, allows to reduce radiation damage to normal tissues and it should allow to decrease radiation-induced cognitive decline. In this paper, we will discuss about therapeutic strategies (radiation therapy and surgery) with their neuro-cognitive consequences for brain metastases patients and future concerning preservation of cognitive functions. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  2. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation.

    PubMed

    Wu, Junfang; Stoica, Bogdan A; Luo, Tao; Sabirzhanov, Boris; Zhao, Zaorui; Guanciale, Kelsey; Nayar, Suresh K; Foss, Catherine A; Pomper, Martin G; Faden, Alan I

    2014-01-01

    Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C-C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory-evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation.

  3. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment

    PubMed Central

    Wu, Junfang; Stoica, Bogdan A; Luo, Tao; Sabirzhanov, Boris; Zhao, Zaorui; Guanciale, Kelsey; Nayar, Suresh K; Foss, Catherine A; Pomper, Martin G; Faden, Alan I

    2014-01-01

    Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C–C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory—evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation. PMID:25483194

  4. The Use of Event-Related Brain Potentials to Measure Cognitive Processing Deficits in the Brain-Injured.

    ERIC Educational Resources Information Center

    Torello, Michael W., Jr.; And Others

    Until recently it has been possible only to measure the behavioral products of cognitive processing, e.g. reaction time. However, this is a rather indirect way of studying brain substrates of cognition. Psychophysiological techniques can be used to study the neural mechanisms of cognition. In this experiment brain electrical activity was measured…

  5. [Eating disorders].

    PubMed

    Miyake, Yoshie; Okamoto, Yuri; Jinnin, Ran; Shishida, Kazuhiro; Okamoto, Yasumasa

    2015-02-01

    Eating disorders are characterized by aberrant patterns of eating behavior, including such symptoms as extreme restriction of food intake or binge eating, and severe disturbances in the perception of body shape and weight, as well as a drive for thinness and obsessive fears of becoming fat. Eating disorder is an important cause for physical and psychosocial morbidity in young women. Patients with eating disorders have a deficit in the cognitive process and functional abnormalities in the brain system. Recently, brain-imaging techniques have been used to identify specific brain areas that function abnormally in patients with eating disorders. We have discussed the clinical and cognitive aspects of eating disorders and summarized neuroimaging studies of eating disorders.

  6. Uncovering the Mechanisms Responsible for Why Language Learning May Promote Healthy Cognitive Aging

    PubMed Central

    Antoniou, Mark; Wright, Sarah M.

    2017-01-01

    One of the great challenges facing humankind in the 21st century is preserving healthy brain function in our aging population. Individuals over 60 are the fastest growing age group in the world, and by 2050, it is estimated that the number of people over the age of 60 will triple. The typical aging process involves cognitive decline related to brain atrophy, especially in frontal brain areas and regions that subserve declarative memory, loss of synaptic connections, and the emergence of neuropathological symptoms associated with dementia. The disease-state of this age-related cognitive decline is Alzheimer’s disease and other dementias, which may cause older adults to lose their independence and rely on others to live safely, burdening family members and health care systems in the process. However, there are two lines of research that offer hope to those seeking to promote healthy cognitive aging. First, it has been observed that lifestyle variables such as cognitive leisure activities can moderate the risk of Alzheimer’s disease, which has led to the development of plasticity-based interventions for older adults designed to protect against the adverse effects of cognitive decline. Second, there is evidence that lifelong bilingualism acts as a safeguard in preserving healthy brain function, possibly delaying the incidence of dementia by several years. In previous work, we have suggested that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. Here, we will outline potential future lines of research that may uncover the mechanism responsible for the emergence of language learning related brain advantages, such as language typology, bi- vs. multi-lingualism, age of acquisition, and the elements that are likely to result in the largest gains. PMID:29326636

  7. Uncovering the Mechanisms Responsible for Why Language Learning May Promote Healthy Cognitive Aging.

    PubMed

    Antoniou, Mark; Wright, Sarah M

    2017-01-01

    One of the great challenges facing humankind in the 21st century is preserving healthy brain function in our aging population. Individuals over 60 are the fastest growing age group in the world, and by 2050, it is estimated that the number of people over the age of 60 will triple. The typical aging process involves cognitive decline related to brain atrophy, especially in frontal brain areas and regions that subserve declarative memory, loss of synaptic connections, and the emergence of neuropathological symptoms associated with dementia. The disease-state of this age-related cognitive decline is Alzheimer's disease and other dementias, which may cause older adults to lose their independence and rely on others to live safely, burdening family members and health care systems in the process. However, there are two lines of research that offer hope to those seeking to promote healthy cognitive aging. First, it has been observed that lifestyle variables such as cognitive leisure activities can moderate the risk of Alzheimer's disease, which has led to the development of plasticity-based interventions for older adults designed to protect against the adverse effects of cognitive decline. Second, there is evidence that lifelong bilingualism acts as a safeguard in preserving healthy brain function, possibly delaying the incidence of dementia by several years. In previous work, we have suggested that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. Here, we will outline potential future lines of research that may uncover the mechanism responsible for the emergence of language learning related brain advantages, such as language typology, bi- vs. multi-lingualism, age of acquisition, and the elements that are likely to result in the largest gains.

  8. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    PubMed

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks

    PubMed Central

    Hwang, Seong Jae; Adluru, Nagesh; Collins, Maxwell D.; Ravi, Sathya N.; Bendlin, Barbara B.; Johnson, Sterling C.; Singh, Vikas

    2016-01-01

    There is a great deal of interest in using large scale brain imaging studies to understand how brain connectivity evolves over time for an individual and how it varies over different levels/quantiles of cognitive function. To do so, one typically performs so-called tractography procedures on diffusion MR brain images and derives measures of brain connectivity expressed as graphs. The nodes correspond to distinct brain regions and the edges encode the strength of the connection. The scientific interest is in characterizing the evolution of these graphs over time or from healthy individuals to diseased. We pose this important question in terms of the Laplacian of the connectivity graphs derived from various longitudinal or disease time points — quantifying its progression is then expressed in terms of coupling the harmonic bases of a full set of Laplacians. We derive a coupled system of generalized eigenvalue problems (and corresponding numerical optimization schemes) whose solution helps characterize the full life cycle of brain connectivity evolution in a given dataset. Finally, we show a set of results on a diffusion MR imaging dataset of middle aged people at risk for Alzheimer’s disease (AD), who are cognitively healthy. In such asymptomatic adults, we find that a framework for characterizing brain connectivity evolution provides the ability to predict cognitive scores for individual subjects, and for estimating the progression of participant’s brain connectivity into the future. PMID:27812274

  10. Strategies for preservation of memory function in patients with brain metastases.

    PubMed

    Dye, Nicholas B; Gondi, Vinai; Mehta, Minesh P

    2015-06-01

    Cognitive decline, particularly in memory, is a side effect seen in patients with brain metastases and when severe, can have a significant impact on their quality of life. It is most often the result of multiple intersecting etiologic factors, including the use of whole brain radiation therapy, effects of which, in part, are mediated by damage within the hippocampus. A variety of clinical factors and comorbidities may impact the likelihood and severity of this cognitive decline, and affected patients should be considered for evaluation in a comprehensive neuro-rehabilitation or "brain fitness" program. Avoiding WBRT is warranted for some patients with brain metastases; particularly those <50 years old. However, when WBRT is clinically indicated, hippocampal avoidance WBRT (HA-WBRT) has been shown to significantly reduce memory decline compared to historical controls without compromising treatment efficacy. Additionally, the NMDA receptor antagonist memantine and renin-angiotensin-aldosterone system (RAAS) blockers have shown promise as neuroprotective agents that could be used prophylactically with radiation. After the onset of neurocognitive decline the treatment is largely symptom-driven, however simply screening for and treating depression, fatigue, anxiety, cognitive slowing, and other processes may alleviate some impairment. Stimulants such as methylphenidate may be useful in treating symptoms of fatigue and cognitive slowing. Other treatments including donepezil and cognitive rehabilitation have been extensively tested in the population at risk for dementia, although they have not been adequately studied in patients following cranial radiotherapy. An innovative hypothetical approach is the use of intranasal metabolic stimulants such as low dose insulin, which could be valuable in improving cognition and memory, by reversing impaired brain metabolic activity. Prevention of neurocognitive decline in patients with brain metastases requires a multimodal approach tailored to each patient's need, avoiding WBRT in some, altering the WBRT plan in others, and/or using neuroprotective prophylaxis in those in whom avoidance cannot be utilized. Likewise treatment will require a personalized combination of strategies optimized to address the patient's symptoms.

  11. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging.

    PubMed

    Zamroziewicz, Marta K; Barbey, Aron K

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition-from entire diets to specific nutrients-affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  12. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    PubMed Central

    Zamroziewicz, Marta K.; Barbey, Aron K.

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition—from entire diets to specific nutrients—affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging. PMID:27375409

  13. Gain in Brain Immunity in the Oldest-Old Differentiates Cognitively Normal from Demented Individuals

    PubMed Central

    Katsel, Pavel; Tan, Weilun; Haroutunian, Vahram

    2009-01-01

    Background Recent findings suggest that Alzheimer's disease (AD) neuropathological features (neuritic plaques and NFTs) are not strongly associated with dementia in extreme old (over 90 years of age) and compel a search for neurobiological indices of dementia in this rapidly growing segment of the elderly population. We sought to characterize transcriptional and protein profiles of dementia in the oldest-old. Methods and Findings Gene and protein expression changes relative to non-demented age-matched controls were assessed by two microarray platforms, qPCR and Western blot in different regions of the brains of oldest-old and younger old persons who died at mild or severe stages of dementia. Our results indicate that: i) consistent with recent neuropathological findings, gene expression changes associated with cognitive impairment in oldest-old persons are distinct from those in cognitively impaired youngest-old persons; ii) transcripts affected in young-old subjects with dementia participate in biological pathways related to synaptic function and neurotransmission while transcripts affected in oldest-old subjects with dementia are associated with immune/inflammatory function; iii) upregulation of immune response genes in cognitively intact oldest-old subjects and their subsequent downregulation in dementia suggests a potential protective role of the brain immune-associated system against dementia in the oldest-old; iv) consistent with gene expression profiles, protein expression of several selected genes associated with the inflammatory/immune system in inferior temporal cortex is significantly increased in cognitively intact oldest-old persons relative to cognitively intact young-old persons, but impaired in cognitively compromised oldest-old persons relative to cognitively intact oldest-old controls. Conclusions These results suggest that disruption of the robust immune homeostasis that is characteristic of oldest-old individuals who avoided dementia may be directly associated with dementia in the oldest-old and contrast with the synaptic and neurotransmitter system failures that typify dementia in younger old persons. PMID:19865478

  14. Use of Neuroimaging to Clarify How Human Brains Perform Mental Calculations

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2010-01-01

    The purpose of this study was to analyze participants' levels of hemoglobin as they performed arithmetic mental calculations using Optical Topography (OT, helmet type brain-scanning system, also known as Functional Near-Infrared Spectroscopy or fNIRS). A central issue in cognitive neuroscience involves the study of how the human brain encodes and…

  15. Aging and brain rejuvenation as systemic events

    PubMed Central

    Bouchard, Jill; Villeda, Saul A

    2015-01-01

    The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood-borne ‘pro-youthful’ factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. PMID:25327899

  16. [Immune dysfunction and cognitive deficit in stress and physiological aging (Part I): Pathogenesis and risk factors].

    PubMed

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.

  17. Converging models of schizophrenia - Network alterations of prefrontal cortex underlying cognitive impairments

    PubMed Central

    Sakurai, Takeshi; Gamo, Nao J; Hikida, Takatoshi; Kim, Sun-Hong; Murai, Toshiya; Tomoda, Toshifumi; Sawa, Akira

    2015-01-01

    The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal. PMID:26408506

  18. Reflections on a giant of brain science: How lucky we are having Walter J. Freeman as our beacon in cognitive neurodynamics research.

    PubMed

    Kozma, Robert

    2016-12-01

    Walter J. Freeman was a giant of the field of neuroscience whose visionary work contributed various experimental and theoretical breakthroughs to brain research in the past 60 years. He has pioneered a number of Electroencephalogram and Electrocorticogram tools and approaches that shaped the field, while "Freeman Neurodynamics" is a theoretical concept that is widely known, used, and respected among neuroscientists all over the world. His recent death is a profound loss to neuroscience and biomedical engineering. Many of his revolutionary ideas on brain dynamics have been ahead of their time by decades. We summarize his following groundbreaking achievements: (1) Mass Action in the Nervous System, from microscopic (single cell) recordings, through mesoscopic populations, to large-scale collective brain patterns underlying cognition; (2) Freeman-Kachalsky model of multi-scale, modular brain dynamics; (3) cinematic theory of cognitive dynamics; (4) phase transitions in cortical dynamics modeled with random graphs and quantum field theory; (5) philosophical aspects of intentionality, consciousness, and the unity of brain-mind-body. His work has been admired by many of his neuroscientist colleagues and followers. At the same time, his multidisciplinary approach combining advanced concepts of control theory and the mathematics of nonlinear systems and chaos, poses significant challenges to those who wish to thoroughly understand his message. The goal of this commemorative paper is to review key aspects of Freeman's neurodynamics and to provide some handles to gain better understanding about Freeman's extraordinary intellectual achievement.

  19. Cognitive Effects of ThinkRx Cognitive Rehabilitation Training for Eleven Soldiers with Brain Injury: A Retrospective Chart Review

    PubMed Central

    Ledbetter, Christina; Moore, Amy Lawson; Mitchell, Tanya

    2017-01-01

    Cognitive rehabilitation training is a promising technique for remediating the cognitive deficits associated with brain injury. Extant research is dominated by computer-based interventions with varied results. Results from clinician-delivered cognitive rehabilitation are notably lacking in the literature. The current study examined the cognitive outcomes following ThinkRx, a clinician-delivered cognitive rehabilitation training program for soldiers recovering from traumatic brain injury and acquired brain injury. In a retrospective chart review, we examined cognitive outcomes of 11 cases who had completed an average of 80 h of ThinkRx cognitive rehabilitation training delivered by clinicians and supplemented with digital training exercises. Outcome measures included scores from six cognitive skill batteries on the Woodcock Johnson – III Tests of Cognitive Abilities. Participants achieved gains in all cognitive skills tested and achieved statistically significant changes in long-term memory, processing speed, auditory processing, and fluid reasoning with very large effect sizes. Clinically significant changes in multiple cognitive skills were also noted across cases. Results of the study suggest that ThinkRx clinician-delivered cognitive training supplemented with digital exercises may be a viable method for targeting the cognitive deficits associated with brain injury. PMID:28588534

  20. Spatial Working Memory Impairment in Patients with Non-neuropsychiatric Systemic Lupus Erythematosus: A Blood-oxygen-level Dependent Functional Magnetic Resonance Imaging Study.

    PubMed

    Zhu, Chun-Min; Ma, Ye; Xie, Lei; Huang, Jin-Zhuang; Sun, Zong-Bo; Duan, Shou-Xing; Lin, Zhi-Rong; Yin, Jing-Jing; Le, Hong-Bo; Sun, Dan-Miao; Xu, Wen-Can; Ma, Shu-Hua

    2017-02-01

    Using ethology and functional magnetic resonance imaging (fMRI) to explore mild cognitive dysfunction and spatial working memory (WM) impairment in patients with systemic lupus erythematosus (SLE) without overt neuropsychiatric symptoms (non-NPSLE) and to study whether any clinical biomarkers could serve as predictors of brain dysfunction in this disease. Eighteen non-NPSLE patients and 18 matched subjects were all tested using the Montreal cognitive assessment scale test and scanned using blood-oxygen-level dependent fMRI while performing the n-back task to investigate the activation intensity of some cognition-related areas. Ethology results showed that non-NPSLE patients had mild cognitive dysfunction and memory dysfunction (p < 0.05). The fMRI scan confirmed a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), premotor area, parietal lobe, and supplementary motor area (SMA)/anterior cingulate cortex (ACC) that was activated during the n-back task, with right hemisphere dominance. However, only the right SMA/ACC showed a load effect in the non-NPSLE group; the activation intensity of most WM-related brain areas for the non-NPSLE group was lower than for the control group under 3 memory loads. Further, we found that the activation intensity of some cognition-related areas, including the bilateral caudate nucleus/insula and hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. An inverse correlation existed between individual activation intensity and disease duration. Non-NPSLE-related brain damage with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial WM and mild cognitive dysfunction. Patients with longer disease duration would be expected to exhibit increased central nervous system damage.

  1. Exercise, cognition, and the adolescent brain.

    PubMed

    Herting, Megan M; Chu, Xiaofang

    2017-12-01

    Few adolescents engage in the recommended levels of physical activity, and daily exercise levels tend to drastically decrease throughout adolescence. Beyond physical health benefits, regular exercise may also have important implications for the teenage brain and cognitive and academic capabilities. This narrative review examines how physical activity and aerobic exercise relate to school performance, cognition, and brain structure and function. A number of studies have found that habitual exercise and physical activity are associated with academic performance, cognitive function, brain structure, and brain activity in adolescents. We also discuss how additional intervention studies that examine a wide range of neurological and cognitive outcomes are necessary, as well as characterizing the type, frequency, and dose of exercise and identifying individual differences that contribute to how exercise may benefit the teen brain. Routine exercise relates to adolescent brain structure and function as well as cognitive performance. Together, these studies suggest that physical activity and aerobic exercise may be important factors for optimal adolescent brain development. © 2017 Wiley Periodicals, Inc.

  2. Why language really is not a communication system: a cognitive view of language evolution

    PubMed Central

    Reboul, Anne C.

    2015-01-01

    While most evolutionary scenarios for language see it as a communication system with consequences on the language-ready brain, there are major difficulties for such a view. First, language has a core combination of features—semanticity, discrete infinity, and decoupling—that makes it unique among communication systems and that raise deep problems for the view that it evolved for communication. Second, extant models of communication systems—the code model of communication (Millikan, 2005) and the ostensive model of communication (Scott-Phillips, 2015) cannot account for language evolution. I propose an alternative view, according to which language first evolved as a cognitive tool, following Fodor’s (1975, 2008) Language of Thought Hypothesis, and was then exapted (externalized) for communication. On this view, a language-ready brain is a brain profoundly reorganized in terms of connectivity, allowing the human conceptual system to emerge, triggering the emergence of syntax. Language as used in communication inherited its core combination of features from the Language of Thought. PMID:26441802

  3. Feeding the beast: can microglia in the senescent brain be regulated by diet?

    PubMed

    Johnson, Rodney W

    2015-01-01

    Microglial cells, resident macrophages in the central nervous system (CNS), are relatively quiescent but can respond to signals from the peripheral immune system and induce neuroinflammation. In aging, microglia tend to transition to the M1 pro-inflammatory state and become hypersensitive to messages emerging from immune-to-brain signaling pathways. Thus, whereas in younger individuals where microglia respond to signals from the peripheral immune system and induce a well-controlled neuroinflammatory response that is adaptive (e.g., when well controlled, fever and sickness behavior facilitate recovery from infection), in older individuals with an infection, microglia overreact and produce excessive levels of inflammatory cytokines causing behavioral pathology including cognitive dysfunction. Importantly, recent studies indicate a number of naturally occurring bioactive compounds present in certain foods have anti-inflammatory properties and are capable of mitigating brain microglial cells. These include, e.g., flavonoid and non-flavonoid compounds in fruits and vegetables, and n-3 polyunsaturated fatty acids (PUFA) in oily fish. Thus, dietary bioactives have potential to restore the population of microglial cells in the senescent brain to a more quiescent state. The pragmatic concept to constrain microglia through dietary intervention is significant because neuroinflammation and cognitive deficits are co-morbid factors in many chronic inflammatory diseases. Controlling microglial cell reactivity has important consequences for preserving adult neurogenesis, neuronal structure and function, and cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    PubMed

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  5. Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis.

    PubMed

    Stillman, Chelsea M; Cohen, Jamie; Lehman, Morgan E; Erickson, Kirk I

    2016-01-01

    Physical activity (PA) is known to maintain and improve neurocognitive health. However, there is still a poor understanding of the mechanisms by which PA exerts its effects on the brain and cognition in humans. Many of the most widely discussed mechanisms of PA are molecular and cellular and arise from animal models. While information about basic cellular and molecular mechanisms is an important foundation from which to build our understanding of how PA promotes cognitive health in humans, there are other pathways that could play a role in this relationship. For example, PA-induced changes to cellular and molecular pathways likely initiate changes to macroscopic properties of the brain and/or to behavior that in turn influence cognition. The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function. We first summarize what is known regarding cellular and molecular mechanisms, and then devote the remainder of the review to discussing evidence for brain systems and behavioral/socioemotional pathways by which PA influences cognition. It is our hope that discussing mechanisms at multiple levels of analysis will stimulate the field to examine both brain and behavioral mediators. Doing so is important, as it could lead to a more complete characterization of the processes by which PA influences neurocognitive function, as well as a greater variety of targets for modifying neurocognitive function in clinical contexts.

  6. Neurosteroid vitamin D system as a nontraditional drug target in neuropsychopharmacology.

    PubMed

    Stewart, Adam; Wong, Keith; Cachat, Jonathan; Elegante, Marco; Gilder, Tom; Mohnot, Sopan; Wu, Nadine; Minasyan, Anna; Tuohimaa, Pentti; Kalueff, Allan V

    2010-09-01

    Vitamin D is becoming increasingly recognized as a nontraditional drug target for different brain pathologies. Although widely known for their role in calcium metabolism, vitamin D and its receptor have been linked to several brain disorders, including cognitive decline, epilepsy, affective disorders, and schizophrenia. Here we discuss mounting evidence, and parallel recent clinical and animal behavioral, genetic and pharmacological data to emphasize the emerging role of the neurosteroid vitamin D system in brain function.

  7. Brain volumetric changes and cognitive ageing during the eighth decade of life

    PubMed Central

    Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551

  8. Neurorehabilitation in Parkinson's Disease: A Critical Review of Cognitive Rehabilitation Effects on Cognition and Brain.

    PubMed

    Díez-Cirarda, María; Ibarretxe-Bilbao, Naroa; Peña, Javier; Ojeda, Natalia

    2018-01-01

    Parkinson's disease (PD) patients experience cognitive impairment which has been related to reduced quality of life and functional disability. These symptoms usually progress until dementia occurs. Some studies have been published assessing the efficacy of cognitive treatments on improving cognition, functional outcome, and producing changes in brain activity. A critical review was performed to present up-to-date neurorehabilitation effects of cognitive rehabilitation in PD, with special emphasis on the efficacy on cognition, quality of life aspects, brain changes, and the longitudinal maintenance of these changes. After exclusions, 13 studies were reviewed, including 6 randomized controlled trials for the efficacy on cognition, 2 randomized controlled trials regarding the brain changes after cognitive training, and 5 studies which evaluated the long-term effects of cognitive treatments. Cognitive rehabilitation programs have demonstrated to be effective on improving cognitive functions, but more research is needed focusing on the efficacy on improving behavioral aspects and producing brain changes in patients with PD. Moreover, there is a need of randomized controlled trials with long-term follow-up periods.

  9. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance.

    PubMed

    Nehlig, Astrid

    2013-03-01

    Cocoa powder and chocolate contain numerous substances among which there is a quite large percentage of antioxidant molecules, mainly flavonoids, most abundantly found in the form of epicatechin. These substances display several beneficial actions on the brain. They enter the brain and induce widespread stimulation of brain perfusion. They also provoke angiogenesis, neurogenesis and changes in neuron morphology, mainly in regions involved in learning and memory. Epicatechin improves various aspects of cognition in animals and humans. Chocolate also induces positive effects on mood and is often consumed under emotional stress. In addition, flavonoids preserve cognitive abilities during ageing in rats, lower the risk for developing Alzheimer's disease and decrease the risk of stroke in humans. In addition to their beneficial effects on the vascular system and on cerebral blood flow, flavonoids interact with signalization cascades involving protein and lipid kinases that lead to the inhibition of neuronal death by apoptosis induced by neurotoxicants such as oxygen radicals, and promote neuronal survival and synaptic plasticity. The present review intends to review the data available on the effects of cocoa and chocolate on brain health and cognitive abilities. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  10. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance

    PubMed Central

    Nehlig, Astrid

    2013-01-01

    Cocoa powder and chocolate contain numerous substances among which there is a quite large percentage of antioxidant molecules, mainly flavonoids, most abundantly found in the form of epicatechin. These substances display several beneficial actions on the brain. They enter the brain and induce widespread stimulation of brain perfusion. They also provoke angiogenesis, neurogenesis and changes in neuron morphology, mainly in regions involved in learning and memory. Epicatechin improves various aspects of cognition in animals and humans. Chocolate also induces positive effects on mood and is often consumed under emotional stress. In addition, flavonoids preserve cognitive abilities during ageing in rats, lower the risk for developing Alzheimer's disease and decrease the risk of stroke in humans. In addition to their beneficial effects on the vascular system and on cerebral blood flow, flavonoids interact with signalization cascades involving protein and lipid kinases that lead to the inhibition of neuronal death by apoptosis induced by neurotoxicants such as oxygen radicals, and promote neuronal survival and synaptic plasticity. The present review intends to review the data available on the effects of cocoa and chocolate on brain health and cognitive abilities. PMID:22775434

  11. Comparing the Cognitive Process of Circular Causality in Two Patients with Strokes through Qualitative Analysis.

    PubMed

    Derakhshanrad, Seyed Alireza; Piven, Emily; Ghoochani, Bahareh Zeynalzadeh

    2017-10-01

    Walter J. Freeman pioneered the neurodynamic model of brain activity when he described the brain dynamics for cognitive information transfer as the process of circular causality at intention, meaning, and perception (IMP) levels. This view contributed substantially to establishment of the Intention, Meaning, and Perception Model of Neuro-occupation in occupational therapy. As described by the model, IMP levels are three components of the brain dynamics system, with nonlinear connections that enable cognitive function to be processed in a circular causality fashion, known as Cognitive Process of Circular Causality (CPCC). Although considerable research has been devoted to study the brain dynamics by sophisticated computerized imaging techniques, less attention has been paid to study it through investigating the adaptation process of thoughts and behaviors. To explore how CPCC manifested thinking and behavioral patterns, a qualitative case study was conducted on two matched female participants with strokes, who were of comparable ages, affected sides, and other characteristics, except for their resilience and motivational behaviors. CPCC was compared by matrix analysis between two participants, using content analysis with pre-determined categories. Different patterns of thinking and behavior may have happened, due to disparate regulation of CPCC between two participants.

  12. Interaction vs. observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study.

    PubMed

    Tylén, Kristian; Allen, Micah; Hunter, Bjørk K; Roepstorff, Andreas

    2012-01-01

    Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an "understanding of the other," or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone "privately" manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions.

  13. Investigation of Dynamic Algorithms for Pattern Recognition Identified in Cerebral Cortex

    DTIC Science & Technology

    1991-12-02

    oscillatory and possibly chaotic activity forin the actual cortical substrate of the diverse sensory, motor, and cognitive operations now studied in...September Neural Information Processing Systems - Natural and Synthetic, Denver, Colo., November 1989 U.C. San Diego, Cognitive Science Dept...Baird. Biologically applied neural networks may foster the co-evolution of neurobiology and cognitive psychology. Brain and Behavioral Sciences, 37

  14. Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function.

    PubMed

    Pan, Yijun; Short, Jennifer L; Choy, Kwok H C; Zeng, Annie X; Marriott, Philip J; Owada, Yuji; Scanlon, Martin J; Porter, Christopher J H; Nicolazzo, Joseph A

    2016-11-16

    Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5 +/+ and FABP5 -/- mice using a battery of memory paradigms. FABP5 -/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14 C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5 +/+ and FABP5 -/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14 C-DHA uptake into brain endothelial cells and brain capillaries of FABP5 -/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5 +/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5 -/- mice are associated with reduced CNS access of DHA. Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5 -/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function. Copyright © 2016 the authors 0270-6474/16/3611756-13$15.00/0.

  15. A network engineering perspective on probing and perturbing cognition with neurofeedback.

    PubMed

    Bassett, Danielle S; Khambhati, Ankit N

    2017-05-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  16. The MNESIS model: Memory systems and processes, identity and future thinking.

    PubMed

    Eustache, Francis; Viard, Armelle; Desgranges, Béatrice

    2016-07-01

    The Memory NEo-Structural Inter-Systemic model (MNESIS; Eustache and Desgranges, Neuropsychology Review, 2008) is a macromodel based on neuropsychological data which presents an interactive construction of memory systems and processes. Largely inspired by Tulving's SPI model, MNESIS puts the emphasis on the existence of different memory systems in humans and their reciprocal relations, adding new aspects, such as the episodic buffer proposed by Baddeley. The more integrative comprehension of brain dynamics offered by neuroimaging has contributed to rethinking the existence of memory systems. In the present article, we will argue that understanding the concept of memory by dividing it into systems at the functional level is still valid, but needs to be considered in the light of brain imaging. Here, we reinstate the importance of this division in different memory systems and illustrate, with neuroimaging findings, the links that operate between memory systems in response to task demands that constrain the brain dynamics. During a cognitive task, these memory systems interact transiently to rapidly assemble representations and mobilize functions to propose a flexible and adaptative response. We will concentrate on two memory systems, episodic and semantic memory, and their links with autobiographical memory. More precisely, we will focus on interactions between episodic and semantic memory systems in support of 1) self-identity in healthy aging and in brain pathologies and 2) the concept of the prospective brain during future projection. In conclusion, this MNESIS global framework may help to get a general representation of human memory and its brain implementation with its specific components which are in constant interaction during cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    PubMed

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.

  18. A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decision-Making Models

    ERIC Educational Resources Information Center

    Stocco, Andrea

    2018-01-01

    Several attempts have been made previously to provide a biological grounding for cognitive architectures by relating their components to the computations of specific brain circuits. Often, the architecture's action selection system is identified with the basal ganglia. However, this identification overlooks one of the most important features of…

  19. Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease.

    PubMed

    Ponnusamy, Ravikumar; McNerney, M Windy; Moghadam, Shahrzad; Salehi, Ahmad

    2017-11-08

    Building upon the knowledge that a number of important brain circuits undergo significant degeneration in Alzheimer's disease, numerous recent studies suggest that the norepinephrine-ergic system in the brainstem undergoes significant alterations early in the course of both Alzheimer's disease and Down syndrome. Massive projections from locus coeruleus neurons to almost the entire brain, extensive innervation of brain capillaries, and widespread distribution of noradrenergic receptors enable the norepinephrine-ergic system to play a crucial role in neural processes, including cognitive function. These anatomical and functional characteristics support the role of the norepinephrine-ergic system as an important target for developing new therapies for cognitive dysfunction. Careful neuropathological examinations using postmortem samples from individuals with Alzheimer's disease have implicated the role of the norepinephrine-ergic system in the etiopathogenesis of Alzheimer's disease. Furthermore, numerous studies have supported the existence of a strong interaction between norepinephrine-ergic and neuroimmune systems. We explore the interaction between the two systems that could play a role in the disease-modifying effects of norepinephrine in Alzheimer's disease and Down syndrome. Copyright © 2017. Published by Elsevier B.V.

  20. Whole Brain Radiation-Induced Impairments in Learning and Memory Are Time-Sensitive and Reversible by Systemic Hypoxia

    PubMed Central

    Warrington, Junie P.; Csiszar, Anna; Mitschelen, Matthew; Lee, Yong Woo; Sonntag, William E.

    2012-01-01

    Whole brain radiation therapy (WBRT) is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40–50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia) or 21% oxygen (normoxia) for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored. PMID:22279591

  1. Microbiota regulation of the Mammalian gut-brain axis.

    PubMed

    Burokas, Aurelijus; Moloney, Rachel D; Dinan, Timothy G; Cryan, John F

    2015-01-01

    The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Apium graveolens extract influences mood and cognition in healthy mice.

    PubMed

    Boonruamkaew, Phetcharat; Sukketsiri, Wanida; Panichayupakaranant, Pharkphoom; Kaewnam, Wijittra; Tanasawet, Supita; Tipmanee, Varomyalin; Hutamekalin, Pilaiwanwadee; Chonpathompikunlert, Pennapa

    2017-07-01

    Apium graveolens is a food flavoring which possesses various health promoting effects. This study investigates the effect of a sub-acute administration of A. graveolens on cognition and anti-depression behaviors via antioxidant and related neurotransmitter systems in mice brains. Cognition and depression was assessed by various models of behavior. The antioxidant system of glutathione peroxidase (GPx), % inhibition of superoxide anion (O 2 - ), and lipid peroxidation were studied. In addition, neurochemical parameters including acetylcholinesterase (AChE) and monoamine oxidase-type A (MAO-A) were also evaluated. Nine groups of male mice were fed for 30 days with different substances-a control, vehicle, A. graveolens extract (65-500 mg/kg), and reference drugs (donepezil and fluoxetine). The results indicated that the effect of the intake of A. graveolens extract (125-500 mg/kg) was similar to the reference drugs, as it improved both spatial and non-spatial memories. Moreover, there was a decrease in immobility time in both the forced swimming and tail suspension tests. In addition, the A. graveolens extract reduced lipid peroxidation of the brain and increased GPx activity and the % inhibition of O 2 - , whereas the activities of AChE and MAO-A were decreased. Thus, our data have shown that the consumption of A. graveolens extract improved cognitive function and anti-depression activities as well as modulating the endogenous antioxidant and neurotransmitter systems in the brain, resulting in increased neuronal density. This result indicated an important role for A. graveolens extract in preventing age-associated decline in cognitive function associated with depression.

  3. Botallo's error, or the quandaries of the universality assumption.

    PubMed

    Bartolomeo, Paolo; Seidel Malkinson, Tal; de Vito, Stefania

    2017-01-01

    One of the founding principles of human cognitive neuroscience is the so-called universality assumption, the postulate that neurocognitive mechanisms do not show major differences among individuals. Without negating the importance of the universality assumption for the development of cognitive neuroscience, or the importance of single-case studies, here we aim at stressing the potential dangers of interpreting the pattern of performance of single patients as conclusive evidence concerning the architecture of the intact neurocognitive system. We take example from the case of Leonardo Botallo, an Italian surgeon of the Renaissance period, who claimed to have discovered a new anatomical structure of the adult human heart. Unfortunately, Botallo's discovery was erroneous, because what he saw in the few samples he examined was in fact the anomalous persistence of a fetal structure. Botallo's error is a reminder of the necessity to always strive for replication, despite the major hindrance of a publication system heavily biased towards novelty. In the present paper, we briefly discuss variations and anomalies in human brain anatomy and introduce the issue of variability in cognitive neuroscience. We then review some examples of the impact on cognition of individual variations in (1) brain structure, (2) brain functional organization and (3) brain damage. We finally discuss the importance and limits of single case studies in the neuroimaging era, outline potential ways to deal with individual variability, and draw some general conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Why build a virtual brain? Large-scale neural simulations as jump start for cognitive computing

    NASA Astrophysics Data System (ADS)

    Colombo, Matteo

    2017-03-01

    Despite the impressive amount of financial resources recently invested in carrying out large-scale brain simulations, it is controversial what the pay-offs are of pursuing this project. One idea is that from designing, building, and running a large-scale neural simulation, scientists acquire knowledge about the computational performance of the simulating system, rather than about the neurobiological system represented in the simulation. It has been claimed that this knowledge may usher in a new era of neuromorphic, cognitive computing systems. This study elucidates this claim and argues that the main challenge this era is facing is not the lack of biological realism. The challenge lies in identifying general neurocomputational principles for the design of artificial systems, which could display the robust flexibility characteristic of biological intelligence.

  5. Self-organization, free energy minimization, and optimal grip on a field of affordances

    PubMed Central

    Bruineberg, Jelle; Rietveld, Erik

    2014-01-01

    In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism's tendency toward an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston's work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the system “brain-body-landscape of affordances.” Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism's selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients. PMID:25161615

  6. Self-organization, free energy minimization, and optimal grip on a field of affordances.

    PubMed

    Bruineberg, Jelle; Rietveld, Erik

    2014-01-01

    In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism's tendency toward an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston's work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the system "brain-body-landscape of affordances." Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism's selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients.

  7. A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function

    PubMed Central

    Kim, Binna; Hong, Veronica Minsu; Yang, Jeongwon; Hyun, Heejung; Im, Jooyeon Jamie; Hwang, Jaeuk; Yoon, Sujung; Kim, Jieun E.

    2016-01-01

    Around the world, fermentation of foods has been adopted over many generations, primarily due to their commercial significance with enriched flavors and high-profile nutrients. The increasing application of fermented foods is further promoted by recent evidence on their health benefits, beyond the traditionally recognized effects on the digestive system. With recent advances in the understanding of gut-brain interactions, there have also been reports suggesting the fermented food’s efficacy, particularly for cognitive function improvements. These results are strengthened by the proposed biological effects of fermented foods, including neuroprotection against neurotoxicity and reactive oxygen species. This paper reviews the beneficial health effects of fermented foods with particular emphasis on cognitive enhancement and neuroprotective effects. With an extensive review of fermented foods and their potential cognitive benefits, this paper may promote commercially feasible applications of fermented foods as natural remedies to cognitive problems. PMID:28078251

  8. Cognitive Screening in Brain Tumors: Short but Sensitive Enough?

    PubMed Central

    Robinson, Gail A.; Biggs, Vivien; Walker, David G.

    2015-01-01

    Cognitive deficits in brain tumors are generally thought to be relatively mild and non-specific, although recent evidence challenges this notion. One possibility is that cognitive screening tools are being used to assess cognitive functions but their sensitivity to detect cognitive impairment may be limited. For improved sensitivity to recognize mild and/or focal cognitive deficits in brain tumors, neuropsychological evaluation tailored to detect specific impairments has been thought crucial. This study investigates the sensitivity of a cognitive screening tool, the Montreal Cognitive Assessment (MoCA), compared to a brief but tailored cognitive assessment (CA) for identifying cognitive deficits in an unselected primary brain tumor sample (i.e., low/high-grade gliomas, meningiomas). Performance is compared on broad measures of impairment: (a) number of patients impaired on the global screening measure or in any cognitive domain; and (b) number of cognitive domains impaired and specific analyses of MoCA-Intact and MoCA-Impaired patients on specific cognitive tests. The MoCA-Impaired group obtained lower naming and word fluency scores than the MoCA-Intact group, but otherwise performed comparably on cognitive tests. Overall, based on our results from patients with brain tumor, the MoCA has extremely poor sensitivity for detecting cognitive impairments and a brief but tailored CA is necessary. These findings will be discussed in relation to broader issues for clinical management and planning, as well as specific considerations for neuropsychological assessment of brain tumor patients. PMID:25815273

  9. Environmental Complexity and Central Nervous System Development and Function

    ERIC Educational Resources Information Center

    Lewis, Mark H.

    2004-01-01

    Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching,…

  10. Combining Computational Modeling and Neuroimaging to Examine Multiple Category Learning Systems in the Brain

    PubMed Central

    Nomura, Emi M.; Reber, Paul J.

    2012-01-01

    Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in Category Learning) model incorporates multiple categorization systems that compete to provide categorization judgments about visual stimuli. Incorporating competing systems requires inclusion of cognitive mechanisms associated with resolving this competition and creates a potential credit assignment problem in handling feedback. The hypothesized mechanisms make predictions about internal mental states that are not always reflected in choice behavior, but may be reflected in neural activity. Two prior functional magnetic resonance imaging (fMRI) studies of category learning were re-analyzed using PINNACLE to identify neural correlates of internal cognitive states on each trial. These analyses identified additional brain regions supporting the two types of category learning, regions particularly active when the systems are hypothesized to be in maximal competition, and found evidence of covert learning activity in the “off system” (the category learning system not currently driving behavior). These results suggest that PINNACLE provides a plausible framework for how competing multiple category learning systems are organized in the brain and shows how computational modeling approaches and fMRI can be used synergistically to gain access to cognitive processes that support complex decision-making machinery. PMID:24962771

  11. Network measures predict neuropsychological outcome after brain injury

    PubMed Central

    Warren, David E.; Power, Jonathan D.; Bruss, Joel; Denburg, Natalie L.; Waldron, Eric J.; Sun, Haoxin; Petersen, Steven E.; Tranel, Daniel

    2014-01-01

    Hubs are network components that hold positions of high importance for network function. Previous research has identified hubs in human brain networks derived from neuroimaging data; however, there is little consensus on the localization of such hubs. Moreover, direct evidence regarding the role of various proposed hubs in network function (e.g., cognition) is scarce. Regions of the default mode network (DMN) have been frequently identified as “cortical hubs” of brain networks. On theoretical grounds, we have argued against some of the methods used to identify these hubs and have advocated alternative approaches that identify different regions of cortex as hubs. Our framework predicts that our proposed hub locations may play influential roles in multiple aspects of cognition, and, in contrast, that hubs identified via other methods (including salient regions in the DMN) might not exert such broad influence. Here we used a neuropsychological approach to directly test these predictions by studying long-term cognitive and behavioral outcomes in 30 patients, 19 with focal lesions to six “target” hubs identified by our approaches (high system density and participation coefficient) and 11 with focal lesions to two “control” hubs (high degree centrality). In support of our predictions, we found that damage to target locations produced severe and widespread cognitive deficits, whereas damage to control locations produced more circumscribed deficits. These findings support our interpretation of how neuroimaging-derived network measures relate to cognition and augment classic neuroanatomically based predictions about cognitive and behavioral outcomes after focal brain injury. PMID:25225403

  12. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children.

    PubMed

    Calderón-Garcidueñas, Lilian; Engle, Randall; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardón, Ricardo; Romero, Lina; Monroy-Acosta, Maria E; Bryant, Christopher; González-González, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-12-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. EEG-based research on brain functional networks in cognition.

    PubMed

    Wang, Niannian; Zhang, Li; Liu, Guozhong

    2015-01-01

    Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.

  14. [A case of neuro-neutrophilic disease presenting with 5 months' with cognitive decline, meningoencephalitis, and marked systemic inflammatory findings, and diagnosed with brain biopsy].

    PubMed

    Ohe, Yasuko; Nakazato, Yoshihiko; Ishizawa, Keisuke; Deguchi, Ichiro; Tamura, Naotoshi; Araki, Nobuo

    2011-01-01

    A 63-year-old man was admitted to our hospital with cognitive decline. On admission, he had a fever and mild cognitive dysfunction, suggesting chronic meningoencephalitis. Apart from a mild increase in serum C-reactive protein level and marked neutrophilia, laboratory findings were unremarkable. Brain magnetic resonance (MR) imaging showed multiple small T2-hyperintense lesions in the white matter. Systemic evaluations for infectious organisms, autoantibodies, and malignancy were all negative. For 5 months we conducted therapeutic trials of various antibacterial, antifungal, and antituberculous drugs, but these were completely ineffective, and both meningoencephalitis and inflammatory signs persisted. Repeated brain MRI during the clinical course showed growth of the white matter lesions and progressive cerebral atrophy. C11-methionine positron emission tomography demonstrated a bright focus in the right frontal lobe, and this was biopsied. Key neuropathological findings were neutrophilic infiltration in the subarachnoid space and the frontal lobe without necrotic angiitis. These findings confirmed the diagnosis of neuro-neutrophilic disease, although skin tissue findings characteristic of Sweet disease and a B51, B54, or Cw1 HLA-profile were absent. After intravenous bolus administration of steroid and prolonged oral steroid therapy, fever and inflammatory signs diminished and cognitive symptoms improved.

  15. The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study

    ERIC Educational Resources Information Center

    Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.

    2004-01-01

    This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…

  16. Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: A review of human brain oscillations as effective endophenotypes

    PubMed Central

    Rangaswamy, Madhavi; Porjesz, Bernice

    2010-01-01

    Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders. PMID:18634760

  17. Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes.

    PubMed

    Rangaswamy, Madhavi; Porjesz, Bernice

    2008-10-15

    Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders.

  18. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains.

    PubMed

    Abreu, Renata Viana; Silva-Oliveira, Eliane Moretto; Moraes, Márcio Flávio Dutra; Pereira, Grace Schenatto; Moraes-Santos, Tasso

    2011-10-01

    Coffee is a popular beverage consumed worldwide and its effect on health protection has been well studied throughout literature. This study investigates the effect of chronic coffee and caffeine ingestion on cognitive behavior and the antioxidant system of rat brains. The paradigms of open field and object recognition were used to assess locomotor and exploratory activities, as well as learning and memory. The antioxidant system was evaluated by determining the activities of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as the lipid peroxidation and reduced glutathione content. Five groups of male rats were fed for approximately 80 days with different diets: control diet (CD), fed a control diet; 3% coffee diet (3%Co) and 6% coffee diet (6%Co), both fed a diet containing brewed coffee; 0.04% caffeine diet (0.04%Ca) and 0.08% caffeine diet (0.08%Ca), both fed a control diet supplemented with caffeine. The estimated caffeine intake was approximately 20 and 40 mg/kg per day, for the 3%Co-0.04%Ca and 6%Co-0.08%Ca treatments, respectively. At 90 days of life, the animals were subjected to the behavioral tasks and then sacrificed. The results indicated that the intake of coffee, similar to caffeine, improved long-term memory when tested with object recognition; however, this was not accompanied by an increase in locomotor and exploratory activities. In addition, chronic coffee and caffeine ingestion reduced the lipid peroxidation of brain membranes and increased the concentration of reduced-glutathione. The activities of the GR and SOD were similarly increased, but no change in GPx activity could be observed. Thus, besides improving cognitive function, our data show that chronic coffee consumption modulates the endogenous antioxidant system in the brain. Therefore, chronic coffee ingestion, through the protection of the antioxidant system, may play an important role in preventing age-associated decline in the cognitive function. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Nutritional Supplements and the Brain.

    PubMed

    Meeusen, Romain; Decroix, Lieselot

    2018-03-01

    Cognitive function plays an important role in athletic performance, and it seems that brain functioning can be influenced by nutrition and dietary components. Thus, the central nervous system might be manipulated through changes in diet or supplementation with specific nutrients including branched-chain amino acids, tyrosine, carbohydrates, and caffeine. Despite some evidence that branched-chained amino acids can influence ratings of perceived exertion and mental performance, several well-controlled studies have failed to demonstrate a positive effect on exercise performance. Evidence of an ergogenic benefit of tyrosine supplementation during prolonged exercise is limited. There is evidence that mild dehydration can impair cognitive performance and mood. The beneficial effect of carbohydrate supplementation during prolonged exercise could relate to increased substrate delivery for the brain, with numerous studies indicating that hypoglycemia affects brain function and cognitive performance. Caffeine can enhance performance and reduce perception of effort during prolonged exercise and will influence specific reward centers of the brain. Plant products and herbal extracts such as polyphenols, ginseng, ginkgo biloba, etc. are marketed as supplements to enhance performance. In several animal studies, positive effects of these products were shown, however the literature on their effects on sports performance is scarce. Polyphenols have the potential to protect neurons against injury induced by neurotoxins, suppress neuroinflammation, and to promote memory, learning, and cognitive function. In general, there remains a need for controlled randomized studies with a strong design, sufficient statistical power, and well-defined outcome measures before "claims" on its beneficial effects on brain functioning can be established.

  20. Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients

    PubMed Central

    Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang

    2013-01-01

    A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for cognitive disorder in depressed patients. PMID:25206466

  1. Limitations on the developing preterm brain: impact of periventricular white matter lesions on brain connectivity and cognition.

    PubMed

    Pavlova, Marina A; Krägeloh-Mann, Ingeborg

    2013-04-01

    Brain lesions to the white matter in peritrigonal regions, periventricular leukomalacia, in children who were born prematurely represent an important model for studying limitations on brain development. The lesional pattern is of early origin and bilateral, that constrains the compensatory potential of the brain. We suggest that (i) topography and severity of periventricular lesions may have a long-term predictive value for cognitive and social capabilities in preterm birth survivors; and (ii) periventricular lesions may impact cognitive and social functions by affecting brain connectivity, and thereby, the dissociable neural networks underpinning these functions. A further pathway to explore is the relationship between cerebral palsy and cognitive outcome. Restrictions caused by motor disability may affect active exploration of surrounding and social participation that may in turn differentially impinge on cognitive development and social cognition. As an outline for future research, we underscore sex differences, as the sex of a preterm newborn may shape the mechanisms by which the developing brain is affected.

  2. The Missing Link in the Pathophysiology of Vascular Cognitive Impairment: Design of the Heart-Brain Study

    PubMed Central

    Hooghiemstra, Astrid M.; Bertens, Anne Suzanne; Leeuwis, Anna E.; Bron, Esther E.; Bots, Michiel L.; Brunner-La Rocca, Hans-Peter; de Craen, Anton J.M.; van der Geest, Rob J.; Greving, Jacoba P.; Kappelle, L. Jaap; Niessen, Wiro J.; van Oostenbrugge, Robert J.; van Osch, Matthias J.P.; de Roos, Albert; van Rossum, Albert C.; Biessels, Geert Jan; van Buchem, Mark A.; Daemen, Mat J.A.P.; van der Flier, Wiesje M.

    2017-01-01

    Background Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that the hemodynamic status of the heart and the brain is an important but underestimated cause of VCI. We investigate this by studying to what extent hemodynamic changes contribute to VCI and what the mechanisms involved are. Here, we provide an overview of the design and protocol. Methods The Heart-Brain Study is a multicenter cohort study with a follow-up measurement after 2 years among 645 participants (175 VCI, 175 COD, 175 HF, and 120 controls). Enrollment criteria are the following: 1 of the 3 diseases diagnosed according to current guidelines, age ≥50 years, no magnetic resonance contraindications, ability to undergo cognitive testing, and independence in daily life. A core clinical dataset is collected including sociodemographic factors, cardiovascular risk factors, detailed neurologic, cardiac, and medical history, medication, and a physical examination. In addition, we perform standardized neuropsychological testing, cardiac, vascular and brain MRI, and blood sampling. In subsets of participants we assess Alz­heimer biomarkers in cerebrospinal fluid, and assess echocardiography and 24-hour blood pressure monitoring. Follow-up measurements after 2 years include neuropsychological testing, brain MRI, and blood samples for all participants. We use centralized state-of-the-art storage platforms for clinical and imaging data. Imaging data are processed centrally with automated standardized pipelines. Results and Conclusions The Heart-Brain Study investigates relationships between (cardio-)vascular factors, the hemodynamic status of the heart and the brain, and cognitive impairment. By studying the complete heart-brain axis in patient groups that represent components of this axis, we have the opportunity to assess a combination of clinical and subclinical manifestations of disorders of the heart, vascular system and brain, with hemodynamic status as a possible binding factor. PMID:29017156

  3. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice

    PubMed Central

    Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony

    2017-01-01

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease-associated hippocampal dysfunction. PMID:28424512

  4. Optimal trajectories of brain state transitions

    PubMed Central

    Gu, Shi; Betzel, Richard F.; Mattar, Marcelo G.; Cieslak, Matthew; Delio, Philip R.; Grafton, Scott T.; Pasqualetti, Fabio; Bassett, Danielle S.

    2017-01-01

    The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how white matter structure constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question by drawing on recent advances in network control theory to model the underlying mechanisms of brain state transitions as elicited by the collective control of region sets. We find that previously identified attention and executive control systems are poised to affect a broad array of state transitions that cannot easily be classified by traditional engineering-based notions of control. This theoretical versatility comes with a vulnerability to injury. In patients with mild traumatic brain injury, we observe a loss of specificity in putative control processes, suggesting greater susceptibility to neurophysiological noise. These results offer fundamental insights into the mechanisms driving brain state transitions in healthy cognition and their alteration following injury. PMID:28088484

  5. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer's disease.

    PubMed

    Burfeind, Kevin G; Murchison, Charles F; Westaway, Shawn K; Simon, Matthew J; Erten-Lyons, Deniz; Kaye, Jeffrey A; Quinn, Joseph F; Iliff, Jeffrey J

    2017-09-01

    The glymphatic system is a brain-wide perivascular network that facilitates clearance of proteins, including amyloid β, from the brain interstitium through the perivascular exchange of cerebrospinal fluid and interstitial fluid. The astrocytic water channel aquaporin-4 (AQP4) is required for glymphatic system function, and impairment of glymphatic function in the aging brain is associated with altered AQP4 expression and localization. In human cortical tissue, alterations in AQP4 expression and localization are associated with Alzheimer's disease (AD) status and pathology. Although this suggests a potential role for AQP4 in the development or progression of AD, the relationship between of naturally occurring variants in the human AQP4 gene and cognitive function has not yet been evaluated. Using data from several longitudinal aging cohorts, we investigated the association between five AQP4 single-nucleotide polymorphisms (SNPs) and the rate of cognitive decline in participants with a diagnosis of AD. None of the five SNPs were associated with different rates of AD diagnosis, age of dementia onset in trial subjects. No association between AQP4 SNPs with histological measures of AD pathology, including Braak stage or neuritic plaque density was observed. However, AQP4 SNPs were associated with altered rates of cognitive decline after AD diagnosis, with two SNPS (rs9951307 and rs3875089) associated with slower cognitive decline and two (rs3763040 and rs3763043) associated with more rapid cognitive decline after AD diagnosis. These results provide the first evidence that variations in the AQP4 gene, whose gene product AQP4 is vital for glymphatic pathway function, may modulate the progression of cognitive decline in AD.

  6. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    PubMed

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Reduced gray matter volume is correlated with frontal cognitive and behavioral impairments in Parkinson's disease.

    PubMed

    Terada, Tatsuhiro; Miyata, Jun; Obi, Tomokazu; Kubota, Manabu; Yoshizumi, Miho; Murai, Toshiya

    2018-07-15

    To identify the brain-volume reductions associated with frontal cognitive and behavioral impairments in Parkinson's disease (PD). Forty PD patients without dementia or amnesia (Hoehn and Yahr stage 3) and 10 age-matched controls underwent brain magnetic resonance imaging. Cognitive and behavioral impairments were assessed by using the Frontal Assessment Battery (FAB) and Frontal Systems Behavioral Scale (FrSBe), respectively. We applied voxel-based morphometry to investigate the correlations of regional gray matter volume with FAB, FrSBe, and physical disability. FAB was significantly lower in PD than in controls. FrSBe was significantly higher after PD onset than before, notably in the apathy subscale. FAB and FrSBe were significantly intercorrelated. In PD patients, left inferior frontal volume was positively correlated with FAB, whereas right precentral volume was negatively correlated with FrSBe total score. The brain volumes in both of these regions were not correlated with the Unified PD Rating Scale III. Behavioral impairments in PD tended to coexist with progression of frontal cognitive impairment. Regional atrophy within the frontal lobe was associated with both frontal cognitive and behavioral impairments. However, the specific region responsible for behavioral impairment differed from that for frontal cognitive impairment. These associations were independent of physical disability. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration

    PubMed Central

    Sankowski, Roman; Mader, Simone; Valdés-Ferrer, Sergio Iván

    2015-01-01

    The nervous and immune systems have evolved in parallel from the early bilaterians, in which innate immunity and a central nervous system (CNS) coexisted for the first time, to jawed vertebrates and the appearance of adaptive immunity. The CNS feeds from, and integrates efferent signals in response to, somatic and autonomic sensory information. The CNS receives input also from the periphery about inflammation and infection. Cytokines, chemokines, and damage-associated soluble mediators of systemic inflammation can also gain access to the CNS via blood flow. In response to systemic inflammation, those soluble mediators can access directly through the circumventricular organs, as well as open the blood–brain barrier. The resulting translocation of inflammatory mediators can interfere with neuronal and glial well-being, leading to a break of balance in brain homeostasis. This in turn results in cognitive and behavioral manifestations commonly present during acute infections – including anorexia, malaise, depression, and decreased physical activity – collectively known as the sickness behavior (SB). While SB manifestations are transient and self-limited, under states of persistent systemic inflammatory response the cognitive and behavioral changes can become permanent. For example, cognitive decline is almost universal in sepsis survivors, and a common finding in patients with systemic lupus erythematosus. Here, we review recent genetic evidence suggesting an association between neurodegenerative disorders and persistent immune activation; clinical and experimental evidence indicating previously unidentified immune-mediated pathways of neurodegeneration; and novel immunomodulatory targets and their potential relevance for neurodegenerative disorders. PMID:25698933

  9. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  10. Enhanced Academic Performance Using a Novel Classroom Physical Activity Intervention to Increase Awareness, Attention and Self-Control: Putting Embodied Cognition into Practice

    ERIC Educational Resources Information Center

    McClelland, Elizabeth; Pitt, Anna; Stein, John

    2015-01-01

    When language is processed, brain activity occurs not only in the classic "language areas" such as Broca's area, but also in areas which control movement. Our systems of understanding, including higher level cognition, are rooted in bodily awareness which needs to be developed as a precursor to intellectual reasoning. Cognition is…

  11. Developmental continuity in reward-related enhancement of cognitive control.

    PubMed

    Strang, Nicole M; Pollak, Seth D

    2014-10-01

    Adolescents engage in more risky behavior than children or adults. The most prominent hypothesis for this phenomenon is that brain systems governing reward sensitivity and brain systems governing self-regulation mature at different rates. Those systems governing reward sensitivity mature in advance of those governing self-control. This hypothesis has substantial empirical support, however, the evidence supporting this theory has been exclusively derived from contexts where self-control systems are required to regulate reward sensitivity in order to promote adaptive behavior. In adults, reward promotes a shift to a proactive control strategy and better cognitive control performance. It is unclear whether children and adolescents will respond to reward in the same way. Using fMRI methodology, we explored whether children and adolescents would demonstrate a shift to proactive control in the context of reward. We tested 22 children, 20 adolescents, and 23 adults. In contrast to our hypothesis, children, adolescents, and adults all demonstrated a shift to proactive cognitive control in the context of reward. In light of the results, current neurobiological theories of adolescent behavior need to be refined to reflect that in certain contexts there is continuity in the manner reward and cognitive control systems interact across development. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Investigating the Neural Correlates of Emotion–Cognition Interaction Using an Affective Stroop Task

    PubMed Central

    Raschle, Nora M.; Fehlbaum, Lynn V.; Menks, Willeke M.; Euler, Felix; Sterzer, Philipp; Stadler, Christina

    2017-01-01

    The human brain has the capacity to integrate various sources of information and continuously adapts our behavior according to situational needs in order to allow a healthy functioning. Emotion–cognition interactions are a key example for such integrative processing. However, the neuronal correlates investigating the effects of emotion on cognition remain to be explored and replication studies are needed. Previous neuroimaging studies have indicated an involvement of emotion and cognition related brain structures including parietal and prefrontal cortices and limbic brain regions. Here, we employed whole brain event-related functional magnetic resonance imaging (fMRI) during an affective number Stroop task and aimed at replicating previous findings using an adaptation of an existing task design in 30 healthy young adults. The Stroop task is an indicator of cognitive control and enables the quantification of interference in relation to variations in cognitive load. By the use of emotional primes (negative/neutral) prior to Stroop task performance, an emotional variation is added as well. Behavioral in-scanner data showed that negative primes delayed and disrupted cognitive processing. Trials with high cognitive demand furthermore negatively influenced cognitive control mechanisms. Neuronally, the emotional primes consistently activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions) while Stroop task performance lead to activations in cognition networks of the brain (prefrontal cortices, superior temporal lobe, and insula). When assessing the effect of emotion on cognition, increased cognitive demand led to decreases in neural activation in response to emotional stimuli (negative > neutral) within prefrontal cortex, amygdala, and insular cortex. Overall, these results suggest that emotional primes significantly impact cognitive performance and increasing cognitive demand leads to reduced neuronal activation in emotion related brain regions, and therefore support previous findings investigating emotion–cognition interaction in healthy adults. Moreover, emotion and cognition seem to be tightly related to each other, as indicated by shared neural networks involved in both of these processes. Emotion processing, cognitive control, and their interaction are crucial for healthy functioning and a lack thereof is related to psychiatric disorders such as, disruptive behavior disorders. Future studies may investigate the neural characteristics of children and adolescents with disruptive behavior disorders. PMID:28919871

  13. Reduced Cerebrospinal Fluid Levels of Brain-Derived Neurotrophic Factor Is Associated With Cognitive Impairment in Late-Life Major Depression

    PubMed Central

    Teixeira, Antonio L.; Machado-Vieira, Rodrigo; Talib, Leda L.; Radanovic, Marcia; Gattaz, Wagner F.; Forlenza, Orestes V.

    2014-01-01

    Objectives. Late-life depression (LLD) is associated with reduced neurotrophic support and abnormalities in neurodegenerative cascades. The aim of the present study is to determine the concentrations of brain-derived neurotrophic factor (BDNF), amyloid-β42, total Tau, and phosphorylated Tau in the cerebrospinal fluid (CSF) of patients with LLD and cognitive impairment compared to healthy older adults. Method. We included 25 antidepressant-free patients with LLD (10 with mild cognitive impairment [LLD + MCI] and 15 with no cognitive decline [LLD + NCD]) and 25 healthy older adults as a comparison group. Depressive symptoms were assessed by the 21-item Hamilton Depression Rating Scale (HDRS-21) and cognitive performance by a comprehensive cognitive battery. Results. Patients with LLD + MCI showed significantly lower CSF BDNF levels compared to LLD + NCD and healthy controls (p = .003). There were no significant differences in Alzheimer’s disease–related CSF biomarkers between groups. CSF BDNF concentrations were positively correlated with Cambridge Cognitive Test (CAMCOG) scores (r = .36, p = .02). Discussion. The present study adds to the growing body of evidence that abnormalities in the BDNF system are involved in the pathophysiology of LLD. The reduction of the availability of BDNF in the central nervous system may indicate increased vulnerability to the development of several age-related neuropsychiatric disorders as well as to adverse cognitive outcomes. PMID:25149921

  14. The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions.

    PubMed

    Fang, Shengyu; Wang, Yinyan; Jiang, Tao

    2016-07-01

    Brain cognitive functions affect patient quality of life. The frontal lobe plays a crucial role in advanced cognitive functions, including executive function, meta-cognition, decision-making, memory, emotion, and language. Therefore, frontal tumors can lead to serious cognitive impairments. Currently, neurosurgical treatment is the primary method to treat brain tumors; however, the effects of the surgical treatments are difficult to predict or control. The treatment may both resolve the effects of the tumor to improve cognitive function or cause permanent disabilities resulting from damage to healthy functional brain tissue. Previous studies have focused on the influence of frontal lesions and surgical treatments on patient cognitive function. Here, we review cognitive impairment caused by frontal lobe brain tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. What language is the language-ready brain ready for?. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Croft, William

    2016-03-01

    Arbib's computational comparative neuroprimatology [1] is a welcome model for cognitive linguists, that is, linguists who ground their models of language in human cognition and language use in social interaction. Arbib argues that language emerged via biological and cultural coevolution [1]; linguistic knowledge is represented by constructions, and semantic representations of linguistic constructions are grounded in embodied perceptual-motor schemas (the mirror system hypothesis). My comments offer some refinements from a linguistic point of view.

  16. Decision-making during gambling: an integration of cognitive and psychobiological approaches

    PubMed Central

    Clark, Luke

    2010-01-01

    Gambling is a widespread form of entertainment that may afford unique insights into the interaction between cognition and emotion in human decision-making. It is also a behaviour that can become harmful, and potentially addictive, in a minority of individuals. This article considers the status of two dominant approaches to gambling behaviour. The cognitive approach has identified a number of erroneous beliefs held by gamblers, which cause them to over-estimate their chances of winning. The psychobiological approach has examined case-control differences between groups of pathological gamblers and healthy controls, and has identified dysregulation of brain areas linked to reward and emotion, including the ventromedial prefrontal cortex (vmPFC) and striatum, as well as alterations in dopamine neurotransmission. In integrating these two approaches, recent data are discussed that reveal anomalous recruitment of the brain reward system (including the vmPFC and ventral striatum) during two common cognitive distortions in gambling games: the near-miss effect and the effect of personal control. In games of chance, near-misses and the presence of control have no objective influence on the likelihood of winning. These manipulations appear to harness a reward system that evolved to learn skill-oriented behaviours, and by modulating activity in this system, these cognitive distortions may promote continued, and potentially excessive, gambling. PMID:20026469

  17. Brain volume and cognitive function in patients with revascularized coronary artery disease.

    PubMed

    Ottens, Thomas H; Hendrikse, Jeroen; Nathoe, Hendrik M; Biessels, Geert Jan; van Dijk, Diederik

    2017-03-01

    The pathogenesis of cognitive dysfunction in patients with CAD remains unclear. CAD is associated with brain atrophy and specific lesions. Detailed knowledge about the association of brain volume measured with MRI, and cognitive function in patients with CAD is lacking. We therefore investigated brain volume and cognitive function in patients with revascularized coronary artery disease (CAD), and controls without CAD. Brain MRI scans and cognitive tests from patients with CAD were compared with data from control subjects without CAD. Cognitive performance was assessed with the Rey Auditory Verbal Learning (short term memory) and Trailmaking (divided attention) tests. Multivariable regression analysis was used to study associations between CAD, brain volume and cognitive function. A total of 102 patients with CAD and 48 control subjects were included. Level of education and age were comparable between the groups. Compared with controls, patients with CAD had smaller total brain volume (expressed as fraction of intracranial volume) [%ICV, mean (SD), 0.78 (0.03) vs 0.80 (0.02), P=0.001] and larger volume of non-ventricular cerebrospinal fluid [%ICV, median (IQR) 0.19 (0.18 to 0.21) vs 0.18 (0.17 to 0.20), P=0.001]. Patients in the CAD group had poorer cognitive function [mean (SD) Z-score -0.16 (0.72) vs 0.41 (0.69), P<0.01]. Multivariable regression showed that CAD, higher age, lower level of education and greater cerebrospinal fluid volume were independent predictors of poorer cognitive function. CAD patients had a smaller total brain volume and poorer cognitive function than controls. Greater volume of cerebrospinal fluid was an independent predictor of poorer cognitive function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Mirror Neuron System and Mentalizing System connect during online social interaction.

    PubMed

    Sperduti, Marco; Guionnet, Sophie; Fossati, Philippe; Nadel, Jacqueline

    2014-08-01

    Two sets of brain areas are repeatedly reported in neuroimaging studies on social cognition: the Mirror Neuron System and the Mentalizing System. The Mirror System is involved in goal understanding and has been associated with several emotional and cognitive functions central to social interaction, ranging from empathy to gestural communication and imitation. The Mentalizing System is recruited in tasks requiring cognitive processes such as self-reference and understanding of other's intentions. Although theoretical accounts for an interaction between the two systems have been proposed, little is known about their synergy during social exchanges. In order to explore this question, we have recorded brain activity by means of functional MRI during live social exchanges based on reciprocal imitation of hand gestures. Here, we investigate, using the method of psychophysiological interaction, the changes in functional connectivity of the Mirror System due to the conditions of interest (being imitated, imitating) compared with passive observation of hand gestures. We report a strong coupling between the Mirror System and the Mentalizing System during the imitative exchanges. Our findings suggest a complementary role of the two networks during social encounters. The Mirror System would engage in the preparation of own actions and the simulation of other's actions, while the Mentalizing System would engage in the anticipation of the other's intention and thus would participate to the co-regulation of reciprocal actions. Beyond a specific effect of imitation, the design used offers the opportunity to tackle the role of role-switching in an interpersonal account of social cognition.

  19. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  20. Memory and cognitive control circuits in mathematical cognition and learning

    PubMed Central

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  1. Uncovering the neuroanatomical correlates of cognitive, affective and conative theory of mind in paediatric traumatic brain injury: a neural systems perspective.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Hearps, Stephen J; Beauchamp, Miriam H; Yeates, Keith O; Anderson, Vicki A

    2017-09-01

    Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure-function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n = 103; typically developing (TD) children: n = 34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems-the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are discussed in relation to neurocognitive models of ToM. We conclude that detection of sub-acute volumetric abnormalities of large-scale neural networks and their hub regions may aid in the early identification of children at risk for chronic social-cognitive impairment. © The Author (2017). Published by Oxford University Press.

  2. Non-invasive Brain Stimulation: Probing Intracortical Circuits and Improving Cognition in the Aging Brain

    PubMed Central

    Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.

    2018-01-01

    The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.

  3. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment.

    PubMed

    Barone, Eugenio; Di Domenico, Fabio; Sultana, Rukhsana; Coccia, Raffaella; Mancuso, Cesare; Perluigi, Marzia; Butterfield, D Allan

    Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and neuropathology. Oxidative and nitrosative stress plays a principal role in the pathogenesis of AD. The induction of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system in the brain represents one of the earliest mechanisms activated by cells to counteract the noxious effects of increased reactive oxygen species and reactive nitrogen species. Although initially proposed as a neuroprotective system in AD brain, the HO-1/BVR-A pathophysiological features are under debate. We previously reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative posttranslational modifications in the brain of subjects with AD and those with mild cognitive impairment (MCI). Furthermore, other groups proposed the observed increase in HO-1 in AD brain as a possible neurotoxic mechanism. Here we provide new insights about HO-1 in the brain of subjects with AD and MCI, the latter condition being the transitional phase between normal aging and early AD. HO-1 protein levels were significantly increased in the hippocampus of AD subjects, whereas HO-2 protein levels were significantly decreased in both AD and MCI hippocampi. In addition, significant increases in Ser-residue phosphorylation together with increased oxidative posttranslational modifications were found in the hippocampus of AD subjects. Interestingly, despite the lack of oxidative stress-induced AD neuropathology in cerebellum, HO-1 demonstrated increased Ser-residue phosphorylation and oxidative posttranslational modifications in this brain area, suggesting HO-1 as a target of oxidative damage even in the cerebellum. The significance of these findings is profound and opens new avenues into the comprehension of the role of HO-1 in the pathogenesis of AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Central Artery Stiffness, Baroreflex Sensitivity, and Brain White Matter Neuronal Fiber Integrity in Older Adults

    PubMed Central

    Tarumi, Takashi; de Jong, Daan L.K.; Zhu, David C.; Tseng, Benjamin Y.; Liu, Jie; Hill, Candace; Riley, Jonathan; Womack, Kyle B.; Kerwin, Diana R.; Lu, Hanzhang; Cullum, C. Munro; Zhang, Rong

    2015-01-01

    Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65±6 years) with normal cognitive function or mild cognitive impairment (MCI) were tested. The neuronal fiber integrity of brain WM was assessed from diffusion metrics acquired by diffusion tensor imaging. BRS was measured in response to acute changes in blood pressure induced by bolus injections of vasoactive drugs. Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). The WM diffusion metrics including fractional anisotropy (FA) and radial (RD) and axial (AD) diffusivities, BRS, and cfPWV were not different between the control and MCI groups. Thus, the data from both groups were combined for subsequent analyses. Across WM, fiber tracts with decreased FA and increased RD were associated with lower BRS and higher cfPWV, with many of the areas presenting spatial overlap. In particular, the BRS assessed during hypotension was strongly correlated with FA and RD when compared with hypertension. Executive function performance was associated with FA and RD in the areas that correlated with cfPWV and BRS. These findings suggest that baroreflex-mediated control of systemic arterial perfusion, especially during hypotension, may play a crucial role in maintaining neuronal fiber integrity of brain WM in older adults. PMID:25623500

  5. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.

    PubMed

    Patterson, Susan L

    2015-09-01

    Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Anxiety, cognition, and habit: a multiple memory systems perspective.

    PubMed

    Packard, Mark G

    2009-10-13

    Consistent with a multiple systems approach to memory organization in the mammalian brain, numerous studies have differentiated the roles of the hippocampus and dorsal striatum in "cognitive" and "habit" learning and memory, respectively. Additional research indicates that activation of efferent projections of the basolateral amygdala (BLA), a brain region implicated in mammalian emotion, modulates memory processes occurring in other brain structures. The present brief review describes research designed to link these general concepts by examining the manner in which emotional state may influence the relative use of multiple memory systems. In a dual-solution plus-maze task that can be acquired using either hippocampus-dependent or dorsal striatal-dependent learning, acute pre-training or pre-retrieval emotional arousal (restraint stress/inescapable foot shock, exposure to the predator odor TMT, or peripheral injection of anixogenic drugs) biases rats towards the use of habit memory. Moreover, intra-BLA injection of anxiogenic drugs is sufficient to bias rats towards the use of dorsal striatal-dependent habit memory. In single-solution plus-maze tasks that require the use of either cognitive or habit learning, intra-BLA infusions of anxiogenic drugs result in a behavioral profile indicating an impairing effect on hippocampus-dependent memory that effectively produces enhanced habit learning by eliminating competitive interference between cognitive and habit memory systems. It is speculated that the predominant use of habit memory that can be produced by anxious and/or stressful emotional states may have implications for understanding the role of learning and memory processes in various human psychopathologies, including for example post-traumatic stress disorder and drug addiction.

  7. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study.

    PubMed

    Samaras, Katherine; Lutgers, Helen L; Kochan, Nicole A; Crawford, John D; Campbell, Lesley V; Wen, Wei; Slavin, Melissa J; Baune, Bernard T; Lipnicki, Darren M; Brodaty, Henry; Trollor, Julian N; Sachdev, Perminder S

    2014-04-01

    Type 2 diabetes predicts accelerated cognitive decline and brain atrophy. We hypothesized that impaired fasting glucose (IFG) and incident glucose disorders have detrimental effects on global cognition and brain volume. We further hypothesized that metabolic and inflammatory derangements accompanying hyperglycaemia contribute to change in brain structure and function. This was a longitudinal study of a community-dwelling elderly cohort with neuropsychological testing (n = 880) and brain volumes by magnetic resonance imaging (n = 312) measured at baseline and 2 years. Primary outcomes were global cognition and total brain volume. Secondary outcomes were cognitive domains (processing speed, memory, language, visuospatial and executive function) and brain volumes (hippocampal, parahippocampal, precuneus and frontal lobe). Participants were categorised as normal, impaired fasting glucose at both assessments (stable IFG), baseline diabetes or incident glucose disorders (incident diabetes or IFG at 2 years). Measures included inflammatory cytokines and oxidative metabolites. Covariates were age, sex, education, non-English speaking background, smoking, blood pressure, lipid-lowering or antihypertensive medications, mood score, apolipoprotein E genotype and baseline cognition or brain volume. Participants with incident glucose disorders had greater decline in global cognition and visuospatial function compared to normal, similar to that observed in baseline diabetes. Homocysteine was independently associated with the observed effect of diabetes on executive function. Apolipoprotein E genotype did not influence the observed effects of diabetes on cognition. Incident glucose disorders and diabetes were also associated with greater 2-year decline in total brain volume, compared to normal (40.0 ± 4.2 vs. 46.7 ± 5.7 mm(3) vs. 18.1 ± 6.2, respectively, p < 0.005). Stable IFG did not show greater decline in global cognition or brain volumes compared to normal. Incident glucose disorders, like diabetes, are associated with accelerated decline in global cognition and brain volumes in non-demented elderly, whereas stable IFG is not. Preventing deterioration in glucose metabolism in the elderly may help preserve brain structure and function.

  8. Beyond localized and distributed accounts of brain functions. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  9. The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction.

    PubMed

    Baldassarre, Gianluca; Santucci, Vieri Giuliano; Cartoni, Emilio; Caligiore, Daniele

    2017-01-01

    In this commentary, we highlight a crucial challenge posed by the proposal of Lake et al. to introduce key elements of human cognition into deep neural networks and future artificial-intelligence systems: the need to design effective sophisticated architectures. We propose that looking at the brain is an important means of facing this great challenge.

  10. On Teaching Brains To Think: A Conversation with Robert Sylwester.

    ERIC Educational Resources Information Center

    Brandt, Ron

    2000-01-01

    Sylwester says education must begin relying more on biology than social and behavioral science. All brain systems move from a slow, awkward functional level to a fast, efficient level. Contributions of metacognition, self-regulation, emotions, reflective and reflexive responses, comparison, and classification to cognitive development are…

  11. Senior Dance Experience, Cognitive Performance, and Brain Volume in Older Women.

    PubMed

    Niemann, Claudia; Godde, Ben; Voelcker-Rehage, Claudia

    2016-01-01

    Physical activity is positively related to cognitive functioning and brain volume in older adults. Interestingly, different types of physical activity vary in their effects on cognition and on the brain. For example, dancing has become an interesting topic in aging research, as it is a popular leisure activity among older adults, involving cardiovascular and motor fitness dimensions that can be positively related to cognition. However, studies on brain structure are missing. In this study, we tested the association of long-term senior dance experience with cognitive performance and gray matter brain volume in older women aged 65 to 82 years. We compared nonprofessional senior dancers ( n = 28) with nonsedentary control group participants without any dancing experience ( n = 29), who were similar in age, education, IQ score, lifestyle and health factors, and fitness level. Differences neither in the four tested cognitive domains (executive control, perceptual speed, episodic memory, and long-term memory) nor in brain volume (VBM whole-brain analysis, region-of-interest analysis of the hippocampus) were observed. Results indicate that moderate dancing activity (1-2 times per week, on average) has no additional effects on gray matter volume and cognitive functioning when a certain lifestyle or physical activity and fitness level are reached.

  12. Interaction vs. observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study

    PubMed Central

    Tylén, Kristian; Allen, Micah; Hunter, Bjørk K.; Roepstorff, Andreas

    2012-01-01

    Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an “understanding of the other,” or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone “privately” manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions. PMID:23267322

  13. Avian Models for Human Cognitive Neuroscience: A Proposal.

    PubMed

    Clayton, Nicola S; Emery, Nathan J

    2015-06-17

    Research on avian cognitive neuroscience over the past two decades has revealed the avian brain to be a better model for understanding human cognition than previously thought, despite differences in the neuroarchitecture of avian and mammalian brains. The brain, behavior, and cognition of songbirds have provided an excellent model of human cognition in one domain, namely learning human language and the production of speech. There are other important behavioral candidates of avian cognition, however, notably the capacity of corvids to remember the past and plan for the future, as well as their ability to think about another's perspective, and physical reasoning. We review this work and assess the evidence that the corvid brain can support such a cognitive architecture. We propose potential applications of these behavioral paradigms for cognitive neuroscience, including recent work on single-cell recordings and neuroimaging in corvids. Finally, we discuss their impact on understanding human developmental cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  15. Cognitive world: Neuropsychology of individual differences.

    PubMed

    Ardila, Alfredo; Rosselli, Monica

    2018-01-01

    It is proposed that depending upon the specific pattern of cognitive abilities, each individual lives in an idiosyncratic "cognitive world." Brain pathology can be associated with some disturbed abilities, and frequently experiential changes (i.e., how the world is understood) are observed. Because these patients often are aware of their intellectual changes, they may represent excellent models to illustrate the diversity of cognitive interpretations an individual can have about the surrounding environmental conditions. Four neuropsychology cases are presented to illustrate this point: (a) prosopagnosia associated with spatial agnosia; (b) Gerstmann's syndrome; (c) dysexecutive syndrome due to a head injury; and, (d) patient with Capgras' syndrome associated with a left temporal cyst. It is further emphasized that non-brain damaged people present an enormous-but usually overlooked-dispersion in different cognitive domains, resulting in specific and idiosyncratic patterns of cognitive abilities. It is concluded that the concept of "cognitive world" in neuropsychology can parallel the concept of "perceptual world" introduced by von Uexküll in biology, which assumes that different animal species live in idiosyncratic perceptual worlds, available and knowable by the differences in their sensory system abilities. That is, different individuals live in idiosyncratic cognitive worlds, owing to their differences in cognitive abilities.

  16. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science

    PubMed Central

    2016-01-01

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574303

  17. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science.

    PubMed

    Turner, Robert

    2016-10-05

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  18. Understanding the mechanisms of cognitive impairments in developmental coordination disorder.

    PubMed

    Deng, Shining; Li, Wei-Guang; Ding, Jing; Wu, Jinlin; Zhang, Yuanyuan; Li, Fei; Shen, Xiaoming

    2014-01-01

    Developmental coordination disorder (DCD), a neurodevelopmental disability in which a child's motor coordination difficulties significantly interfere with activities of daily life or academic achievement, together with additional symptoms of diseases with childhood sensorimotor impairments, increases the risk of many cognitive problems. This exhibits the dynamic interplay between sensorimotor and cognition systems. However, the brain structures and pathways involved have remained unknown over the past decades. Here, we review developments in recent years that elucidate the neural mechanisms involved in the sensorimotor-cognitive difficulties. First, we briefly address the clinical and epidemiological discoveries in DCD as well as its comorbidities. Subsequently, we group the growing evidence including our findings that support the notion that sensorimotor manipulation indeed affects the cognition development at systematic, circuitry, cellular, and molecular levels. This corresponds to changes in diverse brain regions, synaptic plasticity, and neurotransmitter and receptor activity during development under these effects. Finally, we address the treatment potentials of task-oriented sensorimotor enhancement, as a new therapeutic strategy for cognitive rehabilitation, based on our current understanding of the neurobiology of cognitive-sensorimotor interaction.

  19. Cognition and Resting-State Functional Connectivity in Schizophrenia

    PubMed Central

    Sheffield, Julia M; Barch, Deanna M

    2015-01-01

    Individuals with schizophrenia consistently display deficits in a multitude of cognitive domains, but the neurobiological source of these cognitive impairments remains unclear. By analyzing the functional connectivity of resting-state functional magnetic resonance imaging (rs-fcMRI) data in clinical populations like schizophrenia, research groups have begun elucidating abnormalities in the intrinsic communication between specific brain regions, and assessing relationships between these abnormalities and cognitive performance in schizophrenia. Here we review studies that have reported analysis of these brain-behavior relationships. Through this systematic review we found that patients with schizophrenia display abnormalities within and between regions comprising 1) the cortico-cerebellar-striatal-thalamic loop and 2) task-positive and task-negative cortical networks. Importantly, we did not observe unique relationships between specific functional connectivity abnormalities and distinct cognitive domains, suggesting that the observed functional systems may underlie mechanisms that are shared across cognitive abilities, the disturbance of which could contribute to the “generalized” cognitive deficit found in schizophrenia. We also note several areas of methodological change that we believe will strengthen this literature. PMID:26698018

  20. Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated With Brain Alterations and Poststroke Cognitive Decline.

    PubMed

    Ben Assayag, Einor; Eldor, Roy; Korczyn, Amos D; Kliper, Efrat; Shenhar-Tsarfaty, Shani; Tene, Oren; Molad, Jeremy; Shapira, Itzhak; Berliner, Shlomo; Volfson, Viki; Shopin, Ludmila; Strauss, Yehuda; Hallevi, Hen; Bornstein, Natan M; Auriel, Eitan

    2017-09-01

    Type 2 diabetes mellitus (T2DM) is associated with diseases of the brain, kidney, and vasculature. However, the relationship between T2DM, chronic kidney disease, brain alterations, and cognitive function after stroke is unknown. We aimed to evaluate the inter-relationship between T2DM, impaired renal function, brain pathology on imaging, and cognitive decline in a longitudinal poststroke cohort. The TABASCO (Tel Aviv brain acute stroke cohort) is a prospective cohort of stroke/transient ischemic attack survivors. The volume and white matter integrity, ischemic lesions, and brain and hippocampal volumes were measured at baseline using 3-T MRI. Cognitive tests were performed on 507 patients, who were diagnosed as having mild cognitive impairment, dementia, or being cognitively intact after 24 months. At baseline, T2DM and impaired renal function (estimated creatinine clearance [eCCl] <60 mL/min) were associated with smaller brain and hippocampal volumes, reduced cortical thickness, and worse white matter microstructural integrity. Two years later, both T2DM and eCCl <60 mL/min were associated with poorer cognitive scores, and 19.7% of the participants developed cognitive decline (mild cognitive impairment or dementia). Multiple analysis, controlling for age, sex, education, and apolipoprotein E4, showed a significant association of both T2DM and eCCl <60 mL/min with cognitive decline. Having both conditions doubled the risk compared with patients with T2DM or eCCl <60 mL/min alone and almost quadrupled the risk compared with patients without either abnormality. T2DM and impaired renal function are independently associated with abnormal brain structure, as well as poorer performance in cognitive tests, 2 years after stroke. The presence of both conditions quadruples the risk for cognitive decline. T2DM and lower eCCl have an independent and additive effect on brain atrophy and the risk of cognitive decline. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01926691. © 2017 American Heart Association, Inc.

  1. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems

    PubMed Central

    Raison, Charles L.; Hale, Matthew W.; Williams, Lawrence E.; Wager, Tor D.; Lowry, Christopher A.

    2015-01-01

    Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders. PMID:25628593

  2. Intellectual enrichment lessens the effect of brain atrophy on learning and memory in multiple sclerosis.

    PubMed

    Sumowski, James F; Wylie, Glenn R; Chiaravalloti, Nancy; DeLuca, John

    2010-06-15

    Learning and memory impairments are prevalent among persons with multiple sclerosis (MS); however, such deficits are only weakly associated with MS disease severity (brain atrophy). The cognitive reserve hypothesis states that greater lifetime intellectual enrichment lessens the negative impact of brain disease on cognition, thereby helping to explain the incomplete relationship between brain disease and cognitive status in neurologic populations. The literature on cognitive reserve has focused mainly on Alzheimer disease. The current research examines whether greater intellectual enrichment lessens the negative effect of brain atrophy on learning and memory in patients with MS. Forty-four persons with MS completed neuropsychological measures of verbal learning and memory, and a vocabulary-based estimate of lifetime intellectual enrichment. Brain atrophy was estimated with third ventricle width measured from 3-T magnetization-prepared rapid gradient echo MRIs. Hierarchical regression was used to predict learning and memory with brain atrophy, intellectual enrichment, and the interaction between brain atrophy and intellectual enrichment. Brain atrophy predicted worse learning and memory, and intellectual enrichment predicted better learning; however, these effects were moderated by interactions between brain atrophy and intellectual enrichment. Specifically, higher intellectual enrichment lessened the negative impact of brain atrophy on both learning and memory. These findings help to explain the incomplete relationship between multiple sclerosis disease severity and cognition, as the effect of disease on cognition is attenuated among patients with higher intellectual enrichment. As such, intellectual enrichment is supported as a protective factor against disease-related cognitive impairment in persons with multiple sclerosis.

  3. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury.

    PubMed

    Porter, S; Torres, I J; Panenka, W; Rajwani, Z; Fawcett, D; Hyder, A; Virji-Babul, N

    2017-08-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to assess the feasibility of an intensive three month cognitive intervention program in individuals with chronic TBI and to evaluate the effects of this intervention on brain-behavioral relationships. We used tools from graph theory to evaluate changes in global and local brain network features prior to and following cognitive intervention. Network metrics were calculated from resting state electroencephalographic (EEG) recordings from 10 adult participants with mild to severe brain injury and 11 age and gender matched healthy controls. Local graph metrics showed hyper-connectivity in the right inferior frontal gyrus and hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in comparison with the control group. Following the intervention, there was a statistically significant increase in the composite cognitive score in the TBI participants and a statistically significant decrease in functional connectivity in the right inferior frontal gyrus. In addition, there was evidence of changes in the brain-behavior relationships following intervention. The results from this pilot study provide preliminary evidence for functional network reorganization that parallels cognitive improvements after cognitive rehabilitation in individuals with chronic TBI.

  4. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior.

    PubMed

    Sokolov, Alexander N; Pavlova, Marina A; Klosterhalfen, Sibylle; Enck, Paul

    2013-12-01

    Cocoa products and chocolate have recently been recognized as a rich source of flavonoids, mainly flavanols, potent antioxidant and anti-inflammatory agents with established benefits for cardiovascular health but largely unproven effects on neurocognition and behavior. In this review, we focus on neuromodulatory and neuroprotective actions of cocoa flavanols in humans. The absorbed flavonoids penetrate and accumulate in the brain regions involved in learning and memory, especially the hippocampus. The neurobiological actions of flavanols are believed to occur in two major ways: (i) via direct interactions with cellular cascades yielding expression of neuroprotective and neuromodulatory proteins that promote neurogenesis, neuronal function and brain connectivity, and (ii) via blood-flow improvement and angiogenesis in the brain and sensory systems. Protective effects of long-term flavanol consumption on neurocognition and behavior, including age- and disease-related cognitive decline, were shown in animal models of normal aging, dementia, and stroke. A few human observational and intervention studies appear to corroborate these findings. Evidence on more immediate action of cocoa flavanols remains limited and inconclusive, but warrants further research. As an outline for future research on cocoa flavanol impact on human cognition, mood, and behavior, we underscore combination of functional neuroimaging with cognitive and behavioral measures of performance. Copyright © 2013. Published by Elsevier Ltd.

  5. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks.

    PubMed

    Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan

    2018-06-01

    The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Building machines that adapt and compute like brains.

    PubMed

    Kriegeskorte, Nikolaus; Mok, Robert M

    2017-01-01

    Building machines that learn and think like humans is essential not only for cognitive science, but also for computational neuroscience, whose ultimate goal is to understand how cognition is implemented in biological brains. A new cognitive computational neuroscience should build cognitive-level and neural-level models, understand their relationships, and test both types of models with both brain and behavioral data.

  7. Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity.

    PubMed

    Cespón, Jesús; Miniussi, Carlo; Pellicciari, Maria Concetta

    2018-05-01

    A growing body of evidence suggests that healthy elderly individuals and patients with Alzheimer's disease retain an important potential for neuroplasticity. This review summarizes studies investigating the modulation of neural activity and structural brain integrity in response to interventions involving cognitive training, physical exercise and non-invasive brain stimulation in healthy elderly and cognitively impaired subjects (including patients with mild cognitive impairment (MCI) and Alzheimer's disease). Moreover, given the clinical relevance of neuroplasticity, we discuss how evidence for neuroplasticity can be inferred from the functional and structural brain changes observed after implementing these interventions. We emphasize that multimodal programmes, which combine several types of interventions, improve cognitive function to a greater extent than programmes that use a single interventional approach. We suggest specific methods for weighting the relative importance of cognitive training, physical exercise and non-invasive brain stimulation according to the functional and structural state of the brain of the targeted subject to maximize the cognitive improvements induced by multimodal programmes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. An integrative architecture for general intelligence and executive function revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393

  9. Chocolate, Air Pollution and Children's Neuroprotection: What Cognition Tools should be at Hand to Evaluate Interventions?

    PubMed

    Calderón-Garcidueñas, Lilian; San Juan Chávez, Vanessa; Vacaseydel-Aceves, Nora B; Calderón-Sánchez, Raymundo; Macías-Escobedo, Edgar; Frías, Carmen; Giacometto, Marcela; Velasquez, Luis; Félix-Villarreal, Renata; Martin, Jessie D; Draheim, Christopher; Engle, Randall W

    2016-01-01

    Millions of children across the world are exposed to multiple sources of indoor and outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5) and ozone (O3). The established link between exposure to PM2.5, brain structural, volumetric and metabolic changes, severe cognitive deficits (1.5-2 SD from average IQ) in APOE 4 heterozygous females with >75 - < 94% BMI percentiles, and the presence of Alzheimer's disease (AD) hallmarks in urban children and young adults necessitates exploration of ways to protect these individuals from the deleterious neural effects of pollution exposure. Emerging research suggests that cocoa interventions may be a viable option for neuroprotection, with evidence suggesting that early cocoa interventions could limit the risk of cognitive and developmental concerns including: endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain effects. Currently, however, it is not clear how early we should implement consumption of cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable instruments for evaluating cognitive responses to these interventions in clinically healthy children, teens, and young adults. An approach to guide the selection of cognitive tools should take into account neuropsychological markers of cognitive declines in patients with Alzheimer's neuropathology, the distinct patterns of memory impairment between early and late onset AD, and the key literature associating white matter integrity and poor memory binding performance in cases of asymptomatic familial AD. We highlight potential systemic and neural benefits of cocoa consumption. We also highlight Working Memory Capacity (WMC) and attention control tasks as opened avenues for exploration in the air pollution scenario. Exposures to air pollutants during brain development have serious brain consequences in the short and long term and reliable cognition tools should be at hand to evaluate interventions.

  10. Chocolate, Air Pollution and Children's Neuroprotection: What Cognition Tools should be at Hand to Evaluate Interventions?

    PubMed Central

    Calderón-Garcidueñas, Lilian; San Juan Chávez, Vanessa; Vacaseydel-Aceves, Nora B.; Calderón-Sánchez, Raymundo; Macías-Escobedo, Edgar; Frías, Carmen; Giacometto, Marcela; Velasquez, Luis; Félix-Villarreal, Renata; Martin, Jessie D.; Draheim, Christopher; Engle, Randall W.

    2016-01-01

    Millions of children across the world are exposed to multiple sources of indoor and outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5) and ozone (O3). The established link between exposure to PM2.5, brain structural, volumetric and metabolic changes, severe cognitive deficits (1.5-2 SD from average IQ) in APOE 4 heterozygous females with >75 − < 94% BMI percentiles, and the presence of Alzheimer's disease (AD) hallmarks in urban children and young adults necessitates exploration of ways to protect these individuals from the deleterious neural effects of pollution exposure. Emerging research suggests that cocoa interventions may be a viable option for neuroprotection, with evidence suggesting that early cocoa interventions could limit the risk of cognitive and developmental concerns including: endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain effects. Currently, however, it is not clear how early we should implement consumption of cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable instruments for evaluating cognitive responses to these interventions in clinically healthy children, teens, and young adults. An approach to guide the selection of cognitive tools should take into account neuropsychological markers of cognitive declines in patients with Alzheimer's neuropathology, the distinct patterns of memory impairment between early and late onset AD, and the key literature associating white matter integrity and poor memory binding performance in cases of asymptomatic familial AD. We highlight potential systemic and neural benefits of cocoa consumption. We also highlight Working Memory Capacity (WMC) and attention control tasks as opened avenues for exploration in the air pollution scenario. Exposures to air pollutants during brain development have serious brain consequences in the short and long term and reliable cognition tools should be at hand to evaluate interventions. PMID:27563291

  11. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.

  12. R2* mapping for brain iron: associations with cognition in normal aging.

    PubMed

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve

    PubMed Central

    Barulli, Daniel; Stern, Yaakov

    2013-01-01

    Cognitive reserve (CR) is a concept meant to account for the frequent discrepancy between an individual’s measured level of brain pathology and her expected cognitive performance. It is particularly important within the context of aging and dementia, but has wider applicability to all forms of brain damage. As such, it has intimate links to related compensatory and neuroprotective concepts, as well as to the related notion of brain reserve. In this article, we introduce the concept of cognitive reserve and explicate its potential cognitive neural implementation. We conclude that cognitive reserve is compatible and complementary with many related concepts, but that each much draw sharper conceptual boundaries in order to truly explain preserved cognitive function in the face of aging or brain damage. PMID:24018144

  14. Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis

    PubMed Central

    Weygandt, Martin; Meyer-Arndt, Lil; Behrens, Janina Ruth; Wakonig, Katharina; Bellmann-Strobl, Judith; Ritter, Kerstin; Scheel, Michael; Brandt, Alexander U.; Labadie, Christian; Hetzer, Stefan; Gold, Stefan M.; Paul, Friedemann; Haynes, John-Dylan

    2016-01-01

    Prospective clinical studies support a link between psychological stress and multiple sclerosis (MS) disease severity, and peripheral stress systems are frequently dysregulated in MS patients. However, the exact link between neurobiological stress systems and MS symptoms is unknown. To evaluate the link between neural stress responses and disease parameters, we used an arterial-spin–labeling functional MRI stress paradigm in 36 MS patients and 21 healthy controls. Specifically, we measured brain activity during a mental arithmetic paradigm with performance-adaptive task frequency and performance feedback and related this activity to disease parameters. Across all participants, stress increased heart rate, perceived stress, and neural activity in the visual, cerebellar and insular cortex areas compared with a resting condition. None of these responses was related to cognitive load (task frequency). Consistently, although performance and cognitive load were lower in patients than in controls, stress responses did not differ between groups. Insula activity elevated during stress compared with rest was negatively linked to impairment of pyramidal and cerebral functions in patients. Cerebellar activation was related negatively to gray matter (GM) atrophy (i.e., positively to GM volume) in patients. Interestingly, this link was also observed in overlapping areas in controls. Cognitive load did not contribute to these associations. The results show that our task induced psychological stress independent of cognitive load. Moreover, stress-induced brain activity reflects clinical disability in MS. Finally, the link between stress-induced activity and GM volume in patients and controls in overlapping areas suggests that this link cannot be caused by the disease alone. PMID:27821732

  15. Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS

    PubMed Central

    Rocca, Maria A.; Leavitt, Victoria M.; Dackovic, Jelena; Mesaros, Sarlota; Drulovic, Jelena; DeLuca, John; Filippi, Massimo

    2014-01-01

    Objective: Based on the theories of brain reserve and cognitive reserve, we investigated whether larger maximal lifetime brain growth (MLBG) and/or greater lifetime intellectual enrichment protect against cognitive decline over time. Methods: Forty patients with multiple sclerosis (MS) underwent baseline and 4.5-year follow-up evaluations of cognitive efficiency (Symbol Digit Modalities Test, Paced Auditory Serial Addition Task) and memory (Selective Reminding Test, Spatial Recall Test). Baseline and follow-up MRIs quantified disease progression: percentage brain volume change (cerebral atrophy), percentage change in T2 lesion volume. MLBG (brain reserve) was estimated with intracranial volume; intellectual enrichment (cognitive reserve) was estimated with vocabulary. We performed repeated-measures analyses of covariance to investigate whether larger MLBG and/or greater intellectual enrichment moderate/attenuate cognitive decline over time, controlling for disease progression. Results: Patients with MS declined in cognitive efficiency and memory (p < 0.001). MLBG moderated decline in cognitive efficiency (p = 0.031, ηp2 = 0.122), with larger MLBG protecting against decline. MLBG did not moderate memory decline (p = 0.234, ηp2 = 0.039). Intellectual enrichment moderated decline in cognitive efficiency (p = 0.031, ηp2 = 0.126) and memory (p = 0.037, ηp2 = 0.115), with greater intellectual enrichment protecting against decline. MS disease progression was more negatively associated with change in cognitive efficiency and memory among patients with lower vs higher MLBG and intellectual enrichment. Conclusion: We provide longitudinal support for theories of brain reserve and cognitive reserve in MS. Larger MLBG protects against decline in cognitive efficiency, and greater intellectual enrichment protects against decline in cognitive efficiency and memory. Consideration of these protective factors should improve prediction of future cognitive decline in patients with MS. PMID:24748670

  16. Cognitive neuroscience: the troubled marriage of cognitive science and neuroscience.

    PubMed

    Cooper, Richard P; Shallice, Tim

    2010-07-01

    We discuss the development of cognitive neuroscience in terms of the tension between the greater sophistication in cognitive concepts and methods of the cognitive sciences and the increasing power of more standard biological approaches to understanding brain structure and function. There have been major technological developments in brain imaging and advances in simulation, but there have also been shifts in emphasis, with topics such as thinking, consciousness, and social cognition becoming fashionable within the brain sciences. The discipline has great promise in terms of applications to mental health and education, provided it does not abandon the cognitive perspective and succumb to reductionism. Copyright © 2010 Cognitive Science Society, Inc.

  17. The neurobiology of focus and distraction: The case for incorporating mindfulness into leadership.

    PubMed

    Mohapel, Paul

    2018-05-01

    Increasingly health leaders are experiencing greater demands and pressures, which require the need for better focus while limiting unwarranted distractions. This article offers a neurobiological explanation of how the brain focuses and becomes distracted, in order to help health leaders gain insight into their own effectiveness. Two main neural circuits are contrasted: the mind-wandering default mode circuit and the attentional central executive system. These two systems act in an antagonistic pairing, where the degree of toggling between systems is associated with the degree a person can sustain focus and filter out unwarranted distractions. Excessive multitasking appears to compromise the neural switch of these two systems, thereby diminishing our focus and concentration. In contrast, mindfulness practice is shown to have the opposite effect by enhancing the neural switch, thereby enhancing leadership focus that can lead to greater flexibility, foresight, regulation, and creativity. To conclude, leaders who are excessively distracted, such as with multitasking, may be compromising cognitive brain functioning, while engaging in mindfulness may replenish the brain and thereby enhance leaders' ability to sustain focus and tap into higher cognitive functioning.

  18. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet

    PubMed Central

    Lee, Linda L.; Puchowicz, Michelle; Golub, Mari S.; Befroy, Douglas E.; Wilson, Dennis W.; Anderson, Steven; Cline, Gary; Bini, Jason; Borkowski, Kamil; Knotts, Trina A.; Rutledge, John C.

    2018-01-01

    Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways. PMID:29444171

  19. A dual-systems perspective on addiction: contributions from neuroimaging and cognitive training.

    PubMed

    McClure, Samuel M; Bickel, Warren K

    2014-10-01

    Dual-systems theories explain lapses in self-control in terms of a conflict between automatic and deliberative modes of behavioral control. Numerous studies have now tested whether the brain areas that control behavior are organized in a manner consistent with dual-systems models. Brain regions directly associated with the mesolimbic dopamine system, the nucleus accumbens and ventromedial prefrontal cortex in particular, capture some of the features assumed by automatic processing. Regions in the lateral prefrontal cortex are more closely linked to deliberative processing and the exertion of self-control in the suppression of impulses. While identifying these regions crudely supports dual-systems theories, important modifications to what constitutes automatic and deliberative behavioral control are also suggested. Experiments have identified various means by which automatic processes may be sculpted. Additional work decomposes deliberative processes into component functions such as generalized working memory, reappraisal of emotional stimuli, and prospection. The importance of deconstructing dual-systems models into specific cognitive processes is clear for understanding and treating addiction. We discuss intervention possibilities suggested by recent research, and focus in particular on cognitive training approaches to bolster deliberative control processes that may aid quit attempts. © 2014 New York Academy of Sciences.

  20. A dual-systems perspective on addiction: contributions from neuroimaging and cognitive training

    PubMed Central

    McClure, Samuel M.; Bickel, Warren K.

    2014-01-01

    Dual-systems theories explain lapses in self-control in terms of a conflict between automatic and deliberative modes of behavioral control. Numerous studies have now tested whether the brain areas that control behavior are organized in a manner consistent with dual-systems models. Brain regions directly associated with the mesolimbic dopamine system, the nucleus accumbens (NAcc) and ventromedial prefrontal cortex (vmPFC) in particular, capture some of the features assumed by automatic processing. Regions in the lateral prefrontal cortex (lPFC) are more closely linked to deliberative processing and the exertion of self-control in the suppression of impulses. While identifying these regions crudely supports dual-system theories, important modifications to what constitutes automatic and deliberative behavioral control are also suggested. Experiments have identified various means by which automatic processes may be sculpted. Additional work decomposes deliberative processes into component functions such as generalized working memory, reappraisal of emotional stimuli, and prospection. The importance of deconstructing dual-systems models into specific cognitive processes is clear for understanding and treating addiction. We discuss intervention possibilities suggested by recent research, and focus in particular on cognitive training approaches to bolster deliberative control processes that may aid quit attempts. PMID:25336389

  1. Neural signatures of cognitive and emotional biases in depression

    PubMed Central

    Fossati, Philippe

    2008-01-01

    Functional brain imaging studies suggest that depression is a system-level disorder affecting discrete but functionally linked cortical and limbic structures, with abnormalities in the anterior cingulate, lateral, ami medial prefrontal cortex, amygdala, ami hippocampus. Within this circuitry, abnormal corticolimbic interactions underlie cognitive deficits ami emotional impairment in depression. Depression involves biases toward processing negative emotional information and abnormal self-focus in response to emotional stimuli. These biases in depression could reflect excessive analytical self-focus in depression, as well as impaired cognitive control of emotional response to negative stimuli. By combining structural and functional investigations, brain imaging studies mav help to generate novel antidepressant treatments that regulate structural and factional plasticity within the neural network regulating mood and affective behavior.

  2. Alpha-Linolenic Acid Confers Neuroprotection and Improves Behavioral Deficits After Soman Exposure: Involvement of Neurogenesis Through an mTOR-Mediated Pathway

    DTIC Science & Technology

    2015-01-15

    chemical warfare agent that irreversibly inhibits acetylcholinesterase in the periphery and central nervous system. Soman induces status epilepticus ...of signs and symptoms including status epilepticus and death. The neuropathology leads to severe cognitive performance, including long-term cognitive... status epilepticus and excessive synaptic accumulation of acetylcholine affects other organ systems beside the brain causing hypersecretions

  3. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.

    PubMed

    Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie

    2013-04-01

    Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.

  4. Cognitive Remediation: Potential Novel Brain-Based Treatment for Bipolar Disorder in Children and Adolescents

    PubMed Central

    Dickstein, Daniel P.; Cushman, Grace K.; Kim, Kerri L.; Weissman, Alexandra B.; Wegbreit, Ezra

    2015-01-01

    Bipolar disorder (BD) is among the most impairing psychiatric disorders affecting children and adolescents, despite our best psychopharmacological and psychotherapeutic treatments. Cognitive remediation, defined as a behavioral intervention designed to improve cognitive functions so as to reduce psychiatric illness, is an emerging brain-based treatment approach that has thus far not been studied in pediatric BD. The present article reviews the basic principles of cognitive remediation, describes what is known about cognitive remediation in psychiatric disorders, and delineates potential brain/behavior alterations implicated in pediatric BD that might be targets for cognitive remediation. Emerging data shows that cognitive remediation may be useful in children and adults with schizophrenia, ADHD, and anxiety disorders, and in adults with BD. Potential targets for cognitive remediation in pediatric BD include face processing, response inhibition, frustration, and cognitive flexibility. Further study is warranted to determine if cognitive remediation for these targets, or others, may serve as a novel, brain-based treatment for pediatric BD. PMID:26135596

  5. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.

    PubMed

    Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra

    2017-05-15

    Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive-emotional processing. Hence, the serotonin depletion model and the spatial judgement task can increase our understanding of the basic mechanisms underlying both human neuropsychiatric disorders and animal welfare. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Building Bridges between Neuroscience, Cognition and Education with Predictive Modeling

    ERIC Educational Resources Information Center

    Stringer, Steve; Tommerdahl, Jodi

    2015-01-01

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. This article presents a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include…

  7. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments

    PubMed Central

    Avery, Michael C.; Krichmar, Jeffrey L.

    2017-01-01

    Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders. PMID:29311844

  8. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments.

    PubMed

    Avery, Michael C; Krichmar, Jeffrey L

    2017-01-01

    Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders.

  9. Profiles of Impaired, Spared, and Recovered Neuropsychological Processes in Alcoholism

    PubMed Central

    Oscar-Berman, Marlene; Valmas, Mary M.; Sawyer, Kayle S.; Ruiz, Susan Mosher; Luhar, Riya B.; Gravitz, Zoe R.

    2015-01-01

    Long-term chronic alcoholism is associated with disparate and widespread residual consequences for brain functioning and behavior, and alcoholics suffer a variety of cognitive deficiencies and emotional abnormalities. Alcoholism has heterogeneous origins and outcomes, depending upon factors such as family history, age, gender, and mental or physical health. Consequently, the neuropsychological profiles associated with alcoholism are not uniform among individuals. Moreover, within and across research studies, variability among participants is substantial and contributes to characteristics associated with differential treatment outcomes after detoxification. In order to refine our understanding of alcoholism-related impaired, spared, and recovered abilities, we focus on five specific functional domains: (1) memory, (2) executive functions, (3) emotion and psychosocial skills, (4) visuospatial cognition, and (5) psychomotor abilities. The brain systems that are most vulnerable to alcoholism are the frontocerebellar and mesocorticolimbic circuitries. Over time, with abstinence from alcohol, the brain appears to become reorganized to provide compensation for structural and behavioral deficits. By relying on a combination of clinical and scientific approaches, future research will help to refine the compensatory roles of healthy brain systems, the degree to which abstinence and treatment facilitate the reversal of brain atrophy and dysfunction, and the importance of individual differences to outcome. PMID:25307576

  10. The Relationship of Intellectual Functioning and Cognitive Performance to Brain Structure in Schizophrenia

    PubMed Central

    Wang, Lei; Gama, Clarissa S.; Barch, Deanna M.

    2017-01-01

    Abstract Background: Schizophrenia (SZ) is often characterized by cognitive and intellectual impairment. However, there is much heterogeneity across individuals, suggesting different trajectories of the illness. Recent findings have shown brain volume differences across subgroups of individuals with psychosis (SZ and bipolar disorder), such that those with intellectual and cognitive impairments presented evidence of early cerebral disruption, while those with cognitive but not intellectual impairments showed evidence of progressive brain abnormalities. Our aim was to investigate the relations of cognition and intellectual functioning with brain structure abnormalities in a sample of SZ compared to unaffected individuals. Methods: 92 individuals with SZ and 94 healthy controls part of the Northwestern University Schizophrenia Data and Software Tool (NUSDAST) underwent neuropsychological assessment and structural magnetic resonance imaging (MRI). Individuals with SZ were divided into subgroups according their estimated premorbid crystallized intellectual (ePMC-IQ) and cognitive performance. Brain volumes differences were investigated across groups. Results: SZ with ePMC-IQ and cognitive impairments had reduced total brain volume (TBV), intracranial volume (ICV), TBV corrected for ICV, and cortical gray matter volume, as well as reduced cortical thickness, and insula volumes. SZ with cognitive impairment but intact ePMC-IQ showed only reduced cortical gray matter volume and cortical thickness. Conclusions: These data provide additional evidence for heterogeneity in SZ. Impairments in cognition associated with reduced ePMC-IQ were related to evidence of broad brain structural alterations, including suggestion of early cerebral disruption. In contrast, impaired cognitive functioning in the context of more intact intellectual functioning was associated with cortical alterations that may reflect neurodegeneration. PMID:27369471

  11. Complex Networks - A Key to Understanding Brain Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sporns, Olaf

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  12. Complex Networks - A Key to Understanding Brain Function

    ScienceCinema

    Sporns, Olaf

    2017-12-22

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  13. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome

    PubMed Central

    Hoffman, Jared D.; Parikh, Ishita; Green, Stefan J.; Chlipala, George; Mohney, Robert P.; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M. S.; Lin, Ai-Ling

    2017-01-01

    Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age) and compared those to old mice (18–20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the mechanisms underlying the shift from normal aging to pathological processes in the etiology of AD. PMID:28993728

  14. Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy

    PubMed Central

    Bajaj, Jasmohan S.; Heuman, Douglas M.; Sanyal, Arun J.; Hylemon, Phillip B.; Sterling, Richard K.; Stravitz, R. Todd; Fuchs, Michael; Ridlon, Jason M.; Daita, Kalyani; Monteith, Pamela; Noble, Nicole A.; White, Melanie B.; Fisher, Andmorgan; Sikaroodi, Masoumeh; Rangwala, Huzefa; Gillevet, Patrick M.

    2013-01-01

    Hepatic encephalopathy (HE) represents a dysfunctional gut-liver-brain axis in cirrhosis which can negatively impact outcomes. This altered gut-brain relationship has been treated using gut-selective antibiotics such as rifaximin, that improve cognitive function in HE, especially its subclinical form, minimal HE (MHE). However, the precise mechanism of the action of rifaximin in MHE is unclear. We hypothesized that modulation of gut microbiota and their end-products by rifaximin would affect the gut-brain axis and improve cognitive performance in cirrhosis. Aim To perform a systems biology analysis of the microbiome, metabolome and cognitive change after rifaximin in MHE. Methods Twenty cirrhotics with MHE underwent cognitive testing, endotoxin analysis, urine/serum metabolomics (GC and LC-MS) and fecal microbiome assessment (multi-tagged pyrosequencing) at baseline and 8 weeks post-rifaximin 550 mg BID. Changes in cognition, endotoxin, serum/urine metabolites (and microbiome were analyzed using recommended systems biology techniques. Specifically, correlation networks between microbiota and metabolome were analyzed before and after rifaximin. Results There was a significant improvement in cognition(six of seven tests improved,p<0.01) and endotoxemia (0.55 to 0.48 Eu/ml, p = 0.02) after rifaximin. There was a significant increase in serum saturated (myristic, caprylic, palmitic, palmitoleic, oleic and eicosanoic) and unsaturated (linoleic, linolenic, gamma-linolenic and arachnidonic) fatty acids post-rifaximin. No significant microbial change apart from a modest decrease in Veillonellaceae and increase in Eubacteriaceae was observed. Rifaximin resulted in a significant reduction in network connectivity and clustering on the correlation networks. The networks centered on Enterobacteriaceae, Porphyromonadaceae and Bacteroidaceae indicated a shift from pathogenic to beneficial metabolite linkages and better cognition while those centered on autochthonous taxa remained similar. Conclusions Rifaximin is associated with improved cognitive function and endotoxemia in MHE, which is accompanied by alteration of gut bacterial linkages with metabolites without significant change in microbial abundance. Trial Registration ClinicalTrials.gov NCT01069133 PMID:23565181

  15. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  16. Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism.

    PubMed

    Oscar-Berman, Marlene; Valmas, Mary M; Sawyer, Kayle S; Ruiz, Susan Mosher; Luhar, Riya B; Gravitz, Zoe R

    2014-01-01

    Long-term chronic alcoholism is associated with disparate and widespread residual consequences for brain functioning and behavior, and alcoholics suffer a variety of cognitive deficiencies and emotional abnormalities. Alcoholism has heterogeneous origins and outcomes, depending upon factors such as family history, age, gender, and mental or physical health. Consequently, the neuropsychologic profiles associated with alcoholism are not uniform among individuals. Moreover, within and across research studies, variability among subjects is substantial and contributes to characteristics associated with differential treatment outcomes after detoxification. In order to refine our understanding of alcoholism-related impaired, spared, and recovered abilities, we focus on five specific functional domains: (1) memory; (2) executive functions; (3) emotion and psychosocial skills; (4) visuospatial cognition; and (5) psychomotor abilities. Although the entire brain might be vulnerable in uncomplicated alcoholism, the brain systems that are considered to be most at risk are the frontocerebellar and mesocorticolimbic circuitries. Over time, with abstinence from alcohol, the brain appears to become reorganized to provide compensation for structural and behavioral deficits. By relying on a combination of clinical and scientific approaches, future research will help to refine the compensatory roles of healthy brain systems, the degree to which abstinence and treatment facilitate the reversal of brain atrophy and dysfunction, and the importance of individual differences to outcome. © 2014 Elsevier B.V. All rights reserved.

  17. III. The importance of physical activity and aerobic fitness for cognitive control and memory in children.

    PubMed

    Chaddock-Heyman, Laura; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F

    2014-12-01

    In this chapter, we review literature that examines the association among physical activity, aerobic fitness, cognition, and the brain in elementary school children (ages 7-10 years). Specifically, physical activity and higher levels of aerobic fitness in children have been found to benefit brain structure, brain function, cognition, and school achievement. For example, higher fit children have larger brain volumes in the basal ganglia and hippocampus, which relate to superior performance on tasks of cognitive control and memory, respectively, when compared to their lower fit peers. Higher fit children also show superior brain function during tasks of cognitive control, better scores on tests of academic achievement, and higher performance on a real-world street crossing task, compared to lower fit and less active children. The cross-sectional findings are strengthened by a few randomized, controlled trials, which demonstrate that children randomly assigned to a physical activity intervention group show greater brain and cognitive benefits compared to a control group. Because these findings suggest that the developing brain is plastic and sensitive to lifestyle factors, we also discuss typical structural and functional brain maturation in children to provide context in which to interpret the effects of physical activity and aerobic fitness on the developing brain. This research is important because children are becoming increasingly sedentary, physically inactive, and unfit. An important goal of this review is to emphasize the importance of physical activity and aerobic fitness for the cognitive and brain health of today's youth. © 2014 The Society for Research in Child Development, Inc.

  18. Nicotinamide Forestalls Pathology and Cognitive Decline in Alzheimer Mice: Evidence for Improved Neuronal Bioenergetics and Autophagy Procession

    PubMed Central

    Liu, Dong; Pitta, Michael; Jiang, Haiyang; Lee, Jong-Hwan; Zhang, Guofeng; Chen, Xinzhi; Kawamoto, Elisa M.; Mattson, Mark P.

    2012-01-01

    Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathological accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated Tau (p-Tau) in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the NAD+ precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. NAD+ biosynthesis, autophagy and PI3K signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and p-Tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (Akt and ERKs) and the transcription factor cyclic AMP response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system. PMID:23273573

  19. The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  20. Putting Humpty Dumpty together again: the importance of integrating cognitive and emotional interventions.

    PubMed

    Mateer, Catherine A; Sira, Claire S; O'Connell, Megan E

    2005-01-01

    Acquired brain injury commonly results in both cognitive and emotional sequela, and it is increasingly recognized that these domains of functioning interact. Consequently, interventions directed at only or primarily one domain may be confounded by this interaction. To maximize treatment potential, we believe cognitive rehabilitation must integrate both cognitive and emotional interventions, and attend to belief systems about, and affective responses to, cognitive challenges. We review the scant literature addressing the impact of combined interventions for clients with acquired brain injury. Integrated with these reviews are 2 case studies that appear to break treatment "myths." Specifically, we address the notion that emotion-focused treatments are appropriate only for clients with awareness or insight and the notion that cognitive interventions are ineffective, and potentially even contraindicated, for clients whose profile suggests emotional distress and functional, as opposed to neurological, impairments. In each of these cases, we demonstrate that combining cognitive and emotional interventions was not only effective but also even more valuable than previous treatment approaches aimed exclusively at one domain. We conclude by emphasizing the importance of understanding emotional response to, and beliefs about, cognitive difficulties in developing effective interventions.

  1. Neurobiomimetic constructs for intelligent unmanned systems and robotics

    NASA Astrophysics Data System (ADS)

    Braun, Jerome J.; Shah, Danelle C.; DeAngelus, Marianne A.

    2014-06-01

    This paper discusses a paradigm we refer to as neurobiomimetic, which involves emulations of brain neuroanatomy and neurobiology aspects and processes. Neurobiomimetic constructs include rudimentary and down-scaled computational representations of brain regions, sub-regions, and synaptic connectivity. Many different instances of neurobiomimetic constructs are possible, depending on various aspects such as the initial conditions of synaptic connectivity, number of neuron elements in regions, connectivity specifics, and more, and we refer to these instances as `animats'. While downscaled for computational feasibility, the animats are very large constructs; the animats implemented in this work contain over 47,000 neuron elements and over 720,000 synaptic connections. The paper outlines aspects of the animats implemented, spatial memory and learning cognitive task, the virtual-reality environment constructed to study the animat performing that task, and discussion of results. In a broad sense, we argue that the neurobiomimetic paradigm pursued in this work constitutes a particularly promising path to artificial cognition and intelligent unmanned systems. Biological brains readily cope with challenges of real-life tasks that consistently prove beyond even the most sophisticated algorithmic approaches known. At the cross-over point of neuroscience, cognitive science and computer science, paradigms such as the one pursued in this work aim to mimic the mechanisms of biological brains and as such, we argue, may lead to machines with abilities closer to those of biological species.

  2. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  3. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  4. Senior Dance Experience, Cognitive Performance, and Brain Volume in Older Women

    PubMed Central

    Niemann, Claudia; Godde, Ben

    2016-01-01

    Physical activity is positively related to cognitive functioning and brain volume in older adults. Interestingly, different types of physical activity vary in their effects on cognition and on the brain. For example, dancing has become an interesting topic in aging research, as it is a popular leisure activity among older adults, involving cardiovascular and motor fitness dimensions that can be positively related to cognition. However, studies on brain structure are missing. In this study, we tested the association of long-term senior dance experience with cognitive performance and gray matter brain volume in older women aged 65 to 82 years. We compared nonprofessional senior dancers (n = 28) with nonsedentary control group participants without any dancing experience (n = 29), who were similar in age, education, IQ score, lifestyle and health factors, and fitness level. Differences neither in the four tested cognitive domains (executive control, perceptual speed, episodic memory, and long-term memory) nor in brain volume (VBM whole-brain analysis, region-of-interest analysis of the hippocampus) were observed. Results indicate that moderate dancing activity (1-2 times per week, on average) has no additional effects on gray matter volume and cognitive functioning when a certain lifestyle or physical activity and fitness level are reached. PMID:27738528

  5. Intellectual enrichment lessens the effect of brain atrophy on learning and memory in multiple sclerosis

    PubMed Central

    Sumowski, James F.; Wylie, Glenn R.; Chiaravalloti, Nancy; DeLuca, John

    2010-01-01

    Objective: Learning and memory impairments are prevalent among persons with multiple sclerosis (MS); however, such deficits are only weakly associated with MS disease severity (brain atrophy). The cognitive reserve hypothesis states that greater lifetime intellectual enrichment lessens the negative impact of brain disease on cognition, thereby helping to explain the incomplete relationship between brain disease and cognitive status in neurologic populations. The literature on cognitive reserve has focused mainly on Alzheimer disease. The current research examines whether greater intellectual enrichment lessens the negative effect of brain atrophy on learning and memory in patients with MS. Methods: Forty-four persons with MS completed neuropsychological measures of verbal learning and memory, and a vocabulary-based estimate of lifetime intellectual enrichment. Brain atrophy was estimated with third ventricle width measured from 3-T magnetization-prepared rapid gradient echo MRIs. Hierarchical regression was used to predict learning and memory with brain atrophy, intellectual enrichment, and the interaction between brain atrophy and intellectual enrichment. Results: Brain atrophy predicted worse learning and memory, and intellectual enrichment predicted better learning; however, these effects were moderated by interactions between brain atrophy and intellectual enrichment. Specifically, higher intellectual enrichment lessened the negative impact of brain atrophy on both learning and memory. Conclusion: These findings help to explain the incomplete relationship between multiple sclerosis disease severity and cognition, as the effect of disease on cognition is attenuated among patients with higher intellectual enrichment. As such, intellectual enrichment is supported as a protective factor against disease-related cognitive impairment in persons with multiple sclerosis. GLOSSARY AD = Alzheimer disease; ANOVA = analysis of variance; MPRAGE = magnetization-prepared rapid gradient echo; MS = multiple sclerosis; SRT = Selective Reminding Test; TVW = third ventricle width; WASI = Wechsler Abbreviated Scale of Intelligence. PMID:20548040

  6. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition

    PubMed Central

    Savage, Julie C.; Hui, Chin Wai; Bisht, Kanchan

    2016-01-01

    Abstract Microglia are the only immune cells that permanently reside in the central nervous system (CNS) alongside neurons and other types of glial cells. The past decade has witnessed a revolution in our understanding of their roles during normal physiological conditions. Cutting‐edge techniques revealed that these resident immune cells are critical for proper brain development, actively maintain health in the mature brain, and rapidly adapt their function to physiological or pathophysiological needs. In this review, we highlight recent studies on microglial origin (from the embryonic yolk sac) and the factors regulating their differentiation and homeostasis upon brain invasion. Elegant experiments tracking microglia in the CNS allowed studies of their unique roles compared with other types of resident macrophages. Here we review the emerging roles of microglia in brain development, plasticity and cognition, and discuss the implications of the depletion or dysfunction of microglia for our understanding of disease pathogenesis. Immune activation, inflammation and various other conditions resulting in undesirable microglial activity at different stages of life could severely impair learning, memory and other essential cognitive functions. The diversity of microglial phenotypes across the lifespan, between compartments of the CNS, and sexes, as well as their crosstalk with the body and external environment, is also emphasised. Understanding what defines particular microglial phenotypes is of major importance for future development of innovative therapies controlling their effector functions, with consequences for cognition across chronic stress, ageing, neuropsychiatric and neurological diseases. PMID:27104646

  7. [Effectiveness of music in brain rehabilitation. A systematic review].

    PubMed

    Sihvonen, Aleksi J; Leo, Vera; Särkämö, Teppo; Soinila, Seppo

    2014-01-01

    There is no curative treatment for diseases causing brain injury. Music causes extensive activation of the brain, promoting the repair of neural systems. Addition of music listening to rehabilitation enhances the regulation or motor functions in Parkinson and stroke patients, accelerates the recovery of speech disorder and cognitive injuries after stroke, and decreases the behavioral disorders of dementia patients. Music enhances the ability to concentrate and decreases mental confusion. The effect of music can also be observed as structural and functional changes of the brain. The effect is based, among other things, on lessening of physiologic stress and depression and on activation of the dopaminergic mesolimbic system.

  8. Action and language mechanisms in the brain: data, models and neuroinformatics.

    PubMed

    Arbib, Michael A; Bonaiuto, James J; Bornkessel-Schlesewsky, Ina; Kemmerer, David; MacWhinney, Brian; Nielsen, Finn Årup; Oztop, Erhan

    2014-01-01

    We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience.

  9. Control Networks and Neuromodulators of Early Development

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale

    2012-01-01

    In adults, most cognitive and emotional self-regulation is carried out by a network of brain regions, including the anterior cingulate, insula, and areas of the basal ganglia, related to executive attention. We propose that during infancy, control systems depend primarily upon a brain network involved in orienting to sensory events that includes…

  10. Brain Embodiment of Syntax and Grammar: Discrete Combinatorial Mechanisms Spelt Out in Neuronal Circuits

    ERIC Educational Resources Information Center

    Pulvermuller, Friedemann

    2010-01-01

    Neuroscience has greatly improved our understanding of the brain basis of abstract lexical and semantic processes. The neuronal devices underlying words and concepts are distributed neuronal assemblies reaching into sensory and motor systems of the cortex and, at the cognitive level, information binding in such widely dispersed circuits is…

  11. Electrophysiological Evidence of Atypical Motivation and Reward Processing in Children with Attention-Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Holroyd, Clay B.; Baker, Travis E.; Kerns, Kimberly A.; Muller, Ulrich

    2008-01-01

    Behavioral and neurophysiological evidence suggest that attention-deficit hyperactivity disorder (ADHD) is characterized by the impact of abnormal reward prediction error signals carried by the midbrain dopamine system on frontal brain areas that implement cognitive control. To investigate this issue, we recorded the event-related brain potential…

  12. Computational models of music perception and cognition I: The perceptual and cognitive processing chain

    NASA Astrophysics Data System (ADS)

    Purwins, Hendrik; Herrera, Perfecto; Grachten, Maarten; Hazan, Amaury; Marxer, Ricard; Serra, Xavier

    2008-09-01

    We present a review on perception and cognition models designed for or applicable to music. An emphasis is put on computational implementations. We include findings from different disciplines: neuroscience, psychology, cognitive science, artificial intelligence, and musicology. The article summarizes the methodology that these disciplines use to approach the phenomena of music understanding, the localization of musical processes in the brain, and the flow of cognitive operations involved in turning physical signals into musical symbols, going from the transducers to the memory systems of the brain. We discuss formal models developed to emulate, explain and predict phenomena involved in early auditory processing, pitch processing, grouping, source separation, and music structure computation. We cover generic computational architectures of attention, memory, and expectation that can be instantiated and tuned to deal with specific musical phenomena. Criteria for the evaluation of such models are presented and discussed. Thereby, we lay out the general framework that provides the basis for the discussion of domain-specific music models in Part II.

  13. Schizophrenia: an integrated sociodevelopmental-cognitive model

    PubMed Central

    Howes, Oliver D; Murray, Robin M

    2014-01-01

    Schizophrenia remains a major burden1. The dopamine (DA) and neurodevelopmental hypotheses attempt to explain the pathogenic mechanisms and origins of the disorder respectively2-4. Recently an alternative, the cognitive model, has gained popularity5. However the first two theories have not been satisfactorily integrated, and the most influential iteration of the cognitive model makes no mention of DA, neurodevelopment, or indeed the brain5. Here we show that developmental alterations secondary to variant genes, early hazards to the brain and childhood adversity, sensitise the DA system, and result in excessive presynaptic DA synthesis and DA release. Social adversity biases the cognitive schema that the individual uses to interpret experiences towards paranoid interpretations. Subsequent stress results in dysregulated DA release, causing the misattribution of salience to stimuli, which are then misinterpreted by the biased cognitive processes. The resulting paranoia and hallucinations in turn cause further stress, and eventually repeated DA dysregulation hard-wires the psychotic beliefs. Finally we consider the implications of this model for understanding and treating schizophrenia. PMID:24315522

  14. Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition

    PubMed Central

    Solari, Soren Van Hout; Stoner, Rich

    2011-01-01

    Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge). PMID:22194717

  15. Two-day fasting evokes stress, but does not affect mood, brain activity, cognitive, psychomotor, and motor performance in overweight women.

    PubMed

    Solianik, Rima; Sujeta, Artūras

    2018-02-15

    The physiological, cognitive state, and motor behavior changes that occur during acute fasting are not completely understood. Thus, the aim of this study was to estimate the effect of 2-day total fasting on evoked stress, mood, brain activity, and cognitive, psychomotor, and motor function in overweight women. Eleven overweight women (body mass index above 25kg/m 2 ) aged 20-30 years were tested under two conditions allocated randomly: 2-day zero-calorie diet with water provided ad libitum and 2-day usual diet. One week before the experiment, aerobic fitness was evaluated. Subjective stress ratings in relation to the diet, autonomic function, prefrontal cortex activity, cognitive performance, psychomotor coordination, and grip strength were evaluated before and after each diet. The study demonstrated that fasting decreased log-transformed high-frequency (HF) power, without affecting heart rate. The relative maximum oxygen uptake was negatively correlated with subjective stress rating and changes in log-transformed HF. Fasting did not affect mood, brain activity, and cognitive, motor, and psychomotor performance. Thus, 2-day total fasting evoked moderate stress with a shift of the autonomic nervous system balance toward sympathetic activity in overweight women. Better aerobic endurance is likely to facilitate the capacity for dealing with acute fasting. Regardless of the evoked stress, cognitive state and motor behavior remained intact. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cognitive and affective responses to lithium in patients with organic brain syndrome.

    PubMed

    Williams, K H; Goldstein, G

    1979-06-01

    The authors describe a series of patients with organic brain syndrome who showed a dramatic clinical response to lithium carbonate therapy. None of the patients had been diagnosed as manic-depressive. Most had extensive psychiatric treatment experiences and had been given both affective and cognitive diagnoses. Six of the eight patients also qualified for the diagnosis of alcoholism. They had been treated with a wide variety of psychotherapeutic medications. Lithium was found to be rapidly and dramatically effective in patients with static lesions of the central nervous system who showed a combination of dementia and agitated depression.

  17. Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies.

    PubMed

    Taylor, J S H; Rastle, Kathleen; Davis, Matthew H

    2013-07-01

    Reading in many alphabetic writing systems depends on both item-specific knowledge used to read irregular words (sew, yacht) and generative spelling-sound knowledge used to read pseudowords (tew, yash). Research into the neural basis of these abilities has been directed largely by cognitive accounts proposed by the dual-route cascaded and triangle models of reading. We develop a framework that enables predictions for neural activity to be derived from cognitive models of reading using 2 principles: (a) the extent to which a model component or brain region is engaged by a stimulus and (b) how much effort is exerted in processing that stimulus. To evaluate the derived predictions, we conducted a meta-analysis of 36 neuroimaging studies of reading using the quantitative activation likelihood estimation technique. Reliable clusters of activity are localized during word versus pseudoword and irregular versus regular word reading and demonstrate a great deal of convergence between the functional organization of the reading system put forward by cognitive models and the neural systems activated during reading tasks. Specifically, left-hemisphere activation clusters are revealed reflecting orthographic analysis (occipitotemporal cortex), lexical and/or semantic processing (anterior fusiform, middle temporal gyrus), spelling-sound conversion (inferior parietal cortex), and phonological output resolution (inferior frontal gyrus). Our framework and results establish that cognitive models of reading are relevant for interpreting neuroimaging studies and that neuroscientific studies can provide data relevant for advancing cognitive models. This article thus provides a firm empirical foundation from which to improve integration between cognitive and neural accounts of the reading process. 2013 APA, all rights reserved

  18. The Hidden Lives of Nurses' Cognitive Artifacts.

    PubMed

    Blaz, Jacquelyn W; Doig, Alexa K; Cloyes, Kristin G; Staggers, Nancy

    2016-09-07

    Standardizing nursing handoffs at shift change is recommended to improve communication, with electronic tools as the primary approach. However, nurses continue to rely on personally created paper-based cognitive artifacts - their "paper brains" - to support handoffs, indicating a deficiency in available electronic versions. The purpose of this qualitative study was to develop a deep understanding of nurses' paper-based cognitive artifacts in the context of a cancer specialty hospital. After completing 73 hours of hospital unit field observations, 13 medical oncology nurses were purposively sampled, shadowed for a single shift and interviewed using a semi-structured technique. An interpretive descriptive study design guided analysis of the data corpus of field notes, transcribed interviews, images of nurses' paper-based cognitive artifacts, and analytic memos. Findings suggest nurses' paper brains are personal, dynamic, living objects that undergo a life cycle during each shift and evolve over the course of a nurse's career. The life cycle has four phases: Creation, Application, Reproduction, and Destruction. Evolution in a nurse's individually styled, paper brain is triggered by a change in the nurse's environment that reshapes cognitive needs. If a paper brain no longer provides cognitive support in the new environment, it is modified into (adapted) or abandoned (made extinct) for a different format that will provide the necessary support. The "hidden lives" - the life cycle and evolution - of paper brains have implications for the design of successful electronic tools to support nursing practice, including handoff. Nurses' paper brains provide cognitive support beyond the context of handoff. Information retrieval during handoff is undoubtedly an important function of nurses' paper brains, but tools designed to standardize handoff communication without accounting for cognitive needs during all phases of the paper brain life cycle or the ability to evolve with changes to those cognitive needs will be underutilized.

  19. Neuroscience is awaiting for a breakthrough: an essay bridging the concepts of Descartes, Einstein, Heisenberg, Hebb and Hayek with the explanatory formulations in this special issue.

    PubMed

    Başar, Erol; Karakaş, Sirel

    2006-05-01

    The paper presents gedankenmodels which, based on the theories and models in the present special issue, describe the conditions for a breakthrough in brain sciences and neuroscience. The new model is based on contemporary findings which show that the brain and its cognitive processes show super-synchronization. Accordingly, understanding the brain/body-mind complex is possible only when these three are considered as a wholistic entity and not as discrete structures or functions. Such a breakthrough and the related perspectives to the brain/body-mind complex will involve a transition from the mechanistic Cartesian system to a nebulous Cartesian system, one that is basically characterized by parallel computing and is further parallel to quantum mechanics. This integrated outlook on the brain/body-mind, or dynamic functionality, will make the treatment of also the meta-cognitive processes and the greater part of the iceberg, the unconscious, possible. All this will be possible only through the adoption of a multidisciplinary approach that will bring together the knowledge and the technology of the four P's which consist of physics, physiology, psychology and philosophy. The genetic approach to the functional dynamics of the brain/body-mind, where the oscillatory responses were found to be laws of brain activity, is presented in this volume as one of the most recent perspectives of neuroscience.

  20. ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936.

    PubMed

    Lyall, Donald M; Lopez, Lorna M; Bastin, Mark E; Maniega, Susana Muñoz; Penke, Lars; Valdés Hernández, Maria del C; Royle, Natalie A; Starr, John M; Porteous, David J; Wardlaw, Joanna M; Deary, Ian J

    2013-01-01

    The non-synonymous mutations arg16gly (rs1042713) and gln27glu (rs1042714) in the adrenergic β-2 receptor gene (ADRB2) have been associated with cognitive function and brain white matter integrity. The current study aimed to replicate these findings and expand them to a broader range of cognitive and brain phenotypes. The sample used is a community-dwelling group of older people, the Lothian Birth Cohort 1936. They had been assessed cognitively at age 11 years, and undertook further cognitive assessments and brain diffusion MRI tractography in older age. The sample size range for cognitive function variables was N = 686-765, and for neuroimaging variables was N = 488-587. Previously-reported findings with these genetic variants did not replicate in this cohort. Novel, nominally significant associations were observed; notably, the integrity of the left arcuate fasciculus mediated the association between rs1042714 and the Digit Symbol Coding test of information processing speed. No significant associations of cognitive and brain phenotypes with ADRB2 variants survived correction for false discovery rate. Previous findings may therefore have been subject to type 1 error. Further study into links between ADRB2, cognitive function and brain white matter integrity is required.

  1. Speech as a breakthrough signaling resource in the cognitive evolution of biological complex adaptive systems.

    PubMed

    Mattei, Tobias A

    2014-12-01

    In self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.

  2. The Bilingual Adaptation: How Minds Accommodate Experience

    PubMed Central

    Bialystok, Ellen

    2017-01-01

    According to some estimates, more than half of the world’s population is multilingual to some extent. Because of the centrality of language use to human experience and the deep connections between linguistic and nonlinguistic processing, it would not be surprising to find that there are interactions between bilingualism and cognitive and brain processes. The present review uses the framework of experience-dependent plasticity to evaluate the evidence for systematic modifications of brain and cognitive systems that can be attributed to bilingualism. The review describes studies investigating the relation between bilingualism and cognition in infants and children, younger and older adults, and patients, using both behavioral and neuroimaging methods. Excluded are studies whose outcomes focus primarily on linguistic abilities because of their more peripheral contribution to the central question regarding experience-dependent changes to cognition. Although most of the research discussed in the review reports some relation between bilingualism and cognitive or brain outcomes, several areas of research, notably behavioral studies with young adults, largely fail to show these effects. These discrepancies are discussed and considered in terms of methodological and conceptual issues. The final section proposes an account based on “executive attention” to explain the range of research findings and to set out an agenda for the next steps in this field. PMID:28230411

  3. Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review.

    PubMed

    Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel

    2014-08-01

    This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.

  4. The Long-Term Safety and Efficacy Follow-Up Study of Subjects Who Completed the Phase I Clinical Trial of Neurostem®-AD

    ClinicalTrials.gov

    2012-09-27

    Alzheimer Disease; Dementia; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Tauopathies; Neurodegenerative Diseases; Delirium, Dementia, Amnestic, Cognitive Disorders; Mental Disorders

  5. The evolution of self-control

    PubMed Central

    MacLean, Evan L.; Hare, Brian; Nunn, Charles L.; Addessi, Elsa; Amici, Federica; Anderson, Rindy C.; Aureli, Filippo; Baker, Joseph M.; Bania, Amanda E.; Barnard, Allison M.; Boogert, Neeltje J.; Brannon, Elizabeth M.; Bray, Emily E.; Bray, Joel; Brent, Lauren J. N.; Burkart, Judith M.; Call, Josep; Cantlon, Jessica F.; Cheke, Lucy G.; Clayton, Nicola S.; Delgado, Mikel M.; DiVincenti, Louis J.; Fujita, Kazuo; Herrmann, Esther; Hiramatsu, Chihiro; Jacobs, Lucia F.; Jordan, Kerry E.; Laude, Jennifer R.; Leimgruber, Kristin L.; Messer, Emily J. E.; de A. Moura, Antonio C.; Ostojić, Ljerka; Picard, Alejandra; Platt, Michael L.; Plotnik, Joshua M.; Range, Friederike; Reader, Simon M.; Reddy, Rachna B.; Sandel, Aaron A.; Santos, Laurie R.; Schumann, Katrin; Seed, Amanda M.; Sewall, Kendra B.; Shaw, Rachael C.; Slocombe, Katie E.; Su, Yanjie; Takimoto, Ayaka; Tan, Jingzhi; Tao, Ruoting; van Schaik, Carel P.; Virányi, Zsófia; Visalberghi, Elisabetta; Wade, Jordan C.; Watanabe, Arii; Widness, Jane; Young, Julie K.; Zentall, Thomas R.; Zhao, Yini

    2014-01-01

    Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution. PMID:24753565

  6. Promoting brain health through exercise and diet in older adults: a physiological perspective

    PubMed Central

    Pialoux, Vincent; Corbett, Dale; Drogos, Lauren; Erickson, Kirk I.; Eskes, Gail A.

    2016-01-01

    Abstract The rise in incidence of age‐related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter‐individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote ‘brain health’. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer. PMID:27524792

  7. Bioenergetics

    PubMed Central

    2008-01-01

    Natural life is chemical. Chemistry, not abstract logic, determines and constrains its potentialities. One of the potentialities is cognition. Humans have two equivalent cognitive systems: the immune and the nervous ones. The principle of functioning is the same for both: rooted in the previously acquired and embodied knowledge, the system is intrinsically generating many new chemical states and the environment selects and stabilizes appropriate of them. From the fundamental level of complicated brain chemistry (“biochemese”) higher levels emerge: the physiological (“physiologese”) and the mental (“mentalese”). Processes are causal at the basic chemical level; they are mere isomorphic, tautological translations at the other levels. The thermodynamic necessity to maintain correlations in the complicated chemical system and to generate variants makes the nervous system energetically expensive: it runs continuously at full speed and external inputs only trigger and modulate the ongoing dynamics. Models of the brain as a universal computer are utterly inadequate. PMID:19513208

  8. Representation of Cognitive Reappraisal Goals in Frontal Gamma Oscillations

    PubMed Central

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35–55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion. PMID:25401328

  9. Key cognitive preconditions for the evolution of language.

    PubMed

    Donald, Merlin

    2017-02-01

    Languages are socially constructed systems of expression, generated interactively in social networks, which can be assimilated by the individual brain as it develops. Languages co-evolved with culture, reflecting the changing complexity of human culture as it acquired the properties of a distributed cognitive system. Two key preconditions set the stage for the evolution of such cultures: a very general ability to rehearse and refine skills (evident early in hominin evolution in toolmaking), and the emergence of material culture as an external (to the brain) memory record that could retain and accumulate knowledge across generations. The ability to practice and rehearse skill provided immediate survival-related benefits in that it expanded the physical powers of early hominins, but the same adaptation also provided the imaginative substrate for a system of "mimetic" expression, such as found in ritual and pantomime, and in proto-words, which performed an expressive function somewhat like the home signs of deaf non-signers. The hominid brain continued to adapt to the increasing importance and complexity of culture as human interactions with material culture became more complex; above all, this entailed a gradual expansion in the integrative systems of the brain, especially those involved in the metacognitive supervision of self-performances. This supported a style of embodied mimetic imagination that improved the coordination of shared activities such as fire tending, but also in rituals and reciprocal mimetic games. The time-depth of this mimetic adaptation, and its role in both the construction and acquisition of languages, explains the importance of mimetic expression in the media, religion, and politics. Spoken language evolved out of voco-mimesis, and emerged long after the more basic abilities needed to refine skill and share intentions, probably coinciding with the common ancestor of sapient humans. Self-monitoring and self-supervised practice were necessary preconditions for lexical invention, and as these abilities evolved further, communicative skills extended to more abstract and complex aspects of the communication environments-that is, the "cognitive ecologies"-being generated by human groups. The hominin brain adapted continuously to the need to assimilate language and its many cognitive byproducts by expanding many of its higher integrative systems, a process that seems to have accelerated and peaked in the past half million years.

  10. A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects.

    PubMed

    Doborjeh, Maryam Gholami; Wang, Grace Y; Kasabov, Nikola K; Kydd, Robert; Russell, Bruce

    2016-09-01

    This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, those undergoing methadone maintenance treatment (MMT) for opiate dependence and a healthy control group. the method is based on an SNN architecture called NeuCube, trained on spatiotemporal EEG data. NeuCube was used to classify EEG data across subject groups and across GO versus NOGO trials, but also facilitated a deeper comparative analysis of the dynamic brain processes. This analysis results in a better understanding of human brain functioning across subject groups when performing a cognitive task. In terms of the EEG data classification, a NeuCube model obtained better results (the maximum obtained accuracy: 90.91%) when compared with traditional statistical and artificial intelligence methods (the maximum obtained accuracy: 50.55%). more importantly, new information about the effects of MMT on cognitive brain functions is revealed through the analysis of the SNN model connectivity and its dynamics. this paper presented a new method for EEG data modeling and revealed new knowledge on brain functions associated with mental activity which is different from the brain activity observed in a resting state of the same subjects.

  11. The effects of age, sex, and hormones on emotional conflict-related brain response during adolescence

    PubMed Central

    Cservenka, Anita; Stroup, Madison L.; Etkin, Amit; Nagel, Bonnie J.

    2015-01-01

    While cognitive and emotional systems both undergo development during adolescence, few studies have explored top-down inhibitory control brain activity in the context of affective processing, critical to informing adolescent psychopathology. In this study, we used functional magnetic resonance imaging to examine brain response during an Emotional Conflict (EmC) Task across 10–15-year-old youth. During the EmC Task, participants indicated the emotion of facial expressions, while disregarding emotion-congruent and incongruent words printed across the faces. We examined the relationships of age, sex, and gonadal hormones with brain activity on Incongruent vs. Congruent trials. Age was negatively associated with middle frontal gyrus activity, controlling for performance and movement confounds. Sex differences were present in occipital and parietal cortices, and were driven by activation in females, and deactivation in males to Congruent trials. Testosterone was negatively related with frontal and striatal brain response in males, and cerebellar and precuneus response in females. Estradiol was negatively related with fronto-cerebellar, cingulate, and precuneus brain activity in males, and positively related with occipital response in females. To our knowledge, this is the first study reporting the effects of age, sex, and sex steroids during an emotion-cognition task in adolescents. Further research is needed to examine longitudinal development of emotion-cognition interactions and deviations in psychiatric disorders in adolescence. PMID:26175008

  12. The effects of age, sex, and hormones on emotional conflict-related brain response during adolescence.

    PubMed

    Cservenka, Anita; Stroup, Madison L; Etkin, Amit; Nagel, Bonnie J

    2015-10-01

    While cognitive and emotional systems both undergo development during adolescence, few studies have explored top-down inhibitory control brain activity in the context of affective processing, critical to informing adolescent psychopathology. In this study, we used functional magnetic resonance imaging to examine brain response during an Emotional Conflict (EmC) Task across 10-15-year-old youth. During the EmC Task, participants indicated the emotion of facial expressions, while disregarding emotion-congruent and incongruent words printed across the faces. We examined the relationships of age, sex, and gonadal hormones with brain activity on Incongruent vs. Congruent trials. Age was negatively associated with middle frontal gyrus activity, controlling for performance and movement confounds. Sex differences were present in occipital and parietal cortices, and were driven by activation in females, and deactivation in males to Congruent trials. Testosterone was negatively related with frontal and striatal brain response in males, and cerebellar and precuneus response in females. Estradiol was negatively related with fronto-cerebellar, cingulate, and precuneus brain activity in males, and positively related with occipital response in females. To our knowledge, this is the first study reporting the effects of age, sex, and sex steroids during an emotion-cognition task in adolescents. Further research is needed to examine longitudinal development of emotion-cognition interactions and deviations in psychiatric disorders in adolescence. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A Network Model of the Emotional Brain.

    PubMed

    Pessoa, Luiz

    2017-05-01

    Emotion is often understood in terms of a circumscribed set of cortical and subcortical brain regions. I propose, instead, that emotion should be understood in terms of large-scale network interactions spanning the entire neuroaxis. I describe multiple anatomical and functional principles of brain organization that lead to the concept of 'functionally integrated systems', cortical-subcortical systems that anchor the organization of emotion in the brain. The proposal is illustrated by describing the cortex-amygdala integrated system and how it intersects with systems involving the ventral striatum/accumbens, septum, hippocampus, hypothalamus, and brainstem. The important role of the thalamus is also highlighted. Overall, the model clarifies why the impact of emotion is wide-ranging, and how emotion is interlocked with perception, cognition, motivation, and action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Developmental trends and individual differences in brain systems involved in intertemporal choice during adolescence.

    PubMed

    Banich, Marie T; De La Vega, Alejandro; Andrews-Hanna, Jessica R; Mackiewicz Seghete, Kristen; Du, Yiping; Claus, Eric D

    2013-06-01

    This study used functional magnetic resonance imaging (fMRI) to examine the neural systems activated during an intertemporal choice task in a group of 14- to 19-year-old adolescents, as well as the relationship of such activation patterns to individual differences in the self-reported ability to engage in nonimmediate thinking (i.e., less impulsive and more future-oriented thoughts and action). With increasing age, there was greater differentiation between patterns of brain activity for immediate versus future choices across three distinct brain systems involved in intertemporal choice--those involved in exerting control over behavior, attributing affective value to choices, and imagining future outcomes. Furthermore, a greater propensity toward self-reported nonimmediate thinking was associated with decreased activity in the systems involved in cognitive control, possibly suggesting that individuals with greater self-reported nonimmediate thinking need to rely less on cognitive control regions during conditions of intertemporal choice. These results highlight the role that both developmental age and individual differences play in influencing neural systems involved in intertemporal choice. Implications for understanding the onset of substance abuse disorders during adolescence are discussed. 2013 APA, all rights reserved

  15. Functional connectivity analysis of the neural bases of emotion regulation: A comparison of independent component method with density-based k-means clustering method.

    PubMed

    Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo

    2016-04-29

    Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.

  16. Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges.

    PubMed

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J; Park, Su-Bin; D'Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health.

  17. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges

    PubMed Central

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J.; Park, Su-Bin; D’Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health. PMID:25161617

  18. Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition

    NASA Astrophysics Data System (ADS)

    Fitch, W. Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology.

  19. Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition.

    PubMed

    Fitch, W Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology. Copyright © 2014. Published by Elsevier B.V.

  20. Gender similarities and differences in brain activation strategies: Voxel-based meta-analysis on fMRI studies.

    PubMed

    AlRyalat, Saif Aldeen

    2017-01-01

    Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.

  1. Subjective cognitive impairment and brain structural networks in Chinese gynaecological cancer survivors compared with age-matched controls: a cross-sectional study.

    PubMed

    Zeng, Yingchun; Cheng, Andy S K; Song, Ting; Sheng, Xiujie; Zhang, Yang; Liu, Xiangyu; Chan, Chetwyn C H

    2017-11-28

    Subjective cognitive impairment can be a significant and prevalent problem for gynaecological cancer survivors. The aims of this study were to assess subjective cognitive functioning in gynaecological cancer survivors after primary cancer treatment, and to investigate the impact of cancer treatment on brain structural networks and its association with subjective cognitive impairment. This was a cross-sectional survey using a self-reported questionnaire by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) to assess subjective cognitive functioning, and applying DTI (diffusion tensor imaging) and graph theoretical analyses to investigate brain structural networks after primary cancer treatment. A total of 158 patients with gynaecological cancer (mean age, 45.86 years) and 130 age-matched non-cancer controls (mean age, 44.55 years) were assessed. Patients reported significantly greater subjective cognitive functioning on the FACT-Cog total score and two subscales of perceived cognitive impairment and perceived cognitive ability (all p values <0.001). Compared with patients who had received surgery only and non-cancer controls, patients treated with chemotherapy indicated the most altered global brain structural networks, especially in one of properties of small-worldness (p = 0.004). Reduced small-worldness was significantly associated with a lower FACT-Cog total score (r = 0.412, p = 0.024). Increased characteristic path length was also significantly associated with more subjective cognitive impairment (r = -0.388, p = 0.034). When compared with non-cancer controls, a considerable proportion of gynaecological cancer survivors may exhibit subjective cognitive impairment. This study provides the first evidence of brain structural network alteration in gynaecological cancer patients at post-treatment, and offers novel insights regarding the possible neurobiological mechanism of cancer-related cognitive impairment (CRCI) in gynaecological cancer patients. As primary cancer treatment can result in a more random organisation of structural brain networks, this may reduce brain functional specificity and segregation, and have implications for cognitive impairment. Future prospective and longitudinal studies are needed to build upon the study findings in order to assess potentially relevant clinical and psychosocial variables and brain network measures, so as to more accurately understand the specific risk factors related to subjective cognitive impairment in the gynaecological cancer population. Such knowledge could inform the development of appropriate treatment and rehabilitation efforts to ameliorate cognitive impairment in gynaecological cancer survivors.

  2. The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology

    PubMed Central

    Winkelman, Michael J.

    2017-01-01

    Neuropharmacological effects of psychedelics have profound cognitive, emotional, and social effects that inspired the development of cultures and religions worldwide. Findings that psychedelics objectively and reliably produce mystical experiences press the question of the neuropharmacological mechanisms by which these highly significant experiences are produced by exogenous neurotransmitter analogs. Humans have a long evolutionary relationship with psychedelics, a consequence of psychedelics' selective effects for human cognitive abilities, exemplified in the information rich visionary experiences. Objective evidence that psychedelics produce classic mystical experiences, coupled with the finding that hallucinatory experiences can be induced by many non-drug mechanisms, illustrates the need for a common model of visionary effects. Several models implicate disturbances of normal regulatory processes in the brain as the underlying mechanisms responsible for the similarities of visionary experiences produced by psychedelic and other methods for altering consciousness. Similarities in psychedelic-induced visionary experiences and those produced by practices such as meditation and hypnosis and pathological conditions such as epilepsy indicate the need for a general model explaining visionary experiences. Common mechanisms underlying diverse alterations of consciousness involve the disruption of normal functions of the prefrontal cortex and default mode network (DMN). This interruption of ordinary control mechanisms allows for the release of thalamic and other lower brain discharges that stimulate a visual information representation system and release the effects of innate cognitive functions and operators. Converging forms of evidence support the hypothesis that the source of psychedelic experiences involves the emergence of these innate cognitive processes of lower brain systems, with visionary experiences resulting from the activation of innate processes based in the mirror neuron system (MNS). PMID:29033783

  3. Human and animal cognition: Continuity and discontinuity

    PubMed Central

    Premack, David

    2007-01-01

    Microscopic study of the human brain has revealed neural structures, enhanced wiring, and forms of connectivity among nerve cells not found in any animal, challenging the view that the human brain is simply an enlarged chimpanzee brain. On the other hand, cognitive studies have found animals to have abilities once thought unique to the human. This suggests a disparity between brain and mind. The suggestion is misleading. Cognitive research has not kept pace with neural research. Neural findings are based on microscopic study of the brain and are primarily cellular. Because cognition cannot be studied microscopically, we need to refine the study of cognition by using a different approach. In examining claims of similarity between animals and humans, one must ask: What are the dissimilarities? This approach prevents confusing similarity with equivalence. We follow this approach in examining eight cognitive cases—teaching, short-term memory, causal reasoning, planning, deception, transitive inference, theory of mind, and language—and find, in all cases, that similarities between animal and human abilities are small, dissimilarities large. There is no disparity between brain and mind. PMID:17717081

  4. Healthy children show gender differences in correlations between nonverbal cognitive ability and brain activation during visual perception.

    PubMed

    Asano, Kohei; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Thyreau, Benjamin; Asano, Michiko; Takeuchi, Hikaru; Kawashima, Ryuta

    2014-08-08

    Humans perceive textual and nontextual information in visual perception, and both depend on language. In childhood education, students exhibit diverse perceptual abilities, such that some students process textual information better and some process nontextual information better. These predispositions involve many factors, including cognitive ability and learning preference. However, the relationship between verbal and nonverbal cognitive abilities and brain activation during visual perception has not yet been examined in children. We used functional magnetic resonance imaging to examine the relationship between nonverbal and verbal cognitive abilities and brain activation during nontextual visual perception in large numbers of children. A significant positive correlation was found between nonverbal cognitive abilities and brain activation in the right temporoparietal junction, which is thought to be related to attention reorienting. This significant positive correlation existed only in boys. These findings suggested that male brain activation differed from female brain activation, and that this depended on individual cognitive processes, even if there was no gender difference in behavioral performance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI

    PubMed Central

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990

  6. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    PubMed

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  7. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice

    PubMed Central

    Madathil, Sindhu K.; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Ye, Ping; D’Ercole, A. Joseph; Saatman, Kathryn E.

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI. PMID:23826235

  8. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.

    PubMed

    Madathil, Sindhu K; Carlson, Shaun W; Brelsfoard, Jennifer M; Ye, Ping; D'Ercole, A Joseph; Saatman, Kathryn E

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.

  9. A Framework for Cognitive Interventions Targeting Everyday Memory Performance and Memory Self-efficacy

    PubMed Central

    McDougall, Graham J.

    2009-01-01

    The human brain has the potential for self-renewal through adult neurogenesis, which is the birth of new neurons. Neural plasticity implies that the nervous system can change and grow. This understanding has created new possibilities for cognitive enhancement and rehabilitation. However, as individuals age, they have decreased confidence, or memory self-efficacy, which is directly related to their everyday memory performance. In this article, a developmental account of studies about memory self-efficacy and nonpharmacologic cognitive intervention models is presented and a cognitive intervention model, called the cognitive behavioral model of everyday memory, is proposed. PMID:19065089

  10. Neuropsychiatric disorders and cognitive dysfunction in patients with Cushing's disease.

    PubMed

    Chen, Yu-fan; Li, Yun-feng; Chen, Xiao; Sun, Qing-fang

    2013-08-01

    To review the main neuropsychiatric disorders and cognitive deficits in patients with Cushing's disease (CD) and the associated pathophysiological mechanisms underlying CD. These mechanistic details may provide recommendations for preventing or treating the cognitive impairments and mood disorders in patients with CD. Data were obtained from papers on psychiatric and cognitive complications in CD published in English within the last 20 years. To perform the PubMed literature search, the following keywords were input: cushing's disease, cognitive, hippocampal, or glucocorticoids. Studies were selected if they contained data relevant to the topic addressed in the particular section. Because of the limited length of this article, we have frequently referenced recent reviews that contain a comprehensive amalgamation of literature rather than the actual source papers. Patients with active CD not only suffer from many characteristic clinical features, but also show some neuropsychiatric disorders and cognitive impairments. Among the psychiatric manifestations, the common ones are emotional instability, depressive disorder, anxious symptoms, impulsivity, and cognitive impairment. Irreversible effects of previous glucocorticoid (GC) excess on the central nervous system, such as hippocampal and the basal ganglia, is the most reasonable reason. Excess secretion of cortisol brings much structural and functional changes in hippocampal, such as changes in neurogenesis and morphology, signaling pathway, gene expression, and glutamate accumulation. Hippocampal volume loss can be found in most patients with CD, and decreased glucose utilization caused by GCs may lead to brain atrophy, neurogenesis impairment, inhibition of long-term potentiation, and decreased neurotrophic factors; these may also explain the mechanisms of GC-induced brain atrophy and hippocampal changes. Brain atrophy and hippocampal changes caused by excess secretion of cortisol are thought to play a significant pathophysiological role in the etiology of changes in cognitive function and psychiatric disturbances. The exact mechanisms by which GCs induce hippocampal volume loss are not very clear till now. So, further investigations into the mechanisms by which GCs affect the brain and the effective coping strategy are essential.

  11. The role of physical exercise in cognitive recovery after traumatic brain injury: A systematic review.

    PubMed

    Morris, Timothy; Gomes Osman, Joyce; Tormos Muñoz, Jose Maria; Costa Miserachs, David; Pascual Leone, Alvaro

    2016-11-22

    There is a growing body of evidence revealing exercise-induced effects on brain structure and cognitive function across the lifespan. Animal models of traumatic brain injury also suggest exercise is capable of modulating not only the pathophysiological changes following trauma but also the associated cognitive deficits. To evaluate the effect of physical exercise on cognitive impairment following traumatic brain injury in humans. A systematic search of the PubMed database was performed using the search terms "cognition" and "executive function, memory or attention", "traumatic brain injury" and "physical exercise". Adult human traumatic brain injury studies that assessed cognitive function as an outcome measure (primary or secondary) and used physical exercise as a treatment (single or combined) were assessed by two independent reviewers. Data was extracted under the guidance of the population intervention comparison outcome framework wherein, characteristics of included studies (exercise duration, intensity, combined or single intervention, control groups and cognitive measures) were collected, after which, methodological quality (Cochrane criteria) was assessed. A total of 240 citations were identified, but only 6 met our inclusion criteria (3 from search records, 3 from reference lists. Only a small number of studies have evaluated the effect of exercise on cognition following traumatic brain injury in humans, and of those, assessment of efficacy is difficult due to low methodological strength and a high risk of different types of bias. Evidence of an effect of physical exercise on cognitive recovery suggests further studies should explore this treatment option with greater methodological approaches. Recommendations to reduce risk of bias and methodological shortfalls are discussed and include stricter inclusion criteria to create homogenous groups and larger patient pools, more rigorous cognitive assessments and the study and reporting of additional and combined rehabilitation techniques.

  12. Study Protocol for a Randomized Controlled Trial Evaluating the Efficacy of an Evidence-Based iPad-App for Cognitive Rehabilitation in Patients with Primary Brain Tumors.

    PubMed

    van der Linden, Sophie Dorothee; Sitskoorn, Margriet Maria; Rutten, Geert-Jan Maria; Gehring, Karin

    2018-06-16

    Many patients with primary brain tumors suffer from cognitive deficits, which negatively impact their quality of life. However, cognitive rehabilitation programs for these patients are scarce. We developed an iPad-based cognitive rehabilitation program for brain tumor patients, which was based on our effective face-to-face cognitive rehabilitation program. After successful completion of a feasibility study, a randomized controlled trial has been started. To evaluate the immediate and long-term effects of the iPad-based program on cognitive performance and patient-reported outcome measures (PROMs) in patients with primary brain tumors in an early stage of the disease. Prior to surgery, patients with presumed low-grade glioma and meningioma are included. Before surgery and 3 mo after surgery, neuropsychological assessments are conducted. After the second neuropsychological assessment, patients are assigned to the intervention group or waiting-list control group. The intervention consists of psychoeducation, compensation training, and retraining. Patients are advised to spend 3 h per week on the program for 10 wk. Immediately after completion of the program and a half-year thereafter, postintervention assessments take place. Patients in the control group are offered the opportunity to follow the program after all study assessments. We expect that early cognitive rehabilitation has beneficial effects on cognitive performance and PROMs in brain tumor patients. The iPad-based program allows brain tumor patients to follow a cognitive rehabilitation program from their homes. Forthcoming results may contribute to further improvement of supportive care for brain tumor patients.

  13. Brain disease, connectivity, plasticity and cognitive therapy: A neurological view of mental disorders.

    PubMed

    Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E

    2018-04-01

    Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Association between brain activation (fMRI), cognition and school performance in extremely preterm and term born children.

    PubMed

    Griffiths, Silja Torvik; Aukland, Stein Magnus; Markestad, Trond; Eide, Geir Egil; Elgen, Irene; Craven, Alexander R; Hugdahl, Kenneth

    2014-10-01

    The purpose of the study was to investigate a possible association between brain activation in functional magnetic resonance imaging scans, cognition and school performance in extremely preterm children and term born controls. Twenty eight preterm and 28 term born children were scanned while performing a working memory/selective attention task, and school results from national standardized tests were collected. Brain activation maps reflected difference in cognitive skills but not in school performance. Differences in brain activation were found between children born preterm and at term, and between high and low performers in cognitive tests. However, the differences were located in different brain areas. The implication may be that lack of cognitive skills does not alone explain low performance due to prematurity. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  15. Plasticity-Based Adaptive Cognitive Remediation (PACR) for OIF/OEF Veterans: A Randomized Controlled Trial

    DTIC Science & Technology

    2015-10-01

    TERMS traumatic brain injury, tbi, concussion , persistent post- concussive symptoms, cognition, cognitive function, cognitive rehabilitation...veterans and active duty military personnel suffering from persistent post- concussive symptoms (PPCS) following mild traumatic brain injury (mTBI) at

  16. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial.

    PubMed

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Akitsuki, Yuko; Shigemune, Yayoi; Sekiguchi, Atsushi; Kotozaki, Yuka; Tsukiura, Takashi; Yomogida, Yukihito; Kawashima, Ryuta

    2012-01-01

    The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly. Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. UMIN Clinical Trial Registry 000002825.

  17. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    PubMed

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  < 0.01) mainly involved the orbitofrontal, parietal, and temporal cortices, as well as the basal ganglia. The brain connectivity network was progressively disrupted as cognitive impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  18. Patients with primary biliary cholangitis and fatigue present with depressive symptoms and selected cognitive deficits, but with normal attention performance and brain structure.

    PubMed

    Zenouzi, Roman; von der Gablentz, Janina; Heldmann, Marcus; Göttlich, Martin; Weiler-Normann, Christina; Sebode, Marcial; Ehlken, Hanno; Hartl, Johannes; Fellbrich, Anja; Siemonsen, Susanne; Schramm, Christoph; Münte, Thomas F; Lohse, Ansgar W

    2018-01-01

    In primary biliary cholangitis (PBC) fatigue is a major clinical challenge of unknown etiology. By demonstrating that fatigue in PBC is associated with an impaired cognitive performance, previous studies have pointed out the possibility of brain abnormalities underlying fatigue in PBC. Whether structural brain changes are present in PBC patients with fatigue, however, is unclear. To evaluate the role of structural brain abnormalities in PBC patients severely affected from fatigue we, therefore, performed a case-control cerebral magnetic resonance imaging (cMRI) study and correlated changes of white and grey brain matter with the cognitive and attention performance. 20 female patients with PBC and 20 female age-matched controls were examined in this study. The assessment of fatigue, psychological symptoms, cognitive and attention performance included clinical questionnaires, established cognition tests and a computerized test battery of attention performance. T1-weighted cMRI and diffusion tensor imaging (DTI) scans were acquired with a 3 Tesla scanner. Structural brain alterations were investigated with voxel-based morphometry (VBM) and DTI analyses. Results were correlated to the cognitive and attention performance. Compared to healthy controls, PBC patients had significantly higher levels of fatigue and associated psychological symptoms. Except for an impairment of verbal fluency, no cognitive or attention deficits were found in the PBC cohort. The VBM and DTI analyses revealed neither major structural brain abnormalities in the PBC cohort nor correlations with the cognitive and attention performance. Despite the high burden of fatigue and selected cognitive deficits, the attention performance of PBC patients appears to be comparable to healthy people. As structural brain alterations do not seem to be present in PBC patients with fatigue, fatigue in PBC must be regarded as purely functional. Future studies should evaluate, whether functional brain changes underlie fatigue in PBC.

  19. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Geronimo, A.; Simmons, Z.; Schiff, S. J.

    2016-04-01

    Objective. Patients with amyotrophic lateral sclerosis (ALS) may benefit from brain-computer interfaces (BCI), but the utility of such devices likely will have to account for the functional, cognitive, and behavioral heterogeneity of this neurodegenerative disorder. Approach. In this study, a heterogeneous group of patients with ALS participated in a study on BCI based on the P300 event related potential and motor-imagery. Results. The presence of cognitive impairment in these patients significantly reduced the quality of the control signals required to use these communication systems, subsequently impairing performance, regardless of progression of physical symptoms. Loss in performance among the cognitively impaired was accompanied by a decrease in the signal-to-noise ratio of task-relevant EEG band power. There was also evidence that behavioral dysfunction negatively affects P300 speller performance. Finally, older participants achieved better performance on the P300 system than the motor-imagery system, indicating a preference of BCI paradigm with age. Significance. These findings highlight the importance of considering the heterogeneity of disease when designing BCI augmentative and alternative communication devices for clinical applications.

  20. On the Character of Consciousness

    PubMed Central

    Annila, Arto

    2016-01-01

    The human brain is a particularly demanding system to infer its nature from observations. Thus, there is on one hand plenty of room for theorizing and on the other hand a pressing need for a rigorous theory. We apply statistical mechanics of open systems to describe the brain as a hierarchical system in consuming free energy in least time. This holistic tenet accounts for cellular metabolism, neuronal signaling, cognitive processes all together, or any other process by a formal equation of motion that extends down to the ultimate precision of one quantum of action. According to this general thermodynamic theory cognitive processes are no different by their operational and organizational principle from other natural processes. Cognition too will emerge and evolve along path-dependent and non-determinate trajectories by consuming free energy in least time to attain thermodynamic balance within the nervous system itself and with its surrounding systems. Specifically, consciousness can be ascribed to a natural process that integrates various neural networks for coherent consumption of free energy, i.e., for meaningful deeds. The whole hierarchy of integrated systems can be formally summed up to thermodynamic entropy. The holistic tenet provides insight to the character of consciousness also by acknowledging awareness in other systems at other levels of nature's hierarchy. PMID:27065819

  1. On the Character of Consciousness.

    PubMed

    Annila, Arto

    2016-01-01

    The human brain is a particularly demanding system to infer its nature from observations. Thus, there is on one hand plenty of room for theorizing and on the other hand a pressing need for a rigorous theory. We apply statistical mechanics of open systems to describe the brain as a hierarchical system in consuming free energy in least time. This holistic tenet accounts for cellular metabolism, neuronal signaling, cognitive processes all together, or any other process by a formal equation of motion that extends down to the ultimate precision of one quantum of action. According to this general thermodynamic theory cognitive processes are no different by their operational and organizational principle from other natural processes. Cognition too will emerge and evolve along path-dependent and non-determinate trajectories by consuming free energy in least time to attain thermodynamic balance within the nervous system itself and with its surrounding systems. Specifically, consciousness can be ascribed to a natural process that integrates various neural networks for coherent consumption of free energy, i.e., for meaningful deeds. The whole hierarchy of integrated systems can be formally summed up to thermodynamic entropy. The holistic tenet provides insight to the character of consciousness also by acknowledging awareness in other systems at other levels of nature's hierarchy.

  2. Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation.

    PubMed

    Matt, Stephanie M; Johnson, Rodney W

    2016-02-01

    Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The role of neuroimaging in the discovery of processing stages. A review.

    PubMed

    Mulder, G; Wijers, A A; Lange, J J; Buijink, B M; Mulder, L J; Willemsen, A T; Paans, A M

    1995-11-01

    In this contribution we show how neuroimaging methods can augment behavioural methods to discover processing stages. Event Related Brain Potentials (ERPs), Brain Electrical Source Analysis (BESA) and regional changes in cerebral blood flow (rCBF) do not necessarily require behavioural responses. With the aid of rCBF we are able to discover several cortical and subcortical brain systems (processors) active in selective attention and memory search tasks. BESA describes cortical activity with high temporal resolution in terms of a limited number of neural generators within these brain systems. The combination of behavioural methods and neuroimaging provides a picture of the functional architecture of the brain. The review is organized around three processors: the Visual, Cognitive and Manual Motor Processors.

  4. Watershed microinfarct pathology and cognition in older persons.

    PubMed

    Kapasi, Alifiya; Leurgans, Sue E; James, Bryan D; Boyle, Patricia A; Arvanitakis, Zoe; Nag, Sukriti; Bennett, David A; Buchman, Aron S; Schneider, Julie A

    2018-05-30

    Brain microinfarcts are common in aging and are associated with cognitive impairment. Anterior and posterior watershed border zones lie at the territories of the anterior, middle, and posterior cerebral arteries, and are more vulnerable to hypoperfusion than brain regions outside the watershed areas. However, little is known about microinfarcts in these regions and how they relate to cognition in aging. Participants from the Rush Memory and Aging Project, a community-based clinical-pathologic study of aging, underwent detailed annual cognitive evaluations. We examined 356 consecutive autopsy cases (mean age-at-death, 91 years [SD = 6.16]; 28% men) for microinfarcts from 3 watershed brain regions (2 anterior and 1 posterior) and 8 brain regions outside the watershed regions. Linear regression models were used to examine the association of cortical watershed microinfarcts with cognition, including global cognition and 5 cognitive domains. Microinfarcts in any region were present in 133 (37%) participants, of which 50 had microinfarcts in watershed regions. Persons with multiple microinfarcts in cortical watershed regions had lower global cognition (estimate = -0.56, standard error (SE) = 0.26, p = 0.03) and lower cognitive function in the specific domains of working memory (estimate = -0.58, SE = 0.27, p = 0.03) and visuospatial abilities (estimate = -0.57, SE = 0.27, p = 0.03), even after controlling for microinfarcts in other brain regions, demographics, and age-related pathologies. Neither the presence nor multiplicity of microinfarcts in brain regions outside the cortical watershed regions were related to global cognition or any of the 5 cognitive domains. These findings suggest that multiple microinfarcts in watershed regions contribute to age-related cognitive impairment. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Gut Microbiota-brain Axis

    PubMed Central

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  6. Modulation of cholinergic functions by serotonin and possible implications in memory: general data and focus on 5-HT(1A) receptors of the medial septum.

    PubMed

    Jeltsch-David, Hélène; Koenig, Julie; Cassel, Jean-Christophe

    2008-12-16

    Cholinergic systems were linked to cognitive processes like attention and memory. Other neurotransmitter systems having minor influence on cognitive functions - as shown by the weakness of the effects of their selective lesions - modulate cholinergic functions. The serotonergic system is such a system. Conjoined functional changes in cholinergic and serotonergic systems may have marked cognitive consequences [Cassel JC, Jeltsch H. Serotoninergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 1995;69(1):1-41; Steckler T, Sahgal A. The role of serotoninergic-cholinergic interactions in the mediation of cognitive behaviour. Behav Brain Res 1995;67:165-99]. A crucial issue in that concern is the identification of the neuroanatomical and neuropharmacological substrates where functional effects of serotonergic/cholinergic interactions originate. Approaches relying on lesions and intracerebral cell grafting, on systemic drug-cocktail injections, or even on intracerebral drug infusions represent the main avenues on which our knowledge about the role of serotonergic/cholinergic interactions has progressed. The present review will visit some of these avenues and discuss their contribution to what is currently known on the potential or established implication(s) into memory functions of serotonergic/cholinergic interactions. It will then focus on a brain region and a neuropharmacological substrate that have been poorly studied as regards serotonergic modulation of memory functions, namely the medial septum and its 5-HT(1A) receptors. Based on recent findings of our laboratory, we suggest that these receptors, located on both cholinergic and GABAergic septal neurons, take part in a mechanism that controls encoding, to some extent consolidation, but not retrieval, of hippocampal-dependent memories. This control, however, does not occur by the way of an exclusive action of serotonin on cholinergic neurons.

  7. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.

    PubMed

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational methodologies. Because early-life adversity is a powerful determinant of subsequent vulnerabilities to emotional and cognitive pathologies, understanding the underlying processes will have profound implications for the world's current and future children.

  8. Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies.

    PubMed

    Hung, Yuwen; Gaillard, Schuyler L; Yarmak, Pavel; Arsalidou, Marie

    2018-06-19

    Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions. © 2018 Wiley Periodicals, Inc.

  9. Coherence, causation, and the future of cognitive neuroscience research.

    PubMed

    Ramey, Christopher H; Chrysikou, Evangelia G

    2014-01-01

    Nachev and Hacker's conceptual analysis of the neural antecedents of voluntary action underscores the real danger of ignoring the meta-theoretical apparatus of cognitive neuroscience research. In this response, we temper certain claims (e.g., whether or not certain research questions are incoherent), consider a more extreme consequence of their argument against cognitive neuroscience (i.e., whether or not one can speak about causation with neural antecedents at all), and, finally, highlight recent methodological developments that exemplify cognitive neuroscientists' focus on studying the brain as a parallel, dynamic, and highly complex biological system.

  10. Cognitive theory and brain fact: Insights for the future of cognitive neuroscience. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Bowling, Daniel

    2014-09-01

    A central challenge in neuroscience is to understand the relationship between the mechanistic operation of the nervous system and the psychological phenomena we experience everyday (e.g., perception, memory, attention, emotion, and consciousness). Supported by revolutionary advances in technology, knowledge of neural mechanisms has grown dramatically over recent decades, but with few exceptions our understanding of how these mechanisms relate to psychological phenomena remains poor.

  11. Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods

    PubMed Central

    Daugherty, Ana M; Raz, Naftali

    2015-01-01

    Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology. PMID:26248580

  12. Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian

    2018-09-01

    Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.

  13. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  14. Emerging Trends in the Management of Brain Metastases from Non-small Cell Lung Cancer.

    PubMed

    Churilla, Thomas M; Weiss, Stephanie E

    2018-05-07

    To summarize current approaches in the management of brain metastases from non-small cell lung cancer (NSCLC). Local treatment has evolved from whole-brain radiotherapy (WBRT) to increasing use of stereotactic radiosurgery (SRS) alone for patients with limited (1-4) brain metastases. Trials have established post-operative SRS as an alternative to adjuvant WBRT following resection of brain metastases. Second-generation TKIs for ALK rearranged NSCLC have demonstrated improved CNS penetration and activity. Current brain metastasis trials are focused on reducing cognitive toxicity: hippocampal sparing WBRT, SRS for 5-15 metastases, pre-operative SRS, and use of systemic targeted agents or immunotherapy. The role for radiotherapy in the management of brain metastases is becoming better defined with local treatment shifting from WBRT to SRS alone for limited brain metastases and post-operative SRS for resected metastases. Further trials are warranted to define the optimal integration of newer systemic agents with local therapies.

  15. [Development of an integrative cognitive rehabilitation program for brain injured patients in the post-acute stage].

    PubMed

    Oh, Hyun Soo; Kim, Young Ran; Seo, Wha Sook; Seo, Yeon Ok

    2005-04-01

    This study was conducted to develop a comprehensive cognitive rehabilitation program that can be easily applied to brain injured patients by family members or nurses in community or hospital settings. A Systemic literature review design was used. Thirty-three related studies were reviewed. Based on the results of the literature review, the training tasks for attention were designated to enhancing 4 hierarchical areas, i.e., focused, selective, alternating, and divided attention. On the other hand, the memory rehabilitation tasks mainly consisted of mnemonic skills, such as the association method which helps patients memorize given information by linking together common attributes, the visual imagery method, and self-instruction method. The problem solving rehabilitation program included a task of games or plays which stimulated the patients' curiosity and interest. The training tasks for problem solving were to encourage the process of deriving reasonable solutions for a problematic situation resembling real problems that the patients were faced with in their everyday life. It is expected that the cognitive rehabilitation program developed from this study could help patients having difficulty in their every day life, due to a reduced cognitive ability resulting from brain injury, to effectively adapt to every day life.

  16. Cognition: the new frontier for nuts and berries.

    PubMed

    Pribis, Peter; Shukitt-Hale, Barbara

    2014-07-01

    The inclusion of nuts in the diet is associated with a decreased risk of coronary artery disease, hypertension, gallstones, diabetes, cancer, metabolic syndrome, and visceral obesity. Frequent consumption of berries seems to be associated with improved cardiovascular and cancer outcomes, improved immune function, and decreased recurrence of urinary tract infections; the consumption of nuts and berries is associated with reduction in oxidative damage, inflammation, vascular reactivity, and platelet aggregation, and improvement in immune functions. However, only recently have the effects of nut and berry consumption on the brain, different neural systems, and cognition been studied. There is growing evidence that the synergy and interaction of all of the nutrients and other bioactive components in nuts and berries can have a beneficial effect on the brain and cognition. Regular nut consumption, berry consumption, or both could possibly be used as an adjunctive therapeutic strategy in the treatment and prevention of several neurodegenerative diseases and age-related brain dysfunction. A number of animal and a growing number of human studies show that moderate-duration dietary supplementation with nuts, berry fruit, or both is capable of altering cognitive performance in humans, perhaps forestalling or reversing the effects of neurodegeneration in aging. © 2014 American Society for Nutrition.

  17. Integrative Understanding of Emergent Brain Properties, Quantum Brain Hypotheses, and Connectome Alterations in Dementia are Key Challenges to Conquer Alzheimer's Disease.

    PubMed

    Kuljiš, Rodrigo O

    2010-01-01

    The biological substrate for cognition remains a challenge as much as defining this function of living beings. Here, we examine some of the difficulties to understand normal and disordered cognition in humans. We use aspects of Alzheimer's disease and related disorders to illustrate how the wealth of information at many conceptually separate, even intellectually decoupled, physical scales - in particular at the Molecular Neuroscience versus Systems Neuroscience/Neuropsychology levels - presents a challenge in terms of true interdisciplinary integration towards a coherent understanding. These unresolved dilemmas include critically the as yet untested quantum brain hypothesis, and the embryonic attempts to develop and define the so-called connectome in humans and in non-human models of disease. To mitigate these challenges, we propose a scheme incorporating the vast array of scales of the space and time (space-time) manifold from at least the subatomic through cognitive-behavioral dimensions of inquiry, to achieve a new understanding of both normal and disordered cognition, that is essential for a new era of progress in the Generative Sciences and its application to translational efforts for disease prevention and treatment.

  18. Lifestyle Modulators of Neuroplasticity: How Physical Activity, Mental Engagement, and Diet Promote Cognitive Health during Aging.

    PubMed

    Phillips, Cristy

    2017-01-01

    The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors-including physical activity, cognitive engagement, and diet-are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.

  19. Lifestyle Modulators of Neuroplasticity: How Physical Activity, Mental Engagement, and Diet Promote Cognitive Health during Aging

    PubMed Central

    2017-01-01

    The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors—including physical activity, cognitive engagement, and diet—are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging. PMID:28695017

  20. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer’s Disease

    PubMed Central

    Cunnane, Stephen C.; Courchesne-Loyer, Alexandre; Vandenberghe, Camille; St-Pierre, Valérie; Fortier, Mélanie; Hennebelle, Marie; Croteau, Etienne; Bocti, Christian; Fulop, Tamas; Castellano, Christian-Alexandre

    2016-01-01

    We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer’s disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal for age. (ii) The regional deficit in brain glucose uptake is present in adults <40 years-old who have genetic or lifestyle risk factors for AD but in whom cognitive decline has not yet started. Examples include young adult carriers of presenilin-1 or apolipoprotein E4, and young adults with mild insulin resistance or with a maternal family history of AD. (iii) Regional brain glucose uptake is impaired in AD and mild cognitive impairment (MCI), but brain uptake of ketones (beta-hydroxybutyrate and acetoacetate), remains the same in AD and MCI as in cognitively healthy age-matched controls. These observations point to a brain fuel deficit which appears to be specific to glucose, precedes cognitive decline associated with AD, and becomes more severe as MCI progresses toward AD. Since glucose is the brain’s main fuel, we suggest that gradual brain glucose exhaustion is contributing significantly to the onset or progression of AD. (iv) Interventions that raise ketone availability to the brain improve cognitive outcomes in both MCI and AD as well as in acute experimental hypoglycemia. Ketones are the brain’s main alternative fuel to glucose and brain ketone uptake is still normal in MCI and in early AD, which would help explain why ketogenic interventions improve some cognitive outcomes in MCI and AD. We suggest that the brain energy deficit needs to be overcome in order to successfully develop more effective therapeutics for AD. At present, oral ketogenic supplements are the most promising means of achieving this goal. PMID:27458340

  1. Encoding and Decoding Models in Cognitive Electrophysiology

    PubMed Central

    Holdgraf, Christopher R.; Rieger, Jochem W.; Micheli, Cristiano; Martin, Stephanie; Knight, Robert T.; Theunissen, Frederic E.

    2017-01-01

    Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses. PMID:29018336

  2. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment.

    PubMed

    Gasparotto, Juciano; Girardi, Carolina S; Somensi, Nauana; Ribeiro, Camila T; Moreira, José C F; Michels, Monique; Sonai, Beatriz; Rocha, Mariane; Steckert, Amanda V; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe; Gelain, Daniel P

    2018-01-05

    Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202-phosphorylated Tau (p-Tau Ser-202 ) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, N ϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-Tau Ser-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-Tau Ser-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Cognitive Impairment in Folate-Deficient Rats Corresponds to Depleted Brain Phosphatidylcholine and Is Prevented by Dietary Methionine without Lowering Plasma Homocysteine12

    PubMed Central

    Troen, Aron M.; Chao, Wei-Hsun; Crivello, Natalia A.; D'Anci, Kristen E.; Shukitt-Hale, Barbara; Smith, Don E.; Selhub, Jacob; Rosenberg, Irwin H.

    2008-01-01

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction. PMID:19022979

  4. Neuronal histamine and the interplay of memory, reinforcement and emotions.

    PubMed

    Dere, E; Zlomuzica, A; De Souza Silva, M A; Ruocco, L A; Sadile, A G; Huston, J P

    2010-12-31

    The biogenic amine histamine is an important neurotransmitter-neuromodulator in the central nervous system that has been implicated in a variety of biological functions including thermo- and immunoregulation, food intake, seizures, arousal, anxiety, reward and memory. The review of the pertinent literature indicates that the majority of findings are compatible with the appraisal that the inhibition of histaminergic neurotransmission impairs learning and memory formation, decreases cortical activation and arousal, has a suppressive effect on behavioral measures of fear and anxiety, exponentiates the rewarding effects of drugs of abuse and intracranial brain stimulation. In contrast, the stimulation of histaminergic neurotransmission can ameliorate learning and memory impairments that are associated with various experimental deficit models and pathological conditions. Clinical investigations with patients suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's disease demonstrate pathological alterations in the brain's histaminergic system, which, in some cases are correlated with the severity of cognitive deficits. The role of the brain's histamine system in episodic memory formation and the potential of histamine-related drugs to ameliorate cognitive deficits in early stages of neurodegenerative diseases are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Aerobic Activity in the Healthy Elderly Is Associated with Larger Plasticity in Memory Related Brain Structures and Lower Systemic Inflammation

    PubMed Central

    Thielen, Jan-Willem; Kärgel, Christian; Müller, Bernhard W.; Rasche, Ina; Genius, Just; Bus, Boudewijn; Maderwald, Stefan; Norris, David G.; Wiltfang, Jens; Tendolkar, Indira

    2016-01-01

    Cognitive abilities decline over the time course of our life, a process, which may be mediated by brain atrophy and enhanced inflammatory processes. Lifestyle factors, such as regular physical activities have been shown to counteract those noxious processes and are assumed to delay or possibly even prevent pathological states, such as dementing disorders. Whereas the impact of lifestyle and immunological factors and their interactions on cognitive aging have been frequently studied, their effects on neural parameters as brain activation and functional connectivity are less well studied. Therefore, we investigated 32 healthy elderly individuals (60.4 ± 5.0 SD; range 52–71 years) with low or high level of self-reported aerobic physical activity at the time of testing. A higher compared to a lower level in aerobic physical activity was associated with an increased encoding related functional connectivity in an episodic memory network comprising mPFC, thalamus, hippocampus precuneus, and insula. Moreover, encoding related functional connectivity of this network was associated with decreased systemic inflammation, as measured by systemic levels of interleukin 6. PMID:28082894

  6. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  7. Awake surgery between art and science. Part II: language and cognitive mapping

    PubMed Central

    Talacchi, Andrea; Santini, Barbara; Casartelli, Marilena; Monti, Alessia; Capasso, Rita; Miceli, Gabriele

    Summary Direct cortical and subcortical stimulation has been claimed to be the gold standard for exploring brain function. In this field, efforts are now being made to move from intraoperative naming-assisted surgical resection towards the use of other language and cognitive tasks. However, before relying on new protocols and new techniques, we need a multi-staged system of evidence (low and high) relating to each step of functional mapping and its clinical validity. In this article we examine the possibilities and limits of brain mapping with the aid of a visual object naming task and various other tasks used to date. The methodological aspects of intraoperative brain mapping, as well as the clinical and operative settings, were discussed in Part I of this review. PMID:24139658

  8. Tuning down the hedonic brain: Cognitive load reduces neural responses to high-calorie food pictures in the nucleus accumbens.

    PubMed

    van Dillen, Lotte F; van Steenbergen, Henk

    2018-06-01

    The present research examined whether cognitive load modulates the neural processing of appetitive, high-calorie food stimuli. In a functional magnetic resonance imaging (fMRI) study, participants quickly categorized high-calorie and low-calorie food pictures versus object pictures as edible or inedible while they concurrently performed a digit-span task that varied between low and high cognitive load (memorizing six digits vs. one digit). In line with predictions, the digit-span task engaged the dorsolateral prefrontal cortex (DLPFC) when cognitive load was high compared to low. Moreover, exposure to high-calorie compared to low-calorie food pictures led to increased activation in the nucleus accumbens (NAcc), but only when cognitive load was low and not when it was high. In addition, connectivity analyses showed that load altered the functional coupling between NAcc and right DLPFC during presentation of the high-calorie versus low-calorie food pictures. Together, these findings indicate that loading the cognitive system moderates hedonic brain responses to high-calorie food pictures via interactions between NAcc and DLPFC. Our findings are consistent with the putative cognitive nature of food motivation. Implications for future research are discussed.

  9. NIRS Study of the Effects of Computerized Brain Training Games for Cognitive Rehabilitation of Major Depressive Disorder Patients in Remission: A Pilot Study.

    PubMed

    Payzieva, Shaira; Maxmudova, D

    2014-01-01

    We used functional Near-Infrared Spectroscopy (fNIRS) to estimate brain activity in Major Depressive Disorder (MDD) patients (in remission), while they played a computerized brain training games for cognitive rehabilitation. MDD is characterized by marked deterioration in affect as well as significant impairment in cognitive function. It was found, that depressed patients showed long-lasting impaired cognitive performance on cognitive demanding tasks despite significant improvement in the depression symptoms. Previous studies have shown that video games can improve cognitive functions. But assessment was made only with cognitive tests. The main objective of this research was to study the effects of brain training games on cognitive functions of MDD patients in remission with objective instrumental NIRS method. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) - Oxyprem (BORL, Zurich, Switzerland). Preliminary results are discussed.

  10. Beyond functional architecture in cognitive neuropsychology: a reply to Coltheart (2010).

    PubMed

    Plaut, David C; Patterson, Karalyn

    2010-01-01

    We (Patterson & Plaut, 2009) argued that cognitive neuropsychology has had a limited impact on cognitive science due to a nearly exclusive reliance on (a) single-case studies, (b) dissociations in cognitive performance, and (c) shallow, box-and-arrow theorizing, and we advocated adopting a case-series methodology, considering associations as well as dissociations, and employing explicit computational modeling in studying "how the brain does its cognitive business." In reply, Coltheart (2010) claims that our concern is misplaced because cognitive neuropsychology is concerned only with studying the mind, in terms of its "functional architecture," without regard to how this is implemented in the brain. In this response, we do not dispute his characterization of cognitive neuropsychology as it has typically been practiced over the last 40 years, but we suggest that our understanding of brain structure and function has advanced to the point where studying the mind without regard to the brain is unwise and perpetuates the field's isolation. Copyright © 2009 Cognitive Science Society, Inc.

  11. The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers

    PubMed Central

    Aliyari, Hamed; Kazemi, Masoomeh; Tekieh, Elaheh; Salehi, Maryam; Sahraei, Hedayat; Daliri, Mohammad Reza; Agaei, Hassan; Minaei-Bidgoli, Behrouz; Lashgari, Reza; Srahian, Nahid; Hadipour, Mohammad Mehdi; Salehi, Mostafa; Ranjbar Aghdam, Asghar

    2015-01-01

    Introduction: Computer games have attracted remarkable attentions in general publics with different cultures and their effects are subject of research by cognitive neuroscientists. In the present study, possible effects of the game Fifa 2015 on cognitive performance, hormonal levels, and electroencephalographic (EEG) signals were evaluated in young male volunteers. Methods: Thirty two subjects aged 20 years on average participated mutually in playing computer game Fifa 2015. Identification information and general knowledge about the game were collected. Saliva samples from the contestants were obtained before and after the competition. Perceptive and cognitive performance including the general cognitive health, response delay, attention maintenance, and mental fatigue were measured using PASAT test. EEG were recorded during the play using EEG device and analyzed later using QEEG. Simultaneously, the players’ behavior were recorded using a video camera. Saliva cortisol levels were assessed by ELISA kit. Data were analyzed by SPSS program. Results: The impact of playing computer games on cortisol concentration of saliva before and after the game showed that the amount of saliva plasma after playing the game has dropped significantly. Also the impact of playing computer games on mental health, before and after the game indicated that the number of correct answers has not changed significantly. This indicates that sustained attention has increased in participants after the game in comparison with before that. Also it is shown that mental fatigue measured by PASAT test, did not changed significantly after the game in comparison to before that. The impact of game on changes in brain waves showed that the subjects in high activity state during playing the game had higher power of the EEG signals in most of the channels in lower frequency bands in compared to normal state. Discussion: The present study showed that computer games can positively affect the stress system and the perceptual-cognitive system. Even though this impact was not significant in most cases, the changes in cognitive and hormonal test and also in brain waves were visible. Hence, due to the importance of this matter, it is necessary to create control systems in selecting the types of games for playing. PMID:26904177

  12. The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers.

    PubMed

    Aliyari, Hamed; Kazemi, Masoomeh; Tekieh, Elaheh; Salehi, Maryam; Sahraei, Hedayat; Daliri, Mohammad Reza; Agaei, Hassan; Minaei-Bidgoli, Behrouz; Lashgari, Reza; Srahian, Nahid; Hadipour, Mohammad Mehdi; Salehi, Mostafa; Ranjbar Aghdam, Asghar

    2015-07-01

    Computer games have attracted remarkable attentions in general publics with different cultures and their effects are subject of research by cognitive neuroscientists. In the present study, possible effects of the game Fifa 2015 on cognitive performance, hormonal levels, and electroencephalographic (EEG) signals were evaluated in young male volunteers. Thirty two subjects aged 20 years on average participated mutually in playing computer game Fifa 2015. Identification information and general knowledge about the game were collected. Saliva samples from the contestants were obtained before and after the competition. Perceptive and cognitive performance including the general cognitive health, response delay, attention maintenance, and mental fatigue were measured using PASAT test. EEG were recorded during the play using EEG device and analyzed later using QEEG. Simultaneously, the players' behavior were recorded using a video camera. Saliva cortisol levels were assessed by ELISA kit. Data were analyzed by SPSS program. The impact of playing computer games on cortisol concentration of saliva before and after the game showed that the amount of saliva plasma after playing the game has dropped significantly. Also the impact of playing computer games on mental health, before and after the game indicated that the number of correct answers has not changed significantly. This indicates that sustained attention has increased in participants after the game in comparison with before that. Also it is shown that mental fatigue measured by PASAT test, did not changed significantly after the game in comparison to before that. The impact of game on changes in brain waves showed that the subjects in high activity state during playing the game had higher power of the EEG signals in most of the channels in lower frequency bands in compared to normal state. The present study showed that computer games can positively affect the stress system and the perceptual-cognitive system. Even though this impact was not significant in most cases, the changes in cognitive and hormonal test and also in brain waves were visible. Hence, due to the importance of this matter, it is necessary to create control systems in selecting the types of games for playing.

  13. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  14. Adaptive Plasticity in the Healthy Language Network: Implications for Language Recovery after Stroke

    PubMed Central

    2016-01-01

    Across the last three decades, the application of noninvasive brain stimulation (NIBS) has substantially increased the current knowledge of the brain's potential to undergo rapid short-term reorganization on the systems level. A large number of studies applied transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in the healthy brain to probe the functional relevance and interaction of specific areas for different cognitive processes. NIBS is also increasingly being used to induce adaptive plasticity in motor and cognitive networks and shape cognitive functions. Recently, NIBS has been combined with electrophysiological techniques to modulate neural oscillations of specific cortical networks. In this review, we will discuss recent advances in the use of NIBS to modulate neural activity and effective connectivity in the healthy language network, with a special focus on the combination of NIBS and neuroimaging or electrophysiological approaches. Moreover, we outline how these results can be transferred to the lesioned brain to unravel the dynamics of reorganization processes in poststroke aphasia. We conclude with a critical discussion on the potential of NIBS to facilitate language recovery after stroke and propose a phase-specific model for the application of NIBS in language rehabilitation. PMID:27830094

  15. Understand the cogs to understand cognition.

    PubMed

    Marblestone, Adam H; Wayne, Greg; Kording, Konrad P

    2017-01-01

    Lake et al. suggest that current AI systems lack the inductive biases that enable human learning. However, Lake et al.'s proposed biases may not directly map onto mechanisms in the developing brain. A convergence of fields may soon create a correspondence between biological neural circuits and optimization in structured architectures, allowing us to systematically dissect how brains learn.

  16. Action and Language Mechanisms in the Brain: Data, Models and Neuroinformatics

    PubMed Central

    Bonaiuto, James J.; Bornkessel-Schlesewsky, Ina; Kemmerer, David; MacWhinney, Brian; Nielsen, Finn Årup; Oztop, Erhan

    2014-01-01

    We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience. PMID:24234916

  17. Brain Structure-function Couplings (FY11)

    DTIC Science & Technology

    2012-01-01

    influence time-evolving models of global brain function and dynamic changes in cognitive performance. Both structural and functional connections change on...Artifact Resistant Measure to Detect Cognitive EEG Activity During Locomotion. Journal of NeuroEngineering and Rehabilitation, submitted. 10...Specifically, identifying the communication between brain regions that occurs during tasks may provide information regarding the cognitive processes involved in

  18. Brain biomarkers based assessment of cognitive workload in pilots under various task demands.

    PubMed

    Gentili, Rodolphe J; Rietschel, Jeremy C; Jaquess, Kyle J; Lo, Li-Chuan; Prevost, Michael; Miller, Matt W; Mohler, Jessica M; Oh, Hyuk; Tan, Ying Ying; Hatfield, Bradley D

    2014-01-01

    Cognitive workload is an important element of cognitive-motor performance such as that exhibited during the piloting of an aircraft. Namely, an increase in task demands on the pilot can elevate cognitive information processing and, thus, the risk of human error. As such, there is a need to develop methods that reliably assess mental workload in pilots within operational settings. The present study contributes to this research goal by identifying physiological and brain biomarkers of cognitive workload and attentional reserve during a simulated aircraft piloting task under three progressive levels of challenge. A newly developed experimental method was employed by which electroencephalography (EEG) was acquired via a dry (i.e., gel-free sensors) system using few scalp sites. Self-reported responses to surveys and piloting performance indicators were analyzed. The findings revealed that as the challenge (task demands) increased, the perceived mental load increased, attentional reserve was attenuated, and task performance decreased. Such an increase in task demands was also reflected by changes in heart rate variability (HRV), as well as in the amplitude of the P300 component of event-related potentials to auditory probes, and in the spectral power of specific EEG frequency bands. This work provides a first step towards a long-term goal to develop a composite system of biomarkers for real-time cognitive workload assessment and state assessment of pilots in operational settings.

  19. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis.

    PubMed

    Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto

    2017-02-01

    Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial.

    PubMed

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta

    2013-01-01

    Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. UMIN Clinical Trial Registry 000005618.

  1. Brain Training Game Boosts Executive Functions, Working Memory and Processing Speed in the Young Adults: A Randomized Controlled Trial

    PubMed Central

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta

    2013-01-01

    Background Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. Methods We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Results and Discussion Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Conclusions Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. Trial Registration UMIN Clinical Trial Registry 000005618. PMID:23405164

  2. "Walking" through the sensory, cognitive, and temporal degradations of healthy aging.

    PubMed

    Paraskevoudi, Nadia; Balcı, Fuat; Vatakis, Argiro

    2018-05-09

    As we age, there is a wide range of changes in motor, sensory, cognitive, and temporal processing due to alterations in the functioning of the central nervous and musculoskeletal systems. Specifically, aging is associated with degradations in gait; altered processing of the individual sensory systems; modifications in executive control, memory, and attention; and changes in temporal processing. These age-related alterations are often inter-related and have been suggested to result from shared neural substrates. Additionally, the overlap between these brain areas and those controlling walking raises the possibility of facilitating performance in several tasks by introducing protocols that can efficiently target all four domains. Attempts to counteract these negative effects of normal aging have been focusing on research to prevent falls and/or enhance cognitive processes, while ignoring the potential multisensory benefits accompanying old age. Research shows that the aging brain tends to increasingly rely on multisensory integration to compensate for degradations in individual sensory systems and for altered neural functioning. This review covers the age-related changes in the above-mentioned domains and the potential to exploit the benefits associated with multisensory integration in aging so as to improve one's mobility and enhance sensory, cognitive, and temporal processing. © 2018 New York Academy of Sciences.

  3. Systemic klotho is associated with KLOTHO variation and predicts intrinsic cortical connectivity in healthy human aging.

    PubMed

    Yokoyama, Jennifer S; Marx, Gabe; Brown, Jesse A; Bonham, Luke W; Wang, Dan; Coppola, Giovanni; Seeley, William W; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H; Dubal, Dena B

    2017-04-01

    Cognitive decline is a major biomedical challenge as the global population ages. Elevated levels of the longevity factor klotho suppress aging, enhance cognition, and promote synaptic plasticity and neural resilience against aging and Alzheimer's disease (AD)-related pathogenic proteins. Here, we examined the relationship between human genetic variants of KLOTHO and systemic klotho levels - and assessed neuroanatomic correlates of serum klotho in a cohort of healthy older adults. Serum klotho levels were increased with KL-VS heterozygosity, as anticipated. We report, for the first time, that serum klotho levels were paradoxically decreased with KL-VS homozygosity. Further, we found that higher serum klotho levels were associated with measures of greater intrinsic connectivity in key functional networks of the brain vulnerable to aging and AD such as the fronto-parietal and default mode networks. Our findings suggest that elevated klotho promotes a resilient brain, possibly through increased network connectivity of critical brain regions.

  4. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application.

    PubMed

    Zahodne, Laura B; Manly, Jennifer J; Brickman, Adam M; Narkhede, Atul; Griffith, Erica Y; Guzman, Vanessa A; Schupf, Nicole; Stern, Yaakov

    2015-10-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. Copyright © 2015. Published by Elsevier Ltd.

  5. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application

    PubMed Central

    Zahodne, Laura B.; Manly, Jennifer J.; Brickman, Adam M.; Narkhede, Atul; Griffith, Erica Y.; Guzman, Vanessa A.; Schupf, Nicole; Stern, Yaakov

    2016-01-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. PMID:26348002

  6. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  7. Representational geometry: integrating cognition, computation, and the brain

    PubMed Central

    Kriegeskorte, Nikolaus; Kievit, Rogier A.

    2013-01-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. PMID:23876494

  8. Study on a Real-Time BEAM System for Diagnosis Assistance Based on a System on Chips Design

    PubMed Central

    Sung, Wen-Tsai; Chen, Jui-Ho; Chang, Kung-Wei

    2013-01-01

    As an innovative as well as an interdisciplinary research project, this study performed an analysis of brain signals so as to establish BrainIC as an auxiliary tool for physician diagnosis. Cognition behavior sciences, embedded technology, system on chips (SOC) design and physiological signal processing are integrated in this work. Moreover, a chip is built for real-time electroencephalography (EEG) processing purposes and a Brain Electrical Activity Mapping (BEAM) system, and a knowledge database is constructed to diagnose psychosis and body challenges in learning various behaviors and signals antithesis by a fuzzy inference engine. This work is completed with a medical support system developed for the mentally disabled or the elderly abled. PMID:23681095

  9. Exploring the Use of Cognitive Intervention for Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Missiuna, Cheryl; DeMatteo, Carol; Hanna, Steven; Mandich, Angela; Law, Mary; Mahoney, William; Scott, Louise

    2010-01-01

    Introduction: Children with acquired brain injury (ABI) often experience cognitive, motor, and psychosocial deficits that affect participation in everyday activities. Cognitive Orientation to Daily Occupational Performance (CO-OP) is an individualized treatment that teaches cognitive strategies necessary to support successful performance.…

  10. Emergence of system roles in normative neurodevelopment

    PubMed Central

    Gu, Shi; Satterthwaite, Theodore D.; Medaglia, John D.; Yang, Muzhi; Gur, Raquel E.; Gur, Ruben C.; Bassett, Danielle S.

    2015-01-01

    Adult human cognition is supported by systems of brain regions, or modules, that are functionally coherent at rest and collectively activated by distinct task requirements. However, an understanding of how the formation of these modules supports evolving cognitive capabilities has not been delineated. Here, we quantify the formation of network modules in a sample of 780 youth (aged 8–22 y) who were studied as part of the Philadelphia Neurodevelopmental Cohort. We demonstrate that the brain’s functional network organization changes in youth through a process of modular evolution that is governed by the specific cognitive roles of each system, as defined by the balance of within- vs. between-module connectivity. Moreover, individual variability in these roles is correlated with cognitive performance. Collectively, these results suggest that dynamic maturation of network modules in youth may be a critical driver for the development of cognition. PMID:26483477

  11. Brain Metastases Treatment Worsens Cognitive Decline

    Cancer.gov

    In some patients with cancer that has spread to the brain, whole brain radiation following radiosurgery causes more severe cognitive decline and does not improve survival compared with radiosurgery alone, a new study has found.

  12. Brain and Cognitive Reserve: Translation via Network Control Theory

    PubMed Central

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2017-01-01

    Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411

  13. Optimization of choline administration regimen for correction of cognitive functions in rats after brain injury.

    PubMed

    Guseva, M V; Kamenskii, A A; Gusev, V B

    2013-06-01

    Choline diet promotes improvement of the brain cognitive functions in rats with moderate-to-severe traumatic brain injury. In previous studies, the rats received choline being standard (0.2%) or choline-supplemented (2%) diet for 2 weeks prior to and 2 weeks after experimental brain injury. To the end of the experiments (in 4 weeks), the post-traumatic disturbances in the cognitive functions were observed in both groups, although they were less pronounced than in the rats kept on the choline-supplemented diet. Based on original mathematical model, this paper proposes a method to calculate the most efficient use of choline to correct the brain cognitive functions. In addition to evaluating the cognitive functions, the study assessed expression of α7 nicotinic acetylcholine receptors, the amount of consumed food and water, and the dynamics of body weight.

  14. Space Radiation and the Brain

    NASA Astrophysics Data System (ADS)

    Hampson, R. E.

    Solar and cosmic radiation pose a number of physiological challenges to human spaceflight outside the protective region of Earth's magnetosphere. Aside from well-described effects of radiation on the blood-forming tissues of the hematopoietic system, there is increasing evidence of direct effects of radiation on the brain as evidenced by studies showing longitudinal decline in memory and cognitive function following radiation specifically directed at brain tissue. These indications strengthen the need to more fully research effects of radiation - particular those components associated with solar wind and galactic cosmic radiation - on the nervous system of mammals from rodents to humans.

  15. Cognitive impairment in neuromyelitis optica spectrum disorders: A comparison of the Wechsler Adult Intelligence Scale-III and the Wechsler Memory Scale Revised with the Rao Brief Repeatable Neuropsychological Battery.

    PubMed

    Fujimori, Juichi; Nakashima, Ichiro; Baba, Toru; Meguro, Yuko; Ogawa, Ryo; Fujihara, Kazuo

    2017-12-01

    Approximately 55% of patients with neuromyelitis optica spectrum disorder (NMOSD) show cognitive impairment as evaluated using the Rao Brief Repeatable Neuropsychological Battery (BRBN), but this frequency appears to be higher than the frequency of specific brain lesions in NMOSD. We studied whether cognitive impairment could be observed in NMOSD patients with no or minor non-specific brain lesions. We evaluated cognitive function in 12 NMOSD and 14 MS patients using the Wechsler Adult Intelligence Scale-III (WAIS-III), the Wechsler Memory Scale-Revised (WMS-R), and the BRBN. We judged as cognitively impaired patients whose scores were below the average by 2 standard deviations or greater in 2 or more cognitive domains. Cognitive impairment was observed in 5 MS patients (35.7%) and in the only NMOSD patient (8.3%) with symptomatic brain lesions, but not in the other NMOSD patients who had no or minor non-specific brain lesions. Meanwhile, 5 NMOSD (41.7%) and 4 MS (28.6%) patients who had normal cognition according to the WAIS-III and WMS-R were assessed as cognitively impaired by the BRBN (which is not standardized for age). Cognitive function in NMOSD patients with no or mild non-specific brain lesions was preserved according to the WAIS-III and WMS-R.

  16. Archeological insights into hominin cognitive evolution.

    PubMed

    Wynn, Thomas; Coolidge, Frederick L

    2016-07-01

    How did the human mind evolve? How and when did we come to think in the ways we do? The last thirty years have seen an explosion in research related to the brain and cognition. This research has encompassed a range of biological and social sciences, from epigenetics and cognitive neuroscience to social and developmental psychology. Following naturally on this efflorescence has been a heightened interest in the evolution of the brain and cognition. Evolutionary scholars, including paleoanthropologists, have deployed the standard array of evolutionary methods. Ethological and experimental evidence has added significantly to our understanding of nonhuman brains and cognition, especially those of nonhuman primates. Studies of fossil brains through endocasts and sophisticated imaging techniques have revealed evolutionary changes in gross neural anatomy. Psychologists have also gotten into the game through application of reverse engineering to experimentally based descriptions of cognitive functions. For hominin evolution, there is another rich source of evidence of cognition, the archeological record. Using the methods of Paleolithic archeology and the theories and models of cognitive science, evolutionary cognitive archeology documents developments in the hominin mind that would otherwise be inaccessible. © 2016 Wiley Periodicals, Inc.

  17. [Sex differentiation of central nervous system--brain of man and woman].

    PubMed

    Arai, Yasumasa

    2004-02-01

    Sex differentiation of human brain is mostly dependent on the prenatal exposure to androgen(testosterone). Congenital aromatase deficiency does not disturb male brain development in men. This is quite different from experimental evidence from rodents whose brains need intraneuronal aromatization from androgen to estrogen to induce sex differentiation. There is evidence for male-female differences in brain structures. Some of them(INHA-3) appear to be related with sexual orientation. The other(BNST) might participate in forming gender-identity. In addition, sexually dimorphic features are recognized in some cognitive activities. The possible involvement of genetic factors in human brain sex differentiation is also discussed.

  18. Impairment of the glymphatic system after diabetes.

    PubMed

    Jiang, Quan; Zhang, Li; Ding, Guangliang; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Li, Lian; Sadry, Neema; Nedergaard, Maiken; Chopp, Michael; Zhang, Zhenggang

    2017-04-01

    The glymphatic system has recently been shown to clear brain extracellular solutes and abnormalities in glymphatic clearance system may contribute to both initiation and progression of neurological diseases. Despite that diabetes is known as a risk factor for vascular diseases, little is known how diabetes affects the glymphatic system. The current study is the first investigation of the effect of diabetes on the glymphatic system and the link between alteration of glymphatic clearance and cognitive impairment in Type-2 diabetes mellitus rats. MRI analysis revealed that clearance of cerebrospinal fluid contrast agent Gd-DTPA from the interstitial space was slowed by a factor of three in the hippocampus of Type-2 diabetes mellitus rats compared to the non-DM rats and confirmed by florescence imaging analysis. Cognitive deficits detected by behavioral tests were highly and inversely correlated to the retention of Gd-DTPA contrast and fluorescent tracer in the hippocampus of Type-2 diabetes mellitus rats. Type-2 diabetes mellitus suppresses clearance of interstitial fluid in the hippocampus and hypothalamus, suggesting that an impairment of the glymphatic system contributes to Type-2 diabetes mellitus-induced cognitive deficits. Whole brain MRI provides a sensitive, non-invasive tool to quantitatively evaluate cerebrospinal fluid and interstitial fluid exchange in Type-2 diabetes mellitus and possibly in other neurological disorders, with potential clinical application.

  19. Impairment of the glymphatic system after diabetes

    PubMed Central

    Zhang, Li; Ding, Guangliang; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Li, Lian; Sadry, Neema; Nedergaard, Maiken; Chopp, Michael; Zhang, Zhenggang

    2016-01-01

    The glymphatic system has recently been shown to clear brain extracellular solutes and abnormalities in glymphatic clearance system may contribute to both initiation and progression of neurological diseases. Despite that diabetes is known as a risk factor for vascular diseases, little is known how diabetes affects the glymphatic system. The current study is the first investigation of the effect of diabetes on the glymphatic system and the link between alteration of glymphatic clearance and cognitive impairment in Type-2 diabetes mellitus rats. MRI analysis revealed that clearance of cerebrospinal fluid contrast agent Gd-DTPA from the interstitial space was slowed by a factor of three in the hippocampus of Type-2 diabetes mellitus rats compared to the non-DM rats and confirmed by florescence imaging analysis. Cognitive deficits detected by behavioral tests were highly and inversely correlated to the retention of Gd-DTPA contrast and fluorescent tracer in the hippocampus of Type-2 diabetes mellitus rats. Type-2 diabetes mellitus suppresses clearance of interstitial fluid in the hippocampus and hypothalamus, suggesting that an impairment of the glymphatic system contributes to Type-2 diabetes mellitus-induced cognitive deficits. Whole brain MRI provides a sensitive, non-invasive tool to quantitatively evaluate cerebrospinal fluid and interstitial fluid exchange in Type-2 diabetes mellitus and possibly in other neurological disorders, with potential clinical application. PMID:27306755

  20. Brain volume change and cognitive trajectories in aging.

    PubMed

    Fletcher, Evan; Gavett, Brandon; Harvey, Danielle; Farias, Sarah Tomaszewski; Olichney, John; Beckett, Laurel; DeCarli, Charles; Mungas, Dan

    2018-05-01

    Examine how longitudinal cognitive trajectories relate to brain baseline measures and change in lobar volumes in a racially/ethnically and cognitively diverse sample of older adults. Participants were 460 older adults enrolled in a longitudinal aging study. Cognitive outcomes were measures of episodic memory, semantic memory, executive function, and spatial ability derived from the Spanish and English Neuropsychological Assessment Scales (SENAS). Latent variable multilevel modeling of the four cognitive outcomes as parallel longitudinal processes identified intercepts for each outcome and a second order global change factor explaining covariance among the highly correlated slopes. We examined how baseline brain volumes (lobar gray matter, hippocampus, and white matter hyperintensity) and change in brain volumes (lobar gray matter) were associated with cognitive intercepts and global cognitive change. Lobar volumes were dissociated into global and specific components using latent variable methods. Cognitive change was most strongly associated with brain gray matter volume change, with strong independent effects of global gray matter change and specific temporal lobe gray matter change. Baseline white matter hyperintensity and hippocampal volumes had significant incremental effects on cognitive decline beyond gray matter change. Baseline lobar gray matter was related to cognitive decline, but did not contribute beyond gray matter change. Cognitive decline was strongly influenced by gray matter volume change and, especially, temporal lobe change. The strong influence of temporal lobe gray matter change on cognitive decline may reflect involvement of temporal lobe structures that are critical for late life cognitive health but also are vulnerable to diseases of aging. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Radiation exposure prior to traumatic brain injury induces responses that differ as a function of animal age

    PubMed Central

    2014-01-01

    Purpose: Uncontrolled radiation exposure due to radiological terrorism, industrial accidents or military circumstances is a continuing threat for the civilian population. Age plays a major role in the susceptibility to radiation; younger children are at higher risk of developing cognitive deterioration when compared to adults. Our objective was to determine if an exposure to radiation affected the vulnerability of the juvenile hippocampus to a subsequent moderate traumatic injury. Materials and methods: Three-week-old (juvenile) and eight-week-old young adult C57BL/J6 male mice received whole body cesium-137 (137Cs) irradiation with 4 gray (Gy). One month later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Two months post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water-maze. After cognitive testing, animals were euthanized and their brains frozen for immunohistochemical assessment of activated microglia and neurogenesis in the hippocampal dentate gyrus. Results: All animals were able to learn the water maze task; however, treatment effects were seen when spatial memory retention was assessed. Animals that received irradiation as juveniles followed by a moderate traumatic brain injury one month later did not show spatial memory retention, i.e., were cognitively impaired. In contrast, all groups of animals that were treated as adults showed spatial memory retention in the probe trials. Conclusion: Although the mechanisms involved are not clear, our results suggest that irradiation enhanced a young animal's vulnerability to develop cognitive injury following a subsequent traumatic injury. PMID:24164494

  2. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    PubMed

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  3. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    PubMed

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P < 0.01) associated with percentage total brain volume in ICV measured without adjusting for skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Sleep-disordered breathing, brain volume, and cognition in older individuals with heart failure.

    PubMed

    Moon, Chooza; Melah, Kelsey E; Johnson, Sterling C; Bratzke, Lisa C

    2018-06-19

    Sleep-disordered breathing is common in individuals with heart failure and may contribute to changes in the brain and decreased cognition. However, limited research has explored how the apnea-hypopnea index contributes to brain structure and cognition in this population. The aims of this study were to explore how the apnea-hypopnea index is associated with brain volume and cognition in heart failure patients. Data of 28 heart failure patients (mean age = 67.93; SD = 5.78) were analyzed for this cross-sectional observational study. We evaluated the apnea-hypopnea index using a portable multichannel sleep-monitoring device. All participants were scanned using 3.0 Tesla magnetic resonance imaging and neuropsychological tests. Brain volume was evaluated using a voxel-based morphometry method with T1-weighted images. We used multiple regressions to analyze how the apnea-hypopnea index is associated with brain volume and cognition. We found an inverse association between apnea-hypopnea index scores and white matter volume (β = -0.002, p = 0.026), but not in gray matter volume (β = -0.001, p = 0.237). Higher apnea-hypopnea index was associated with reduced regional gray and white matter volume (p < 0.001, uncorrected). Cognitive scores were not associated with the apnea-hypopnea index (p-values were >0.05). Findings from this study provide exploratory evidence that higher apnea-hypopnea index may be associated with greater brain volume reduction in heart failure patients. Future studies are needed to establish the relationship between sleep-disordered breathing, brain volume, and cognition in heart failure samples. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  5. Driving working memory with frequency-tuned noninvasive brain stimulation.

    PubMed

    Albouy, Philippe; Baillet, Sylvain; Zatorre, Robert J

    2018-04-29

    Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches. © 2018 New York Academy of Sciences.

  6. Pharmacologic approaches to cerebral aging and neuroplasticity: insights from the stroke model.

    PubMed

    Chollet, François

    2013-03-01

    Brain plasticity is an intrinsic characteristic of the nervous system that allows continuous remodeling of brain functions in pathophysiological conditions. Although normal aging is associated with morphological modifications and decline of cerebral functions, brain plasticity is at least partially preserved in elderly individuals. A growing body of evidence supports the notion that cognitive enrichment and aerobic training induce a dynamic reorganization of higher cerebral functions, thereby helping to maintain operational skills in the elderly and reducing the incidence of dementia. The stroke model clearly shows that spontaneous brain plasticity exists after a lesion, even in old patients, and that it can be modulated through external factors like rehabilitation and drugs. Whether drugs can be used with the aim of modulating the effects of physical training or cognitive stimulation in healthy aged people has not been addressed until now. The risk:benefit ratio will be the key question with regard to the ethical aspect of this challenge. We review in this article the main aspects of human brain plasticity as shown in patients with stroke, the drug modulation of brain plasticity and its consequences on recovery, and finally we address the question of the influence of aging on brain plasticity.

  7. Waveguide Modulator for Interference Tolerant Functional Near Infrared Spectrometer (fNIRS)

    NASA Technical Reports Server (NTRS)

    Walton, Joanne; Tin, Padetha; Mackey, Jeffrey

    2017-01-01

    Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew coordination. Safety can be improved by monitoring and predicting these cognitive states in a non-intrusive manner and designing mitigation strategies. Measuring hemoglobin concentration changes in the brain with functional Near Infrared Spectroscopy is a promising technique for monitoring cognitive state and optimizing human performance during both space and aviation operations. A compact, wearable fNIRS system would provide an innovative early warning system during long duration missions to detect and prevent vigilance decrements in pilots and astronauts. This effort focused on developing a waveguide modulator for use in a fNIRS system.

  8. Neuropsychological and FDG-PET profiles in VGKC autoimmune limbic encephalitis.

    PubMed

    Dodich, Alessandra; Cerami, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Alongi, Pierpaolo; Crespi, Chiara; Canessa, Nicola; Andreetta, Francesca; Falini, Andrea; Cappa, Stefano F; Perani, Daniela

    2016-10-01

    Limbic encephalitis (LE) is characterized by an acute or subacute onset with memory impairments, confusional state, behavioral disorders, variably associated with seizures and dystonic movements. It is due to inflammatory processes that selectively affect the medial temporal lobe structures. Voltage-gate potassium channel (VGKC) autoantibodies are frequently observed. In this study, we assessed at the individual level FDG-PET brain metabolic dysfunctions and neuropsychological profiles in three autoimmune LE cases seropositive for neuronal VGKC-complex autoantibodies. LGI1 and CASPR2 potassium channel complex autoantibody subtyping was performed. Cognitive abilities were evaluated with an in-depth neuropsychological battery focused on episodic memory and affective recognition/processing skills. FDG-PET data were analyzed at single-subject level according to a standardized and validated voxel-based Statistical Parametric Mapping (SPM) method. Patients showed severe episodic memory and fear recognition deficits at the neuropsychological assessment. No disorder of mentalizing processing was present. Variable patterns of increases and decreases of brain glucose metabolism emerged in the limbic structures, highlighting the pathology-driven selective vulnerability of this system. Additional involvement of cortical and subcortical regions, particularly in the sensorimotor system and basal ganglia, was found. Episodic memory and fear recognition deficits characterize the cognitive profile of LE. Commonalities and differences may occur in the brain metabolic patterns. Single-subject voxel-based analysis of FDG-PET imaging could be useful in the early detection of the metabolic correlates of cognitive and non-cognitive deficits characterizing LE condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cerebral glucose uptake in patients with chronic mental and cognitive sequelae following a single blunt mild TBI without visible brain lesions.

    PubMed

    Komura, Akifumi; Kawasaki, Tomohiro; Yamada, Yuichi; Uzuyama, Shiho; Asano, Yoshitaka; Shinoda, Jun

    2018-06-19

    The aim of this study is to investigate glucose uptake on FDG-PET in patients with chronic mental and cognitive symptoms following a single blunt mild traumatic brain injury (TBI) and without visible brain lesions on CT/MRI. Eighty-nine consecutive patients (mean age 43.8±10.75) who had a single blunt mild TBI from a traffic accident and suffering from chronic mental and cognitive symptoms without visible brain lesions on CT/MRI were enrolled in the study. Patients underwent FDG-PET imaging, and the mean interval between the TBI and FDG-PET was 50.0 months. The Wechsler Adult Intelligence Scale version III testing was performed within one month of the FDG-PET. A control group consisting of 93 healthy adult volunteers (mean age 42.2±14.3 years) also underwent FDG-PET. The glucose uptake pattern from FDG-PET in the patient group was compared to that from normal controls using statistical parametric mapping. Glucose uptake was significantly decreased in the bilateral prefrontal area and significantly increased around the limbic system in the patient group compared to normal controls. This topographical pattern of glucose uptake is different from that reported previously in patients with diffuse axonal injury (DAI), but may be similar to that seen in patients with major depression disorder. These results suggest that the pathological mechanism causing chronic mental and cognitive symptoms in patients with a single blunt mild TBI and without visible brain lesions might be different from that due to primary axonopathy in patients with DAI.

  10. Adaptive emotional memory: the key hippocampal-amygdalar interaction.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Richter-Levin, Gal; Calandreau, Ludovic

    2015-01-01

    For centuries philosophical and clinical studies have emphasized a fundamental dichotomy between emotion and cognition, as, for instance, between behavioral/emotional memory and explicit/representative memory. However, the last few decades cognitive neuroscience have highlighted data indicating that emotion and cognition, as well as their underlying neural networks, are in fact in close interaction. First, it turns out that emotion can serve cognition, as exemplified by its critical contribution to decision-making or to the enhancement of episodic memory. Second, it is also observed that reciprocally cognitive processes as reasoning, conscious appraisal or explicit representation of events can modulate emotional responses, like promoting or reducing fear. Third, neurobiological data indicate that reciprocal amygdalar-hippocampal influences underlie such mutual regulation of emotion and cognition. While supporting this view, the present review discusses experimental data, obtained in rodents, indicating that the hippocampal and amygdalar systems not only regulate each other and their functional outcomes, but also qualify specific emotional memory representations through specific activations and interactions. Specifically, we review consistent behavioral, electrophysiological, pharmacological, biochemical and imaging data unveiling a direct contribution of both the amygdala and hippocampal-septal system to the identification of the predictor of a threat in different situations of fear conditioning. Our suggestion is that these two brain systems and their interplay determine the selection of relevant emotional stimuli, thereby contributing to the adaptive value of emotional memory. Hence, beyond the mutual quantitative regulation of these two brain systems described so far, we develop the idea that different activations of the hippocampus and amygdala, leading to specific configurations of neural activity, qualitatively impact the formation of emotional memory representations, thereby producing either adaptive or maladaptive fear memories.

  11. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response

    PubMed Central

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2016-01-01

    The influence of fragrances such as perfumes and room fresheners on the psychophysiological activities of humans has been known for a long time, and its significance is gradually increasing in the medicinal and cosmetic industries. A fragrance consists of volatile chemicals with a molecular weight of less than 300 Da that humans perceive through the olfactory system. In humans, about 300 active olfactory receptor genes are devoted to detecting thousands of different fragrance molecules through a large family of olfactory receptors of a diverse protein sequence. The sense of smell plays an important role in the physiological effects of mood, stress, and working capacity. Electrophysiological studies have revealed that various fragrances affected spontaneous brain activities and cognitive functions, which are measured by an electroencephalograph (EEG). The EEG is a good temporal measure of responses in the central nervous system and it provides information about the physiological state of the brain both in health and disease. The EEG power spectrum is classified into different frequency bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz), and each band is correlated with different features of brain states. A quantitative EEG uses computer software to provide the topographic mapping of the brain activity in frontal, temporal, parietal and occipital brain regions. It is well known that decreases of alpha and beta activities and increases of delta and theta activities are associated with brain pathology and general cognitive decline. In the last few decades, many scientific studies were conducted to investigate the effect of inhalation of aroma on human brain functions. The studies have suggested a significant role for olfactory stimulation in the alteration of cognition, mood, and social behavior. This review aims to evaluate the available literature regarding the influence of fragrances on the psychophysiological activities of humans with special reference to EEG changes. PMID:27916830

  12. A decade of changes in brain volume and cognition.

    PubMed

    Aljondi, Rowa; Szoeke, Cassandra; Steward, Chris; Yates, Paul; Desmond, Patricia

    2018-05-09

    Brain atrophy can occur several decades prior to onset of cognitive impairments. However, few longitudinal studies have examined the relationship between brain volume changes and cognition over a long follow-up period in healthy elderly women. In the present study we investigate the relationship between whole brain and hippocampal atrophy rates and longitudinal changes in cognition, including verbal episodic memory and executive function, in older women. We also examine whether baseline brain volume predicts subsequent changes in cognitive performance over a 10-year period. A total of 60 individuals from the population-based Women's Healthy Ageing Project with a mean age at baseline of 59 years underwent 3T MRI. Of these, 40 women completed follow-up cognitive assessments, 23 of whom had follow-up MRI scans. Linear regression analysis was used to examine the relationship between brain atrophy and changes in verbal episodic memory and executive function over a 10-year period. The results show that baseline measurements of frontal and temporal grey matter volumes predict changes in verbal episodic memory performance, whereas hippocampal volume at baseline is associated with changes in executive function performance over a 10-year period of follow-ups. In addition, higher whole brain and hippocampal atrophy rates are correlated with a decline in verbal episodic memory. These findings indicate that in addition to atrophy rate, smaller regional grey matter volumes even 10 years prior is associated with increased rates of cognitive decline. This study suggests useful neuroimaging biomarkers for the prediction of cognitive decline in healthy elderly women.

  13. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  14. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain.

    PubMed

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas

    2013-01-21

    The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Nicotine and the adolescent brain

    PubMed Central

    Yuan, Menglu; Cross, Sarah J; Loughlin, Sandra E; Leslie, Frances M

    2015-01-01

    Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse. PMID:26018031

  16. Long-term cognitive effects of human stem cell transplantation in the irradiated brain.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L

    2014-09-01

    Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function.

  17. Three Research Strategies of Neuroscience and the Future of Legal Imaging Evidence.

    PubMed

    Jun, Jinkwon; Yoo, Soyoung

    2018-01-01

    Neuroscientific imaging evidence (NIE) has become an integral part of the criminal justice system in the United States. However, in most legal cases, NIE is submitted and used only to mitigate penalties because the court does not recognize it as substantial evidence, considering its lack of reliability. Nevertheless, we here discuss how neuroscience is expected to improve the use of NIE in the legal system. For this purpose, we classified the efforts of neuroscientists into three research strategies: cognitive subtraction, the data-driven approach, and the brain-manipulation approach. Cognitive subtraction is outdated and problematic; consequently, the court deemed it to be an inadequate approach in terms of legal evidence in 2012. In contrast, the data-driven and brain manipulation approaches, which are state-of-the-art approaches, have overcome the limitations of cognitive subtraction. The data-driven approach brings data science into the field and is benefiting immensely from the development of research platforms that allow automatized collection, analysis, and sharing of data. This broadens the scale of imaging evidence. The brain-manipulation approach uses high-functioning tools that facilitate non-invasive and precise human brain manipulation. These two approaches are expected to have synergistic effects. Neuroscience has strived to improve the evidential reliability of NIE, with considerable success. With the support of cutting-edge technologies, and the progress of these approaches, the evidential status of NIE will be improved and NIE will become an increasingly important part of legal practice.

  18. Cognitive Impairment in Acquired Brain Injury: A Predictor of Rehabilitation Outcomes and an Opportunity for Novel Interventions

    PubMed Central

    Whyte, Ellen; Skidmore, Elizabeth; Aizenstein, Howard; Ricker, Joseph; Butters, Meryl

    2015-01-01

    Cognitive impairment is a common sequela in acquired brain injury and one that predicts rehabilitation outcomes. There is emerging evidence that impairments in cognitive functions can be manipulated by both pharmacologic and nonpharmacologic interventions to improve rehabilitation outcomes. By using stroke as a model for acquired brain injury, we review the evidence that links cognitive impairment to poor rehabilitation outcomes and discuss possible mechanisms to explain this association. Furthermore, we examine nascent promising research that suggests that interventions that target cognitive impairments can lead to better rehabilitation outcomes. PMID:21703580

  19. White matter maturation profiles through early childhood predict general cognitive ability.

    PubMed

    Deoni, Sean C L; O'Muircheartaigh, Jonathan; Elison, Jed T; Walker, Lindsay; Doernberg, Ellen; Waskiewicz, Nicole; Dirks, Holly; Piryatinsky, Irene; Dean, Doug C; Jumbe, N L

    2016-03-01

    Infancy and early childhood are periods of rapid brain development, during which brain structure and function mature alongside evolving cognitive ability. An important neurodevelopmental process during this postnatal period is the maturation of the myelinated white matter, which facilitates rapid communication across neural systems and networks. Though prior brain imaging studies in children (4 years of age and above), adolescents, and adults have consistently linked white matter development with cognitive maturation and intelligence, few studies have examined how these processes are related throughout early development (birth to 4 years of age). Here, we show that the profile of white matter myelination across the first 5 years of life is strongly and specifically related to cognitive ability. Using a longitudinal design, coupled with advanced magnetic resonance imaging, we demonstrate that children with above-average ability show differential trajectories of myelin development compared to average and below average ability children, even when controlling for socioeconomic status, gestation, and birth weight. Specifically, higher ability children exhibit slower but more prolonged early development, resulting in overall increased myelin measures by ~3 years of age. These results provide new insight into the early neuroanatomical correlates of cognitive ability, and suggest an early period of prolonged maturation with associated protracted white matter plasticity may result in strengthened neural networks that can better support later development. Further, these results reinforce the necessity of a longitudinal perspective in investigating typical or suspected atypical cognitive maturation.

  20. Individual differences in the neuropsychopathology of addiction

    PubMed Central

    George, Olivier; Koob, George F.

    2017-01-01

    Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy. PMID:29302219

Top