Global Efficiency of Structural Networks Mediates Cognitive Control in Mild Cognitive Impairment
Berlot, Rok; Metzler-Baddeley, Claudia; Ikram, M. Arfan; Jones, Derek K.; O’Sullivan, Michael J.
2016-01-01
Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localized white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI). Materials and Methods: Twenty-five patients with MCI and 20 age, sex, and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI). Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusion: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive control but not for episodic memory. Interventions to improve cognitive control will need to address both dysfunction of local circuitry and global network architecture to be maximally effective. PMID:28018208
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
Coactivation of cognitive control networks during task switching.
Yin, Shouhang; Deák, Gedeon; Chen, Antao
2018-01-01
The ability to flexibly switch between tasks is considered an important component of cognitive control that involves frontal and parietal cortical areas. The present study was designed to characterize network dynamics across multiple brain regions during task switching. Functional magnetic resonance images (fMRI) were captured during a standard rule-switching task to identify switching-related brain regions. Multiregional psychophysiological interaction (PPI) analysis was used to examine effective connectivity between these regions. During switching trials, behavioral performance declined and activation of a generic cognitive control network increased. Concurrently, task-related connectivity increased within and between cingulo-opercular and fronto-parietal cognitive control networks. Notably, the left inferior frontal junction (IFJ) was most consistently coactivated with the 2 cognitive control networks. Furthermore, switching-dependent effective connectivity was negatively correlated with behavioral switch costs. The strength of effective connectivity between left IFJ and other regions in the networks predicted individual differences in switch costs. Task switching was supported by coactivated connections within cognitive control networks, with left IFJ potentially acting as a key hub between the fronto-parietal and cingulo-opercular networks. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Worhunsky, Patrick D; Stevens, Michael C; Carroll, Kathleen M; Rounsaville, Bruce J; Calhoun, Vince D; Pearlson, Godfrey D; Potenza, Marc N
2013-06-01
Individuals with cocaine dependence often evidence poor cognitive control. The purpose of this exploratory study was to investigate networks of functional connectivity underlying cognitive control in cocaine dependence and examine the relationship of the networks to the disorder and its treatment. Independent component analysis (ICA) was applied to fMRI data to investigate if regional activations underlying cognitive control processes operate in functional networks, and whether these networks relate to performance and treatment outcome measures in cocaine dependence. Twenty patients completed a Stroop task during fMRI prior to entering outpatient treatment and were compared to 20 control participants. ICA identified five distinct functional networks related to cognitive control interference events. Cocaine-dependent patients displayed differences in performance-related recruitment of three networks. Reduced involvement of a "top-down" fronto-cingular network contributing to conflict monitoring correlated with better treatment retention. Greater engagement of two "bottom-up" subcortical and ventral prefrontal networks related to cue-elicited motivational processing correlated with abstinence during treatment. The identification of subcortical networks linked to cocaine abstinence and cortical networks to treatment retention suggests that specific circuits may represent important, complementary targets in treatment development for cocaine dependence. 2013 APA, all rights reserved
Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang
2017-09-01
Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.
Using Cognitive Control in Software Defined Networking for Port Scan Detection
2017-07-01
ARL-TR-8059 ● July 2017 US Army Research Laboratory Using Cognitive Control in Software-Defined Networking for Port Scan...Cognitive Control in Software-Defined Networking for Port Scan Detection by Vinod K Mishra Computational and Information Sciences Directorate, ARL...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) July 2017 2. REPORT TYPE
Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson's Disease.
Putcha, Deepti; Ross, Robert S; Cronin-Golomb, Alice; Janes, Amy C; Stern, Chantal E
2016-02-01
Cognitive impairment is common in Parkinson's disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson's disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson's disease.
Salience network dynamics underlying successful resistance of temptation
Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q
2017-01-01
Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582
Brain and Cognitive Reserve: Translation via Network Control Theory
Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.
2017-01-01
Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411
Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A
2016-09-01
Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible.
Pinnock, Farena; Parlar, Melissa; Hawco, Colin; Hanford, Lindsay; Hall, Geoffrey B.
2017-01-01
This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB) composite score (T = 50 ± 10) and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n = 39) had greater cortical thickness than both cognitively normal (n = 17) and below-normal range (n = 49) patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n = 24) or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment. PMID:28348889
Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael
2015-02-01
Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.
Cognitive control in the self-regulation of physical activity and sedentary behavior
Buckley, Jude; Cohen, Jason D.; Kramer, Arthur F.; McAuley, Edward; Mullen, Sean P.
2014-01-01
Cognitive control of physical activity and sedentary behavior is receiving increased attention in the neuroscientific and behavioral medicine literature as a means of better understanding and improving the self-regulation of physical activity. Enhancing individuals’ cognitive control capacities may provide a means to increase physical activity and reduce sedentary behavior. First, this paper reviews emerging evidence of the antecedence of cognitive control abilities in successful self-regulation of physical activity, and in precipitating self-regulation failure that predisposes to sedentary behavior. We then highlight the brain networks that may underpin the cognitive control and self-regulation of physical activity, including the default mode network, prefrontal cortical networks and brain regions and pathways associated with reward. We then discuss research on cognitive training interventions that document improved cognitive control and that suggest promise of influencing physical activity regulation. Key cognitive training components likely to be the most effective at improving self-regulation are also highlighted. The review concludes with suggestions for future research. PMID:25324754
Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian
2017-01-01
Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the “immune system” of mental health recently developed in relation to flexible hub theory. PMID:28736535
Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian
2017-01-01
Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.
Shaw, Emily E; Schultz, Aaron P; Sperling, Reisa A; Hedden, Trey
2015-10-01
Intrinsic functional connectivity MRI has become a widely used tool for measuring integrity in large-scale cortical networks. This study examined multiple cortical networks using Template-Based Rotation (TBR), a method that applies a priori network and nuisance component templates defined from an independent dataset to test datasets of interest. A priori templates were applied to a test dataset of 276 older adults (ages 65-90) from the Harvard Aging Brain Study to examine the relationship between multiple large-scale cortical networks and cognition. Factor scores derived from neuropsychological tests represented processing speed, executive function, and episodic memory. Resting-state BOLD data were acquired in two 6-min acquisitions on a 3-Tesla scanner and processed with TBR to extract individual-level metrics of network connectivity in multiple cortical networks. All results controlled for data quality metrics, including motion. Connectivity in multiple large-scale cortical networks was positively related to all cognitive domains, with a composite measure of general connectivity positively associated with general cognitive performance. Controlling for the correlations between networks, the frontoparietal control network (FPCN) and executive function demonstrated the only significant association, suggesting specificity in this relationship. Further analyses found that the FPCN mediated the relationships of the other networks with cognition, suggesting that this network may play a central role in understanding individual variation in cognition during aging.
The Contribution of Network Organization and Integration to the Development of Cognitive Control
Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N.; Luna, Beatriz
2015-01-01
Abstract Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10–26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control. PMID:26713863
The Contribution of Network Organization and Integration to the Development of Cognitive Control.
Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N; Luna, Beatriz
2015-12-01
Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10-26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control.
Zhang, Jingchao; Wang, Guoliang; Zhang, Fangxiang; Zhao, Qian
2018-03-01
The protective effect of dexmedetomidine on cognitive dysfunction and decreased attention network function of patients with ischemic cerebrovascular disease after stenting was investigated. Fifty-eight patients with ischemic cerebrovascular disease undergoing stenting in Guizhou Provincial People's Hospital were selected and randomly divided into control group (n=29) and dexmedetomidine group (n=29). The dexmedetomidine group was treated with dexmedetomidine before induced anesthesia, while the control group was given the same dose of normal saline; and the normal volunteers of the same age were selected as the normal group (n=29). At 3 days after operation, the levels of serum S100B and nerve growth factor (NGF) in each group were detected using the enzyme-linked immunosorbent assay, and the level of brain-derived neurotrophic factor (BDNF) was detected via western blotting. Montreal cognitive assessment (MoCA) and attention network test (ANT) were performed. Moreover, the cognitive function and attention network function, and the effects of dexmedetomidine on cognitive function and attention network function were evaluated. The concentrations of serum S100B and NGF in dexmedetomidine group was lower than those in control group (P<0.01). The results of western blotting showed that the levels of serum BDNF in control group and dexmedetomidine group were significantly lower than that in normal group (P<0.01), and it was higher in dexmedetomidine group than that in control group (P<0.01). Besides, both MoCA and ANT results revealed that the visual space and executive function scores, attention scores, delayed memory scores, targeted network efficiency and executive control network efficiency in dexmedetomidine group were obviously higher than those in control group (P<0.01). The cognitive function and attention network function of patients with ischemic cerebrovascular disease have a certain degree of damage, and the preoperative administration of dexmedetomidine can effectively improve the patient's cognitive dysfunction and attention network function after operation.
Brain network connectivity in individuals with schizophrenia and their siblings.
Repovs, Grega; Csernansky, John G; Barch, Deanna M
2011-05-15
Research on brain activity in schizophrenia has shown that changes in the function of any single region cannot explain the range of cognitive and affective impairments in this illness. Rather, neural circuits that support sensory, cognitive, and emotional processes are now being investigated as substrates for cognitive and affective impairments in schizophrenia, a shift in focus consistent with long-standing hypotheses about schizophrenia as a disconnection syndrome. Our goal was to further examine alterations in functional connectivity within and between the default mode network and three cognitive control networks (frontal-parietal, cingulo-opercular, and cerebellar) as a basis for such impairments. Resting state functional magnetic resonance imaging was collected from 40 individuals with DSM-IV-TR schizophrenia, 31 siblings of individuals with schizophrenia, 15 healthy control subjects, and 18 siblings of healthy control subjects while they rested quietly with their eyes closed. Connectivity metrics were compared between patients and control subjects for both within- and between-network connections and were used to predict clinical symptoms and cognitive function. Individuals with schizophrenia showed reduced distal and somewhat enhanced local connectivity between the cognitive control networks compared with control subjects. Additionally, greater connectivity between the frontal-parietal and cerebellar regions was robustly predictive of better cognitive performance across groups and predictive of fewer disorganization symptoms among patients. These results are consistent with the hypothesis that impairments of executive function and cognitive control result from disruption in the coordination of activity across brain networks and additionally suggest that these might reflect impairments in normal pattern of brain connectivity development. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia
Sheffield, Julia M; Repovs, Grega; Harms, Michael P.; Carter, Cameron S.; Gold, James M.; MacDonald, Angus W.; Ragland, J. Daniel; Silverstein, Steven M.; Godwin, Douglass; Barch, Deanna M
2015-01-01
Growing evidence suggests that coordinated activity within specific functional brain networks supports cognitive ability, and that abnormalities in brain connectivity may underlie cognitive deficits observed in neuropsychiatric diseases, such as schizophrenia. Two functional networks, the fronto-parietal network (FPN) and cingulo-opercular network (CON), are hypothesized to support top-down control of executive functioning, and have therefore emerged as potential drivers of cognitive impairment in disease-states. Graph theoretic analyses of functional connectivity data can characterize network topology, allowing the relationships between cognitive ability and network integrity to be examined. In the current study we applied graph analysis to pseudo-resting state data in 54 healthy subjects and 46 schizophrenia patients, and measured overall cognitive ability as the shared variance in performance from tasks of episodic memory, verbal memory, processing speed, goal maintenance, and visual integration. We found that, across all participants, cognitive ability was significantly positively associated with the local and global efficiency of the whole brain, FPN, and CON, but not with the efficiency of a comparison network, the auditory network. Additionally, the participation coefficient of the right anterior insula, a major hub within the CON, significantly predicted cognition, and this relationship was independent of CON global efficiency. Surprisingly, we did not observe strong evidence for group differences in any of our network metrics. These data suggest that functionally efficient task control networks support better cognitive ability in both health and schizophrenia, and that the right anterior insula may be a particularly important hub for successful cognitive performance across both health and disease. PMID:25979608
Cognitive Control Signals in Posterior Cingulate Cortex
Hayden, Benjamin Y.; Smith, David V.; Platt, Michael L.
2010-01-01
Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain. PMID:21160560
Transdiagnostic Associations Between Functional Brain Network Integrity and Cognition.
Sheffield, Julia M; Kandala, Sridhar; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Sweeney, John A; Clementz, Brett A; Lerman-Sinkoff, Dov B; Hill, S Kristian; Barch, Deanna M
2017-06-01
Cognitive impairment occurs across the psychosis spectrum and is associated with functional outcome. However, it is unknown whether these shared manifestations of cognitive dysfunction across diagnostic categories also reflect shared neurobiological mechanisms or whether the source of impairment differs. To examine whether the general cognitive deficit observed across psychotic disorders is similarly associated with functional integrity of 2 brain networks widely implicated in supporting many cognitive domains. A total of 201 healthy control participants and 375 patients with psychotic disorders from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium were studied from September 29, 2007, to May 31, 2011. The B-SNIP recruited healthy controls and stable outpatients from 6 sites: Baltimore, Maryland; Boston, Massachusetts; Chicago, Illinois; Dallas, Texas; Detroit, Michigan; and Hartford, Connecticut. All participants underwent cognitive testing and resting-state functional magnetic resonance imaging. Data analysis was performed from April 28, 2015, to February 21, 2017. The Brief Assessment of Cognition in Schizophrenia was used to measure cognitive ability. A principal axis factor analysis on the Brief Assessment of Cognition in Schizophrenia battery yielded a single factor (54% variance explained) that served as the measure of general cognitive ability. Functional network integrity measures included global and local efficiency of the whole brain, cingulo-opercular network (CON), frontoparietal network, and auditory network and exploratory analyses of all networks from the Power atlas. Group differences in network measures, associations between cognition and network measures, and mediation models were tested. The final sample for the current study included 201 healthy controls, 143 patients with schizophrenia, 103 patients with schizoaffective disorder, and 129 patients with psychotic bipolar disorder (mean [SD] age, 35.1 [12.0] years; 281 male [48.8%] and 295 female [51.2%]; 181 white [31.4%], 348 black [60.4%], and 47 other [8.2%]). Patients with schizophrenia (Cohen d = 0.36, P < .001) and psychotic bipolar disorder (Cohen d = 0.33, P = .002) had significantly reduced CON global efficiency compared with healthy controls. All patients with psychotic disorders had significantly reduced CON local efficiency, but the clinical groups did not differ from one another. The CON global efficiency was significantly associated with general cognitive ability across all groups (β = 0.099, P = .009) and significantly mediated the association between psychotic disorder status and general cognition (β = -0.037; 95% CI, -0.076 to -0.014). Subcortical network global efficiency was also significantly reduced in psychotic disorders (F3,587 = 4.01, P = .008) and positively predicted cognitive ability (β = 0.094, P = .009). These findings provide evidence that reduced CON and subcortical network efficiency play a role in the general cognitive deficit observed across the psychosis spectrum. They provide new support for the dimensional hypothesis that a shared neurobiological mechanism underlies cognitive impairment in psychotic disorders.
Functional network integrity presages cognitive decline in preclinical Alzheimer disease.
Buckley, Rachel F; Schultz, Aaron P; Hedden, Trey; Papp, Kathryn V; Hanseeuw, Bernard J; Marshall, Gad; Sepulcre, Jorge; Smith, Emily E; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Chhatwal, Jasmeer P
2017-07-04
To examine the utility of resting-state functional connectivity MRI (rs-fcMRI) measurements of network integrity as a predictor of future cognitive decline in preclinical Alzheimer disease (AD). A total of 237 clinically normal older adults (aged 63-90 years, Clinical Dementia Rating 0) underwent baseline β-amyloid (Aβ) imaging with Pittsburgh compound B PET and structural and rs-fcMRI. We identified 7 networks for analysis, including 4 cognitive networks (default, salience, dorsal attention, and frontoparietal control) and 3 noncognitive networks (primary visual, extrastriate visual, motor). Using linear and curvilinear mixed models, we used baseline connectivity in these networks to predict longitudinal changes in preclinical Alzheimer cognitive composite (PACC) performance, both alone and interacting with Aβ burden. Median neuropsychological follow-up was 3 years. Baseline connectivity in the default, salience, and control networks predicted longitudinal PACC decline, unlike connectivity in the dorsal attention and all noncognitive networks. Default, salience, and control network connectivity was also synergistic with Aβ burden in predicting decline, with combined higher Aβ and lower connectivity predicting the steepest curvilinear decline in PACC performance. In clinically normal older adults, lower functional connectivity predicted more rapid decline in PACC scores over time, particularly when coupled with increased Aβ burden. Among examined networks, default, salience, and control networks were the strongest predictors of rate of change in PACC scores, with the inflection point of greatest decline beyond the fourth year of follow-up. These results suggest that rs-fcMRI may be a useful predictor of early, AD-related cognitive decline in clinical research settings. © 2017 American Academy of Neurology.
Evidence for a neural dual-process account for adverse effects of cognitive control.
Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian
2018-06-09
Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.
Hoorelbeke, Kristof; Marchetti, Igor; De Schryver, Maarten; Koster, Ernst H W
2016-05-01
Individuals in remission from depression are at increased risk for developing future depressive episodes. Several cognitive risk- and resilience factors have been suggested to account for this vulnerability. In the current study we explored how risk- and protective factors such as cognitive control, adaptive and maladaptive emotion regulation, residual symptomatology, and resilience relate to one another in a remitted depressed (RMD) sample. We examined the relationships between these constructs in a cross-sectional dataset of 69 RMD patients using network analyses in order to obtain a comprehensive, data-driven view on the interplay between these constructs. We subsequently present an association network, a concentration network, and a relative importance network. In all three networks resilience formed the central hub, connecting perceived cognitive control (i.e., working memory complaints), emotion regulation, and residual symptomatology. The contribution of the behavioral measure for cognitive control in the network was negligible. Moreover, the directed relative importance network indicates bidirectional influences between these constructs, with all indicators of centrality suggesting a key role of resilience in remission from depression. The presented findings are cross-sectional and networks are limited to a fixed set of key constructs in the literature pertaining cognitive vulnerability for depression. These findings indicate the importance of resilience to successfully cope with stressors following remission from depression. Further in-depth studies will be essential to identify the specific underlying resilience mechanisms that may be key to successful remission from depression. Copyright © 2016 Elsevier B.V. All rights reserved.
Changle Zhang; Tao Chai; Na Gao; Ma, Heather T
2017-07-01
Effective measurement of cognitive impairment caused by Alzheimer's disease (AD) will provide a chance for early medical intervention and delay the disease onset. Diffusion tensor imaging (DTI) provides a non-intrusive examination of cranial nerve diseases which can help us observe the microstructure of neuron fibers. Cognitive control network (CCN) consists of the brain regions that highly related to human self-control. In this study, hub-and-spoke model which was widely used in transportation and sociology area had been employed to analyze the relationship of CCN and other regions under its control, cognitive control related network (CCRN) was built by applying this model. Local and global graph theoretical parameters were calculated and went through statistical analysis. Significant difference had been found in the scale of local as well as global which may represent the impairment of cognitive control ability. This result may provide a potential bio-marker for the loss of connection caused by Alzheimer's disease.
Default and Executive Network Coupling Supports Creative Idea Production
Beaty, Roger E.; Benedek, Mathias; Barry Kaufman, Scott; Silvia, Paul J.
2015-01-01
The role of attention in creative cognition remains controversial. Neuroimaging studies have reported activation of brain regions linked to both cognitive control and spontaneous imaginative processes, raising questions about how these regions interact to support creative thought. Using functional magnetic resonance imaging (fMRI), we explored this question by examining dynamic interactions between brain regions during a divergent thinking task. Multivariate pattern analysis revealed a distributed network associated with divergent thinking, including several core hubs of the default (posterior cingulate) and executive (dorsolateral prefrontal cortex) networks. The resting-state network affiliation of these regions was confirmed using data from an independent sample of participants. Graph theory analysis assessed global efficiency of the divergent thinking network, and network efficiency was found to increase as a function of individual differences in divergent thinking ability. Moreover, temporal connectivity analysis revealed increased coupling between default and salience network regions (bilateral insula) at the beginning of the task, followed by increased coupling between default and executive network regions at later stages. Such dynamic coupling suggests that divergent thinking involves cooperation between brain networks linked to cognitive control and spontaneous thought, which may reflect focused internal attention and the top-down control of spontaneous cognition during creative idea production. PMID:26084037
Zeng, Yingchun; Cheng, Andy S K; Song, Ting; Sheng, Xiujie; Zhang, Yang; Liu, Xiangyu; Chan, Chetwyn C H
2017-11-28
Subjective cognitive impairment can be a significant and prevalent problem for gynaecological cancer survivors. The aims of this study were to assess subjective cognitive functioning in gynaecological cancer survivors after primary cancer treatment, and to investigate the impact of cancer treatment on brain structural networks and its association with subjective cognitive impairment. This was a cross-sectional survey using a self-reported questionnaire by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) to assess subjective cognitive functioning, and applying DTI (diffusion tensor imaging) and graph theoretical analyses to investigate brain structural networks after primary cancer treatment. A total of 158 patients with gynaecological cancer (mean age, 45.86 years) and 130 age-matched non-cancer controls (mean age, 44.55 years) were assessed. Patients reported significantly greater subjective cognitive functioning on the FACT-Cog total score and two subscales of perceived cognitive impairment and perceived cognitive ability (all p values <0.001). Compared with patients who had received surgery only and non-cancer controls, patients treated with chemotherapy indicated the most altered global brain structural networks, especially in one of properties of small-worldness (p = 0.004). Reduced small-worldness was significantly associated with a lower FACT-Cog total score (r = 0.412, p = 0.024). Increased characteristic path length was also significantly associated with more subjective cognitive impairment (r = -0.388, p = 0.034). When compared with non-cancer controls, a considerable proportion of gynaecological cancer survivors may exhibit subjective cognitive impairment. This study provides the first evidence of brain structural network alteration in gynaecological cancer patients at post-treatment, and offers novel insights regarding the possible neurobiological mechanism of cancer-related cognitive impairment (CRCI) in gynaecological cancer patients. As primary cancer treatment can result in a more random organisation of structural brain networks, this may reduce brain functional specificity and segregation, and have implications for cognitive impairment. Future prospective and longitudinal studies are needed to build upon the study findings in order to assess potentially relevant clinical and psychosocial variables and brain network measures, so as to more accurately understand the specific risk factors related to subjective cognitive impairment in the gynaecological cancer population. Such knowledge could inform the development of appropriate treatment and rehabilitation efforts to ameliorate cognitive impairment in gynaecological cancer survivors.
Koch, Kathrin; Myers, Nicholas E; Göttler, Jens; Pasquini, Lorenzo; Grimmer, Timo; Förster, Stefan; Manoliu, Andrei; Neitzel, Julia; Kurz, Alexander; Förstl, Hans; Riedl, Valentin; Wohlschläger, Afra M; Drzezga, Alexander; Sorg, Christian
2015-12-01
Amyloid-β pathology (Aβ) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aβ-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aβ-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aβ-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aβ-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aβ-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aβ-pathology with cognitive impairment in early AD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Exploring adolescent cognitive control in a combined interference switching task.
Mennigen, Eva; Rodehacke, Sarah; Müller, Kathrin U; Ripke, Stephan; Goschke, Thomas; Smolka, Michael N
2014-08-01
Cognitive control enables individuals to flexibly adapt to environmental challenges. In the present functional magnetic resonance imaging (fMRI) study, we investigated 185 adolescents at the age of 14 with a combined response interference switching task measuring behavioral responses (reaction time, RT and error rate, ER) and brain activity during the task. This task comprises two types of conflict which are co-occurring, namely, task switching and stimulus-response incongruence. Data indicated that already in adolescents an overlapping cognitive control network comprising the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA) and posterior parietal cortex (PPC) is recruited by conflicts arising from task switching and response incongruence. Furthermore our study revealed higher blood oxygenation level dependent (BOLD) responses elicited by incongruent stimuli in participants with a pronounced incongruence effect, calculated as the RT difference between incongruent and congruent trials. No such correlation was observed for switch costs. Furthermore, increased activation of the default mode network (DMN) was only observed in congruent trials compared to incongruent trials, but not in task repetition relative to task switch trials. These findings suggest that even though the two processes of task switching and response incongruence share a common cognitive control network they might be processed differentially within the cognitive control network. Results are discussed in the context of a novel hypothesis concerning antagonistic relations between the DMN and the cognitive control network. Copyright © 2014 Elsevier Ltd. All rights reserved.
MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition
van Dellen, Edwin; Douw, Linda; Hillebrand, Arjan; Ris-Hilgersom, Irene H. M.; Schoonheim, Menno M.; Baayen, Johannes C.; De Witt Hamer, Philip C.; Velis, Demetrios N.; Klein, Martin; Heimans, Jan J.; Stam, Cornelis J.; Reijneveld, Jaap C.
2012-01-01
Objective To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. Methods We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. Results LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4–8 Hz), similar to NGL patients. HGG patients’ networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. Conclusion Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients’ networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline. PMID:23166829
Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Pinkhardt, Elmar H; Ludolph, Albert C; Kassubek, Jan
2015-04-01
Cognitive decline is a burdensome extra-motor symptom associated with Parkinson's disease (PD). This study aimed at investigating intrinsic functional connectivity (iFC) of the brain in cognitively unimpaired (PD-CU) and impaired PD patients (PD-CI) compared with age-matched healthy controls. "Resting-state" functional magnetic resonance imaging was acquired in 53 subjects, that is, 14 PD-CU patients, 17 PD-CI patients, and 22 control subjects. Cognition and cognitive status for patient classification were assessed using detailed neuropsychological testing. In PD-CU patients versus controls, we demonstrated significantly increased iFC (hyperconnectivity) presenting as network expansions in cortical, limbic, and basal ganglia-thalamic areas. Significantly, decreased iFC in PD-CI patients compared with control subjects was observed, predominantly between major nodes of the default mode network. In conclusion, the increased iFC might be the initial manifestation of altered brain function preceding cognitive deficits. Hyperconnectivity could be an adaptive (compensatory) mechanism by recruiting additional resources to maintain normal cognitive performance. As PD-related pathology progresses, functional disruptions within the default mode networks seem to be considerably associated with cognitive decline. Copyright © 2015 Elsevier Inc. All rights reserved.
Biomorphic Networks for ATR and Higher-Level Processing.
1998-01-10
Publications during this period: 1. N.H. Farhat, "Biomorphic Dynamical Networks for Cognition and Control", Journal of Intelligent and Rototic Systems...34 Neurodynamic networks for recognition of radar targets", Ph.D. dissertation, University of Pennsyl- vania, 1992. 2. J. Wood, "Invariant pattern...167-177,1998. 167 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Biomorphic Dynamical Networks for Cognition and Control N. H
Cao, Weifang; Cao, Xinyi; Hou, Changyue; Li, Ting; Cheng, Yan; Jiang, Lijuan; Luo, Cheng; Li, Chunbo; Yao, Dezhong
2016-01-01
Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks.
Cao, Weifang; Cao, Xinyi; Hou, Changyue; Li, Ting; Cheng, Yan; Jiang, Lijuan; Luo, Cheng; Li, Chunbo; Yao, Dezhong
2016-01-01
Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks. PMID:27148042
Cognitive control, attention, and the other race effect in memory.
Brown, Thackery I; Uncapher, Melina R; Chow, Tiffany E; Eberhardt, Jennifer L; Wagner, Anthony D
2017-01-01
People are better at remembering faces from their own race than other races-a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an "old/new" recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces.
Cognitive control, attention, and the other race effect in memory
Uncapher, Melina R.; Chow, Tiffany E.; Eberhardt, Jennifer L.; Wagner, Anthony D.
2017-01-01
People are better at remembering faces from their own race than other races–a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an “old/new” recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces. PMID:28282414
An information theory account of cognitive control.
Fan, Jin
2014-01-01
Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.
Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control
Wise, Richard J.S.; Mehta, Amrish; Leech, Robert
2014-01-01
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373
Overlapping networks engaged during spoken language production and its cognitive control.
Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert
2014-06-25
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. Copyright © 2014 Geranmayeh et al.
Kim, Hoyoung; Chey, Jeanyung; Lee, Sanghun
2017-11-01
The aim of this study was to investigate the changes in cognitive functions and brain activation after multicomponent training of cognitive control in non-demented older adults, utilizing neuropsychological tests and fMRI. We developed and implemented a computerized Multicomponent Training of Cognitive Control (MTCC), characterized by task variability and adaptive procedures, in order to maximize training effects in cognitive control and transfer to other cognitive domains. Twenty-seven community-dwelling adults, aged 64-77 years, without any history of neurological or psychiatric problems, participated in this study (14 in the training group and 13 in the control group). The MTCC was administered to the participants assigned to the training group for 8 weeks, while those in the control group received no training. Neuropsychological tests and fMRI were administered prior to and after the training. Trained participants showed improvements in cognitive control, recognition memory and general cognitive functioning. Furthermore, the MTCC led to an increased brain activation of the regions adjacent to the baseline cognitive control-related areas in the frontoparietal network. Future studies are necessary to confirm our hypothesis that MTCC improves cognitive functioning of healthy elderly individuals by expanding their frontoparietal network that is involved in cognitive control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Vancea, Roxana; Simonyan, Kristina; Petracca, Maria; Brys, Miroslaw; Di Rocco, Alessandro; Ghilardi, Maria Felice; Inglese, Matilde
2017-09-23
Cognitive impairment in Parkinson's disease (PD) is related to the reorganization of brain topology. Although drug challenge studies have proven how levodopa treatment can modulate functional connectivity in brain circuits, the role of chronic dopaminergic therapy on cognitive status and functional connectivity has never been investigated. We sought to characterize brain functional topology in mid-stage PD patients under chronic antiparkinson treatment and explore the presence of correlation between reorganization of brain architecture and specific cognitive deficits. We explored networks topology and functional connectivity in 16 patients with PD and 16 matched controls through a graph theoretical analysis of resting state-functional MRI data, and evaluated the relationships between network metrics and cognitive performance. PD patients showed a preserved small-world network topology but a lower clustering coefficient in comparison with healthy controls. Locally, PD patients showed lower degree of connectivity and local efficiency in many hubs corresponding to functionally relevant areas. Four disconnected subnetworks were also identified in regions responsible for executive control, sensory-motor control and planning, motor coordination and visual elaboration. Executive functions and information processing speed were directly correlated with degree of connectivity and local efficiency in frontal, parietal and occipital areas. While functional reorganization appears in both motor and cognitive areas, the clinical expression of network imbalance seems to be partially compensated by the chronic levodopa treatment with regards to the motor but not to the cognitive performance. In a context of reduced network segregation, the presence of higher local efficiency in hubs regions correlates with a better cognitive performance.
Frontoparietal cognitive control of verbal memory recall in Alzheimer's disease.
Dhanjal, Novraj S; Wise, Richard J S
2014-08-01
Episodic memory retrieval is reliant upon cognitive control systems, of which 2 have been identified with functional neuroimaging: a cingulo-opercular salience network (SN) and a frontoparietal executive network (EN). In Alzheimer's disease (AD), pathology is distributed throughout higher-order cortices. The hypotheses were that this frontoparietal pathology would impair activity associated with verbal memory recall; and that central cholinesterase inhibition (ChI) would modulate this, improving memory recall. Functional magnetic resonance imaging was used to study normal participants and 2 patient groups: mild cognitive impairment (MCI) and AD. Activity within the EN and SN was observed during free recall of previously heard sentences, and related to measures of recall accuracy. In normal subjects, trials with reduced recall were associated with greater activity in both the SN and EN. Better recall was associated with greater activity in medial regions of the default mode network. By comparison, AD patients showed attenuated responses in both the SN and EN compared with either controls or MCI patients, even after recall performance was matched between groups. Following ChI, AD patients showed no modulation of activity within the SN, but increased activity within the EN. There was also enhanced activity within regions associated with episodic and semantic memory during less successful recall, requiring greater cognitive control. The results indicate that in AD, impaired responses of cognitive control networks during verbal memory recall are partly responsible for reduced recall performance. One action of symptom-modifying treatment is partially to reverse the abnormal function of frontoparietal cognitive control and temporal lobe memory networks. © 2014 American Neurological Association.
Structural network efficiency is associated with cognitive impairment in small-vessel disease.
Lawrence, Andrew J; Chung, Ai Wern; Morris, Robin G; Markus, Hugh S; Barrick, Thomas R
2014-07-22
To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. © 2014 American Academy of Neurology.
Structural network efficiency is associated with cognitive impairment in small-vessel disease
Chung, Ai Wern; Morris, Robin G.; Markus, Hugh S.; Barrick, Thomas R.
2014-01-01
Objective: To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. Methods: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Results: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Conclusions: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. PMID:24951477
Default, Cognitive and Affective Brain Networks in Human Tinnitus
Tinnitus is a major health problem among those currently and formerly in military service. This project hypothesizes that many of the clinically...significant, non-auditory aspects of the tinnitus condition involve two major brain networks: the cognitive control network (CCN) and the default mode...function can be assessed. Subjects in three groups are being compared: (1) control subjects with clinically-normal hearing thresholds and no tinnitus
An information theory account of cognitive control
Fan, Jin
2014-01-01
Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875
A network engineering perspective on probing and perturbing cognition with neurofeedback
Khambhati, Ankit N.
2017-01-01
Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. PMID:28445589
McTeague, Lisa M; Huemer, Julia; Carreon, David M; Jiang, Ying; Eickhoff, Simon B; Etkin, Amit
2017-07-01
Cognitive deficits are a common feature of psychiatric disorders. The authors investigated the nature of disruptions in neural circuitry underlying cognitive control capacities across psychiatric disorders through a transdiagnostic neuroimaging meta-analysis. A PubMed search was conducted for whole-brain functional neuroimaging articles published through June 2015 that compared activation in patients with axis I disorders and matched healthy control participants during cognitive control tasks. Tasks that probed performance or conflict monitoring, response inhibition or selection, set shifting, verbal fluency, and recognition or working memory were included. Activation likelihood estimation meta-analyses were conducted on peak voxel coordinates. The 283 experiments submitted to meta-analysis included 5,728 control participants and 5,493 patients with various disorders (schizophrenia, bipolar or unipolar depression, anxiety disorders, and substance use disorders). Transdiagnostically abnormal activation was evident in the left prefrontal cortex as well as the anterior insula, the right ventrolateral prefrontal cortex, the right intraparietal sulcus, and the midcingulate/presupplementary motor area. Disruption was also observed in a more anterior cluster in the dorsal cingulate cortex, which overlapped with a network of structural perturbation that the authors previously reported in a transdiagnostic meta-analysis of gray matter volume. These findings demonstrate a common pattern of disruption across major psychiatric disorders that parallels the "multiple-demand network" observed in intact cognition. This network interfaces with the anterior-cingulo-insular or "salience network" demonstrated to be transdiagnostically vulnerable to gray matter reduction. Thus, networks intrinsic to adaptive, flexible cognition are vulnerable to broad-spectrum psychopathology. Dysfunction in these networks may reflect an intermediate transdiagnostic phenotype, which could be leveraged to advance therapeutics.
Uncertainty and Cognitive Control
Mushtaq, Faisal; Bland, Amy R.; Schaefer, Alexandre
2011-01-01
A growing trend of neuroimaging, behavioral, and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1) There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2) There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3) The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the “need for control”; (4) Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders. PMID:22007181
Disrupted white matter structure underlies cognitive deficit in hypertensive patients.
Li, Xin; Ma, Chao; Sun, Xuan; Zhang, Junying; Chen, Yaojing; Chen, Kewei; Zhang, Zhanjun
2016-09-01
Hypertension is considered a risk factor of cognitive impairments and could result in white matter changes. Current studies on hypertension-related white matter (WM) changes focus only on regional changes, and the information about global changes in WM structure network is limited. We assessed the cognitive function in 39 hypertensive patients and 37 healthy controls with a battery of neuropsychological tests. The WM structural networks were constructed by utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. The direct and indirect correlations among cognitive impairments, brain WM network disruptions and hypertension were analyzed with structural equation modelling (SEM). Hypertensive patients showed deficits in executive function, memory and attention compared with controls. An aberrant connectivity of WM networks was found in the hypertensive patients (P Eglob = 0.005, P Lp = 0.005), especially in the frontal and parietal regions. Importantly, SEM analysis showed that the decline of executive function resulted from aberrant WM networks in hypertensive patients (p = 0.3788, CFI = 0.99). These results suggest that the cognitive decline in hypertensive patients was due to frontal and parietal WM disconnections. Our findings highlight the importance of brain protection in hypertension patients. • Hypertension has a negative effect on the performance of the cognitive domains • Reduced efficiencies of white matter networks were shown in hypertension • Disrupted white matter networks are responsible for poor cognitive function in hypertension.
Challenges of CAC in Heterogeneous Wireless Cognitive Networks
NASA Astrophysics Data System (ADS)
Wang, Jiazheng; Fu, Xiuhua
Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.
Li, Qi; Yang, Guochun; Li, Zhenghan; Qi, Yanyan; Cole, Michael W; Liu, Xun
2017-12-01
Cognitive control can be activated by stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts. However, whether cognitive control is domain-general or domain-specific remains unclear. To deepen the understanding of the functional organization of cognitive control networks, we conducted activation likelihood estimation (ALE) from 111 neuroimaging studies to examine brain activation in conflict-related tasks. We observed that fronto-parietal and cingulo-opercular networks were commonly engaged by S-S and S-R conflicts, showing a domain-general pattern. In addition, S-S conflicts specifically activated distinct brain regions to a greater degree. These regions were implicated in the processing of the semantic-relevant attribute, including the inferior frontal cortex (IFC), superior parietal cortex (SPC), superior occipital cortex (SOC), and right anterior cingulate cortex (ACC). By contrast, S-R conflicts specifically activated the left thalamus, middle frontal cortex (MFC), and right SPC, which were associated with detecting response conflict and orienting spatial attention. These findings suggest that conflict detection and resolution involve a combination of domain-general and domain-specific cognitive control mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zilverstand, Anna; Parvaz, Muhammad A.; Moeller, Scott J.; Goldstein, Rita Z.
2016-01-01
Neuroimaging provides a tool for investigating the neurobiological mechanisms of cognitive interventions in addiction. The aim of this review was to describe the brain circuits that are recruited during cognitive interventions, examining differences between various treatment modalities while highlighting core mechanisms, in drug addicted individuals. Based on a systematic Medline search we reviewed neuroimaging studies on cognitive behavioral therapy, cognitive inhibition of craving, motivational interventions, emotion regulation, mindfulness, and neurofeedback training in addiction. Across intervention modalities, common results included the normalization of aberrant activity in the brain’s reward circuitry, and the recruitment and strengthening of the brain’s inhibitory control network. Results suggest that different cognitive interventions act, at least partly, through recruitment of a common inhibitory control network as a core mechanism. This implies potential transfer effects between training modalities. Overall, results confirm that chronically hypoactive prefrontal regions implicated in cognitive control in addiction can be normalized through cognitive means. PMID:26822363
King, Kelly E.; Hernandez, Arturo E.
2012-01-01
The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only two hours of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning. PMID:23194816
Turner, Monroe P; Hubbard, Nicholas A; Himes, Lyndahl M; Faghihahmadabadi, Shawheen; Hutchison, Joanna L; Bennett, Ilana J; Motes, Michael A; Haley, Robert W; Rypma, Bart
Cognitive slowing is a prevalent symptom observed in Gulf War Illness (GWI). The present study assessed the extent to which functional connectivity between dorsolateral prefrontal cortex (DLPFC) and other task-relevant brain regions was predictive of GWI-related cognitive slowing. GWI patients (n = 54) and healthy veteran controls (n = 29) were assessed on performance of a processing speed task (the Digit Symbol Substitution Task; DSST) while undergoing functional magnetic resonance imaging (fMRI). GWI patients were slower on the DSST relative to controls. Bilateral DLPFC connectivity with task-relevant nodes was altered in GWI patients compared to healthy controls during DSST performance. Moreover, hyperconnectivity in these networks predicted GWI-related increases in reaction time on the DSST, whereas hypoconnectivity did not. These results suggest that GWI-related cognitive slowing reflects reduced efficiency in cortical networks.
Baune, Bernhard T; Brignone, Mélanie; Larsen, Klaus Groes
2018-02-01
Major depressive disorder is a common condition that often includes cognitive dysfunction. A systematic literature review of studies and a network meta-analysis were carried out to assess the relative effect of antidepressants on cognitive dysfunction in major depressive disorder. MEDLINE, Embase, Cochrane, CDSR, and PsychINFO databases; clinical trial registries; and relevant conference abstracts were searched for randomized controlled trials assessing the effects of antidepressants/placebo on cognition. A network meta-analysis comparing antidepressants was conducted using a random effects model. The database search retrieved 11337 citations, of which 72 randomized controlled trials from 103 publications met the inclusion criteria. The review identified 86 cognitive tests assessing the effect of antidepressants on cognitive functioning. However, the Digit Symbol Substitution Test, which targets multiple domains of cognition and is recognized as being sensitive to change, was the only test that was used across 12 of the included randomized controlled trials and that allowed the construction of a stable network suitable for the network meta-analysis. The interventions assessed included selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and other non-selective serotonin reuptake inhibitors/serotonin-norepinephrine reuptake inhibitors. The network meta-analysis using the Digit Symbol Substitution Test showed that vortioxetine was the only antidepressant that improved cognitive dysfunction on the Digit Symbol Substitution Test vs placebo {standardized mean difference: 0.325 (95% CI = 0.120; 0.529, P=.009}. Compared with other antidepressants, vortioxetine was statistically more efficacious on the Digit Symbol Substitution Test vs escitalopram, nortriptyline, and the selective serotonin reuptake inhibitor and tricyclic antidepressant classes. This study highlighted the large variability in measures used to assess cognitive functioning. The findings on the Digit Symbol Substitution Test indicate differential effects of various antidepressants on improving cognitive function in patients with major depressive disorder. © The Author 2017. Published by Oxford University Press on behalf of CINP.
van Duinkerken, Eelco; Ijzerman, Richard G; Klein, Martin; Moll, Annette C; Snoek, Frank J; Scheltens, Philip; Pouwels, Petra J W; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M
2016-03-01
Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients. © 2015 Wiley Periodicals, Inc.
McCarthy, Hazel; Skokauskas, Norbert; Mulligan, Aisling; Donohoe, Gary; Mullins, Diane; Kelly, John; Johnson, Katherine; Fagan, Andrew; Gill, Michael; Meaney, James; Frodl, Thomas
2013-12-01
The neurobiological underpinnings of attention-deficit/hyperactivity disorder (ADHD) and particularly those associated with the persistence of ADHD into adulthood are not yet well understood. The correlation patterns in spontaneous neural fluctuations at rest are known as resting-state functional connectivity (RSFC) and could characterize ADHD-specific connectivity changes. To determine the specific location of possible ADHD-related differences in RSFC between adults diagnosed as having ADHD in childhood and control subjects. DESIGN Using resting-state functional magnetic resonance imaging, we calculated and compared functional connectivity from attention, affective, default, and cognitive control networks involved in the psychopathology of ADHD between the ADHD and control groups. SETTING University psychiatric service and magnetic resonance imaging research center. Sixteen drug-free adults (5 women and 11 men; mean age, 24.5 years) diagnosed with combined-type ADHD in childhood and 16 healthy controls matched for age (mean age, 24.4 years), sex, handedness, and educational level recruited from the community. Functional magnetic resonance imaging. Connectivity data from ventral and dorsal attention, affective, default, and cognitive control networks and ADHD symptoms derived from ADHD-specific rating instruments. Adults with ADHD showed significantly decreased RSFC within the attention networks and increased RSFC within the affective and default mode and the right lateralized cognitive control networks compared with healthy controls (P < .01, familywise error for whole-brain cluster correction). Lower RSFC in the ventral and dorsal attention network was significantly correlated with higher levels of ADHD symptoms (P < .001). These RSFC findings might underpin a biological basis for adult ADHD and are functionally related to persistent inattention, disturbance in cognitive control, and emotional dysregulation in adults with ADHD. These findings need to be understood in the context of all aspects of brain function in ADHD.
Disrupted reward and cognitive control networks contribute to anhedonia in depression.
Gong, Liang; He, Cancan; Zhang, Haisan; Zhang, Hongxing; Zhang, Zhijun; Xie, Chunming
2018-08-01
Neuroimaging studies have identified that anhedonia, a core feature of major depressive disorder (MDD), is associated with dysfunction in reward and cognitive control processing. However, it is still not clear how the reward network (β-network) and the cognitive control network (δ-network) are linked to biased anhedonia in MDD patients. Sixty-eight MDD patients and 64 cognitively normal (CN) subjects underwent a resting-state functional magnetic resonance imaging scan. A 2*2 ANCOVA analysis was used to explore the differences in the nucleus accumbens-based, voxelwise functional connectivity (FC) between the groups. Then, the β- and δ-networks were constructed, and the FC intensities were compared within and between theβ- and δ-networks across all subjects. Multiple linear regression analyses were also employed to investigate the relationships between the neural features of the β- and δ-networks and anhedonia in MDD patients. Compared to the CN subjects, the MDD patients showed synergistic functional decoupling in both the β- and δ-networks, as well as decreased FC intensities in the intra- and inter- β- and δ-networks. In addition, the FC in both the β- and δ-networks was significantly correlated with anhedonia severity in the MDD patients. Importantly, the integrated neural features of the β- and δ-networks could more precisely predict anhedonic symptoms. These findings initially demonstrated that the imbalance between β- and δ-network activity successfully predicted anhedonia severity and suggested that the neural features of both the β- and δ-networks could represent a fundamental mechanism that underlies anhedonia in MDD patients. Copyright © 2018 Elsevier Ltd. All rights reserved.
Traumatic brain injury impairs small-world topology
Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.
2013-01-01
Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068
Development of cognitive and affective control networks and decision making.
Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi
2013-01-01
Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects of cognitive control and decision making from a developmental perspective. Copyright © 2013 Elsevier B.V. All rights reserved.
Medaglia, John D; Harvey, Denise Y; White, Nicole; Kelkar, Apoorva; Zimmerman, Jared; Bassett, Danielle S; Hamilton, Roy H
2018-06-08
In language production, humans are confronted with considerable word selection demands. Often, we must select a word from among similar, acceptable, and competing alternative words in order to construct a sentence that conveys an intended meaning. In recent years, the left inferior frontal gyrus (LIFG) has been identified as critical to this ability. Despite a recent emphasis on network approaches to understanding language, how the LIFG interacts with the brain's complex networks to facilitate controlled language performance remains unknown. Here, we take a novel approach to understand word selection as a network control process in the brain. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging (DSI), we computed network controllability underlying the site of transcranial magnetic stimulation in the LIFG between administrations of language tasks that vary in response (cognitive control) demands: open-response (word generation) vs. closed-response (number naming) tasks. We find that a statistic that quantifies the LIFG's theoretically predicted control of communication across modules in the human connectome explains TMS-induced changes in open-response language task performance only. Moreover, we find that a statistic that quantifies the LIFG's theoretically predicted control of difficult-to-reach states explains vulnerability to TMS in the closed-ended (but not open-ended) response task. These findings establish a link between network controllability, cognitive function, and TMS effects. SIGNIFICANCE STATEMENT This work illustrates that network control statistics applied to anatomical connectivity data demonstrate relationships with cognitive variability during controlled language tasks and TMS effects. Copyright © 2018 the authors.
Core networks and their reconfiguration patterns across cognitive loads.
Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi
2018-04-20
Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian
2015-03-01
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.
Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder.
Xing, Lihong; Yuan, Kai; Bi, Yanzhi; Yin, Junsen; Cai, Chenxi; Feng, Dan; Li, Yangding; Song, Min; Wang, Hongmei; Yu, Dahua; Xue, Ting; Jin, Chenwang; Qin, Wei; Tian, Jie
2014-10-24
The association between the impaired cognitive control and brain regional abnormalities in Internet gaming disorder (IGD) adolescents had been validated in numerous studies. However, few studies focused on the role of the salience network (SN), which regulates dynamic communication among brain core neurocognitive networks to modulate cognitive control. Seventeen IGD adolescents and 17 healthy controls participated in the study. By combining resting-state functional connectivity and diffusion tensor imaging (DTI) tractography methods, we examined the changes of functional and structural connections within SN in IGD adolescents. The color-word Stroop task was employed to assess the impaired cognitive control in IGD adolescents. Correlation analysis was carried out to investigate the relationship between the neuroimaging indices and behavior performance in IGD adolescents. The impaired cognitive control in IGD was validated by more errors during the incongruent condition in color-word Stroop task. The right SN tract showed the decreased fractional anisotropy (FA) in IGD adolescents, though no significant differences of functional connectivity were detected. Moreover, the FA values of the right SN tract were negatively correlated with the errors during the incongruent condition in IGD adolescents. Our results revealed the disturbed structural connectivity within SN in IGD adolescents, which may be related with impaired cognitive control. It is hoped that the brain-behavior relationship from network perspective may enhance the understanding of IGD. Copyright © 2014 Elsevier B.V. All rights reserved.
A network engineering perspective on probing and perturbing cognition with neurofeedback.
Bassett, Danielle S; Khambhati, Ankit N
2017-05-01
Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.
2014-01-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089
Global connectivity of prefrontal cortex predicts cognitive control and intelligence
Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.
2012-01-01
Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498
Van Calster, Laurens; D'Argembeau, Arnaud; Salmon, Eric; Peters, Frédéric; Majerus, Steve
2017-01-01
Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top-down versus bottom-up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.
Bessette, Katie L; Jenkins, Lisanne M; Skerrett, Kristy A; Gowins, Jennifer R; DelDonno, Sophie R; Zubieta, Jon-Kar; McInnis, Melvin G; Jacobs, Rachel H; Ajilore, Olusola; Langenecker, Scott A
2018-01-01
There is substantial variability across studies of default mode network (DMN) connectivity in major depressive disorder, and reliability and time-invariance are not reported. This study evaluates whether DMN dysconnectivity in remitted depression (rMDD) is reliable over time and symptom-independent, and explores convergent relationships with cognitive features of depression. A longitudinal study was conducted with 82 young adults free of psychotropic medications (47 rMDD, 35 healthy controls) who completed clinical structured interviews, neuropsychological assessments, and 2 resting-state fMRI scans across 2 study sites. Functional connectivity analyses from bilateral posterior cingulate and anterior hippocampal formation seeds in DMN were conducted at both time points within a repeated-measures analysis of variance to compare groups and evaluate reliability of group-level connectivity findings. Eleven hyper- (from posterior cingulate) and 6 hypo- (from hippocampal formation) connectivity clusters in rMDD were obtained with moderate to adequate reliability in all but one cluster (ICC's range = 0.50 to 0.76 for 16 of 17). The significant clusters were reduced with a principle component analysis (5 components obtained) to explore these connectivity components, and were then correlated with cognitive features (rumination, cognitive control, learning and memory, and explicit emotion identification). At the exploratory level, for convergent validity, components consisting of posterior cingulate with cognitive control network hyperconnectivity in rMDD were related to cognitive control (inverse) and rumination (positive). Components consisting of anterior hippocampal formation with social emotional network and DMN hypoconnectivity were related to memory (inverse) and happy emotion identification (positive). Thus, time-invariant DMN connectivity differences exist early in the lifespan course of depression and are reliable. The nuanced results suggest a ventral within-network hypoconnectivity associated with poor memory and a dorsal cross-network hyperconnectivity linked to poorer cognitive control and elevated rumination. Study of early course remitted depression with attention to reliability and symptom independence could lead to more readily translatable clinical assessment tools for biomarkers.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-10-12
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-01-01
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316
Altered predictive capability of the brain network EEG model in schizophrenia during cognition.
Gomez-Pilar, Javier; Poza, Jesús; Gómez, Carlos; Northoff, Georg; Lubeiro, Alba; Cea-Cañas, Benjamín B; Molina, Vicente; Hornero, Roberto
2018-05-12
The study of the mechanisms involved in cognition is of paramount importance for the understanding of the neurobiological substrates in psychiatric disorders. Hence, this research is aimed at exploring the brain network dynamics during a cognitive task. Specifically, we analyze the predictive capability of the pre-stimulus theta activity to ascertain the functional brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly, EEG recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and thirty-five schizophrenia patients. Secondly, phase-based coupling measures were used to generate the time-varying functional network for each subject. Finally, pre-stimulus network connections were iteratively modified according to different models of network reorganization. This adjustment was applied by minimizing the prediction error through recurrent iterations, following the predictive coding approach. Both controls and schizophrenia patients follow a reinforcement of the secondary neural pathways (i.e., pathways between cortical brain regions weakly connected during pre-stimulus) for most of the subjects, though the ratio of controls that exhibited this behavior was statistically significant higher than for patients. These findings suggest that schizophrenia is associated with an impaired ability to modify brain network configuration during cognition. Furthermore, we provide direct evidence that the changes in phase-based brain network parameters from pre-stimulus to cognitive response in the theta band are closely related to the performance in important cognitive domains. Our findings not only contribute to the understanding of healthy brain dynamics, but also shed light on the altered predictive neuronal substrates in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.
Bradley, Kailyn A L; King, Kelly E; Hernandez, Arturo E
2013-02-15
The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only 2h of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning. Copyright © 2012 Elsevier Inc. All rights reserved.
Altered Functional Connectivity of Cognitive-Related Cerebellar Subregions in Alzheimer’s Disease
Zheng, Weimin; Liu, Xingyun; Song, Haiqing; Li, Kuncheng; Wang, Zhiqun
2017-01-01
Alzheimer’s disease (AD) is the most common cause of dementia. Previous studies have found disrupted resting state functional connectivities (rsFCs) in various brain networks in the AD patients. However, few studies have focused on the rsFCs of the cerebellum and its sub-regions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (rs-fMRI) data including 32 AD patients and 38 healthy controls (HCs). We selected two cognitive-related subregions of the cerebellum as seed region and mapped the whole-brain rsFCs for each subregion. We identified several distinct rsFC patterns of the two cognitive-related cerebellar subregions: default-mode network (DMN), frontoparietal network (FPN), visual network (VN) and sensorimotor network (SMN). Compared with the controls, the AD patients showed disrupted rsFCs in several different networks (DMN, VN and SMN), predicting the impairment of the functional integration in the cerebellum. Notably, these abnormal rsFCs of the two cerebellar subregions were closely associated with cognitive performance. Collectively, we demonstrated the distinct rsFCs patterns of cerebellar sub-regions with various functional networks, which were differentially impaired in the AD patients. PMID:28559843
Dynamic reconfiguration of frontal brain networks during executive cognition in humans
Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.
2015-01-01
The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898
Low-level alcohol consumption during adolescence and its impact on cognitive control development.
Jurk, Sarah; Mennigen, Eva; Goschke, Thomas; Smolka, Michael N
2018-01-01
Adolescence is a critical period for maturation of cognitive control and most adolescents start experimenting with alcohol around that time. On the one hand, recent studies indicate that low control abilities predict future problematic alcohol use. On the other hand, binge drinking during young adulthood can (further) impair cognitive control. However, so far no study examined the effects of low-level alcohol use during adolescence. In the present longitudinal fMRI study, we therefore investigated the development of cognitive control in a community-based sample of 92 adolescents at ages 14, 16 and 18. Two different cognitive control functions, i.e. inhibition of pre-potent responses (operationalized by incongruence effects) and switching between different task sets, were measured within one task. Alcohol use in our sample was low (mean: 54 g/week at age 18). The study revealed that neither behavioural nor neural measures of cognitive control function at age 14 predicted alcohol use at age 18 but confirmed established predictors such as gender and personality. As expected, from age 14 to 18, cognitive control abilities were improving (decreased reaction times and/or errors), and activation of cognitive control networks (dorsal anterior cingulate cortex and pre-supplementary motor area) during incongruent trials increased. Unexpectedly, higher alcohol consumption during adolescence was associated with a more pronounced increase in cognitive performance and a smaller increase of neural activation when incongruent trials afforded inhibitory control. We conclude that low-level alcohol use during adolescence does not severely impair ongoing maturation of cognitive control abilities and networks. © 2016 Society for the Study of Addiction.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J
2014-08-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.
Simonson, Donald C.; Nickerson, Lisa D.; Flores, Veronica L.; Siracusa, Tamar; Hager, Brandon; Lyoo, In Kyoon; Renshaw, Perry F.; Jacobson, Alan M.
2015-01-01
Human brain networks mediating interoceptive, behavioral, and cognitive aspects of glycemic control are not well studied. Using group independent component analysis with dual-regression approach of functional magnetic resonance imaging data, we examined the functional connectivity changes of large-scale resting state networks during sequential euglycemic–hypoglycemic clamp studies in patients with type 1 diabetes and nondiabetic controls and how these changes during hypoglycemia were related to symptoms of hypoglycemia awareness and to concurrent glycosylated hemoglobin (HbA1c) levels. During hypoglycemia, diabetic patients showed increased functional connectivity of the right anterior insula and the prefrontal cortex within the executive control network, which was associated with higher HbA1c. Controls showed decreased functional connectivity of the right anterior insula with the cerebellum/basal ganglia network and of temporal regions within the temporal pole network and increased functional connectivity in the default mode and sensorimotor networks. Functional connectivity reductions in the right basal ganglia were correlated with increases of self-reported hypoglycemic symptoms in controls but not in patients. Resting state networks that showed different group functional connectivity during hypoglycemia may be most sensitive to glycemic environment, and their connectivity patterns may have adapted to repeated glycemic excursions present in type 1 diabetes. Our results suggest that basal ganglia and insula mediation of interoceptive awareness during hypoglycemia is altered in type 1 diabetes. These changes could be neuroplastic adaptations to frequent hypoglycemic experiences. Functional connectivity changes in the insula and prefrontal cognitive networks could also reflect an adaptation to changes in brain metabolic pathways associated with chronic hyperglycemia. SIGNIFICANCE STATEMENT The major factor limiting improved glucose control in type 1 diabetes is the significant increase in hypoglycemia associated with insulin treatment. Repeated exposure to hypoglycemia alters patients' ability to recognize the autonomic and neuroglycopenic symptoms associated with low plasma glucose levels. We examined brain resting state networks during the induction of hypoglycemia in diabetic and control subjects and found differences in networks involved in sensorimotor function, cognition, and interoceptive awareness that were related to chronic levels of glycemic control. These findings identify brain regions that are sensitive to variations in plasma glucose levels and may also provide a basis for understanding the mechanisms underlying the increased incidence of cognitive impairment and affective disorders seen in patients with diabetes. PMID:26245963
Franzmeier, N; Caballero, M Á Araque; Taylor, A N W; Simon-Vermot, L; Buerger, K; Ertl-Wagner, B; Mueller, C; Catak, C; Janowitz, D; Baykara, E; Gesierich, B; Duering, M; Ewers, M
2017-04-01
Cognitive reserve (CR) shows protective effects in Alzheimer's disease (AD) and reduces the risk of dementia. Despite the clinical significance of CR, a clinically useful diagnostic biomarker of brain changes underlying CR in AD is not available yet. Our aim was to develop a fully-automated approach applied to fMRI to produce a biomarker associated with CR in subjects at increased risk of AD. We computed resting-state global functional connectivity (GFC), i.e. the average connectivity strength, for each voxel within the cognitive control network, which may sustain CR due to its central role in higher cognitive function. In a training sample including 43 mild cognitive impairment (MCI) subjects and 24 healthy controls (HC), we found that MCI subjects with high CR (> median of years of education, CR+) showed increased frequency of high GFC values compared to MCI-CR- and HC. A summary index capturing such a surplus frequency of high GFC was computed (called GFC reserve (GFC-R) index). GFC-R discriminated MCI-CR+ vs. MCI-CR-, with the area under the ROC = 0.84. Cross-validation in an independently recruited test sample of 23 MCI subjects showed that higher levels of the GFC-R index predicted higher years of education and an alternative questionnaire-based proxy of CR, controlled for memory performance, gray matter of the cognitive control network, white matter hyperintensities, age, and gender. In conclusion, the GFC-R index that captures GFC changes within the cognitive control network provides a biomarker candidate of functional brain changes of CR in patients at increased risk of AD.
Design and Implementation of an Underlay Control Channel for Cognitive Radios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny
Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA modulemore » from National Instruments.« less
An fMRI investigation of the relationship between future imagination and cognitive flexibility
Roberts, R.P.; Wiebels, K.; Sumner, R.L.; van Mulukom, V.; Grady, C.L.; Schacter, D.L.; Addis, D.R.
2016-01-01
While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibility result in increased coupling of the default mode network with frontoparietal control and salience networks. In the current study, we investigated the neural correlates underlying the association between cognitive flexibility and future imagination in two ways. First, we experimentally varied the degree of cognitive flexibility required during future imagination by manipulating the disparateness of episodic details contributing to imagined events. To this end, participants generated episodic details (persons, locations, objects) within three social spheres; during fMRI scanning they were presented with sets of three episodic details all taken from the same social sphere (Congruent condition) or different social spheres (Incongruent condition) and required to imagine a future event involving the three details. We predicted that, relative to the Congruent condition, future simulation in the Incongruent condition would be associated with increased activity in regions of the default mode, frontoparietal and salience networks. Second, we hypothesized that individual differences in cognitive flexibility, as measured by performance on the Alternate Uses Task, would correspond to individual differences in the brain regions recruited during future imagination. A task partial least squares (PLS) analysis showed that the Incongruent condition resulted in an increase in activity in regions in salience networks (e.g. the insula) but, contrary to our prediction, reduced activity in many regions of the default mode network (including the hippocampus). A subsequent functional connectivity (within-subject seed PLS) analysis showed that the insula exhibited increased coupling with default mode regions during the Incongruent condition. Finally, a behavioral PLS analysis showed that individual differences in cognitive flexibility were associated with differences in activity in a number of regions from frontoparietal, salience and default-mode networks during both future imagination conditions, further highlighting that the cognitive flexibility underlying future imagination is grounded in the complex interaction of regions in these networks. PMID:27908591
Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo
2018-01-01
Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p < 0.01) mainly involved the orbitofrontal, parietal, and temporal cortices, as well as the basal ganglia. The brain connectivity network was progressively disrupted as cognitive impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.
Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia.
Ryman, Sephira G; Cavanagh, James F; Wertz, Christopher J; Shaff, Nicholas A; Dodd, Andrew B; Stevens, Brigitte; Ling, Josef; Yeo, Ronald A; Hanlon, Faith M; Bustillo, Juan; Stromberg, Shannon F; Lin, Denise S; Abrams, Swala; Mayer, Andrew R
2018-05-25
Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.
Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W
2015-08-01
Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.
Driving the brain towards creativity and intelligence: A network control theory analysis.
Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang
2018-01-04
High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Horowitz-Kraus, Tzipi; Toro-Serey, Claudio; DiFrancesco, Mark
2015-01-01
Dyslexia, or reading difficulty, is characterized by slow, inaccurate reading accompanied by executive dysfunction. Reading training using the Reading Acceleration Program improves reading and executive functions in both children with dyslexia and typical readers. This improvement is associated with increased activation in and functional connectivity between the anterior cingulate cortex, part of the cingulo-opercular cognitive-control network, and the fusiform gyrus during a reading task after training. The objective of the current study was to determine whether the training also has an effect on functional connectivity of the cingulo-opercular and fronto-parietal cognitive-control networks during rest in children with dyslexia and typical readers. Fifteen children with reading difficulty and 17 typical readers (8-12 years old) were included in the study. Reading and executive functions behavioral measures and resting-state functional magnetic resonance imaging data were collected before and after reading training. Imaging data were analyzed using a graphical network-modeling tool. Both reading groups had increased reading and executive-functions scores after training, with greater gains among the dyslexia group. Training may have less effect on cognitive control in typical readers and a more direct effect on the visual area, as previously reported. Statistical analysis revealed that compared to typical readers, children with reading difficulty had significantly greater functional connectivity in the cingulo-opercular network after training, which may demonstrate the importance of cognitive control during reading in this population. These results support previous findings of increased error-monitoring activation after reading training in children with dyslexia and confirm greater gains with training in this group. PMID:26197049
Functional Hubs in Mild Cognitive Impairment
NASA Astrophysics Data System (ADS)
Navas, Adrián; Papo, David; Boccaletti, Stefano; Del-Pozo, F.; Bajo, Ricardo; Maestú, Fernando; Martínez, J. H.; Gil, Pablo; Sendiña-Nadal, Irene; Buldú, Javier M.
We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.
Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.
Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios
2018-04-24
Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.
Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.
2012-01-01
Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise. PMID:22276205
Graph theory network function in Parkinson's disease assessed with electroencephalography.
Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G
2016-05-01
To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A
2014-10-01
Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Viewing socio-affective stimuli increases connectivity within an extended default mode network.
Göttlich, Martin; Ye, Zheng; Rodriguez-Fornells, Antoni; Münte, Thomas F; Krämer, Ulrike M
2017-03-01
Empathy is an essential ability for prosocial behavior. Previous imaging studies identified a number of brain regions implicated in affective and cognitive aspects of empathy. In this study, we investigated the neural correlates of empathy from a network perspective using graph theory and beta-series correlations. Two independent data sets were acquired using the same paradigm that elicited empathic responses to socio-affective stimuli. One data set was used to define the network nodes and modular structure, the other data set was used to investigate the effects of emotional versus neutral stimuli on network connectivity. Emotional relative to neutral stimuli increased connectivity between 74 nodes belonging to different networks. Most of these nodes belonged to an extended default mode network (eDMN). The other nodes belonged to a cognitive control network or visual networks. Within the eDMN, posterior STG/TPJ regions were identified as provincial hubs. The eDMN also showed stronger connectivity to the cognitive control network encompassing lateral PFC regions. Connector hubs between the two networks were posterior cingulate cortex and ventrolateral PFC. This stresses the advantage of a network approach as regions similarly modulated by task conditions can be dissociated into distinct networks and regions crucial for network integration can be identified. Copyright © 2017 Elsevier Inc. All rights reserved.
Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie
2012-03-01
Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.
Weissman, David G; Schriber, Roberta A; Fassbender, Catherine; Atherton, Olivia; Krafft, Cynthia; Robins, Richard W; Hastings, Paul D; Guyer, Amanda E
2015-12-01
Early adolescent onset of substance use is a robust predictor of future substance use disorders. We examined the relation between age of substance use initiation and resting state functional connectivity (RSFC) of the core reward processing (nucleus accumbens; NAcc) to cognitive control (prefrontal cortex; PFC) brain networks. Adolescents in a longitudinal study of Mexican-origin youth reported their substance use annually from ages 10 to 16 years. At age 16, 69 adolescents participated in a resting state functional magnetic resonance imaging scan. Seed-based correlational analyses were conducted using regions of interest in bilateral NAcc. The earlier that adolescents initiated substance use, the stronger the connectivity between bilateral NAcc and right dorsolateral PFC, right dorsomedial PFC, right pre-supplementary motor area, right inferior parietal lobule, and left medial temporal gyrus. The regions that demonstrated significant positive linear relationships between the number of adolescent years using substances and connectivity with NAcc are nodes in the right frontoparietal network, which is central to cognitive control. The coupling of reward and cognitive control networks may be a mechanism through which earlier onset of substance use is related to brain function over time, a trajectory that may be implicated in subsequent substance use disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yang, Zhen; Oathes, Desmond J.; Linn, Kristin A.; Bruce, Steven E.; Satterthwaite, Theodore D.; Cook, Philip A.; Satchell, Emma K.; Shou, Haochang; Sheline, Yvette I.
2018-01-01
BACKGROUND Both major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are characterized by depressive symptoms, abnormalities in brain regions important for cognitive control, and response to cognitive behavioral therapy (CBT). However, whether a common neural mechanism underlies CBT response across diagnoses is unknown. METHODS Brain activity during a cognitive control task was measured using functional magnetic resonance imaging in 104 participants: 28 patients with MDD, 53 patients with PTSD, and 23 healthy control subjects; depression and anxiety symptoms were determined on the same day. A patient subset (n = 31) entered manualized CBT and, along with controls (n = 19), was rescanned at 12 weeks. Linear mixed effects models assessed the relationship between depression and anxiety symptoms and brain activity before and after CBT. RESULTS At baseline, activation of the left dorsolateral prefrontal cortex was negatively correlated with Montgomery–Åsberg Depression Rating Scale scores across all participants; this brain–symptom association did not differ between MDD and PTSD. Following CBT treatment of patients, regions within the cognitive control network, including ventrolateral prefrontal cortex and dorsolateral prefrontal cortex, showed a significant increase in activity. CONCLUSIONS Our results suggest that dimensional abnormalities in the activation of cognitive control regions were associated primarily with symptoms of depression (with or without controlling for anxious arousal). Furthermore, following treatment with CBT, activation of cognitive control regions was similarly increased in both MDD and PTSD. These results accord with the Research Domain Criteria conceptualization of mental disorders and implicate improved cognitive control activation as a transdiagnostic mechanism for CBT treatment outcome. PMID:29628063
Shin, Jeong-Hyeon; Um, Yu Hyun; Lee, Chang Uk; Lim, Hyun Kook; Seong, Joon-Kyung
2018-03-15
Coordinated and pattern-wise changes in large scale gray matter structural networks reflect neural circuitry dysfunction in late life depression (LLD), which in turn is associated with emotional dysregulation and cognitive impairments. However, due to methodological limitations, there have been few attempts made to identify individual-level structural network properties or sub-networks that are involved in important brain functions in LLD. In this study, we sought to construct individual-level gray matter structural networks using average cortical thicknesses of several brain areas to investigate the characteristics of the gray matter structural networks in normal controls and LLD patients. Additionally, we investigated the structural sub-networks correlated with several clinical measurements including cognitive impairment and depression severity. We observed that small worldness, clustering coefficients, global and local efficiency, and hub structures in the brains of LLD patients were significantly different from healthy controls. We further found that a sub-network including the anterior cingulate, dorsolateral prefrontal cortex and superior prefrontal cortex is significantly associated with attention control and executive function. The severity of depression was associated with the sub-networks comprising the salience network, including the anterior cingulate and insula. We investigated cortico-cortical connectivity, but omitted the subcortical structures such as the striatum and thalamus. We report differences in patterns between several clinical measurements and sub-networks from large-scale and individual-level cortical thickness networks in LLD. Copyright © 2018 Elsevier B.V. All rights reserved.
Cognitive network organization and cockpit automation
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, R. J.; Paap, K. R.
1985-01-01
Attention is given to a technique for the derivation of pilot cognitive networks from empirical data, which has been successfully used to guide the redesign of the Control Display Unit that serves as the primary interface of the complex flight management system being developed by NASA's Advanced Concepts Flight Simulator program. The 'pathfinder' algorithm of Schvaneveldt et al. (1985) is used to obtain the conceptual organization of four pilots by generating a family of link-weighted networks from a set of psychological distance data derived through similarity ratings. The degree of conceptual agreement between pilots is assessed, and the means of translating a cognitive network into a menu structure are noted.
Action Video Game Experience Related to Altered Large-Scale White Matter Networks.
Gong, Diankun; Ma, Weiyi; Gong, Jinnan; He, Hui; Dong, Li; Zhang, Dan; Li, Jianfu; Luo, Cheng; Yao, Dezhong
2017-01-01
With action video games (AVGs) becoming increasingly popular worldwide, the cognitive benefits of AVG experience have attracted continuous research attention over the past two decades. Research has repeatedly shown that AVG experience can causally enhance cognitive ability and is related to neural plasticity in gray matter and functional networks in the brain. However, the relation between AVG experience and the plasticity of white matter (WM) network still remains unclear. WM network modulates the distribution of action potentials, coordinating the communication between brain regions and acting as the framework of neural networks. And various types of cognitive deficits are usually accompanied by impairments of WM networks. Thus, understanding this relation is essential in assessing the influence of AVG experience on neural plasticity and using AVG experience as an interventional tool for impairments of WM networks. Using graph theory, this study analyzed WM networks in AVG experts and amateurs. Results showed that AVG experience is related to altered WM networks in prefrontal networks, limbic system, and sensorimotor networks, which are related to cognitive control and sensorimotor functions. These results shed new light on the influence of AVG experience on the plasticity of WM networks and suggested the clinical applicability of AVG experience.
Sestieri, Carlo; Corbetta, Maurizio; Spadone, Sara; Romani, Gian Luca; Shulman, Gordon L.
2014-01-01
We investigated the functional properties of a previously described cingulo-opercular network (CON) putatively involved in cognitive control. Analyses of common fMRI task-evoked activity during perceptual and episodic memory search tasks that differently recruited the dorsal attention (DAN) and default mode network (DMN) established the generality of this network. Regions within the CON (anterior insula/frontal operculum and anterior cingulate/presupplementary cortex) displayed sustained signals during extended periods in which participants searched for behaviourally relevant information in a dynamically changing environment or from episodic memory in the absence of sensory stimulation. The CON was activated during all phases of both tasks, which involved trial initiation, target detection, decision and response, indicating its consistent involvement in a broad range of cognitive processes. Functional connectivity analyses showed that the CON flexibly linked with the DAN or DMN regions during perceptual or memory search, respectively. Aside from the CON, only a limited number of regions, including the lateral prefrontal cortex, showed evidence of domain-general, sustained activity, although in some cases the common activations may have reflected the functional-anatomical variability of domain-specific regions rather than a true domain-generality. These additional regions also showed task-dependent functional connectivity with the DMN and DAN, suggesting that this feature is not a specific marker of cognitive control. Finally, multivariate clustering analyses separated the CON from other fronto-parietal regions previously associated with cognitive control, indicating a unique fingerprint. We conclude that the CON’s functional properties and interactions with other brain regions support a broad role in cognition, consistent with its characterization as a task-control network. PMID:24144246
Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B
2015-11-01
The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Representing distributed cognition in complex systems: how a submarine returns to periscope depth.
Stanton, Neville A
2014-01-01
This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system.
Zhang, Zhou; Zhang, Bing; Wang, Xin; Zhang, Xin; Yang, Qing X; Qing, Zhao; Lu, Jiaming; Bi, Yan; Zhu, Dalong
2018-05-01
Type 2 diabetes is reported to be associated with olfactory dysfunction and cognitive decline. However, whether and how olfactory neural circuit abnormalities involve cognitive impairment in diabetes remains uncovered. This study thus aimed to investigate olfactory network alterations and the associations of odor-induced brain activity with cognitive and metabolic parameters in type 2 diabetes. Participants with normal cognition, including 51 patients with type 2 diabetes and 41 control subjects without diabetes, underwent detailed cognitive assessment, olfactory behavior tests, and odor-induced functional MRI measurements. Olfactory brain regions showing significantly different activation between the two groups were selected for functional connectivity analysis. Compared with the control subjects, patients with diabetes demonstrated significantly lower olfactory threshold score, decreased brain activation, and disrupted functional connectivity in the olfactory network. Positive associations of the disrupted functional connectivity with decreased neuropsychology test scores and reduced pancreatic function were observed in patients with diabetes. Notably, the association between pancreatic function and executive function was mediated by olfactory behavior and olfactory functional connectivity. Our results suggested the alteration of olfactory network is present before clinically measurable cognitive decrements in type 2 diabetes, bridging the gap between the central olfactory system and cognitive decline in diabetes. © 2018 by the American Diabetes Association.
Garcia-Ramos, Camille; Lin, Jack J; Kellermann, Tanja S; Bonilha, Leonardo; Prabhakaran, Vivek; Hermann, Bruce P
2016-01-01
The recent revision of the classification of the epilepsies released by the ILAE Commission on Classification and Terminology (2005–2009) has been a major development in the field. Papers in this section of the special issue were charged with examining the relevance of other techniques and approaches to examining, categorizing and classifying cognitive and behavioral comorbidities. In that light, we investigate the applicability of graph theory to understand the impact of epilepsy on cognition compared to controls, and then the patterns of cognitive development in normally developing children which would set the stage for prospective comparisons of children with epilepsy and controls. The overall goal is to examine the potential utility of other analytic tools and approaches to conceptualize the cognitive comorbidities in epilepsy. Given that the major cognitive domains representing cognitive function are interdependent, the associations between the neuropsychological abilities underlying these domains can be referred to as a cognitive network. Therefore, the architecture of this cognitive network can be quantified and assessed using graph theory methods, rendering a novel approach to the characterization of cognitive status. In this article we provide fundamental information about graph theory procedures, followed by application of these techniques to cross-sectional analysis of neuropsychological data in children with epilepsy compared to controls, finalizing with prospective analysis of neuropsychological development in younger and older healthy controls. PMID:27017326
Promoting Cognitive Health: A Formative Research Collaboration of the Healthy Aging Research Network
ERIC Educational Resources Information Center
Laditka, James N.; Beard, Renee L.; Bryant, Lucinda L.; Fetterman, David; Hunter, Rebecca; Ivey, Susan; Logsdon, Rebecca G.; Sharkey, Joseph R.; Wu, Bei
2009-01-01
Purpose: Evidence suggests that healthy lifestyles may help maintain cognitive health. The Prevention Research Centers Healthy Aging Research Network, 9 universities collaborating with their communities and the Centers for Disease Control and Prevention, is conducting a multiyear research project, begun in 2005, to understand how to translate this…
Rayner, Genevieve; Jackson, Graeme; Wilson, Sarah
2016-02-01
This systematic review sources the latest neuroimaging evidence for the role of cognition-related brain networks in depression, and relates their abnormal functioning to symptoms of the disorder. Using theoretically informed and rigorous inclusion criteria, we integrate findings from 59 functional neuroimaging studies of adults with unipolar depression using a narrative approach. Results demonstrate that two distinct neurocognitive networks, the autobiographic memory network (AMN) and the cognitive control network (CCN), are central to the symptomatology of depression. Specifically, hyperactivity of the introspective AMN is linked to pathological brooding, self-blame, rumination. Anticorrelated under-engagement of the CCN is associated with indecisiveness, negative automatic thoughts, poor concentration, distorted cognitive processing. Downstream effects of this imbalance include reduced regulation of networks linked to the vegetative and affective symptoms of depression. The configurations of these networks can change between individuals and over time, plausibly accounting for both the variable presentation of depressive disorders and their fluctuating course. Framing depression as a disorder of neurocognitive networks directly links neurobiology to psychiatric practice, aiding researchers and clinicians alike. Copyright © 2015 Elsevier Ltd. All rights reserved.
Verbal and Nonverbal Cognitive Control in Bilinguals and Interpreters
ERIC Educational Resources Information Center
Woumans, Evy; Ceuleers, Evy; Van der Linden, Lize; Szmalec, Arnaud; Duyck, Wouter
2015-01-01
The present study explored the relation between language control and nonverbal cognitive control in different bilingual populations. We compared monolinguals, Dutch-French unbalanced bilinguals, balanced bilinguals, and interpreters on the Simon task (Simon & Rudell, 1967) and the Attention Network Test (ANT; Fan, McCandliss, Sommer, Raz,…
Functional brain imaging across development.
Rubia, Katya
2013-12-01
The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to a more mature and controlled cognition.
Kellermann, Tanja S; Bonilha, Leonardo; Eskandari, Ramin; Garcia-Ramos, Camille; Lin, Jack J; Hermann, Bruce P
2016-10-01
Normal cognitive function is defined by harmonious interaction among multiple neuropsychological domains. Epilepsy has a disruptive effect on cognition, but how diverse cognitive abilities differentially interact with one another compared with healthy controls (HC) is unclear. This study used graph theory to analyze the community structure of cognitive networks in adults with temporal lobe epilepsy (TLE) compared with that in HC. Neuropsychological assessment was performed in 100 patients with TLE and 82 HC. For each group, an adjacency matrix was constructed representing pair-wise correlation coefficients between raw scores obtained in each possible test combination. For each cognitive network, each node corresponded to a cognitive test; each link corresponded to the correlation coefficient between tests. Global network structure, community structure, and node-wise graph theory properties were qualitatively assessed. The community structure in patients with TLE was composed of fewer, larger, more mixed modules, characterizing three main modules representing close relationships between the following: 1) aspects of executive function (EF), verbal and visual memory, 2) speed and fluency, and 3) speed, EF, perception, language, intelligence, and nonverbal memory. Conversely, controls exhibited a relative division between cognitive functions, segregating into more numerous, smaller modules consisting of the following: 1) verbal memory, 2) language, perception, and intelligence, 3) speed and fluency, and 4) visual memory and EF. Overall node-wise clustering coefficient and efficiency were increased in TLE. Adults with TLE demonstrate a less clear and poorly structured segregation between multiple cognitive domains. This panorama suggests a higher degree of interdependency across multiple cognitive domains in TLE, possibly indicating compensatory mechanisms to overcome functional impairments. Copyright © 2016 Elsevier Inc. All rights reserved.
Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta
2014-01-01
Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person's response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color-word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute "cognitive readiness," which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance.
Gotts, Stephen J.; McAdams, Harrison M.; Greenstein, Dede; Lalonde, Francois; Clasen, Liv; Watsky, Rebecca E.; Shora, Lorie; Ordonez, Anna E.; Raznahan, Armin; Martin, Alex; Gogtay, Nitin; Rapoport, Judith
2016-01-01
Abstract See Lancaster and Hall (doi: 10.1093/awv330 ) for a scientific commentary on this article . Schizophrenia is increasingly recognized as a neurodevelopmental disorder with altered connectivity among brain networks. In the current study we examined large-scale network interactions in childhood-onset schizophrenia, a severe form of the disease with salient genetic and neurobiological abnormalities. Using a data-driven analysis of resting-state functional magnetic resonance imaging fluctuations, we characterized data from 19 patients with schizophrenia and 26 typically developing controls, group matched for age, sex, handedness, and magnitude of head motion during scanning. This approach identified 26 regions with decreased functional correlations in schizophrenia compared to controls. These regions were found to organize into two function-related networks, the first with regions associated with social and higher-level cognitive processing, and the second with regions involved in somatosensory and motor processing. Analyses of across- and within-network regional interactions revealed pronounced across-network decreases in functional connectivity in the schizophrenia group, as well as a set of across-network relationships with overall negative coupling indicating competitive or opponent network dynamics. Critically, across-network decreases in functional connectivity in schizophrenia predicted the severity of positive symptoms in the disorder, such as hallucinations and delusions. By contrast, decreases in functional connectivity within the social-cognitive network of regions predicted the severity of negative symptoms, such as impoverished speech and flattened affect. These results point toward the role that abnormal integration of sensorimotor and social-cognitive processing may play in the pathophysiology and symptomatology of schizophrenia. PMID:26493637
Bae, Sujin; Han, Doug Hyun; Jung, Jaebum; Nam, Ki Chun; Renshaw, Perry F
2017-12-01
Background and aims Given the similarities in clinical symptoms, Internet gaming disorder (IGD) is thought to be diagnostically similar to Internet-based gambling disorder (ibGD). However, cognitive enhancement and educational use of Internet gaming suggest that the two disorders derive from different neurobiological mechanisms. The goal of this study was to compare subjects with ibGD to those with IGD. Methods Fifteen patients with IGD, 14 patients with ibGD, and 15 healthy control subjects were included in this study. Resting-state functional magnetic resonance imaging data for all participants were acquired using a 3.0 Tesla MRI scanner (Philips, Eindhoven, The Netherlands). Seed-based analyses, the three brain networks of default mode, cognitive control, and reward circuitry, were performed. Results Both IGD and ibGD groups demonstrated decreased functional connectivity (FC) within the default-mode network (DMN) (family-wise error p < .001) compared with healthy control subjects. However, the IGD group demonstrated increased FC within the cognitive network compared with both the ibGD (p < .01) and healthy control groups (p < .01). In contrast, the ibGD group demonstrated increased FC within the reward circuitry compared with both IGD (p < .01) and healthy control subjects (p < .01). Discussion and conclusions The IGD and ibGD groups shared the characteristic of decreased FC in the DMN. However, the IGD group demonstrated increased FC within the cognitive network compared with both ibGD and healthy comparison groups.
Garcia-Ramos, Camille; Lin, Jack J; Kellermann, Tanja S; Bonilha, Leonardo; Prabhakaran, Vivek; Hermann, Bruce P
2016-11-01
The recent revision of the classification of the epilepsies released by the ILAE Commission on Classification and Terminology (2005-2009) has been a major development in the field. Papers in this section of the special issue explore the relevance of other techniques to examine, categorize, and classify cognitive and behavioral comorbidities in epilepsy. In this review, we investigate the applicability of graph theory to understand the impact of epilepsy on cognition compared with controls and, then, the patterns of cognitive development in normally developing children which would set the stage for prospective comparisons of children with epilepsy and controls. The overall goal is to examine the potential utility of this analytic tool and approach to conceptualize the cognitive comorbidities in epilepsy. Given that the major cognitive domains representing cognitive function are interdependent, the associations between neuropsychological abilities underlying these domains can be referred to as a cognitive network. Therefore, the architecture of this cognitive network can be quantified and assessed using graph theory methods, rendering a novel approach to the characterization of cognitive status. We first provide fundamental information about graph theory procedures, followed by application of these techniques to cross-sectional analysis of neuropsychological data in children with epilepsy compared with that of controls, concluding with prospective analysis of neuropsychological development in younger and older healthy controls. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.
Cognitive Benefits of Online Social Networking for Healthy Older Adults.
Myhre, Janelle W; Mehl, Matthias R; Glisky, Elizabeth L
2017-09-01
Research suggests that older adults who remain socially active and cognitively engaged have better cognitive function than those who are isolated and disengaged. This study examined the efficacy of learning and using an online social networking website, Facebook.com, as an intervention to maintain or enhance cognitive function in older adults. Forty-one older adults were assigned to learn and use Facebook (n = 14) or an online diary website (active control, n = 13) for 8 weeks or placed on a waitlist (n = 14). Outcome measures included neuropsychological tests of executive functions, memory, and processing speed and self-report questionnaires about social engagement. The Facebook group showed a significant increase in a composite measure of updating, an executive function factor associated with complex working memory tasks, compared to no significant change in the control groups. Other measures of cognitive function and social support showed no differential improvement in the Facebook group. Learning and using an online social networking site may provide specific benefits for complex working memory in a group of healthy older adults. This may reflect the particular cognitive demands associated with online social networking and/or the benefits of social engagement more generally. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Top-Down Control of MEG Alpha-Band Activity in Children Performing Categorical N-Back Task
ERIC Educational Resources Information Center
Ciesielski, Kristina T.; Ahlfors, Seppo P.; Bedrick, Edward J.; Kerwin, Audra A.; Hamalainen, Matti S.
2010-01-01
Top-down cognitive control has been associated in adults with the prefrontal-parietal network. In children the brain mechanisms of top-down control have rarely been studied. We examined developmental differences in top-down cognitive control by monitoring event-related desynchronization (ERD) and event-related synchronization (ERS) of alpha-band…
Aberrant functional connectivity of default-mode network in type 2 diabetes patients.
Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun
2015-11-01
Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. • Type 2 diabetes mellitus is associated with impaired cognition • Default- mode network plays a central role in maintaining normal cognition • Network connectivity within the default mode was disrupted in type 2 diabetes patients • Decreased network connectivity was correlated with cognitive performance and insulin resistance level • Disrupted default-mode network might explain the impaired cognition in diabetic population.
Lao-Kaim, Nick P; Fonville, Leon; Giampietro, Vincent P; Williams, Steven C R; Simmons, Andrew; Tchanturia, Kate
2015-01-01
People with Anorexia Nervosa exhibit difficulties flexibly adjusting behaviour in response to environmental changes. This has previously been attributed to problematic behavioural shifting, characterised by a decrease in fronto-striatal activity. Additionally, alterations of instrumental learning, which relies on fronto-striatal networks, may contribute to the observation of inflexible behaviour. The authors sought to investigate the neural correlates of cognitive flexibility and learning in Anorexia Nervosa. Thirty-two adult females with Anorexia Nervosa and thirty-two age-matched female control participants completed the Wisconsin Card Sorting Task whilst undergoing functional magnetic resonance imaging. Event-related analysis permitted the comparison of cognitive shift trials against those requiring maintenance of rule-sets and allowed assessment of trials representing learning. Although both groups performed similarly, we found significant interactions in the left middle frontal gyrus, precuneus and superior parietal lobule whereby blood-oxygenated-level dependent response was higher in Anorexia Nervosa patients during shifting but lower when maintaining rule-sets, as compared to healthy controls. During learning, posterior cingulate cortex activity in healthy controls decreased whilst increasing in the Anorexia Nervosa group, whereas the right precuneus exhibited the opposite pattern. Furthermore, learning was associated with lower blood-oxygenated-level dependent response in the caudate body, as compared to healthy controls. People with Anorexia Nervosa display widespread changes in executive function. Whilst cognitive flexibility appears to be associated with aberrant functioning of the fronto-parietal control network that mediates between internally and externally directed cognition, fronto-striatal alterations, particularly within the caudate body, were associated with instrumental learning. Together, this shows how perseverative tendencies could be a substrate of multiple high-order processes that may contribute to the maintenance of Anorexia Nervosa.
Ramirez-Mahaluf, Juan P; Perramon, Joan; Otal, Begonya; Villoslada, Pablo; Compte, Albert
2018-06-04
The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.
2013-03-01
series of checkpoints in a complex route network,” while observing standard traffic etiquette and regulations [17]. The rules for the 2012 RoboCup...structure or protocols above the PHY. To support AVEP operation, we developed a packet structure based on the transmission control protocol (TCP...Control Protocol .” 1981. [37] F. Ge, Q. Chen, Y. Wang, C. W. Bostian, T. W. Rondeau, and B. Le, “Cognitive radio: from spectrum sharing to adaptive
Molecular networks and the evolution of human cognitive specializations.
Fontenot, Miles; Konopka, Genevieve
2014-12-01
Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Control Networks and Neuromodulators of Early Development
ERIC Educational Resources Information Center
Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale
2012-01-01
In adults, most cognitive and emotional self-regulation is carried out by a network of brain regions, including the anterior cingulate, insula, and areas of the basal ganglia, related to executive attention. We propose that during infancy, control systems depend primarily upon a brain network involved in orienting to sensory events that includes…
Li, Jing; Guo, Hao; Ge, Ling; Cheng, Long; Wang, Junjie; Li, Hong; Zhang, Kerang; Xiang, Jie; Chen, Junjie; Zhang, Hui; Xu, Yong
2017-01-01
Cerebralcare Granule® (CG), a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI). Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) and Wechsler Memory Scale (WMS), and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM) and frequent subgraph mining (FSM). Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ) and Memory Quotient (MQ) scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.
Disrupted White Matter Network and Cognitive Decline in Type 2 Diabetes Patients.
Zhang, Junying; Liu, Zhen; Li, Zixiao; Wang, Yunxia; Chen, Yaojing; Li, Xin; Chen, Kewei; Shu, Ni; Zhang, Zhanjun
2016-05-06
Type 2 diabetes mellitus is accompanied by cognitive impairment and is associated with an increased risk of dementia. Damage to brain structures such as white matter network disruption may underlie this cognitive disturbance. In the present study, 886 non-diabetic and 163 type 2 diabetic participants completed a battery of neuropsychological tests. Among them, 38 diabetic patients and 34 non-diabetic participants that matched the patients for age/sex/education received a magnetic resonance imaging-based diffusion tensor imaging. Then we calculated the topological properties of the white matter network using a graph theoretical method to investigate network efficiency differences between groups. We found that type 2 diabetic patients had inferior performances compared to the non-diabetic controls, in several cognitive domains involving executive function, spatial processing, memory, and attention. We also found that diabetic patients exhibited a disrupted topological organization of the white matter network (including the global network properties, i.e., network strength, global efficiency, local efficiency and shortest path length, and the nodal efficiency of the right rolandic operculum) in the brain. Moreover, those global network properties and the nodal efficiency of the right rolandic operculum both had positive correlations with executive function in the patient group. The results suggest that type 2 diabetes mellitus leads to an alteration in the topological organization of the cortical white matter network and this alteration may account for the observed cognitive decline.
Evidence for a Functional Hierarchy of Association Networks.
Choi, Eun Young; Drayna, Garrett K; Badre, David
2018-05-01
Patient lesion and neuroimaging studies have identified a rostral-to-caudal functional gradient in the lateral frontal cortex (LFC) corresponding to higher-order (complex or abstract) to lower-order (simple or concrete) cognitive control. At the same time, monkey anatomical and human functional connectivity studies show that frontal regions are reciprocally connected with parietal and temporal regions, forming parallel and distributed association networks. Here, we investigated the link between the functional gradient of LFC regions observed during control tasks and the parallel, distributed organization of association networks. Whole-brain fMRI task activity corresponding to four orders of hierarchical control [Badre, D., & D'Esposito, M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 2082-2099, 2007] was compared with a resting-state functional connectivity MRI estimate of cortical networks [Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125-1165, 2011]. Critically, at each order of control, activity in the LFC and parietal cortex overlapped onto a common association network that differed between orders. These results are consistent with a functional organization based on separable association networks that are recruited during hierarchical control. Furthermore, corticostriatal functional connectivity MRI showed that, consistent with their participation in functional networks, rostral-to-caudal LFC and caudal-to-rostral parietal regions had similar, order-specific corticostriatal connectivity that agreed with a striatal gating model of hierarchical rule use. Our results indicate that hierarchical cognitive control is subserved by parallel and distributed association networks, together forming multiple localized functional gradients in different parts of association cortex. As such, association networks, while connectionally organized in parallel, may be functionally organized in a hierarchy via dynamic interaction with the striatum.
Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis.
Caeyenberghs, K; Powell, H W R; Thomas, R H; Brindley, L; Church, C; Evans, J; Muthukumaraswamy, S D; Jones, D K; Hamandi, K
2015-01-01
Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients.
Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis
Caeyenberghs, K.; Powell, H.W.R.; Thomas, R.H.; Brindley, L.; Church, C.; Evans, J.; Muthukumaraswamy, S.D.; Jones, D.K.; Hamandi, K.
2014-01-01
Objective Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Methods Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Results Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Conclusions Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients. PMID:25610771
Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou
2015-12-01
The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.
Network measures predict neuropsychological outcome after brain injury
Warren, David E.; Power, Jonathan D.; Bruss, Joel; Denburg, Natalie L.; Waldron, Eric J.; Sun, Haoxin; Petersen, Steven E.; Tranel, Daniel
2014-01-01
Hubs are network components that hold positions of high importance for network function. Previous research has identified hubs in human brain networks derived from neuroimaging data; however, there is little consensus on the localization of such hubs. Moreover, direct evidence regarding the role of various proposed hubs in network function (e.g., cognition) is scarce. Regions of the default mode network (DMN) have been frequently identified as “cortical hubs” of brain networks. On theoretical grounds, we have argued against some of the methods used to identify these hubs and have advocated alternative approaches that identify different regions of cortex as hubs. Our framework predicts that our proposed hub locations may play influential roles in multiple aspects of cognition, and, in contrast, that hubs identified via other methods (including salient regions in the DMN) might not exert such broad influence. Here we used a neuropsychological approach to directly test these predictions by studying long-term cognitive and behavioral outcomes in 30 patients, 19 with focal lesions to six “target” hubs identified by our approaches (high system density and participation coefficient) and 11 with focal lesions to two “control” hubs (high degree centrality). In support of our predictions, we found that damage to target locations produced severe and widespread cognitive deficits, whereas damage to control locations produced more circumscribed deficits. These findings support our interpretation of how neuroimaging-derived network measures relate to cognition and augment classic neuroanatomically based predictions about cognitive and behavioral outcomes after focal brain injury. PMID:25225403
Janssen, Alisha L; Boster, Aaron; Patterson, Beth A; Abduljalil, Amir; Prakash, Ruchika Shaurya
2013-11-01
Multiple sclerosis (MS) is a neurodegenerative, inflammatory disease of the central nervous system, resulting in physical and cognitive disturbances. The goal of the current study was to examine the association between network integrity and composite measures of cognition and disease severity in individuals with relapsing-remitting MS (RRMS), relative to healthy controls. All participants underwent a neuropsychological and neuroimaging session, where resting-state data was collected. Independent component analysis and dual regression were employed to examine network integrity in individuals with MS, relative to healthy controls. The MS sample exhibited less connectivity in the motor and visual networks, relative to healthy controls, after controlling for group differences in gray matter volume. However, no alterations were observed in the frontoparietal, executive control, or default-mode networks, despite previous evidence of altered neuronal patterns during tasks of exogenous processing. Whole-brain, voxel-wise regression analyses with disease severity and processing speed composites were also performed to elucidate the brain-behavior relationship with neuronal network integrity. Individuals with higher levels of disease severity demonstrated reduced intra-network connectivity of the motor network, and the executive control network, while higher disease burden was associated with greater inter-network connectivity between the medial visual network and areas involved in visuomotor learning. Our findings underscore the importance of examining resting-state oscillations in this population, both as a biomarker of disease progression and a potential target for therapeutic intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Passow, Susanne; Thurm, Franka; Li, Shu-Chen
2017-01-01
Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age. PMID:28280465
Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P
2012-04-01
Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.
Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Wager, Tor D; Pizzagalli, Diego A
2015-06-01
Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. To investigate network dysfunction in MDD through a meta-analysis of rsFC studies. Seed-based voxelwise rsFC studies comparing individuals with MDD with healthy controls (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE) and authors contacted for additional data. Twenty-seven seed-based voxel-wise rsFC data sets from 25 publications (556 individuals with MDD and 518 healthy controls) were included in the meta-analysis. Coordinates of seed regions of interest and between-group effects were extracted. Seeds were categorized into seed-networks by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive or reduced negative connectivity) or hypoconnectivity (increased negative or reduced positive connectivity) with each seed-network. Major depressive disorder was characterized by hypoconnectivity within the frontoparietal network, a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network involved in attending to the external environment. Major depressive disorder was also associated with hyperconnectivity within the default network, a network believed to support internally oriented and self-referential thought, and hyperconnectivity between frontoparietal control systems and regions of the default network. Finally, the MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. Reduced connectivity within frontoparietal control systems and imbalanced connectivity between control systems and networks involved in internal or external attention may reflect depressive biases toward internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elman, Jeremy A.; Madison, Cindee M.; Baker, Suzanne L.
In Alzheimer's disease (AD), Beta-amyloid (Aβ) deposition is one of the hallmarks. However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which Aβ-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional Aβ deposition as measured by [ 11 C]PIB-PET inmore » 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to Aβ-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of Aβ-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline.« less
Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task
Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel
2017-01-01
Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n-back condition and group (p = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect (p = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task. PMID:29312020
Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task.
Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel
2017-01-01
Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n -back condition and group ( p = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect ( p = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task.
The neuroscience of musical improvisation.
Beaty, Roger E
2015-04-01
Researchers have recently begun to examine the neural basis of musical improvisation, one of the most complex forms of creative behavior. The emerging field of improvisation neuroscience has implications not only for the study of artistic expertise, but also for understanding the neural underpinnings of domain-general processes such as motor control and language production. This review synthesizes functional magnetic resonance imagining (fMRI) studies of musical improvisation, including vocal and instrumental improvisation, with samples of jazz pianists, classical musicians, freestyle rap artists, and non-musicians. A network of prefrontal brain regions commonly linked to improvisatory behavior is highlighted, including the pre-supplementary motor area, medial prefrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex, and dorsal premotor cortex. Activation of premotor and lateral prefrontal regions suggests that a seemingly unconstrained behavior may actually benefit from motor planning and cognitive control. Yet activation of cortical midline regions points to a role of spontaneous cognition characteristic of the default network. Together, such results may reflect cooperation between large-scale brain networks associated with cognitive control and spontaneous thought. The improvisation literature is integrated with Pressing's theoretical model, and discussed within the broader context of research on the brain basis of creative cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience
Dajani, Dina R.; Uddin, Lucina Q.
2015-01-01
Cognitive flexibility, the readiness with which one can selectively switch between mental processes to generate appropriate behavioral responses, develops in a protracted manner and is compromised in several prevalent neurodevelopmental disorders. It is unclear whether cognitive flexibility arises from neural substrates distinct from the executive control network, or from the interplay of nodes within this and other networks. Here we review neuroimaging studies of cognitive flexibility, focusing on set shifting and task switching. We propose that more consistent operationalization and study of cognitive flexibility is required in clinical and developmental neuroscience. We suggest that an important avenue for future research is the characterization of the relationship between neural flexibility and cognitive flexibility in typical and atypical development. PMID:26343956
Raichlen, David A.; Bharadwaj, Pradyumna K.; Fitzhugh, Megan C.; Haws, Kari A.; Torre, Gabrielle-Ann; Trouard, Theodore P.; Alexander, Gene E.
2016-01-01
Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running). Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n = 11; age = 21.3 ± 2.5) and a group of healthy age-matched non-athlete male controls (n = 11; age = 20.6 ± 1.1), to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the default mode network (DMN), the frontoparietal network (FPN), and the motor network (MN). We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex), suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area), somatosensory functions (post-central region), and visual association abilities (occipital cortex). DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between-group differences, there were significant associations between connectivity, self-reported physical activity, and estimates of maximum aerobic capacity, suggesting a dose-response relationship between engagement in endurance running and connectivity strength. Together these results suggest that differences in experience with endurance running are associated with differences in functional brain connectivity. High intensity aerobic activity that requires sustained, repetitive locomotor and navigational skills may stress cognitive domains in ways that lead to altered brain connectivity, which in turn has implications for understanding the beneficial role of exercise for brain and cognitive function over the lifespan. PMID:28018192
Chen, Hua-Jun; Chen, Qiu-Feng; Yang, Zhe-Ting; Shi, Hai-Bin
2018-05-30
A higher risk of cognitive impairments has been found after an overt hepatic encephalopathy (OHE) episode in cirrhotic patients. We investigated the effect of prior OHE episodes on the topological organization of the functional brain network and its association with the relevant cognitive impairments. Resting-state functional MRI data were acquired from 41 cirrhotic patients (19 with prior OHE (Prior-OHE) and 22 without (Non-Prior-OHE)) and 21 healthy controls (HC). A Psychometric Hepatic Encephalopathy Score (PHES) assessed cognition. The whole-brain functional network was constructed by thresholding functional correlation matrices of 90 brain regions (derived from the Automated Anatomic Labeling atlas). The topological properties of the brain network, including small-worldness, network efficiency, and nodal efficiency, were examined using graph theory-based analysis. Globally, the Prior-OHE group had a significantly decreased clustering coefficient and local efficiency, compared with the controls. Locally, the nodal efficiency in the bilateral medial superior frontal gyrus and the right postcentral gyrus decreased in the Prior-OHE group, while the nodal efficiency in the bilateral anterior cingulate/paracingulate gyri and right superior parietal gyrus increased in the Prior-OHE group. The alterations of global and regional network parameters progressed from Non-Prior-OHE to Prior-OHE and the clustering coefficient and local efficiency values were significantly correlated with PHES results. In conclusion, cirrhosis leads to the reduction of brain functional network efficiency, which could be aggravated by a prior OHE episode. Aberrant topological organization of the functional brain network may contribute to a higher risk of cognitive impairments in Prior-OHE patients.
Porter, S; Torres, I J; Panenka, W; Rajwani, Z; Fawcett, D; Hyder, A; Virji-Babul, N
2017-08-01
Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to assess the feasibility of an intensive three month cognitive intervention program in individuals with chronic TBI and to evaluate the effects of this intervention on brain-behavioral relationships. We used tools from graph theory to evaluate changes in global and local brain network features prior to and following cognitive intervention. Network metrics were calculated from resting state electroencephalographic (EEG) recordings from 10 adult participants with mild to severe brain injury and 11 age and gender matched healthy controls. Local graph metrics showed hyper-connectivity in the right inferior frontal gyrus and hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in comparison with the control group. Following the intervention, there was a statistically significant increase in the composite cognitive score in the TBI participants and a statistically significant decrease in functional connectivity in the right inferior frontal gyrus. In addition, there was evidence of changes in the brain-behavior relationships following intervention. The results from this pilot study provide preliminary evidence for functional network reorganization that parallels cognitive improvements after cognitive rehabilitation in individuals with chronic TBI.
Plastic modulation of episodic memory networks in the aging brain with cognitive decline.
Bai, Feng; Yuan, Yonggui; Yu, Hui; Zhang, Zhijun
2016-07-15
Social-cognitive processing has been posited to underlie general functions such as episodic memory. Episodic memory impairment is a recognized hallmark of amnestic mild cognitive impairment (aMCI) who is at a high risk for dementia. Three canonical networks, self-referential processing, executive control processing and salience processing, have distinct roles in episodic memory retrieval processing. It remains unclear whether and how these sub-networks of the episodic memory retrieval system would be affected in aMCI. This task-state fMRI study constructed systems-level episodic memory retrieval sub-networks in 28 aMCI and 23 controls using two computational approaches: a multiple region-of-interest based approach and a voxel-level functional connectivity-based approach, respectively. These approaches produced the remarkably similar findings that the self-referential processing network made critical contributions to episodic memory retrieval in aMCI. More conspicuous alterations in self-referential processing of the episodic memory retrieval network were identified in aMCI. In order to complete a given episodic memory retrieval task, increases in cooperation between the self-referential processing network and other sub-networks were mobilized in aMCI. Self-referential processing mediate the cooperation of the episodic memory retrieval sub-networks as it may help to achieve neural plasticity and may contribute to the prevention and treatment of dementia. Copyright © 2016 Elsevier B.V. All rights reserved.
Domain-Specific Control Mechanisms for Emotional and Nonemotional Conflict Processing
ERIC Educational Resources Information Center
Soutschek, Alexander; Schubert, Torsten
2013-01-01
Recent neuroimaging studies suggest that the human brain activates dissociable cognitive control networks in response to conflicts arising within the cognitive and the affective domain. The present study tested the hypothesis that nonemotional and emotional conflict regulation can also be dissociated on a functional level. For that purpose, we…
Lin, Feng; Heffner, Kathi L; Ren, Ping; Tivarus, Madalina E; Brasch, Judith; Chen, Ding-Geng; Mapstone, Mark; Porsteinsson, Anton P; Tadin, Duje
2016-06-01
To examine the cognitive and neural effects of vision-based speed-of-processing (VSOP) training in older adults with amnestic mild cognitive impairment (aMCI) and contrast those effects with an active control (mental leisure activities (MLA)). Randomized single-blind controlled pilot trial. Academic medical center. Individuals with aMCI (N = 21). Six-week computerized VSOP training. Multiple cognitive processing measures, instrumental activities of daily living (IADLs), and two resting state neural networks regulating cognitive processing: central executive network (CEN) and default mode network (DMN). VSOP training led to significantly greater improvements in trained (processing speed and attention: F1,19 = 6.61, partial η(2) = 0.26, P = .02) and untrained (working memory: F1,19 = 7.33, partial η(2) = 0.28, P = .01; IADLs: F1,19 = 5.16, partial η(2) = 0.21, P = .03) cognitive domains than MLA and protective maintenance in DMN (F1, 9 = 14.63, partial η(2) = 0.62, P = .004). VSOP training, but not MLA, resulted in a significant improvement in CEN connectivity (Z = -2.37, P = .02). Target and transfer effects of VSOP training were identified, and links between VSOP training and two neural networks associated with aMCI were found. These findings highlight the potential of VSOP training to slow cognitive decline in individuals with aMCI. Further delineation of mechanisms underlying VSOP-induced plasticity is necessary to understand in which populations and under what conditions such training may be most effective. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Grounding cognitive control in associative learning.
Abrahamse, Elger; Braem, Senne; Notebaert, Wim; Verguts, Tom
2016-07-01
Cognitive control covers a broad range of cognitive functions, but its research and theories typically remain tied to a single domain. Here we outline and review an associative learning perspective on cognitive control in which control emerges from associative networks containing perceptual, motor, and goal representations. Our review identifies 3 trending research themes that are shared between the domains of conflict adaptation, task switching, response inhibition, and attentional control: Cognitive control is context-specific, can operate in the absence of awareness, and is modulated by reward. As these research themes can be envisaged as key characteristics of learning, we propose that their joint emergence across domains is not coincidental but rather reflects a (latent) growth of interest in learning-based control. Associative learning has the potential for providing broad-scaled integration to cognitive control theory, and offers a promising avenue for understanding cognitive control as a self-regulating system without postulating an ill-defined set of homunculi. We discuss novel predictions, theoretical implications, and immediate challenges that accompany an associative learning perspective on cognitive control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
León-Domínguez, Umberto; Vela-Bueno, Antonio; Froufé-Torres, Manuel; León-Carrión, Jose
2013-06-01
The thalamo-cortical system has been defined as a neural network associated with consciousness. While there seems to be wide agreement that the thalamo-cortical system directly intervenes in vigilance and arousal, a divergence of opinion persists regarding its intervention in the control of other cognitive processes necessary for consciousness. In the present manuscript, we provide a review of recent scientific findings on the thalamo-cortical system and its role in the control and regulation of the flow of neural information necessary for conscious cognitive processes. We suggest that the axis formed by the medial prefrontal cortex and different thalamic nuclei (reticular nucleus, intralaminar nucleus, and midline nucleus), represents a core component for consciousness. This axis regulates different cerebral structures which allow basic cognitive processes like attention, arousal and memory to emerge. In order to produce a synchronized coherent response, neural communication between cerebral structures must have exact timing (chronometry). Thus, a chronometric functional sub-network within the thalamo-cortical system keeps us in an optimal and continuous functional state, allowing high-order cognitive processes, essential to awareness and qualia, to take place. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhancing Innovation and Underlying Neural Mechanisms Via Cognitive Training in Healthy Older Adults
Chapman, Sandra B.; Spence, Jeffrey S.; Aslan, Sina; Keebler, Molly W.
2017-01-01
Non-invasive interventions, such as cognitive training (CT) and physical exercise, are gaining momentum as ways to augment both cognitive and brain function throughout life. One of the most fundamental yet little studied aspects of human cognition is innovative thinking, especially in older adults. In this study, we utilize a measure of innovative cognition that examines both the quantity and quality of abstracted interpretations. This randomized pilot trial in cognitively normal adults (56–75 years) compared the effect of cognitive reasoning training (SMART) on innovative cognition as measured by Multiple Interpretations Measure (MIM). We also examined brain changes in relation to MIM using two MRI-based measurement of arterial spin labeling (ASL) to measure cerebral blood flow (CBF) and functional connectivity MRI (fcMRI) to measure default mode and central executive network (CEN) synchrony at rest. Participants (N = 58) were randomized to the CT, physical exercise (physical training, PT) or control (CN) group where CT and PT groups received training for 3 h/week over 12 weeks. They were assessed at baseline-, mid- and post-training using innovative cognition and MRI measures. First, the CT group showed significant gains pre- to post-training on the innovation measure whereas the physical exercise and control groups failed to show significant gains. Next, the CT group showed increased CBF in medial orbitofrontal cortex (mOFC) and bilateral posterior cingulate cortex (PCC), two nodes within the Default Mode Network (DMN) compared to physical exercise and control groups. Last, significant correlations were found between innovation performance and connectivity of two major networks: CEN (positive correlation) and DMN (negative correlation). These results support the view that both the CEN and DMN are important for enhancement of innovative cognition. We propose that neural mechanisms in healthy older adults can be modified through reasoning training to better subserve enhanced innovative cognition. PMID:29062276
Cognitive and default-mode resting state networks: do male and female brains "rest" differently?
Weissman-Fogel, Irit; Moayedi, Massieh; Taylor, Keri S; Pope, Geoff; Davis, Karen D
2010-11-01
Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex. © 2010 Wiley-Liss, Inc.
Peeters, Sanne; Simas, Tiago; Suckling, John; Gronenschild, Ed; Patel, Ameera; Habets, Petra; van Os, Jim; Marcelis, Machteld
2015-01-01
Background Dysconnectivity in schizophrenia can be understood in terms of dysfunctional integration of a distributed network of brain regions. Here we propose a new methodology to analyze complex networks based on semi-metric behavior, whereby higher levels of semi-metricity may represent a higher level of redundancy and dispersed communication. It was hypothesized that individuals with (increased risk for) psychotic disorder would have more semi-metric paths compared to controls and that this would be associated with symptoms. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 unaffected siblings and 72 controls. Semi-metric percentages (SMP) at the whole brain, hemispheric and lobar level were the dependent variables in a multilevel random regression analysis to investigate group differences. SMP was further examined in relation to symptomatology (i.e., psychotic/cognitive symptoms). Results At the whole brain and hemispheric level, patients had a significantly higher SMP compared to siblings and controls, with no difference between the latter. In the combined sibling and control group, individuals with high schizotypy had intermediate SMP values in the left hemisphere with respect to patients and individuals with low schizotypy. Exploratory analyses in patients revealed higher SMP in 12 out of 42 lobar divisions compared to controls, of which some were associated with worse PANSS symptomatology (i.e., positive symptoms, excitement and emotional distress) and worse cognitive performance on attention and emotion processing tasks. In the combined group of patients and controls, working memory, attention and social cognition were associated with higher SMP. Discussion The results are suggestive of more dispersed network communication in patients with psychotic disorder, with some evidence for trait-based network alterations in high-schizotypy individuals. Dispersed communication may contribute to the clinical phenotype in psychotic disorder. In addition, higher SMP may contribute to neuro- and social cognition, independent of psychosis risk. PMID:26740914
Marchetti, Igor; Koster, Ernst H W; Sonuga-Barke, Edmund J; De Raedt, Rudi
2012-09-01
A neurobiological account of cognitive vulnerability for recurrent depression is presented based on recent developments of resting state neural networks. We propose that alterations in the interplay between task positive (TP) and task negative (TN) elements of the Default Mode Network (DMN) act as a neurobiological risk factor for recurrent depression mediated by cognitive mechanisms. In the framework, depression is characterized by an imbalance between TN-TP components leading to an overpowering of TP by TN activity. The TN-TP imbalance is associated with a dysfunctional internally-focused cognitive style as well as a failure to attenuate TN activity in the transition from rest to task. Thus we propose the TN-TP imbalance as overarching neural mechanism involved in crucial cognitive risk factors for recurrent depression, namely rumination, impaired attentional control, and cognitive reactivity. During remission the TN-TP imbalance persists predisposing to vulnerability of recurrent depression. Empirical data to support this model is reviewed. Finally, we specify how this framework can guide future research efforts.
Alústiza, Irene; Radua, Joaquim; Albajes-Eizagirre, Anton; Domínguez, Manuel; Aubá, Enrique; Ortuño, Felipe
2016-01-01
Timing and other cognitive processes demanding cognitive control become interlinked when there is an increase in the level of difficulty or effort required. Both functions are interrelated and share neuroanatomical bases. A previous meta-analysis of neuroimaging studies found that people with schizophrenia had significantly lower activation, relative to normal controls, of most right hemisphere regions of the time circuit. This finding suggests that a pattern of disconnectivity of this circuit, particularly in the supplementary motor area, is a trait of this mental disease. We hypothesize that a dysfunctional temporal/cognitive control network underlies both cognitive and psychiatric symptoms of schizophrenia and that timing dysfunction is at the root of the cognitive deficits observed. The goal of our study was to look, in schizophrenia patients, for brain structures activated both by execution of cognitive tasks requiring increased effort and by performance of time perception tasks. We conducted a signed differential mapping (SDM) meta-analysis of functional neuroimaging studies in schizophrenia patients assessing the brain response to increasing levels of cognitive difficulty. Then, we performed a multimodal meta-analysis to identify common brain regions in the findings of that SDM meta-analysis and our previously-published activation likelihood estimate (ALE) meta-analysis of neuroimaging of time perception in schizophrenia patients. The current study supports the hypothesis that there exists an overlap between neural structures engaged by both timing tasks and non-temporal cognitive tasks of escalating difficulty in schizophrenia. The implication is that a deficit in timing can be considered as a trait marker of the schizophrenia cognitive profile. PMID:26925013
Moss, Jarrod; Schunn, Christian D; Schneider, Walter; McNamara, Danielle S
2013-11-20
Prior studies of mind wandering find the default network active during mind wandering, but these studies have yielded mixed results concerning the role of cognitive control brain regions during mind wandering. Mind wandering often interferes with reading comprehension, and prior neuroimaging studies of discourse comprehension and strategic reading comprehension have shown that there are at least two networks of brain regions that support strategic discourse comprehension: a domain-general control network and a network of regions supporting coherence-building comprehension processes. The present study was designed to further examine the neural correlates of mind wandering by examining mind wandering during strategic reading comprehension. Participants provided ratings of mind wandering frequency that were used to investigate interactions between the strategy being performed and brain regions whose activation was modulated by wind wandering. The results support prior findings showing that cognitive control regions are at times more active during mind wandering than during a task with low control demands, such as rereading. This result provides an initial examination of the neural correlates of mind wandering during discourse comprehension and shows that the processes being engaged by the primary task need to be considered when studying mind wandering. The results also replicate, in a different learning domain, prior findings of key brain areas associated with different reading strategies. © 2013 Published by Elsevier B.V.
Elman, Jeremy A.; Madison, Cindee M.; Baker, Suzanne L.; ...
2014-11-07
In Alzheimer's disease (AD), Beta-amyloid (Aβ) deposition is one of the hallmarks. However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which Aβ-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional Aβ deposition as measured by [ 11 C]PIB-PET inmore » 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to Aβ-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of Aβ-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline.« less
Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy
Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip
2015-01-01
Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = −0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging markers of small-vessel disease. These findings suggest that reduced structural brain network efficiency might mediate the relationship between advanced cerebral amyloid angiopathy and neurologic dysfunction and that such large-scale brain network measures may represent useful outcome markers for tracking disease progression. PMID:25367025
Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih
2017-01-18
Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white matter tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the cognitive tests.
Resting State Correlates of Subdimensions of Anxious Affect
Bijsterbosch, Janine; Smith, Stephen; Forster, Sophie; John, Oliver P.; Bishop, Sonia J.
2014-01-01
Resting state fMRI may help identify markers of risk for affective disorder. Given the comorbidity of anxiety and depressive disorders and the heterogeneity of these disorders as defined by DSM, an important challenge is to identify alterations in resting state brain connectivity uniquely associated with distinct profiles of negative affect. The current study aimed to address this by identifying differences in brain connectivity specifically linked to cognitive and physiological profiles of anxiety, controlling for depressed affect. We adopted a two-stage multivariate approach. Hierarchical clustering was used to independently identify dimensions of negative affective style and resting state brain networks. Combining the clustering results, we examined individual differences in resting state connectivity uniquely associated with subdimensions of anxious affect, controlling for depressed affect. Physiological and cognitive subdimensions of anxious affect were identified. Physiological anxiety was associated with widespread alterations in insula connectivity, including decreased connectivity between insula subregions and between the insula and other medial frontal and subcortical networks. This is consistent with the insula facilitating communication between medial frontal and subcortical regions to enable control of physiological affective states. Meanwhile, increased connectivity within a frontoparietal–posterior cingulate cortex–precunous network was specifically associated with cognitive anxiety, potentially reflecting increased spontaneous negative cognition (e.g., worry). These findings suggest that physiological and cognitive anxiety comprise subdimensions of anxiety-related affect and reveal associated alterations in brain connectivity. PMID:24168223
Sachs, Matthew; Kaplan, Jonas; Der Sarkissian, Alissa; Habibi, Assal
2017-01-01
Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports ("sports" group, N = 13, mean age = 8.85) and another not involved in music or sports ("control" group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance.
Vollmar, Christian; O'Muircheartaigh, Jonathan; Barker, Gareth J; Symms, Mark R; Thompson, Pamela; Kumari, Veena; Duncan, John S; Janz, Dieter; Richardson, Mark P; Koepp, Matthias J
2011-06-01
Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.
Grady, Cheryl; Sarraf, Saman; Saverino, Cristina; Campbell, Karen
2016-05-01
Older adults typically show weaker functional connectivity (FC) within brain networks compared with young adults, but stronger functional connections between networks. Our primary aim here was to use a graph theoretical approach to identify age differences in the FC of 3 networks-default mode network (DMN), dorsal attention network, and frontoparietal control (FPC)-during rest and task conditions and test the hypothesis that age differences in the FPC would influence age differences in the other networks, consistent with its role as a cognitive "switch." At rest, older adults showed lower clustering values compared with the young, and both groups showed more between-network connections involving the FPC than the other 2 networks, but this difference was greater in the older adults. Connectivity within the DMN was reduced in older compared with younger adults. Consistent with our hypothesis, between-network connections of the FPC at rest predicted the age-related reduction in connectivity within the DMN. There was no age difference in within-network FC during the task (after removing the specific task effect), but between-network connections were greater in older adults than in young adults for the FPC and dorsal attention network. In addition, age reductions were found in almost all the graph metrics during the task condition, including clustering and modularity. Finally, age differences in between-network connectivity of the FPC during both rest and task predicted cognitive performance. These findings provide additional evidence of less within-network but greater between-network FC in older adults during rest but also show that these age differences can be altered by the residual influence of task demands on background connectivity. Our results also support a role for the FPC as the regulator of other brain networks in the service of cognition. Critically, the link between age differences in inter-network connections of the FPC and DMN connectivity, and the link between FPC connectivity and performance, support the hypothesis that FC of the FPC influences the expression of age differences in other networks, as well as differences in cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.
Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey
Islam, A. K. M. Muzahidul; Baharun, Sabariah; Mansoor, Nafees
2017-01-01
New wireless network paradigms will demand higher spectrum use and availability to cope with emerging data-hungry devices. Traditional static spectrum allocation policies cause spectrum scarcity, and new paradigms such as Cognitive Radio (CR) and new protocols and techniques need to be developed in order to have efficient spectrum usage. Medium Access Control (MAC) protocols are accountable for recognizing free spectrum, scheduling available resources and coordinating the coexistence of heterogeneous systems and users. This paper provides an ample review of the state-of-the-art MAC protocols, which mainly focuses on Cognitive Radio Ad Hoc Networks (CRAHN). First, a description of the cognitive radio fundamental functions is presented. Next, MAC protocols are divided into three groups, which are based on their channel access mechanism, namely time-slotted protocol, random access protocol and hybrid protocol. In each group, a detailed and comprehensive explanation of the latest MAC protocols is presented, as well as the pros and cons of each protocol. A discussion on future challenges for CRAHN MAC protocols is included with a comparison of the protocols from a functional perspective. PMID:28926952
Bai, Feng; Zhang, Zhijun; Watson, David R; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Zang, Yufeng; Zhu, Chaozhe; Qian, Yun
2009-06-01
Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.
Li, Wenjun; Douglas Ward, B; Liu, Xiaolin; Chen, Gang; Jones, Jennifer L; Antuono, Piero G; Li, Shi-Jiang; Goveas, Joseph S
2015-10-01
The topological architecture of the whole-brain functional networks in those with and without late-life depression (LLD) and amnestic mild cognitive impairment (aMCI) are unknown. To investigate the differences in the small-world measures and the modular community structure of the functional networks between patients with LLD and aMCI when occurring alone or in combination and cognitively healthy non-depressed controls. 79 elderly participants (LLD (n=23), aMCI (n=18), comorbid LLD and aMCI (n=13), and controls (n=25)) completed neuropsychiatric assessments. Graph theoretical methods were employed on resting-state functional connectivity MRI data. LLD and aMCI comorbidity was associated with the greatest disruptions in functional integration measures (decreased global efficiency and increased path length); both LLD groups showed abnormal functional segregation (reduced local efficiency). The modular network organisation was most variable in the comorbid group, followed by patients with LLD-only. Decreased mean global, local and nodal efficiency metrics were associated with greater depressive symptom severity but not memory performance. Considering the whole brain as a complex network may provide unique insights on the neurobiological underpinnings of LLD with and without cognitive impairment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future.
Bestmann, Sven; Feredoes, Eva
2013-08-01
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure-function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure-function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. © 2013 New York Academy of Sciences.
Multimodal neural correlates of cognitive control in the Human Connectome Project.
Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M
2017-12-01
Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions hypothesized to be modulated by cognitive control signaling, such as visual cortex. Taken together, these results illustrate the potential utility of multi-modal analyses in identifying the neural correlates of cognitive control across different indicators of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Chen; Xu, Guang-hong; Li, Yuan-hai; Tang, Wei-xiang; Wang, Kai
2016-04-15
Postoperative cognitive dysfunction is a common complication of anesthesia and surgery. Attention networks are essential components of cognitive function and are subject to impairment after anesthesia and surgery. It is not known whether such impairment represents a global attention deficit or relates to a specific attention network. We used an Attention Network Task (ANT) to examine the efficiency of the alerting, orienting, and executive control attention networks in middle-aged women (40-60 years) undergoing gynecologic surgery. A matched group of medical inpatients were recruited as a control. Fifty female patients undergoing gynecologic surgery (observation group) and 50 female medical inpatients (control group) participated in this study. Preoperatively patients were administered a mini-mental state examination as a screening method. The preoperative efficiencies of three attention networks in an attention network test were compared to the 1st and 5th post-operative days. The control group did not have any significant attention network impairments. On the 1st postoperative day, significant impairment was shown in the alerting (p=0.003 vs. control group, p=0.015 vs. baseline), orienting (p<0.001 vs. both baseline level and control group), and executive control networks (p=0.007 vs. control group, p=0.002 vs. baseline) of the observation group. By the 5th postoperative day, the alerting network efficiency had recovered to preoperative levels (p=0.464 vs. baseline) and the orienting network efficiency had recovered partially (p=0.031 vs. 1st post-operative day), but not to preoperative levels (p=0.01 vs. baseline). The executive control network did not recover by the 5th postoperative day (p=0.001 vs. baseline, p=0.680 vs. 1st post-operative day). Attention networks of middle-aged women show a varying degree of significant impairment and differing levels of recovery after surgery and propofol anesthetic. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.
2017-11-01
Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.
Dobryakova, Ekaterina; Rocca, Maria Assunta; Valsasina, Paola; Ghezzi, Angelo; Colombo, Bruno; Martinelli, Vittorio; Comi, Giancarlo; DeLuca, John; Filippi, Massimo
2016-06-01
The Stroop interference task is a cognitively demanding task of executive control, a cognitive ability that is often impaired in patients with multiple sclerosis (MS). The aim of this study was to compare effective connectivity patterns within a network of brain regions involved in the Stroop task performance between MS patients with three disease clinical phenotypes [relapsing-remitting (RRMS), benign (BMS), and secondary progressive (SPMS)] and healthy subjects. Effective connectivity analysis was performed on Stroop task data using a novel method based on causal Bayes networks. Compared with controls, MS phenotypes were slower at performing the task and had reduced performance accuracy during incongruent trials that required increased cognitive control. MS phenotypes also exhibited connectivity abnormalities reflected as weaker shared connections, presence of extra connections (i.e., connections absent in the HC connectivity pattern), connection reversal, and loss. In SPMS and the BMS groups but not in the RRMS group, extra connections were associated with deficits in the Stroop task performance. In the BMS group, the response time associated with correct responses during the congruent condition showed a positive correlation with the left posterior parietal → dorsal anterior cingulate connection. In the SPMS group, performance accuracy during the congruent condition showed a negative correlation with the right insula → left insula connection. No associations between extra connections and behavioral performance measures were observed in the RRMS group. These results suggest that, depending on the phenotype, patients with MS use different strategies when cognitive control demands are high and rely on different network connections. Hum Brain Mapp, 37:2293-2304, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Elmer, Stefan
2016-01-01
Until now, several branches of research have fundamentally contributed to a better understanding of the ramifications of bilingualism, multilingualism, and language expertise on psycholinguistic-, cognitive-, and neural implications. In this context, it is noteworthy to mention that from a cognitive perspective, there is a strong convergence of data pointing to an influence of multilingual speech competence on a variety of cognitive functions, including attention, short-term- and working memory, set shifting, switching, and inhibition. In addition, complementary neuroimaging findings have highlighted a specific set of cortical and subcortical brain regions which fundamentally contribute to administrate cognitive control in the multilingual brain, namely Broca's area, the middle-anterior cingulate cortex, the inferior parietal lobe, and the basal ganglia. However, a disadvantage of focusing on group analyses is that this procedure only enables an approximation of the neural networks shared within a population while at the same time smoothing inter-individual differences. In order to address both commonalities (i.e., within group analyses) and inter-individual variability (i.e., single-subject analyses) in language control mechanisms, here I measured five professional simultaneous interpreters while the participants overtly translated or repeated sentences with a simple subject-verb-object structure. Results demonstrated that pars triangularis was commonly activated across participants during backward translation (i.e., from L2 to L1), whereas the other brain regions of the "control network" showed a strong inter-individual variability during both backward and forward (i.e., from L1 to L2) translation. Thus, I propose that pars triangularis plays a crucial role within the language-control network and behaves as a fundamental processing entity supporting simultaneous language translation.
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.
Abraham, Anna
2014-01-01
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.
Peters, Sarah K; Dunlop, Katharine; Downar, Jonathan
2016-01-01
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network's associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN's cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.
Active Control of Complex Systems via Dynamic (Recurrent) Neural Networks
1992-05-30
course, to on-going changes brought about by learning processes. As research in neurodynamics proceeded, the concept of reverberatory information flows...Microstructure of Cognition . Vol. 1: Foundations, M.I.T. Press, Cambridge, Massachusetts, pp. 354-361, 1986. 100 I Schwarz, G., "Estimating the dimension of a...Continually Running Fully Recurrent Neural Networks, ICS Report 8805, Institute of Cognitive Science, University of California at San Diego, 1988. 10 II
Caffeine Modulates Attention Network Function
ERIC Educational Resources Information Center
Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Taylor, Holly A.
2010-01-01
The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a flanker task designed to test Posner's three visual attention network functions: alerting, orienting, and executive control [Posner, M. I. (2004). "Cognitive neuroscience of attention". New York, NY: Guilford Press]. In a placebo-controlled, double-blind…
van Dellen, E.; de Witt Hamer, P.C.; Douw, L.; Klein, M.; Heimans, J.J.; Stam, C.J.; Reijneveld, J.C.; Hillebrand, A.
2012-01-01
Purpose Low-grade glioma (LGG) patients often have cognitive deficits. Several disease- and treatment related factors affect cognitive processing. Cognitive outcome of resective surgery is unpredictable, both for improvement and deterioration, especially for complex domains such as attention and executive functioning. MEG analysis of resting-state networks (RSNs) is a good candidate for presurgical prediction of cognitive outcome. In this study, we explore the relation between alterations in connectivity of RSNs and changes in cognitive processing after resective surgery, as a stepping stone to ultimately predict postsurgical cognitive outcome. Methods Ten patients with LGG were included, who had no adjuvant therapy. MEG recording and neuropsychological assessment were obtained before and after resective surgery. MEG data were recorded during a no-task eyes-closed condition, and projected to the anatomical space of the AAL atlas. Alterations in functional connectivity, as characterized by the phase lag index (PLI), within the default mode network (DMN), executive control network (ECN), and left- and right-sided frontoparietal networks (FPN) were compared to cognitive changes. Results Lower alpha band DMN connectivity was increased after surgery, and this increase was related to improved verbal memory functioning. Similarly, right FPN connectivity was increased after resection in the upper alpha band, which correlated with improved attention, working memory and executive functioning. Discussion Increased alpha band RSN functional connectivity in MEG recordings correlates with improved cognitive outcome after resective surgery. The mechanisms resulting in functional connectivity alterations after resection remain to be elucidated. Importantly, our findings indicate that connectivity of MEG RSNs may be used for presurgical prediction of cognitive outcome in future studies. PMID:24179752
Impaired emotional empathy and related social network deficits in cocaine users.
Preller, Katrin H; Hulka, Lea M; Vonmoos, Matthias; Jenni, Daniela; Baumgartner, Markus R; Seifritz, Erich; Dziobek, Isabel; Quednow, Boris B
2014-05-01
Chronic cocaine users consistently display neurochemical and functional alterations in brain areas involved in social cognition (e.g. medial and orbitofrontal cortex). Although social functioning plays a crucial role in the development and treatment of drug dependence, studies investigating social cognition in cocaine users are lacking. Therefore, we investigated mental perspective taking ('theory of mind') and emotional and cognitive empathy in recreational (RCU) and dependent (DCU) cocaine users. Furthermore, we related these measures to real-life indicators of social functioning. One-hundred cocaine users (69 RCU, 31 DCU) and 68 stimulant-naïve healthy controls were tested with the Multifaceted Empathy Test (MET), Movie for the Assessment of Social Cognition (MASC) and Reading the Mind in the Eyes Test (RMET). The Social Network Questionnaire was conducted to assess social network size. Furthermore, participants provided information on committed criminal offenses. RCU and DCU showed less emotional empathy compared to controls (MET), whereas cognitive empathy was not impaired (MET, RMET). Additionally, DCU made more errors in mental perspective taking (MASC). Notably, cocaine users committed more criminal offenses and displayed a smaller social network and higher cocaine use was correlated with less social contacts. Diminished mental perspective taking was tentatively correlated with more intense cocaine use as well. Finally, younger age of onset of cocaine use was associated with more pronounced empathy impairment. In conclusion, social cognition impairments in cocaine users were related to real-life social functioning and should therefore be considered in therapy and prevention strategies. © 2013 Society for the Study of Addiction.
Functional connectivity changes in second language vocabulary learning.
Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés
2013-01-01
Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005). Copyright © 2012 Elsevier Inc. All rights reserved.
Wei, Huilin; An, Jie; Shen, Hui; Zeng, Ling-Li; Qiu, Shijun; Hu, Dewen
2016-01-01
Idiopathic generalized epilepsy (IGE) patients with generalized tonic-clonic seizures (GTCS) suffer long-term cognitive impairments, and present a higher incidence of psychosocial and psychiatric disturbances than healthy people. It is possible that the cognitive dysfunctions and higher psychopathological risk in IGE-GTCS derive from disturbed causal relationship among core neurocognitive brain networks. To test this hypothesis, we examined the effective connectivity across the salience network (SN), default mode network (DMN), and central executive network (CEN) using resting-state functional magnetic resonance imaging (fMRI) data collected from 27 IGE-GTCS patients and 29 healthy controls. In the study, a combination framework of time domain and frequency domain multivariate Granger causality analysis was firstly proposed, and proved to be valid and accurate by simulation experiments. Using this method, we then observed significant differences in the effective connectivity graphs between the patient and control groups. Specifically, between-group statistical analysis revealed that relative to the healthy controls, the patients established significantly enhanced Granger causal influence from the dorsolateral prefrontal cortex to the dorsal anterior cingulate cortex, which is coherent both in the time and frequency domains analyses. Meanwhile, time domain analysis also revealed decreased Granger causal influence from the right fronto-insular cortex to the posterior cingulate cortex in the patients. These findings may provide new evidence for functional brain organization disruption underlying cognitive dysfunctions and psychopathological risk in IGE-GTCS. PMID:27656137
Chmielewski, Witold X; Mückschel, Moritz; Dippel, Gabriel; Beste, Christian
2016-11-01
Inhibiting responses is a challenge, where the outcome (partly) depends on the situational context. In everyday situations, response inhibition performance might be altered when irrelevant input is presented simultaneously with the information relevant for response inhibition. More specifically, irrelevant concurrent information may either brace or interfere with response-relevant information, depending on whether these inputs are redundant or conflicting. The aim of this study is to investigate neurophysiological mechanisms and the network underlying such modulations using EEG beamforming as method. The results show that in comparison to a baseline condition without concurrent information, response inhibition performance can be aggravated or facilitated by manipulating the extent of conflict via concurrent input. This depends on whether the requirement for cognitive control is high, as in conflicting trials, or whether it is low, as in redundant trials. In line with this, the total theta frequency power decreases in a right hemispheric orbitofrontal response inhibition network including the SFG, MFG, and SMA, when concurrent redundant information facilitates response inhibition processes. Vice versa, theta activity in a left-hemispheric response inhibition network (i.e., SFG, MFG, and IFG) increases, when conflicting concurrent information compromises response inhibition processes. We conclude that concurrent information bi-directionally shifts response inhibition performance and modulates the network architecture underlying theta oscillations which are signaling different levels of the need for cognitive control.
Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie
2013-04-01
Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.
Kaiser, Roselinde H.; Andrews-Hanna, Jessica R.; Wager, Tor D.; Pizzagalli, Diego A.
2015-01-01
IMPORTANCE Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. OBJECTIVE To investigate network dysfunction in MDD through the first meta-analysis of rsFC studies. DATA SOURCES Seed-based voxel-wise rsFC studies comparing MDD with healthy individuals (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web-of-Science, EMBASE), and authors contacted for additional data. STUDY SELECTION Twenty-seven datasets from 25 publications (556 MDD adults/teens; 518 controls) were included in the meta-analysis. DATA EXTRACTION AND SYNTHESIS Coordinates of seed regions-of-interest and between-group effects were extracted. Seeds were categorized into “seed-networks” by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive, or reduced negative, connectivity) or hypoconnectivity (increased negative, or reduced positive, connectivity) with each seed-network. RESULTS MDD was characterized by hypoconnectivity within the frontoparietal network (FN), a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network (DAN) involved in attending to the external environment. MDD was also associated with hyperconnectivity within the default network (DN), a network believed to support internally-oriented and self-referential thought, and hyperconnectivity between FN control systems and regions of DN. Finally, MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. CONCLUSIONS AND RELEVANCE Reduced connectivity within frontoparietal control systems, and imbalanced connectivity between control systems and networks involved in internal- or external-attention, may reflect depressive biases towards internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression. PMID:25785575
Kim, Hongkeun
2018-03-15
Functional neuroimaging studies on episodic memory retrieval consistently indicated the activation of the precuneus (PCU), mid-cingulate cortex (MCC), and lateral intraparietal sulcus (latIPS) regions. Although studies typically interpreted these activations in terms of memory retrieval processes, resting-state functional connectivity data indicate that these regions are part of the frontoparietal control network, suggesting a more general, cross-functional role. In this regard, this study proposes a novel hypothesis which suggests that the parietal control network plays a strong role in accommodating the co-occurrence of externally directed cognition (EDC) and internally directed cognition (IDC), which are typically antagonistic to each other. To evaluate how well this dual cognitive processes hypothesis can account for parietal activation patterns during memory tasks, this study provides a cross-function meta-analysis involving 3 different memory paradigms, namely, retrieval success (hit > correct rejection), repetition enhancement (repeated > novel), and subsequent forgetting (forgotten > remembered). Common to these paradigms is that the target condition may involve both EDC (stimulus processing and motor responding) and IDC (intentional remembering, involuntary awareness of previous encounter, or task-unrelated thoughts) strongly, whereas the reference condition may involve EDC to a greater extent, but IDC to a lesser extent. Thus, the dual cognitive processes hypothesis predicts that each of these paradigms will activate similar, overlapping PCU, MCC, and latIPS regions. The results were fully consistent with the prediction, supporting the dual cognitive processes hypothesis. Evidence from relevant prior studies suggests that the dual cognitive processes hypothesis may also apply to non-memory domain tasks. Copyright © 2018 Elsevier B.V. All rights reserved.
Strenziok, Maren; Parasuraman, Raja; Clarke, Ellen; Cisler, Dean S; Thompson, James C; Greenwood, Pamela M
2014-01-15
The ultimate goal of cognitive enhancement as an intervention for age-related cognitive decline is transfer to everyday cognitive functioning. Development of training methods that transfer broadly to untrained cognitive tasks (far transfer) requires understanding of the neural bases of training and far transfer effects. We used cognitive training to test the hypothesis that far transfer is associated with altered attentional control demands mediated by the dorsal attention network and trained sensory cortex. In an exploratory study, we randomly assigned 42 healthy older adults to six weeks of training on Brain Fitness (BF-auditory perception), Space Fortress (SF-visuomotor/working memory), or Rise of Nations (RON-strategic reasoning). Before and after training, cognitive performance, diffusion-derived white matter integrity, and functional connectivity of the superior parietal cortex (SPC) were assessed. We found the strongest effects from BF training, which transferred to everyday problem solving and reasoning and selectively changed integrity of occipito-temporal white matter associated with improvement on untrained everyday problem solving. These results show that cognitive gain from auditory perception training depends on heightened white matter integrity in the ventral attention network. In BF and SF (which also transferred positively), a decrease in functional connectivity between SPC and inferior temporal lobe (ITL) was observed compared to RON-which did not transfer to untrained cognitive function. These findings highlight the importance for cognitive training of top-down control of sensory processing by the dorsal attention network. Altered brain connectivity - observed in the two training tasks that showed far transfer effects - may be a marker for training success. © 2013 Elsevier Inc. All rights reserved.
Klados, Manousos A.; Styliadis, Charis; Frantzidis, Christos A.; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D.
2016-01-01
Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12–30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935. PMID:26973445
Liang, Peipeng; Wang, Zhiqun; Yang, Yanhui; Li, Kuncheng
2012-01-01
The Inferior parietal cortex (IPC), including the intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SG), plays an important role in episodic memory, and is considered to be one of the specific neuroimaging markers in predicting the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, it is still unclear whether the connectivity of the IPC is impaired in MCI patients. In the present study, we used resting state fMRI to examine the functional connectivity of the three subdivisions of the IPC in MCI patients after controlling the impact of regional grey matter atrophy. It was found that, using IPS, AG, and SG as seeds of functional connectivity, three canonical functional networks could be correspondingly traced, i.e., executive control network (ECN), default mode network (DMN), and salience network (SN), and the three networks are differently altered in MCI patients. In contrast to the healthy controls, it was found that in MCI patients: 1) AG connectivity was significantly reduced within the DMN; 2) IPS showed decreased connectivity with the right inferior frontal gyrus while showing increased connectivity with the left frontal regions within the ECN; and 3) SG displayed decreased connectivity with a distribution of regions including the frontal and parietal regions, and increased connectivity with some sub-cortical areas within the SN. Moreover, the connectivity within the three networks was correlated with episodic memory and general cognitive impairment in MCI patients. These results extend well beyond the DMN, and further suggest that MCI is associated with alteration of large-scale functional brain networks.
Postoperative seizure freedom does not normalize altered connectivity in temporal lobe epilepsy.
Maccotta, Luigi; Lopez, Mayra A; Adeyemo, Babatunde; Ances, Beau M; Day, Brian K; Eisenman, Lawrence N; Dowling, Joshua L; Leuthardt, Eric C; Schlaggar, Bradley L; Hogan, Robert Edward
2017-11-01
Specific changes in the functional connectivity of brain networks occur in patients with epilepsy. Yet whether such changes reflect a stable disease effect or one that is a function of active seizure burden remains unclear. Here, we longitudinally assessed the connectivity of canonical cognitive functional networks in patients with intractable temporal lobe epilepsy (TLE), both before and after patients underwent epilepsy surgery and achieved seizure freedom. Seventeen patients with intractable TLE who underwent epilepsy surgery with Engel class I outcome and 17 matched healthy controls took part in the study. The functional connectivity of a set of cognitive functional networks derived from typical cognitive tasks was assessed in patients, preoperatively and postoperatively, as well as in controls, using stringent methods of artifact reduction. Preoperatively, functional networks in TLE patients differed significantly from healthy controls, with differences that largely, but not exclusively, involved the default mode and temporal/auditory subnetworks. However, undergoing epilepsy surgery and achieving seizure freedom did not lead to significant changes in network connectivity, with postoperative functional network abnormalities closely mirroring the preoperative state. This result argues for a stable chronic effect of the disease on brain connectivity, with changes that are largely "burned in" by the time a patient with intractable TLE undergoes epilepsy surgery, which typically occurs years after the initial diagnosis. The result has potential implications for the treatment of intractable epilepsy, suggesting that delaying surgical intervention that may achieve seizure freedom may lead to functional network changes that are no longer reversible by the time of epilepsy surgery. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Schaeffer, David J; Rodrigue, Amanda L; Burton, Courtney R; Pierce, Jordan E; Murphy, Megan N; Clementz, Brett A; McDowell, Jennifer E
2017-12-01
Recent diffusion tensor imaging (DTI) studies suggest that altered white matter fiber integrity is a pathophysiological feature of schizophrenia. Lower white matter integrity is associated with poor cognitive control, a characteristic of schizophrenia that can be measured using antisaccade tasks. Although the functional neural correlates of poor antisaccade performance have been well documented, fewer studies have investigated the extent to which white matter fibers connecting the functional nodes of this network contribute to antisaccade performance. The aim of the present study was to assess the white matter structural integrity of fibers connecting two functional nodes (putamen and medial frontal eye fields) of the saccadic eye movement network implicated in poor antisaccade performance in schizophrenia. To evaluate white matter integrity, DTI was acquired on subjects with schizophrenia and two comparison groups: (a) behaviorally matched healthy comparison subjects with low levels of cognitive control (LCC group), and (b) healthy subjects with high levels of cognitive control (HCC group). White matter fibers were tracked between functional regions of interest generated from antisaccade fMRI activation maps, and measures of diffusivity were quantified. The results demonstrated lower white matter integrity in the schizophrenia group than in the HCC group, but not the LCC group who showed similarly poor cognitive control performance. Overall, the results suggest that these alterations are not specific to the disease process of schizophrenia, but may rather be a function of uncontrolled cognitive factors that are concomitant with the disease but also observed in some healthy people. © 2017 Society for Psychophysiological Research.
Training the emotional brain: improving affective control through emotional working memory training.
Schweizer, Susanne; Grahn, Jessica; Hampshire, Adam; Mobbs, Dean; Dalgleish, Tim
2013-03-20
Affective cognitive control capacity (e.g., the ability to regulate emotions or manipulate emotional material in the service of task goals) is associated with professional and interpersonal success. Impoverished affective control, by contrast, characterizes many neuropsychiatric disorders. Insights from neuroscience indicate that affective cognitive control relies on the same frontoparietal neural circuitry as working memory (WM) tasks, which suggests that systematic WM training, performed in an emotional context, has the potential to augment affective control. Here we show, using behavioral and fMRI measures, that 20 d of training on a novel emotional WM protocol successfully enhanced the efficiency of this frontoparietal demand network. Critically, compared with placebo training, emotional WM training also accrued transfer benefits to a "gold standard" measure of affective cognitive control-emotion regulation. These emotion regulation gains were associated with greater activity in the targeted frontoparietal demand network along with other brain regions implicated in affective control, notably the subgenual anterior cingulate cortex. The results have important implications for the utility of WM training in clinical, prevention, and occupational settings.
A New Measure for Neural Compensation Is Positively Correlated With Working Memory and Gait Speed.
Ji, Lanxin; Pearlson, Godfrey D; Hawkins, Keith A; Steffens, David C; Guo, Hua; Wang, Lihong
2018-01-01
Neuroimaging studies suggest that older adults may compensate for declines in brain function and cognition through reorganization of neural resources. A limitation of prior research is reliance on between-group comparisons of neural activation (e.g., younger vs. older), which cannot be used to assess compensatory ability quantitatively. It is also unclear about the relationship between compensatory ability with cognitive function or how other factors such as physical exercise modulates compensatory ability. Here, we proposed a data-driven method to semi-quantitatively measure neural compensation under a challenging cognitive task, and we then explored connections between neural compensation to cognitive engagement and cognitive reserve (CR). Functional and structural magnetic resonance imaging scans were acquired for 26 healthy older adults during a face-name memory task. Spatial independent component analysis (ICA) identified visual, attentional and left executive as core networks. Results show that the smaller the volumes of the gray matter (GM) structures within core networks, the more networks were needed to conduct the task ( r = -0.408, p = 0.035). Therefore, the number of task-activated networks controlling for the GM volume within core networks was defined as a measure of neural compensatory ability. We found that compensatory ability correlated with working memory performance ( r = 0.528, p = 0.035). Among subjects with good memory task performance, those with higher CR used fewer networks than subjects with lower CR. Among poor-performance subjects, those using more networks had higher CR. Our results indicated that using a high cognitive-demanding task to measure the number of activated neural networks could be a useful and sensitive measure of neural compensation in older adults.
Creative Cognition and Brain Network Dynamics
Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.
2015-01-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223
Neural responses to maternal criticism in healthy youth
Siegle, Greg J.; Dahl, Ronald E.; Hooley, Jill M.; Silk, Jennifer S.
2015-01-01
Parental criticism can have positive and negative effects on children’s and adolescents’ behavior; yet, it is unclear how youth react to, understand and process parental criticism. We proposed that youth would engage three sets of neural processes in response to parental criticism including the following: (i) activating emotional reactions, (ii) regulating those reactions and (iii) social cognitive processing (e.g. understanding the parent’s mental state). To examine neural processes associated with both emotional and social processing of parental criticism in personally relevant and ecologically valid social contexts, typically developing youth were scanned while they listened to their mother providing critical, praising and neutral statements. In response to maternal criticism, youth showed increased brain activity in affective networks (e.g. subcortical–limbic regions including lentiform nucleus and posterior insula), but decreased activity in cognitive control networks (e.g. dorsolateral prefrontal cortex and caudal anterior cingulate cortex) and social cognitive networks (e.g. temporoparietal junction and posterior cingulate cortex/precuneus). These results suggest that youth may respond to maternal criticism with increased emotional reactivity but decreased cognitive control and social cognitive processing. A better understanding of children’s responses to parental criticism may provide insights into the ways that parental feedback can be modified to be more helpful to behavior and development in youth. PMID:25338632
A meta-cognitive learning algorithm for a Fully Complex-valued Relaxation Network.
Savitha, R; Suresh, S; Sundararajan, N
2012-08-01
This paper presents a meta-cognitive learning algorithm for a single hidden layer complex-valued neural network called "Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN)". McFCRN has two components: a cognitive component and a meta-cognitive component. A Fully Complex-valued Relaxation Network (FCRN) with a fully complex-valued Gaussian like activation function (sech) in the hidden layer and an exponential activation function in the output layer forms the cognitive component. The meta-cognitive component contains a self-regulatory learning mechanism which controls the learning ability of FCRN by deciding what-to-learn, when-to-learn and how-to-learn from a sequence of training data. The input parameters of cognitive components are chosen randomly and the output parameters are estimated by minimizing a logarithmic error function. The problem of explicit minimization of magnitude and phase errors in the logarithmic error function is converted to system of linear equations and output parameters of FCRN are computed analytically. McFCRN starts with zero hidden neuron and builds the number of neurons required to approximate the target function. The meta-cognitive component selects the best learning strategy for FCRN to acquire the knowledge from training data and also adapts the learning strategies to implement best human learning components. Performance studies on a function approximation and real-valued classification problems show that proposed McFCRN performs better than the existing results reported in the literature. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state
Hermans, Erno J.; Fernández, Guillén
2017-01-01
Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.
Kohn, Nils; Hermans, Erno J; Fernández, Guillén
2017-07-01
Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.
Cognitive Mechanisms in Chronic Tinnitus: Psychological Markers of a Failure to Switch Attention
Trevis, Krysta J.; McLachlan, Neil M.; Wilson, Sarah J.
2016-01-01
The cognitive mechanisms underpinning chronic tinnitus (CT; phantom auditory perceptions) are underexplored but may reflect a failure to switch attention away from a tinnitus sound. Here, we investigated a range of components that influence the ability to switch attention, including cognitive control, inhibition, working memory and mood, on the presence and severity of CT. Our participants with tinnitus showed significant impairments in cognitive control and inhibition as well as lower levels of emotional well-being, compared to healthy-hearing participants. Moreover, the subjective cognitive complaints of tinnitus participants correlated with their emotional well-being whereas complaints in healthy participants correlated with objective cognitive functioning. Combined, cognitive control and depressive symptoms correctly classified 67% of participants. These results demonstrate the core role of cognition in CT. They also provide the foundations for a neurocognitive account of the maintenance of tinnitus, involving impaired interactions between the neurocognitive networks underpinning attention-switching and mood. PMID:27605920
Roos, Annerine; Fouche, Jean-Paul; Stein, Dan J
2017-12-01
Evidence suggests that women who suffer from intimate partner violence (IPV) and posttraumatic stress disorder (PTSD) have structural and functional alterations in specific brain regions. Yet, little is known about how brain connectivity may be altered in individuals with IPV, but without PTSD. Women exposed to IPV (n = 18) and healthy controls (n = 18) underwent structural brain imaging using a Siemens 3T MRI. Global and regional brain network connectivity measures were determined, using graph theory analyses. Structural covariance networks were created using volumetric and cortical thickness data after controlling for intracranial volume, age and alcohol use. Nonparametric permutation tests were used to investigate group differences. Findings revealed altered connectivity on a global and regional level in the IPV group of regions involved in cognitive-emotional control, with principal involvement of the caudal anterior cingulate, the middle temporal gyrus, left amygdala and ventral diencephalon that includes the thalamus. To our knowledge, this is the first evidence showing different brain network connectivity in global and regional networks in women exposed to IPV, and without PTSD. Altered cognitive-emotional control in IPV may underlie adaptive neural mechanisms in environments characterized by potentially dangerous cues.
Ding, Ju-Rong; Zhu, Fangmei; Hua, Bo; Xiong, Xingzhong; Wen, Yuqiao; Ding, Zhongxiang; Thompson, Paul M
2018-04-02
Brain metastases are the most prevalent cerebral tumors. Resting state networks (RSNs) are involved in multiple perceptual and cognitive functions. Therefore, precisely localizing multiple RSNs may be extremely valuable before surgical resection of metastases, to minimize neurocognitive impairments. Here we aimed to investigate the reliability of independent component analysis (ICA) for localizing multiple RSNs from resting-state functional MRI (rs-fMRI) data in individual patients, and further evaluate lesion-related spatial shifts of the RSNs. Twelve patients with brain metastases and 14 healthy controls were recruited. Using an improved automatic component identification method, we successfully identified seven common RSNs, including: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), language network (LN), sensorimotor network (SMN), auditory network (AN) and visual network (VN), in both individual patients and controls. Moreover, the RSNs in the patients showed a visible spatial shift compared to those in the controls, and the spatial shift of some regions was related to the tumor location, which may reflect a complicated functional mechanism - functional disruptions and reorganizations - caused by metastases. Besides, higher cognitive networks (DMN, ECN, DAN and LN) showed significantly larger spatial shifts than perceptual networks (SMN, AN and VN), supporting a functional dichotomy between the two network groups even in pathologic alterations associated with metastases. Overall, our findings provide evidence that ICA is a promising approach for presurgical localization of multiple RSNs from rs-fMRI data in individual patients. More attention should be paid to the spatial shifts of the RSNs before surgical resection.
Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.
Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati
2016-01-01
The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.
Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks
Ali, Borhanuddin Mohd; Sali, Aduwati
2016-01-01
The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964
Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine
2017-01-01
Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional faces. In addition, training was associated with increased connectivity in emotion processing networks, including greater STS-medial prefrontal connectivity and normalization of amygdala connectivity patterns. Conclusion: These results suggest that targeted cognitive training produced improvements in emotion recognition and may be effective in altering functional network connectivity in networks associated with psychosis risk. TCT may be a useful tool for early intervention in individuals at risk for psychotic disorders to address behaviors that impact functional outcome.
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian
2015-10-01
Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hwang, Kai; Velanova, Katerina; Luna, Beatriz
2010-01-01
The ability to voluntarily inhibit responses to task irrelevant stimuli, which is a fundamental component of cognitive control, has a protracted development through adolescence. Prior human developmental imaging studies have found immaturities in localized brain activity in children and adolescents. However, little is known about how these regions integrate with age to form the distributed networks known to support cognitive control. In the present study, we used Granger Causality analysis to characterize developmental changes in effective connectivity underlying inhibitory control (antisaccade task) compared to reflexive responses (prosaccade task) in human participants. By childhood few top-down connectivity were evident with increased parietal interconnectivity. By adolescence connections from prefrontal cortex increased and parietal interconnectivity decreased in number. From adolescence to adulthood there was evidence of increased number and strength of frontal connections to cortical regions as well as subcortical regions. Taken together, results suggest that developmental improvements in inhibitory control may be supported by age related enhancements in top-down effective connectivity between frontal, oculomotor and subcortical regions. PMID:21084608
Beaty, Roger E; Christensen, Alexander P; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L
2017-03-01
Functional neuroimaging research has recently revealed brain network interactions during performance on creative thinking tasks-particularly among regions of the default and executive control networks-but the cognitive mechanisms related to these interactions remain poorly understood. Here we test the hypothesis that the executive control network can interact with the default network to inhibit salient conceptual knowledge (i.e., pre-potent responses) elicited from memory during creative idea production. Participants studied common noun-verb pairs and were given a cued-recall test with corrective feedback to strengthen the paired association in memory. They then completed a verb generation task that presented either a previously studied noun (high-constraint) or an unstudied noun (low-constraint), and were asked to "think creatively" while searching for a novel verb to relate to the presented noun. Latent Semantic Analysis of verbal responses showed decreased semantic distance values in the high-constraint (i.e., interference) condition, which corresponded to increased neural activity within regions of the default (posterior cingulate cortex and bilateral angular gyri), salience (right anterior insula), and executive control (left dorsolateral prefrontal cortex) networks. Independent component analysis of intrinsic functional connectivity networks extended this finding by revealing differential interactions among these large-scale networks across the task conditions. The results suggest that interactions between the default and executive control networks underlie response inhibition during constrained idea production, providing insight into specific neurocognitive mechanisms supporting creative cognition. Copyright © 2017 Elsevier Inc. All rights reserved.
Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease
NASA Astrophysics Data System (ADS)
Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.
2018-04-01
Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.
Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.
Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M
2018-04-01
Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.
Cognition, emotion, and attention.
Müller-Oehring, Eva M; Schulte, Tilman
2014-01-01
Deficits of attention, emotion, and cognition occur in individuals with alcohol abuse and addiction. This review elucidates the concepts of attention, emotion, and cognition and references research on the underlying neural networks and their compromise in alcohol use disorder. Neuroimaging research on adolescents with family history of alcoholism contributes to the understanding of pre-existing brain structural conditions and characterization of cognition and attention processes in high-risk individuals. Attention and cognition interact with other brain functions, including perceptual selection, salience, emotion, reward, and memory, through interconnected neural networks. Recent research reports compromised microstructural and functional network connectivity in alcoholism, which can have an effect on the dynamic tuning between brain systems, e.g., the frontally based executive control system, the limbic emotion system, and the midbrain-striatal reward system, thereby impeding cognitive flexibility and behavioral adaptation to changing environments. Finally, we introduce concepts of functional compensation, the capacity to generate attentional resources for performance enhancement, and brain structure recovery with abstinence. An understanding of the neural mechanisms of attention, emotion, and cognition will likely provide the basis for better treatment strategies for developing skills that enhance alcoholism therapy adherence and quality of life, and reduce the propensity for relapse. © 2014 Elsevier B.V. All rights reserved.
Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan
2012-01-01
Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393
Fluid intelligence and brain functional organization in aging yoga and meditation practitioners
Gard, Tim; Taquet, Maxime; Dixit, Rohan; Hölzel, Britta K.; de Montjoye, Yves-Alexandre; Brach, Narayan; Salat, David H.; Dickerson, Bradford C.; Gray, Jeremy R.; Lazar, Sara W.
2014-01-01
Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation. PMID:24795629
Cognitive radio wireless sensor networks: applications, challenges and research trends.
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-08-22
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.
Altered segregation between task-positive and task-negative regions in mild traumatic brain injury.
Sours, Chandler; Kinnison, Joshua; Padmala, Srikanth; Gullapalli, Rao P; Pessoa, Luiz
2018-06-01
Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were investigated using functional magnetic resonance imaging (fMRI) during the N-back working memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined during the chronic stage of injury and compared to 28 control participants. Demographics and behavioral performance were matched across groups. Due to the diffuse nature of injury, we hypothesized that there would be an imbalance in the communication between task-positive and Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a graph-theoretic measure of modularity was used to quantify the extent to which groups of brain regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI patients showed reduced segregation between the DMN and task-positive networks, but increased functional connectivity within the DMN regions during the more cognitively demanding 2-back task. Together, our findings reveal that patients exhibit alterations in the communication between and within neural networks during a cognitively demanding task. These findings reveal altered processes that persist through the chronic stage of injury, highlighting the need for longitudinal research to map the neural recovery of mTBI patients.
Gender differences associated with orienting attentional networks in healthy subjects.
Liu, Gang; Hu, Pan-Pan; Fan, Jin; Wang, Kai
2013-06-01
Selective attention is considered one of the main components of cognitive functioning. A number of studies have demonstrated gender differences in cognition. This study aimed to investigate the gender differences in selective attention in healthy subjects. The present experiment examined the gender differences associated with the efficiency of three attentional networks: alerting, orienting, and executive control attention in 73 healthy subjects (38 males). All participants performed a modified version of the Attention Network Test (ANT). Females had higher orienting scores than males (t = 2.172, P < 0.05). Specifically, females were faster at covert orienting of attention to a spatially cued location. There were no gender differences between males and females in alerting (t = 0.813, P > 0.05) and executive control (t = 0.945, P > 0.05) attention networks. There was a significant gender difference between males and females associated with the orienting network. Enhanced orienting attention in females may function to motivate females to direct their attention to a spatially cued location.
Alarcón, Gabriela; Pfeifer, Jennifer H; Fair, Damien A; Nagel, Bonnie J
2018-01-01
Ineffective reduction of functional connectivity between the default mode network (DMN) and frontoparietal network (FPN) during cognitive control can interfere with performance in healthy individuals-a phenomenon present in psychiatric disorders, such as depression. Here, this mechanism is studied in healthy adolescents by examining gender differences in task-regressed functional connectivity using functional magnetic resonance imaging (MRI) and a novel task designed to place the DMN-supporting self-referential processing (SRP)-and FPN-supporting cognitive control-into conflict. Compared to boys, girls showed stronger functional connectivity between DMN and FPN during cognitive control in an SRP context ( n = 40; boys = 20), a context that also elicited more errors of omission in girls. The gender difference in errors of omission was mediated by higher self-reported co-rumination-the extensive and repetitive discussion of problems and focus on negative feelings with a same-gender peer-by girls, compared to boys. These findings indicate that placing internal and external attentional demands in conflict lead to persistent functional connectivity between FPN and DMN in girls, but not boys; however, deficits in performance during this context were explained by co-rumination, such that youth with higher co-rumination displayed the largest performance deficits. Previous research shows that co-rumination predicts depressive symptoms during adolescence; thus, gender differences in the mechanisms involved with transitioning from internal to external processing may be relevant for understanding heightened vulnerability for depression in adolescent girls.
Lin, Hsiang-Yuan
2016-01-01
Background: Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. Methods: After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18–52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. Results: At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Conclusions: Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. PMID:26377368
Lin, Hsiang-Yuan; Gau, Susan Shur-Fen
2015-09-16
Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18-52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Creative Cognition and Brain Network Dynamics.
Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L
2016-02-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. Copyright © 2015 Elsevier Ltd. All rights reserved.
Caminiti, Silvia P; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F
2015-01-01
bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms.
Chen, Nai-Ching; Huang, Chi-Wei; Huang, Shu-Hua; Chang, Wen-Neng; Chang, Ya-Ting; Lui, Chun-Chung; Lin, Pin-Hsuan; Lee, Chen-Chang; Chang, Yen-Hsiang; Chang, Chiung-Chih
2015-01-01
Abstract While carbon monoxide (CO) intoxication often triggers multiple intraneuronal immune- or inflammatory-related cascades, it is not known whether the pathological processes within the affected regions evolve equally in the long term. To understand the neurodegenerative networks, we examined 49 patients with a clinical diagnosis of CO intoxication related to charcoal burning suicide at the chronic stage and compared them with 15 age- and sex-matched controls. Reconstructions of degenerative networks were performed using T1 magnetic resonance imaging, diffusion-tensor imaging, and fluorodeoxyglucose positron emission tomography (PET). Tract-specific fractional anisotropy (FA) quantification of 11 association fibers was performed while the clinical significance of the reconstructed structural or functional networks was determined by correlating them with the cognitive parameters. Compared with the controls, the patients had frontotemporal gray matter (GM) atrophy, diffuse white matter (WM) FA decrement, and axial diffusivity (AD) increment. The patients were further stratified into 3 groups based on the cognitive severities. The spatial extents within the frontal-insular-caudate GM as well as the prefrontal WM AD increment regions determined the cognitive severities among 3 groups. Meanwhile, the prefrontal WM FA values and PET signals also correlated significantly with the patient's Mini-Mental State Examination score. Frontal hypometabolic patterns in PET analysis, even after adjusted for GM volume, were highly coherent to the GM atrophic regions, suggesting structural basis of functional alterations. Among the calculated major association bundles, only the anterior thalamic radiation FA values correlated significantly with all chosen cognitive scores. Our findings suggest that fronto-insular-caudate areas represent target degenerative network in CO intoxication. The topography that occurred at a cognitive severity-specific level at the chronic phase suggested the clinical roles of frontal areas. Although changes in FA are also diffusely distributed, different regional changes in AD suggested unequal long-term compensatory capacities among WM bundles. As such, the affected WM regions showing irreversible changes may exert adverse impacts to the interconnected GM structures. PMID:25984663
Zhang, Haoyun; Eppes, Anna; Beatty-Martínez, Anne; Navarro-Torres, Christian; Diaz, Michele T
2018-06-19
Language production and cognitive control are complex processes that involve distinct yet interacting brain networks. However, the extent to which these processes interact and their neural bases have not been thoroughly examined. Here, we investigated the neural and behavioral bases of language production and cognitive control via a phonological go/no-go picture-naming task. Naming difficulty and cognitive control demands (i.e., conflict monitoring and response inhibition) were manipulated by varying the proportion of naming trials (go trials) and inhibition trials (no-go trials) across task runs. The results demonstrated that as task demands increased, participants' behavioral performance declined (i.e., longer reaction times on naming trials, more commission errors on inhibition trials) whereas brain activation generally increased. Increased activation was found not only within the language network but also in domain-general control regions. Additionally, right superior and inferior frontal and left supramarginal gyri were sensitive to increased task difficulty during both language production and response inhibition. We also found both positive and negative brain-behavior correlations. Most notably, increased activation in sensorimotor regions, such as precentral and postcentral gyri, was associated with better behavioral performance, in both successful picture naming and successful inhibition. Moreover, comparing the strength of correlations across conditions indicated that the brain-behavior correlations in sensorimotor regions that were associated with improved performance became stronger as task demands increased. Overall, our results suggest that cognitive control demands affect language production, and that successfully coping with increases in task difficulty relies on both language-specific and domain-general cognitive control regions.
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks
Abraham, Anna
2014-01-01
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. “Conceptual expansion” refers to the ability to widen one’s conceptual structures to include unusual or novel associations, while “overcoming knowledge constraints” refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition. PMID:24605098
Salience network integrity predicts default mode network function after traumatic brain injury
Bonnelle, Valerie; Ham, Timothy E.; Leech, Robert; Kinnunen, Kirsi M.; Mehta, Mitul A.; Greenwood, Richard J.; Sharp, David J.
2012-01-01
Efficient behavior involves the coordinated activity of large-scale brain networks, but the way in which these networks interact is uncertain. One theory is that the salience network (SN)—which includes the anterior cingulate cortex, presupplementary motor area, and anterior insulae—regulates dynamic changes in other networks. If this is the case, then damage to the structural connectivity of the SN should disrupt the regulation of associated networks. To investigate this hypothesis, we studied a group of 57 patients with cognitive impairments following traumatic brain injury (TBI) and 25 control subjects using the stop-signal task. The pattern of brain activity associated with stop-signal task performance was studied by using functional MRI, and the structural integrity of network connections was quantified by using diffusion tensor imaging. Efficient inhibitory control was associated with rapid deactivation within parts of the default mode network (DMN), including the precuneus and posterior cingulate cortex. TBI patients showed a failure of DMN deactivation, which was associated with an impairment of inhibitory control. TBI frequently results in traumatic axonal injury, which can disconnect brain networks by damaging white matter tracts. The abnormality of DMN function was specifically predicted by the amount of white matter damage in the SN tract connecting the right anterior insulae to the presupplementary motor area and dorsal anterior cingulate cortex. The results provide evidence that structural integrity of the SN is necessary for the efficient regulation of activity in the DMN, and that a failure of this regulation leads to inefficient cognitive control. PMID:22393019
Phasic and tonic alerting in mild cognitive impairment: A preliminary study.
Martella, Diana; Manzanares, Salvadora; Campoy, Guillermo; Roca, Javier; Antúnez, Carmen; Fuentes, Luis J
2014-01-01
In this preliminary study we assessed the functioning of the different attentional networks in mild cognitive impairment (MCI) patients, taking as theoretical framework the Posner's cognitive neuroscience approach. Two groups of participants were tested in a single short experiment: 20 MCI patients (6 amnestic, 6 non-amnestic and 8 multiple-domain) and 18 healthy matched controls (HC). For attentional assessment we used a version of the Attention Network Test (the ANTI-V) that provided not only a score of the orienting, the executive, and the alerting networks and their interactions, but also an independent measure of vigilance (tonic alerting). The results showed that all subtypes of MCI patients exhibited a selective impairment in the tonic component of alerting, as indexed by a decrease in the d' sensitivity index, and their performance in executive network increased up to the HC group level when phasic alerting was provided by a warning tone. Our findings suggest that a core attentional deficit, especially the endogenous component of alerting, may significantly contribute to the behavioral and cognitive deficits associated with MCI. Copyright © 2013 Elsevier Inc. All rights reserved.
Rubia, Katya
2018-01-01
This review focuses on the cognitive neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) based on functional magnetic resonance imaging (fMRI) studies and on recent clinically relevant applications such as fMRI-based diagnostic classification or neuromodulation therapies targeting fMRI deficits with neurofeedback (NF) or brain stimulation. Meta-analyses of fMRI studies of executive functions (EFs) show that ADHD patients have cognitive-domain dissociated complex multisystem impairments in several right and left hemispheric dorsal, ventral and medial fronto-cingulo-striato-thalamic and fronto-parieto-cerebellar networks that mediate cognitive control, attention, timing and working memory (WM). There is furthermore emerging evidence for abnormalities in orbital and ventromedial prefrontal and limbic areas that mediate motivation and emotion control. In addition, poor deactivation of the default mode network (DMN) suggests an abnormal interrelationship between hypo-engaged task-positive and poorly “switched off” hyper-engaged task-negative networks, both of which are related to impaired cognition. Translational cognitive neuroscience in ADHD is still in its infancy. Pattern recognition analyses have attempted to provide diagnostic classification of ADHD using fMRI data with respectable classification accuracies of over 80%. Necessary replication studies, however, are still outstanding. Brain stimulation has been tested in heterogeneously designed, small numbered proof of concept studies targeting key frontal functional impairments in ADHD. Transcranial direct current stimulation (tDCS) appears to be promising to improve ADHD symptoms and cognitive functions based on some studies, but larger clinical trials of repeated stimulation with and without cognitive training are needed to test clinical efficacy and potential costs on non-targeted functions. Only three studies have piloted NF of fMRI-based frontal dysfunctions in ADHD using fMRI or near-infrared spectroscopy, with the two larger ones finding some improvements in cognition and symptoms, which, however, were not superior to the active control conditions, suggesting potential placebo effects. Neurotherapeutics seems attractive for ADHD due to their safety and potential longer-term neuroplastic effects, which drugs cannot offer. However, they need to be thoroughly tested for short- and longer-term clinical and cognitive efficacy and their potential for individualized treatment. PMID:29651240
Rubia, Katya
2018-01-01
This review focuses on the cognitive neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) based on functional magnetic resonance imaging (fMRI) studies and on recent clinically relevant applications such as fMRI-based diagnostic classification or neuromodulation therapies targeting fMRI deficits with neurofeedback (NF) or brain stimulation. Meta-analyses of fMRI studies of executive functions (EFs) show that ADHD patients have cognitive-domain dissociated complex multisystem impairments in several right and left hemispheric dorsal, ventral and medial fronto-cingulo-striato-thalamic and fronto-parieto-cerebellar networks that mediate cognitive control, attention, timing and working memory (WM). There is furthermore emerging evidence for abnormalities in orbital and ventromedial prefrontal and limbic areas that mediate motivation and emotion control. In addition, poor deactivation of the default mode network (DMN) suggests an abnormal interrelationship between hypo-engaged task-positive and poorly "switched off" hyper-engaged task-negative networks, both of which are related to impaired cognition. Translational cognitive neuroscience in ADHD is still in its infancy. Pattern recognition analyses have attempted to provide diagnostic classification of ADHD using fMRI data with respectable classification accuracies of over 80%. Necessary replication studies, however, are still outstanding. Brain stimulation has been tested in heterogeneously designed, small numbered proof of concept studies targeting key frontal functional impairments in ADHD. Transcranial direct current stimulation (tDCS) appears to be promising to improve ADHD symptoms and cognitive functions based on some studies, but larger clinical trials of repeated stimulation with and without cognitive training are needed to test clinical efficacy and potential costs on non-targeted functions. Only three studies have piloted NF of fMRI-based frontal dysfunctions in ADHD using fMRI or near-infrared spectroscopy, with the two larger ones finding some improvements in cognition and symptoms, which, however, were not superior to the active control conditions, suggesting potential placebo effects. Neurotherapeutics seems attractive for ADHD due to their safety and potential longer-term neuroplastic effects, which drugs cannot offer. However, they need to be thoroughly tested for short- and longer-term clinical and cognitive efficacy and their potential for individualized treatment.
Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-01-01
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152
Stefanik, Laura; Erdman, Lauren; Ameis, Stephanie H; Foussias, George; Mulsant, Benoit H; Behdinan, Tina; Goldenberg, Anna; O'Donnell, Lauren J; Voineskos, Aristotle N
2018-04-01
There is considerable heterogeneity in social cognitive and neurocognitive performance among people with schizophrenia spectrum disorders (SSD), autism spectrum disorders (ASD), bipolar disorder (BD), and healthy individuals. This study used Similarity Network Fusion (SNF), a novel data-driven approach, to identify participant similarity networks based on relationships among demographic, brain imaging, and behavioral data. T1-weighted and diffusion-weighted magnetic resonance images were obtained for 174 adolescents and young adults (aged 16-35 years) with an SSD (n=51), an ASD without intellectual disability (n=38), euthymic BD (n=34), and healthy controls (n=51). A battery of social cognitive and neurocognitive tasks were administered. Data integration, cluster determination, and biological group formation were then obtained using SNF. We identified four new groups of individuals, each with distinct neural circuit-cognitive profiles. The most influential variables driving the formation of the new groups were robustly reliable across embedded resampling techniques. The data-driven groups showed considerably greater differentiation on key social and neurocognitive circuit nodes than groups generated by diagnostic analyses or dimensional social cognitive analyses. The data-driven groups were validated through functional outcome and brain network property measures not included in the SNF model. Cutting across diagnostic boundaries, our approach can effectively identify new groups of people based on a profile of neuroimaging and behavioral data. Our findings bring us closer to disease subtyping that can be leveraged toward the targeting of specific neural circuitry among participant subgroups to ameliorate social cognitive and neurocognitive deficits.
Acute Effects of Modafinil on Brain Resting State Networks in Young Healthy Subjects
Pieramico, Valentina; Ferretti, Antonio; Macchia, Antonella; Tommasi, Marco; Saggino, Aristide; Ciavardelli, Domenico; Manna, Antonietta; Navarra, Riccardo; Cieri, Filippo; Stuppia, Liborio; Tartaro, Armando; Sensi, Stefano L.
2013-01-01
Background There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. Methodology A single dose (100 mg) of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven’s Advanced Progressive Matrices II set (APM) before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI) was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI) was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. Principal Findings Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04) and Dorsal Attention (DAN; p<0.04) networks. No modifications in structural connectivity were observed. Conclusions and Significance Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. Trial Registration ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306. PMID:23935959
Acute effects of modafinil on brain resting state networks in young healthy subjects.
Esposito, Roberto; Cilli, Franco; Pieramico, Valentina; Ferretti, Antonio; Macchia, Antonella; Tommasi, Marco; Saggino, Aristide; Ciavardelli, Domenico; Manna, Antonietta; Navarra, Riccardo; Cieri, Filippo; Stuppia, Liborio; Tartaro, Armando; Sensi, Stefano L
2013-01-01
There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. A single dose (100 mg) of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven's Advanced Progressive Matrices II set (APM) before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI) was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI) was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04) and Dorsal Attention (DAN; p<0.04) networks. No modifications in structural connectivity were observed. Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306.
2017-01-01
Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports (“sports” group, N = 13, mean age = 8.85) and another not involved in music or sports (“control” group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance. PMID:29084283
Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B
2017-12-01
Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhu, Haoze; Zhou, Peng; Alcauter, Sarael; Chen, Yuanyuan; Cao, Hongbao; Tian, Miao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Zhao, Xin; He, Feng; Ni, Hongyan; Gao, Wei
2016-08-01
Objective. Alzheimer’s disease (AD) is a serious neurodegenerative disorder characterized by deficits of working memory, attention, language and many other cognitive functions. Although different stages of the disease are relatively well characterized by clinical criteria, stage-specific pathological changes in the brain remain relatively poorly understood, especially at the level of large-scale functional networks. In this study, we aimed to characterize the potential disruptions of large-scale functional brain networks based on a sample including amnestic mild cognition impairment (aMCI) and AD patients to help delineate the underlying stage-dependent AD pathology. Approach. We sought to identify the neural connectivity mechanisms of aMCI and AD through examination of both intranetwork and internetwork interactions among four of the brain’s key networks, namely dorsal attention network (DAN), default mode network (DMN), executive control network (ECN) and salience network (SAL). We analyzed functional connectivity based on resting-state functional magnetic resonance imaging (rs-fMRI) data from 25 Alzheimer’s disease patients, 20 aMCI patients and 35 elderly normal controls (NC). Main results. Intranetwork functional disruptions within the DAN and ECN were detected in both aMCI and AD patients. Disrupted intranetwork connectivity of DMN and anti-correlation between DAN and DMN were observed in AD patients. Moreover, aMCI-specific alterations in the internetwork functional connectivity of SAL were observed. Significance. Our results confirmed previous findings that AD pathology was related to dysconnectivity both within and between resting-state networks but revealed more spatial details. Moreover, the SAL network, reportedly flexibly coupling either with the DAN or DMN networks during different brain states, demonstrated interesting alterations specifically in the early stage of the disease.
White matter tract network disruption explains reduced conscientiousness in multiple sclerosis.
Fuchs, Tom A; Dwyer, Michael G; Kuceyeski, Amy; Choudhery, Sanjeevani; Carolus, Keith; Li, Xian; Mallory, Matthew; Weinstock-Guttman, Bianca; Jakimovski, Dejan; Ramasamy, Deepa; Zivadinov, Robert; Benedict, Ralph H B
2018-05-08
Quantifying white matter (WM) tract disruption in people with multiple sclerosis (PwMS) provides a novel means for investigating the relationship between defective network connectivity and clinical markers. PwMS exhibit perturbations in personality, where decreased Conscientiousness is particularly prominent. This trait deficit influences disease trajectory and functional outcomes such as work capacity. We aimed to identify patterns of WM tract disruption related to decreased Conscientiousness in PwMS. Personality assessment and brain MRI were obtained in 133 PwMS and 49 age- and sex-matched healthy controls (HC). Lesion maps were applied to determine the severity of WM tract disruption between pairs of gray matter regions. Next, the Network-Based-Statistics tool was applied to identify structural networks whose disruption negatively correlates with Conscientiousness. Finally, to determine whether these networks explain unique variance above conventional MRI measures and cognition, regression models were applied controlling for age, sex, brain volume, T2-lesion volume, and cognition. Relative to HCs, PwMS exhibited lower Conscientiousness and slowed cognitive processing speed (p = .025, p = .006). Lower Conscientiousness in PwMS was significantly associated with WM tract disruption between frontal, frontal-parietal, and frontal-cingulate pathways in the left (p = .02) and right (p = .01) hemisphere. The mean disruption of these pathways explained unique additive variance in Conscientiousness, after accounting for conventional MRI markers of pathology and cognition (ΔR 2 = .049, p = .029). Damage to WM tracts between frontal, frontal-parietal, and frontal-cingulate cortical regions is significantly correlated with reduced Conscientiousness in PwMS. Tract disruption within these networks explains decreased Conscientiousness observed in PwMS as compared with HCs. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yamamoto, Toshiaki; Ueda, Tetsuro; Obana, Sadao
As one of the dynamic spectrum access technologies, “cognitive radio technology,” which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.
Kelly, Michelle E; Duff, Hollie; Kelly, Sara; McHugh Power, Joanna E; Brennan, Sabina; Lawlor, Brian A; Loughrey, David G
2017-12-19
Social relationships, which are contingent on access to social networks, promote engagement in social activities and provide access to social support. These social factors have been shown to positively impact health outcomes. In the current systematic review, we offer a comprehensive overview of the impact of social activities, social networks and social support on the cognitive functioning of healthy older adults (50+) and examine the differential effects of aspects of social relationships on various cognitive domains. We followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, and collated data from randomised controlled trials (RCTs), genetic and observational studies. Independent variables of interest included subjective measures of social activities, social networks, and social support, and composite measures of social relationships (CMSR). The primary outcome of interest was cognitive function divided into domains of episodic memory, semantic memory, overall memory ability, working memory, verbal fluency, reasoning, attention, processing speed, visuospatial abilities, overall executive functioning and global cognition. Thirty-nine studies were included in the review; three RCTs, 34 observational studies, and two genetic studies. Evidence suggests a relationship between (1) social activity and global cognition and overall executive functioning, working memory, visuospatial abilities and processing speed but not episodic memory, verbal fluency, reasoning or attention; (2) social networks and global cognition but not episodic memory, attention or processing speed; (3) social support and global cognition and episodic memory but not attention or processing speed; and (4) CMSR and episodic memory and verbal fluency but not global cognition. The results support prior conclusions that there is an association between social relationships and cognitive function but the exact nature of this association remains unclear. Implications of the findings are discussed and suggestions for future research provided. PROSPERO 2012: CRD42012003248 .
High fidelity wireless network evaluation for heterogeneous cognitive radio networks
NASA Astrophysics Data System (ADS)
Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso
2012-06-01
We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.
The cerebellum and cognition: evidence from functional imaging studies.
Stoodley, Catherine J
2012-06-01
Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.
Altered Brain Connectivity in Early Postmenopausal Women with Subjective Cognitive Impairment
Vega, Jennifer N.; Zurkovsky, Lilia; Albert, Kimberly; Melo, Alyssa; Boyd, Brian; Dumas, Julie; Woodward, Neil; McDonald, Brenna C.; Saykin, Andrew J.; Park, Joon H.; Naylor, Magdalena; Newhouse, Paul A.
2016-01-01
Cognitive changes after menopause are a common complaint, especially as the loss of estradiol at menopause has been hypothesized to contribute to the higher rates of dementia in women. To explore the neural processes related to subjective cognitive complaints, this study examined resting state functional connectivity in 31 postmenopausal women (aged 50–60) in relationship to cognitive complaints following menopause. A cognitive complaint index was calculated using responses to a 120-item questionnaire. Seed regions were identified for resting state brain networks important for higher-order cognitive processes and for areas that have shown differences in volume and functional activity associated with cognitive complaints in prior studies. Results indicated a positive correlation between the executive control network and cognitive complaint score, weaker negative functional connectivity within the frontal cortex, and stronger positive connectivity within the right middle temporal gyrus in postmenopausal women who report more cognitive complaints. While longitudinal studies are needed to confirm this hypothesis, these data are consistent with previous findings suggesting that high levels of cognitive complaints may reflect changes in brain connectivity and may be a potential marker for the risk of late-life cognitive dysfunction in postmenopausal women with otherwise normal cognitive performance. PMID:27721740
Where the thoughts dwell: the physiology of neuronal-glial "diffuse neural net".
Verkhratsky, Alexei; Parpura, Vladimir; Rodríguez, José J
2011-01-07
The mechanisms underlying the production of thoughts by exceedingly complex cellular networks that construct the human brain constitute the most challenging problem of natural sciences. Our understanding of the brain function is very much shaped by the neuronal doctrine that assumes that neuronal networks represent the only substrate for cognition. These neuronal networks however are embedded into much larger and probably more complex network formed by neuroglia. The latter, although being electrically silent, employ many different mechanisms for intercellular signalling. It appears that astrocytes can control synaptic networks and in such a capacity they may represent an integral component of the computational power of the brain rather than being just brain "connective tissue". The fundamental question of whether neuroglia is involved in cognition and information processing remains, however, open. Indeed, a remarkable increase in the number of glial cells that distinguishes the human brain can be simply a result of exceedingly high specialisation of the neuronal networks, which delegated all matters of survival and maintenance to the neuroglia. At the same time potential power of analogue processing offered by internally connected glial networks may represent the alternative mechanism involved in cognition. Copyright © 2010 Elsevier B.V. All rights reserved.
Hsu, Nina S.; Jaeggi, Susanne M.; Novick, Jared M.
2017-01-01
Regions within the left inferior frontal gyrus (LIFG) have simultaneously been implicated in syntactic processing and cognitive control. Accounts attempting to unify LIFG’s function hypothesize that, during comprehension, cognitive control resolves conflict between incompatible representations of sentence meaning. Some studies demonstrate co-localized activity within LIFG for syntactic and non-syntactic conflict resolution, suggesting domain-generality, but others show non-overlapping activity, suggesting domain-specific cognitive control and/or regions that respond uniquely to syntax. We propose however that examining exclusive activation sites for certain contrasts creates a false dichotomy: both domain-general and domain-specific neural machinery must coordinate to facilitate conflict resolution across domains. Here, subjects completed four diverse tasks involving conflict —one syntactic, three non-syntactic— while undergoing fMRI. Though LIFG consistently activated within individuals during conflict processing, functional connectivity analyses revealed task-specific coordination with distinct brain networks. Thus, LIFG may function as a conflict-resolution “hub” that cooperates with specialized neural systems according to information content. PMID:28110105
Developing brain networks of attention.
Posner, Michael I; Rothbart, Mary K; Voelker, Pascale
2016-12-01
Attention is a primary cognitive function critical for perception, language, and memory. We provide an update on brain networks related to attention, their development, training, and pathologies. An executive attention network, also called the cingulo-opercular network, allows voluntary control of behavior in accordance with goals. Individual differences among children in self-regulation have been measured by a higher order factor called effortful control, which is related to the executive network and to the size of the anterior cingulate cortex. Brain networks of attention arise in infancy and are related to individual differences, including pathology during childhood. Methods of training attention may improve performance and ameliorate pathology.
Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias
2015-01-01
The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305
Zhao, Tengda; Sheng, Can; Bi, Qiuhui; Niu, Weili; Shu, Ni; Han, Ying
2017-11-01
Amnestic mild cognitive impairment (aMCI) is accompanied by the accelerated cognitive decline and rapid brain degeneration with aging. However, the age-related alterations of the topological organization of the brain connectome in aMCI patients remained largely unknown. In this study, we constructed the brain structural connectome in 51 aMCI patients and 51 healthy controls by diffusion magnetic resonance imaging and deterministic tractography. The different age-related alteration patterns of the global and regional network metrics between aMCI patients and healthy controls were assessed by a linear regression model. Compared with healthy controls, significantly decreased global and local network efficiency in aMCI patients were found. When correlating network efficiency with age, we observed a significant decline in network efficiency with aging in the aMCI patients, while not in the healthy controls. The age-related decreases of nodal efficiency in aMCI patients were mainly distributed in the key regions of the default-mode network, such as precuneus, anterior cingulate gyrus, and parahippocampal gyrus. In addition, age-related decreases in the connection strength of the edges between peripheral nodes were observed in aMCI patients. Moreover, the decreased regional efficiency of the parahippocampal gyrus was correlated with impaired memory performances in patients. The present study suggests an age-related disruption of the topological organization of the brain structural connectome in aMCI patients, which may provide evidence for different neural mechanisms underlying aging in aMCI and may serve as a potential imaging marker for the early diagnosis of Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Nikki C; Weeda, Wouter D; Insel, Catherine; Somerville, Leah H; Krabbendam, Lydia; Huizinga, Mariëtte
2018-06-01
Adolescence is a period characterised by increases in risk-taking. This behaviour has been associated with an imbalance in the integration of the networks involved in cognitive control and motivational processes. We examined whether the influence of emotional cues on cognitive control differs between adolescents who show high or low levels of risk-taking behaviour. Participants who scored especially high or low on a risky decision task were subsequently administered an emotional go/no-go fMRI task comprising angry, happy and calm faces. Both groups showed decreased cognitive control when confronted with appetitive and aversive emotional cues. Activation in the inferior frontal gyrus (IFG) increased in line with the cognitive control demands of the task. Though the risk taking groups did not differ in their behavioural performance, functional connectivity analyses revealed the dorsal striatum plays a more central role in the processing of cognitive control in high than low risk-takers. Overall, these findings suggest that variance in fronto-striatal circuitry may underlie individual differences in risk-taking behaviour. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Anatomy and computational modeling of networks underlying cognitive-emotional interaction.
John, Yohan J; Bullock, Daniel; Zikopoulos, Basilis; Barbas, Helen
2013-01-01
The classical dichotomy between cognition and emotion equated the first with rationality or logic and the second with irrational behaviors. The idea that cognition and emotion are separable, antagonistic forces competing for dominance of mind has been hard to displace despite abundant evidence to the contrary. For instance, it is now known that a pathological absence of emotion leads to profound impairment of decision making. Behavioral observations of this kind are corroborated at the mechanistic level: neuroanatomical studies reveal that brain areas typically described as underlying either cognitive or emotional processes are linked in ways that imply complex interactions that do not resemble a simple mutual antagonism. Instead, physiological studies and network simulations suggest that top-down signals from prefrontal cortex realize "cognitive control" in part by either suppressing or promoting emotional responses controlled by the amygdala, in a way that facilitates adaptation to changing task demands. Behavioral, anatomical, and physiological data suggest that emotion and cognition are equal partners in enabling a continuum or matrix of flexible behaviors that are subserved by multiple brain regions acting in concert. Here we focus on neuroanatomical data that highlight circuitry that structures cognitive-emotional interactions by directly or indirectly linking prefrontal areas with the amygdala. We also present an initial computational circuit model, based on anatomical, physiological, and behavioral data to explicitly frame the learning and performance mechanisms by which cognition and emotion interact to achieve flexible behavior.
Franzmeier, Nicolai; Göttler, Jens; Grimmer, Timo; Drzezga, Alexander; Áraque-Caballero, Miguel A; Simon-Vermot, Lee; Taylor, Alexander N W; Bürger, Katharina; Catak, Cihan; Janowitz, Daniel; Müller, Claudia; Duering, Marco; Sorg, Christian; Ewers, Michael
2017-01-01
Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer's disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44). Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education) and better maintenance of memory in mild cognitive impairment (MCI). Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC) and in an independent validation sample (23 MCI/32 HC). Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual) was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN), but positively correlated with the dorsal-attention network (DAN). Greater education predicted stronger LFC-DMN-connectivity (anti-correlation) and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.
Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.
Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea
2017-01-01
Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological, rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90%) of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.
Default Network Modulation and Large-Scale Network Interactivity in Healthy Young and Old Adults
Schacter, Daniel L.
2012-01-01
We investigated age-related changes in default, attention, and control network activity and their interactions in young and old adults. Brain activity during autobiographical and visuospatial planning was assessed using multivariate analysis and with intrinsic connectivity networks as regions of interest. In both groups, autobiographical planning engaged the default network while visuospatial planning engaged the attention network, consistent with a competition between the domains of internalized and externalized cognition. The control network was engaged for both planning tasks. In young subjects, the control network coupled with the default network during autobiographical planning and with the attention network during visuospatial planning. In old subjects, default-to-control network coupling was observed during both planning tasks, and old adults failed to deactivate the default network during visuospatial planning. This failure is not indicative of default network dysfunction per se, evidenced by default network engagement during autobiographical planning. Rather, a failure to modulate the default network in old adults is indicative of a lower degree of flexible network interactivity and reduced dynamic range of network modulation to changing task demands. PMID:22128194
Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying
2015-10-01
Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.
Trait impulsivity components correlate differently with proactive and reactive control
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems. PMID:28423021
Trait impulsivity components correlate differently with proactive and reactive control.
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems.
Parkinson's Disease and Dopaminergic Therapy--Differential Effects on Movement, Reward and Cognition
ERIC Educational Resources Information Center
Rowe, J. B.; Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.
2008-01-01
Cognitive deficits are very common in Parkinson's disease particularly for "executive functions" associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex…
Kelly, Clare; de Zubicaray, Greig; Di Martino, Adriana; Copland, David A.; Reiss, Philip T.; Klein, Donald F.; Castellanos, F. Xavier; Milham, Michael P.; McMahon, Katie
2010-01-01
Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults. We examined the FC of 6 striatal regions-of-interest previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., Cerebral Cortex, 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. While L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions. PMID:19494158
Kesler, Shelli R.; Wefel, Jeffrey S.; Hosseini, S. M. Hadi; Cheung, Maria; Watson, Christa L.; Hoeft, Fumiko
2013-01-01
Breast cancer (BC) chemotherapy is associated with cognitive changes including persistent deficits in some individuals. We tested the accuracy of default mode network (DMN) resting state functional connectivity patterns in discriminating chemotherapy treated (C+) from non–chemotherapy (C−) treated BC survivors and healthy controls (HC). We also examined the relationship between DMN connectivity patterns and cognitive function. Multivariate pattern analysis was used to classify 30 C+, 27 C−, and 24 HC, which showed significant accuracy for discriminating C+ from C− (91.23%, P < 0.0001) and C+ from HC (90.74%, P < 0.0001). The C− group did not differ significantly from HC (47.06%, P = 0.60). Lower subjective memory function was correlated (P < 0.002) with greater hyperplane distance (distance from the linear decision function that optimally separates the groups). Disrupted DMN connectivity may help explain long-term cognitive difficulties following BC chemotherapy. PMID:23798392
Age differences in the intrinsic functional connectivity of default network subsystems
Campbell, Karen L.; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L.
2013-01-01
Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults. PMID:24294203
Age differences in the intrinsic functional connectivity of default network subsystems.
Campbell, Karen L; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L
2013-01-01
Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.
Butler, Anderson A; Webb, William M; Lubin, Farah D
2016-01-01
The diverse functions of noncoding RNAs (ncRNAs) can influence virtually every aspect of the transcriptional process including epigenetic regulation of genes. In the CNS, regulatory RNA networks and epigenetic mechanisms have broad relevance to gene transcription changes involved in long-term memory formation and cognition. Thus, it is becoming increasingly clear that multiple classes of ncRNAs impact neuronal development, neuroplasticity, and cognition. Currently, a large gap exists in our knowledge of how ncRNAs facilitate epigenetic processes, and how this phenomenon affects cognitive function. In this review, we discuss recent findings highlighting a provocative role for ncRNAs including lncRNAs and piRNAs in the control of epigenetic mechanisms involved in cognitive function. Furthermore, we discuss the putative roles for these ncRNAs in cognitive disorders such as schizophrenia and Alzheimer's disease.
Vega, Jennifer N; Hohman, Timothy J; Pryweller, Jennifer R; Dykens, Elisabeth M; Thornton-Wells, Tricia A
2015-10-01
The emergence of resting-state functional connectivity (rsFC) analysis, which examines temporal correlations of low-frequency (<0.1 Hz) blood oxygen level-dependent signal fluctuations between brain regions, has dramatically improved our understanding of the functional architecture of the typically developing (TD) human brain. This study examined rsFC in Down syndrome (DS) compared with another neurodevelopmental disorder, Williams syndrome (WS), and TD. Ten subjects with DS, 18 subjects with WS, and 40 subjects with TD each participated in a 3-Tesla MRI scan. We tested for group differences (DS vs. TD, DS vs. WS, and WS vs. TD) in between- and within-network rsFC connectivity for seven functional networks. For the DS group, we also examined associations between rsFC and other cognitive and genetic risk factors. In DS compared with TD, we observed higher levels of between-network connectivity in 6 out 21 network pairs but no differences in within-network connectivity. Participants with WS showed lower levels of within-network connectivity and no significant differences in between-network connectivity relative to DS. Finally, our comparison between WS and TD controls revealed lower within-network connectivity in multiple networks and higher between-network connectivity in one network pair relative to TD controls. While preliminary due to modest sample sizes, our findings suggest a global difference in between-network connectivity in individuals with neurodevelopmental disorders compared with controls and that such a difference is exacerbated across many brain regions in DS. However, this alteration in DS does not appear to extend to within-network connections, and therefore, the altered between-network connectivity must be interpreted within the framework of an intact intra-network pattern of activity. In contrast, WS shows markedly lower levels of within-network connectivity in the default mode network and somatomotor network relative to controls. These findings warrant further investigation using a task-based procedure that may help disentangle the relationship between brain function and cognitive performance across the spectrum of neurodevelopmental disorders.
Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.
Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank
2017-02-01
Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Peeters, Sanne C T; van de Ven, Vincent; Gronenschild, Ed H B M; Patel, Ameera X; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld
2015-01-01
Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.
A Survey of MAC Protocols for Cognitive Radio Body Area Networks.
Bhandari, Sabin; Moh, Sangman
2015-04-20
The advancement in electronics, wireless communications and integrated circuits has enabled the development of small low-power sensors and actuators that can be placed on, in or around the human body. A wireless body area network (WBAN) can be effectively used to deliver the sensory data to a central server, where it can be monitored, stored and analyzed. For more than a decade, cognitive radio (CR) technology has been widely adopted in wireless networks, as it utilizes the available spectra of licensed, as well as unlicensed bands. A cognitive radio body area network (CRBAN) is a CR-enabled WBAN. Unlike other wireless networks, CRBANs have specific requirements, such as being able to automatically sense their environments and to utilize unused, licensed spectra without interfering with licensed users, but existing protocols cannot fulfill them. In particular, the medium access control (MAC) layer plays a key role in cognitive radio functions, such as channel sensing, resource allocation, spectrum mobility and spectrum sharing. To address various application-specific requirements in CRBANs, several MAC protocols have been proposed in the literature. In this paper, we survey MAC protocols for CRBANs. We then compare the different MAC protocols with one another and discuss challenging open issues in the relevant research.
Doll, Anselm; Sorg, Christian; Manoliu, Andrei; Wöller, Andreas; Meng, Chun; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M.; Riedl, Valentin
2013-01-01
Borderline personality disorder (BPD) is characterized by “stable instability” of emotions and behavior and their regulation. This emotional and behavioral instability corresponds with a neurocognitive triple network model of psychopathology, which suggests that aberrant emotional saliency and cognitive control is associated with aberrant interaction across three intrinsic connectivity networks [i.e., the salience network (SN), default mode network (DMN), and central executive network (CEN)]. The objective of the current study was to investigate whether and how such triple network intrinsic functional connectivity (iFC) is changed in patients with BPD. We acquired resting-state functional magnetic resonance imaging (rs-fMRI) data from 14 patients with BPD and 16 healthy controls. High-model order independent component analysis was used to extract spatiotemporal patterns of ongoing, coherent blood-oxygen-level-dependent signal fluctuations from rs-fMRI data. Main outcome measures were iFC within networks (intra-iFC) and between networks (i.e., network time course correlation inter-iFC). Aberrant intra-iFC was found in patients’ DMN, SN, and CEN, consistent with previous findings. While patients’ inter-iFC of the CEN was decreased, inter-iFC of the SN was increased. In particular, a balance index reflecting the relationship of CEN- and SN-inter-iFC across networks was strongly shifted from CEN to SN connectivity in patients. Results provide first preliminary evidence for aberrant triple network iFC in BPD. Our data suggest a shift of inter-network iFC from networks involved in cognitive control to those of emotion-related activity in BPD, potentially reflecting the persistent instability of emotion regulation in patients. PMID:24198777
Bäuml, J G; Meng, C; Daamen, M; Baumann, N; Busch, B; Bartmann, P; Wolke, D; Boecker, H; Wohlschläger, A; Sorg, C; Jaekel, Julia
2017-03-01
Mathematic abilities in childhood are highly predictive for long-term neurocognitive outcomes. Preterm-born individuals have an increased risk for both persistent cognitive impairments and long-term changes in macroscopic brain organization. We hypothesized that the association of childhood mathematic abilities with both adulthood general cognitive abilities and associated fronto-parietal intrinsic networks is altered after preterm delivery. 72 preterm- and 71 term-born individuals underwent standardized mathematic and IQ testing at 8 years and resting-state fMRI and full-scale IQ testing at 26 years of age. Outcome measure for intrinsic networks was intrinsic functional connectivity (iFC). Controlling for IQ at age eight, mathematic abilities in childhood were significantly stronger positively associated with adults' IQ in preterm compared with term-born individuals. In preterm-born individuals, the association of children's mathematic abilities and adults' fronto-parietal iFC was altered. Likewise, fronto-parietal iFC was distinctively linked with preterm- and term-born adults' IQ. Results provide evidence that preterm birth alters the link of mathematic abilities in childhood and general cognitive abilities and fronto-parietal intrinsic networks in adulthood. Data suggest a distinct functional role of intrinsic fronto-parietal networks for preterm individuals with respect to mathematic abilities and that these networks together with associated children's mathematic abilities may represent potential neurocognitive targets for early intervention.
GOOD HEALTH AND THE BRIDGING OF STRUCTURAL HOLES
Cornwell, Benjamin
2009-01-01
Bridges that span structural holes are often explained in terms of the entrepreneurial personalities or rational motivations of brokers, or structural processes that lead to the intersection of social foci. I argue that the existence and use of bridges in interpersonal networks also depends on individuals’ health. Poor health may make it more difficult to withstand the pressures and to execute some of the common tasks associated with bridging (e.g., brokerage). I examine this possibility using egocentric network data on over 2,500 older adults drawn from the recent National Social Life, Health, and Aging Project (NSHAP). Multivariate regression analyses show that both cognitive and functional health are significantly positively associated with bridging, net of sociodemographic and life-course controls. The relationship between functional (kinesthetic) health and bridging appears to be partially mediated by network composition, as older adults who have poorer functional health also tend to have networks that are richer in strong ties. Several potential mediation mechanisms are discussed. Cognitive function remains significantly associated with bridging net of network composition, suggesting that the inherent challenges of maintaining bridging positions may be more difficult to cope with for those who have cognitive impairments than for those who have functional impairments such as limited mobility. An alternative explanation is that cognitively impaired individuals have more difficulty recognizing (and thus strategically using) bridges in their networks. Theoretical implications and possibilities for future research are discussed. PMID:20046998
Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.
2016-01-01
Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445
Smith, David V; Sip, Kamila E; Delgado, Mauricio R
2015-07-01
Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. © 2015 Wiley Periodicals, Inc.
Protocol for a randomized controlled trial of piano training on cognitive and psychosocial outcomes.
Bugos, Jennifer
2018-05-09
Age-related cognitive decline and cognitive impairment represent the fastest growing health epidemic worldwide among those over 60. There is a critical need to identify effective and novel complex cognitive interventions to promote successful aging. Since piano training engages cognitive and bimanual sensorimotor processing, we hypothesize that piano training may serve as an effective cognitive intervention, as it requires sustained attention and engages an executive network that supports generalized cognition and emotional control. Here, I describe the protocol of a randomized controlled trial (RCT) to evaluate the impact of piano training on cognitive performance in adulthood, a period associated with decreased neuroplasticity. In this cluster RCT, healthy older adults (age 60-80) were recruited and screened to control for confounding variables. Eligible participants completed an initial 3-h assessment of standardized cognitive and psychosocial measures. Participants were stratified by age, education, and estimate of intelligence and randomly assigned to one of three groups: piano training, computer brain training, or a no-treatment control group. Computer brain training consisted of progressively difficult auditory cognitive exercises (Brain HQ; Posit Science, 2010). Participants assigned to training groups completed a 16-week program that met twice a week for 90 minutes. Upon program completion and at a 3-month follow-up, training participants and no-treatment controls completed a posttest visit lasting 2.5 hours. © 2018 New York Academy of Sciences.
Alarcón, Gabriela; Pfeifer, Jennifer H.; Fair, Damien A.; Nagel, Bonnie J.
2018-01-01
Ineffective reduction of functional connectivity between the default mode network (DMN) and frontoparietal network (FPN) during cognitive control can interfere with performance in healthy individuals—a phenomenon present in psychiatric disorders, such as depression. Here, this mechanism is studied in healthy adolescents by examining gender differences in task-regressed functional connectivity using functional magnetic resonance imaging (MRI) and a novel task designed to place the DMN—supporting self-referential processing (SRP)—and FPN—supporting cognitive control—into conflict. Compared to boys, girls showed stronger functional connectivity between DMN and FPN during cognitive control in an SRP context (n = 40; boys = 20), a context that also elicited more errors of omission in girls. The gender difference in errors of omission was mediated by higher self-reported co-rumination—the extensive and repetitive discussion of problems and focus on negative feelings with a same-gender peer—by girls, compared to boys. These findings indicate that placing internal and external attentional demands in conflict lead to persistent functional connectivity between FPN and DMN in girls, but not boys; however, deficits in performance during this context were explained by co-rumination, such that youth with higher co-rumination displayed the largest performance deficits. Previous research shows that co-rumination predicts depressive symptoms during adolescence; thus, gender differences in the mechanisms involved with transitioning from internal to external processing may be relevant for understanding heightened vulnerability for depression in adolescent girls. PMID:29740292
Peters, Sarah K.; Dunlop, Katharine; Downar, Jonathan
2016-01-01
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders. PMID:28082874
Eschmann, Kathrin C J; Bader, Regine; Mecklinger, Axel
2018-06-01
Electrophysiological oscillations are assumed to be the core mechanism for large-scale network communication. The specific role of frontal-midline theta oscillations as cognitive control mechanism is under debate. According to the dual mechanisms of control framework, cognitive control processes can be divided into proactive and reactive control. The present study aimed at investigating the role of frontal-midline theta activity by assessing oscillations in two tasks varying in the type of cognitive control needed. More specifically, a delayed match to sample (DMTS) task requiring proactive control and a color Stroop task recruiting reactive control processes were conducted within the same group of participants. Moreover, both tasks contained conditions with low and high need for cognitive control. As expected larger frontal-midline theta activity was found in conditions with high need for cognitive control. However, theta activity was focally activated at frontal sites in the DMTS task whereas it had a broader topographical distribution in the Stroop task, indicating that both proactive and reactive control are reflected in frontal-midline theta activity but reactive control is additionally characterized by a broader theta activation. These findings support the conclusion that frontal-midline theta acts functionally different depending on task requirements. Copyright © 2018 Elsevier Inc. All rights reserved.
Dimond, Dennis; Ishaque, Abdullah; Chenji, Sneha; Mah, Dennell; Chen, Zhang; Seres, Peter; Beaulieu, Christian; Kalra, Sanjay
2017-03-01
Research in amyotrophic lateral sclerosis (ALS) suggests that executive dysfunction, a prevalent cognitive feature of the disease, is associated with abnormal structural connectivity and white matter integrity. In this exploratory study, we investigated the white matter constructs of executive dysfunction, and attempted to detect structural abnormalities specific to cognitively impaired ALS patients. Eighteen ALS patients and 22 age and education matched healthy controls underwent magnetic resonance imaging on a 4.7 Tesla scanner and completed neuropsychometric testing. ALS patients were categorized into ALS cognitively impaired (ALSci, n = 9) and ALS cognitively competent (ALScc, n = 5) groups. Tract-based spatial statistics and connectomics were used to compare white matter integrity and structural connectivity of ALSci and ALScc patients. Executive function performance was correlated with white matter FA and network metrics within the ALS group. Executive function performance in the ALS group correlated with global and local network properties, as well as FA, in regions throughout the brain, with a high predilection for the frontal lobe. ALSci patients displayed altered local connectivity and structural integrity in these same frontal regions that correlated with executive dysfunction. Our results suggest that executive dysfunction in ALS is related to frontal network disconnectivity, which potentially mediates domain-specific, or generalized cognitive impairment, depending on the degree of global network disruption. Furthermore, reported co-localization of decreased network connectivity and diminished white matter integrity suggests white matter pathology underlies this topological disruption. We conclude that executive dysfunction in ALSci is associated with frontal and global network disconnectivity, underlined by diminished white matter integrity. Hum Brain Mapp 38:1249-1268, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Investigating the Neural Correlates of Emotion–Cognition Interaction Using an Affective Stroop Task
Raschle, Nora M.; Fehlbaum, Lynn V.; Menks, Willeke M.; Euler, Felix; Sterzer, Philipp; Stadler, Christina
2017-01-01
The human brain has the capacity to integrate various sources of information and continuously adapts our behavior according to situational needs in order to allow a healthy functioning. Emotion–cognition interactions are a key example for such integrative processing. However, the neuronal correlates investigating the effects of emotion on cognition remain to be explored and replication studies are needed. Previous neuroimaging studies have indicated an involvement of emotion and cognition related brain structures including parietal and prefrontal cortices and limbic brain regions. Here, we employed whole brain event-related functional magnetic resonance imaging (fMRI) during an affective number Stroop task and aimed at replicating previous findings using an adaptation of an existing task design in 30 healthy young adults. The Stroop task is an indicator of cognitive control and enables the quantification of interference in relation to variations in cognitive load. By the use of emotional primes (negative/neutral) prior to Stroop task performance, an emotional variation is added as well. Behavioral in-scanner data showed that negative primes delayed and disrupted cognitive processing. Trials with high cognitive demand furthermore negatively influenced cognitive control mechanisms. Neuronally, the emotional primes consistently activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions) while Stroop task performance lead to activations in cognition networks of the brain (prefrontal cortices, superior temporal lobe, and insula). When assessing the effect of emotion on cognition, increased cognitive demand led to decreases in neural activation in response to emotional stimuli (negative > neutral) within prefrontal cortex, amygdala, and insular cortex. Overall, these results suggest that emotional primes significantly impact cognitive performance and increasing cognitive demand leads to reduced neuronal activation in emotion related brain regions, and therefore support previous findings investigating emotion–cognition interaction in healthy adults. Moreover, emotion and cognition seem to be tightly related to each other, as indicated by shared neural networks involved in both of these processes. Emotion processing, cognitive control, and their interaction are crucial for healthy functioning and a lack thereof is related to psychiatric disorders such as, disruptive behavior disorders. Future studies may investigate the neural characteristics of children and adolescents with disruptive behavior disorders. PMID:28919871
Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.
Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J
2011-03-01
There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.
Salience network engagement with the detection of morally laden information
Gurvit, Hakan; Spreng, R. Nathan
2017-01-01
Abstract Moral cognition is associated with activation of the default network, regions implicated in mentalizing about one’s own actions or the intentions of others. Yet little is known about the initial detection of moral information. We examined the neural correlates of moral processing during a narrative completion task, which included an implicit moral salience manipulation. During fMRI scanning, participants read a brief vignette and selected the most semantically congruent sentence from two options to complete the narrative. The options were immoral, moral or neutral statements. RT was fastest for the selection of neutral statements and slowest for immoral statements. Neuroimaging analyses revealed that responses involving morally laden content engaged default and executive control network brain regions including medial and rostral prefrontal cortex, and core regions of the salience network, including anterior insula and dorsal anterior cingulate. Immoral vs moral conditions additionally engaged the salience network. These results implicate the salience network in the detection of moral information, which may modulate downstream default and frontal control network interactions in the service of complex moral reasoning and decision-making processes. These findings suggest that moral cognition involves both bottom-up and top-down attentional processes, mediated by discrete large-scale brain networks and their interactions. PMID:28338944
Domain-specific control mechanisms for emotional and nonemotional conflict processing.
Soutschek, Alexander; Schubert, Torsten
2013-02-01
Recent neuroimaging studies suggest that the human brain activates dissociable cognitive control networks in response to conflicts arising within the cognitive and the affective domain. The present study tested the hypothesis that nonemotional and emotional conflict regulation can also be dissociated on a functional level. For that purpose, we examined the effects of a working memory and an emotional Go/Nogo task on cognitive control in an emotional and a nonemotional variant of the Stroop paradigm. The data confirmed the hypothesized dissociation: Working memory efforts selectively suppressed conflict regulation in the nonemotional Stroop task, while the demands of an emotional Go/Nogo task impaired only conflict regulation in the emotional Stroop task. We conclude that these findings support a modular architecture of cognitive control with domain-specific conflict regulation processes. Copyright © 2012 Elsevier B.V. All rights reserved.
Nauta, Ilse M; Speckens, Anne E M; Kessels, Roy P C; Geurts, Jeroen J G; de Groot, Vincent; Uitdehaag, Bernard M J; Fasotti, Luciano; de Jong, Brigit A
2017-11-21
Cognitive problems frequently occur in patients with multiple sclerosis (MS) and profoundly affect their quality of life. So far, the best cognitive treatment options for MS patients are a matter of debate. Therefore, this study aims to investigate the effectiveness of two promising non-pharmacological treatments: cognitive rehabilitation therapy (CRT) and mindfulness-based cognitive therapy (MBCT). Furthermore, this study aims to gain additional knowledge about the aetiology of cognitive problems among MS patients, since this may help to develop and guide effective cognitive treatments. In a dual-centre, single-blind randomised controlled trial (RCT), 120 MS patients will be randomised into one of three parallel groups: CRT, MBCT or enhanced treatment as usual (ETAU). Both CRT and MBCT consist of a structured 9-week program. ETAU consists of one appointment with an MS specialist nurse. Measurements will be performed at baseline, post-intervention and 6 months after the interventions. The primary outcome measure is the level of subjective cognitive complaints. Secondary outcome measures are objective cognitive function, functional brain network measures (using magnetoencephalography), psychological symptoms, well-being, quality of life and daily life functioning. To our knowledge, this will be the first RCT that investigates the effect of MBCT on cognitive function among MS patients. In addition, studying the effect of CRT on cognitive function may provide direction to the contradictory evidence that is currently available. This study will also provide information on changes in functional brain networks in relation to cognitive function. To conclude, this study may help to understand and treat cognitive problems among MS patients. This trial was prospectively registered at the Dutch Trial Registration (number NTR6459 , registered on 31 May 2017).
Levels of integration in cognitive control and sequence processing in the prefrontal cortex.
Bahlmann, Jörg; Korb, Franziska M; Gratton, Caterina; Friederici, Angela D
2012-01-01
Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.
Levels of Integration in Cognitive Control and Sequence Processing in the Prefrontal Cortex
Bahlmann, Jörg; Korb, Franziska M.; Gratton, Caterina; Friederici, Angela D.
2012-01-01
Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex. PMID:22952762
Peeters, S C T; van Bronswijk, S; van de Ven, V; Gronenschild, E H B M; Goebel, R; van Os, J; Marcelis, M
2015-11-01
Altered frontoparietal network functional connectivity (FPN-fc) has been associated with neurocognitive dysfunction in individuals with (risk for) psychotic disorder. Cannabis use is associated with cognitive and FPN-fc alterations in healthy individuals, but it is not known whether cannabis exposure moderates the FPN-fc-cognition association. We studied FPN-fc in relation to psychosis risk, as well as the moderating effects of psychosis risk and cannabis use on the association between FPN-fc and (social) cognition. This was done by collecting resting-state fMRI scans and (social) cognitive test results from 63 patients with psychotic disorder, 73 unaffected siblings and 59 controls. Dorsolateral prefrontal cortex (DLPFC) seed-based correlation analyses were used to estimate FPN-fc group differences. Additionally, group×FPN-fc and cannabis×FPN-fc interactions in models of cognition were assessed with regression models. Results showed that DLPFC-fc with the left precuneus, right inferior parietal lobule, right middle temporal gyrus (MTG), inferior frontal gyrus (IFG) regions and right insula was decreased in patients compared to controls. Siblings had reduced DLPFC-fc with the right MTG, left middle frontal gyrus, right superior frontal gyrus, IFG regions, and right insula compared to controls, with an intermediate position between patients and controls for DLPFC-IFG/MTG and insula-fc. There were no significant FPN-fc×group or FPN-fc×cannabis interactions in models of cognition. Reduced DLPFC-insula-fc was associated with worse social cognition in the total sample. In conclusion, besides patient- and sibling-specific FPN-fc alterations, there was evidence for trait-related alterations. FPN-fc-cognition associations were not conditional on familial liability or cannabis use. Lower FPN-fc was associated with lower emotion processing in the total group. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Kovacevic, Sanja; Azma, Sheeva; Irimia, Andrei; Sherfey, Jason; Halgren, Eric; Marinkovic, Ksenija
2012-01-01
Prior neuroimaging evidence indicates that decision conflict activates medial and lateral prefrontal and parietal cortices. Theoretical accounts of cognitive control highlight anterior cingulate cortex (ACC) as a central node in this network. However, a better understanding of the relative primacy and functional contributions of these areas to decision conflict requires insight into the neural dynamics of successive processing stages including conflict detection, response selection and execution. Moderate alcohol intoxication impairs cognitive control as it interferes with the ability to inhibit dominant, prepotent responses when they are no longer correct. To examine the effects of moderate intoxication on successive processing stages during cognitive control, spatio-temporal changes in total event-related theta power were measured during Stroop-induced conflict. Healthy social drinkers served as their own controls by participating in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg women) and placebo conditions in a counterbalanced design. Anatomically-constrained magnetoencephalography (aMEG) approach was applied to complex power spectra for theta (4-7 Hz) frequencies. The principal generator of event-related theta power to conflict was estimated to ACC, with contributions from fronto-parietal areas. The ACC was uniquely sensitive to conflict during both early conflict detection, and later response selection and execution stages. Alcohol attenuated theta power to conflict across successive processing stages, suggesting that alcohol-induced deficits in cognitive control may result from theta suppression in the executive network. Slower RTs were associated with attenuated theta power estimated to ACC, indicating that alcohol impairs motor preparation and execution subserved by the ACC. In addition to their relevance for the currently prevailing accounts of cognitive control, our results suggest that alcohol-induced impairment of top-down strategic processing underlies poor self-control and inability to refrain from drinking.
Dørum, Erlend S; Kaufmann, Tobias; Alnæs, Dag; Andreassen, Ole A; Richard, Geneviève; Kolskår, Knut K; Nordvik, Jan Egil; Westlye, Lars T
2017-03-01
Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task-modulation in edgewise FC was primarily observed between attention- and sensorimotor networks; with decreased negative correlations between attention- and default mode networks in older adults. These results demonstrate that the magnitude and configuration of age-related differences in brain functional connectivity are partly dependent on cognitive context and load, which emphasizes the importance of assessing brain connectivity differences across a range of cognitive contexts beyond the resting-state. Copyright © 2017 Elsevier Inc. All rights reserved.
Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao
2017-09-12
Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.
How neuroscience can inform the study of individual differences in cognitive abilities
McFarland, Dennis J.
2018-01-01
Theories of human mental abilities should be consistent with what is known in neuroscience. Currently tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such at perception, attention, decision and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control. PMID:28195556
Cognitive Control Network Contributions to Memory-Guided Visual Attention
Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.
2016-01-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253
Liang, Jing-Hong; Xu, Yong; Lin, Lu; Jia, Rui-Xia; Zhang, Hong-Bo; Hang, Lei
2018-05-01
The increasing prevalence of Alzheimer disease (AD) emphasizes the need for effective treatments. Both pharmacological therapies such as nutrition therapy (NT) and nonpharmacologic therapies including traditional treatment or personalized treatment (e.g., physical exercise, music therapy, computerized cognitive training) have been approved for the treatment of AD or mild cognitive impairment (MCI) in numerous areas. The aim of this study was to compare 4 types of interventions, physical exercise (PE), music therapy (MT), computerized cognitive training (CCT), and NT, in older adults with mild to moderate AD or MCI and identify the most effective intervention for their cognitive function. We used a system of search strategies to identify relevant studies and include randomized controlled trials (RCTs), placebo-controlled trials evaluating the efficacy and safety of 4 interventions in patients with AD or MCI. We updated the relevant studies which were published before March 2017 as a full-text article. Using Bayesian network meta-analysis (NMA), we ranked cognitive ability based objectively on Mini-Mental State Examination (MMSE), and assessed neuropsychiatric symptoms based on Neuropsychiatric Inventory (NPI). Pairwise and network meta-analyses were sequentially performed for efficacy and safety of intervention compared to control group through RCTs included. We included 17 RCTs. Fifteen trials (n = 1747) were pooled for cognition and no obvious heterogeneity was found (I = 21.7%, P = .212) in NMA, the mean difference (MD) of PE (MD = 2.1, confidence interval [CI]: 0.44-3.8) revealed that PE was significantly efficacious in the treatment group in terms of MMSE. Five trials (n = 660) assessed neuropsychiatric symptoms with an obvious heterogeneity (I = 61.6%, P = .034), the MD of CCT (MD = -7.7, CI: -14 to -2.4), revealing that CCT was significantly efficacious in NPI. As the first NMA comparing different interventions for AD and MCI, our study suggests that PE and CCT might have a significant improvement in cognition and neuropsychiatric symptoms respectively. Moreover, nonpharmacological therapies might be better than pharmacological therapies.
Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara
2017-06-01
Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Loneliness, depression and cognitive function in older U.S. adults.
Donovan, Nancy J; Wu, Qiong; Rentz, Dorene M; Sperling, Reisa A; Marshall, Gad A; Glymour, M Maria
2017-05-01
To examine reciprocal relations of loneliness and cognitive function in older adults. Data were analyzed from 8382 men and women, age 65 and older, participating in the US Health and Retirement Study from 1998 to 2010. Participants underwent biennial assessments of loneliness and depression (classified as no, low or high depression) determined by the Center for Epidemiologic Studies Depression scale (8-item version), cognition (a derived memory score based on a word list memory task and proxy-rated memory and global cognitive function), health status and social and demographic characteristics from 1998 to 2010. We used repeated measures analysis to examine the reciprocal relations of loneliness and cognitive function in separate models controlling sequentially and cumulatively for socio-demographic factors, social network, health conditions and depression. Loneliness at baseline predicted accelerated cognitive decline over 12 years independent of baseline socio-demographic factors, social network, health conditions and depression (β = -0.2, p = 0.002). After adjustment for depression interacting with time, both low and high depression categories were related to faster cognitive decline and the estimated effect of loneliness became marginally significant. Reciprocally, poorer cognition at baseline was associated with greater odds of loneliness over time in adjusted analyses (OR 1.3, 95% CI (1.1-1.5) p = 0.005), but not when controlling for baseline depression. Furthermore, cognition did not predict change in loneliness over time. Examining longitudinal data across a broad range of cognitive abilities, loneliness and depressive symptoms appear to be related risk factors for worsening cognition but low cognitive function does not lead to worsening loneliness over time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Langner, Robert; Cieslik, Edna C.; Rottschy, Claudia; Eickhoff, Simon B.
2016-01-01
Cognitive flexibility, a core aspect of executive functioning, is required for the speeded shifting between different tasks and sets. Using an interindividual differences approach, we examined whether cognitive flexibility, as assessed by the Delis–Kaplan card-sorting test, is associated with gray matter volume (GMV) and functional connectivity (FC) of regions of a core network of multiple cognitive demands as well as with different facets of trait impulsivity. The core multiple-demand network was derived from three large-scale neuroimaging meta-analyses and only included regions that showed consistent associations with sustained attention, working memory as well as inhibitory control. We tested to what extent self-reported impulsivity as well as GMV and resting-state FC in this core network predicted cognitive flexibility independently and incrementally. Our analyses revealed that card-sorting performance correlated positively with GMV of the right anterior insula, FC between bilateral anterior insula and midcingulate cortex/supplementary motor area as well as the impulsivity dimension “Premeditation.” Importantly, GMV, FC and impulsivity together accounted for more variance of card-sorting performance than every parameter alone. Our results therefore indicate that various factors contribute individually to cognitive flexibility, underlining the need to search across multiple modalities when aiming to unveil the mechanisms behind executive functioning. PMID:24878823
Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A
2014-05-01
Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. To test the hypothesis that the strength of coupling among 3 large-scale brain networks--salience, executive control, and default mode--will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. Twenty-four hours of abstinence vs smoking satiety. Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = -0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001). Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence.
Functional Connectivity in Brain Networks Underlying Cognitive Control in Chronic Cannabis Users
Harding, Ian H; Solowij, Nadia; Harrison, Ben J; Takagi, Michael; Lorenzetti, Valentina; Lubman, Dan I; Seal, Marc L; Pantelis, Christos; Yücel, Murat
2012-01-01
The long-term effect of regular cannabis use on brain function underlying cognitive control remains equivocal. Cognitive control abilities are thought to have a major role in everyday functioning, and their dysfunction has been implicated in the maintenance of maladaptive drug-taking patterns. In this study, the Multi-Source Interference Task was employed alongside functional magnetic resonance imaging and psychophysiological interaction methods to investigate functional interactions between brain regions underlying cognitive control. Current cannabis users with a history of greater than 10 years of daily or near-daily cannabis smoking (n=21) were compared with age, gender, and IQ-matched non-using controls (n=21). No differences in behavioral performance or magnitude of task-related brain activations were evident between the groups. However, greater connectivity between the prefrontal cortex and the occipitoparietal cortex was evident in cannabis users, as compared with controls, as cognitive control demands increased. The magnitude of this connectivity was positively associated with age of onset and lifetime exposure to cannabis. These findings suggest that brain regions responsible for coordinating behavioral control have an increased influence on the direction and switching of attention in cannabis users, and that these changes may have a compensatory role in mitigating cannabis-related impairments in cognitive control or perceptual processes. PMID:22534625
Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.
2015-01-01
Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631
Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.
Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe
2018-02-07
Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.
Grey-matter network disintegration as predictor of cognitive and motor function with aging.
Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold
2018-06-01
Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.
Language Networks as Models of Cognition: Understanding Cognition through Language
NASA Astrophysics Data System (ADS)
Beckage, Nicole M.; Colunga, Eliana
Language is inherently cognitive and distinctly human. Separating the object of language from the human mind that processes and creates language fails to capture the full language system. Linguistics traditionally has focused on the study of language as a static representation, removed from the human mind. Network analysis has traditionally been focused on the properties and structure that emerge from network representations. Both disciplines could gain from looking at language as a cognitive process. In contrast, psycholinguistic research has focused on the process of language without committing to a representation. However, by considering language networks as approximations of the cognitive system we can take the strength of each of these approaches to study human performance and cognition as related to language. This paper reviews research showcasing the contributions of network science to the study of language. Specifically, we focus on the interplay of cognition and language as captured by a network representation. To this end, we review different types of language network representations before considering the influence of global level network features. We continue by considering human performance in relation to network structure and conclude with theoretical network models that offer potential and testable explanations of cognitive and linguistic phenomena.
Soloff, Paul H; Abraham, Kristy; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A
2017-05-01
Emotion dysregulation is a core characteristic of patients with Borderline Personality Disorder (BPD), and is often attributed to an imbalance in fronto-limbic network function. Hyperarousal of amygdala, especially in response to negative affective stimuli, results in affective interference with cognitive processing of executive functions. Clinical consequences include the impulsive-aggression, suicidal and self-injurious behaviors which characterize BPD. Dysfunctional interactions between amygdala and its network targets have not been well characterized during cognitive task performance. Using psychophysiological interaction analysis (PPI), we mapped network profiles of amygdala interaction with key regulatory regions during a Go No-Go task, modified to use negative, positive and neutral Ekman faces as targets. Fifty-six female subjects, 31 BPD and 25 healthy controls (HC), completed the affectively valenced Go No-Go task during fMRI scanning. In the negative affective condition, the amygdala exerted greater modulation of its targets in BPD compared to HC subjects in Rt. OFC, Rt. dACC, Rt. Parietal cortex, Rt. Basal Ganglia, and Rt. dlPFC. Across the spectrum of affective contrasts, hypermodulation in BPD subjects observed the following ordering: Negative > Neutral > Positive contrast. The amygdala seed exerted modulatory effects on specific target regions important in processing response inhibition and motor impulsiveness. The vulnerability of BPD subjects to affective interference with impulse control may be due to specific network dysfunction related to amygdala hyper-arousal and its effects on prefrontal regulatory regions such as the OFC and dACC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hsu, Nina S; Jaeggi, Susanne M; Novick, Jared M
2017-03-01
Regions within the left inferior frontal gyrus (LIFG) have simultaneously been implicated in syntactic processing and cognitive control. Accounts attempting to unify LIFG's function hypothesize that, during comprehension, cognitive control resolves conflict between incompatible representations of sentence meaning. Some studies demonstrate co-localized activity within LIFG for syntactic and non-syntactic conflict resolution, suggesting domain-generality, but others show non-overlapping activity, suggesting domain-specific cognitive control and/or regions that respond uniquely to syntax. We propose however that examining exclusive activation sites for certain contrasts creates a false dichotomy: both domain-general and domain-specific neural machinery must coordinate to facilitate conflict resolution across domains. Here, subjects completed four diverse tasks involving conflict -one syntactic, three non-syntactic- while undergoing fMRI. Though LIFG consistently activated within individuals during conflict processing, functional connectivity analyses revealed task-specific coordination with distinct brain networks. Thus, LIFG may function as a conflict-resolution "hub" that cooperates with specialized neural systems according to information content. Copyright © 2016 Elsevier Inc. All rights reserved.
Peeters, Sanne C. T.; van de Ven, Vincent; Gronenschild, Ed H. B. M; Patel, Ameera X.; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld
2015-01-01
Background Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. Results There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Discussion Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network “connectivity at rest” intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure. PMID:25790002
When the Brain Takes a Break: A Model-Based Analysis of Mind Wandering
Boekel, Wouter; Tucker, Adrienne M.; Turner, Brandon M.; Heathcote, Andrew; Forstmann, Birte U.
2014-01-01
Mind wandering is an ubiquitous phenomenon in everyday life. In the cognitive neurosciences, mind wandering has been associated with several distinct neural processes, most notably increased activity in the default mode network (DMN), suppressed activity within the anti-correlated (task-positive) network (ACN), and changes in neuromodulation. By using an integrative multimodal approach combining machine-learning techniques with modeling of latent cognitive processes, we show that mind wandering in humans is characterized by inefficiencies in executive control (task-monitoring) processes. This failure is predicted by a single-trial signature of (co)activations in the DMN, ACN, and neuromodulation, and accompanied by a decreased rate of evidence accumulation and response thresholds in the cognitive model. PMID:25471568
Changes in resting-state functionally connected parietofrontal networks after videogame practice.
Martínez, Kenia; Solana, Ana Beatriz; Burgaleta, Miguel; Hernández-Tamames, Juan Antonio; Alvarez-Linera, Juan; Román, Francisco J; Alfayate, Eva; Privado, Jesús; Escorial, Sergio; Quiroga, María A; Karama, Sherif; Bellec, Pierre; Colom, Roberto
2013-12-01
Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test-retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test-retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions. Copyright © 2012 Wiley Periodicals, Inc.
Brain Connectivity and Visual Attention
Parks, Emily L.
2013-01-01
Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177
A pilot study of cognitive insight and structural covariance in first-episode psychosis.
Kuang, Corin; Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; MacMaster, Frank P; Bray, Signe; Deighton, Stephanie; Addington, Jean
2017-01-01
Cognitive insight is described as a balance between one's self-reflectiveness (recognition and correction of dysfunctional reasoning), and self-certainty (overconfidence). Neuroimaging studies have linked the ventrolateral prefrontal cortex (VLPFC) to cognitive insight in people with psychosis. However, the relationship between cognitive insight and structural connectivity between the VLPFC and other brain areas is unknown. Here, we investigated the modulation of cognitive insight on structural covariance networks involving the VLPFC in a first-episode psychosis sample. Fifteen patients with a first-episode psychosis provided magnetic resonance (MR) scans and completed the Beck Cognitive Insight Scale (BCIS). MR scans were also available for 15 historical controls. Seed-based analysis of structural covariance was conducted using the Mapping Anatomical Correlations Across the Cerebral Cortex (MACACC) methodology, whereby Pearson correlation coefficients were extracted between seed regions in left and right VLPFC and cortical thickness across the brain. Structural covariance maps between groups were compared at each vertex. In first-episode subjects, we evaluated the modulation of BCIS scores on cortical covariance between VLPFC and every other vertex. Findings showed no significant group difference between first-episode psychosis subjects and controls in thickness covariance seeded from left or right VLPFC. However, in first-episode psychosis subjects, a positive association with self-certainty was found in networks seeded from both left and right VLPFC with thickness in medial frontal cortex and right pars triangularis. No significant associations were found for self-reflectiveness. These results suggest that self-certainty, but not self-reflectiveness, positively modulated cortical covariance in a frontal network in patients with a first-episode psychosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults
Baniqued, Pauline L.; Gallen, Courtney L.; Voss, Michelle W.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Duffy, Kristin; Fanning, Jason; Ehlers, Diane K.; Salerno, Elizabeth A.; Aguiñaga, Susan; McAuley, Edward; Kramer, Arthur F.; D'Esposito, Mark
2018-01-01
Recent work suggests that the brain can be conceptualized as a network comprised of groups of sub-networks or modules. The extent of segregation between modules can be quantified with a modularity metric, where networks with high modularity have dense connections within modules and sparser connections between modules. Previous work has shown that higher modularity predicts greater improvements after cognitive training in patients with traumatic brain injury and in healthy older and young adults. It is not known, however, whether modularity can also predict cognitive gains after a physical exercise intervention. Here, we quantified modularity in older adults (N = 128, mean age = 64.74) who underwent one of the following interventions for 6 months (NCT01472744 on ClinicalTrials.gov): (1) aerobic exercise in the form of brisk walking (Walk), (2) aerobic exercise in the form of brisk walking plus nutritional supplement (Walk+), (3) stretching, strengthening and stability (SSS), or (4) dance instruction. After the intervention, the Walk, Walk+ and SSS groups showed gains in cardiorespiratory fitness (CRF), with larger effects in both walking groups compared to the SSS and Dance groups. The Walk, Walk+ and SSS groups also improved in executive function (EF) as measured by reasoning, working memory, and task-switching tests. In the Walk, Walk+, and SSS groups that improved in EF, higher baseline modularity was positively related to EF gains, even after controlling for age, in-scanner motion and baseline EF. No relationship between modularity and EF gains was observed in the Dance group, which did not show training-related gains in CRF or EF control. These results are consistent with previous studies demonstrating that individuals with a more modular brain network organization are more responsive to cognitive training. These findings suggest that the predictive power of modularity may be generalizable across interventions aimed to enhance aspects of cognition and that, especially in low-performing individuals, global network properties can capture individual differences in neuroplasticity. PMID:29354050
Human Behavior Modeling in Network Science
2010-03-01
in Network Science bringing three distinct research areas together, communication networks, information networks, and social /cognitive networks. The...researchers. A critical part of the social /cognitive network effort is the modeling of human behavior. The modeling efforts range from organizational...behavior to social cognitive trust to explore and refine the theoretical and applied network relationships between and among the human
Kesler, Shelli R; Adams, Marjorie; Packer, Melissa; Rao, Vikram; Henneghan, Ashley M; Blayney, Douglas W; Palesh, Oxana
2017-03-01
Several previous studies have demonstrated that cancer chemotherapy is associated with brain injury and cognitive dysfunction. However, evidence suggests that cancer pathogenesis alone may play a role, even in non-CNS cancers. Using a multimodal neuroimaging approach, we measured structural and functional connectome topology as well as functional network dynamics in newly diagnosed patients with breast cancer. Our study involved a novel, pretreatment assessment that occurred prior to the initiation of any cancer therapies, including surgery with anesthesia. We enrolled 74 patients with breast cancer age 29-65 and 50 frequency-matched healthy female controls who underwent anatomic and resting-state functional MRI as well as cognitive testing. Compared to controls, patients with breast cancer demonstrated significantly lower functional network dynamics ( p = .046) and cognitive functioning ( p < .02, corrected). The breast cancer group also showed subtle alterations in structural local clustering and functional local clustering ( p < .05, uncorrected) as well as significantly increased correlation between structural global clustering and functional global clustering compared to controls ( p = .03). This hyper-correlation between structural and functional topologies was significantly associated with cognitive dysfunction ( p = .005). Our findings could not be accounted for by psychological distress and suggest that non-CNS cancer may directly and/or indirectly affect the brain via mechanisms such as tumor-induced neurogenesis, inflammation, and/or vascular changes, for example. Our results also have broader implications concerning the importance of the balance between structural and functional connectome properties as a potential biomarker of general neurologic deficit.
Integration and segregation of large-scale brain networks during short-term task automatization
Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes
2016-01-01
The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095
Parallel Distributed Processing at 25: further explorations in the microstructure of cognition.
Rogers, Timothy T; McClelland, James L
2014-08-01
This paper introduces a special issue of Cognitive Science initiated on the 25th anniversary of the publication of Parallel Distributed Processing (PDP), a two-volume work that introduced the use of neural network models as vehicles for understanding cognition. The collection surveys the core commitments of the PDP framework, the key issues the framework has addressed, and the debates the framework has spawned, and presents viewpoints on the current status of these issues. The articles focus on both historical roots and contemporary developments in learning, optimality theory, perception, memory, language, conceptual knowledge, cognitive control, and consciousness. Here we consider the approach more generally, reviewing the original motivations, the resulting framework, and the central tenets of the underlying theory. We then evaluate the impact of PDP both on the field at large and within specific subdomains of cognitive science and consider the current role of PDP models within the broader landscape of contemporary theoretical frameworks in cognitive science. Looking to the future, we consider the implications for cognitive science of the recent success of machine learning systems called "deep networks"-systems that build on key ideas presented in the PDP volumes. Copyright © 2014 Cognitive Science Society, Inc.
Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction.
Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker
2016-01-01
Whether cognitive load-and other aspects of task difficulty-increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information-which decreases distractibility-as a side effect of the increased activity in a focused-attention network.
Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction
Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker
2016-01-01
Whether cognitive load—and other aspects of task difficulty—increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information—which decreases distractibility—as a side effect of the increased activity in a focused-attention network. PMID:27242485
Control-related systems in the human brain
Power, Jonathan D; Petersen, Steven E
2013-01-01
A fundamental question in cognitive neuroscience is how the human brain self-organizes to perform tasks. Multiple accounts of this self-organization are currently influential and in this article we survey one of these accounts. We begin by introducing a psychological model of task control and several neuroimaging signals it predicts. We then discuss where such signals are found across tasks with emphasis on brain regions where multiple control signals are present. We then present results derived from spontaneous task-free functional connectivity between control-related regions that dovetail with distinctions made by control signals present in these regions, leading to a proposal that there are at least two task control systems in the brain. This prompts consideration of whether and how such control systems distinguish themselves from other brain regions in a whole-brain context. We present evidence from whole-brain networks that such distinctions do occur and that control systems comprise some of the basic system-level organizational elements of the human brain. We close with observations from the whole-brain networks that may suggest parsimony between multiple accounts of cognitive control. PMID:23347645
ERIC Educational Resources Information Center
Arnsten, Amy F. T.; Rubia, Katya
2012-01-01
Objective: This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Method: Studies of animals,…
ERIC Educational Resources Information Center
Edlin, James M.; Lyle, Keith B.
2013-01-01
The simple act of repeatedly looking left and right can enhance subsequent cognition, including divergent thinking, detection of matching letters from visual arrays, and memory retrieval. One hypothesis is that saccade execution enhances subsequent cognition by altering attentional control. To test this hypothesis, we compared performance…
Zurawska Vel Grajewska, Blandyna; Sim, Eun-Jin; Hoenig, Klaus; Herrnberger, Bärbel; Kiefer, Markus
2011-11-03
Cognitive control can be adapted flexibly according to the conflict level in a given situation. In the Eriksen flanker task, interference evoked by flankers is larger in conditions with a higher, rather than a lower proportion of compatible trials. Such compatibility ratio effects also occur for stimuli presented at two spatial locations suggesting that different cognitive control settings can be simultaneously maintained. However, the conditions and the neural correlates of this flexible adaptation of cognitive control are only poorly understood. In the present study, we further elucidated the mechanisms underlying the simultaneous maintenance of two cognitive control settings. In behavioral experiments, stimuli were presented centrally above and below fixation and hence processed by both hemispheres or lateralized to stimulate hemispheres differentially. The different compatibility ratio at two stimulus locations had a differential influence on the flanker effect in both experiments. In an fMRI experiment, blocks with an identical compatibility ratio at two central spatial locations elicited stronger activity in a network of prefrontal and parietal brain areas, which are known to be involved in conflict resolution and cognitive control, as compared with blocks with a different compatibility ratio at the same spatial locations. This demonstrates that the simultaneous maintenance of two conflicting control settings vs. one single setting does not recruit additional neural circuits suggesting the involvement of one single cognitive control system. Instead a crosstalk between multiple control settings renders adaptation of cognitive control more efficient when only one uniform rather than two different control settings has to be simultaneously maintained. Copyright © 2011 Elsevier B.V. All rights reserved.
He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu
2016-11-01
Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Frantzidis, Christos A; Vivas, Ana B; Tsolaki, Anthoula; Klados, Manousos A; Tsolaki, Magda; Bamidis, Panagiotis D
2014-01-01
Previous neuroscientific findings have linked Alzheimer's Disease (AD) with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI) remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG) data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT), and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N = 500, 600, 700, 800 edges) across all participants and groups (fixed density values). All groups exhibited a small-world (SW) brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant's generic cognitive status. The deterioration of the network's organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.
NASA Astrophysics Data System (ADS)
Tang, Evelyn; Giusti, Chad; Baum, Graham; Gu, Shi; Pollock, Eli; Kahn, Ari; Roalf, David; Moore, Tyler; Ruparel, Kosha; Gur, Ruben; Gur, Raquel; Satterthwaite, Theodore; Bassett, Danielle
Motivated by a recent demonstration that the network architecture of white matter supports emerging control of diverse neural dynamics as children mature into adults, we seek to investigate structural mechanisms that support these changes. Beginning from a network representation of diffusion imaging data, we simulate network evolution with a set of simple growth rules built on principles of network control. Notably, the optimal evolutionary trajectory displays a striking correspondence to the progression of child to adult brain, suggesting that network control is a driver of development. More generally, and in comparison to the complete set of available models, we demonstrate that all brain networks from child to adult are structured in a manner highly optimized for the control of diverse neural dynamics. Within this near-optimality, we observe differences in the predicted control mechanisms of the child and adult brains, suggesting that the white matter architecture in children has a greater potential to increasingly support brain state transitions, potentially underlying cognitive switching.
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-01
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-24
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.
Resting State Synchrony in Short-Term versus Long-Term Abstinent Alcoholics
Camchong, Jazmin; Stenger, Victor Andrew; Fein, George
2012-01-01
BACKGROUND We previously reported that when compared to controls, long-term abstinent alcoholics (LTAA) have increased resting state synchrony (RSS) of the inhibitory control network and reduced synchrony of the appetitive drive network, and hypothesized that these levels of synchrony are adaptive, and support the behavioral changes required to maintain abstinence. In the current study, we investigate whether these RSS patterns can be identified in short-term abstinent alcoholics. METHODS Resting state functional magnetic resonance imaging data were collected from 27 short-term abstinent alcoholics (STAA), 23 LTAA and 23 non-substance abusing controls (NSAC). We examined baseline RSS using seed-based measures. RESULTS We found ordered RSS effects from NSAC to STAA and then to LTAA within both the appetitive drive and executive control networks: increasing RSS of the executive control network, and decreasing RSS of the reward processing network. Finally, we found significant correlations between strength of RSS in these networks and (a) cognitive flexibility and (b) current antisocial behavior. DISCUSSION Findings are consistent with an adaptive progression of RSS from short- to long-term abstinence so that, compared to normal controls, the synchrony (a) within the reward network progressively decreases and (b) within the executive control network progressively increases. PMID:23421812
Li, Mengting; Dong, Xinqi
2018-01-01
Social network has been identified as a protective factor for cognitive impairment. However, the relationship between social network and global and subdomains of cognitive function remains unclear. This study aims to provide an analytic framework to examine quantity, composition, and quality of social network and investigate the association between social network, global cognition, and cognitive domains among US Chinese older adults. Data were derived from the Population Study of Chinese Elderly (PINE), a community-engaged, population-based epidemiological study of US Chinese older adults aged 60 and above in the greater Chicago area, with a sample size of 3,157. Social network was assessed by network size, volume of contact, proportion kin, proportion female, proportion co-resident, and emotional closeness. Cognitive function was evaluated by global cognition, episodic memory, executive function, working memory, and Chinese Mini-Mental State Examination (C-MMSE). Linear regression and quantile regression were performed. Every 1-point increase in network size (b = 0.048, p < 0.001) and volume of contact (b = 0.049, p < 0.01) and every 1-point decrease in proportion kin (b = -0.240, p < 0.01) and proportion co-resident (b = -0.099, p < 0.05) were associated with higher level of global cognition. Similar trends were observed in specific cognitive domains, including episodic memory, working memory, executive function, and C-MMSE. However, emotional closeness was only significantly associated with C-MMSE (b = 0.076, p < 0.01). Social network has differential effects on female versus male older adults. This study found that social network dimensions have different relationships with global and domains of cognitive function. Quantitative and structural aspects of social network were essential to maintain an optimal level of cognitive function. Qualitative aspects of social network were protective factors for C-MMSE. It is necessary for public health practitioners to consider interventions that enhance different aspects of older adults' social network. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Abdulghafoor, O. B.; Shaat, M. M. R.; Ismail, M.; Nordin, R.; Yuwono, T.; Alwahedy, O. N. A.
2017-05-01
In this paper, the problem of resource allocation in OFDM-based downlink cognitive radio (CR) networks has been proposed. The purpose of this research is to decrease the computational complexity of the resource allocation algorithm for downlink CR network while concerning the interference constraint of primary network. The objective has been secured by adopting pricing scheme to develop power allocation algorithm with the following concerns: (i) reducing the complexity of the proposed algorithm and (ii) providing firm power control to the interference introduced to primary users (PUs). The performance of the proposed algorithm is tested for OFDM- CRNs. The simulation results show that the performance of the proposed algorithm approached the performance of the optimal algorithm at a lower computational complexity, i.e., O(NlogN), which makes the proposed algorithm suitable for more practical applications.
Franzmeier, Nicolai; Buerger, Katharina; Teipel, Stefan; Stern, Yaakov; Dichgans, Martin; Ewers, Michael
2017-02-01
Cognitive reserve (CR) shows protective effects on cognitive function in older adults. Here, we focused on the effects of CR at the functional network level. We assessed in patients with amnestic mild cognitive impairment (aMCI) whether higher CR moderates the association between low internetwork cross-talk on memory performance. In 2 independent aMCI samples (n = 76 and 93) and healthy controls (HC, n = 36), CR was assessed via years of education and intelligence (IQ). We focused on the anti-correlation between the dorsal attention network (DAN) and an anterior and posterior default mode network (DMN), assessed via sliding time window analysis of resting-state functional magnetic resonance imaging (fMRI). The DMN-DAN anti-correlation was numerically but not significantly lower in aMCI compared to HC. However, in aMCI, lower anterior DMN-DAN anti-correlation was associated with lower memory performance. This association was moderated by CR proxies, where the association between the internetwork anti-correlation and memory performance was alleviated at higher levels of education or IQ. In conclusion, lower DAN-DMN cross-talk is associated with lower memory in aMCI, where such effects are buffered by higher CR. Copyright © 2016 Elsevier Inc. All rights reserved.
Gothe, Neha P; Kramer, Arthur F; McAuley, Edward
2017-01-01
Age-related cognitive decline is well documented across various aspects of cognitive function, including attention and processing speed, and lifestyle behaviors such as physical activity play an important role in preventing cognitive decline and maintaining or even improving cognitive function. The purpose of this study was to evaluate the effects of an 8-week Hatha yoga intervention on attention and processing speed among older adults. Participants (n = 118; mean age, 62 ± 5.59) were randomly assigned to an 8-week Hatha yoga group or a stretching control group and completed cognitive assessments-Attention Network Task, Trail Making Test parts A and B, and Pattern Comparison Test-at baseline and after the 8-week intervention. Analyses of covariance revealed significantly faster reaction times for the yoga group on the Attention Network Task's neutral, congruent, and incongruent conditions (p ≤ 0.04). The yoga intervention also improved participants' visuospatial and perceptual processing on the Trail Making Test part B (p = 0.002) and pattern comparison (p < 0.001) tests. These results suggest that yoga practice that includes postures, breathing, and meditative exercises lead to improved attentional and information processing abilities. Although the underlying mechanisms remain largely speculative, more systematic trials are needed to explore the extent of cognitive benefits and their neurobiological mechanisms.
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
Engineering neural systems for high-level problem solving.
Sylvester, Jared; Reggia, James
2016-07-01
There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving tasks that in people require higher-level cognitive functions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goodwin, Shikha J.; Blackman, Rachael K.; Sakellaridi, Sofia
2012-01-01
Human cognition is characterized by flexibility, the ability to select not only which action but which cognitive process to engage to best achieve the current behavioral objective. The ability to tailor information processing in the brain to rules, goals, or context is typically referred to as executive control, and although there is consensus that prefrontal cortex is importantly involved, at present we have an incomplete understanding of how computational flexibility is implemented at the level of prefrontal neurons and networks. To better understand the neural mechanisms of computational flexibility, we simultaneously recorded the electrical activity of groups of single neurons within prefrontal and posterior parietal cortex of monkeys performing a task that required executive control of spatial cognitive processing. In this task, monkeys applied different spatial categorization rules to reassign the same set of visual stimuli to alternative categories on a trial-by-trial basis. We found that single neurons were activated to represent spatially defined categories in a manner that was rule dependent, providing a physiological signature of a cognitive process that was implemented under executive control. We found also that neural signals coding rule-dependent categories were distributed between the parietal and prefrontal cortex—however, not equally. Rule-dependent category signals were stronger, more powerfully modulated by the rule, and earlier to emerge in prefrontal cortex relative to parietal cortex. This suggests that prefrontal cortex may initiate the switch in neural representation at a network level that is important for computational flexibility. PMID:22399773
Neural networks supporting autobiographical memory retrieval in post-traumatic stress disorder
Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2013-01-01
Post-traumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contribution of large-scale neural networks supporting cognition in PTSD is unknown. In the current functional MRI (fMRI) study we employ independent component analysis to examine the influence the engagement of neural networks during the recall of personal memories in PTSD (15 participants) compared to non-trauma exposed, healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to controls during AM recall, including default network subsystems and control networks, but there were group differences in the spatial and temporal characteristics of these networks. First, there were spatial differences in the contribution of the anterior and posterior midline across the networks, and with the amygdala in particular for the medial temporal subsystem of the default network. Second, there were temporal differences in the relationship of the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that spatial and temporal characteristics of the default and control networks potentially differ in PTSD versus healthy controls, and contribute to altered recall of personal memory. PMID:23483523
Signal or noise: brain network interactions underlying the experience and training of mindfulness.
Mooneyham, Benjamin W; Mrazek, Michael D; Mrazek, Alissa J; Schooler, Jonathan W
2016-04-01
A broad set of brain regions has been associated with the experience and training of mindfulness. Many of these regions lie within key intrinsic brain networks, including the executive control, salience, and default networks. In this paper, we review the existing literature on the cognitive neuroscience of mindfulness through the lens of network science. We describe the characteristics of the intrinsic brain networks implicated in mindfulness and summarize the relevant findings pertaining to changes in functional connectivity (FC) within and between these networks. Convergence across these findings suggests that mindfulness may be associated with increased FC between two regions within the default network: the posterior cingulate cortex and the ventromedial prefrontal cortex. Additionally, extensive meditation experience may be associated with increased FC between the insula and the dorsolateral prefrontal cortex. However, little consensus has emerged within the existing literature owing to the diversity of operational definitions of mindfulness, neuroimaging methods, and network characterizations. We describe several challenges to develop a coherent cognitive neuroscience of mindfulness and to provide detailed recommendations for future research. © 2016 New York Academy of Sciences.
Application of an Adaptive Clustering Network to Flight Control of a Fighter Aircraft. Phase 1
1991-12-19
whether the underlying neurodynamics are appropriate to the dynamics of the controlled element as well as the broad objectives of the control process...Dept. of Brain & Cognitive Sciences ........................ 1 Massachusetts Institute of Technology Cambridge, MA 02139 Attn: Dr. M. Jordan Dept. of
Kim, Hyeon Jin; Lee, Jung Hwa; Park, Chang-hyun; Hong, Hye-Sun; Choi, Yun Seo; Yoo, Jeong Hyun
2018-01-01
Background and Purpose Benign childhood epilepsy with centrotemporal spikes (BECTS) does not always have a benign cognitive outcome. We investigated the relationship between cognitive performance and altered functional connectivity (FC) in the resting-state brain networks of BECTS patients. Methods We studied 42 subjects, comprising 19 BECTS patients and 23 healthy controls. Cognitive performance was assessed using the Korean version of the Wechsler Intelligence Scale for Children-III, in addition to verbal and visuospatial memory tests and executive function tests. Resting-state functional magnetic resonance imaging was acquired in addition to high-resolution structural data. We selected Rolandic and language-related areas as regions of interest (ROIs) and analyzed the seed-based FC to voxels throughout the brain. We evaluated the correlations between the neuropsychological test scores and seed-based FC values using the same ROIs. Results The verbal intelligence quotient (VIQ) and full-scale intelligence quotient (FSIQ) were lower in BECTS patients than in healthy controls (p<0.001). The prevalence of subjects with a higher performance IQ than VIQ was significantly higher in BECTS patients than in healthy controls (73.7% vs. 26.1%, respectively; p=0.002). Both the Rolandic and language-related ROIs exhibited more enhanced FC to voxels in the left inferior temporal gyrus in BECTS patients than in healthy controls. A particularly interestingly finding was that the enhanced FC was correlated with lower cognitive performance as measured by the VIQ and the FSIQ in both patients and control subjects. Conclusions Our findings suggest that the FC alterations in resting-state brain networks related to the seizure onset zone and language processing areas could be related to adaptive plasticity for coping with cognitive dysfunction. PMID:29629540
An fMRI study of multimodal selective attention in schizophrenia
Mayer, Andrew R.; Hanlon, Faith M.; Teshiba, Terri M.; Klimaj, Stefan D.; Ling, Josef M.; Dodd, Andrew B.; Calhoun, Vince D.; Bustillo, Juan R.; Toulouse, Trent
2015-01-01
Background Studies have produced conflicting evidence regarding whether cognitive control deficits in patients with schizophrenia result from dysfunction within the cognitive control network (CCN; top-down) and/or unisensory cortex (bottom-up). Aims To investigate CCN and sensory cortex involvement during multisensory cognitive control in patients with schizophrenia. Method Patients with schizophrenia and healthy controls underwent functional magnetic resonance imaging while performing a multisensory Stroop task involving auditory and visual distracters. Results Patients with schizophrenia exhibited an overall pattern of response slowing, and these behavioural deficits were associated with a pattern of patient hyperactivation within auditory, sensorimotor and posterior parietal cortex. In contrast, there were no group differences in functional activation within prefrontal nodes of the CCN, with small effect sizes observed (incongruent–congruent trials). Patients with schizophrenia also failed to upregulate auditory cortex with concomitant increased attentional demands. Conclusions Results suggest a prominent role for dysfunction within auditory, sensorimotor and parietal areas relative to prefrontal CCN nodes during multisensory cognitive control. PMID:26382953
Whitfield-Gabrieli, Susan; Fischer, Adina S; Henricks, Angela M; Khokhar, Jibran Y; Roth, Robert M; Brunette, Mary F; Green, Alan I
2018-04-01
Nearly half of patients with schizophrenia (SCZ) have co-occurring cannabis use disorder (CUD), which has been associated with decreased treatment efficacy, increased risk of psychotic relapse, and poor global functioning. While reports on the effects of cannabis on cognitive performance in patients with SCZ have been mixed, study of brain networks related to executive function may clarify the relationship between cannabis use and cognition in these dual-diagnosis patients. In the present pilot study, patients with SCZ and CUD (n=12) and healthy controls (n=12) completed two functional magnetic resonance imaging (fMRI) resting scans. Prior to the second scan, patients smoked a 3.6% tetrahydrocannabinol (THC) cannabis cigarette or ingested a 15mg delta-9-tetrahydrocannabinol (THC) pill. We used resting-state functional connectivity to examine the default mode network (DMN) during both scans, as connectivity/activity within this network is negatively correlated with connectivity of the network involved in executive control and shows reduced activity during task performance in normal individuals. At baseline, relative to controls, patients exhibited DMN hyperconnectivity that correlated with positive symptom severity, and reduced anticorrelation between the DMN and the executive control network (ECN). Cannabinoid administration reduced DMN hyperconnectivity and increased DMN-ECN anticorrelation. Moreover, the magnitude of anticorrelation in the controls, and in the patients after cannabinoid administration, positively correlated with WM performance. The finding that DMN brain connectivity is plastic may have implications for future pharmacotherapeutic development, as treatment efficacy could be assessed through the ability of therapies to normalize underlying circuit-level dysfunction. Copyright © 2017. Published by Elsevier B.V.
Zhuo, Fan; Duan, Hucai
2017-01-01
The data sequence of spectrum sensing results injected from dedicated spectrum sensor nodes (SSNs) and the data traffic from upstream secondary users (SUs) lead to unpredictable data loads in a sensor network-aided cognitive radio ad hoc network (SN-CRN). As a result, network congestion may occur at a SU acting as fusion center when the offered data load exceeds its available capacity, which degrades network performance. In this paper, we present an effective approach to mitigate congestion of bottlenecked SUs via a proposed distributed power control framework for SSNs over a rectangular grid based SN-CRN, aiming to balance resource load and avoid excessive congestion. To achieve this goal, a distributed power control framework for SSNs from interior tier (IT) and middle tier (MT) is proposed to achieve the tradeoff between channel capacity and energy consumption. In particular, we firstly devise two pricing factors by considering stability of local spectrum sensing and spectrum sensing quality for SSNs. By the aid of pricing factors, the utility function of this power control problem is formulated by jointly taking into account the revenue of power reduction and the cost of energy consumption for IT or MT SSN. By bearing in mind the utility function maximization and linear differential equation constraint of energy consumption, we further formulate the power control problem as a differential game model under a cooperation or noncooperation scenario, and rigorously obtain the optimal solutions to this game model by employing dynamic programming. Then the congestion mitigation for bottlenecked SUs is derived by alleviating the buffer load over their internal buffers. Simulation results are presented to show the effectiveness of the proposed approach under the rectangular grid based SN-CRN scenario. PMID:28914803
Kumar, Mukesh; Modi, Shilpi; Rana, Poonam; Kumar, Pawan; Kanwar, Ratnesh; Sekhri, Tarun; D'souza, Maria; Khushu, Subash
2018-03-05
Subclinical hypothyroidism (SCH) is characterized by mild elevation of thyroid stimulating hormone (TSH) (range 5-10 μIU/ml) and normal free triiodothyronine (FT3) and free thyroxine (FT4). The cognitive function impairment is well known in thyroid disorders such as hypothyroidism and hyperthyroidism, but little is known about deficits in brain functions in SCH subjects. Also, whether hormone-replacement treatment is necessary or not in SCH subjects is still debatable. In order to have an insight into the cognition of SCH subjects, intrinsic and extrinsic functional connectivity (FC) of the resting state networks (RSNs) was studied. For resting state data analysis we used an unbiased, data-driven approach based on Independent Component Analysis (ICA) and dual-regression that can emphasize widespread changes in FC without restricting to a set of predefined seeds. 28 SCH subjects and 28 matched healthy controls (HC) participated in the study. RSN analysis showed significantly decreased intrinsic FC in somato-motor network (SMN) and right fronto-parietal attention network (RAN) and increased intrinsic FC in default mode network (DMN) in SCH subjects as compared to control subjects. The reduced intrinsic FC in the SMN and RAN suggests neuro-cognitive alterations in SCH subjects in the corresponding functions which were also evident from the deficit in the neuropsychological performance of the SCH subjects on behavioural tests such as digit span, delayed recall, visual retention, recognition, Bender Gestalt and Mini-Mental State Examination (MMSE). We also found a significant reduction in extrinsic network FC between DMN and RAN; SMN and posterior default mode network (PDMN); and increased extrinsic FC between SMN and anterior default mode network (ADMN) in SCH subjects as compared to controls. An altered extrinsic FC in SCH suggests functional reorganization in response to neurological disruption. The partial correlation analysis between intrinsic and extrinsic RSNs FC and neuropsychological performances as well as clinical indices give interesting insights into brain-behavior relationship in SCH subjects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Frontal Theta Dynamics during Response Conflict in Long-Term Mindfulness Meditators
Jo, Han-Gue; Malinowski, Peter; Schmidt, Stefan
2017-01-01
Mindfulness meditators often show greater efficiency in resolving response conflicts than non-meditators. However, the neural mechanisms underlying the improved behavioral efficiency are unclear. Here, we investigated frontal theta dynamics—a neural mechanism involved in cognitive control processes—in long-term mindfulness meditators. The dynamics of EEG theta oscillations (4–8 Hz) recorded over the medial frontal cortex (MFC) were examined in terms of their power (MFC theta power) and their functional connectivity with other brain areas (the MFC-centered theta network). Using a flanker-type paradigm, EEG data were obtained from 22 long-term mindfulness meditators and compared to those from 23 matched controls without meditation experience. Meditators showed more efficient cognitive control after conflicts, evidenced by fewer error responses irrespective of response timing. Furthermore, meditators exhibited enhanced conflict modulations of the MFC-centered theta network shortly before the response, in particular for the functional connection between the MFC and the motor cortex. In contrast, MFC theta power was comparable between groups. These results suggest that the higher behavioral efficiency after conflicts in mindfulness meditators could be a function of increased engagement to control the motor system in association with the MFC-centered theta network. PMID:28638334
Lehert, Philippe; Villaseca, Paulina; Hogervorst, Eef; Maki, Pauline M.; Henderson, Victor W.
2016-01-01
A number of health and lifestyle factors are thought to contribute to cognitive decline associated with age but cannot be easily modified by the individual patient. We identified 12 individually-modifiable interventions that can be implemented during midlife or later with the potential to ameliorate cognitive aging. For 10 of these, we used PubMed databases for a systematic review of long-duration (at least six months), randomized controlled trials in midlife and older adults without dementia or mild cognitive impairment with objective measures of neuropsychological performance. Using network meta-analysis, we performed a quantitative synthesis for global cognition (primary outcome) and episodic memory (secondary outcome). Of 1038 publications identified by our search strategy, 24 eligible trials were included in the network meta-analysis. Results suggested that the Mediterranean diet supplemented by olive oil and tai chi exercise may improve global cognition, and the Mediterranean diet plus olive oil and soy isoflavone supplements may improve memory. Effect sizes were no more than small (standardized mean differences 0.11 to 0.22). Cognitive training may have cognitive benefit as well. Most individually modifiable risk factors have not yet been adequately studied. We conclude that some interventions that can be self-initiated by healthy midlife and older adults may ameliorate cognitive aging. PMID:26361790
Lehert, P; Villaseca, P; Hogervorst, E; Maki, P M; Henderson, V W
2015-10-01
A number of health and lifestyle factors are thought to contribute to cognitive decline associated with age but cannot be easily modified by the individual patient. We identified 12 individually modifiable interventions that can be implemented during midlife or later with the potential to ameliorate cognitive aging. For ten of these, we used PubMed databases for a systematic review of long-duration (at least 6 months), randomized, controlled trials in midlife and older adults without dementia or mild cognitive impairment with objective measures of neuropsychological performance. Using network meta-analysis, we performed a quantitative synthesis for global cognition (primary outcome) and episodic memory (secondary outcome). Of 1038 publications identified by our search strategy, 24 eligible trials were included in the network meta-analysis. Results suggested that the Mediterranean diet supplemented by olive oil and tai chi exercise may improve global cognition, and the Mediterranean diet plus olive oil and soy isoflavone supplements may improve memory. Effect sizes were no more than small (standardized mean differences 0.11-0.22). Cognitive training may have cognitive benefit as well. Most individually modifiable risk factors have not yet been adequately studied. We conclude that some interventions that can be self-initiated by healthy midlife and older adults may ameliorate cognitive aging.
Bi, Yanzhi; Yuan, Kai; Yu, Dahua; Wang, Ruonan; Li, Min; Li, Yangding; Zhai, Jinquan; Lin, Wei; Tian, Jie
2017-12-01
The attentional bias to smoking cues contributes to smoking cue reactivity and cognitive declines underlines smoking behaviors, which were probably associated with the central executive network (CEN). However, little is known about the implication of the structural connectivity of the CEN in smoking cue reactivity and cognitive control impairments in smokers. In the present study, the white matter structural connectivity of the CEN was quantified in 35 smokers and 26 non-smokers using the diffusion tensor imaging and deterministic fiber tractography methods. Smoking cue reactivity was evaluated using cue exposure tasks, and cognitive control performance was assessed by the Stroop task. Relative to non-smokers, smokers showed increased fractional anisotropy (FA) values of the bilateral CEN fiber tracts. The FA values of left CEN positively correlated with the smoking cue-induced activation of the dorsolateral prefrontal cortex and right middle occipital cortex in smokers. Meanwhile, the FA values of left CEN positively correlated with the incongruent errors during Stroop task in smokers. Collectively, the present study highlighted the role of the structural connectivity of the CEN in smoking cue reactivity and cognitive control performance, which may underpin the attentional bias to smoking cues and cognitive deficits in smokers. The multimodal imaging method by forging links from brain structure to brain function extended the notion that structural connections can modulate the brain activity in specific projection target regions. Hum Brain Mapp 38:6239-6249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gray matter network measures are associated with cognitive decline in mild cognitive impairment.
Dicks, Ellen; Tijms, Betty M; Ten Kate, Mara; Gouw, Alida A; Benedictus, Marije R; Teunissen, Charlotte E; Barkhof, Frederik; Scheltens, Philip; van der Flier, Wiesje M
2018-01-01
Gray matter networks are disrupted in Alzheimer's disease and related to cognitive impairment. However, it is still unclear whether these disruptions are associated with cognitive decline over time. Here, we studied this question in a large sample of patients with mild cognitive impairment with extensive longitudinal neuropsychological assessments. Gray matter networks were extracted from baseline structural magnetic resonance imaging, and we tested associations of network measures and cognitive decline in Mini-Mental State Examination and 5 cognitive domains (i.e., memory, attention, executive function, visuospatial, and language). Disrupted network properties were cross-sectionally related to worse cognitive impairment. Longitudinally, lower small-world coefficient values were associated with a steeper decline in almost all domains. Lower betweenness centrality values correlated with a faster decline in Mini-Mental State Examination and memory, and at a regional level, these associations were specific for the precuneus, medial frontal, and temporal cortex. Furthermore, network measures showed additive value over established biomarkers in predicting cognitive decline. Our results suggest that gray matter network measures might have use in identifying patients who will show fast disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.
The Impact of Emotional States on Cognitive Control Circuitry and Function.
Cohen, Alexandra O; Dellarco, Danielle V; Breiner, Kaitlyn; Helion, Chelsea; Heller, Aaron S; Rahdar, Ahrareh; Pedersen, Gloria; Chein, Jason; Dyke, Jonathan P; Galvan, Adriana; Casey, B J
2016-03-01
Typically in the laboratory, cognitive and emotional processes are studied separately or as a stream of fleeting emotional stimuli embedded within a cognitive task. Yet in life, thoughts and actions often occur in more lasting emotional states of arousal. The current study examines the impact of emotions on actions using a novel behavioral paradigm and functional neuroimaging to assess cognitive control under sustained states of threat (anticipation of an aversive noise) and excitement (anticipation of winning money). Thirty-eight healthy adult participants were scanned while performing an emotional go/no-go task with positive (happy faces), negative (fearful faces), and neutral (calm faces) emotional cues, under threat or excitement. Cognitive control performance was enhanced during the excited state relative to a nonarousing control condition. This enhanced performance was paralleled by heightened activity of frontoparietal and frontostriatal circuitry. In contrast, under persistent threat, cognitive control was diminished when the valence of the emotional cue conflicted with the emotional state. Successful task performance in this conflicting emotional condition was associated with increased activity in the posterior cingulate cortex, a default mode network region implicated in complex processes such as processing emotions in the context of self and monitoring performance. This region showed positive coupling with frontoparietal circuitry implicated in cognitive control, providing support for a role of the posterior cingulate cortex in mobilizing cognitive resources to improve performance. These findings suggest that emotional states of arousal differentially modulate cognitive control and point to the potential utility of this paradigm for understanding effects of situational and pathological states of arousal on behavior.
Activity flow over resting-state networks shapes cognitive task activations.
Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H
2016-12-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.
Activity flow over resting-state networks shapes cognitive task activations
Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.
2016-01-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746
Blanco-Elorrieta, Esti; Pylkkänen, Liina
2016-01-13
For multilingual individuals, adaptive goal-directed behavior as enabled by cognitive control includes the management of two or more languages. This work used magnetoencephalography (MEG) to investigate the degree of neural overlap between language control and domain-general cognitive control both in action and perception. Highly proficient Arabic-English bilingual individuals participated in maximally parallel language-switching tasks in production and comprehension as well as in analogous tasks in which, instead of the used language, the semantic category of the comprehended/produced word changed. Our results indicated a clear dissociation of language control mechanisms in production versus comprehension. Language-switching in production recruited dorsolateral prefrontal regions bilaterally and, importantly, these regions were similarly recruited by category-switching. Conversely, effects of language-switching in comprehension were observed in the anterior cingulate cortex and were not shared by category-switching. These results suggest that bilingual individuals rely on adaptive language control strategies and that the neural involvement during language-switching could be extensively influenced by whether the switch is active (e.g., in production) or passive (e.g., in comprehension). In addition, these results support that humans require high-level cognitive control to switch languages in production, but the comprehension of language switches recruits a distinct neural circuitry. The use of MEG enabled us to obtain the first characterization of the spatiotemporal profile of these effects, establishing that switching processes begin ∼ 400 ms after stimulus presentation. This research addresses the neural mechanisms underlying multilingual individuals' ability to successfully manage two or more languages, critically targeting whether language control is uniform across linguistic domains (production and comprehension) and whether it is a subdomain of general cognitive control. The results showed that language production and comprehension rely on different networks: whereas language control in production recruited domain-general networks, the brain bases of switching during comprehension seemed language specific. Therefore, the crucial assumption of the bilingual advantage hypothesis, that there is a close relationship between language control and general cognitive control, seems to only hold during production. Copyright © 2016 the authors 0270-6474/16/360290-12$15.00/0.
Music training and inhibitory control: a multidimensional model.
Moreno, Sylvain; Farzan, Faranak
2015-03-01
Training programs aimed to improve cognitive skills have either yielded mixed results or remain to be validated. The limited benefits of such regimens are largely attributable to weak understanding of (1) how (and which) interventions provide the most cognitive improvements; and (2) how brain networks and neural mechanisms that underlie specific cognitive abilities can be modified selectively. Studies indicate that music training leads to robust and long-lasting benefits to behavior. Importantly, behavioral advantages conferred by music extend beyond perceptual abilities to even nonauditory functions, such as inhibitory control (IC) and its neural correlates. Alternative forms of arts engagement or brain training do not appear to yield such enhancements, which suggests that music uniquely taps into brain networks subserving a variety of auditory as well as domain-general mechanisms such as IC. To account for such widespread benefits of music training, we propose a framework of transfer effects characterized by three dimensions: level of processing, nature of the transfer, and involvement of executive functions. We suggest that transfer of skills is mediated through modulation of general cognitive processes, in particular IC. We believe that this model offers a viable framework to test the extent and limitations of music-related changes. © 2014 New York Academy of Sciences.
Natural biological variation of white matter microstructure is accentuated in Huntington's disease.
Gregory, Sarah; Crawford, Helen; Seunarine, Kiran; Leavitt, Blair; Durr, Alexandra; Roos, Raymund A C; Scahill, Rachael I; Tabrizi, Sarah J; Rees, Geraint; Langbehn, Douglas; Orth, Michael
2018-04-22
Huntington's disease (HD) is a monogenic neurodegenerative disorder caused by a CAG-repeat expansion in the Huntingtin gene. Presence of this expansion signifies certainty of disease onset, but only partly explains age at which onset occurs. Genome-wide association studies have shown that naturally occurring genetic variability influences HD pathogenesis and disease onset. Investigating the influence of biological traits in the normal population, such as variability in white matter properties, on HD pathogenesis could provide a complementary approach to understanding disease modification. We have previously shown that while white matter diffusivity patterns in the left sensorimotor network were similar in controls and HD gene-carriers, they were more extreme in the HD group. We hypothesized that the influence of natural variation in diffusivity on effects of HD pathogenesis on white matter is not limited to the sensorimotor network but extends to cognitive, limbic, and visual networks. Using tractography, we investigated 32 bilateral pathways within HD-related networks, including motor, cognitive, and limbic, and examined diffusivity metrics using principal components analysis. We identified three independent patterns of diffusivity common to controls and HD gene-carriers that predicted HD status. The first pattern involved almost all tracts, the second was limited to sensorimotor tracts, and the third encompassed cognitive network tracts. Each diffusivity pattern was associated with network specific performance. The consistency in diffusivity patterns across both groups coupled with their association with disease status and task performance indicates that naturally-occurring patterns of diffusivity can become accentuated in the presence of the HD gene mutation to influence clinical brain function. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Warren, David E; Denburg, Natalie L; Power, Jonathan D; Bruss, Joel; Waldron, Eric J; Sun, Haoxin; Petersen, Steve E; Tranel, Daniel
2017-02-01
Theories of brain-network organization based on neuroimaging data have burgeoned in recent years, but the predictive power of such theories for cognition and behavior has only rarely been examined. Here, predictions from clinical neuropsychologists about the cognitive profiles of patients with focal brain lesions were used to evaluate a brain-network theory (Warren et al., 2014). Neuropsychologists made predictions regarding the neuropsychological profiles of a neurological patient sample (N = 30) based on lesion location. The neuropsychologists then rated the congruence of their predictions with observed neuropsychological outcomes, in regard to the "severity" of neuropsychological deficits and the "focality" of neuropsychological deficits. Based on the network theory, two types of lesion locations were identified: "target" locations (putative hubs in a brain-wide network) and "control" locations (hypothesized to play limited roles in network function). We found that patients with lesions of target locations (N = 19) had deficits of greater than expected severity that were more widespread than expected, whereas patients with lesions of control locations (N = 11) showed milder, circumscribed deficits that were more congruent with expectations. The findings for the target brain locations suggest that prevailing views of brain-behavior relationships may be sharpened and refined by integrating recently proposed network-oriented perspectives. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Complexity in relational processing predicts changes in functional brain network dynamics.
Cocchi, Luca; Halford, Graeme S; Zalesky, Andrew; Harding, Ian H; Ramm, Brentyn J; Cutmore, Tim; Shum, David H K; Mattingley, Jason B
2014-09-01
The ability to link variables is critical to many high-order cognitive functions, including reasoning. It has been proposed that limits in relating variables depend critically on relational complexity, defined formally as the number of variables to be related in solving a problem. In humans, the prefrontal cortex is known to be important for reasoning, but recent studies have suggested that such processes are likely to involve widespread functional brain networks. To test this hypothesis, we used functional magnetic resonance imaging and a classic measure of deductive reasoning to examine changes in brain networks as a function of relational complexity. As expected, behavioral performance declined as the number of variables to be related increased. Likewise, increments in relational complexity were associated with proportional enhancements in brain activity and task-based connectivity within and between 2 cognitive control networks: A cingulo-opercular network for maintaining task set, and a fronto-parietal network for implementing trial-by-trial control. Changes in effective connectivity as a function of increased relational complexity suggested a key role for the left dorsolateral prefrontal cortex in integrating and implementing task set in a trial-by-trial manner. Our findings show that limits in relational processing are manifested in the brain as complexity-dependent modulations of large-scale networks. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Networks in cognitive science.
Baronchelli, Andrea; Ferrer-i-Cancho, Ramon; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H
2013-07-01
Networks of interconnected nodes have long played a key role in Cognitive Science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions, and collaborations among scientists. Today, the inclusion of network theory into Cognitive Sciences, and the expansion of complex-systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the Cognitive Sciences. Copyright © 2013 Elsevier Ltd. All rights reserved.
Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness
Sadaghiani, Sepideh; D'Esposito, Mark
2015-01-01
The complex processing architecture underlying attentional control requires delineation of the functional role of different control-related brain networks. A key component is the cingulo-opercular (CO) network composed of anterior insula/operculum, dorsal anterior cingulate cortex, and thalamus. Its function has been particularly difficult to characterize due to the network's pervasive activity and frequent co-activation with other control-related networks. We previously suggested this network to underlie intrinsically maintained tonic alertness. Here, we tested this hypothesis by separately manipulating the demand for selective attention and for tonic alertness in a two-factorial, continuous pitch discrimination paradigm. The 2 factors had independent behavioral effects. Functional imaging revealed that activity as well as functional connectivity in the CO network increased when the task required more tonic alertness. Conversely, heightened selective attention to pitch increased activity in the dorsal attention (DAT) network but not in the CO network. Across participants, performance accuracy showed dissociable correlation patterns with activity in the CO, DAT, and fronto-parietal (FP) control networks. These results support tonic alertness as a fundamental function of the CO network. They further the characterization of this function as the effortful process of maintaining cognitive faculties available for current processing requirements. PMID:24770711
Romantic Love vs. Drug Addiction May Inspire a New Treatment for Addiction
Zou, Zhiling; Song, Hongwen; Zhang, Yuting; Zhang, Xiaochu
2016-01-01
Drug addiction is a complex neurological dysfunction induced by recurring drug intoxication. Strategies to prevent and treat drug addiction constitute a topic of research interest. Early-stage romantic love is characterized by some characteristics of addiction, which gradually disappear as the love relationship progresses. Therefore, comparison of the concordance and discordance between romantic love and drug addiction may elucidate potential treatments for addiction. This focused review uses the evidences from our recent studies to compare the neural alterations between romantic love and drug addiction, moreover we also compare the behavioral and neurochemical alterations between romantic love and drug addiction. From the behavioral comparisons we find that there are many similarities between the early stage of romantic love and drug addiction, and this stage romantic love is considered as a behavioral addiction, while significant differences exist between the later stage of romantic love and drug addiction, and this stage of romantic love eventually developed into a prosocial behavior. The neuroimaging comparisons suggest that romantic love and drug addiction both display the functional enhancement in reward and emotion regulation network. Except the similar neural changes, romantic love display special function enhancement in social cognition network, while drug addiction display special dysfunction in cognitive control network. The neurochemical comparisons show that there are many similarities in the dopamine (DA) system, while significant differences in oxytocin (OT) system for romantic love and drug addiction. These findings indicate that the functional alterations in reward and emotion regulation network and the DA system may be the neurophysiological basis of romantic love as a behavioral addiction, and the functional alterations in social cognition network and the OT system may be the neurophysiological basis of romantic love as a prosocial behavior. It seems that the OT system is a critical factor for the development of addiction. So we then discuss strategies to treat drug addiction with OT, and suggest that future research should further investigate OT system interventions aiming to improve cognitive control and/or social cognition functions, in order to develop strategies designed to more effectively treat drug addiction. PMID:27713720
Romantic Love vs. Drug Addiction May Inspire a New Treatment for Addiction.
Zou, Zhiling; Song, Hongwen; Zhang, Yuting; Zhang, Xiaochu
2016-01-01
Drug addiction is a complex neurological dysfunction induced by recurring drug intoxication. Strategies to prevent and treat drug addiction constitute a topic of research interest. Early-stage romantic love is characterized by some characteristics of addiction, which gradually disappear as the love relationship progresses. Therefore, comparison of the concordance and discordance between romantic love and drug addiction may elucidate potential treatments for addiction. This focused review uses the evidences from our recent studies to compare the neural alterations between romantic love and drug addiction, moreover we also compare the behavioral and neurochemical alterations between romantic love and drug addiction. From the behavioral comparisons we find that there are many similarities between the early stage of romantic love and drug addiction, and this stage romantic love is considered as a behavioral addiction, while significant differences exist between the later stage of romantic love and drug addiction, and this stage of romantic love eventually developed into a prosocial behavior. The neuroimaging comparisons suggest that romantic love and drug addiction both display the functional enhancement in reward and emotion regulation network. Except the similar neural changes, romantic love display special function enhancement in social cognition network, while drug addiction display special dysfunction in cognitive control network. The neurochemical comparisons show that there are many similarities in the dopamine (DA) system, while significant differences in oxytocin (OT) system for romantic love and drug addiction. These findings indicate that the functional alterations in reward and emotion regulation network and the DA system may be the neurophysiological basis of romantic love as a behavioral addiction, and the functional alterations in social cognition network and the OT system may be the neurophysiological basis of romantic love as a prosocial behavior. It seems that the OT system is a critical factor for the development of addiction. So we then discuss strategies to treat drug addiction with OT, and suggest that future research should further investigate OT system interventions aiming to improve cognitive control and/or social cognition functions, in order to develop strategies designed to more effectively treat drug addiction.
Flexible Redistribution in Cognitive Networks.
Hartwigsen, Gesa
2018-06-15
Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Meinzer, Marcus; Lindenberg, Robert; Phan, Mai Thy; Ulm, Lena; Volk, Carina; Flöel, Agnes
2015-09-01
The long preclinical phase of Alzheimer's disease provides opportunities for potential disease-modifying interventions in prodromal stages such as mild cognitive impairment (MCI). Anodal transcranial direct current stimulation (anodal-tDCS), with its potential to enhance neuroplasticity, may allow improving cognition in MCI. In a double-blind, cross-over, sham-controlled study, anodal-tDCS was administered to the left inferior frontal cortex during task-related and resting-state functional magnetic resonance imaging (fMRI) to assess its impact on cognition and brain functions in MCI. During sham stimulation, MCI patients produced fewer correct semantic-word-retrieval responses than matched healthy controls, which was associated with hyperactivity in bilateral prefrontal regions. Anodal-tDCS significantly improved performance to the level of controls, reduced task-related prefrontal hyperactivity and resulted in "normalization" of abnormal network configuration during resting-state fMRI. Anodal-tDCS exerts beneficial effects on cognition and brain functions in MCI, thereby providing a framework to test whether repeated stimulation sessions may yield sustained reversal of cognitive deficits. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Ye, Qing; Chen, Haifeng; Su, Fan; Shu, Hao; Gong, Liang; Xie, Chunming; Zhou, Hong; Bai, Feng
Higher functional connectivity (FC) in resting-state networks has been shown in individuals at risk of Alzheimer's disease (AD) by many studies. However, the longitudinal trajectories of the FC remain unknown. The present 35-month follow-up study aimed to explore longitudinal changes in higher FC in multiple resting-state networks in subjects with the apolipoprotein E ε4 allele (ApoE4) and/or amnestic mild cognitive impairment (aMCI). Fifty-one subjects with aMCI and 64 cognitively normal (CN) subjects underwent neuropsychological tests and resting-state functional magnetic resonance imaging (fMRI) scans twice from April 2011 to June 2015. Subjects were divided into 4 groups according to diagnosis and ApoE4 status. The CN non-ApoE4 group served as a control group, and other groups served as AD risk groups. The cross-sectional and longitudinal patterns of multiple resting-state networks, including default mode network, hippocampus network, executive control network, and salience network, were explored by comparing FC data between groups and between time points, respectively. At baseline, compared with the control group, the AD risk groups showed higher FC with 8 regions in multiple networks. At follow-up, 6 of the regions displayed longitudinally decreased FC in AD risk groups. In contrast, the FC with all of these regions was maintained in the control group. Notably, among the 3 risk groups, most of the higher FC at baseline (5 of the 8 regions) and longitudinally decreased FC at follow-up (4 of the 6 regions) were shown in the aMCI ApoE4 group. Higher resting-state FC is followed by a decline in subjects at AD risk, and this inverse U-shaped trajectory is more notable in subjects with higher risk. © Copyright 2018 Physicians Postgraduate Press, Inc.
Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Razi, Adeel; Geerligs, Linda; Ham, Timothy E; Rowe, James B
2016-03-16
The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18-88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. Copyright © 2016 Tsvetanov et al.
Henson, Richard N.A.; Tyler, Lorraine K.; Razi, Adeel; Geerligs, Linda; Ham, Timothy E.; Rowe, James B.
2016-01-01
The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18–88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. PMID:26985024
Cognitive conflict without explicit conflict monitoring in a dynamical agent.
Ward, Robert; Ward, Ronnie
2006-11-01
We examine mechanisms for resolving cognitive conflict in an embodied, situated, and dynamic agent, developed through an evolutionary learning process. The agent was required to solve problems of response conflict in a dual-target "catching" task, focusing response on one of the targets while ignoring the other. Conflict in the agent was revealed at the behavioral level in terms of increased latencies to the second target. This behavioral interference was correlated to peak violations of the network's stable state equation. At the level of the agent's neural network, peak violations were also correlated to periods of disagreement in source inputs to the agent's motor effectors. Despite observing conflict at these numerous levels, we did not find any explicit conflict monitoring mechanisms within the agent. We instead found evidence of a distributed conflict management system, characterized by competitive sources within the network. In contrast to the conflict monitoring hypothesis [Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652], this agent demonstrates that resolution of cognitive conflict does not require explicit conflict monitoring. We consider the implications of our results for the conflict monitoring hypothesis.
Abram, Samantha V; Wisner, Krista M; Fox, Jaclyn M; Barch, Deanna M; Wang, Lei; Csernansky, John G; MacDonald, Angus W; Smith, Matthew J
2017-03-01
Impaired cognitive empathy is a core social cognitive deficit in schizophrenia associated with negative symptoms and social functioning. Cognitive empathy and negative symptoms have also been linked to medial prefrontal and temporal brain networks. While shared behavioral and neural underpinnings are suspected for cognitive empathy and negative symptoms, research is needed to test these hypotheses. In two studies, we evaluated whether resting-state functional connectivity between data-driven networks, or components (referred to as, inter-component connectivity), predicted cognitive empathy and experiential and expressive negative symptoms in schizophrenia subjects. Study 1: We examined associations between cognitive empathy and medial prefrontal and temporal inter-component connectivity at rest using a group-matched schizophrenia and control sample. We then assessed whether inter-component connectivity metrics associated with cognitive empathy were also related to negative symptoms. Study 2: We sought to replicate the connectivity-symptom associations observed in Study 1 using an independent schizophrenia sample. Study 1 results revealed that while the groups did not differ in average inter-component connectivity, a medial-fronto-temporal metric and an orbito-fronto-temporal metric were related to cognitive empathy. Moreover, the medial-fronto-temporal metric was associated with experiential negative symptoms in both schizophrenia samples. These findings support recent models that link social cognition and negative symptoms in schizophrenia. Hum Brain Mapp 38:1111-1124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Age differences in the frontoparietal cognitive control network: Implications for distractibility
Campbell, Karen L.; Grady, Cheryl L.; Ng, Charisa; Hasher, Lynn
2016-01-01
Current evidence suggests that older adults have reduced suppression of, and greater implicit memory for, distracting stimuli, due to age-related declines in frontal-based control mechanisms. In this study, we used fMRI to examine age differences in the neural underpinnings of attentional control and their relationship to differences in distractibility and subsequent memory for distraction. Older and younger adults were shown a rapid stream of words or nonwords superimposed on objects and performed a 1-back task on either the letters or the objects, while ignoring the other modality. Older adults were more distracted than younger adults by the overlapping words during the 1-back task, and they subsequently showed more priming for these words on an implicit memory task. A multivariate analysis of the imaging data revealed a set of regions, including the rostral PFC and inferior parietal cortex, that younger adults activated to a greater extent than older adults during the ignore-words condition, and activity in this set of regions was negatively correlated with priming for the distracting words. Functional connectivity analyses using right and left rostral PFC seeds revealed a network of putative control regions, including bilateral parietal cortex, connected to the frontal seeds at rest. Older adults showed reduced functional connectivity within this frontoparietal network, suggesting that their greater distractibility may be due to decreased activity and coherence within a cognitive control network that normally acts to reduce interference from distraction. PMID:22659108
Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew; Thompson, Paul M.
2015-01-01
Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the ‘rich-club’ – a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich-club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich-club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline. PMID:26037224
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.
Hu, Xueping; Wang, Xiangpeng; Gu, Yan; Luo, Pei; Yin, Shouhang; Wang, Lijun; Fu, Chao; Qiao, Lei; Du, Yi; Chen, Antao
2017-10-01
Numerous behavioral studies have found a modulation effect of phonological experience on voice discrimination. However, the neural substrates underpinning this phenomenon are poorly understood. Here we manipulated language familiarity to test the hypothesis that phonological experience affects voice discrimination via mediating the engagement of multiple perceptual and cognitive resources. The results showed that during voice discrimination, the activation of several prefrontal regions was modulated by language familiarity. More importantly, the same effect was observed concerning the functional connectivity from the fronto-parietal network to the voice-identity network (VIN), and from the default mode network to the VIN. Our findings indicate that phonological experience could bias the recruitment of cognitive control and information retrieval/comparison processes during voice discrimination. Therefore, the study unravels the neural substrates subserving the modulation effect of phonological experience on voice discrimination, and provides new insights into studying voice discrimination from the perspective of network interactions. Copyright © 2017. Published by Elsevier Inc.
Dynamic goal states: adjusting cognitive control without conflict monitoring.
Scherbaum, Stefan; Dshemuchadse, Maja; Ruge, Hannes; Goschke, Thomas
2012-10-15
A central topic in the cognitive sciences is how cognitive control is adjusted flexibly to changing environmental demands at different time scales to produce goal-oriented behavior. According to an influential account, the context-sensitive recruitment of cognitive control is mediated by a specialized conflict monitoring process that registers current conflict and signals the demand for enhanced control in subsequent trials. This view has been immensely successful not least due to supporting evidence from neuroimaging studies suggesting that the conflict monitoring function is localized within the anterior cingulate cortex (ACC) which, in turn, signals the demand for enhanced control to the prefrontal cortex (PFC). In this article, we propose an alternative model of the adaptive regulation of cognitive control based on multistable goal attractor network dynamics and adjustments of cognitive control within a conflict trial. Without incorporation of an explicit conflict monitoring module, the model mirrors behavior in conflict tasks accounting for effects of response congruency, sequential conflict adaptation, and proportion of incongruent trials. Importantly, the model also mirrors frequency tagged EEG data indicating continuous conflict adaptation and suggests a reinterpretation of the correlation between ACC and the PFC BOLD data reported in previous imaging studies. Together, our simulation data propose an alternative interpretation of both behavioral data as well as imaging data that have previously been interpreted in favor of a specialized conflict monitoring process in the ACC. Copyright © 2012 Elsevier Inc. All rights reserved.
Robust sequential working memory recall in heterogeneous cognitive networks
Rabinovich, Mikhail I.; Sokolov, Yury; Kozma, Robert
2014-01-01
Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive networks, controlling sequential and spatial working memory (SWM). Such dynamic connectivity changes suggest that the normal relationship between the neuronal components within the network deteriorates. As a result, competitive network dynamics is qualitatively altered. This dynamics defines the robust recall of the sequential information from memory and, thus, the SWM capacity. To understand pathological and non-pathological bifurcations of the sequential memory dynamics, here we investigate the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition. We consider the ensemble of units with all-to-all inhibitory connections, in which the connection strengths are monotonically distributed at some interval. Based on computer experiments and studying the Lyapunov exponents, we observed and analyzed the new phenomenon—clustered sequential dynamics. The results are interpreted in the context of the winnerless competition principle. Accordingly, clustered sequential dynamics is represented in the phase space of the model by two weakly interacting quasi-attractors. One of them is similar to the sequential heteroclinic chain—the regular image of SWM, while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means that the recall of the normal information sequence is intermittently interrupted by episodes with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged working memory and other cognitive functions. PMID:25452717
Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Borst, Jelmer P.; Li, Kuncheng
2016-01-01
Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284
Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng
2016-05-19
Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.
EEG-based research on brain functional networks in cognition.
Wang, Niannian; Zhang, Li; Liu, Guozhong
2015-01-01
Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.
Cascio, Christopher N; Carp, Joshua; O'Donnell, Matthew Brook; Tinney, Francis J; Bingham, C Raymond; Shope, Jean T; Ouimet, Marie Claude; Pradhan, Anuj K; Simons-Morton, Bruce G; Falk, Emily B
2015-01-01
Adolescence is a period characterized by increased sensitivity to social cues, as well as increased risk-taking in the presence of peers. For example, automobile crashes are the leading cause of death for adolescents, and driving with peers increases the risk of a fatal crash. Growing evidence points to an interaction between neural systems implicated in cognitive control and social and emotional context in predicting adolescent risk. We tested such a relationship in recently licensed teen drivers. Participants completed an fMRI session in which neural activity was measured during a response inhibition task, followed by a separate driving simulator session 1 week later. Participants drove alone and with a peer who was randomly assigned to express risk-promoting or risk-averse social norms. The experimentally manipulated social context during the simulated drive moderated the relationship between individual differences in neural activity in the hypothesized cognitive control network (right inferior frontal gyrus, BG) and risk-taking in the driving context a week later. Increased activity in the response inhibition network was not associated with risk-taking in the presence of a risky peer but was significantly predictive of safer driving in the presence of a cautious peer, above and beyond self-reported susceptibility to peer pressure. Individual differences in recruitment of the response inhibition network may allow those with stronger inhibitory control to override risky tendencies when in the presence of cautious peers. This relationship between social context and individual differences in brain function expands our understanding of neural systems involved in top-down cognitive control during adolescent development.
Cascio, Christopher N.; Carp, Joshua; O'Donnell, Matthew Brook; Tinney, Francis J.; Bingham, C. Raymond; Shope, Jean T.; Ouimet, Marie Claude; Pradhan, Anuj K.; Simons-Morton, Bruce G.; Falk, Emily B.
2016-01-01
Adolescence is a period characterized by increased sensitivity to social cues, as well as increased risk-taking in the presence of peers. For example, automobile crashes are the leading cause of death for adolescents, and driving with peers increases the risk of a fatal crash. Growing evidence points to an interaction between neural systems implicated in cognitive control and social and emotional context in predicting adolescent risk. We tested such a relationship in recently licensed teen drivers. Participants completed an fMRI session in which neural activity was measured during a response inhibition task, followed by a separate driving simulator session 1 week later. Participants drove alone and with a peer who was randomly assigned to express risk-promoting or risk-averse social norms. The experimentally manipulated social context during the simulated drive moderated the relationship between individual differences in neural activity in the hypothesized cognitive control network (right inferior frontal gyrus, BG) and risk-taking in the driving context a week later. Increased activity in the response inhibition network was not associated with risk-taking in the presence of a risky peer but was significantly predictive of safer driving in the presence of a cautious peer, above and beyond self-reported susceptibility to peer pressure. Individual differences in recruitment of the response inhibition network may allow those with stronger inhibitory control to override risky tendencies when in the presence of cautious peers. This relationship between social context and individual differences in brain function expands our understanding of neural systems involved in top–down cognitive control during adolescent development. PMID:25100217
Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding
NASA Astrophysics Data System (ADS)
Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang
2009-12-01
Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.
Jeon, Yujin; Kim, Binna; Kim, Jieun E; Kim, Bori R; Ban, Soonhyun; Jeong, Jee Hyang; Kwon, Oran; Rhie, Sandy Jeong; Ahn, Chang-Won; Kim, Jong-Hoon; Jung, Sung Ug; Park, Soo-Hyun; Lyoo, In Kyoon; Yoon, Sujung
2016-01-01
This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).
An integrated brain-behavior model for working memory.
Moser, D A; Doucet, G E; Ing, A; Dima, D; Schumann, G; Bilder, R M; Frangou, S
2017-12-05
Working memory (WM) is a central construct in cognitive neuroscience because it comprises mechanisms of active information maintenance and cognitive control that underpin most complex cognitive behavior. Individual variation in WM has been associated with multiple behavioral and health features including demographic characteristics, cognitive and physical traits and lifestyle choices. In this context, we used sparse canonical correlation analyses (sCCAs) to determine the covariation between brain imaging metrics of WM-network activation and connectivity and nonimaging measures relating to sensorimotor processing, affective and nonaffective cognition, mental health and personality, physical health and lifestyle choices derived from 823 healthy participants derived from the Human Connectome Project. We conducted sCCAs at two levels: a global level, testing the overall association between the entire imaging and behavioral-health data sets; and a modular level, testing associations between subsets of the two data sets. The behavioral-health and neuroimaging data sets showed significant interdependency. Variables with positive correlation to the neuroimaging variate represented higher physical endurance and fluid intelligence as well as better function in multiple higher-order cognitive domains. Negatively correlated variables represented indicators of suboptimal cardiovascular and metabolic control and lifestyle choices such as alcohol and nicotine use. These results underscore the importance of accounting for behavioral-health factors in neuroimaging studies of WM and provide a neuroscience-informed framework for personalized and public health interventions to promote and maintain the integrity of the WM network.Molecular Psychiatry advance online publication, 5 December 2017; doi:10.1038/mp.2017.247.
The challenge of understanding the brain: where we stand in 2015
Lisman, John
2015-01-01
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections. PMID:25996132
Yener, Görsev G; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Başar, Erol
2014-10-17
Mild Cognitive Impairment (MCI) is considered in many as prodromal stage of Alzheimer's disease (AD). Event-related oscillations (ERO) reflect cognitive responses of brain whereas sensory-evoked oscillations (SEO) inform about sensory responses. For this study, we compared visual SEO and ERO responses in MCI to explore brain dynamics (BACKGROUND). Forty-three patients with MCI (mean age=74.0 year) and 41 age- and education-matched healthy-elderly controls (HC) (mean age=71.1 year) participated in the study. The maximum peak-to-peak amplitudes for each subject's averaged delta response (0.5-3.0 Hz) were measured from two conditions (simple visual stimulation and classical visual oddball paradigm target stimulation) (METHOD). Overall, amplitudes of target ERO responses were higher than SEO amplitudes. The preferential location for maximum amplitude values was frontal lobe for ERO and occipital lobe for SEO. The ANOVA for delta responses showed significant results for the group Xparadigm. Post-hoc tests indicated that (1) the difference between groups were significant for target delta responses, but not for SEO, (2) ERO elicited higher responses for HC than MCI patients, and (3) females had higher target ERO than males and this difference was pronounced in the control group (RESULTS). Overall, cognitive responses display almost double the amplitudes of sensory responses over frontal regions. The topography of oscillatory responses differs depending on stimuli: visualsensory responses are highest over occipitals and -cognitive responses over frontal regions. A group effect is observed in MCI indicating that visual sensory and cognitive circuits behave differently indicating preserved visual sensory responses, but decreased cognitive responses (CONCLUSION). Copyright © 2014 Elsevier B.V. All rights reserved.
Altered Intrinsic Functional Brain Architecture in Children at Familial Risk of Major Depression.
Chai, Xiaoqian J; Hirshfeld-Becker, Dina; Biederman, Joseph; Uchida, Mai; Doehrmann, Oliver; Leonard, Julia A; Salvatore, John; Kenworthy, Tara; Brown, Ariel; Kagan, Elana; de Los Angeles, Carlo; Gabrieli, John D E; Whitfield-Gabrieli, Susan
2016-12-01
Neuroimaging studies of patients with major depression have revealed abnormal intrinsic functional connectivity measured during the resting state in multiple distributed networks. However, it is unclear whether these findings reflect the state of major depression or reflect trait neurobiological underpinnings of risk for major depression. We compared resting-state functional connectivity, measured with functional magnetic resonance imaging, between unaffected children of parents who had documented histories of major depression (at-risk, n = 27; 8-14 years of age) and age-matched children of parents with no lifetime history of depression (control subjects, n = 16). At-risk children exhibited hyperconnectivity between the default mode network and subgenual anterior cingulate cortex/orbital frontal cortex, and the magnitude of connectivity positively correlated with individual symptom scores. At-risk children also exhibited 1) hypoconnectivity within the cognitive control network, which also lacked the typical anticorrelation with the default mode network; 2) hypoconnectivity between left dorsolateral prefrontal cortex and subgenual anterior cingulate cortex; and 3) hyperconnectivity between the right amygdala and right inferior frontal gyrus, a key region for top-down modulation of emotion. Classification between at-risk children and control subjects based on resting-state connectivity yielded high accuracy with high sensitivity and specificity that was superior to clinical rating scales. Children at familial risk for depression exhibited atypical functional connectivity in the default mode, cognitive control, and affective networks. Such task-independent functional brain measures of risk for depression in children could be used to promote early intervention to reduce the likelihood of developing depression. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Oedekoven, Christiane S H; Jansen, Andreas; Keidel, James L; Kircher, Tilo; Leube, Dirk
2015-12-01
Associative memory is essential to everyday activities, such as the binding of faces and corresponding names to form single bits of information. However, this ability often becomes impaired with increasing age. The most important neural substrate of associative memory is the hippocampus, a structure crucially implicated in the pathogenesis of Alzheimer's disease (AD). The main aim of this study was to compare neural correlates of associative memory in healthy aging and mild cognitive impairment (MCI), an at-risk state for AD. We used fMRI to investigate differences in brain activation and connectivity between young controls (n = 20), elderly controls (n = 32) and MCI patients (n = 21) during associative memory retrieval. We observed lower hippocampal activation in MCI patients than control groups during a face-name recognition task, and the magnitude of this decrement was correlated with lower associative memory performance. Further, increased activation in precentral regions in all older adults indicated a stronger involvement of the task positive network (TPN) with age. Finally, functional connectivity analysis revealed a stronger link of hippocampal and striatal components in older adults in comparison to young controls, regardless of memory impairment. In elderly controls, this went hand-in-hand with a stronger activation of striatal areas. Increased TPN activation may be linked to greater reliance on cognitive control in both older groups, while increased functional connectivity between the hippocampus and the striatum may suggest dedifferentiation, especially in elderly controls.
A Cross-Layer Approach to Multi-Hop Networking with Cognitive Radios
2008-11-01
recent investigations. In [2], Behzad and Rubin studied the special case that the same power level are used at each node and found that the maximum...Sep. 2, 2005. [2] A. Behzad and I. Rubin, “Impact of power control on the performance of ad hoc wireless networks,” in Proc. IEEE Infocom, pp. 102–113
Differential Patterns of Dysconnectivity in Mirror Neuron and Mentalizing Networks in Schizophrenia
Schilbach, Leonhard; Derntl, Birgit; Aleman, Andre; Caspers, Svenja; Clos, Mareike; Diederen, Kelly M. J.; Gruber, Oliver; Kogler, Lydia; Liemburg, Edith J.; Sommer, Iris E.; Müller, Veronika I.; Cieslik, Edna C.; Eickhoff, Simon B.
2016-01-01
Impairments of social cognition are well documented in patients with schizophrenia (SCZ), but the neural basis remains poorly understood. In light of evidence that suggests that the “mirror neuron system” (MNS) and the “mentalizing network” (MENT) are key substrates of intersubjectivity and joint action, it has been suggested that dysfunction of these neural networks may underlie social difficulties in SCZ patients. Additionally, MNS and MENT might be associated differently with positive vs negative symptoms, given prior social cognitive and symptom associations. We assessed resting state functional connectivity (RSFC) in meta-analytically defined MNS and MENT networks in this patient group. Magnetic resonance imaging (MRI) scans were obtained from 116 patients and 133 age-, gender- and movement-matched healthy controls (HC) at 5 different MRI sites. Network connectivity was analyzed for group differences and correlations with clinical symptoms. Results demonstrated decreased connectivity within the MNS and also the MENT in patients compared to controls. Notably, dysconnectivity of the MNS was related to symptom severity, while no such relationship was observed for the MENT. In sum, these findings demonstrate that differential patterns of dysconnectivity exist in SCZ patients, which may contribute differently to the interpersonal difficulties commonly observed in the disorder. PMID:26940699
Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Giannakopoulos, Panteleimon
2017-04-01
Recent evidence indicates that caffeine may have a beneficial effect on cognitive decline and dementia. The current investigation assessed the effect of acute caffeine administration on working memory during the earliest stage of cognitive decline in elderly participants. The study includes consecutive 45 elderly controls and 18 individuals with mild cognitive impairment (MCI, 71.6 ± 4.7 years, 7 females). During neuropsychological follow-up at 18 months, 24 controls remained stable (sCON, 70.0 ± 4.3 years, 11 women), while the remaining 21 showed subtle cognitive deterioration (dCON, 73.4 ± 5.9 years, 14 women). All participants underwent an established 2-back working task in a crossover design of 200 mg caffeine versus placebo. Data analysis included task-related general linear model and functional connectivity tensorial independent component analysis. Working memory behavioral performances did not differ between sCON and dCON, while MCI was slower and less accurate than both control groups (p < 0.05). The dCON group had a less pronounced effect of acute caffeine administration essentially restricted to the right hemisphere (p < 0.05 corrected) and reduced default mode network (DMN) deactivation compared to sCON (p < 0.01 corrected). dCON cases are characterized by decreased sensitivity to caffeine effects on brain activation and DMN deactivation. These complex fMRI patterns possibly reflect the instable status of these cases with intact behavioral performances despite already existing functional alterations in neocortical circuits.
Mocking, Roel J T; van Wingen, Guido; Martens, Suzanne; Ruhé, Henricus G; Schene, Aart H
2017-01-01
Abstract Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD vs controls. Moreover, DMN-connectivity studies in remitted-MDD were previously confounded by antidepressant-use. Sixty-two MDD-patients remitted from ≥2 episodes, psychotropic-medication free, and 41 controls, participated in two 5-min neutral and sad mood-inductions by autobiographical-recall and neutral/sad music, each followed by 8-min resting-state fMRI-scanning. We identified DMN-components using Independent Component Analysis and entered subject- and sessions-specific components into a repeated measures analysis of variance. Connectivity-differences were extracted and correlated with baseline cognitive reactivity and rumination as measures of vulnerability for recurrence. After sad vs neutral mood-induction, controls, but not remitted-MDD, showed an increase in connectivity between the posterior-DMN and a cluster consisting mostly of the hippocampus (P = 0.006). Less posterior-DMN-hippocampal connectivity was associated with higher cognitive reactivity (r = −0.21, P = 0.046) and rumination (r = −0.27, P = 0.017). After recalling sad autobiographical-memories, aberrant posterior-DMN-hippocampal connectivity, associated with cognitive reactivity and rumination, remains a neural vulnerability in MDD-remission. PMID:28981917
Figueroa, Caroline A; Mocking, Roel J T; van Wingen, Guido; Martens, Suzanne; Ruhé, Henricus G; Schene, Aart H
2017-11-01
Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD vs controls. Moreover, DMN-connectivity studies in remitted-MDD were previously confounded by antidepressant-use. Sixty-two MDD-patients remitted from ≥2 episodes, psychotropic-medication free, and 41 controls, participated in two 5-min neutral and sad mood-inductions by autobiographical-recall and neutral/sad music, each followed by 8-min resting-state fMRI-scanning. We identified DMN-components using Independent Component Analysis and entered subject- and sessions-specific components into a repeated measures analysis of variance. Connectivity-differences were extracted and correlated with baseline cognitive reactivity and rumination as measures of vulnerability for recurrence. After sad vs neutral mood-induction, controls, but not remitted-MDD, showed an increase in connectivity between the posterior-DMN and a cluster consisting mostly of the hippocampus (P = 0.006). Less posterior-DMN-hippocampal connectivity was associated with higher cognitive reactivity (r = -0.21, P = 0.046) and rumination (r = -0.27, P = 0.017). After recalling sad autobiographical-memories, aberrant posterior-DMN-hippocampal connectivity, associated with cognitive reactivity and rumination, remains a neural vulnerability in MDD-remission. © The Author (2017). Published by Oxford University Press.
Regional neuronal network failure and cognition in late-onset sporadic Alzheimer disease.
Carter, S F; Embleton, K V; Anton-Rodriguez, J M; Burns, A; Ralph, M A L; Herholz, K
2014-06-01
The severe cognitive deficits in Alzheimer disease are associated with structural lesions in gray and white matter in addition to changes in synaptic function. The current investigation studied the breakdown of the structure and function in regional networks involving the Papez circuit and extended neocortical association areas. Cortical volumetric and diffusion tensor imaging (3T MR imaging), positron-emission tomography with (18)F fluorodeoxyglucose on a high-resolution research tomograph, and comprehensive neuropsychological assessments were performed in patients with late-onset sporadic Alzheimer disease, those with mild cognitive impairment, and elderly healthy controls. Atrophy of the medial temporal lobes was the strongest and most consistent abnormality in patients with mild cognitive impairment and Alzheimer disease. Atrophy in the temporal, frontal, and parietal regions was most strongly related to episodic memory deficits, while deficits in semantic cognition were also strongly related to reductions of glucose metabolism in the posterior cingulate cortex and temporoparietal regions. Changes in fractional anisotropy within white matter tracts, particularly in the left cingulum bundle, uncinate fasciculus, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus, were significantly associated with the cognitive deficits in multiple regression analyses. Posterior cingulate and orbitofrontal metabolic deficits appeared to be related to microstructural changes in projecting white matter tracts. Many lesioned network components within the Papez circuit and extended neocortical association areas were significantly associated with cognitive dysfunction in both mild cognitive impairment and late-onset sporadic Alzheimer disease. Hippocampal atrophy was the most prominent lesion, with associated impairment of the uncinate and cingulum white matter microstructures and hippocampal and posterior cingulate metabolic impairment. © 2014 by American Journal of Neuroradiology.
Longitudinal decline in structural networks predicts dementia in cerebral small vessel disease
Lawrence, Andrew J.; Zeestraten, Eva A.; Benjamin, Philip; Lambert, Christian P.; Morris, Robin G.; Barrick, Thomas R.
2018-01-01
Objective To determine whether longitudinal change in white matter structural network integrity predicts dementia and future cognitive decline in cerebral small vessel disease (SVD). To investigate whether network disruption has a causal role in cognitive decline and mediates the association between conventional MRI markers of SVD with both cognitive decline and dementia. Methods In the prospective longitudinal SCANS (St George's Cognition and Neuroimaging in Stroke) Study, 97 dementia-free individuals with symptomatic lacunar stroke were followed with annual MRI for 3 years and annual cognitive assessment for 5 years. Conversion to dementia was recorded. Structural networks were constructed from diffusion tractography using a longitudinal registration pipeline, and network global efficiency was calculated. Linear mixed-effects regression was used to assess change over time. Results Seventeen individuals (17.5%) converted to dementia, and significant decline in global cognition occurred (p = 0.0016). Structural network measures declined over the 3-year MRI follow-up, but the degree of change varied markedly between individuals. The degree of reductions in network global efficiency was associated with conversion to dementia (B = −2.35, odds ratio = 0.095, p = 0.00056). Change in network global efficiency mediated much of the association of conventional MRI markers of SVD with cognitive decline and progression to dementia. Conclusions Network disruption has a central role in the pathogenesis of cognitive decline and dementia in SVD. It may be a useful disease marker to identify that subgroup of patients with SVD who progress to dementia. PMID:29695593
Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.
Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg
2016-09-01
In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.
Training Attentional Control and Working Memory--Is Younger, Better?
ERIC Educational Resources Information Center
Wass, S. V.; Scerif, G.; Johnson, M. H.
2012-01-01
Authors have argued that various forms of interventions may be more effective in younger children. Is cognitive training also more effective, the earlier the training is applied? We review evidence suggesting that functional neural networks, including those subserving attentional control, may be more unspecialised and undifferentiated earlier in…
Response Inhibition Is Associated with White Matter Microstructure in Children
ERIC Educational Resources Information Center
Madsen, Kathrine Skak; Baare, William F. C.; Vestergaard, Martin; Skimminge, Arnold; Ejersbo, Lisser Rye; Ramsoy, Thomas Z.; Gerlach, Christian; Akeson, Per; Paulson, Olaf B.; Jernigan, Terry L.
2010-01-01
Cognitive control of thoughts, actions and emotions is important for normal behaviour and the development of such control continues throughout childhood and adolescence. Several lines of evidence suggest that response inhibition is primarily mediated by a right-lateralized network involving inferior frontal gyrus (IFG), presupplementary motor…
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling, Malte; Cruse, Holk
2017-01-01
It has often been stated that for a neuronal system to become a cognitive one, it has to be large enough. In contrast, we argue that a basic property of a cognitive system, namely the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof of concept, we propose an artificial neural network, termed reaCog, that, first, is able to deal with a specific domain of behavior (six-legged-walking). Second, we show how a minor expansion of this system enables the system to plan ahead and deploy existing behavioral elements in novel contexts in order to solve current problems. To this end, the system invents new solutions that are not possible for the reactive network. Rather these solutions result from new combinations of given memory elements. This faculty does not rely on a dedicated system being more or less independent of the reactive basis, but results from exploitation of the reactive basis by recruiting the lower-level control structures in a way that motor planning becomes possible as an internal simulation relying on internal representation being grounded in embodied experiences.
Attention and Cognitive Control Networks Assessed in a Dichotic Listening fMRI Study
ERIC Educational Resources Information Center
Falkenberg, Liv E.; Specht, Karsten; Westerhausen, Rene
2011-01-01
A meaningful interaction with our environment relies on the ability to focus on relevant sensory input and to ignore irrelevant information, i.e. top-down control and attention processes are employed to select from competing stimuli following internal goals. In this, the demands for the recruitment of top-down control processes depend on the…
A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe
Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja
2016-01-01
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338
Schulz, Kurt P.; Bédard, Anne-Claude V.; Fan, Jin; Clerkin, Suzanne M.; Dima, Danai; Newcorn, Jeffrey H.; Halperin, Jeffrey M.
2014-01-01
Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD. PMID:24918067
Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Clerkin, Suzanne M; Dima, Danai; Newcorn, Jeffrey H; Halperin, Jeffrey M
2014-01-01
Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD.
Choe, Eugenie; Lee, Tae Young; Kim, Minah; Hur, Ji-Won; Yoon, Youngwoo Bryan; Cho, Kang-Ik K; Kwon, Jun Soo
2018-03-26
It has been suggested that the mentalizing network and the mirror neuron system network support important social cognitive processes that are impaired in schizophrenia. However, the integrity and interaction of these two networks have not been sufficiently studied, and their effects on social cognition in schizophrenia remain unclear. Our study included 26 first-episode psychosis (FEP) patients and 26 healthy controls. We utilized resting-state functional connectivity to examine the a priori-defined mirror neuron system network and the mentalizing network and to assess the within- and between-network connectivities of the networks in FEP patients. We also assessed the correlation between resting-state functional connectivity measures and theory of mind performance. FEP patients showed altered within-network connectivity of the mirror neuron system network, and aberrant between-network connectivity between the mirror neuron system network and the mentalizing network. The within-network connectivity of the mirror neuron system network was noticeably correlated with theory of mind task performance in FEP patients. The integrity and interaction of the mirror neuron system network and the mentalizing network may be altered during the early stages of psychosis. Additionally, this study suggests that alterations in the integrity of the mirror neuron system network are highly related to deficient theory of mind in schizophrenia, and this problem would be present from the early stage of psychosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Path optimisation of a mobile robot using an artificial neural network controller
NASA Astrophysics Data System (ADS)
Singh, M. K.; Parhi, D. R.
2011-01-01
This article proposed a novel approach for design of an intelligent controller for an autonomous mobile robot using a multilayer feed forward neural network, which enables the robot to navigate in a real world dynamic environment. The inputs to the proposed neural controller consist of left, right and front obstacle distance with respect to its position and target angle. The output of the neural network is steering angle. A four layer neural network has been designed to solve the path and time optimisation problem of mobile robots, which deals with the cognitive tasks such as learning, adaptation, generalisation and optimisation. A back propagation algorithm is used to train the network. This article also analyses the kinematic design of mobile robots for dynamic movements. The simulation results are compared with experimental results, which are satisfactory and show very good agreement. The training of the neural nets and the control performance analysis has been done in a real experimental setup.
Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A.
2014-01-01
IMPORTANCE Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. OBJECTIVES To test the hypothesis that the strength of coupling among 3 large-scale brain networks–salience, executive control, and default mode–will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. DESIGN, SETTING, AND PARTICIPANTS A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. INTERVENTIONS Twenty-four hours of abstinence vs smoking satiety. MAIN OUTCOMES AND MEASURES Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). RESULTS The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = −0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = −0.66, P = .003; posterior cingulate cortex, r = −0.65, P = .001). CONCLUSIONS AND RELEVANCE Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence. PMID:24622915
Sidhu, Meneka K; Thompson, Pamela J; Wandschneider, Britta; Foulkes, Alexandra; de Tisi, Jane; Stretton, Jason; Perona, Marina; Thom, Maria; Bonelli, Silvia B; Burdett, Jane; Williams, Elaine; Duncan, John S; Matarin, Mar
2018-06-27
Medial temporal lobe epilepsy (mTLE) is the most common refractory focal epilepsy in adults. Around 30%-40% of patients have prominent memory impairment and experience significant postoperative memory and language decline after surgical treatment. BDNF Val66Met polymorphism has also been associated with cognition and variability in structural and functional hippocampal indices in healthy controls and some patient groups. We examined whether BDNF Val66Met variation was associated with cognitive impairment in mTLE. In this study, we investigated the association of Val66Met polymorphism with cognitive performance (n = 276), postoperative cognitive change (n = 126) and fMRI activation patterns during memory encoding and language paradigms in 2 groups of patients with mTLE (n = 37 and 34). mTLE patients carrying the Met allele performed more poorly on memory tasks and showed reduced medial temporal lobe activation and reduced task-related deactivations within the default mode networks in both the fMRI memory and language tasks than Val/Val patients. Although cognitive impairment in epilepsy is the result of a complex interaction of factors, our results suggest a role of genetic factors on cognitive impairment in mTLE. © 2018 John Wiley & Sons Ltd.
Altered Functional Connectivity of Insular Subregions in Alzheimer’s Disease
Liu, Xingyun; Chen, Xiaodan; Zheng, Weimin; Xia, Mingrui; Han, Ying; Song, Haiqing; Li, Kuncheng; He, Yong; Wang, Zhiqun
2018-01-01
Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer’s disease (AD). However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI) data including 32 AD patients and 38 healthy controls (HCs). By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC) and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1) an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN); (2) a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN); (3) a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN). In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN) regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN), suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients. PMID:29695961
Altered Functional Connectivity of Insular Subregions in Alzheimer's Disease.
Liu, Xingyun; Chen, Xiaodan; Zheng, Weimin; Xia, Mingrui; Han, Ying; Song, Haiqing; Li, Kuncheng; He, Yong; Wang, Zhiqun
2018-01-01
Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer's disease (AD). However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI) data including 32 AD patients and 38 healthy controls (HCs). By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC) and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1) an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN); (2) a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN); (3) a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN). In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN) regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN), suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients.
Avelar-Pereira, Bárbara; Bäckman, Lars; Wåhlin, Anders; Nyberg, Lars; Salami, Alireza
2017-01-01
Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state. In this study, we investigated age-related differences in functional interactions among the DMN, FPN and DAN during rest and the Multi-Source Interference task (MSIT). Networks were identified using independent component analysis (ICA), and functional connectivity was measured during rest and task. We found that the FPN was more coupled with the DMN during rest and with the DAN during the MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger adults, whereas no age-related differences were observed in FPN-DAN connectivity in either state. This suggests that dynamic interactions of the FPN are stable across cognitive states. The DMN and DAN were anti correlated and age-sensitive during the MSIT only, indicating variation in a task-dependent manner. Increased levels of anticorrelation from rest to task also predicted successful interference resolution. Additional analyses revealed that the degree of DMN-DAN anticorrelation during the MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests that reduced DMN neural activity during rest underlies an impaired ability to achieve higher levels of anticorrelation during a task. Taken together, our results suggest that only parts of age-related differences in connectivity are uncovered at rest and thus, should be studied in the functional connectome across multiple states for a more comprehensive picture.
Avelar-Pereira, Bárbara; Bäckman, Lars; Wåhlin, Anders; Nyberg, Lars; Salami, Alireza
2017-01-01
Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state. In this study, we investigated age-related differences in functional interactions among the DMN, FPN and DAN during rest and the Multi-Source Interference task (MSIT). Networks were identified using independent component analysis (ICA), and functional connectivity was measured during rest and task. We found that the FPN was more coupled with the DMN during rest and with the DAN during the MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger adults, whereas no age-related differences were observed in FPN-DAN connectivity in either state. This suggests that dynamic interactions of the FPN are stable across cognitive states. The DMN and DAN were anti correlated and age-sensitive during the MSIT only, indicating variation in a task-dependent manner. Increased levels of anticorrelation from rest to task also predicted successful interference resolution. Additional analyses revealed that the degree of DMN-DAN anticorrelation during the MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests that reduced DMN neural activity during rest underlies an impaired ability to achieve higher levels of anticorrelation during a task. Taken together, our results suggest that only parts of age-related differences in connectivity are uncovered at rest and thus, should be studied in the functional connectome across multiple states for a more comprehensive picture. PMID:28588476
Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization
2017-01-01
Most complex cognitive tasks require the coordinated interplay of multiple brain networks, but the act of retrieving an episodic memory may place especially heavy demands for communication between the frontoparietal control network (FPCN) and the default mode network (DMN), two networks that do not strongly interact with one another in many task contexts. We applied graph theoretical analysis to task-related fMRI functional connectivity data from 20 human participants and found that global brain modularity—a measure of network segregation—is markedly reduced during episodic memory retrieval relative to closely matched analogical reasoning and visuospatial perception tasks. Individual differences in modularity were correlated with memory task performance, such that lower modularity levels were associated with a lower false alarm rate. Moreover, the FPCN and DMN showed significantly elevated coupling with each other during the memory task, which correlated with the global reduction in brain modularity. Both networks also strengthened their functional connectivity with the hippocampus during the memory task. Together, these results provide a novel demonstration that reduced modularity is conducive to effective episodic retrieval, which requires close collaboration between goal-directed control processes supported by the FPCN and internally oriented self-referential processing supported by the DMN. SIGNIFICANCE STATEMENT Modularity, an index of the degree to which nodes of a complex system are organized into discrete communities, has emerged as an important construct in the characterization of brain connectivity dynamics. We provide novel evidence that the modularity of the human brain is reduced when individuals engage in episodic memory retrieval, relative to other cognitive tasks, and that this state of lower modularity is associated with improved memory performance. We propose a neural systems mechanism for this finding where the nodes of the frontoparietal control network and default mode network strengthen their interaction with one another during episodic retrieval. Such across-network communication likely facilitates effective access to internally generated representations of past event knowledge. PMID:28242796
Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization.
Westphal, Andrew J; Wang, Siliang; Rissman, Jesse
2017-03-29
Most complex cognitive tasks require the coordinated interplay of multiple brain networks, but the act of retrieving an episodic memory may place especially heavy demands for communication between the frontoparietal control network (FPCN) and the default mode network (DMN), two networks that do not strongly interact with one another in many task contexts. We applied graph theoretical analysis to task-related fMRI functional connectivity data from 20 human participants and found that global brain modularity-a measure of network segregation-is markedly reduced during episodic memory retrieval relative to closely matched analogical reasoning and visuospatial perception tasks. Individual differences in modularity were correlated with memory task performance, such that lower modularity levels were associated with a lower false alarm rate. Moreover, the FPCN and DMN showed significantly elevated coupling with each other during the memory task, which correlated with the global reduction in brain modularity. Both networks also strengthened their functional connectivity with the hippocampus during the memory task. Together, these results provide a novel demonstration that reduced modularity is conducive to effective episodic retrieval, which requires close collaboration between goal-directed control processes supported by the FPCN and internally oriented self-referential processing supported by the DMN. SIGNIFICANCE STATEMENT Modularity, an index of the degree to which nodes of a complex system are organized into discrete communities, has emerged as an important construct in the characterization of brain connectivity dynamics. We provide novel evidence that the modularity of the human brain is reduced when individuals engage in episodic memory retrieval, relative to other cognitive tasks, and that this state of lower modularity is associated with improved memory performance. We propose a neural systems mechanism for this finding where the nodes of the frontoparietal control network and default mode network strengthen their interaction with one another during episodic retrieval. Such across-network communication likely facilitates effective access to internally generated representations of past event knowledge. Copyright © 2017 the authors 0270-6474/17/373523-09$15.00/0.
Cognitive Networking With Regards to NASA's Space Communication and Navigation Program
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.; Vaden, Karl R.; Ponchak, Denise S.
2013-01-01
This report describes cognitive networking (CN) and its application to NASA's Space Communication and Networking (SCaN) Program. This report clarifies the terminology and framework of CN and provides some examples of cognitive systems. It then provides a methodology for developing and deploying CN techniques and technologies. Finally, the report attempts to answer specific questions regarding how CN could benefit SCaN. It also describes SCaN's current and target networks and proposes places where cognition could be deployed.
O'Callaghan, Claire; Shine, James M; Lewis, Simon J G; Andrews-Hanna, Jessica R; Irish, Muireann
2015-02-01
Self-generated cognition, or mind wandering, refers to the quintessentially human tendency to withdraw from the immediate external environment and engage in internally driven mentation. This thought activity is suggested to be underpinned by a distributed set of regions in the brain, referred to as the default network. To date, experimental assessment of mind wandering has typically taken place during performance of a concurrent attention-demanding task. The attentional demands of concurrent tasks can influence the emergence of mind wandering, and their application to clinical disorders with reduced cognitive resources is limited. Furthermore, few paradigms have investigated the phenomenological content of mind wandering episodes. Here, we present data from a novel thought sampling task that measures both the frequency and qualitative content of mind wandering, in the absence of a concurrent task to reduce cognitive demand. The task was validated in a non-pathological cohort of 31 older controls and resting-state functional connectivity analyses in a subset of participants (n=18) was conducted to explore the neural bases of mind wandering. Overall, instances of mind wandering were found to occur in 37% of experimental trials. Resting state functional connectivity analyses confirmed that mind wandering frequency was associated with regional patterns of both increased and decreased default network connectivity, namely in the temporal lobe, posterior cingulate cortex and dorsal medial prefrontal cortex. Our findings demonstrate that the novel task provides a context of low cognitive demand, which is conducive to mind wandering. Furthermore, performance on the task is associated with specific patterns of functional connectivity in the default network. Together, this new paradigm offers an important avenue to investigate the frequency and content of mind wandering in the context of low cognitive demands, and has significant potential to be applied in clinical conditions with reduced cognitive resources. Copyright © 2014 Elsevier Inc. All rights reserved.
Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-06-01
Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
"You've got a friend in me": can social networks mediate the relationship between mood and MCI?
Yates, Jennifer A; Clare, Linda; Woods, Robert T
2017-07-13
Social networks can change with age, for reasons that are adaptive or unwanted. Social engagement is beneficial to both mental health and cognition, and represents a potentially modifiable factor. Consequently this study explored this association and assessed whether the relationship between mild cognitive impairment (MCI) and mood problems was mediated by social networks. This study includes an analysis of data from the Cognitive Function and Ageing Study Wales (CFAS Wales). CFAS Wales Phase 1 data were collected from 2010 to 2013 by conducting structured interviews with older people aged over 65 years of age living in urban and rural areas of Wales, and included questions that assessed cognitive functioning, mood, and social networks. Regression analyses were used to investigate the associations between individual variables and the mediating role of social networks. Having richer social networks was beneficial to both mood and cognition. Participants in the MCI category had weaker social networks than participants without cognitive impairment, whereas stronger social networks were associated with a decrease in the odds of experiencing mood problems, suggesting that they may offer a protective effect against anxiety and depression. Regression analyses revealed that social networks are a significant mediator of the relationship between MCI and mood problems. These findings are important, as mood problems are a risk factor for progression from MCI to dementia, so interventions that increase and strengthen social networks may have beneficial effects on slowing the progression of cognitive decline.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
Abnormal proactive and reactive cognitive control during conflict processing in major depression.
Vanderhasselt, Marie-Anne; De Raedt, Rudi; De Paepe, Annick; Aarts, Kristien; Otte, Georges; Van Dorpe, Jan; Pourtois, Gilles
2014-02-01
According to the Dual Mechanisms of Control framework, cognitive control consists of two complementary components: proactive control refers to anticipatory maintenance of goal-relevant information, whereas reactive control acts as a correction mechanism that is activated when a conflict occurs. Possibly, the well-known diminished inhibitory control in response to negative stimuli in Major Depressive Disorder (MDD) patients stems from a breakdown in proactive control, and/or anomalies in reactive cognitive control. In our study, MDD patients specifically showed increased response latencies when actively inhibiting a dominant response to a sad compared with a happy face. This condition was associated with a longer duration of a dominant ERP topography (800-900 ms poststimulus onset) and a stronger activity in the bilateral dorsal anterior cingulate cortex, reflecting abnormal reactive control when inhibiting attention to a negative stimulus. Moreover, MDD patients showed abnormalities in proactive cognitive control when preparing for the upcoming imperative stimulus (abnormal modulation of the contingent negative variation component), accompanied by more activity in brain regions belonging to the default mode network. All together, deficits to inhibit attention to negative information in MDD might originate from an abnormal use of both proactive resources and reactive control processes. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Aging and response conflict solution: Behavioural and functional connectivity changes
Cieslik, Edna C.; Behrwind, Simone D.; Roski, Christian; Caspers, Svenja; Amunts, Katrin; Eickhoff, Simon B.
2014-01-01
Healthy aging has been found associated with less efficient response conflict solution, but the cognitive and neural mechanisms remain elusive. In a two-experiment study, we first examined the behavioural consequences of this putative age-related decline for conflicts induced by spatial stimulus–response incompatibility. We then used resting-state functional magnetic resonance imaging data from a large, independent sample of adults (n = 399; 18–85 years) to investigate age differences in functional connectivity between the nodes of a network previously found associated with incompatibility-induced response conflicts in the very same paradigm. As expected, overcoming interference from conflicting response tendencies took longer in older adults, even after accounting for potential mediator variables (general response speed and accuracy, motor speed, visuomotor coordination ability, and cognitive flexibility). Experiment 2 revealed selective age-related decreases in functional connectivity between bilateral anterior insula, pre-supplementary motor area, and right dorsolateral prefrontal cortex. Importantly, these age effects persisted after controlling for regional gray-matter atrophy assessed by voxel-based morphometry. Meta-analytic functional profiling using the BrainMap database showed these age-sensitive nodes to be more strongly linked to highly abstract cognition, as compared with the remaining network nodes, which in turn were more strongly linked to action-related processing. These findings indicate changes in interregional coupling with age among task-relevant network nodes that are not specifically associated with conflict resolution per se. Rather, our behavioural and neural data jointly suggest that healthy aging is associated with difficulties in properly activating non-dominant but relevant task schemata necessary to exert efficient cognitive control over action. PMID:24718622
Aging and response conflict solution: behavioural and functional connectivity changes.
Langner, Robert; Cieslik, Edna C; Behrwind, Simone D; Roski, Christian; Caspers, Svenja; Amunts, Katrin; Eickhoff, Simon B
2015-01-01
Healthy aging has been found associated with less efficient response conflict solution, but the cognitive and neural mechanisms have remained elusive. In a two-experiment study, we first examined the behavioural consequences of this putative age-related decline for conflicts induced by spatial stimulus-response incompatibility. We then used resting-state functional magnetic resonance imaging data from a large, independent sample of adults (n = 399; 18-85 years) to investigate age differences in functional connectivity between the nodes of a network previously found associated with incompatibility-induced response conflicts in the very same paradigm. As expected, overcoming interference from conflicting response tendencies took longer in older adults, even after accounting for potential mediator variables (general response speed and accuracy, motor speed, visuomotor coordination ability, and cognitive flexibility). Experiment 2 revealed selective age-related decreases in functional connectivity between bilateral anterior insula, pre-supplementary motor area, and right dorsolateral prefrontal cortex. Importantly, these age effects persisted after controlling for regional grey-matter atrophy assessed by voxel-based morphometry. Meta-analytic functional profiling using the BrainMap database showed these age-sensitive nodes to be more strongly linked to highly abstract cognition, as compared with the remaining network nodes, which were more strongly linked to action-related processing. These findings indicate changes in interregional coupling with age among task-relevant network nodes that are not specifically associated with conflict resolution per se. Rather, our behavioural and neural data jointly suggest that healthy aging is associated with difficulties in properly activating non-dominant but relevant task schemata necessary to exert efficient cognitive control over action.
From trees to forest: relational complexity network and workload of air traffic controllers.
Zhang, Jingyu; Yang, Jiazhong; Wu, Changxu
2015-01-01
In this paper, we propose a relational complexity (RC) network framework based on RC metric and network theory to model controllers' workload in conflict detection and resolution. We suggest that, at the sector level, air traffic showing a centralised network pattern can provide cognitive benefits in visual search and resolution decision which will in turn result in lower workload. We found that the network centralisation index can account for more variance in predicting perceived workload and task completion time in both a static conflict detection task (Study 1) and a dynamic one (Study 2) in addition to other aircraft-level and pair-level factors. This finding suggests that linear combination of aircraft-level or dyad-level information may not be adequate and the global-pattern-based index is necessary. Theoretical and practical implications of using this framework to improve future workload modelling and management are discussed. We propose a RC network framework to model the workload of air traffic controllers. The effect of network centralisation was examined in both a static conflict detection task and a dynamic one. Network centralisation was predictive of perceived workload and task completion time over and above other control variables.
Systematic review of the neural basis of social cognition in patients with mood disorders.
Cusi, Andrée M; Nazarov, Anthony; Holshausen, Katherine; Macqueen, Glenda M; McKinnon, Margaret C
2012-05-01
This review integrates neuroimaging studies of 2 domains of social cognition--emotion comprehension and theory of mind (ToM)--in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were "fMRI," "emotion comprehension," "emotion perception," "affect comprehension," "affect perception," "facial expression," "prosody," "theory of mind," "mentalizing" and "empathy" in combination with "major depressive disorder," "bipolar disorder," "major depression," "unipolar depression," "clinical depression" and "mania." Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Studies that did not include control tasks or a comparator group were included in this review. Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks under lying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders.
Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.
Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C
2008-04-01
The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.
Shen, Yanyan; Wang, Shuqiang; Wei, Zhiming
2014-01-01
Dynamic spectrum sharing has drawn intensive attention in cognitive radio networks. The secondary users are allowed to use the available spectrum to transmit data if the interference to the primary users is maintained at a low level. Cooperative transmission for secondary users can reduce the transmission power and thus improve the performance further. We study the joint subchannel pairing and power allocation problem in relay-based cognitive radio networks. The objective is to maximize the sum rate of the secondary user that is helped by an amplify-and-forward relay. The individual power constraints at the source and the relay, the subchannel pairing constraints, and the interference power constraints are considered. The problem under consideration is formulated as a mixed integer programming problem. By the dual decomposition method, a joint optimal subchannel pairing and power allocation algorithm is proposed. To reduce the computational complexity, two suboptimal algorithms are developed. Simulations have been conducted to verify the performance of the proposed algorithms in terms of sum rate and average running time under different conditions.
Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.
Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon
2016-04-01
Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity.
Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders
Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon
2016-01-01
Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity. PMID:26771738
Zhang, L; Gan, J Q; Wang, H
2015-03-19
Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
Wang, Xiang; Öngür, Dost; Auerbach, Randy P.; Yao, Shuqiao
2016-01-01
Abstract Although it is generally accepted that cognitive factors contribute to the pathogenesis of major depressive disorder (MDD), there are missing links between behavioral and biological models of depression. Nevertheless, research employing neuroimaging technologies has elucidated some of the neurobiological mechanisms related to cognitive-vulnerability factors, especially from a whole-brain, dynamic perspective. In this review, we integrate well-established cognitive-vulnerability factors for MDD and corresponding neural mechanisms in intrinsic networks using a dual-process framework. We propose that the dynamic alteration and imbalance among the intrinsic networks, both in the resting-state and the rest-task transition stages, contribute to the development of cognitive vulnerability and MDD. Specifically, we propose that abnormally increased resting-state default mode network (DMN) activity and connectivity (mainly in anterior DMN regions) contribute to the development of cognitive vulnerability. Furthermore, when subjects confront negative stimuli in the period of rest-to-task transition, the following three kinds of aberrant network interactions have been identified as facilitators of vulnerability and dysphoric mood, each through a different cognitive mechanism: DMN dominance over the central executive network (CEN), an impaired salience network–mediated switching between the DMN and CEN, and ineffective CEN modulation of the DMN. This focus on interrelated networks and brain-activity changes between rest and task states provides a neural-system perspective for future research on cognitive vulnerability and resilience, and may potentially guide the development of new intervention strategies for MDD. PMID:27148911
Modulations of the executive control network by stimulus onset asynchrony in a Stroop task
2013-01-01
Background Manipulating task difficulty is a useful way of elucidating the functional recruitment of the brain’s executive control network. In a Stroop task, pre-exposing the irrelevant word using varying stimulus onset asynchronies (‘negative’ SOAs) modulates the amount of behavioural interference and facilitation, suggesting disparate mechanisms of cognitive processing in each SOA. The current study employed a Stroop task with three SOAs (−400, -200, 0 ms), using functional magnetic resonance imaging to investigate for the first time the neural effects of SOA manipulation. Of specific interest were 1) how SOA affects the neural representation of interference and facilitation; 2) response priming effects in negative SOAs; and 3) attentional effects of blocked SOA presentation. Results The results revealed three regions of the executive control network that were sensitive to SOA during Stroop interference; the 0 ms SOA elicited the greatest activation of these areas but experienced relatively smaller behavioural interference, suggesting that the enhanced recruitment led to more efficient conflict processing. Response priming effects were localized to the right inferior frontal gyrus, which is consistent with the idea that this region performed response inhibition in incongruent conditions to overcome the incorrectly-primed response, as well as more general action updating and response preparation. Finally, the right superior parietal lobe was sensitive to blocked SOA presentation and was most active for the 0 ms SOA, suggesting that this region is involved in attentional control. Conclusions SOA exerted both trial-specific and block-wide effects on executive processing, providing a unique paradigm for functional investigations of the cognitive control network. PMID:23902451
Bai, Feng; Shu, Ni; Yuan, Yonggui; Shi, Yongmei; Yu, Hui; Wu, Di; Wang, Jinhui; Xia, Mingrui; He, Yong; Zhang, Zhijun
2012-03-21
Alzheimer's disease (AD) can be conceptualized as a disconnection syndrome. Both remitted geriatric depression (RGD) and amnestic mild cognitive impairment (aMCI) are associated with a high risk for developing AD. However, little is known about the similarities and differences in the topological patterns of white matter (WM) structural networks between RGD and aMCI. In this study, diffusion tensor imaging and deterministic tractography were used to map the human WM networks of 35 RGD patients, 38 aMCI patients, and 30 healthy subjects. Furthermore, graph theoretical methods were applied to investigate the alterations in the global and regional properties of the WM network in these patients. First, both the RGD and aMCI patients showed abnormal global topology in their WM networks (i.e., reduced network strength, reduced global efficiency, and increased absolute path length) compared with the controls, and there were no significant differences in these global network properties between the patient groups. Second, similar deficits of the regional and connectivity characteristics in the WM networks were primarily found in the frontal brain regions of RGD and aMCI patients compared with the controls, while a different nodal efficiency of the posterior cingulate cortex and several prefrontal brain regions were also observed between the patient groups. Together, our study provides direct evidence for the association of a great majority of convergent and a minority of divergent connectivity of WM structural networks between RGD and aMCI patients, which may lead to increasing attention in defining a population at risk of AD.
Vercammen, Ans; Morris, Richard; Green, Melissa J.; Lenroot, Rhoshel; Kulkarni, Jayashri; Carr, Vaughan J.; Weickert, Cynthia Shannon; Weickert, Thomas W.
2012-01-01
Background Schizophrenia is characterized by deficits in executive control and impairments in emotion processing. This study assessed the nature and extent of potential alterations in the neural substrates supporting the interaction between cognitive control mechanisms and emotion attribution processes in people with schizophrenia. Methods Functional magnetic resonance imaging was performed during a verbal emotional go/no-go task. People with schizophrenia and healthy controls responded to word stimuli of a prespecified emotional valence (positive, negative or neutral) while inhibiting responses to stimuli of a different valence. Results We enrolled 20 people with schizophrenia and 23 controls in the study. Healthy controls activated an extensive dorsal prefrontal–parietal network while inhibiting responses to negative words compared to neutral words, but showed deactivation of the midcingulate cortex while inhibiting responses to positive words compared to neutral words. People with schizophrenia failed to activate this network during response inhibition to negative words, whereas during response inhibition to positive words they did not deactivate the cingulate, but showed increased responsivity in the frontal cortex. Limitations Sample heterogeneity is characteristic of studies of schizophrenia and may have contributed to more variable neural responses in the patient sample despite the care taken to control for potentially confounding variables. Conclusion Our results showed that schizophrenia is associated with aberrant modulation of neural responses during the interaction between cognitive control and emotion processing. Failure of the frontal circuitry to regulate goal-directed behaviour based on emotion attributions may contribute to deficits in psychosocial functioning in daily life. PMID:22617625
Cognitive Control Network Contributions to Memory-Guided Visual Attention.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2016-05-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Theory of mind and empathy in preclinical and clinical Huntington’s disease
Adjeroud, Najia; Besnard, Jérémy; Massioui, Nicole El; Verny, Christophe; Prudean, Adriana; Scherer, Clarisse; Gohier, Bénédicte; Bonneau, Dominique
2016-01-01
We investigated cognitive and affective Theory of Mind (ToM) and empathy in patients with premanifest and manifest Huntington’s disease (HD). The relationship between ToM performance and executive skills was also examined. Sixteen preclinical and 23 clinical HD patients, and 39 healthy subjects divided into 2 control groups were given a French adaptation of the Yoni test (Shamay-Tsoory, S.G., Aharon-Peretz, J. (2007). Dissociable prefrontal networks for cognitive and affective theory of mind: a lesion study. Neuropsychologia, 45(3), 3054–67) that examines first- and second-order cognitive and affective ToM processing in separate conditions with a physical control condition. Participants were also given questionnaires of empathy and cognitive tests which mainly assessed executive functions (inhibition and mental flexibility). Clinical HD patients made significantly more errors than their controls in the first- and second-order cognitive and affective ToM conditions of the Yoni task, but exhibited no empathy deficits. However, there was no evidence that ToM impairment was related to cognitive deficits in these patients. Preclinical HD patients were unimpaired in ToM tasks and empathy measures compared with their controls. Our results are consistent with the idea that impaired affective and cognitive mentalizing emerges with the clinical manifestation of HD, but is not necessarily part of the preclinical stage. Furthermore, these impairments appear independent of executive dysfunction and empathy. PMID:26211015
Diaconescu, Andreea Oliviana; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; McIntosh, Anthony Randal; Smith, Gwenn S.
2010-01-01
Variability in the affective and cognitive symptom response to antidepressant treatment has been observed in geriatric depression. The underlying neural circuitry is poorly understood. The current study evaluated the cerebral glucose metabolic effects of citalopram treatment and applied multivariate, functional connectivity analyses to identify brain networks associated with improvements in affective symptoms and cognitive function. Sixteen geriatric depressed patients underwent resting Positron Emission Tomography (PET) studies of cerebral glucose metabolism and assessment of affective symptoms and cognitive function before and after eight weeks of selective serotonin reuptake inhibitor treatment (citalopram). Voxel-wise analyses of the normalized glucose metabolic data showed decreased cerebral metabolism during citalopram treatment in the anterior cingulate gyrus, middle temporal gyrus, precuneus, amygdala, and parahippocampal gyrus. Increased metabolism was observed in the putamen, occipital cortex and cerebellum. Functional connectivity analyses revealed two networks which were uniquely associated with improvement of affective symptoms and cognitive function during treatment. A subcortical-limbic-frontal network was associated with improvement in affect (depression and anxiety), while a medial temporal-parietal-frontal network was associated with improvement in cognition (immediate verbal learning/memory and verbal fluency). The regions that comprise the cognitive network overlap with the regions that are affected in Alzheimer’s dementia. Thus, alterations in specific brain networks associated with improvement of affective symptoms and cognitive function are observed during citalopram treatment in geriatric depression. PMID:20886575
Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.
Dunkley, Benjamin T; Sedge, Paul A; Doesburg, Sam M; Grodecki, Richard J; Jetly, Rakesh; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W
2015-01-01
Post-traumatic stress disorder (PTSD) is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18) versus a military control (all males, mean age = 33.05, n = 19) group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder.
Malfait, D; Tucholka, A; Mendizabal, S; Tremblay, J; Poulin, C; Oskoui, M; Srour, M; Carmant, L; Major, P; Lippé, S
2015-11-01
Children with benign epilepsy with centro-temporal spikes (BECTS) often have language problems. Abnormal epileptic activity is found in central and temporal brain regions, which are involved in reading and semantic and syntactic comprehension. Using functional magnetic resonance imaging (fMRI), we examined reading networks in BECTS children with a new sentence reading comprehension task involving semantic and syntactic processing. Fifteen children with BECTS (age=11y 1m ± 16 m; 12 boys) and 18 healthy controls (age=11 y 8m ± 20 m; 11 boys) performed an fMRI reading comprehension task in which they read a pair of syntactically complex sentences and decided whether the target sentence (the second sentence in the pair) was true or false with respect to the first sentence. All children also underwent an exhaustive neuropsychological assessment. We demonstrated weaknesses in several cognitive domains in BECTS children. During the sentence reading fMRI task, left inferior frontal regions and bilateral temporal areas were activated in BECTS children and healthy controls. However, additional brain regions such as the left hippocampus and precuneus were activated in BECTS children. Moreover, specific activation was found in the left caudate and putamen in BECTS children but not in healthy controls. Cognitive results and accuracy during the fMRI task were associated with specific brain activation patterns. BECTS children recruited a wider network to perform the fMRI sentence reading comprehension task, with specific activation in the left dorsal striatum. BECTS cognitive performance differently predicted functional activation in frontal and temporal regions compared to controls, suggesting differences in brain network organisation that contribute to reading comprehension. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Is a Responsive Default Mode Network Required for Successful Working Memory Task Performance?
Čeko, Marta; Gracely, John L; Fitzcharles, Mary-Ann; Seminowicz, David A; Schweinhardt, Petra; Bushnell, M Catherine
2015-08-19
In studies of cognitive processing using tasks with externally directed attention, regions showing increased (external-task-positive) and decreased or "negative" [default-mode network (DMN)] fMRI responses during task performance are dynamically responsive to increasing task difficulty. Responsiveness (modulation of fMRI signal by increasing load) has been linked directly to successful cognitive task performance in external-task-positive regions but not in DMN regions. To investigate whether a responsive DMN is required for successful cognitive performance, we compared healthy human subjects (n = 23) with individuals shown to have decreased DMN engagement (chronic pain patients, n = 28). Subjects performed a multilevel working-memory task (N-back) during fMRI. If a responsive DMN is required for successful performance, patients having reduced DMN responsiveness should show worsened performance; if performance is not reduced, their brains should show compensatory activation in external-task-positive regions or elsewhere. All subjects showed decreased accuracy and increased reaction times with increasing task level, with no significant group differences on either measure at any level. Patients had significantly reduced negative fMRI response (deactivation) of DMN regions (posterior cingulate/precuneus, medial prefrontal cortex). Controls showed expected modulation of DMN deactivation with increasing task difficulty. Patients showed significantly reduced modulation of DMN deactivation by task difficulty, despite their successful task performance. We found no evidence of compensatory neural recruitment in external-task-positive regions or elsewhere. Individual responsiveness of the external-task-positive ventrolateral prefrontal cortex, but not of DMN regions, correlated with task accuracy. These findings suggest that a responsive DMN may not be required for successful cognitive performance; a responsive external-task-positive network may be sufficient. We studied the relationship between responsiveness of the brain to increasing task demand and successful cognitive performance, using chronic pain patients as a probe. fMRI working memory studies show that two main cognitive networks ["external-task positive" and "default-mode network" (DMN)] are responsive to increasing task difficulty. The responsiveness of both of these brain networks is suggested to be required for successful task performance. The responsiveness of external-task-positive regions has been linked directly to successful cognitive task performance, as we also show here. However, pain patients show decreased engagement and responsiveness of the DMN but can perform a working memory task as well as healthy subjects, without demonstrable compensatory neural recruitment. Therefore, a responsive DMN might not be needed for successful cognitive performance. Copyright © 2015 the authors 0270-6474/15/3511596-11$15.00/0.
Altered Synchronizations among Neural Networks in Geriatric Depression
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G.; Steffens, David C.
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression. PMID:26180795
Altered Synchronizations among Neural Networks in Geriatric Depression.
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.
Han, Hye Joo; Schweickert, Richard; Xi, Zhuangzhuang; Viau-Quesnel, Charles
2016-04-01
For five individuals, a social network was constructed from a series of his or her dreams. Three important network measures were calculated for each network: transitivity, assortativity, and giant component proportion. These were monotonically related; over the five networks as transitivity increased, assortativity increased and giant component proportion decreased. The relations indicate that characters appear in dreams systematically. Systematicity likely arises from the dreamer's memory of people and their relations, which is from the dreamer's cognitive social network. But the dream social network is not a copy of the cognitive social network. Waking life social networks tend to have positive assortativity; that is, people tend to be connected to others with similar connectivity. Instead, in our sample of dream social networks assortativity is more often negative or near 0, as in online social networks. We show that if characters appear via a random walk, negative assortativity can result, particularly if the random walk is biased as suggested by remote associations. Copyright © 2015 Cognitive Science Society, Inc.
Eack, Shaun M.; Newhill, Christina E.; Keshavan, Matcheri S.
2016-01-01
Objective Cognitive remediation is emerging as an effective psychosocial intervention for addressing untreated cognitive and functional impairments in persons with schizophrenia, and might achieve its benefits through neuroplastic changes in brain connectivity. This study seeks to examine the effects of cognitive enhancement therapy (CET) on fronto-temporal brain connectivity in a randomized controlled trial with individuals in the early course of schizophrenia. Method Stabilized, early course outpatients with schizophrenia or schizoaffective disorder (N = 41) were randomly assigned to CET (n = 25) or an active enriched supportive therapy (EST) control (n = 16) and treated for 2 years. Functional MRI data were collected annually, and pseudo resting-state functional connectivity analysis was used to examine differential changes in fronto-temporal connectivity between those treated with CET compared with EST. Results Individuals receiving CET evidenced significantly less functional connectivity loss between the resting-state network and the left dorsolateral prefrontal cortex as well as significantly increased connectivity with the right insular cortex compared to EST (all corrected p < .01). These neural networks are involved in emotion processing and problem-solving. Increased connectivity with the right insula significantly mediated CET effects on improved emotion perception (z′ = −1.96, p = .021), and increased connectivity with the left dorsolateral prefrontal cortex mediated CET-related improvements in emotion regulation (z′ = −1.71, p = .052). Conclusions These findings provide preliminary evidence that CET, a psychosocial cognitive remediation intervention, may enhance connectivity between frontal and temporal brain regions implicated in problem-solving and emotion processing in service of cognitive enhancement in schizophrenia. PMID:27713804
Green, Tamar; Saggar, Manish; Ishak, Alexandra; Hong, David S; Reiss, Allan L
2017-07-18
Attention deficit hyperactivity disorder (ADHD) is strongly affected by sex, but sex chromosomes' effect on brain attention networks and cognition are difficult to examine in humans. This is due to significant etiologic heterogeneity among diagnosed individuals. In contrast, individuals with Turner syndrome (TS), who have substantially increased risk for ADHD symptoms, share a common genetic risk factor related to the absence of the X-chromosome, thus serving as a more homogeneous genetic model. Resting-state functional MRI was employed to examine differences in attention networks between girls with TS (n = 40) and age- sex- and Tanner-matched controls (n = 33). We compared groups on resting-state functional connectivity measures from data-driven independent components analysis (ICA) and hypothesis-based seed analysis. Using ICA, reduced connectivity was observed in both frontoparietal and dorsal attention networks. Similarly, using seeds in the bilateral intraparietal sulcus (IPS), reduced connectivity was observed between IPS and frontal and cerebellar regions. Finally, we observed a brain-behavior correlation between IPS-cerebellar connectivity and cognitive attention measures. These findings indicate that X-monosomy contributes affects to attention networks and cognitive dysfunction that might increase risk for ADHD. Our findings not only have clinical relevance for girls with TS, but might also serve as a biological marker in future research examining the effects of the intervention that targets attention skills. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Substantia nigra activity level predicts trial-to-trial adjustments in cognitive control
Boehler, C.N.; Bunzeck, N.; Krebs, R.M.; Noesselt, T.; Schoenfeld, M.A.; Heinze, H.-J.; Münte, T.F.; Woldorff, M.G.; Hopf, J.-M.
2011-01-01
Effective adaptation to the demands of a changing environment requires flexible cognitive control. The medial and lateral frontal cortices are involved in such control processes, putatively in close interplay with the basal ganglia. In particular, dopaminergic projections from the midbrain (i.e., from the substantia nigra (SN) and the ventral tegmental area (VTA)) have been proposed to play a pivotal role in modulating the activity in these areas for cognitive control purposes. In that dopaminergic involvement has been strongly implicated in reinforcement learning, these ideas suggest functional links between reinforcement learning, where the outcome of actions shapes behavior over time, and cognitive control in a more general context, where no direct reward is involved. Here, we provide evidence from functional MRI in humans that activity in the SN predicts systematic subsequent trial-to-trial response time (RT) prolongations that are thought to reflect cognitive control in a Stop-signal paradigm. In particular, variations in the activity level of the SN in one trial predicted the degree of RT prolongation on the subsequent trial, consistent with a modulating output signal from the SN being involved in enhancing cognitive control. This link between SN activity and subsequent behavioral adjustments lends support to theoretical accounts that propose dopaminergic control signals that shape behavior both in the presence and absence of direct reward. This SN-based modulatory mechanism is presumably mediated via a wider network that determines response speed in this task, including frontal and parietal control regions, along with the basal ganglia and the associated subthalamic nucleus. PMID:20465358
NASA Astrophysics Data System (ADS)
Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro
When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.
Working Memory-Related Effective Connectivity in Huntington's Disease Patients.
Lahr, Jacob; Minkova, Lora; Tabrizi, Sarah J; Stout, Julie C; Klöppel, Stefan; Scheller, Elisa
2018-01-01
Huntington's disease (HD) is a genetically caused neurodegenerative disorder characterized by heterogeneous motor, psychiatric, and cognitive symptoms. Although motor symptoms may be the most prominent presentation, cognitive symptoms such as memory deficits and executive dysfunction typically co-occur. We used functional magnetic resonance imaging (fMRI) and task fMRI-based dynamic causal modeling (DCM) to evaluate HD-related changes in the neural network underlying working memory (WM). Sixty-four pre-symptomatic HD mutation carriers (preHD), 20 patients with early manifest HD symptoms (earlyHD), and 83 healthy control subjects performed an n -back fMRI task with two levels of WM load. Effective connectivity was assessed in five predefined regions of interest, comprising bilateral inferior parietal cortex, left anterior cingulate cortex, and bilateral dorsolateral prefrontal cortex. HD mutation carriers performed less accurately and more slowly at high WM load compared with the control group. While between-group comparisons of brain activation did not reveal differential recruitment of the cortical WM network in mutation carriers, comparisons of brain connectivity as identified with DCM revealed a number of group differences across the whole WM network. Most strikingly, we observed decreasing connectivity from several regions toward right dorsolateral prefrontal cortex (rDLPFC) in preHD and even more so in earlyHD. The deterioration in rDLPFC connectivity complements results from previous studies and might mirror beginning cortical neural decline at premanifest and early manifest stages of HD. We were able to characterize effective connectivity in a WM network of HD mutation carriers yielding further insight into patterns of cognitive decline and accompanying neural deterioration.
Neural mechanisms of rhythm perception: current findings and future perspectives.
Grahn, Jessica A
2012-10-01
Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. Copyright © 2012 Cognitive Science Society, Inc.
Jelinek, Lena; Hottenrott, Birgit; Moritz, Steffen
2009-12-01
Building upon semantic network models, it is proposed that individuals with obsessive-compulsive disorder (OCD) process ambiguous words (e.g., homographs such as cancer) preferably in the context of the OC meaning (i.e., illness) and connect them to a lesser degree to other (neutral) cognitions (e.g., animal). To investigate this assumption, a new task was designed requiring participants to generate up to five associations for different cue words. Cue words were either emotionally neutral, negative or OC-relevant. Two thirds of the items were homographs, while the rest was unambiguous. Twenty-five OCD and 21 healthy participants were recruited via internet. Analyses reveal that OCD participants produced significantly more negative and OC-relevant associations than controls, supporting the assumption of biased associative networks in OCD. The findings support the use of psychological interventions such as Association Splitting that aim at restructuring associative networks in OCD by broadening the semantic scope of OC cognitions.
Machine Learning and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Chapline, George
The author has previously pointed out some similarities between selforganizing neural networks and quantum mechanics. These types of neural networks were originally conceived of as away of emulating the cognitive capabilities of the human brain. Recently extensions of these networks, collectively referred to as deep learning networks, have strengthened the connection between self-organizing neural networks and human cognitive capabilities. In this note we consider whether hardware quantum devices might be useful for emulating neural networks with human-like cognitive capabilities, or alternatively whether implementations of deep learning neural networks using conventional computers might lead to better algorithms for solving the many body Schrodinger equation.
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Wolk, David A; Dickerson, Bradford C
2010-06-01
The epsilon4 allele of the apolipoprotein E (APOE) gene is the major genetic risk factor for Alzheimer's disease (AD), but limited work has suggested that APOE genotype may modulate disease phenotype. Carriers of the epsilon4 allele have been reported to have greater medial temporal lobe (MTL) pathology and poorer memory than noncarriers. Less attention has focused on whether there are domains of cognition and neuroanatomical regions more affected in noncarriers. Further, a major potential confound of prior in vivo studies is the possibility of different rates of clinical misdiagnosis for carriers vs. noncarriers. We compared phenotypic differences in cognition and topography of regional cortical atrophy of epsilon4 carriers (n = 67) vs. noncarriers (n = 24) with mild AD from the Alzheimer's Disease Neuroimaging Initiative, restricted to those with a cerebrospinal fluid (CSF) molecular profile consistent with AD. Between-group comparisons were made for psychometric tests and morphometric measures of cortical thickness and hippocampal volume. Carriers displayed significantly greater impairment on measures of memory retention, whereas noncarriers were more impaired on tests of working memory, executive control, and lexical access. Consistent with this cognitive dissociation, carriers exhibited greater MTL atrophy, whereas noncarriers had greater frontoparietal atrophy. Performance deficits in particular cognitive domains were associated with disproportionate regional brain atrophy within nodes of cortical networks thought to subserve these cognitive processes. These convergent cognitive and neuroanatomic findings in individuals with a CSF molecular profile consistent with AD support the hypothesis that APOE genotype modulates the clinical phenotype of AD through influence on specific large-scale brain networks.
Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging.
Neuner, Sarah M; Garfinkel, Benjamin P; Wilmott, Lynda A; Ignatowska-Jankowska, Bogna M; Citri, Ami; Orly, Joseph; Lu, Lu; Overall, Rupert W; Mulligan, Megan K; Kempermann, Gerd; Williams, Robert W; O'Connell, Kristen M S; Kaczorowski, Catherine C
2016-10-01
An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T
2016-01-01
Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.
Upregulation of cognitive control networks in older adults’ speech comprehension
Erb, Julia; Obleser, Jonas
2013-01-01
Speech comprehension abilities decline with age and with age-related hearing loss, but it is unclear how this decline expresses in terms of central neural mechanisms. The current study examined neural speech processing in a group of older adults (aged 56–77, n = 16, with varying degrees of sensorineural hearing loss), and compared them to a cohort of young adults (aged 22–31, n = 30, self-reported normal hearing). In a functional MRI experiment, listeners heard and repeated back degraded sentences (4-band vocoded, where the temporal envelope of the acoustic signal is preserved, while the spectral information is substantially degraded). Behaviorally, older adults adapted to degraded speech at the same rate as young listeners, although their overall comprehension of degraded speech was lower. Neurally, both older and young adults relied on the left anterior insula for degraded more than clear speech perception. However, anterior insula engagement in older adults was dependent on hearing acuity. Young adults additionally employed the anterior cingulate cortex (ACC). Interestingly, this age group × degradation interaction was driven by a reduced dynamic range in older adults who displayed elevated levels of ACC activity for both degraded and clear speech, consistent with a persistent upregulation in cognitive control irrespective of task difficulty. For correct speech comprehension, older adults relied on the middle frontal gyrus in addition to a core speech comprehension network recruited by younger adults suggestive of a compensatory mechanism. Taken together, the results indicate that older adults increasingly recruit cognitive control networks, even under optimal listening conditions, at the expense of these systems’ dynamic range. PMID:24399939
Altered Network Oscillations and Functional Connectivity Dynamics in Children Born Very Preterm.
Moiseev, Alexander; Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Grunau, Ruth E
2015-09-01
Structural brain connections develop atypically in very preterm children, and altered functional connectivity is also evident in fMRI studies. Such alterations in brain network connectivity are associated with cognitive difficulties in this population. Little is known, however, about electrophysiological interactions among specific brain networks in children born very preterm. In the present study, we recorded magnetoencephalography while very preterm children and full-term controls performed a visual short-term memory task. Regions expressing task-dependent activity changes were identified using beamformer analysis, and inter-regional phase synchrony was calculated. Very preterm children expressed altered regional recruitment in distributed networks of brain areas, across standard physiological frequency ranges including the theta, alpha, beta and gamma bands. Reduced oscillatory synchrony was observed among task-activated brain regions in very preterm children, particularly for connections involving areas critical for executive abilities, including middle frontal gyrus. These findings suggest that inability to recruit neurophysiological activity and interactions in distributed networks including frontal regions may contribute to difficulties in cognitive development in children born very preterm.
Goldin, Philippe R.; Manber, Tali; Hakimi, Shabnam; Canli, Turhan; Gross, James J.
2014-01-01
Context Social anxiety disorder is thought to involve emotional hyper-reactivity, cognitive distortions, and ineffective emotion regulation. While the neural bases of emotional reactivity to social stimuli have been described, the neural bases of emotional reactivity and cognitive regulation during social and physical threat, and their relationship to social anxiety symptom severity, have yet to be investigated. Objective This study investigated behavioral and neural correlates of emotional reactivity and cognitive regulation in patients and controls during processing of social and physical threat stimuli. Design Participants were trained to implement cognitive-linguistic regulation of emotional reactivity induced by social (harsh facial expressions) and physical (violent scenes) threat while undergoing functional magnetic resonance imaging and providing behavioral ratings of negative emotion experience. Setting Academic psychology department. Participants 15 adults with social anxiety disorder and 17 demographically-matched healthy controls. Main Outcome Measures Blood oxygen level dependent signal and negative emotion ratings. Results Behaviorally, patients reported greater negative emotion than controls during social and physical threat, but showed equivalent reduction in negative emotion following cognitive regulation. Neurally, viewing social threat resulted in greater emotion-related neural responses in patients than controls, with social anxiety symptom severity related to activity in a network of emotion and attention processing regions in patients only. Viewing physical threat produced no between-group differences. Regulation during social threat resulted in greater cognitive and attention regulation-related brain activation in controls compared to patients. Regulation during physical threat produced greater cognitive control-related response (i.e., right DLPFC) in patients compared to controls. Conclusions Compared to controls, patients demonstrated exaggerated negative emotion reactivity and reduced cognitive regulation related neural activation, specifically for social threat stimuli. These findings help to elucidate potential neural mechanisms of emotion regulation that might serve as biomarkers for interventions for social anxiety disorder. PMID:19188539
Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E
2016-08-24
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.
Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate
2016-01-01
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180
Zhao, Zhiyong; Wu, Jie; Fan, Mingxia; Yin, Dazhi; Tang, Chaozheng; Gong, Jiayu; Xu, Guojun; Gao, Xinjie; Yu, Qiurong; Yang, Hao; Sun, Limin; Jia, Jie
2018-04-24
Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra- and inter-network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty-three left subcortical chronic stroke patients and 34 healthy controls underwent resting-state functional magnetic resonance imaging. Eleven resting-state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl-Meyer Assessment (FMA) scores (hand + wrist). With respect to inter-network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra- and inter-network alterations associated with motor-visual attention and high-order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke. © 2018 Wiley Periodicals, Inc.
Liu, Rui; Yue, Yingying; Hou, Zhenghua; Yuan, Yonggui; Wang, Qiao
2018-08-01
Abnormal functional connectivity (FC) in the default mode network (DMN) plays an important role in late-onset depression (LOD) patients. In this study, the risk predictors of LOD based on anterior and posterior DMN are explored. A total of 27 LOD patients and 40 healthy controls (HC) underwent resting-state functional magnetic resonance imaging and cognitive assessments. Firstly, FCs within DMN sub-networks were determined by placing seeds in the ventral medial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC). Secondly, multivariable logistic regression was used to identify risk factors for LOD patients. Finally, correlation analysis was performed to investigate the relationship between risk factors and the cognitive value. Multivariable logistic regression showed that the FCs between the vmPFC and right middle temporal gyrus (MTG) (vmPFC-MTG_R), FCs between the vmPFC and left precuneus (PCu), and FCs between the PCC and left PCu (PCC-PCu_L) were the risk factors for LOD. Furthermore, FCs of the vmPFC-MTG_R and PCC-PCu_L correlated with processing speed (R = 0.35, P = 0.002; R = 0.32, P = 0.009), and FCs of the vmPFC-MTG_R correlated with semantic memory (R = 0.41, P = 0.001). The study was a cross-sectional study. The results may be potentially biased because of a small sample. In this study, we confirmed that LOD patients mainly present cognitive deficits in processing speed and semantic memory. Moreover, our findings further suggested that FCs within DMN sub-networks associated with cognitions were risk factors, which may be used for the prediction of LOD. Copyright © 2018 Elsevier B.V. All rights reserved.
Ren, Ping; Anthony, Mia; Chapman, Benjamin P.; Heffner, Kathi; Lin, Feng
2017-01-01
Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more “internal” LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more “external” LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20 minutes, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC’s role in cognitive aging. PMID:28315366
Andrews-Hanna, Jessica R.; Smallwood, Jonathan; Spreng, R. Nathan
2014-01-01
Though only a decade has elapsed since the default network was first emphasized as being a large-scale brain system, recent years have brought great insight into the network’s adaptive functions. A growing theme highlights the default network as playing a key role in internally-directed—or self-generated—thought. Here, we synthesize recent findings from cognitive science, neuroscience, and clinical psychology to focus attention on two emerging topics as current and future directions surrounding the default network. First, we present evidence that self-generated thought is a multi-faceted construct whose component processes are supported by different subsystems within the network. Second, we highlight the dynamic nature of the default network, emphasizing its interaction with executive control systems when regulating aspects of internal thought. We conclude by discussing clinical implications of disruptions to the integrity of the network, and consider disorders when thought content becomes polarized or network interactions become disrupted or imbalanced. PMID:24502540
Golchert, Johannes; Smallwood, Jonathan; Jefferies, Elizabeth; Seli, Paul; Huntenburg, Julia M; Liem, Franziskus; Lauckner, Mark E; Oligschläger, Sabine; Bernhardt, Boris C; Villringer, Arno; Margulies, Daniel S
2017-02-01
Mind-wandering has a controversial relationship with cognitive control. Existing psychological evidence supports the hypothesis that episodes of mind-wandering reflect a failure to constrain thinking to task-relevant material, as well the apparently alternative view that control can facilitate the expression of self-generated mental content. We assessed whether this apparent contradiction arises because of a failure to consider differences in the types of thoughts that occur during mind-wandering, and in particular, the associated level of intentionality. Using multi-modal magnetic resonance imaging (MRI) analysis, we examined the cortical organisation that underlies inter-individual differences in descriptions of the spontaneous or deliberate nature of mind-wandering. Cortical thickness, as well as functional connectivity analyses, implicated regions relevant to cognitive control and regions of the default-mode network for individuals who reported high rates of deliberate mind-wandering. In contrast, higher reports of spontaneous mind-wandering were associated with cortical thinning in parietal and posterior temporal regions in the left hemisphere (which are important in the control of cognition and attention) as well as heightened connectivity between the intraparietal sulcus and a region that spanned limbic and default-mode regions in the ventral inferior frontal gyrus. Finally, we observed a dissociation in the thickness of the retrosplenial cortex/lingual gyrus, with higher reports of spontaneous mind-wandering being associated with thickening in the left hemisphere, and higher repots of deliberate mind-wandering with thinning in the right hemisphere. These results suggest that the intentionality of the mind-wandering state depends on integration between the control and default-mode networks, with more deliberation being associated with greater integration between these systems. We conclude that one reason why mind-wandering has a controversial relationship with control is because it depends on whether the thoughts emerge in a deliberate or spontaneous fashion. Copyright © 2016 Elsevier Inc. All rights reserved.
Implementation of a Space Communications Cognitive Engine
NASA Technical Reports Server (NTRS)
Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.
2017-01-01
Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).
Fibre-specific white matter reductions in Alzheimer's disease and mild cognitive impairment.
Mito, Remika; Raffelt, David; Dhollander, Thijs; Vaughan, David N; Tournier, J-Donald; Salvado, Olivier; Brodtmann, Amy; Rowe, Christopher C; Villemagne, Victor L; Connelly, Alan
2018-01-04
Alzheimer's disease is increasingly considered a large-scale network disconnection syndrome, associated with progressive aggregation of pathological proteins, cortical atrophy, and functional disconnections between brain regions. These pathological changes are posited to arise in a stereotypical spatiotemporal manner, targeting intrinsic networks in the brain, most notably the default mode network. While this network-specific disruption has been thoroughly studied with functional neuroimaging, changes to specific white matter fibre pathways within the brain's structural networks have not been closely investigated, largely due to the challenges of modelling complex white matter structure. Here, we applied a novel technique known as 'fixel-based analysis' to comprehensively investigate fibre tract-specific differences at a within-voxel level (called 'fixels') to assess potential axonal loss in subjects with Alzheimer's disease and mild cognitive impairment. We hypothesized that patients with Alzheimer's disease would exhibit extensive degeneration across key fibre pathways connecting default network nodes, while patients with mild cognitive impairment would exhibit selective degeneration within fibre pathways connecting regions previously identified as functionally implicated early in Alzheimer's disease. Diffusion MRI data from Alzheimer's disease (n = 49), mild cognitive impairment (n = 33), and healthy elderly control subjects (n = 95) were obtained from the Australian Imaging, Biomarkers and Lifestyle study of ageing. We assessed microstructural differences in fibre density, and macrostructural differences in fibre bundle morphology using fixel-based analysis. Whole-brain analysis was performed to compare groups across all white matter fixels. Subsequently, we performed a tract of interest analysis comparing fibre density and cross-section across 11 selected white matter tracts, to investigate potentially subtle degeneration within fibre pathways in mild cognitive impairment, initially by clinical diagnosis alone, and then by including amyloid status (i.e. a positive or negative amyloid PET scan). Our whole-brain analysis revealed significant white matter loss manifesting both microstructurally and macrostructurally in Alzheimer's disease patients, evident in specific fibre pathways associated with default mode network nodes. Reductions in fibre density and cross-section in mild cognitive impairment patients were only exhibited within the posterior cingulum when statistical analyses were limited to tracts of interest. Interestingly, these degenerative changes did not appear to be associated with high amyloid accumulation, given that amyloid-negative, but not positive, mild cognitive impairment subjects exhibited subtle focal left posterior cingulum deficits. The findings of this study demonstrated a stereotypical distribution of white matter degeneration in patients with Alzheimer's disease, which was in line with canonical findings from other imaging modalities, and with a network-based conceptualization of the disease. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neural bases of a specific strategy for visuospatial processing in rugby players.
Sekiguchi, Atsushi; Yokoyama, Satoru; Kasahara, Satoshi; Yomogida, Yukihito; Takeuchi, Hikaru; Ogawa, Takeshi; Taki, Yasuyuki; Niwa, Shin-Ichi; Kawashima, Ryuta
2011-10-01
Rugby is one of the most tactically complex sports. Rugby coaching theory suggests that rugby players need to possess various cognitive abilities. A previous study claimed that rugby players have high visuospatial awareness, which is induced by a strategy described as taking a "bird's eye view." To examine if there were differential cortical networks related to visuospatial processing tasks among top-level rugby players and control novices, we compared brain activities during a visuospatial processing task between 20 male top-level rugby players (Top) and 20 control novice males (Novice) using functional magnetic resonance imaging (fMRI). To avoid the effect of differential behavioral performances on brain activation, we recruited novices whose visuospatial ability was expected to match that of the rugby players. We adopted a 3-D mental rotation task during fMRI scanning as a visuospatial processing task. Significantly greater activations from baseline were observed for the Top group than for the Novice group in the right superior parietal lobe and lateral occipital cortex. Significantly greater deactivations from baseline were observed for the Top group than for the Novice group in the right medial prefrontal cortex. The discrepancy between psychobehavioral outputs and the fMRI results suggested the existence of a cognitive strategy among top-level rugby players that differs from that among control novices. The greater activation of the right superior parietal lobe and lateral occipital cortex in top-level rugby players suggested a strategy involving visuospatial cognitive processing with respect to the bird's eye view. In addition, the right medial prefrontal cortex is known to be a part of the default mode networks, suggesting an additional cognitive load for the Top group when using the bird's-eye-view strategy. This further supported the existence of a specific cognitive strategy among top-level rugby players.
Kaufman, Scott Barry; Benedek, Mathias; Jung, Rex E.; Kenett, Yoed N.; Jauk, Emanuel; Neubauer, Aljoscha C.; Silvia, Paul J.
2015-01-01
Abstract The brain's default network (DN) has been a topic of considerable empirical interest. In fMRI research, DN activity is associated with spontaneous and self‐generated cognition, such as mind‐wandering, episodic memory retrieval, future thinking, mental simulation, theory of mind reasoning, and creative cognition. Despite large literatures on developmental and disease‐related influences on the DN, surprisingly little is known about the factors that impact normal variation in DN functioning. Using structural equation modeling and graph theoretical analysis of resting‐state fMRI data, we provide evidence that Openness to Experience—a normally distributed personality trait reflecting a tendency to engage in imaginative, creative, and abstract cognitive processes—underlies efficiency of information processing within the DN. Across two studies, Openness predicted the global efficiency of a functional network comprised of DN nodes and corresponding edges. In Study 2, Openness remained a robust predictor—even after controlling for intelligence, age, gender, and other personality variables—explaining 18% of the variance in DN functioning. These findings point to a biological basis of Openness to Experience, and suggest that normally distributed personality traits affect the intrinsic architecture of large‐scale brain systems. Hum Brain Mapp 37:773–779, 2016. © 2015 Wiley Periodicals, Inc. PMID:26610181
Lower cognitive reserve in the aging human immunodeficiency virus-infected brain.
Chang, Linda; Holt, John L; Yakupov, Renat; Jiang, Caroline S; Ernst, Thomas
2013-04-01
More HIV-infected individuals are living longer; however, how their brain function is affected by aging is not well understood. One hundred twenty-two men (56 seronegative control [SN] subjects, 37 HIV subjects with normal cognition [HIV+NC], 29 with HIV-associated neurocognitive disorder [HAND]) performed neuropsychological tests and had acceptable functional magnetic resonance imaging scans at 3 Tesla during tasks with increasing attentional load. With older age, SN and HIV+NC subjects showed increased activation in the left posterior (reserve, "bottom-up") attention network for low attentional-load tasks, and further increased activation in the left posterior and anterior ("top-down") attention network on intermediate (HIV+NC only) and high attentional-load tasks. HAND subjects had only age-dependent decreases in activation. Age-dependent changes in brain activation differed between the 3 groups, primarily in the left frontal regions (despite similar brain atrophy). HIV and aging act synergistically or interactively to exacerbate brain activation abnormalities in different brain regions, suggestive of a neuroadaptive mechanism in the attention network to compensate for declined neural efficiency. While the SN and HIV+NC subjects compensated for their declining attention with age by using reserve and "top-down" attentional networks, older HAND subjects were unable to compensate which resulted in cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Verfaillie, Sander C J; Slot, Rosalinde E R; Dicks, Ellen; Prins, Niels D; Overbeek, Jozefien M; Teunissen, Charlotte E; Scheltens, Philip; Barkhof, Frederik; van der Flier, Wiesje M; Tijms, Betty M
2018-03-30
Grey matter network disruptions in Alzheimer's disease (AD) are associated with worse cognitive impairment cross-sectionally. Our aim was to investigate whether indications of a more random network organization are associated with longitudinal decline in specific cognitive functions in individuals with subjective cognitive decline (SCD). We included 231 individuals with SCD who had annually repeated neuropsychological assessment (3 ± 1 years; n = 646 neuropsychological investigations) available from the Amsterdam Dementia Cohort (54% male, age: 63 ± 9, MMSE: 28 ± 2). Single-subject grey matter networks were extracted from baseline 3D-T1 MRI scans and we computed basic network (size, degree, connectivity density) and higher-order (path length, clustering, betweenness centrality, normalized path length [lambda] and normalized clustering [gamma]) parameters at whole brain and/or regional levels. We tested associations of network parameters with baseline and annual cognition (memory, attention, executive functioning, language composite scores, and global cognition [all domains with MMSE]) using linear mixed models, adjusted for age, sex, education, scanner and total gray matter volume. Lower network size was associated with steeper decline in language (β ± SE = 0.12 ± 0.05, p < 0.05FDR). Higher-order network parameters showed no cross-sectional associations. Lower gamma and lambda values were associated with steeper decline in global cognition (gamma: β ± SE = 0.06 ± 0.02); lambda: β ± SE = 0.06 ± 0.02), language (gamma: β ± SE = 0.11 ± 0.04; lambda: β ± SE = 0.12 ± 0.05; all p < 0.05FDR). Lower path length values in precuneus and fronto-temporo-occipital cortices were associated with a steeper decline in global cognition. A more randomly organized grey matter network was associated with a steeper decline of cognitive functioning, possibly indicating the start of cognitive impairment. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Reches, A; Kutcher, J; Elbin, R J; Or-Ly, H; Sadeh, B; Greer, J; McAllister, D J; Geva, A; Kontos, A P
2017-01-01
The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician's decision-making process. The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions.
Reches, A.; Kutcher, J.; Elbin, R. J.; Or-Ly, H.; Sadeh, B.; Greer, J.; McAllister, D. J.; Geva, A.; Kontos, A. P.
2017-01-01
ABSTRACT Background: The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician’s decision-making process. Objective: The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Methods: Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Results: Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. Conclusion: The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions. PMID:28055228
Meditation leads to reduced default mode network activity beyond an active task
Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.
2015-01-01
Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238
Meditation leads to reduced default mode network activity beyond an active task.
Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A
2015-09-01
Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.
Eyre, Harris A; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M; Cyr, Natalie St; Narr, Katherine; Baune, Bernhard T; Khalsa, Dharma S; Lavretsky, Helen
2016-01-01
No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active "gold-standard" control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies.
Stimulation-Based Control of Dynamic Brain Networks
Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew
2016-01-01
The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328
Sheffield, Julia M; Kandala, Sridhar; Burgess, Gregory C; Harms, Michael P; Barch, Deanna M
2016-11-01
Psychosis is hypothesized to occur on a spectrum between psychotic disorders and healthy individuals. In the middle of the spectrum are individuals who endorse psychotic-like experiences (PLEs) that may not impact daily functioning or cause distress. Individuals with PLEs show alterations in both cognitive ability and functional connectivity of several brain networks, but the relationship between PLEs, cognition, and functional networks remains poorly understood. We analyzed resting-state fMRI data, a range of neuropsychological tasks, and questions from the Achenbach Adult Self Report (ASR) in 468 individuals from the Human Connectome Project. We aimed to determine whether global efficiency of specific functional brain networks supporting higher-order cognition (the fronto-parietal network (FPN), cingulo-opercular network (CON), and default mode network (DMN)) was associated with PLEs and cognitive ability in a non-psychiatric sample. 21.6% of individuals in our sample endorsed at least one PLE. PLEs were significantly negatively associated with higher-order cognitive ability, CON global efficiency, and DMN global efficiency, but not crystallized knowledge. Higher-order cognition was significantly positively associated with CON and DMN global efficiency. Interestingly, the association between PLEs and cognitive ability was partially mediated by CON global efficiency and, in a subset of individuals who tested negative for drugs (N=405), the participation coefficient of the right anterior insula (a hub within the CON). These findings suggest that CON integrity may represent a shared mechanism that confers risk for psychotic experiences and the cognitive deficits observed across the psychosis spectrum.
Scheldrup, Melissa; Greenwood, Pamela M.; McKendrick, Ryan; Strohl, Jon; Bikson, Marom; Alam, Mahtab; McKinley, R. Andy; Parasuraman, Raja
2014-01-01
There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation—specifically transcranial Direct Current Stimulation (tDCS)—has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical. PMID:25249958
Scheldrup, Melissa; Greenwood, Pamela M; McKendrick, Ryan; Strohl, Jon; Bikson, Marom; Alam, Mahtab; McKinley, R Andy; Parasuraman, Raja
2014-01-01
There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation-specifically transcranial Direct Current Stimulation (tDCS)-has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.
Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel
2014-08-01
Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty.
Reduced beta connectivity during emotional face processing in adolescents with autism.
Leung, Rachel C; Ye, Annette X; Wong, Simeon M; Taylor, Margot J; Doesburg, Sam M
2014-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social cognition. The biological basis of deficits in social cognition in ASD, and their difficulty in processing emotional face information in particular, remains unclear. Atypical communication within and between brain regions has been reported in ASD. Interregional phase-locking is a neurophysiological mechanism mediating communication among brain areas and is understood to support cognitive functions. In the present study we investigated interregional magnetoencephalographic phase synchronization during the perception of emotional faces in adolescents with ASD. A total of 22 adolescents with ASD (18 males, mean age =14.2 ± 1.15 years, 22 right-handed) with mild to no cognitive delay and 17 healthy controls (14 males, mean age =14.4 ± 0.33 years, 16 right-handed) performed an implicit emotional processing task requiring perception of happy, angry and neutral faces while we recorded neuromagnetic signals. The faces were presented rapidly (80 ms duration) to the left or right of a central fixation cross and participants responded to a scrambled pattern that was presented concurrently on the opposite side of the fixation point. Task-dependent interregional phase-locking was calculated among source-resolved brain regions. Task-dependent increases in interregional beta synchronization were observed. Beta-band interregional phase-locking in adolescents with ASD was reduced, relative to controls, during the perception of angry faces in a distributed network involving the right fusiform gyrus and insula. No significant group differences were found for happy or neutral faces, or other analyzed frequency ranges. Significant reductions in task-dependent beta connectivity strength, clustering and eigenvector centrality (all P <0.001) in the right insula were found in adolescents with ASD, relative to controls. Reduced beta synchronization may reflect inadequate recruitment of task-relevant networks during emotional face processing in ASD. The right insula, specifically, was a hub of reduced functional connectivity and may play a prominent role in the inability to effectively extract emotional information from faces. These findings suggest that functional disconnection in brain networks mediating emotional processes may contribute to deficits in social cognition in this population.
Functional changes in the cortical semantic network in amnestic mild cognitive impairment.
Pineault, Jessica; Jolicoeur, Pierre; Grimault, Stephan; Bermudez, Patrick; Brambati, Simona Maria; Lacombe, Jacinthe; Villalpando, Juan Manuel; Kergoat, Marie-Jeanne; Joubert, Sven
2018-05-01
Semantic memory impairment has been documented in individuals with amnestic Mild cognitive impairment (aMCI), who are at risk of developing Alzheimer's disease (AD), yet little is known about the neural basis of this breakdown. The aim of this study was to investigate the brain mechanisms associated with semantic performance in aMCI patients. A group of aMCI patients and a group of healthy controls carried out a semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG). During the task, participants were shown famous faces and had to determine whether each famous person matched a given occupation. The main hypotheses were that (a) semantic processing should be compromised for aMCI patients, and (b) these deficits should be associated with cortical dysfunctions within specific areas of the semantic network. Behavioral results showed that aMCI participants were significantly slower and less accurate than controls at the semantic task. Additionally, relative to controls, a significant pattern of hyperactivation was found in the aMCI group within specific regions of the extended semantic network, including the right anterior temporal lobe (ATL) and fusiform gyrus. Abnormal functional activation within key areas of the semantic network suggests that it is compromised early in the disease process. Moreover, this pattern of right ATL and fusiform gyrus hyperactivation was positively associated with gray matter integrity in specific areas, but was not associated with any pattern of atrophy, suggesting that this pattern of hyperactivation may precede structural alteration of the semantic network in aMCI. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Flexible modulation of network connectivity related to cognition in Alzheimer's disease.
McLaren, Donald G; Sperling, Reisa A; Atri, Alireza
2014-10-15
Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain. PMID:25057823
Rosskopf, Johannes; Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Uttner, Ingo; Ludolph, Albert C; Pinkhardt, Elmar; Juengling, Freimut D; Kassubek, Jan
2017-07-01
The topography of functional network changes in progressive supranuclear palsy can be mapped by intrinsic functional connectivity MRI. The objective of this study was to study functional connectivity and its clinical and behavioral correlates in dedicated networks comprising the cognition-related default mode and the motor and midbrain functional networks in patients with PSP. Whole-brain-based "resting-state" functional MRI and high-resolution T1-weighted magnetic resonance imaging data together with neuropsychological and video-oculographic data from 34 PSP patients (22 with Richardson subtype and 12 with parkinsonian subtype) and 35 matched healthy controls were subjected to network-based functional connectivity and voxel-based morphometry analysis. After correction for global patterns of brain atrophy, the group comparison between PSP patients and controls revealed significantly decreased functional connectivity (P < 0.05, corrected) in the prefrontal cortex, which was significantly correlated with cognitive performance (P = 0.006). Of note, midbrain network connectivity in PSP patients showed increased connectivity with the thalamus, on the one hand, whereas, on the other hand, lower functional connectivity within the midbrain was significantly correlated with vertical gaze impairment, as quantified by video-oculography (P = 0.004). PSP Richardson subtype showed significantly increased functional motor network connectivity with the medial prefrontal gyrus. PSP-associated neurodegeneration was attributed to both decreased and increased functional connectivity. Decreasing functional connectivity was associated with worse behavioral performance (ie, dementia severity and gaze palsy), whereas the pattern of increased functional connectivity may be a potential adaptive mechanism. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
BRAPH: A graph theory software for the analysis of brain connectivity
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447
BRAPH: A graph theory software for the analysis of brain connectivity.
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
Kessler, Daniel; Angstadt, Michael; Welsh, Robert C.
2014-01-01
Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309
Connectomics and neuroticism: an altered functional network organization.
Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André
2015-01-01
The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.
Amidi, Ali; Hosseini, S M Hadi; Leemans, Alexander; Kesler, Shelli R; Agerbæk, Mads; Wu, Lisa M; Zachariae, Robert
2017-12-01
Cisplatin-based chemotherapy may have neurotoxic effects within the central nervous system. The aims of this study were 1) to longitudinally investigate the impact of cisplatin-based chemotherapy on whole-brain networks in testicular cancer patients undergoing treatment and 2) to explore whether possible changes are related to decline in cognitive functioning. Sixty-four newly orchiectomized TC patients underwent structural magnetic resonance imaging (T1-weighted and diffusion-weighted imaging) and cognitive testing at baseline prior to further treatment and again at a six-month follow-up. At follow-up, 22 participants had received cisplatin-based chemotherapy (CT) while 42 were in active surveillance (S). Brain structural networks were constructed for each participant, and network properties were investigated using graph theory and longitudinally compared across groups. Cognitive functioning was evaluated using standardized neuropsychological tests. All statistical tests were two-sided. Compared with the S group, the CT group demonstrated altered global and local brain network properties from baseline to follow-up as evidenced by decreases in important brain network properties such as small-worldness (P = .04), network clustering (P = .04), and local efficiency (P = .02). In the CT group, poorer overall cognitive performance was associated with decreased small-worldness (r = -0.46, P = .04) and local efficiency (r = -0.51, P = .02), and verbal fluency was associated with decreased local efficiency (r = -0.55, P = .008). Brain structural networks may be disrupted following treatment with cisplatin-based chemotherapy. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in patients undergoing chemotherapy. To the best of our knowledge, this is the first study to longitudinally investigate changes in structural brain networks in a cancer population, providing novel insights regarding the neurobiological mechanisms of cancer-related cognitive impairment.
Effects of amyloid and small vessel disease on white matter network disruption.
Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Ye, Byoung Seok; Kim, Yeo Jin; Cho, Hanna; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won
2015-01-01
There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232 cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B (PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems
Schilling, Malte; Cruse, Holk
2017-01-01
It has often been stated that for a neuronal system to become a cognitive one, it has to be large enough. In contrast, we argue that a basic property of a cognitive system, namely the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof of concept, we propose an artificial neural network, termed reaCog, that, first, is able to deal with a specific domain of behavior (six-legged-walking). Second, we show how a minor expansion of this system enables the system to plan ahead and deploy existing behavioral elements in novel contexts in order to solve current problems. To this end, the system invents new solutions that are not possible for the reactive network. Rather these solutions result from new combinations of given memory elements. This faculty does not rely on a dedicated system being more or less independent of the reactive basis, but results from exploitation of the reactive basis by recruiting the lower-level control structures in a way that motor planning becomes possible as an internal simulation relying on internal representation being grounded in embodied experiences. PMID:28194106
Camera Control and Geo-Registration for Video Sensor Networks
NASA Astrophysics Data System (ADS)
Davis, James W.
With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.
Altered Intrinsic Functional Brain Architecture in Children at Familial Risk of Major Depression
Chai, Xiaoqian J.; Hirshfeld-Becker, Dina; Biederman, Joseph; Uchida, Mai; Doehrmann, Oliver; Leonard, Julia; Salvatore, John; Kenworthy, Tara; Brown, Ariel; Kagan, Elana; de los Angeles, Carlo; Gabrieli, John D.E.; Whitfield-Gabrieli, Susan
2015-01-01
Background Neuroimaging studies of patients with major depression have revealed abnormal intrinsic functional connectivity measured during the resting state in multiple, distributed networks. However, it is unclear whether these findings reflect the state of major depression or reflect trait neurobiological underpinnings of risk for major depression. Methods We compared resting-state functional connectivity, measured with functional magnetic resonance imaging (fMRI), between unaffected children of parents who had documented histories of major depression (at-risk, n = 27; 8–14 years of age) and age-matched children of parents with no lifetime history of depression (controls, n = 16). Results At-risk children exhibited hyperconnectivity between the default mode network (DMN) and subgenual anterior cingulate cortex (sgACC) / orbital frontal cortex (OFC), and the magnitude of connectivity positively correlated with individual symptom scores. At-risk children also exhibited (1) hypoconnectivity within the cognitive control network, which also lacked the typical anticorrelation with the DMN; (2) hypoconnectivity between left dorsolateral prefrontal cortex (DLPFC) and sgACC; and (3) hyperconnectivity between the right amygdala and right inferior frontal gyrus, a key region for top-down modulation of emotion. Classification between at-risk children and controls based on resting-state connectivity yielded high accuracy with high sensitivity and specificity that was superior to clinical rating scales. Conclusions Children at familial risk for depression exhibited atypical functional connectivity in the default-mode, cognitive-control, and affective networks. Such task-independent functional brain measures of risk for depression in children could be used to promote early intervention to reduce the likelihood of developing depression. PMID:26826874
Top-Down Network Effective Connectivity in Abstinent Substance Dependent Individuals
Regner, Michael F.; Saenz, Naomi; Maharajh, Keeran; Yamamoto, Dorothy J.; Mohl, Brianne; Wylie, Korey; Tregellas, Jason; Tanabe, Jody
2016-01-01
Objective We hypothesized that compared to healthy controls, long-term abstinent substance dependent individuals (SDI) will differ in their effective connectivity between large-scale brain networks and demonstrate increased directional information from executive control to interoception-, reward-, and habit-related networks. In addition, using graph theory to compare network efficiencies we predicted decreased small-worldness in SDI compared to controls. Methods 50 SDI and 50 controls of similar sex and age completed psychological surveys and resting state fMRI. fMRI results were analyzed using group independent component analysis; 14 networks-of-interest (NOI) were selected using template matching to a canonical set of resting state networks. The number, direction, and strength of connections between NOI were analyzed with Granger Causality. Within-group thresholds were p<0.005 using a bootstrap permutation. Between group thresholds were p<0.05, FDR-corrected for multiple comparisons. NOI were correlated with behavioral measures, and group-level graph theory measures were compared. Results Compared to controls, SDI showed significantly greater Granger causal connectivity from right executive control network (RECN) to dorsal default mode network (dDMN) and from dDMN to basal ganglia network (BGN). RECN was negatively correlated with impulsivity, behavioral approach, and negative affect; dDMN was positively correlated with impulsivity. Among the 14 NOI, SDI showed greater bidirectional connectivity; controls showed more unidirectional connectivity. SDI demonstrated greater global efficiency and lower local efficiency. Conclusions Increased effective connectivity in long-term abstinent drug users may reflect improved cognitive control over habit and reward processes. Higher global and lower local efficiency across all networks in SDI compared to controls may reflect connectivity changes associated with drug dependence or remission and requires future, longitudinal studies to confirm. PMID:27776135
Chen, Xingui; Li, Jingjing; Ren, Jing; Hu, Xinglong; Zhu, Chunyan; Tian, Yanghua; Hu, Panpan; Ma, Huijuan; Yu, Fengqiong; Wang, Kai
2014-10-01
Complaints about attention disorders are common among breast cancer survivors who have undergone chemotherapy treatment. However, it is not known whether these complaints indicate a global attention deficit or the selective impairment of attention networks. This study sought to investigate the attentional abilities of breast cancer patients after chemotherapy treatment using the attention network test (ANT). The participants included breast cancer patients who had undergone chemotherapy (CT, N = 58), patients who had not undergone chemotherapy (non-CT, N = 53), and matched healthy controls (HC, N = 55). All participants completed the ANT, which provides measures of three independent attention networks (alerting, orienting, and executive control) and neuropsychological background tests. Our results indicated that the chemotherapy-treated breast cancer patients had significant deficits in the alerting and executive control networks but not in the orienting network. The CT group scored significantly lower in several cognitive tasks, including attention, memory, and information processing tasks, relative to the other two groups. Additionally, significant correlations were found between information processing and the efficiency of the executive control network within the CT group. These results suggest that the three attention networks were selectively impaired following chemotherapy treatment, which affected different brain areas in the breast cancer survivors. Copyright © 2014 John Wiley & Sons, Ltd.
Cognitively Central Actors and Their Personal Networks in an Energy Efficiency Training Program
ERIC Educational Resources Information Center
Hytönen, Kaisa; Palonen, Tuire; Hakkarainen, Kai
2014-01-01
This article aims to examine cognitively central actors and their personal networks in the emerging field of energy efficiency. Cognitively central actors are frequently sought for professional advice by other actors and, therefore, they are positioned in the middle of a social network. They often are important knowledge resources, especially in…
Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M.; Ren, Junchan; Ren, Aifeng
2015-01-01
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI. PMID:25679386
Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M; Ren, Junchan; Ren, Aifeng
2015-01-01
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.
Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity.
Clément, Francis; Gauthier, Serge; Belleville, Sylvie
2013-05-01
Our goal was to test the effect of disease severity on the brain activation associated with two executive processes: manipulation and divided attention. This was achieved by administrating a manipulation task and a divided attention task using functional magnetic resonance imaging to 24 individuals with mild cognitive impairment (MCI) and 14 healthy controls matched for age, sex and education. The Mattis Dementia Rating Scale was used to divide persons with MCI into those with better and worse cognitive performances. Both tasks were associated with more brain activation in the MCI group with higher cognition than in healthy controls, particularly in the left frontal areas. Correlational analyses indicated that greater activation in a frontostriatal network hyperactivated by the higher-cognition group was related with better task performance, suggesting that these activations may support functional reorganization of a compensatory nature. By contrast, the lower-cognition group failed to show greater cerebral hyperactivation than controls during the divided attention task and, during the manipulation task, and showed less brain activation than controls in the left ventrolateral cortex, a region commonly hypoactivated in patients with Alzheimer's disease. These findings indicate that, during the early phase of MCI, executive functioning benefits from neural reorganization, but that a breakdown of this brain plasticity characterizes the late stages of MCI. Copyright © 2012 Elsevier Ltd. All rights reserved.
Anatomy and computational modeling of networks underlying cognitive-emotional interaction
John, Yohan J.; Bullock, Daniel; Zikopoulos, Basilis; Barbas, Helen
2013-01-01
The classical dichotomy between cognition and emotion equated the first with rationality or logic and the second with irrational behaviors. The idea that cognition and emotion are separable, antagonistic forces competing for dominance of mind has been hard to displace despite abundant evidence to the contrary. For instance, it is now known that a pathological absence of emotion leads to profound impairment of decision making. Behavioral observations of this kind are corroborated at the mechanistic level: neuroanatomical studies reveal that brain areas typically described as underlying either cognitive or emotional processes are linked in ways that imply complex interactions that do not resemble a simple mutual antagonism. Instead, physiological studies and network simulations suggest that top–down signals from prefrontal cortex realize “cognitive control” in part by either suppressing or promoting emotional responses controlled by the amygdala, in a way that facilitates adaptation to changing task demands. Behavioral, anatomical, and physiological data suggest that emotion and cognition are equal partners in enabling a continuum or matrix of flexible behaviors that are subserved by multiple brain regions acting in concert. Here we focus on neuroanatomical data that highlight circuitry that structures cognitive-emotional interactions by directly or indirectly linking prefrontal areas with the amygdala. We also present an initial computational circuit model, based on anatomical, physiological, and behavioral data to explicitly frame the learning and performance mechanisms by which cognition and emotion interact to achieve flexible behavior. PMID:23565082
Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A
2018-02-01
Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.
Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy.
Braakman, Hilde M H; Vaessen, Maarten J; Jansen, Jacobus F A; Debeij-van Hall, Mariette H J A; de Louw, Anton; Hofman, Paul A M; Vles, Johan S H; Aldenkamp, Albert P; Backes, Walter H
2013-03-01
Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Thirty-two children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad-range cognitive impairments in children with FLE. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Theory of mind and empathy in preclinical and clinical Huntington's disease.
Adjeroud, Najia; Besnard, Jérémy; El Massioui, Nicole; Verny, Christophe; Prudean, Adriana; Scherer, Clarisse; Gohier, Bénédicte; Bonneau, Dominique; Allain, Philippe
2016-01-01
We investigated cognitive and affective Theory of Mind (ToM) and empathy in patients with premanifest and manifest Huntington's disease (HD). The relationship between ToM performance and executive skills was also examined. Sixteen preclinical and 23 clinical HD patients, and 39 healthy subjects divided into 2 control groups were given a French adaptation of the Yoni test (Shamay-Tsoory, S.G., Aharon-Peretz, J. (2007). Dissociable prefrontal networks for cognitive and affective theory of mind: a lesion study. Neuropsychologia, 45(3), 3054-67) that examines first- and second-order cognitive and affective ToM processing in separate conditions with a physical control condition. Participants were also given questionnaires of empathy and cognitive tests which mainly assessed executive functions (inhibition and mental flexibility). Clinical HD patients made significantly more errors than their controls in the first- and second-order cognitive and affective ToM conditions of the Yoni task, but exhibited no empathy deficits. However, there was no evidence that ToM impairment was related to cognitive deficits in these patients. Preclinical HD patients were unimpaired in ToM tasks and empathy measures compared with their controls. Our results are consistent with the idea that impaired affective and cognitive mentalizing emerges with the clinical manifestation of HD, but is not necessarily part of the preclinical stage. Furthermore, these impairments appear independent of executive dysfunction and empathy. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan
2017-11-01
Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer's disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer's disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer's disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks-the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer's disease patients with and without cerebrovascular disease. Alzheimer's disease patients without cerebrovascular disease, but not Alzheimer's disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer's disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer's disease patients with and without cerebrovascular disease. Across Alzheimer's disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer's disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer's disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer's disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer's disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer's disease network degeneration phenotype. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L
2018-06-01
There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.
Mothersill, Omar; Tangney, Noreen; Morris, Derek W; McCarthy, Hazel; Frodl, Thomas; Gill, Michael; Corvin, Aiden; Donohoe, Gary
2017-06-01
Resting-state functional magnetic resonance imaging (rs-fMRI) has repeatedly shown evidence of altered functional connectivity of large-scale networks in schizophrenia. The relationship between these connectivity changes and behaviour (e.g. symptoms, neuropsychological performance) remains unclear. Functional connectivity in 27 patients with schizophrenia or schizoaffective disorder, and 25 age and gender matched healthy controls was examined using rs-fMRI. Based on seed regions from previous studies, we examined functional connectivity of the default, cognitive control, affective and attention networks. Effects of symptom severity and theory of mind performance on functional connectivity were also examined. Patients showed increased connectivity between key nodes of the default network including the precuneus and medial prefrontal cortex compared to controls (p<0.01, FWE-corrected). Increasing positive symptoms and increasing theory of mind performance were both associated with altered connectivity of default regions within the patient group (p<0.01, FWE-corrected). This study confirms previous findings of default hyper-connectivity in schizophrenia spectrum patients and reveals an association between altered default connectivity and positive symptom severity. As a novel find, this study also shows that default connectivity is correlated to and predictive of theory of mind performance. Extending these findings by examining the effects of emerging social cognition treatments on both default connectivity and theory of mind performance is now an important goal for research. Copyright © 2016 Elsevier B.V. All rights reserved.
Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K
2016-04-21
In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Association of Structural Global Brain Network Properties with Intelligence in Normal Aging
Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas
2014-01-01
Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994
Young, Jacob S.; Smith, David V.; Coutlee, Christopher G.; Huettel, Scott A.
2015-01-01
Individuals with autistic spectrum disorders exhibit distinct personality traits linked to attentional, social, and affective functions, and those traits are expressed with varying levels of severity in the neurotypical and subclinical population. Variation in autistic traits has been linked to reduced functional and structural connectivity (i.e., underconnectivity, or reduced synchrony) with neural networks modulated by attentional, social, and affective functions. Yet, it remains unclear whether reduced synchrony between these neural networks contributes to autistic traits. To investigate this issue, we used functional magnetic resonance imaging to record brain activation while neurotypical participants who varied in their subclinical scores on the Autism-Spectrum Quotient (AQ) viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces and of landscape scenes). We used independent component analysis (ICA) combined with a spatiotemporal regression to quantify synchrony between neural networks. Our results indicated that decreased synchrony between the executive control network (ECN) and a face-scene network (FSN) predicted higher scores on the AQ. This relationship was not explained by individual differences in head motion, preferences for faces, or personality variables related to social cognition. Our findings build on clinical reports by demonstrating that reduced synchrony between distinct neural networks contributes to a range of subclinical autistic traits. PMID:25852527
Aupperle, Robin L; Allard, Carolyn B; Grimes, Erin M; Simmons, Alan N; Flagan, Taru; Behrooznia, Michelle; Cissell, Shadha H; Twamley, Elizabeth W; Thorp, Steven R; Norman, Sonya B; Paulus, Martin P; Stein, Murray B
2012-04-01
Posttraumatic stress disorder (PTSD) has been associated with executive or attentional dysfunction and problems in emotion processing. However, it is unclear whether these two domains of dysfunction are related to common or distinct neurophysiological substrates. To examine the hypothesis that greater neuropsychological impairment in PTSD relates to greater disruption in prefrontal-subcortical networks during emotional anticipation. Case-control, cross-sectional study. General community and hospital and community psychiatric clinics. Volunteer sample of 37 women with PTSD related to intimate partner violence and 34 age-comparable healthy control women. We used functional magnetic resonance imaging (fMRI) to examine neural responses during anticipation of negative and positive emotional images. The Clinician-Administered PTSD Scale was used to characterize PTSD symptom severity. The Wechsler Adult Intelligence Scale, Third Edition, Digit Symbol Test, Delis-Kaplan Executive Function System Color-Word Interference Test, and Wisconsin Card Sorting Test were used to characterize neuropsychological performance. Women with PTSD performed worse on complex visuomotor processing speed (Digit Symbol Test) and executive function (Color-Word Interference Inhibition/Switching subtest) measures compared with control subjects. Posttraumatic stress disorder was associated with greater anterior insula and attenuated lateral prefrontal cortex (PFC) activation during emotional anticipation. Greater dorsolateral PFC activation (anticipation of negative images minus anticipation of positive images) was associated with lower PTSD symptom severity and better visuomotor processing speed and executive functioning. Greater medial PFC and amygdala activation related to slower visuomotor processing speed. During emotional anticipation, women with PTSD show exaggerated activation in the anterior insula, a region important for monitoring internal bodily state. Greater dorsolateral PFC response in PTSD patients during emotional anticipation may reflect engagement of cognitive control networks that are beneficial for emotional and cognitive functioning. Novel treatments could be aimed at strengthening the balance between cognitive control (dorsolateral PFC) and affective processing (medial PFC and amygdala) networks to improve overall functioning for PTSD patients.
Impaired conflict resolution and vigilance in euthymic bipolar disorder.
Marotta, Andrea; Chiaie, Roberto Delle; Spagna, Alfredo; Bernabei, Laura; Sciarretta, Martina; Roca, Javier; Biondi, Massimo; Casagrande, Maria
2015-09-30
Difficulty attending is a common deficit of euthymic bipolar patients. However, it is not known whether this is a global attentional deficit or relates to a specific attentional network. According to the attention network approach, attention is best understood in terms of three functionally and neuroanatomically distinct networks-alerting, orienting, and executive control. In this study, we explored whether and which of the three attentional networks are altered in euthymic Bipolar Disorder (BD). A sample of euthymic BD patients and age-matched healthy controls completed the Attention Network Test for Interactions and Vigilance (ANTI-V) that provided not only a measure of orienting, executive, and alerting networks, but also an independent measure of vigilance (tonic alerting). Compared to healthy controls, BD patients have impaired executive control (greater interference), reduced vigilance (as indexed by a decrease in the d' sensitivity) as well as slower overall reaction times and poorer accuracy. Our results show that deficits in executive attention and sustained attention often persist in BD patients even after complete remission of affective symptoms, thus suggesting that cognitive enhancing treatments programmed to improve these deficits could contribute to improve their functional recovery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhu, Chun-Min; Ma, Ye; Xie, Lei; Huang, Jin-Zhuang; Sun, Zong-Bo; Duan, Shou-Xing; Lin, Zhi-Rong; Yin, Jing-Jing; Le, Hong-Bo; Sun, Dan-Miao; Xu, Wen-Can; Ma, Shu-Hua
2017-02-01
Using ethology and functional magnetic resonance imaging (fMRI) to explore mild cognitive dysfunction and spatial working memory (WM) impairment in patients with systemic lupus erythematosus (SLE) without overt neuropsychiatric symptoms (non-NPSLE) and to study whether any clinical biomarkers could serve as predictors of brain dysfunction in this disease. Eighteen non-NPSLE patients and 18 matched subjects were all tested using the Montreal cognitive assessment scale test and scanned using blood-oxygen-level dependent fMRI while performing the n-back task to investigate the activation intensity of some cognition-related areas. Ethology results showed that non-NPSLE patients had mild cognitive dysfunction and memory dysfunction (p < 0.05). The fMRI scan confirmed a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), premotor area, parietal lobe, and supplementary motor area (SMA)/anterior cingulate cortex (ACC) that was activated during the n-back task, with right hemisphere dominance. However, only the right SMA/ACC showed a load effect in the non-NPSLE group; the activation intensity of most WM-related brain areas for the non-NPSLE group was lower than for the control group under 3 memory loads. Further, we found that the activation intensity of some cognition-related areas, including the bilateral caudate nucleus/insula and hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. An inverse correlation existed between individual activation intensity and disease duration. Non-NPSLE-related brain damage with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial WM and mild cognitive dysfunction. Patients with longer disease duration would be expected to exhibit increased central nervous system damage.