Sample records for cognitive control system

  1. Designing to Support Command and Control in Urban Firefighting

    DTIC Science & Technology

    2008-06-01

    complex human- machine systems. Keywords: Command and control, firefighting, cognitive systems engineering, cognitive task analysis 1...Elm, W. (2000). Bootstrapping multiple converging cognitive task analysis techniques for system design. In J.M.C. Schraagen, S.F. Chipman, & V.L...Shalin, (Eds.), Cognitive Task Analysis . (pp. 317-340). Mahwah, NJ: Lawrence Erlbaum. Rasmussen, J., Pejtersen, A., Goodman, L. (1994). Cognitive

  2. Bilingual Language Control and General Purpose Cognitive Control among Individuals with Bilingual Aphasia: Evidence Based on Negative Priming and Flanker Tasks

    PubMed Central

    Dash, Tanya; Kar, Bhoomika R.

    2014-01-01

    Background. Bilingualism results in an added advantage with respect to cognitive control. The interaction between bilingual language control and general purpose cognitive control systems can also be understood by studying executive control among individuals with bilingual aphasia. Objectives. The current study examined the subcomponents of cognitive control in bilingual aphasia. A case study approach was used to investigate whether cognitive control and language control are two separate systems and how factors related to bilingualism interact with control processes. Methods. Four individuals with bilingual aphasia performed a language background questionnaire, picture description task, and two experimental tasks (nonlinguistic negative priming task and linguistic and nonlinguistic versions of flanker task). Results. A descriptive approach was used to analyse the data using reaction time and accuracy measures. The cumulative distribution function plots were used to visualize the variations in performance across conditions. The results highlight the distinction between general purpose cognitive control and bilingual language control mechanisms. Conclusion. All participants showed predominant use of the reactive control mechanism to compensate for the limited resources system. Independent yet interactive systems for bilingual language control and general purpose cognitive control were postulated based on the experimental data derived from individuals with bilingual aphasia. PMID:24982591

  3. A cognitive robotics system: the symbolic and sub-symbolic robotic intelligence control system (SS-RICS)

    NASA Astrophysics Data System (ADS)

    Kelley, Troy D.; Avery, Eric

    2010-04-01

    This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.

  4. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  5. Memory and cognitive control circuits in mathematical cognition and learning

    PubMed Central

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  6. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  7. Novel Television-Based Cognitive Training Improves Working Memory and Executive Function

    PubMed Central

    Shatil, Evelyn; Mikulecká, Jaroslava; Bellotti, Francesco; Bureš, Vladimír

    2014-01-01

    The main study objective was to investigate the effect of interactive television-based cognitive training on cognitive performance of 119 healthy older adults, aged 60–87 years. Participants were randomly allocated to a cognitive training group or to an active control group in a single-blind controlled two-group design. Before and after training interactive television cognitive performance was assessed on well validated tests of fluid, higher-order ability, and system usability was evaluated. The participants in the cognitive training group completed a television-based cognitive training programme, while the participants in the active control group completed a TV-based programme of personally benefiting activities. Significant improvements were observed in well validated working memory and executive function tasks in the cognitive training but not in the control group. None of the groups showed statistically significant improvement in life satisfaction score. Participants' reports of “adequate” to “high” system usability testify to the successful development and implementation of the interactive television-based system and compliant cognitive training contents. The study demonstrates that cognitive training delivered by means of an interactive television system can generate genuine cognitive benefits in users and these are measurable using well-validated cognitive tests. Thus, older adults who cannot use or afford a computer can easily use digital interactive television to benefit from advanced software applications designed to train cognition. PMID:24992187

  8. Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control

    PubMed Central

    Chatham, Christopher H.; Frank, Michael J.; Munakata, Yuko

    2009-01-01

    The capacity to anticipate and prepare for future events is thought to be critical for cognitive control. Dominant accounts of cognitive control treat the developing system as merely a weaker version of the adult system, progressively strengthening over time. Using the AX Continuous Performance Task (AX-CPT) in combination with high-resolution pupillometry, we find that whereas 8-year-old children resemble adults in their proactive use of cognitive control, 3.5-year-old children exhibit a qualitatively different, reactive form of cognitive control, responding to events only as they unfold and retrieving information from memory as needed in the moment. These results demonstrate the need to reconsider the origins of cognitive control and the basis for children's behaviors across domains. PMID:19321427

  9. Cognitive Control of Saccadic Eye Movements

    ERIC Educational Resources Information Center

    Hutton, S. B.

    2008-01-01

    The saccadic eye movement system provides researchers with a powerful tool with which to explore the cognitive control of behaviour. It is a behavioural system whose limited output can be measured with exceptional precision, and whose input can be controlled and manipulated in subtle ways. A range of cognitive processes (notably those involved in…

  10. Cognitive process modelling of controllers in en route air traffic control.

    PubMed

    Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark

    2012-01-01

    In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.

  11. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    PubMed

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.

  12. The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding.

    PubMed

    Spunt, Robert P; Lieberman, Matthew D

    2013-01-01

    Much social-cognitive processing is believed to occur automatically; however, the relative automaticity of the brain systems underlying social cognition remains largely undetermined. We used functional MRI to test for automaticity in the functioning of two brain systems that research has indicated are important for understanding other people's behavior: the mirror neuron system and the mentalizing system. Participants remembered either easy phone numbers (low cognitive load) or difficult phone numbers (high cognitive load) while observing actions after adopting one of four comprehension goals. For all four goals, mirror neuron system activation showed relatively little evidence of modulation by load; in contrast, the association of mentalizing system activation with the goal of inferring the actor's mental state was extinguished by increased cognitive load. These results support a dual-process model of the brain systems underlying action understanding and social cognition; the mirror neuron system supports automatic behavior identification, and the mentalizing system supports controlled social causal attribution.

  13. Cognitive control predicts use of model-based reinforcement learning.

    PubMed

    Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D

    2015-02-01

    Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.

  14. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    PubMed

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic areas typically affected by Alzheimer's disease pathology, as well as in sensory and motor areas, striatum and thalamus that are relatively spared in Alzheimer's disease. The reduction of the serotonin transporter in mild cognitive impairment was greater than grey matter atrophy or reductions in regional cerebral blood flow compared to controls. Lower cortical serotonin transporters were associated with worse performance on tests of auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. The serotonin system may represent an important target for prevention and treatment of MCI, particularly the post-synaptic receptors (5-HT4 and 5-HT6), which may not be as severely affected as presynaptic aspects of the serotonin system, as indicated by the observation of lower serotonin transporters in MCI relative to healthy controls. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett

    According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual’s cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a "good-enough" response instead of deliberating for the "best" response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plantmore » risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included.« less

  16. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.

    PubMed

    Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J

    2012-01-01

    Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.

  17. Salience network dynamics underlying successful resistance of temptation

    PubMed Central

    Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q

    2017-01-01

    Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582

  18. Cognitive Control Predicts Use of Model-Based Reinforcement-Learning

    PubMed Central

    Otto, A. Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D.

    2015-01-01

    Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791

  19. Multiple Systems for Cognitive Control: Evidence from a Hybrid Prime-Simon Task

    ERIC Educational Resources Information Center

    Schlaghecken, Friederike; Refaat, Malik; Maylor, Elizabeth A.

    2011-01-01

    Cognitive control resolves conflicts between appropriate and inappropriate response tendencies. Is this achieved by a unitary all-purpose conflict control system, or do independent subsystems deal with different aspects of conflicting information? In a fully factorial hybrid prime-Simon task, participants responded to the identity of targets…

  20. Developmental continuity in reward-related enhancement of cognitive control.

    PubMed

    Strang, Nicole M; Pollak, Seth D

    2014-10-01

    Adolescents engage in more risky behavior than children or adults. The most prominent hypothesis for this phenomenon is that brain systems governing reward sensitivity and brain systems governing self-regulation mature at different rates. Those systems governing reward sensitivity mature in advance of those governing self-control. This hypothesis has substantial empirical support, however, the evidence supporting this theory has been exclusively derived from contexts where self-control systems are required to regulate reward sensitivity in order to promote adaptive behavior. In adults, reward promotes a shift to a proactive control strategy and better cognitive control performance. It is unclear whether children and adolescents will respond to reward in the same way. Using fMRI methodology, we explored whether children and adolescents would demonstrate a shift to proactive control in the context of reward. We tested 22 children, 20 adolescents, and 23 adults. In contrast to our hypothesis, children, adolescents, and adults all demonstrated a shift to proactive cognitive control in the context of reward. In light of the results, current neurobiological theories of adolescent behavior need to be refined to reflect that in certain contexts there is continuity in the manner reward and cognitive control systems interact across development. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. More pain, more gain: Blocking the opioid system boosts adaptive cognitive control.

    PubMed

    van Steenbergen, Henk; Weissman, Daniel H; Stein, Dan J; Malcolm-Smith, Susan; van Honk, Jack

    2017-06-01

    The ability to adaptively increase cognitive control in response to cognitive challenges is crucial for goal-directed behavior. Recent findings suggest that aversive arousal triggers adaptive increases of control, but the neurochemical mechanisms underlying these effects remain unclear. Given the known contributions of the opioid system to hedonic states, we investigated whether blocking this system increases adaptive control modulations. To do so, we conducted a double-blind, placebo-controlled psychopharmacological study (n=52 females) involving a Stroop-like task. Specifically, we assessed the effect of naltrexone, an opioid blocker most selective to the mu-opioid system, on two measures of adaptive control that are thought to depend differentially on aversive arousal: post-error slowing and conflict adaptation. Consistent with our hypothesis, relative to placebo, naltrexone increased post-error slowing without influencing conflict adaptation. This finding not only supports the view that aversive arousal triggers adaptive control but also reveals a novel role for the opioid system in modulating such effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Grounding cognitive control in associative learning.

    PubMed

    Abrahamse, Elger; Braem, Senne; Notebaert, Wim; Verguts, Tom

    2016-07-01

    Cognitive control covers a broad range of cognitive functions, but its research and theories typically remain tied to a single domain. Here we outline and review an associative learning perspective on cognitive control in which control emerges from associative networks containing perceptual, motor, and goal representations. Our review identifies 3 trending research themes that are shared between the domains of conflict adaptation, task switching, response inhibition, and attentional control: Cognitive control is context-specific, can operate in the absence of awareness, and is modulated by reward. As these research themes can be envisaged as key characteristics of learning, we propose that their joint emergence across domains is not coincidental but rather reflects a (latent) growth of interest in learning-based control. Associative learning has the potential for providing broad-scaled integration to cognitive control theory, and offers a promising avenue for understanding cognitive control as a self-regulating system without postulating an ill-defined set of homunculi. We discuss novel predictions, theoretical implications, and immediate challenges that accompany an associative learning perspective on cognitive control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Combining metric episodes with semantic event concepts within the Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS)

    NASA Astrophysics Data System (ADS)

    Kelley, Troy D.; McGhee, S.

    2013-05-01

    This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.

  4. Interactions between metabolic, reward and cognitive processes in appetite control: Implications for novel weight management therapies

    PubMed Central

    Higgs, Suzanne; Spetter, Maartje S; Thomas, Jason M; Rotshtein, Pia; Lee, Michelle; Hallschmid, Manfred; Dourish, Colin T

    2017-01-01

    Traditional models of appetite control have emphasised the role of parallel homeostatic and hedonic systems, but more recently the distinction between independent homeostatic and hedonic systems has been abandoned in favour of a framework that emphasises the cross talk between the neurochemical substrates of the two systems. In addition, evidence has emerged more recently, that higher level cognitive functions such as learning, memory and attention play an important role in everyday appetite control and that homeostatic signals also play a role in cognition. Here, we review this evidence and present a comprehensive model of the control of appetite that integrates cognitive, homeostatic and reward mechanisms. We discuss the implications of this model for understanding the factors that may contribute to disordered patterns of eating and suggest opportunities for developing more effective treatment approaches for eating disorders and weight management. PMID:29072515

  5. Interactions between metabolic, reward and cognitive processes in appetite control: Implications for novel weight management therapies.

    PubMed

    Higgs, Suzanne; Spetter, Maartje S; Thomas, Jason M; Rotshtein, Pia; Lee, Michelle; Hallschmid, Manfred; Dourish, Colin T

    2017-11-01

    Traditional models of appetite control have emphasised the role of parallel homeostatic and hedonic systems, but more recently the distinction between independent homeostatic and hedonic systems has been abandoned in favour of a framework that emphasises the cross talk between the neurochemical substrates of the two systems. In addition, evidence has emerged more recently, that higher level cognitive functions such as learning, memory and attention play an important role in everyday appetite control and that homeostatic signals also play a role in cognition. Here, we review this evidence and present a comprehensive model of the control of appetite that integrates cognitive, homeostatic and reward mechanisms. We discuss the implications of this model for understanding the factors that may contribute to disordered patterns of eating and suggest opportunities for developing more effective treatment approaches for eating disorders and weight management.

  6. How Has the Internet Reshaped Human Cognition?

    PubMed

    Loh, Kep Kee; Kanai, Ryota

    2016-10-01

    Throughout our evolutionary history, our cognitive systems have been altered by the advent of technological inventions such as primitive tools, spoken language, writing, and arithmetic systems. Thirty years ago, the Internet surfaced as the latest technological invention poised to deeply reshape human cognition. With its multifaceted affordances, the Internet environment has profoundly transformed our thoughts and behaviors. Growing up with Internet technologies, "Digital Natives" gravitate toward "shallow" information processing behaviors characterized by rapid attention shifting and reduced deliberations. They engage in increased multitasking behaviors that are linked to increased distractibility and poor executive control abilities. Digital natives also exhibit higher prevalence of Internet-related addictive behaviors that reflect altered reward-processing and self-control mechanisms. Recent neuroimaging investigations have suggested associations between these Internet-related cognitive impacts and structural changes in the brain. Against mounting apprehension over the Internet's consequences on our cognitive systems, several researchers have lamented that these concerns were often exaggerated beyond existing scientific evidence. In the present review, we aim to provide an objective overview of the Internet's impacts on our cognitive systems. We critically discuss current empirical evidence about how the Internet environment has altered the cognitive behaviors and structures involved in information processing, executive control, and reward-processing. © The Author(s) 2015.

  7. Mechanisms for Robust Cognition.

    PubMed

    Walsh, Matthew M; Gluck, Kevin A

    2015-08-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within variable environments. This raises the question, how do cognitive systems achieve similarly high degrees of robustness? The aim of this study was to identify a set of mechanisms that enhance robustness in cognitive systems. We identify three mechanisms that enhance robustness in biological and engineered systems: system control, redundancy, and adaptability. After surveying the psychological literature for evidence of these mechanisms, we provide simulations illustrating how each contributes to robust cognition in a different psychological domain: psychomotor vigilance, semantic memory, and strategy selection. These simulations highlight features of a mathematical approach for quantifying robustness, and they provide concrete examples of mechanisms for robust cognition. © 2014 Cognitive Science Society, Inc.

  8. Uncovering the requirements of cognitive work.

    PubMed

    Roth, Emilie M

    2008-06-01

    In this article, the author provides an overview of cognitive analysis methods and how they can be used to inform system analysis and design. Human factors has seen a shift toward modeling and support of cognitively intensive work (e.g., military command and control, medical planning and decision making, supervisory control of automated systems). Cognitive task analysis and cognitive work analysis methods extend traditional task analysis techniques to uncover the knowledge and thought processes that underlie performance in cognitively complex settings. The author reviews the multidisciplinary roots of cognitive analysis and the variety of cognitive task analysis and cognitive work analysis methods that have emerged. Cognitive analysis methods have been used successfully to guide system design, as well as development of function allocation, team structure, and training, so as to enhance performance and reduce the potential for error. A comprehensive characterization of cognitive work requires two mutually informing analyses: (a) examination of domain characteristics and constraints that define cognitive requirements and challenges and (b) examination of practitioner knowledge and strategies that underlie both expert and error-vulnerable performance. A variety of specific methods can be adapted to achieve these aims within the pragmatic constraints of particular projects. Cognitive analysis methods can be used effectively to anticipate cognitive performance problems and specify ways to improve individual and team cognitive performance (be it through new forms of training, user interfaces, or decision aids).

  9. Embodiment and Performance

    ERIC Educational Resources Information Center

    Bessell, Jacquelyn; Riddell, Patricia

    2016-01-01

    Evidence suggests that some cognitive processes are based on sensorimotor systems in the brain (embodied cognition). The premise of this is that "Biological brains are first and foremost the control systems for biological bodies". It has therefore been suggested that both online cognition (processing as we move through the world) and…

  10. User-friendly cognitive training for the elderly: a technical report.

    PubMed

    Boquete, Luciano; Rodríguez-Ascariz, José Manuel; Amo-Usanos, Carlos; Martínez-Arribas, Alejandro; Amo-Usanos, Javier; Otón, Salvador

    2011-01-01

    This article presents a system that implements a cognitive training program in users' homes. The system comprises various applications designed to create a daily brain-fitness regime. The proposed mental training system uses television and a remote control specially designed for the elderly. This system integrates Java applications to promote brain-fitness training in three areas: arithmetic, memory, and idea association. The system comprises the following: Standard television set, simplified wireless remote control, black box (system's core hardware and software), brain-fitness games (language Java), and Wi-Fi-enabled Internet-connected router. All data from the user training sessions are monitored through a control center. This control center analyzes the evolution of the user and the proper performance of the system during the test. The implemented system has been tested by six healthy volunteers. The results for this user group demonstrated the accessibility and usability of the system in a controlled real environment. The impressions of the users were very favorable, and they reported high adaptability to the system. The mean score for usability and accessibility assigned by the users was 3.56 out of 5 points. The operation stress test (over 200 h) was successful. The proposed system was used to implement a cognitive training program in users' homes, which was developed to be a low-cost tool with a high degree of user interactivity. The results of this preliminary study indicate that this user-friendly system could be adopted as a form of cognitive training for the elderly.

  11. Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.

    PubMed

    Borel, L; Alescio-Lautier, B

    2014-01-01

    In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. The impact of different definitions and reference groups on the prevalence of cognitive impairment: a study in postmenopausal breast cancer patients before the start of adjuvant systemic therapy.

    PubMed

    Schilder, Christina M; Seynaeve, Caroline; Linn, Sabine C; Boogerd, Willem; Gundy, Chad M; Beex, Louk V; van Dam, Frits S; Schagen, Sanne B

    2010-04-01

    Several prospective studies into the effects of adjuvant systemic therapy on cognitive functioning suggest that a proportion of breast cancer patients show cognitive deficits already before the start of systemic therapy. Owing to, among others, methodological inconsistency, studies report different rates of this pre-treatment cognitive impairment. We examined the impact of four different criteria of cognitive impairment and two types of reference groups (a study-specific healthy reference group versus published normative data) on the prevalence of cognitive impairment. Two hundred and five postmenopausal breast cancer patients underwent a battery of neuropsychological tests before the start of endocrine therapy, 124 healthy subjects underwent the same tests. Proportions of cognitive impaired patients were calculated for each of four criteria for cognitive impairment, using (1) study-specific healthy controls and (2) published norms of healthy controls as reference groups. The prevalence of cognitive impairment varied greatly with the strictness of the criterion, as expected, but also was dependent on the reference group used. Cognitive impairment, relative to published norms, ranged from 1% for the strictest to 36.6% for the less strict criterion, cognitive impairment relative to study-specific healthy controls, ranged from 13.7 to 45.4% for the same criteria. This study highlights contrasting proportions of cognitive impairment by using different criteria for cognitive impairment and different reference groups. (Dis)advantages of the methods using a criterion for cognitive impairment, and of the use of published norms versus a study-specific reference group are discussed. Copyright 2009 John Wiley & Sons, Ltd.

  13. An information theory account of cognitive control.

    PubMed

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  14. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  15. The system neurophysiological basis of non-adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions.

    PubMed

    Stock, Ann-Kathrin; Steenbergen, Laura; Colzato, Lorenza; Beste, Christian

    2016-12-01

    Cognitive control is adaptive in the sense that it inhibits automatic processes to optimize goal-directed behavior, but high levels of control may also have detrimental effects in case they suppress beneficial automatisms. Until now, the system neurophysiological mechanisms and functional neuroanatomy underlying these adverse effects of cognitive control have remained elusive. This question was examined by analyzing the automatic exploitation of a beneficial implicit predictive feature under conditions of high versus low cognitive control demands, combining event-related potentials (ERPs) and source localization. It was found that cognitive control prohibits the beneficial automatic exploitation of additional implicit information when task demands are high. Bottom-up perceptual and attentional selection processes (P1 and N1 ERPs) are not modulated by this, but the automatic exploitation of beneficial predictive information in case of low cognitive control demands was associated with larger response-locked P3 amplitudes and stronger activation of the right inferior frontal gyrus (rIFG, BA47). This suggests that the rIFG plays a key role in the detection of relevant task cues, the exploitation of alternative task sets, and the automatic (bottom-up) implementation and reprogramming of action plans. Moreover, N450 amplitudes were larger under high cognitive control demands, which was associated with activity differences in the right medial frontal gyrus (BA9). This most likely reflects a stronger exploitation of explicit task sets which hinders the exploration of the implicit beneficial information in case of high cognitive control demands. Hum Brain Mapp 37:4511-4522, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. A Matched Filter Hypothesis for Cognitive Control

    PubMed Central

    Thompson-Schill, Sharon L.

    2013-01-01

    The prefrontal cortex exerts top-down influences on several aspects of higher-order cognition by functioning as a filtering mechanism that biases bottom-up sensory information toward a response that is optimal in context. However, research also indicates that not all aspects of complex cognition benefit from prefrontal regulation. Here we review and synthesize this research with an emphasis on the domains of learning and creative cognition, and outline how the appropriate level of cognitive control in a given situation can vary depending on the organism's goals and the characteristics of the given task. We offer a Matched Filter Hypothesis for cognitive control, which proposes that the optimal level of cognitive control is task-dependent, with high levels of cognitive control best suited to tasks that are explicit, rule-based, verbal or abstract, and can be accomplished given the capacity limits of working memory and with low levels of cognitive control best suited to tasks that are implicit, reward-based, non-verbal or intuitive, and which can be accomplished irrespective of working memory limitations. Our approach promotes a view of cognitive control as a tool adapted to a subset of common challenges, rather than an all-purpose optimization system suited to every problem the organism might encounter. PMID:24200920

  17. The cognitive bases for the design of a new class of fuzzy logic controllers: The clearness transformation fuzzy logic controller

    NASA Technical Reports Server (NTRS)

    Sultan, Labib; Janabi, Talib

    1992-01-01

    This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.

  18. Adaptive Traffic Route Control in QoS Provisioning for Cognitive Radio Technology with Heterogeneous Wireless Systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshiaki; Ueda, Tetsuro; Obana, Sadao

    As one of the dynamic spectrum access technologies, “cognitive radio technology,” which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.

  19. Design and Implementation of an Underlay Control Channel for Cognitive Radios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny

    Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA modulemore » from National Instruments.« less

  20. Cognitive functioning in dyskinetic cerebral palsy: Its relation to motor function, communication and epilepsy.

    PubMed

    Ballester-Plané, Júlia; Laporta-Hoyos, Olga; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Toro-Tamargo, Esther; Gimeno, Francisca; Narberhaus, Ana; Segarra, Dolors; Pueyo, Roser

    2018-01-01

    Cerebral palsy (CP) is a disorder of motor function often accompanied by cognitive impairment. There is a paucity of research focused on cognition in dyskinetic CP and on the potential effect of related factors. To describe the cognitive profile in dyskinetic CP and to assess its relationship with motor function and associated impairments. Fifty-two subjects with dyskinetic CP (28 males, mean age 24 y 10 mo, SD 13 y) and 52 typically-developing controls (age- and gender-matched) completed a comprehensive neuropsychological assessment. Gross Motor Function Classification System (GMFCS), Communication Function Classification System (CFCS) and epilepsy were recorded. Cognitive performance was compared between control and CP groups, also according different levels of GMFCS. The relationship between cognition, CFCS and epilepsy was examined through partial correlation coefficients, controlling for GMFCS. Dyskinetic CP participants performed worse than controls on all cognitive functions except for verbal memory. Milder cases (GMFCS I) only showed impairment in attention, visuoperception and visual memory. Participants with GMFCS II-III also showed impairment in language-related functions. Severe cases (GMFCS IV-V) showed impairment in intelligence and all specific cognitive functions but verbal memory. CFCS was associated with performance in receptive language functions. Epilepsy was related to performance in intelligence, visuospatial abilities, visual memory, grammar comprehension and learning. Cognitive performance in dyskinetic CP varies with the different levels of motor impairment, with more cognitive functions impaired as motor severity increases. This study also demonstrates the relationship between communication and epilepsy and cognitive functioning, even controlling for the effect of motor severity. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. Implementation of a Space Communications Cognitive Engine

    NASA Technical Reports Server (NTRS)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  2. Cognitive Science and Military Training.

    ERIC Educational Resources Information Center

    Halff, Henry M.; And Others

    1986-01-01

    Four new military training systems offer the opportunity for the application of cognitive science. They are the following: (1) a family of memorization games; (2) a simulator with a graphic, schematic student interface; (3) a system for solving problems of relative motion; and (4) a method of building cognitive skills for air-intercept control.…

  3. An information theory account of cognitive control

    PubMed Central

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875

  4. Multi-task functional MRI in multiple sclerosis patients without clinical disability.

    PubMed

    Colorado, René A; Shukla, Karan; Zhou, Yuxiang; Wolinsky, Jerry S; Narayana, Ponnada A

    2012-01-02

    While the majority of individuals with multiple sclerosis (MS) develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). Functional magnetic resonance imaging (fMRI) in MS patients with low disability suggests that increased use of the cognitive control system may limit the clinical manifestation of the disease. The current fMRI studies tested the hypothesis that nondisabled MS patients show increased recruitment of cognitive control regions while performing sensory, motor and cognitive tasks. Twenty two patients with relapsing-remitting MS and an Expanded Disability Status Scale (EDSS) score of ≤1.5 and 23 matched healthy controls were recruited. Subjects underwent fMRI while observing flashing checkerboards, performing right or left hand movements, or executing the 2-back working memory task. Compared to control subjects, patients demonstrated increased activation of the right dorsolateral prefrontal cortex and anterior cingulate cortex during the performance of the working memory task. This pattern of functional recruitment also was observed during the performance of non-dominant hand movements. These results support the mounting evidence of increased functional recruitment of cognitive control regions in the working memory system of MS patients with low disability and provide new evidence for the role of increased cognitive control recruitment in the motor system. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.

    PubMed

    Foldes, Stephen T; Taylor, Dawn M

    2013-12-21

    Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.

  6. Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research.

    PubMed

    Goschke, Thomas

    2014-01-01

    Disadvantageous decision-making and impaired volitional control over actions, thoughts, and emotions are characteristics of a wide range of mental disorders such as addiction, eating disorders, depression, and anxiety disorders and may reflect transdiagnostic core mechanisms and possibly vulnerability factors. Elucidating the underlying neurocognitive mechanisms is a precondition for moving from symptom-based to mechanism-based disorder classifications and ultimately mechanism-targeted interventions. However, despite substantial advances in basic research on decision-making and cognitive control, there are still profound gaps in our current understanding of dysfunctions of these processes in mental disorders. Central unresolved questions are: (i) to which degree such dysfunctions reflect transdiagnostic mechanisms or disorder-specific patterns of impairment; (ii) how phenotypical features of mental disorders relate to dysfunctional control parameter settings and aberrant interactions between large-scale brain systems involved in habit and reward-based learning, performance monitoring, emotion regulation, and cognitive control; (iii) whether cognitive control impairments are consequences or antecedent vulnerability factors of mental disorders; (iv) whether they reflect generalized competence impairments or context-specific performance failures; (v) whether not only impaired but also chronic over-control contributes to mental disorders. In the light of these gaps, needs for future research are: (i) an increased focus on basic cognitive-affective mechanisms underlying decision and control dysfunctions across disorders; (ii) longitudinal-prospective studies systematically incorporating theory-driven behavioural tasks and neuroimaging protocols to assess decision-making and control dysfunctions and aberrant interactions between underlying large-scale brain systems; (iii) use of latent-variable models of cognitive control rather than single tasks; (iv) increased focus on the interplay of implicit and explicit cognitive-affective processes; (v) stronger focus on computational models specifying neurocognitive mechanisms underlying phenotypical expressions of mental disorders. Copyright © 2013 John Wiley & Sons, Ltd.

  7. A dual-systems perspective on addiction: contributions from neuroimaging and cognitive training.

    PubMed

    McClure, Samuel M; Bickel, Warren K

    2014-10-01

    Dual-systems theories explain lapses in self-control in terms of a conflict between automatic and deliberative modes of behavioral control. Numerous studies have now tested whether the brain areas that control behavior are organized in a manner consistent with dual-systems models. Brain regions directly associated with the mesolimbic dopamine system, the nucleus accumbens and ventromedial prefrontal cortex in particular, capture some of the features assumed by automatic processing. Regions in the lateral prefrontal cortex are more closely linked to deliberative processing and the exertion of self-control in the suppression of impulses. While identifying these regions crudely supports dual-systems theories, important modifications to what constitutes automatic and deliberative behavioral control are also suggested. Experiments have identified various means by which automatic processes may be sculpted. Additional work decomposes deliberative processes into component functions such as generalized working memory, reappraisal of emotional stimuli, and prospection. The importance of deconstructing dual-systems models into specific cognitive processes is clear for understanding and treating addiction. We discuss intervention possibilities suggested by recent research, and focus in particular on cognitive training approaches to bolster deliberative control processes that may aid quit attempts. © 2014 New York Academy of Sciences.

  8. A dual-systems perspective on addiction: contributions from neuroimaging and cognitive training

    PubMed Central

    McClure, Samuel M.; Bickel, Warren K.

    2014-01-01

    Dual-systems theories explain lapses in self-control in terms of a conflict between automatic and deliberative modes of behavioral control. Numerous studies have now tested whether the brain areas that control behavior are organized in a manner consistent with dual-systems models. Brain regions directly associated with the mesolimbic dopamine system, the nucleus accumbens (NAcc) and ventromedial prefrontal cortex (vmPFC) in particular, capture some of the features assumed by automatic processing. Regions in the lateral prefrontal cortex (lPFC) are more closely linked to deliberative processing and the exertion of self-control in the suppression of impulses. While identifying these regions crudely supports dual-system theories, important modifications to what constitutes automatic and deliberative behavioral control are also suggested. Experiments have identified various means by which automatic processes may be sculpted. Additional work decomposes deliberative processes into component functions such as generalized working memory, reappraisal of emotional stimuli, and prospection. The importance of deconstructing dual-systems models into specific cognitive processes is clear for understanding and treating addiction. We discuss intervention possibilities suggested by recent research, and focus in particular on cognitive training approaches to bolster deliberative control processes that may aid quit attempts. PMID:25336389

  9. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    PubMed

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.

  10. Retinal nerve fiber layer thickness and neuropsychiatric manifestations in systemic lupus erythematosus.

    PubMed

    Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D

    2017-11-01

    Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy controls. When evaluating by subgroups, no correlation was found between patients with or without neuropsychiatric systemic lupus erythematosus or cognitive impairment and retinal nerve fiber layer thickness. Conclusion Retinal nerve fiber layer thickness of systemic lupus erythematosus patients was not found to be statistically different compared to controls. Within systemic lupus erythematosus patients there was no correlation between retinal nerve fiber layer thickness and cognitive impairment or other neuropsychiatric systemic lupus erythematosus manifestations.

  11. Hebbian Learning of Cognitive Control: Dealing with Specific and Nonspecific Adaptation

    ERIC Educational Resources Information Center

    Verguts, Tom; Notebaert, Wim

    2008-01-01

    The conflict monitoring model of M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, and J. D. Cohen (2001) triggered several research programs investigating various aspects of cognitive control. One problematic aspect of the Botvinick et al. model is that there is no clear account of how the cognitive system knows where to intervene when…

  12. Translation of Contextual Control Model to chronic disease management: A paradigm to guide design of cognitive support systems.

    PubMed

    Leecaster, Molly K; Weir, Charlene R; Drews, Frank A; Hellewell, James L; Bolton, Daniel; Jones, Makoto M; Nebeker, Jonathan R

    2017-07-01

    Electronic health records (EHRs) continue to be criticized for providing poor cognitive support. Defining cognitive support has lacked theoretical foundation. We developed a measurement model of cognitive support based on the Contextual Control Model (COCOM), which describes control characteristics of an "orderly" joint system and proposes 4 levels of control: scrambled, opportunistic, tactical, and strategic. 35 clinicians (5 centers) were interviewed pre and post outpatient clinical visits and audiotaped during the visit. Behaviors pertaining to hypertension management were systematically mapped to the COCOM control characteristics of: (1) time horizon, (2) uncertainty assessment, (3) consideration of multiple goals, (4) causal model described, and (5) explicitness of plan. Each encounter was classified for overall mode of control. Visits with deviation versus no deviation from hypertension goals were compared. Reviewer agreement was high. Control characteristics differed significantly between deviation groups (Wilcox rank sum p<.01). K-means cluster analysis of control characteristics, stratified by deviation were distinct, with higher goal deviations associated with more control characteristics. The COCOM control characteristics appear to be areas of potential yield for improved user-experience design. Published by Elsevier Inc.

  13. Mutually Augmented Cognition

    NASA Astrophysics Data System (ADS)

    Friesdorf, Florian; Pangercic, Dejan; Bubb, Heiner; Beetz, Michael

    In mac, an ergonomic dialog-system and algorithms will be developed that enable human experts and companions to be integrated into knowledge gathering and decision making processes of highly complex cognitive systems (e.g. Assistive Household as manifested further in the paper). In this event we propose to join algorithms and methodologies coming from Ergonomics and Artificial Intelligence that: a) make cognitive systems more congenial for non-expert humans, b) facilitate their comprehension by utilizing a high-level expandable control code for human experts and c) augment representation of such cognitive system into “deep representation” obtained through an interaction with human companions.

  14. Flexing dual-systems models: How variable cognitive control in children informs our understanding of risk-taking across development.

    PubMed

    Li, Rosa

    2017-10-01

    Prevailing models of the development of decision-making propose that peak risk-taking occurs in adolescence due to a neural imbalance between two processes: gradual, linearly developing cognitive control and rapid, non-linearly developing reward-processing. Though many studies have found neural evidence supporting this dual-systems imbalance model, its behavioral predictions have been surprisingly difficult to document. Most laboratory studies have not found adolescents to exhibit greater risk-taking than children, and public health data show everyday risk-taking to peak in late adolescence/early adulthood. Moreover, when adolescents are provided detailed information about decision options and consequences, they evince similar behavior to adults. Such findings point to a critical feature of the development of decision-making that is missed by imbalance models. Specifically, the engagement of cognitive control is context dependent, such that cognitive control and therefore advantageous decision-making increases when available information is high and decreases when available information is low. Furthermore, the context dependence of cognitive control varies across development, such that increased information availability benefits children more than adolescents, who benefit more than adults. This review advances a flexible dual-systems model that is only imbalanced under certain conditions; explains disparities between neural, behavioral, and public health findings; and provides testable hypotheses for future research. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  15. Decision-making during gambling: an integration of cognitive and psychobiological approaches

    PubMed Central

    Clark, Luke

    2010-01-01

    Gambling is a widespread form of entertainment that may afford unique insights into the interaction between cognition and emotion in human decision-making. It is also a behaviour that can become harmful, and potentially addictive, in a minority of individuals. This article considers the status of two dominant approaches to gambling behaviour. The cognitive approach has identified a number of erroneous beliefs held by gamblers, which cause them to over-estimate their chances of winning. The psychobiological approach has examined case-control differences between groups of pathological gamblers and healthy controls, and has identified dysregulation of brain areas linked to reward and emotion, including the ventromedial prefrontal cortex (vmPFC) and striatum, as well as alterations in dopamine neurotransmission. In integrating these two approaches, recent data are discussed that reveal anomalous recruitment of the brain reward system (including the vmPFC and ventral striatum) during two common cognitive distortions in gambling games: the near-miss effect and the effect of personal control. In games of chance, near-misses and the presence of control have no objective influence on the likelihood of winning. These manipulations appear to harness a reward system that evolved to learn skill-oriented behaviours, and by modulating activity in this system, these cognitive distortions may promote continued, and potentially excessive, gambling. PMID:20026469

  16. Symbiosis of executive and selective attention in working memory

    PubMed Central

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved. PMID:25152723

  17. Symbiosis of executive and selective attention in working memory.

    PubMed

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  18. Enhanced Academic Performance Using a Novel Classroom Physical Activity Intervention to Increase Awareness, Attention and Self-Control: Putting Embodied Cognition into Practice

    ERIC Educational Resources Information Center

    McClelland, Elizabeth; Pitt, Anna; Stein, John

    2015-01-01

    When language is processed, brain activity occurs not only in the classic "language areas" such as Broca's area, but also in areas which control movement. Our systems of understanding, including higher level cognition, are rooted in bodily awareness which needs to be developed as a precursor to intellectual reasoning. Cognition is…

  19. Cognitive Effects of Bilingualism: How Linguistic Experience Leads to Cognitive Change

    ERIC Educational Resources Information Center

    Bialystok, Ellen

    2007-01-01

    Bilinguals must have a mechanism for controlling attention to their two language systems in order to achieve fluent performance in each language without intrusions from the other. This paper examines the evidence that the experience of controlling attention to two languages boosts the development of executive control processes in childhood for…

  20. Robonaut 2 and Watson: Cognitive Dexterity for Future Exploration

    NASA Technical Reports Server (NTRS)

    Badger, Julia M.; Strawser, Philip; Farrell, Logan; Goza, S. Michael; Claunch, Charles A.; Chancey, Raphael; Potapinski, Russell

    2018-01-01

    Future exploration missions will dictate a level of autonomy never before experienced in human spaceflight. Mission plans involving the uncrewed phases of complex human spacecraft in deep space will require a coordinated autonomous capability to be able to maintain the spacecraft when ground control is not available. One promising direction involves embedding intelligence into the system design both through the employment of state-of-the-art system engineering principles as well as through the creation of a cognitive network between a smart spacecraft or habitat and embodiments of cognitive agents. The work described here details efforts to integrate IBM's Watson and other cognitive computing services into NASA Johnson Space Center (JSC)'s Robonaut 2 (R2) anthropomorphic robot. This paper also discusses future directions this work will take. A cognitive spacecraft management system that is able to seamlessly collect data from subsystems, determine corrective actions, and provide commands to enable those actions is the end goal. These commands could be to embedded spacecraft systems or to a set of robotic assets that are tied into the cognitive system. An exciting collaboration with Woodside provides a promising Earth-bound testing analog, as controlling and maintaining not normally manned off-shore platforms have similar constraints to the space missions described.

  1. Cognition and aging in a complex work environment: relationships with performance among air traffic control specialists.

    PubMed

    Becker, J T; Milke, R M

    1998-10-01

    Chronological age affects the performance of demanding cognitive tasks within the aviation environment. Within the domain of air traffic control (ATC), the ability to handle simultaneous visual and auditory input, or to return to a task after a break to complete another task, is critical to success and is the sort of cognitive function most affected by age. The limited available data suggest a strong relationship between age and job performance among ATC specialists, whether measured at the time of entry into the system or during the working lifetime of a full-performance-level controller. An analysis of the distribution of the ages of controllers currently in the system, and a projection for the years 2001 and 2006, leads to the conclusion that a high proportion of the ATC work force will be at risk for displaying age-related changes in job performance efficiency over the next 10 yr. It seems important, therefore, to determine the nature and extent of the age-related cognitive changes that can occur during the lifespan of a controller (i.e., 25-55 yr of age) and how these changes may affect job performance. The results of such an analysis should aid in the design and implementation of new control systems to minimize any deleterious effects of aging on performance.

  2. Adolescent Neurodevelopment of Cognitive Control and Risk-taking in Negative Family Contexts

    PubMed Central

    McCormick, Ethan M.; Qu, Yang; Telzer, Eva H.

    2015-01-01

    Adolescents have an increased need to regulate their behavior as they gain access to opportunities for risky behavior; however, cognitive control systems necessary for this regulation remain relatively immature. Parents can impact their adolescent child's abilities to regulate their behavior and engagement in risk taking. Since adolescents undergo significant neural change, negative parent-child relationship quality may impede or alter development in prefrontal regions subserving cognitive control. To test this hypothesis, 20 adolescents completed a go/nogo task during two fMRI scans occurring 1 year apart. Adolescents reporting greater family conflict and lower family cohesion showed longitudinal increases in risk-taking behavior, which was mediated by longitudinal increases in left VLPFC activation during cognitive control. These results underscore the importance of parent-child relationships during early adolescence, and the neural processes by which cognitive control may be derailed and lead to increased risk taking. PMID:26434803

  3. Adolescent neurodevelopment of cognitive control and risk-taking in negative family contexts.

    PubMed

    McCormick, Ethan M; Qu, Yang; Telzer, Eva H

    2016-01-01

    Adolescents have an increased need to regulate their behavior as they gain access to opportunities for risky behavior; however, cognitive control systems necessary for this regulation remain relatively immature. Parents can impact their adolescent child's abilities to regulate their behavior and engagement in risk taking. Since adolescents undergo significant neural change, negative parent-child relationship quality may impede or alter development in prefrontal regions subserving cognitive control. To test this hypothesis, 20 adolescents completed a Go/NoGo task during two fMRI scans occurring 1year apart. Adolescents reporting greater family conflict and lower family cohesion showed longitudinal increases in risk-taking behavior, which was mediated by longitudinal increases in left VLPFC activation during cognitive control. These results underscore the importance of parent-child relationships during early adolescence, and the neural processes by which cognitive control may be derailed and may lead to increased risk taking. Published by Elsevier Inc.

  4. Social cognitive conflict resolution: Contributions of domain general and domain specific neural systems

    PubMed Central

    Zaki, Jamil; Hennigan, Kelly; Weber, Jochen; Ochsner, Kevin N.

    2010-01-01

    Cognitive control mechanisms allow individuals to behave adaptively in the face of complex and sometimes conflicting information. While the neural bases of these control mechanisms have been examined in many contexts, almost no attention has been paid to their role in resolving conflicts between competing social cues, which is surprising, given that cognitive conflicts are part of many social interactions. Evidence about the neural processing of social information suggests that two systems—the mirror neuron system (MNS) and mental state attribution system (MSAS)—are specialized for processing nonverbal and contextual social cues, respectively. This could support a model of social cognitive conflict resolution in which competition between social cues would recruit domain-general cognitive control mechanisms, which in turn would bias processing towards the MNS or MSAS. Such biasing could also alter social behaviors, such as inferences made about the internal states of others. We tested this model by scanning participants using fMRI while they drew inferences about social targets' emotional states based on congruent or incongruent nonverbal and contextual social cues. Conflicts between social cues recruited the anterior cingulate and lateral prefrontal cortex, brain areas associated with domain-general control processes. This activation was accompanied by biasing of neural activity towards areas in the MNS or MSAS, which tracked, respectively, with perceivers' behavioral reliance on nonverbal or contextual cues when drawing inferences about targets' emotions. Together, these data provide evidence about both domain general and domain specific mechanisms involved in resolving social cognitive conflicts. PMID:20573895

  5. How Accumulated Real Life Stress Experience and Cognitive Speed Interact on Decision-Making Processes

    PubMed Central

    Friedel, Eva; Sebold, Miriam; Kuitunen-Paul, Sören; Nebe, Stephan; Veer, Ilya M.; Zimmermann, Ulrich S.; Schlagenhauf, Florian; Smolka, Michael N.; Rapp, Michael; Walter, Henrik; Heinz, Andreas

    2017-01-01

    Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities. PMID:28642696

  6. How Accumulated Real Life Stress Experience and Cognitive Speed Interact on Decision-Making Processes.

    PubMed

    Friedel, Eva; Sebold, Miriam; Kuitunen-Paul, Sören; Nebe, Stephan; Veer, Ilya M; Zimmermann, Ulrich S; Schlagenhauf, Florian; Smolka, Michael N; Rapp, Michael; Walter, Henrik; Heinz, Andreas

    2017-01-01

    Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities.

  7. Influence of motivation on control hierarchy in the human frontal cortex.

    PubMed

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.

  8. An Integrated Model of Cognitive Control in Task Switching

    ERIC Educational Resources Information Center

    Altmann, Erik M.; Gray, Wayne D.

    2008-01-01

    A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…

  9. A chronometric functional sub-network in the thalamo-cortical system regulates the flow of neural information necessary for conscious cognitive processes.

    PubMed

    León-Domínguez, Umberto; Vela-Bueno, Antonio; Froufé-Torres, Manuel; León-Carrión, Jose

    2013-06-01

    The thalamo-cortical system has been defined as a neural network associated with consciousness. While there seems to be wide agreement that the thalamo-cortical system directly intervenes in vigilance and arousal, a divergence of opinion persists regarding its intervention in the control of other cognitive processes necessary for consciousness. In the present manuscript, we provide a review of recent scientific findings on the thalamo-cortical system and its role in the control and regulation of the flow of neural information necessary for conscious cognitive processes. We suggest that the axis formed by the medial prefrontal cortex and different thalamic nuclei (reticular nucleus, intralaminar nucleus, and midline nucleus), represents a core component for consciousness. This axis regulates different cerebral structures which allow basic cognitive processes like attention, arousal and memory to emerge. In order to produce a synchronized coherent response, neural communication between cerebral structures must have exact timing (chronometry). Thus, a chronometric functional sub-network within the thalamo-cortical system keeps us in an optimal and continuous functional state, allowing high-order cognitive processes, essential to awareness and qualia, to take place. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Trajectories of self-reported cognitive function in postmenopausal women during adjuvant systemic therapy for breast cancer.

    PubMed

    Merriman, John D; Sereika, Susan M; Brufsky, Adam M; McAuliffe, Priscilla F; McGuire, Kandace P; Myers, Jamie S; Phillips, Mary L; Ryan, Christopher M; Gentry, Amanda L; Jones, Lindsay D; Bender, Catherine M

    2017-01-01

    In a sample of 368 postmenopausal women, we (1) determined within-cohort and between-cohort relationships between adjuvant systemic therapy for breast cancer and self-reported cognitive function during the first 18 months of therapy and (2) evaluated the influence of co-occurring symptoms, neuropsychological function, and other covariates on relationships. We evaluated self-reported cognitive function, using the Patient Assessment of Own Functioning Inventory (PAOFI), and potential covariates (e.g., co-occurring symptom scores and neuropsychological function z-scores) in 158 women receiving aromatase inhibitor (AI) therapy alone, 104 women receiving chemotherapy followed by AI therapy, and 106 non-cancer controls. Patients were assessed before systemic therapy and then every 6 months, for a total of four assessments over 18 months. Controls were assessed at matched time points. Mixed-effects modeling was used to determine longitudinal relationships. Controlling for covariates, patients enrolled before chemotherapy reported poorer global cognitive function (p < 0.001), memory (p < 0.001), language and communication (p < 0.001), and sensorimotor function (p = 0.002) after chemotherapy. These patients reported poorer higher-level cognitive and intellectual functions from before chemotherapy to 12 months after initiation of AI therapy (p < 0.001). Higher levels of depressive symptoms (p < 0.001), anxiety (p < 0.001), and fatigue (p = 0.040) at enrollment were predictors of poorer cognitive function over time. PAOFI total score was a predictor of executive function (p = 0.048) and visual working memory (p = 0.005) z-scores, controlling for covariates. Findings provide further evidence of poorer self-reported cognitive function after chemotherapy and of relationships between co-occurring symptoms and cognitive changes. AI therapy alone does not have an impact on self-reported cognitive function. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Patients with Parkinson's disease learn to control complex systems-an indication for intact implicit cognitive skill learning.

    PubMed

    Witt, Karsten; Daniels, Christine; Daniel, Victoria; Schmitt-Eliassen, Julia; Volkmann, Jens; Deuschl, Günther

    2006-01-01

    Implicit memory and learning mechanisms are composed of multiple processes and systems. Previous studies demonstrated a basal ganglia involvement in purely cognitive tasks that form stimulus response habits by reinforcement learning such as implicit classification learning. We will test the basal ganglia influence on two cognitive implicit tasks previously described by Berry and Broadbent, the sugar production task and the personal interaction task. Furthermore, we will investigate the relationship between certain aspects of an executive dysfunction and implicit learning. To this end, we have tested 22 Parkinsonian patients and 22 age-matched controls on two implicit cognitive tasks, in which participants learned to control a complex system. They interacted with the system by choosing an input value and obtaining an output that was related in a complex manner to the input. The objective was to reach and maintain a specific target value across trials (dynamic system learning). The two tasks followed the same underlying complex rule but had different surface appearances. Subsequently, participants performed an executive test battery including the Stroop test, verbal fluency and the Wisconsin card sorting test (WCST). The results demonstrate intact implicit learning in patients, despite an executive dysfunction in the Parkinsonian group. They lead to the conclusion that the basal ganglia system affected in Parkinson's disease does not contribute to the implicit acquisition of a new cognitive skill. Furthermore, the Parkinsonian patients were able to reach a specific goal in an implicit learning context despite impaired goal directed behaviour in the WCST, a classic test of executive functions. These results demonstrate a functional independence of implicit cognitive skill learning and certain aspects of executive functions.

  12. Fun cube based brain gym cognitive function assessment system.

    PubMed

    Zhang, Tao; Lin, Chung-Chih; Yu, Tsang-Chu; Sun, Jing; Hsu, Wen-Chuin; Wong, Alice May-Kuen

    2017-05-01

    The aim of this study is to design and develop a fun cube (FC) based brain gym (BG) cognitive function assessment system using the wireless sensor network and multimedia technologies. The system comprised (1) interaction devices, FCs and a workstation used as interactive tools for collecting and transferring data to the server, (2) a BG information management system responsible for managing the cognitive games and storing test results, and (3) a feedback system used for conducting the analysis of cognitive functions to assist caregivers in screening high risk groups with mild cognitive impairment. Three kinds of experiments were performed to evaluate the developed FC-based BG cognitive function assessment system. The experimental results showed that the Pearson correlation coefficient between the system's evaluation outcomes and the traditional Montreal Cognitive Assessment scores was 0.83. The average Technology Acceptance Model 2 score was close to six for 31 elderly subjects. Most subjects considered that the brain games are interesting and the FC human-machine interface is easy to learn and operate. The control group and the cognitive impairment group had statistically significant difference with respect to the accuracy of and the time taken for the brain cognitive function assessment games, including Animal Naming, Color Search, Trail Making Test, Change Blindness, and Forward / Backward Digit Span. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Representation of Cognitive Reappraisal Goals in Frontal Gamma Oscillations

    PubMed Central

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35–55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion. PMID:25401328

  14. Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study.

    PubMed

    Vollmar, Christian; O'Muircheartaigh, Jonathan; Barker, Gareth J; Symms, Mark R; Thompson, Pamela; Kumari, Veena; Duncan, John S; Janz, Dieter; Richardson, Mark P; Koepp, Matthias J

    2011-06-01

    Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.

  15. Peer Influences on Adolescent Decision Making.

    PubMed

    Albert, Dustin; Chein, Jason; Steinberg, Laurence

    2013-04-01

    Research efforts to account for elevated risk behavior among adolescents have arrived at an exciting new stage. Moving beyond laboratory studies of age differences in "cool" cognitive processes related to risk perception and reasoning, new approaches have shifted focus to the influence of social and emotional factors on adolescent neurocognition. We review recent research suggesting that adolescent risk-taking propensity derives in part from a maturational gap between early adolescent remodeling of the brain's socio-emotional reward system and a gradual, prolonged strengthening of the cognitive control system. At a time when adolescents spend an increasing amount of time with their peers, research suggests that peer-related stimuli may sensitize the reward system to respond to the reward value of risky behavior. As the cognitive control system gradually matures over the course of the teenage years, adolescents grow in their capacity to coordinate affect and cognition, and to exercise self-regulation even in emotionally arousing situations. These capacities are reflected in gradual growth in the capacity to resist peer influence.

  16. Short-term exposure to mobile phone base station signals does not affect cognitive functioning or physiological measures in individuals who report sensitivity to electromagnetic fields and controls.

    PubMed

    Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Fox, Elaine

    2009-10-01

    Individuals who report sensitivity to electromagnetic fields often report cognitive impairments that they believe are due to exposure to mobile phone technology. Previous research in this area has revealed mixed results, however, with the majority of research only testing control individuals. Two studies using control and self-reported sensitive participants found inconsistent effects of mobile phone base stations on cognitive functioning. The aim of the present study was to clarify whether short-term (50 min) exposure at 10 mW/m(2) to typical Global System for Mobile Communication (GSM) and Universal Mobile Telecommunications System (UMTS) base station signals affects attention, memory, and physiological endpoints in sensitive and control participants. Data from 44 sensitive and 44 matched-control participants who performed the digit symbol substitution task (DSST), digit span task (DS), and a mental arithmetic task (MA), while being exposed to GSM, UMTS, and sham signals under double-blind conditions were analyzed. Overall, cognitive functioning was not affected by short-term exposure to either GSM or UMTS signals in the current study. Nor did exposure affect the physiological measurements of blood volume pulse (BVP), heart rate (HR), and skin conductance (SC) that were taken while participants performed the cognitive tasks.

  17. Mechanisms underlying flexible adaptation of cognitive control: behavioral and neuroimaging evidence in a flanker task.

    PubMed

    Zurawska Vel Grajewska, Blandyna; Sim, Eun-Jin; Hoenig, Klaus; Herrnberger, Bärbel; Kiefer, Markus

    2011-11-03

    Cognitive control can be adapted flexibly according to the conflict level in a given situation. In the Eriksen flanker task, interference evoked by flankers is larger in conditions with a higher, rather than a lower proportion of compatible trials. Such compatibility ratio effects also occur for stimuli presented at two spatial locations suggesting that different cognitive control settings can be simultaneously maintained. However, the conditions and the neural correlates of this flexible adaptation of cognitive control are only poorly understood. In the present study, we further elucidated the mechanisms underlying the simultaneous maintenance of two cognitive control settings. In behavioral experiments, stimuli were presented centrally above and below fixation and hence processed by both hemispheres or lateralized to stimulate hemispheres differentially. The different compatibility ratio at two stimulus locations had a differential influence on the flanker effect in both experiments. In an fMRI experiment, blocks with an identical compatibility ratio at two central spatial locations elicited stronger activity in a network of prefrontal and parietal brain areas, which are known to be involved in conflict resolution and cognitive control, as compared with blocks with a different compatibility ratio at the same spatial locations. This demonstrates that the simultaneous maintenance of two conflicting control settings vs. one single setting does not recruit additional neural circuits suggesting the involvement of one single cognitive control system. Instead a crosstalk between multiple control settings renders adaptation of cognitive control more efficient when only one uniform rather than two different control settings has to be simultaneously maintained. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. [Cognitive function in patients with systemic sclerosis].

    PubMed

    Straszecka, J; Jonderko, G; Kucharz, E J; Brzezińska-Wcisło, L; Kotulska, A; Bogdanowski, T

    1997-09-01

    Central nervous system involvement is seldom reported in patients with systemic sclerosis (SSc). Cognitive functions were determined in 21 patients with definite SSc and 42 healthy controls. Thyroid function was also measured in order to eliminate the effect of hypothyroidism on cognitive functioning. It was found that the SSc patients with normal thyroid function showed defective long-term and recent memory, learning ability, criticism, perception and visuo-perceptual skills, their simple reaction time was prolonged. Similar but less advanced cognitive defects were shown in the SSc patients with overt or latent hypothyroidism. The obtained results indicate that the central nervous system involvement is more common in patients with SSc than it has been reported earlier.

  19. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis

    PubMed Central

    De Cicco, Vincenzo; Tramonti Fantozzi, Maria P.; Cataldo, Enrico; Barresi, Massimo; Bruschini, Luca; Faraguna, Ugo; Manzoni, Diego

    2018-01-01

    It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders. PMID:29358907

  20. Artificial gravity as a multi-system countermeasure: effects on cognitive function.

    PubMed

    Seaton, Kimberly A; Slack, Kelley J; Sipes, Walter; Bowie, Kendra

    2007-07-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is used on the International Space Station to evaluate cognitive functioning after physical insult or trauma. The current study uses WinSCAT to assess cognitive functioning in a space flight analog (bed rest) environment where intermittent artificial gravity (AG) is being tested as a countermeasure. Fifteen male subjects (8 treatment, 7 control), who participated in 21 days of 6 degree head-down tilt bed rest, were assessed during the acclimatization phase, bed rest phase, and recovery phase. Individual differences were found within both the treatment and control groups. The treatment group accounted for more off-nominal WinSCAT scores than the control group. The length of time spent in bed rest was not associated with a change in cognitive function. Individual differences in underlying cognitive ability and motivation level are other possible explanations for the current findings.

  1. Vestibular control of standing balance is enhanced with increased cognitive load.

    PubMed

    McGeehan, Michael A; Woollacott, Marjorie H; Dalton, Brian H

    2017-04-01

    When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.

  2. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.

    PubMed

    Petrican, Raluca; Grady, Cheryl L

    2017-08-09

    Because both development and context impact functional brain architecture, the neural connectivity signature of a cognitive or affective predisposition may similarly vary across different ages and circumstances. To test this hypothesis, we investigated the effects of age and cognitive versus social-affective context on the stable and time-varying neural architecture of inhibition, the putative core cognitive control component, in a subsample ( N = 359, 22-36 years, 174 men) of the Human Connectome Project. Among younger individuals, a neural signature of superior inhibition emerged in both stable and dynamic connectivity analyses. Dynamically, a context-free signature emerged as stronger segregation of internal cognition (default mode) and environmentally driven control (salience, cingulo-opercular) systems. A dynamic social-affective context-specific signature was observed most clearly in the visual system. Stable connectivity analyses revealed both context-free (greater default mode segregation) and context-specific (greater frontoparietal segregation for higher cognitive load; greater attentional and environmentally driven control system segregation for greater reward value) signatures of inhibition. Superior inhibition in more mature adulthood was typified by reduced segregation in the default network with increasing reward value and increased ventral attention but reduced cingulo-opercular and subcortical system segregation with increasing cognitive load. Failure to evidence this neural profile after the age of 30 predicted poorer life functioning. Our results suggest that distinguishable neural mechanisms underlie individual differences in cognitive control during different young adult stages and across tasks, thereby underscoring the importance of better understanding the interplay among dispositional, developmental, and contextual factors in shaping adaptive versus maladaptive patterns of thought and behavior. SIGNIFICANCE STATEMENT The brain's functional architecture changes across different contexts and life stages. To test whether the neural signature of a trait similarly varies, we investigated cognitive versus social-affective context effects on the stable and time-varying neural architecture of inhibition during a period of neurobehavioral fine-tuning (age 22-36 years). Younger individuals with superior inhibition showed distinguishable context-free and context-specific neural profiles, evidenced in both static and dynamic connectivity analyses. More mature individuals with superior inhibition evidenced only context-specific profiles, revealed in the static connectivity patterns linked to increased reward or cognitive load. Delayed expression of this profile predicted poorer life functioning. Our results underscore the importance of understanding the interplay among dispositional, developmental, and contextual factors in shaping behavior. Copyright © 2017 the authors 0270-6474/17/377711-16$15.00/0.

  3. Cognitive Control Mechanisms, Emotion & Memory: A neural perspective with implications for psychopathology

    PubMed Central

    Banich, Marie T.; Mackiewicz, Kristen L.; Depue, Brendan E.; Whitmer, Anson; Miller, Gregory A.; Heller, Wendy

    2009-01-01

    In this paper we provide a focused review of the literature examining neural mechanisms involved in cognitive control over memory processes that can influence, and in turn are influenced, by emotional processes. The review is divided into two parts, the first focusing on working memory and the second on long-term memory. With regard to working memory, we discuss the neural bases of 1) control mechanisms that can select against distracting emotional information, 2) mechanisms that can regulate emotional reactions or responses, 3) how mood state influences cognitive control, and 4) individual differences in control mechanisms. For long-term memory, we briefly review 1) the neural substrates of emotional memory, 2) the cognitive and neural mechanisms that are involved in controlling emotional memories and 3) how these systems are altered in post-traumatic stress disorder. Finally, we consider tentative generalizations that can be drawn from this relatively unexplored conjunction of research endeavors. PMID:18948135

  4. Imbalanced functional link between reward circuits and the cognitive control system in patients with obsessive-compulsive disorder.

    PubMed

    Xie, Chunming; Ma, Lisha; Jiang, Nan; Huang, Ruyan; Li, Li; Gong, Liang; He, Cancan; Xiao, Chaoyong; Liu, Wen; Xu, Shu; Zhang, Zhijun

    2017-08-01

    Altered reward processing and cognitive deficits are often observed in patients with obsessive-compulsive disorder (OCD); however, whether the imbalance in activity between reward circuits and the cognitive control (CC) system is associated with compulsive behavior remains unknown. Sixty-eight OCD patients and 33 cognitively normal (CN) healthy subjects participated in this resting-state functional magnetic resonance imaging study. Alterations in the functional connectivity between reward circuits and the CC system were quantitatively assessed and compared between the groups. A Granger causality analysis was used to determine the causal informational influence between and within reward circuits and the CC system across all subjects. OCD patients showed a dichotomous pattern of enhanced functional coupling in their reward circuits and a weakened functional coupling in their CC system when compared to CN subjects. Neural correlates of compulsive behavior were primarily located in the reward circuits and CC system in OCD patients. Importantly, the CC system exerted a reduced interregional causal influence over the reward system in OCD patients relative to its effect in CN subjects. The limitations of this study are that it was a cross-sectional study and the potential effects of environmental and genetic factors were not explored. OCD patients showed an imbalance in the functional link between reward circuits and the CC system at rest. This bias toward a loss of control may define a pathological state in which subjects are more vulnerable to engaging in compulsive behaviors.

  5. Association between increased serum d-serine and cognitive gains induced by intensive cognitive training in schizophrenia.

    PubMed

    Panizzutti, Rogerio; Fisher, Melissa; Garrett, Coleman; Man, Wai Hong; Sena, Walter; Madeira, Caroline; Vinogradov, Sophia

    2018-04-23

    Neuroscience-guided cognitive training induces significant improvement in cognition in schizophrenia subjects, but the biological mechanisms associated with these changes are unknown. In animals, intensive cognitive activity induces increased brain levels of the NMDA-receptor co-agonist d-serine, a molecular system that plays a role in learning-induced neuroplasticity and that may be hypoactive in schizophrenia. Here, we investigated whether training-induced gains in cognition were associated with increases in serum d-serine in outpatients with schizophrenia. Ninety patients with schizophrenia and 53 healthy controls were assessed on baseline serum d-serine, l-serine, and glycine. Schizophrenia subjects performed neurocognitive tests and were assigned to 50 h of either cognitive training of auditory processing systems (N = 47) or a computer games control condition (N = 43), followed by reassessment of cognition and serum amino acids. At study entry, the mean serum d-serine level was significantly lower in schizophrenia subjects vs. healthy subjects, while the glycine levels were significantly higher. There were no significant changes in these measures at a group level after the intervention. However, in the active training group, increased d-serine was significantly and positively correlated with improvements in global cognition and in Verbal Learning. No such associations were observed in the computer games control subjects, and no such associations were found for glycine. d-Serine may be involved in the neurophysiologic changes induced by cognitive training in schizophrenia. Pharmacologic strategies that target d-serine co-agonism of NMDA-receptor functioning may provide a mechanism for enhancing the behavioral effects of intensive cognitive training. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cognitive engineering models in space systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1992-01-01

    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.

  7. Aphasia from the inside: The cognitive world of the aphasic patient.

    PubMed

    Ardila, Alfredo; Rubio-Bruno, Silvia

    2017-05-23

    The purpose of this study was to analyze the question: how do people with aphasia experience the world? Three questions are approached: (1) how is behavior controlled in aphasia, considering that a normal linguistic control is no longer available; (2) what is the pattern of intellectual abilities in aphasia; and (3) what do aphasia patients' self-report regarding the experience of living without language. In aphasia, behavior can no longer be controlled through the "second signal system" and only the first signal system remains. Available information suggests that sometimes no verbal abilities may be affected in aphasia. However, an important variability is observed: whereas, in some patients, evident nonverbal defects are found; in other patients, performance verbal abilities are within normal limits. Several self-reports of recovered aphasic patients explain the experience of living without language. Considering that language represents the major instrument of cognition, in aphasia, surrounding information is evidently interpreted in a partially different way and cognitive strategies are reorganized, resulting in an idiosyncratic cognitive world.

  8. Cognitive Virtualization: Combining Cognitive Models and Virtual Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuan Q. Tran; David I. Gertman; Donald D. Dudenhoeffer

    2007-08-01

    3D manikins are often used in visualizations to model human activity in complex settings. Manikins assist in developing understanding of human actions, movements and routines in a variety of different environments representing new conceptual designs. One such environment is a nuclear power plant control room, here they have the potential to be used to simulate more precise ergonomic assessments of human work stations. Next generation control rooms will pose numerous challenges for system designers. The manikin modeling approach by itself, however, may be insufficient for dealing with the desired technical advancements and challenges of next generation automated systems. Uncertainty regardingmore » effective staffing levels; and the potential for negative human performance consequences in the presence of advanced automated systems (e.g., reduced vigilance, poor situation awareness, mistrust or blind faith in automation, higher information load and increased complexity) call for further research. Baseline assessment of novel control room equipment(s) and configurations needs to be conducted. These design uncertainties can be reduced through complementary analysis that merges ergonomic manikin models with models of higher cognitive functions, such as attention, memory, decision-making, and problem-solving. This paper will discuss recent advancements in merging a theoretical-driven cognitive modeling framework within a 3D visualization modeling tool to evaluate of next generation control room human factors and ergonomic assessment. Though this discussion primary focuses on control room design, the application for such a merger between 3D visualization and cognitive modeling can be extended to various areas of focus such as training and scenario planning.« less

  9. A-Book: A Feedback-Based Adaptive System to Enhance Meta-Cognitive Skills during Reading.

    PubMed

    Guerra, Ernesto; Mellado, Guido

    2017-01-01

    In the digital era, tech devices (hardware and software) are increasingly within hand's reach. Yet, implementing information and communication technologies for educational contexts that have robust and long-lasting effects on student learning outcomes is still a challenge. We propose that any such system must a) be theoretically motivated and designed to tackle specific cognitive skills (e.g., inference making) supporting a given cognitive task (e.g., reading comprehension) and b) must be able to identify and adapt to the user's profile. In the present study, we implemented a feedback-based adaptive system called A-book (assisted-reading book) and tested it in a sample of 4th, 5th, and 6th graders. To assess our hypotheses, we contrasted three experimental assisted-reading conditions; one that supported meta-cognitive skills and adapted to the user profile (adaptive condition), one that supported meta-cognitive skills but did not adapt to the user profile (training condition) and a control condition. The results provide initial support for our proposal; participants in the adaptive condition improved their accuracy scores on inference making questions over time, outperforming both the training and control groups. There was no evidence, however, of significant improvements on other tested meta-cognitive skills (i.e., text structure knowledge, comprehension monitoring). We discussed the practical implications of using the A-book for the enhancement of meta-cognitive skills in school contexts, as well as its current limitations and future developments that could improve the system.

  10. The motivation to control and the origin of mind: exploring the life-mind joint point in the Tree of Knowledge System.

    PubMed

    Geary, David C

    2005-01-01

    The evolved function of brain, cognitive, affective, conscious-psychological, and behavioral systems is to enable animals to attempt to gain control of the social (e.g., mates), biological (e.g., prey), and physical (e.g., nesting spots) resources that have tended to covary with survival and reproductive outcomes during the species' evolutionary history. These resources generate information patterns that range from invariant to variant. Invariant information is consistent across generations and within lifetimes (e.g., the prototypical shape of a human face) and is associated with modular brain and cognitive systems that coalesce around the domains of folk psychology, folk biology, and folk physics. The processing of information in these domains is implicit and results in automatic bottom-up behavioral responses. Variant information varies across generations and within lifetimes (e.g., as in social dynamics) and is associated with plastic brain and cognitive systems and explicit, consciously driven top-down behavioral responses. The fundamentals of this motivation-to-control model are outlined and links are made to Henriques' (2004) Tree of Knowledge System and Behavioral Investment Theory.

  11. Punishment Sensitivity Predicts the Impact of Punishment on Cognitive Control

    PubMed Central

    Braem, Senne; Duthoo, Wout; Notebaert, Wim

    2013-01-01

    Cognitive control theories predict enhanced conflict adaptation after punishment. However, no such effect was found in previous work. In the present study, we demonstrate in a flanker task how behavioural adjustments following punishment signals are highly dependent on punishment sensitivity (as measured by the Behavioural Inhibition System (BIS) scale): Whereas low punishment-sensitive participants do show increased conflict adaptation after punishment, high punishment-sensitive participants show no such modulation. Interestingly, participants with a high punishment-sensitivity showed an overall reaction time increase after punishments. Our results stress the role of individual differences in explaining motivational modulations of cognitive control. PMID:24058520

  12. Development of cognitive and affective control networks and decision making.

    PubMed

    Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi

    2013-01-01

    Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects of cognitive control and decision making from a developmental perspective. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.

    PubMed

    Zendehrouh, Sareh

    2015-11-01

    Recent work on decision-making field offers an account of dual-system theory for decision-making process. This theory holds that this process is conducted by two main controllers: a goal-directed system and a habitual system. In the reinforcement learning (RL) domain, the habitual behaviors are connected with model-free methods, in which appropriate actions are learned through trial-and-error experiences. However, goal-directed behaviors are associated with model-based methods of RL, in which actions are selected using a model of the environment. Studies on cognitive control also suggest that during processes like decision-making, some cortical and subcortical structures work in concert to monitor the consequences of decisions and to adjust control according to current task demands. Here a computational model is presented based on dual system theory and cognitive control perspective of decision-making. The proposed model is used to simulate human performance on a variant of probabilistic learning task. The basic proposal is that the brain implements a dual controller, while an accompanying monitoring system detects some kinds of conflict including a hypothetical cost-conflict one. The simulation results address existing theories about two event-related potentials, namely error related negativity (ERN) and feedback related negativity (FRN), and explore the best account of them. Based on the results, some testable predictions are also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cognitive engineering and health informatics: Applications and intersections.

    PubMed

    Hettinger, A Zachary; Roth, Emilie M; Bisantz, Ann M

    2017-03-01

    Cognitive engineering is an applied field with roots in both cognitive science and engineering that has been used to support design of information displays, decision support, human-automation interaction, and training in numerous high risk domains ranging from nuclear power plant control to transportation and defense systems. Cognitive engineering provides a set of structured, analytic methods for data collection and analysis that intersect with and complement methods of Cognitive Informatics. These methods support discovery of aspects of the work that make performance challenging, as well as the knowledge, skills, and strategies that experts use to meet those challenges. Importantly, cognitive engineering methods provide novel representations that highlight the inherent complexities of the work domain and traceable links between the results of cognitive analyses and actionable design requirements. This article provides an overview of relevant cognitive engineering methods, and illustrates how they have been applied to the design of health information technology (HIT) systems. Additionally, although cognitive engineering methods have been applied in the design of user-centered informatics systems, methods drawn from informatics are not typically incorporated into a cognitive engineering analysis. This article presents a discussion regarding ways in which data-rich methods can inform cognitive engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Control-related systems in the human brain

    PubMed Central

    Power, Jonathan D; Petersen, Steven E

    2013-01-01

    A fundamental question in cognitive neuroscience is how the human brain self-organizes to perform tasks. Multiple accounts of this self-organization are currently influential and in this article we survey one of these accounts. We begin by introducing a psychological model of task control and several neuroimaging signals it predicts. We then discuss where such signals are found across tasks with emphasis on brain regions where multiple control signals are present. We then present results derived from spontaneous task-free functional connectivity between control-related regions that dovetail with distinctions made by control signals present in these regions, leading to a proposal that there are at least two task control systems in the brain. This prompts consideration of whether and how such control systems distinguish themselves from other brain regions in a whole-brain context. We present evidence from whole-brain networks that such distinctions do occur and that control systems comprise some of the basic system-level organizational elements of the human brain. We close with observations from the whole-brain networks that may suggest parsimony between multiple accounts of cognitive control. PMID:23347645

  16. A sensemaking perspective on framing the mental picture of air traffic controllers.

    PubMed

    Malakis, Stathis; Kontogiannis, Tom

    2013-03-01

    It has long been recognized that controller strategies are based on a 'mental picture' or representation of traffic situations. Earlier studies indicated that controllers tend to maintain a selective representation of traffic flows based on a few salient traffic features that point out to interesting events (e.g., potential conflicts). A field study is presented in this paper that examines salient features or 'knowledge variables' that constitute the building blocks of controller mental pictures. Verbal reports from participants, a field experiment and observations of real-life scenarios provided insights into the cognitive processes that shape and reframe the mental pictures of controllers. Several cognitive processes (i.e., problem detection, elaboration, reframing and replanning) have been explored within a particular framework of sensemaking stemming from the data/frame theory (Klein et al., 2007). Cognitive maps, representing standard and non-standard air traffic flows, emerged as an explanatory framework for making sense of traffic patterns and for reframing mental pictures. The data/frame theory proved to be a useful theoretical tool for investigating complex cognitive phenomena. The findings of the study have implications for the design of training curricula and decision support systems in air traffic control systems. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Automaticity of Cognitive Control: Goal Priming in Response-Inhibition Paradigms

    ERIC Educational Resources Information Center

    Verbruggen, Frederick; Logan, Gordon D.

    2009-01-01

    Response inhibition is a hallmark of cognitive control. An executive system inhibits responses by activating a stop goal when a stop signal is presented. The authors asked whether the stop goal could be primed by task-irrelevant information in stop-signal and go/no-go paradigms. In Experiment 1, the task-irrelevant primes "GO," ###, or "STOP" were…

  18. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years.

    PubMed

    Huijgen, Barbara C H; Leemhuis, Sander; Kok, Niels M; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T; Visscher, Chris

    2015-01-01

    Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13-17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for "higher-level" cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). "Lower-level" cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA's showed that elite players outscored sub-elite players at the "higher-level" cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA's showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the "lower-level" cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the need for longitudinal studies to further investigate the importance of "higher-level" cognitive functions for talent identification, talent development and performance in soccer.

  19. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years

    PubMed Central

    Huijgen, Barbara C. H.; Leemhuis, Sander; Kok, Niels M.; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T.; Visscher, Chris

    2015-01-01

    Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13–17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for “higher-level” cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). “Lower-level” cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA’s showed that elite players outscored sub-elite players at the “higher-level” cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA’s showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the “lower-level” cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the need for longitudinal studies to further investigate the importance of “higher-level” cognitive functions for talent identification, talent development and performance in soccer. PMID:26657073

  20. Aggression proneness: Transdiagnostic processes involving negative valence and cognitive systems.

    PubMed

    Verona, Edelyn; Bresin, Konrad

    2015-11-01

    Aggressive behavior is observed in persons with various mental health problems and has been studied from the perspectives of neuroscience and psychophysiology. The present research reviews some of the extant experimental literature to help clarify the interplay between domains of functioning implicated in aggression proneness. We then convey a process-oriented model that elucidates how the interplay of the Negative Valence and Cognitive System domains of NIMH's Research Domain Criteria (RDoC) helps explain aggression proneness, particularly reactive aggression. Finally, we report on a study involving event-related potential (ERP) indices of emotional and inhibitory control processing during an emotional-linguistic go/no-go task among 67 individuals with histories of violence and criminal offending (30% female, 44% African-American) who reported on their aggressive tendencies using the Buss-Perry Aggression Questionnaire. Results provide evidence that tendencies toward angry and aggressive behavior relate to reduced inhibitory control processing (no-go P3) specifically during relevant threat-word blocks, suggesting deterioration of cognitive control by acute or sustained threat sensitivity. These findings highlight the value of ERP methodologies for clarifying the interplay of Negative Valence and Cognitive System processes in aggression proneness. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Emotion, working memory task demands and individual differences predict behavior, cognitive effort and negative affect.

    PubMed

    Storbeck, Justin; Davidson, Nicole A; Dahl, Chelsea F; Blass, Sara; Yung, Edwin

    2015-01-01

    We examined whether positive and negative affect motivates verbal and spatial working memory processes, respectively, which have implications for the expenditure of mental effort. We argue that when emotion promotes cognitive tendencies that are goal incompatible with task demands, greater cognitive effort is required to perform well. We sought to investigate whether this increase in cognitive effort impairs behavioural control over a broad domain of self-control tasks. Moreover, we predicted that individuals with higher behavioural inhibition system (BIS) sensitivities would report more negative affect within the goal incompatible conditions because such individuals report higher negative affect during cognitive challenge. Positive or negative affective states were induced followed by completing a verbal or spatial 2-back working memory task. All participants then completed one of three self-control tasks. Overall, we observed that conditions of emotion and working memory incompatibility (positive/spatial and negative/verbal) performed worse on the self-control tasks, and within the incompatible conditions individuals with higher BIS sensitivities reported more negative affect at the end of the study. The combination of findings suggests that emotion and working memory compatibility reduces cognitive effort and impairs behavioural control.

  2. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  3. Cognitive context detection using pupillary measurements

    NASA Astrophysics Data System (ADS)

    Mannaru, Pujitha; Balasingam, Balakumar; Pattipati, Krishna; Sibley, Ciara; Coyne, Joseph

    2016-05-01

    In this paper, we demonstrate the use of pupillary measurements as indices of cognitive workload. We analyze the pupillary data of twenty individuals engaged in a simulated Unmanned Aerial System (UAS) operation in order to understand and characterize the behavior of pupil dilation under varying task load (i.e., workload) levels. We present three metrics that can be employed as real-time indices of cognitive workload. In addition, we develop a predictive system utilizing the pupillary metrics to demonstrate cognitive context detection within simulated supervisory control of UAS. Further, we use pupillary data collected concurrently from the left and right eye and present comparative results of the use of separate vs. combined pupillary data for detecting cognitive context.

  4. Video game training enhances cognitive control in older adults.

    PubMed

    Anguera, J A; Boccanfuso, J; Rintoul, J L; Al-Hashimi, O; Faraji, F; Janowich, J; Kong, E; Larraburo, Y; Rolle, C; Johnston, E; Gazzaley, A

    2013-09-05

    Cognitive control is defined by a set of neural processes that allow us to interact with our complex environment in a goal-directed manner. Humans regularly challenge these control processes when attempting to simultaneously accomplish multiple goals (multitasking), generating interference as the result of fundamental information processing limitations. It is clear that multitasking behaviour has become ubiquitous in today's technologically dense world, and substantial evidence has accrued regarding multitasking difficulties and cognitive control deficits in our ageing population. Here we show that multitasking performance, as assessed with a custom-designed three-dimensional video game (NeuroRacer), exhibits a linear age-related decline from 20 to 79 years of age. By playing an adaptive version of NeuroRacer in multitasking training mode, older adults (60 to 85 years old) reduced multitasking costs compared to both an active control group and a no-contact control group, attaining levels beyond those achieved by untrained 20-year-old participants, with gains persisting for 6 months. Furthermore, age-related deficits in neural signatures of cognitive control, as measured with electroencephalography, were remediated by multitasking training (enhanced midline frontal theta power and frontal-posterior theta coherence). Critically, this training resulted in performance benefits that extended to untrained cognitive control abilities (enhanced sustained attention and working memory), with an increase in midline frontal theta power predicting the training-induced boost in sustained attention and preservation of multitasking improvement 6 months later. These findings highlight the robust plasticity of the prefrontal cognitive control system in the ageing brain, and provide the first evidence, to our knowledge, of how a custom-designed video game can be used to assess cognitive abilities across the lifespan, evaluate underlying neural mechanisms, and serve as a powerful tool for cognitive enhancement.

  5. Acquisition of Autonomous Behaviors by Robotic Assistants

    NASA Technical Reports Server (NTRS)

    Peters, R. A., II; Sarkar, N.; Bodenheimer, R. E.; Brown, E.; Campbell, C.; Hambuchen, K.; Johnson, C.; Koku, A. B.; Nilas, P.; Peng, J.

    2005-01-01

    Our research achievements under the NASA-JSC grant contributed significantly in the following areas. Multi-agent based robot control architecture called the Intelligent Machine Architecture (IMA) : The Vanderbilt team received a Space Act Award for this research from NASA JSC in October 2004. Cognitive Control and the Self Agent : Cognitive control in human is the ability to consciously manipulate thoughts and behaviors using attention to deal with conflicting goals and demands. We have been updating the IMA Self Agent towards this goal. If opportunity arises, we would like to work with NASA to empower Robonaut to do cognitive control. Applications 1. SES for Robonaut, 2. Robonaut Fault Diagnostic System, 3. ISAC Behavior Generation and Learning, 4. Segway Research.

  6. Ecological validity of the five digit test and the oral trails test.

    PubMed

    Paiva, Gabrielle Chequer de Castro; Fialho, Mariana Braga; Costa, Danielle de Souza; Paula, Jonas Jardim de

    2016-01-01

    Tests evaluating the attentional-executive system are widely used in clinical practice. However, proximity of an objective cognitive test with real-world situations (ecological validity) is not frequently investigated. The present study evaluate the association between measures of the Five Digit Test (FDT) and the Oral Trails Test (OTT) with self-reported cognitive failures in everyday life as measured by the Cognitive Failures Questionnaire (CFQ). Brazilian adults from 18-to-65 years old voluntarily performed the FDT and OTT tests and reported the frequency of cognitive failures in their everyday life through the CFQ. After controlling for the age effect, the measures of controlled attentional processes were associated with cognitive failures, yet the cognitive flexibility of both FDT and OTT accounted for by the majority of variance in most aspects of the CFQ factors. The FDT and the OTT measures were predictive of real-world problems such as cognitive failures in everyday activities/situations.

  7. Memory dynamics under stress.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  8. Stability of cognition across wakefulness and dreams in psychotic major depression.

    PubMed

    Cavallotti, Simone; Castelnovo, Anna; Ranieri, Rebecca; D'agostino, Armando

    2014-04-30

    Cognitive bizarreness has been shown to be equally elevated in the dream and waking mentation of acutely symptomatic inpatients diagnosed with affective and non-affective psychoses. Although some studies have reported on dream content in non-psychotic depression, no study has previously measured this formal aspect of cognition in patients hospitalized for Psychotic Major Depression (PMD). Sixty-five dreams and 154 waking fantasy reports were collected from 11 PMD inpatients and 11 age- and sex-matched healthy controls. All narrative reports were scored by judges blind to diagnosis in terms of formal aspects of cognition (Bizarreness). Dream content was also scored (Hall/Van de Castle scoring system). Unlike controls, PMD patients had similar levels of cognitive bizarreness in their dream and waking mentation. Dreams of PMD patients also differed from those of controls in terms of content variables. In particular, Happiness, Apprehension and Dynamism were found to differ between the two groups. Whereas dream content reflects a sharp discontinuity with the depressive state, cognitive bizarreness adequately measures the stability of cognition across dreams and wakefulness in PMD inpatients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. A network engineering perspective on probing and perturbing cognition with neurofeedback

    PubMed Central

    Khambhati, Ankit N.

    2017-01-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. PMID:28445589

  10. β-Amyloid Deposition Is Associated with Decreased Right Prefrontal Activation during Task Switching among Cognitively Normal Elderly

    PubMed Central

    Steffener, Jason; Razlighi, Qolamreza R.; Habeck, Christian; Stern, Yaakov

    2016-01-01

    The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD), has been associated with functional alterations, often in an episodic memory system with a particular emphasis on medial temporal lobe function. The topography of Aβ deposition, however, largely overlaps with frontoparietal control (FPC) regions implicated in cognitive control that has been shown to be impaired in early mild AD. To understand the neural mechanism underlying early changes in cognitive control with AD, we examined the impact of Aβ deposition on task-evoked FPC activation using functional magnetic resonance imaging (fMRI) in humans. Forty-three young and 62 cognitively normal older adults underwent an fMRI session during an executive contextual task in which task difficulty varied: single (either letter case or vowel/consonant judgment task) vs dual (switching between letter case and vowel/consonant decisions) task. Older subjects additionally completed 18F-florbetaben positron emission tomography scans and were classified as either amyloid positive (Aβ+) or negative (Aβ−). Consistent with previous reports, age-related increases in brain activity were found in FPC regions commonly identified across groups. For both task conditions, Aβ-related increases in brain activity were found compared with baseline activity. For higher cognitive control load, however, Aβ+ elderly showed reduced task-switching activation in the right inferior frontal cortex. Our findings suggest that with Aβ deposition, brain activation in the cognitive control region reaches a maximum with lower control demand and decreases with higher control demand, which may underlie early impairment in cognitive control with AD progression. SIGNIFICANCE STATEMENT The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease, spatially overlaps with frontoparietal control (FPC) regions implicated in cognitive control, but the impact of Aβ deposition on FPC regions is largely unknown. Using functional magnetic resonance imaging with a task-switching task, we found Aβ-related increases in FPC regions compared with baseline activity. For higher cognitive control load, however, Aβ-related hypoactivity was found in the right inferior frontal cortex, a region highly implicated in cognitive control. The findings suggest that with Aβ deposition, task-related brain activity may reach a plateau early and undergo downstream pathways of neural dysfunction, which may relate to the early impairment of cognitive control seen in the progression of Aβ pathology. PMID:26865619

  11. ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.

    PubMed

    Schilling, Malte; Cruse, Holk

    2017-01-01

    It has often been stated that for a neuronal system to become a cognitive one, it has to be large enough. In contrast, we argue that a basic property of a cognitive system, namely the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof of concept, we propose an artificial neural network, termed reaCog, that, first, is able to deal with a specific domain of behavior (six-legged-walking). Second, we show how a minor expansion of this system enables the system to plan ahead and deploy existing behavioral elements in novel contexts in order to solve current problems. To this end, the system invents new solutions that are not possible for the reactive network. Rather these solutions result from new combinations of given memory elements. This faculty does not rely on a dedicated system being more or less independent of the reactive basis, but results from exploitation of the reactive basis by recruiting the lower-level control structures in a way that motor planning becomes possible as an internal simulation relying on internal representation being grounded in embodied experiences.

  12. Modeling the impact of COPD on the brain.

    PubMed

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable-COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p < or = 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities.

  13. Modeling the impact of COPD on the brain

    PubMed Central

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities. PMID:18990971

  14. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.

    PubMed

    Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li

    2012-01-01

    Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.

  15. The Development of the Neural Substrates of Cognitive Control in Adolescents with Autism Spectrum Disorders

    PubMed Central

    Solomon, Marjorie; Yoon, Jong; Ragland, J. Daniel; Niendam, Tara; Lesh, Tyler A.; Fairbrother, Wonja; Carter, Cameron S.

    2013-01-01

    Background Autism spectrum disorders (ASD) involve impairments in cognitive control. In typical development (TYP), neural systems underlying cognitive control undergo substantial maturation during adolescence. Development is delayed in adolescents with ASD. Little is known about the neural substrates of this delay. Method We used event-related functional magnetic resonance imaging (fMRI) and a cognitive control task involving overcoming a prepotent response tendency to examine the development of cognitive control in young (ages 12–15; n = 13 with ASD and n = 13 with TYP) and older (ages 16–18; n= 14 with ASD and n = 14 with TYP) adolescents with whole-brain voxel-wise univariate and task-related functional connectivity analyses. Results Older ASD and TYP showed reduced activation in sensory and premotor areas relative to younger ones. The older ASD group showed reduced left parietal activation relative to TYP. Functional connectivity analyses showed a significant age by group interaction with the older ASD group exhibiting increased functional connectivity strength between the ventrolateral prefrontal cortex (VLPFC) and the anterior cingulate cortex (ACC), bilaterally. This functional connectivity strength was related to task performance in ASD, whereas that between DLPFC and parietal cortex (BA 9 and BA 40) was related to task performance in TYP. Conclusions Adolescents with ASD rely more on “reactive” cognitive control, involving last minute conflict detection and control implementation by the ACC and VLPFC, versus “proactive” cognitive control requiring processing by DLPFC and parietal cortex. Findings await replication in larger longitudinal studies that examine their functional consequences and amenability to intervention. PMID:24209777

  16. Hearts and minds: Coordination of neurocognitive and cardiovascular regulation in children and adolescents.

    PubMed

    Chapman, H A; Woltering, S; Lamm, C; Lewis, M D

    2010-05-01

    Emotional reactions involve changes in both cognitive and bodily processes. Therefore, effective emotion regulation may also involve modulation of responses in both of these systems. The present study investigated the relationship between regulation of cognition and regulation of the heart in children and adolescents, using a go/nogo task in combination with the induction of negative emotions. Behavioral, temperamental and event-related brain potential (ERP) indicators of inhibitory cognitive control were collected, as was a measure of parasympathetic control of the heart (respiratory sinus arrhythmia, RSA). Independently of age, RSA was correlated with nogo N2 magnitudes during the emotion-induction procedure. RSA during the task was also correlated with N2 latencies and with behavioral accuracy before, during and after the emotion induction. Resting RSA was correlated with individual differences in the capacity for effortful cognitive control, as measured by questionnaire. These results suggest that emotional responses in seemingly distinct neurophysiological systems may be regulated in an integrated fashion throughout the developmental span tested. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.

    PubMed

    Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael

    2015-02-01

    Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Testing interactive effects of automatic and conflict control processes during response inhibition - A system neurophysiological study.

    PubMed

    Chmielewski, Witold X; Beste, Christian

    2017-02-01

    In everyday life successful acting often requires to inhibit automatic responses that might not be appropriate in the current situation. These response inhibition processes have been shown to become aggravated with increasing automaticity of pre-potent response tendencies. Likewise, it has been shown that inhibitory processes are complicated by a concurrent engagement in additional cognitive control processes (e.g. conflicting monitoring). Therefore, opposing processes (i.e. automaticity and cognitive control) seem to strongly impact response inhibition. However, possible interactive effects of automaticity and cognitive control for the modulation of response inhibition processes have yet not been examined. In the current study we examine this question using a novel experimental paradigm combining a Go/NoGo with a Simon task in a system neurophysiological approach combining EEG recordings with source localization analyses. The results show that response inhibition is less accurate in non-conflicting than in conflicting stimulus-response mappings. Thus it seems that conflicts and the resulting engagement in conflict monitoring processes, as reflected in the N2 amplitude, may foster response inhibition processes. This engagement in conflict monitoring processes leads to an increase in cognitive control, as reflected by an increased activity in the anterior and posterior cingulate areas, while simultaneously the automaticity of response tendencies is decreased. Most importantly, this study suggests that the quality of conflict processes in anterior cingulate areas and especially the resulting interaction of cognitive control and automaticity of pre-potent response tendencies are important factors to consider, when it comes to the modulation of response inhibition processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Relationships of Cognitive and Metacognitive Learning Strategies to Mathematics Achievement in Four High-Performing East Asian Education Systems

    ERIC Educational Resources Information Center

    Areepattamannil, Shaljan; Caleon, Imelda S.

    2013-01-01

    The authors examined the relationships of cognitive (i.e., memorization and elaboration) and metacognitive learning strategies (i.e., control strategies) to mathematics achievement among 15-year-old students in 4 high-performing East Asian education systems: Shanghai-China, Hong Kong-China, Korea, and Singapore. In all 4 East Asian education…

  20. Cognition, emotion, and attention.

    PubMed

    Müller-Oehring, Eva M; Schulte, Tilman

    2014-01-01

    Deficits of attention, emotion, and cognition occur in individuals with alcohol abuse and addiction. This review elucidates the concepts of attention, emotion, and cognition and references research on the underlying neural networks and their compromise in alcohol use disorder. Neuroimaging research on adolescents with family history of alcoholism contributes to the understanding of pre-existing brain structural conditions and characterization of cognition and attention processes in high-risk individuals. Attention and cognition interact with other brain functions, including perceptual selection, salience, emotion, reward, and memory, through interconnected neural networks. Recent research reports compromised microstructural and functional network connectivity in alcoholism, which can have an effect on the dynamic tuning between brain systems, e.g., the frontally based executive control system, the limbic emotion system, and the midbrain-striatal reward system, thereby impeding cognitive flexibility and behavioral adaptation to changing environments. Finally, we introduce concepts of functional compensation, the capacity to generate attentional resources for performance enhancement, and brain structure recovery with abstinence. An understanding of the neural mechanisms of attention, emotion, and cognition will likely provide the basis for better treatment strategies for developing skills that enhance alcoholism therapy adherence and quality of life, and reduce the propensity for relapse. © 2014 Elsevier B.V. All rights reserved.

  1. Cognitive function in ecstasy naive abstinent drug dependants and MDMA users.

    PubMed

    Potter, Adam; Downey, Luke; Stough, Con

    2013-03-01

    'Hidden' symptoms, or subtle cognitive deficits and long-term changes in mood, have been linked to the recreational use of 3, 4-methylenedioxymethamphetamine/MDMA, and are notionally present in non-heavy polydrug users. This study assessed the cognitive functioning and mood profiles of clinically diagnosed drug dependents who had never consumed MDMA, recreational drug users that had previously consumed MDMA, with both groups having not consumed illicit drugs for 6-months, and a control group with limited illicit drug use and no MDMA usage in their past. Cognitive functioning was assessed using the Cognitive Drug Research computerised cognitive assessment system and participants completed the Profile of Mood States and Beck Depression Inventory to assess their current mood and depression. Participants in the clinically diagnosed drug dependent group scored significantly worse on the 'Quality of Working Memory' cognitive factor score than both the MDMA and control group (F (2, 33) = 5.75, p = 0.007). The control and clinical groups also differed on depression scores (U [16] = 13.00, p = 0.016) and Tension/Anxiety scores (U [16] = 16.00, p = 0.034), with the clinical group scoring significantly higher in both cases. The MDMA group did not differ from the control group on the measures of cognition or mood. These results suggest that despite a 6-month prolonged abstinence the cognitive deficits ostensibly caused by 'heavy' usage or the dependence on or abuse of illicit drugs are not reversed by abstinence.

  2. Cognitive impairment in systemic lupus erythematosus women with elevated autoantibodies and normal single photon emission computerized tomography.

    PubMed

    Peretti, Charles-Siegfried; Peretti, Charles Roger; Kozora, Elizabeth; Papathanassiou, Dimitri; Chouinard, Virginie-Anne; Chouinard, Guy

    2012-01-01

    Systemic lupus erythematosus (SLE) is known to induce psychiatric disorders, from psychoses to maladaptive coping. Brain autoantibodies were proposed to explain SLE neuropsychiatric disorders and found to be elevated before the onset of clinical symptoms. We assessed cognition in Caucasian SLE women with elevated autoantibodies without overt neuropsychiatric syndromes, in conjunction with single photon emission computerized tomography (SPECT). 31 women meeting SLE criteria of the American College of Rheumatology (ACR) were included. Patients who met the ACR neuropsychiatric definition were excluded. Matched controls were 23 healthy women from the Champagne-Ardenne region, France. Participants completed neuropsychological and autoantibodies measurements, and 19 completed SPECT. 61% (19/31) of women with SLE and 53% (9/17) of those with normal SPECT had significant global cognitive impairment defined as 4 T-scores <40 in cognitive tests, compared to 0% (0/23) of controls. SLE women also had significantly greater cognitive dysfunction (mean T-score) on the Wechsler Adult Intelligence Scale (WAIS) visual backspan, Trail Making Test A and B, WAIS Digit Symbol Substitution Test and Stroop Interference, compared to controls. Elevated antinuclear antibody correlated with impairment in the WAIS visual span, WAIS visual backspan, and cancellation task; elevated anti-double-stranded DNA antibody and anticardiolipin correlated respectively with impairment in the Trail Making Test A and WAIS auditive backspan. Two SLE women had abnormal SPECT. A high prevalence of cognitive deficits was found in Caucasian SLE women compared to normal women, which included impairment in cognitive domains important for daily activities. Elevated autoantibodies tended to correlate with cognitive dysfunction. Copyright © 2012 S. Karger AG, Basel.

  3. Using cognitive task analysis to inform issues in human systems integration in railroad operations

    DOT National Transportation Integrated Search

    2013-05-23

    U.S. Railroad operations are undergoing rapid changes involving the introduction of new technologies such as positive train control (PTC), energy management systems (EMS), and electronically controlled pneumatic (ECP) brakes in the locomotive cab. To...

  4. Controlled semantic cognition relies upon dynamic and flexible interactions between the executive 'semantic control' and hub-and-spoke 'semantic representation' systems.

    PubMed

    Chiou, Rocco; Humphreys, Gina F; Jung, JeYoung; Lambon Ralph, Matthew A

    2018-06-01

    Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. A Role of the Parasympathetic Nervous System in Cognitive Training.

    PubMed

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tadin, Duje

    2017-01-01

    Vision-based speed of processing (VSOP) training can result in broad cognitive improvements in older adults with amnestic mild cognitive impairment (aMCI). What remains unknown, however, is what neurophysiological mechanisms account for the observed training effect. Much of the work in this area has focused on the central nervous system, neglecting the fact that the peripheral system can contributes to changes of the central nervous system and vice versa. We examined the prospective relationship between an adaptive parasympathetic nervous system response to cognitive stimuli and VSOP training-induced plasticity. Twenty-one participants with aMCI (10 for VSOP training, and 11 for mental leisure activities (MLA) control) were enrolled. We assessed high-frequency heart rate variability (HF-HRV) during training sessions, and striatum-related neural networks and cognition at baseline and post-training. Compared to MLA, the VSOP group showed a significant U-shaped pattern of HF-HRV response during training, as well as decreases in connectivity strength between bilateral striatal and prefrontal regions. These two effects were associated with training-induced improvements in both the trained (attention and processing speed) and transferred (working memory) cognitive domains. This work provides novel support for interactions between the central and the peripheral nervous systems in relation to cognitive training, and motivates further studies to elucidate the causality of the observed link. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Human-factors engineering for smart transport: design support for car drivers and train traffic controllers.

    PubMed

    Lenior, Dick; Janssen, Wiel; Neerincx, Mark; Schreibers, Kirsten

    2006-07-01

    The theme Smart Transport can be described as adequate human-system symbiosis to realize effective, efficient and human-friendly transport of goods and information. This paper addresses how to attune automation to human (cognitive) capacities (e.g. to take care of information uncertainty, operator trust and mutual man-machine adaptations). An introduction to smart transport is presented, including examples of best practice for engineering human factors in the vehicle ergonomics and train traffic control domain. The examples are representative of an ongoing trend in automation and they show how the human role changes from controller to supervisor. Section 2 focuses on the car driver and systems that support, or sometimes even take over, critical parts of the driving task. Due to the diversity of driver ability, driving context and dependence between driver and context factors, there is a need for personalised, adaptive and integrated support. Systematic research is needed to establish sound systems. Section 3 focuses on the train dispatcher support systems that predict train movements, detect potential conflicts and show the dispatcher the possibilities available to solve the detected problems. Via thorough analysis of both the process to be controlled and the dispatcher's tasks and cognitive needs, support functions were developed as part of an already very complex supervision and control system. The two examples, although from a different field, both show the need for further development in cognitive modelling as well as for the value of sound ergonomics task analysis in design practice.

  7. Dissociable early attentional control mechanisms underlying cognitive and affective conflicts

    PubMed Central

    Chen, Taolin; Kendrick, Keith M.; Feng, Chunliang; Sun, Shiyue; Yang, Xun; Wang, Xiaogang; Luo, Wenbo; Yang, Suyong; Huang, Xiaoqi; Valdés-Sosa, Pedro A.; Gong, Qiyong; Fan, Jin; Luo, Yue-Jia

    2016-01-01

    It has been well documented that cognitive conflict is sensitive to the relative proportion of congruent and incongruent trials. However, few studies have examined whether affective conflict processing is modulated as a function of proportion congruency (PC). To address this question we recorded event-related potentials (ERP) while subjects performed both cognitive and affective face-word Stroop tasks. By varying the proportion of congruent and incongruent trials in each block, we examined the extent to which PC impacts both cognitive and affective conflict control at different temporal stages. Results showed that in the cognitive task an anteriorly localized early N2 component occurred predominantly in the low proportion congruency context, whereas in the affective task it was found to occur in the high proportion congruency one. The N2 effects across the two tasks were localized to the dorsolateral prefrontal cortex, where responses were increased in the cognitive task but decreased in the affective one. Furthermore, high proportions of congruent items produced both larger amplitude of a posteriorly localized sustained potential component and a larger behavioral Stroop effect in cognitive and affective tasks. Our findings suggest that cognitive and affective conflicts engage early dissociable attentional control mechanisms and a later common conflict response system. PMID:27892513

  8. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients.

    PubMed

    Faria, Ana Lúcia; Andrade, Andreia; Soares, Luísa; I Badia, Sergi Bermúdez

    2016-11-02

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. There is substancial evidence on post-stroke cognitive rehabilitation benefits, but its implementation is generally limited by the use of paper-and-pencil methods, insufficient personalization, and suboptimal intensity. Virtual reality tools have shown potential for improving cognitive rehabilitation by supporting carefully personalized, ecologically valid tasks through accessible technologies. Notwithstanding important progress in VR-based cognitive rehabilitation systems, specially with Activities of Daily Living (ADL's) simulations, there is still a need of more clinical trials for its validation. In this work we present a one-month randomized controlled trial with 18 stroke in and outpatients from two rehabilitation units: 9 performing a VR-based intervention and 9 performing conventional rehabilitation. The VR-based intervention involved a virtual simulation of a city - Reh@City - where memory, attention, visuo-spatial abilities and executive functions tasks are integrated in the performance of several daily routines. The intervention had levels of difficulty progression through a method of fading cues. There was a pre and post-intervention assessment in both groups with the Addenbrooke Cognitive Examination (primary outcome) and the Trail Making Test A and B, Picture Arrangement from WAIS III and Stroke Impact Scale 3.0 (secondary outcomes). A within groups analysis revealed significant improvements in global cognitive functioning, attention, memory, visuo-spatial abilities, executive functions, emotion and overall recovery in the VR group. The control group only improved in self-reported memory and social participation. A between groups analysis, showed significantly greater improvements in global cognitive functioning, attention and executive functions when comparing VR to conventional therapy. Our results suggest that cognitive rehabilitation through the Reh@City, an ecologically valid VR system for the training of ADL's, has more impact than conventional methods. This trial was not registered because it is a small sample study that evaluates the clinical validity of a prototype virtual reality system.

  9. A Cognitive-System Model for En Route Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    NASA Ames Research Center has been engaged in the development of advanced air traffic management technologies whose basic form is cognitive aiding systems for air traffic controller and flight deck operations. In the design and evaluation of such systems the dynamic interaction between the airborne aiding system and the ground-based aiding systems forms a critical coupling for control. The human operator is an integral control element in the system and the optimal integration of human decision and performance parameters with those of the automation aiding systems offers a significant challenge to cognitive engineering. This paper presents a study in full mission simulation and the development of a predictive computational model of human performance. We have found that this combination of methodologies provide a powerful design-aiding process. We have extended the computational model Man Machine Integrated Design and Analysis System (N13DAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems), operating aircraft airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require the representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. We have exercised this model in a multi-air traffic sector scenario with potential conflict among aircraft at and across sector boundaries. We have modeled the control situation as a multiple closed loop system. The inner and outer loop alerting structure of air traffic management has many implications that need to be investigated to assure adequate design. First, there are control and stability factors implicit in the design. As the inner loop response time approaches that of the outer loop, system stability may be compromised in that controllers may be solving a problem the nature of which has already been changed by pilot action. Second, information exchange and information presentation for both air and ground must be designed to complement as opposed to compete with each other. Third, the level of individual and shared awareness in trajectory modification and flight conformance needs to be defined. Fourth, the level of required awareness and performance impact of mixed fleet operations and failed-mode recovery must be explored.

  10. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  11. M30. Cortical Thickness Patterns of Cognitive Impairment in Schizophrenia

    PubMed Central

    Pinnock, Farena; Hanford, Lindsay; Heinrichs, R. Walter

    2017-01-01

    Abstract Background: Schizophrenia is characterized by both psychotic illness and cognitive impairment, but it is unclear whether they represent related yet distinct disease processes. There is evidence to suggest dissociation. For example, cognitive impairment occurs in schizophrenia patients during both active psychosis and symptom remission. However, the shared or nonshared neural underpinnings of cognition and psychotic psychopathology are also unclear despite findings of multi-focal cortical thinning in the illness. Accordingly, this study sampled patients and controls with a broad range of cognitive ability to examine relations between cortical thickness and cognitive performance with and without the presence of psychotic illness. Our basic questions were: do regional thickness values primarily index the psychotic disease process or cognitive performance and to what extent do disease and performance interact? Methods: Cognitive functioning of patients diagnosed with schizophrenia or schizoaffective disorder (n = 61) and healthy controls (n = 40) were assessed with the MATRICS Consensus Cognitive Battery (MCCB). Neuroimaging data were obtained with a 3T General Electric System MRI scanner, and cortical thickness was calculated using Freesurfer. General linear models were conducted to examine relations and interactions between cortical thickness, diagnosis, and cognition. Results: Cortical thickness and cognitive performance on MCCB subscales and overall composite score were positively correlated in 34 brain regions, predominantly in the frontal, parietal, and temporal brain areas, irrespective of diagnostic status. Patients showed the same cortical thickness-cognitive performance relationship as controls, but had significantly reduced thickness in 27/34 of these regions despite similar behavioral performance. An interaction of diagnosis, cognition, and cortical thickness was found in the parahippocampal and left caudal middle frontal gyri only. Lastly, there were several regions of reduced cortical thickness among patients with no corresponding relationship to cognitive performance. Conclusion: These findings suggest that despite their high rates of co-occurrence, cognitive impairment and psychosis may be partially independent pathologies of the schizophrenia disease process. Cortical thickness varies with cognition in both schizophrenia patients and healthy controls, but remains significantly reduced in patients. This occurs even when cognitive performance is largely equalized between patients and controls. These findings are consistent with recent neurogenetic research linking liability to schizophrenia with cortical abnormalities including thinning, reduced synaptic structure and excessive pruning. The results point to the importance of studying cognition and psychotic symptoms as potentially separable processes that may also represent independent treatment targets.

  12. ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems

    PubMed Central

    Schilling, Malte; Cruse, Holk

    2017-01-01

    It has often been stated that for a neuronal system to become a cognitive one, it has to be large enough. In contrast, we argue that a basic property of a cognitive system, namely the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof of concept, we propose an artificial neural network, termed reaCog, that, first, is able to deal with a specific domain of behavior (six-legged-walking). Second, we show how a minor expansion of this system enables the system to plan ahead and deploy existing behavioral elements in novel contexts in order to solve current problems. To this end, the system invents new solutions that are not possible for the reactive network. Rather these solutions result from new combinations of given memory elements. This faculty does not rely on a dedicated system being more or less independent of the reactive basis, but results from exploitation of the reactive basis by recruiting the lower-level control structures in a way that motor planning becomes possible as an internal simulation relying on internal representation being grounded in embodied experiences. PMID:28194106

  13. Biomorphic Networks for ATR and Higher-Level Processing.

    DTIC Science & Technology

    1998-01-10

    Publications during this period: 1. N.H. Farhat, "Biomorphic Dynamical Networks for Cognition and Control", Journal of Intelligent and Rototic Systems...34 Neurodynamic networks for recognition of radar targets", Ph.D. dissertation, University of Pennsyl- vania, 1992. 2. J. Wood, "Invariant pattern...167-177,1998. 167 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Biomorphic Dynamical Networks for Cognition and Control N. H

  14. Representing distributed cognition in complex systems: how a submarine returns to periscope depth.

    PubMed

    Stanton, Neville A

    2014-01-01

    This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system.

  15. Immune function and brain abnormalities in patients with systemic lupus erythematosus without overt neuropsychiatric manifestations.

    PubMed

    Kozora, E; Filley, C M; Zhang, L; Brown, M S; Miller, D E; Arciniegas, D B; Pelzman, J L; West, S G

    2012-04-01

    This study examined the relationship between immune, cognitive and neuroimaging assessments in subjects with systemic lupus erythematosus (SLE) without histories of overt neuropsychiatric (NP) disorders. In total, 84 subjects with nonNPSLE and 37 healthy controls completed neuropsychological testing from the American College of Rheumatology SLE battery. Serum autoantibody and cytokine measures, volumetric magnetic resonance imaging, and magnetic resonance spectroscopy data were collected on a subset of subjects. NonNPSLE subjects had lower scores on measures of visual/complex attention, visuomotor speed and verbal memory compared with controls. No clinically significant differences between nonNPSLE patients and controls were found on serum measures of lupus anticoagulant, anticardiolipin antibodies, beta 2-glycoproteins, or pro-inflammatory cytokines (interleukin (IL)-1, IL-6, interferon alpha (IFN-alpha), and interferon gamma (IFN-gamma)). Higher scores on a global cognitive impairment index and a memory impairment index were correlated with lower IFN-alpha. Few associations between immune functions and neuroimaging parameters were found. Results indicated that nonNPSLE patients demonstrated cognitive impairment but not immune differences compared with controls. In these subjects, who were relatively young and with mild disease, no relationship between cognitive dysfunction, immune parameters, or previously documented neuroimaging abnormalities were noted. Immune measures acquired from cerebrospinal fluid instead of serum may yield stronger associations.

  16. A network engineering perspective on probing and perturbing cognition with neurofeedback.

    PubMed

    Bassett, Danielle S; Khambhati, Ankit N

    2017-05-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  17. Cognitive Systems Modeling and Analysis of Command and Control Systems

    NASA Technical Reports Server (NTRS)

    Norlander, Arne

    2012-01-01

    Military operations, counter-terrorism operations and emergency response often oblige operators and commanders to operate within distributed organizations and systems for safe and effective mission accomplishment. Tactical commanders and operators frequently encounter violent threats and critical demands on cognitive capacity and reaction time. In the future they will make decisions in situations where operational and system characteristics are highly dynamic and non-linear, i.e. minor events, decisions or actions may have serious and irreversible consequences for the entire mission. Commanders and other decision makers must manage true real time properties at all levels; individual operators, stand-alone technical systems, higher-order integrated human-machine systems and joint operations forces alike. Coping with these conditions in performance assessment, system development and operational testing is a challenge for both practitioners and researchers. This paper reports on research from which the results led to a breakthrough: An integrated approach to information-centered systems analysis to support future command and control systems research development. This approach integrates several areas of research into a coherent framework, Action Control Theory (ACT). It comprises measurement techniques and methodological advances that facilitate a more accurate and deeper understanding of the operational environment, its agents, actors and effectors, generating new and updated models. This in turn generates theoretical advances. Some good examples of successful approaches are found in the research areas of cognitive systems engineering, systems theory, and psychophysiology, and in the fields of dynamic, distributed decision making and naturalistic decision making.

  18. Operator selection for unmanned aerial systems: comparing video game players and pilots.

    PubMed

    McKinley, R Andy; McIntire, Lindsey K; Funke, Margaret A

    2011-06-01

    Popular unmanned aerial system (UAS) platforms such as the MQ-1 Predator and MQ-9 Reaper have experienced accelerated operations tempos that have outpaced current operator training regimens, leading to a shortage of qualified UAS operators. To find a surrogate to replace pilots of manned aircraft as UAS operators, this study evaluated video game players (VGPs), pilots, and a control group on a set of UAS operation relevant cognitive tasks. There were 30 participants who volunteered for this study and were divided into 3 groups: experienced pilots (P), experienced VGPs, and a control group (C). Each was trained on eight cognitive performance tasks relevant to unmanned flight tasks. The results indicated that pilots significantly outperform the VGP and control groups on multi-attribute cognitive tasks (Tank mean: VGP = 465 +/- 1.046 vs. P = 203 +/- 0.237 vs. C = 351 +/- 0.601). However, the VGPs outperformed pilots on cognitive tests related to visually acquiring, identifying, and tracking targets (final score: VGP = 594.28 +/- 8.708 vs. P = 563.33 +/- 8.787 vs. C = 568.21 +/- 8.224). Likewise, both VGPs and pilots performed similarly on the UAS landing task, but outperformed the control group (glide slope: VGP = 40.982 +/- 3.244 vs. P = 30.461 +/- 2.251 vs. C = 57.060 +/- 4.407). Cognitive skills learned in video game play may transfer to novel environments and improve performance in UAS tasks over individuals with no video game experience.

  19. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive.

    PubMed

    Otto, A Ross; Gershman, Samuel J; Markman, Arthur B; Daw, Nathaniel D

    2013-05-01

    A number of accounts of human and animal behavior posit the operation of parallel and competing valuation systems in the control of choice behavior. In these accounts, a flexible but computationally expensive model-based reinforcement-learning system has been contrasted with a less flexible but more efficient model-free reinforcement-learning system. The factors governing which system controls behavior-and under what circumstances-are still unclear. Following the hypothesis that model-based reinforcement learning requires cognitive resources, we demonstrated that having human decision makers perform a demanding secondary task engenders increased reliance on a model-free reinforcement-learning strategy. Further, we showed that, across trials, people negotiate the trade-off between the two systems dynamically as a function of concurrent executive-function demands, and people's choice latencies reflect the computational expenses of the strategy they employ. These results demonstrate that competition between multiple learning systems can be controlled on a trial-by-trial basis by modulating the availability of cognitive resources.

  20. Driving the brain towards creativity and intelligence: A network control theory analysis.

    PubMed

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  2. Individual differences in brain structure underpin empathizing-systemizing cognitive styles in male adults.

    PubMed

    Lai, Meng-Chuan; Lombardo, Michael V; Chakrabarti, Bhismadev; Ecker, Christine; Sadek, Susan A; Wheelwright, Sally J; Murphy, Declan G M; Suckling, John; Bullmore, Edward T; Baron-Cohen, Simon

    2012-07-16

    Individual differences in cognitive style can be characterized along two dimensions: 'systemizing' (S, the drive to analyze or build 'rule-based' systems) and 'empathizing' (E, the drive to identify another's mental state and respond to this with an appropriate emotion). Discrepancies between these two dimensions in one direction (S>E) or the other (E>S) are associated with sex differences in cognition: on average more males show an S>E cognitive style, while on average more females show an E>S profile. The neurobiological basis of these different profiles remains unknown. Since individuals may be typical or atypical for their sex, it is important to move away from the study of sex differences and towards the study of differences in cognitive style. Using structural magnetic resonance imaging we examined how neuroanatomy varies as a function of the discrepancy between E and S in 88 adult males from the general population. Selecting just males allows us to study discrepant E-S profiles in a pure way, unconfounded by other factors related to sex and gender. An increasing S>E profile was associated with increased gray matter volume in cingulate and dorsal medial prefrontal areas which have been implicated in processes related to cognitive control, monitoring, error detection, and probabilistic inference. An increasing E>S profile was associated with larger hypothalamic and ventral basal ganglia regions which have been implicated in neuroendocrine control, motivation and reward. These results suggest an underlying neuroanatomical basis linked to the discrepancy between these two important dimensions of individual differences in cognitive style. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The influence of approach-avoidance motivational orientation on conflict adaptation.

    PubMed

    Hengstler, Maikel; Holland, Rob W; van Steenbergen, Henk; van Knippenberg, Ad

    2014-06-01

    To deal effectively with a continuously changing environment, our cognitive system adaptively regulates resource allocation. Earlier findings showed that an avoidance orientation (induced by arm extension), relative to an approach orientation (induced by arm flexion), enhanced sustained cognitive control. In avoidance conditions, performance on a cognitive control task was enhanced, as indicated by a reduced congruency effect, relative to approach conditions. Extending these findings, in the present behavioral studies we investigated dynamic adaptations in cognitive control-that is, conflict adaptation. We proposed that an avoidance state recruits more resources in response to conflicting signals, and thereby increases conflict adaptation. Conversely, in an approach state, conflict processing diminishes, which consequently weakens conflict adaptation. As predicted, approach versus avoidance arm movements affected both behavioral congruency effects and conflict adaptation: As compared to approach, avoidance movements elicited reduced congruency effects and increased conflict adaptation. These results are discussed in line with a possible underlying neuropsychological model.

  4. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  5. Postural control system influences intrinsic alerting state.

    PubMed

    Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic

    2015-03-01

    Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  6. Effect of virtual reality on cognitive dysfunction in patients with brain tumor.

    PubMed

    Yang, Seoyon; Chun, Min Ho; Son, Yu Ri

    2014-12-01

    To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment.

  7. Effect of Virtual Reality on Cognitive Dysfunction in Patients With Brain Tumor

    PubMed Central

    Yang, Seoyon; Son, Yu Ri

    2014-01-01

    Objective To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Methods Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. Results The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. Conclusion VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment. PMID:25566470

  8. Impasse-driven tutoring for reactive skill acquisition

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.; Johnson, W. Lewis

    1993-01-01

    We are interested in developing effective performance-oriented training for the operation of systems that are used for monitor and control purposes. We have focused on one such system, the communications Link Monitor and Control (LMC) system used in NASA's Deep Space Network (DSN), which is a worldwide system for navigating, tracking and communicating with unmanned interplanetary spacecraft. The tasks in this domain are procedural in nature and require reactive, goal-oriented skills; we have previously described a cognitive model for problem solving that accounts for both novice and expert levels of behavior as well as how skill is acquired. Our cognitive modeling work in this task domain led us to make a number of predictions about tutoring that have influenced the design of the system described in this paper.

  9. Glancing and Then Looking: On the Role of Body, Affect, and Meaning in Cognitive Control

    PubMed Central

    Su, Li; Bowman, Howard; Barnard, Philip

    2011-01-01

    In humans, there is a trade-off between the need to respond optimally to the salient environmental stimuli and the need to meet our long-term goals. This implies that a system of salience sensitive control exists, which trades task-directed processing off against monitoring and responding to potentially high salience stimuli that are irrelevant to the current task. Much cognitive control research has attempted to understand these mechanisms using non-affective stimuli. However, recent research has emphasized the importance of emotions, which are a major factor in the prioritization of competing stimuli and in directing attention. While relatively mature theories of cognitive control exist for non-affective settings, exactly how emotions modulate cognitive processes is less well understood. The attentional blink (AB) task is a useful experimental paradigm to reveal the dynamics of both cognitive and affective control in humans. Hence, we have developed the glance–look model, which has replicated a broad profile of data on the semantic AB task and characterized how attentional deployment is modulated by emotion. Taking inspiration from Barnard’s Interacting Cognitive Subsystems, the model relies on a distinction between two levels of meaning: implicational and propositional, which are supported by two corresponding mental subsystems: the glance and the look respectively. In our model, these two subsystems reflect the central engine of cognitive control and executive function. In particular, the interaction within the central engine dynamically establishes a task filter for salient stimuli using a neurobiologically inspired learning mechanism. In addition, the somatic contribution of emotional effects is modeled by a body-state subsystem. We argue that stimulus-driven interaction among these three subsystems governs the movement of control between them. The model also predicts attenuation effects and fringe awareness during the AB. PMID:22194729

  10. Glancing and then looking: on the role of body, affect, and meaning in cognitive control.

    PubMed

    Su, Li; Bowman, Howard; Barnard, Philip

    2011-01-01

    In humans, there is a trade-off between the need to respond optimally to the salient environmental stimuli and the need to meet our long-term goals. This implies that a system of salience sensitive control exists, which trades task-directed processing off against monitoring and responding to potentially high salience stimuli that are irrelevant to the current task. Much cognitive control research has attempted to understand these mechanisms using non-affective stimuli. However, recent research has emphasized the importance of emotions, which are a major factor in the prioritization of competing stimuli and in directing attention. While relatively mature theories of cognitive control exist for non-affective settings, exactly how emotions modulate cognitive processes is less well understood. The attentional blink (AB) task is a useful experimental paradigm to reveal the dynamics of both cognitive and affective control in humans. Hence, we have developed the glance-look model, which has replicated a broad profile of data on the semantic AB task and characterized how attentional deployment is modulated by emotion. Taking inspiration from Barnard's Interacting Cognitive Subsystems, the model relies on a distinction between two levels of meaning: implicational and propositional, which are supported by two corresponding mental subsystems: the glance and the look respectively. In our model, these two subsystems reflect the central engine of cognitive control and executive function. In particular, the interaction within the central engine dynamically establishes a task filter for salient stimuli using a neurobiologically inspired learning mechanism. In addition, the somatic contribution of emotional effects is modeled by a body-state subsystem. We argue that stimulus-driven interaction among these three subsystems governs the movement of control between them. The model also predicts attenuation effects and fringe awareness during the AB.

  11. Culture and the Trajectories of Developmental Pathology: Insights from Control and Information Theories.

    PubMed

    Wallace, Rodrick

    2018-06-01

    Cognition in living entities-and their social groupings or institutional artifacts-is necessarily as complicated as their embedding environments, which, for humans, includes a particularly rich cultural milieu. The asymptotic limit theorems of information and control theories permit construction of a new class of empirical 'regression-like' statistical models for cognitive developmental processes, their dynamics, and modes of dysfunction. Such models may, as have their simpler analogs, prove useful in the study and re-mediation of cognitive failure at and across the scales and levels of organization that constitute and drive the phenomena of life. These new models particularly focus on the roles of sociocultural environment and stress, in a large sense, as both trigger for the failure of the regulation of bio-cognition and as 'riverbanks' determining the channels of pathology, with implications across life-course developmental trajectories. We examine the effects of an embedding cultural milieu and its socioeconomic implementations using the 'lenses' of metabolic optimization, control system theory, and an extension of symmetry-breaking appropriate to information systems. A central implication is that most, if not all, human developmental disorders are fundamentally culture-bound syndromes. This has deep implications for both individual treatment and public health policy.

  12. Modulation of cholinergic functions by serotonin and possible implications in memory: general data and focus on 5-HT(1A) receptors of the medial septum.

    PubMed

    Jeltsch-David, Hélène; Koenig, Julie; Cassel, Jean-Christophe

    2008-12-16

    Cholinergic systems were linked to cognitive processes like attention and memory. Other neurotransmitter systems having minor influence on cognitive functions - as shown by the weakness of the effects of their selective lesions - modulate cholinergic functions. The serotonergic system is such a system. Conjoined functional changes in cholinergic and serotonergic systems may have marked cognitive consequences [Cassel JC, Jeltsch H. Serotoninergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 1995;69(1):1-41; Steckler T, Sahgal A. The role of serotoninergic-cholinergic interactions in the mediation of cognitive behaviour. Behav Brain Res 1995;67:165-99]. A crucial issue in that concern is the identification of the neuroanatomical and neuropharmacological substrates where functional effects of serotonergic/cholinergic interactions originate. Approaches relying on lesions and intracerebral cell grafting, on systemic drug-cocktail injections, or even on intracerebral drug infusions represent the main avenues on which our knowledge about the role of serotonergic/cholinergic interactions has progressed. The present review will visit some of these avenues and discuss their contribution to what is currently known on the potential or established implication(s) into memory functions of serotonergic/cholinergic interactions. It will then focus on a brain region and a neuropharmacological substrate that have been poorly studied as regards serotonergic modulation of memory functions, namely the medial septum and its 5-HT(1A) receptors. Based on recent findings of our laboratory, we suggest that these receptors, located on both cholinergic and GABAergic septal neurons, take part in a mechanism that controls encoding, to some extent consolidation, but not retrieval, of hippocampal-dependent memories. This control, however, does not occur by the way of an exclusive action of serotonin on cholinergic neurons.

  13. LONGITUDINAL EFFECTS OF MULTIPLE POLLUTANTS ON CHILD GROWTH, BLOOD PRESSURE AND COGNITION

    EPA Science Inventory

    Cognitive deficits and child behavior problems not only impose costs and burdens on children and their families, but also on their school systems. The origins of adult diseases, including elevated blood pressure are in childhood, and environmental controls in childhood may sig...

  14. Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods

    NASA Astrophysics Data System (ADS)

    Dubovik, S. A.; Kabanov, A. A.

    2017-01-01

    The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.

  15. Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style.

    PubMed

    Villarreal, Eduardo A Garza; Brattico, Elvira; Vase, Lene; Østergaard, Leif; Vuust, Peter

    2012-01-01

    Listening to music has been found to reduce acute and chronic pain. The underlying mechanisms are poorly understood; however, emotion and cognitive mechanisms have been suggested to influence the analgesic effect of music. In this study we investigated the influence of familiarity, emotional and cognitive features, and cognitive style on music-induced analgesia. Forty-eight healthy participants were divided into three groups (empathizers, systemizers and balanced) and received acute pain induced by heat while listening to different sounds. Participants listened to unfamiliar Mozart music rated with high valence and low arousal, unfamiliar environmental sounds with similar valence and arousal as the music, an active distraction task (mental arithmetic) and a control, and rated the pain. Data showed that the active distraction led to significantly less pain than did the music or sounds. Both unfamiliar music and sounds reduced pain significantly when compared to the control condition; however, music was no more effective than sound to reduce pain. Furthermore, we found correlations between pain and emotion ratings. Finally, systemizers reported less pain during the mental arithmetic compared with the other two groups. These findings suggest that familiarity may be key in the influence of the cognitive and emotional mechanisms of music-induced analgesia, and that cognitive styles may influence pain perception.

  16. Connecting a cognitive architecture to robotic perception

    NASA Astrophysics Data System (ADS)

    Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial

    2012-06-01

    We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.

  17. Executive dysfunction predicts social cognition impairment in amyotrophic lateral sclerosis.

    PubMed

    Watermeyer, Tamlyn J; Brown, Richard G; Sidle, Katie C L; Oliver, David J; Allen, Christopher; Karlsson, Joanna; Ellis, Catherine M; Shaw, Christopher E; Al-Chalabi, Ammar; Goldstein, Laura H

    2015-07-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of the motor system with recognised extra-motor and cognitive involvement. This cross-sectional study examined ALS patients' performance on measures requiring social inference, and determined the relationship between such changes and variations in mood, behaviour, personality, empathy and executive function. Fifty-five ALS patients and 49 healthy controls were compared on tasks measuring social cognition and executive function. ALS patients also completed measures examining mood, behaviour and personality. Regression analyses explored the contribution of executive function, mood, behaviour and personality to social cognition scores within the ALS sample. A between-group MANOVA revealed that, the ALS group was impaired relative to controls on two composite scores for social cognition and executive function. Patients also performed worse on individual tests of executive function measuring cognitive flexibility, response inhibition and concept formation, and on individual aspects of social cognition assessing the attribution of emotional and mental states. Regression analyses indicated that ALS-related executive dysfunction was the main predictor of social cognition performance, above and beyond demographic variables, behaviour, mood and personality. On at least some aspects of social cognition, impaired performance in ALS appears to be secondary to executive dysfunction. The profile of cognitive impairment in ALS supports a cognitive continuum between ALS and frontotemporal dementia.

  18. Dynamic reconfiguration of frontal brain networks during executive cognition in humans

    PubMed Central

    Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.

    2015-01-01

    The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898

  19. Context, not conflict, drives cognitive control.

    PubMed

    Schlaghecken, Friederike; Martini, Paolo

    2012-04-01

    Theories of cognitive control generally assume that perceived conflict acts as a signal to engage inhibitory mechanisms that suppress subsequent conflicting information. Crucially, an absence of conflict is not regarded as being a relevant signal for cognitive control. Using a cueing, a priming, and a Simon task, we provide evidence that conflict does not have this unique signal status: Encountering a conflict does not lead to behavioral adjustments on subsequent conflict trials, whereas encountering a nonconflict trial does lead to behavioral adjustments on subsequent nonconflict trials. We propose that this apparent role-reversal can be explained by a mechanism that responds to both the presence and the absence of conflict, down-regulating the visuomotor system following conflict, and up-regulating it following nonconflict.

  20. The Curse of Planning: Dissecting multiple reinforcement learning systems by taxing the central executive

    PubMed Central

    Otto, A. Ross; Gershman, Samuel J.; Markman, Arthur B.; Daw, Nathaniel D.

    2013-01-01

    A number of accounts of human and animal behavior posit the operation of parallel and competing valuation systems in the control of choice behavior. Along these lines, a flexible but computationally expensive model-based reinforcement learning system has been contrasted with a less flexible but more efficient model-free reinforcement learning system. The factors governing which system controls behavior—and under what circumstances—are still unclear. Based on the hypothesis that model-based reinforcement learning requires cognitive resources, we demonstrate that having human decision-makers perform a demanding secondary task engenders increased reliance on a model-free reinforcement learning strategy. Further, we show that across trials, people negotiate this tradeoff dynamically as a function of concurrent executive function demands and their choice latencies reflect the computational expenses of the strategy employed. These results demonstrate that competition between multiple learning systems can be controlled on a trial-by-trial basis by modulating the availability of cognitive resources. PMID:23558545

  1. Metacognitive Control of Categorial Neurobehavioral Decision Systems

    PubMed Central

    Foxall, Gordon R.

    2016-01-01

    The competing neuro-behavioral decision systems (CNDS) model proposes that the degree to which an individual discounts the future is a function of the relative hyperactivity of an impulsive system based on the limbic and paralimbic brain regions and the relative hypoactivity of an executive system based in prefrontal cortex (PFC). The model depicts the relationship between these categorial systems in terms of the antipodal neurophysiological, behavioral, and decision (cognitive) functions that engender normal and addictive responding. However, a case may be made for construing several components of the impulsive and executive systems depicted in the model as categories (elements) of additional systems that are concerned with the metacognitive control of behavior. Hence, this paper proposes a category-based structure for understanding the effects on behavior of CNDS, which includes not only the impulsive and executive systems of the basic model but a superordinate level of reflective or rational decision-making. Following recent developments in the modeling of cognitive control which contrasts Type 1 (rapid, autonomous, parallel) processing with Type 2 (slower, computationally demanding, sequential) processing, the proposed model incorporates an arena in which the potentially conflicting imperatives of impulsive and executive systems are examined and from which a more appropriate behavioral response than impulsive choice emerges. This configuration suggests a forum in which the interaction of picoeconomic interests, which provide a cognitive dimension for CNDS, can be conceptualized. This proposition is examined in light of the resolution of conflict by means of bundling. PMID:26925004

  2. Enhancing cognition with video games: a multiple game training study.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2013-01-01

    Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.

  3. Effects of Lifetime Occupational Pesticide Exposure on Postural Control Among Farmworkers and Non-Farmworkers.

    PubMed

    Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A

    2016-02-01

    The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.

  4. Effects of lifetime occupational pesticide exposure on postural control among farmworkers and non-farmworkers

    PubMed Central

    Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.

    2015-01-01

    Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257

  5. An integrative architecture for general intelligence and executive function revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393

  6. Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks.

    PubMed

    Cao, Weifang; Cao, Xinyi; Hou, Changyue; Li, Ting; Cheng, Yan; Jiang, Lijuan; Luo, Cheng; Li, Chunbo; Yao, Dezhong

    2016-01-01

    Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks.

  7. Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks

    PubMed Central

    Cao, Weifang; Cao, Xinyi; Hou, Changyue; Li, Ting; Cheng, Yan; Jiang, Lijuan; Luo, Cheng; Li, Chunbo; Yao, Dezhong

    2016-01-01

    Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks. PMID:27148042

  8. Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies.

    PubMed

    Hung, Yuwen; Gaillard, Schuyler L; Yarmak, Pavel; Arsalidou, Marie

    2018-06-19

    Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions. © 2018 Wiley Periodicals, Inc.

  9. Combined Cognitive-Strategy and Task-Specific Training Affects Cognition and Upper-Extremity Function in Subacute Stroke: An Exploratory Randomized Controlled Trial

    PubMed Central

    Polatajko, Helene; Baum, Carolyn; Rios, Jorge; Cirone, Dianne; Doherty, Meghan; McEwen, Sara

    2016-01-01

    The purpose of this study was to estimate the effect of Cognitive Orientation to Daily Occupational Performance (CO–OP) compared with usual occupational therapy on upper-extremity movement, cognitive flexibility, and stroke impact in people less than 3 mo after stroke. An exploratory, single-blind randomized controlled trial was conducted with people referred to outpatient occupational therapy services at two rehabilitation centers. Arm movement was measured with the Action Research Arm Test, cognitive flexibility with the Delis–Kaplan Executive Function System Trail Making subtest, and stroke impact with subscales of the Stroke Impact Scale. A total of 35 participants were randomized, and 26 completed the intervention. CO–OP demonstrated measurable effects over usual care on all measures. These data provide early support for the use of CO–OP to improve performance and remediate cognitive and arm movement impairments after stroke over usual care; however, future study is warranted to confirm the effects observed in this trial. PMID:26943113

  10. Dietary strawberry improves cognition in older adults: a randomized, double-blind, placebo-controlled study

    USDA-ARS?s Scientific Manuscript database

    Older adults experience a variety of functional changes that decrease their quality of life with age-related cognitive decline and reduced mobility being of particular concern. Pre-clinical research indicates that berry fruit offer a promising dietary approach to preserving nervous system function, ...

  11. Metalinguistic Filters within the Bilingual Language Faculty: A Study of Young English-Chinese Bilinguals

    ERIC Educational Resources Information Center

    Ong, Kenneth Keng Wee; Zhang, Lawrence Jun

    2010-01-01

    This study reports two metalinguistic parameters that constitute the schematic control of lateral inhibitory links between translation equivalents within the bilingual lexico-semantic system of Green's ("Bilingualism: Language and Cognition" 1:67-81, 1998a, "Bilingualism: Language and Cognition" 1:100-104, 1998b, "The…

  12. Visual cognition in amnesic H.M.: selective deficits on the What's-Wrong-Here and Hidden-Figure tasks.

    PubMed

    MacKay, Donald G; James, Lori E

    2009-10-01

    Two experiments compared the visual cognition performance of amnesic H.M. and memory-normal controls matched for age, background, intelligence, and education. In Experiment 1 H.M. exhibited deficits relative to the controls in detecting "erroneous objects" in complex visual scenes--for example, a bird flying inside a fishbowl. In Experiment 2 H.M. exhibited deficits relative to the controls in standard Hidden-Figure tasks when detecting unfamiliar targets but not when detecting familiar targets--for example, circles, squares, and right-angle triangles. H.M.'s visual cognition deficits were not due to his well-known problems in explicit learning and recall, inability to comprehend or remember the instructions, general slowness, motoric difficulties, low motivation, low IQ relative to the controls, or working-memory limitations. Parallels between H.M.'s selective deficits in visual cognition, language, and memory are discussed. These parallels contradict the standard "systems theory" account of H.M.'s condition but comport with the hypothesis that H.M. has difficulty representing unfamiliar but not familiar information in visual cognition, language, and memory. Implications of our results are discussed for binding theory and the ongoing debate over what counts as "memory" versus "not-memory."

  13. Cognitive dysfunction and functional magnetic resonance imaging in systemic lupus erythematosus.

    PubMed

    Barraclough, M; Elliott, R; McKie, S; Parker, B; Bruce, I N

    2015-10-01

    Cognitive dysfunction is a common aspect of systemic lupus erythematosus (SLE) and is increasingly reported as a problem by patients. In many cases the exact cause is unclear. Limited correlations between specific autoantibodies or structural brain abnormalities and cognitive dysfunction in SLE have been reported. It may be that the most appropriate biomarkers have yet to be found. Functional magnetic resonance imaging (fMRI) is a technique used in many other conditions and provides sensitive measures of brain functionality during cognitive tasks. It is now beginning to be employed in SLE studies. These studies have shown that patients with SLE often perform similarly to healthy controls in terms of behavioural measures on cognitive tasks. However, SLE patients appear to employ compensatory brain mechanisms, such as increased response in fronto-parietal regions, to maintain adequate cognitive performance. As there have been only a few studies using fMRI in SLE to investigate cognitive dysfunction, many questions remain unanswered. Further research could, however, help to identify biomarkers for cognitive dysfunction in SLE. © The Author(s) 2015.

  14. Impairment of cognitive functioning during Sunitinib or Sorafenib treatment in cancer patients: a cross sectional study

    PubMed Central

    2014-01-01

    Background Impairment of cognitive functioning has been reported in several studies in patients treated with chemotherapy. So far, no studies have been published on the effects of the vascular endothelial growth factor receptor (VEGFR) inhibitors on cognitive functioning. We investigated the objective and subjective cognitive function of patients during treatment with VEGFR tyrosine kinase inhibitors (VEGFR TKI). Methods Three groups of participants, matched on age, sex and education, were enrolled; 1. metastatic renal cell cancer (mRCC) or GIST patients treated with sunitinib or sorafenib (VEGFR TKI patients n = 30); 2. patients with mRCC not receiving systemic treatment (patient controls n = 20); 3. healthy controls (n = 30). Sixteen neuropsychological tests examining the main cognitive domains (intelligence, memory, attention and concentration, executive functions and abstract reasoning) were administered by a neuropsychologist. Four questionnaires were used to assess subjective cognitive complaints, mood, fatigue and psychological wellbeing. Results No significant differences in mean age, sex distribution, education level or IQ were found between the three groups. Both patient groups performed significantly worse on the cognitive domains Learning & Memory and Executive Functions (Response Generation and Problem Solving) compared to healthy controls. However only the VEGFR TKI patients showed impairments on the Executive subdomain Response Generation. Effect sizes of cognitive dysfunction in patients using VEGFR TKI were larger on the domains Learning & Memory and Executive Functions, compared to patient controls. Both patients groups performed on the domain Attention & Concentration the same as the healthy controls. Longer duration of treatment on VEGFR TKI was associated with a worse score on Working Memory tasks. Conclusions Our data suggest that treatment with VEGFR TKI has a negative impact on cognitive functioning, specifically on Learning & Memory, and Executive Functioning. We propose that patients who are treated with VEGFR TKI are monitored and informed for possible signs or symptoms associated with cognitive impairment. Trial registration ClinicalTrials.gov Identifier: NCT01246843. PMID:24661373

  15. The dissociable neural dynamics of cognitive conflict and emotional conflict control: An ERP study.

    PubMed

    Xue, Song; Li, Yu; Kong, Xia; He, Qiaolin; Liu, Jia; Qiu, Jiang

    2016-04-21

    This study investigated differences in the neural time-course of cognitive conflict and emotional conflict control, using event-related potentials (ERPs). Although imaging studies have provided some evidence that distinct, dissociable neural systems underlie emotional and nonemotional conflict resolution, no ERP study has directly compared these two types of conflict. Therefore, the present study used a modified face-word Stroop task to explore the electrophysiological correlates of cognitive and emotional conflict control. The behavioral data showed that the difference in response time of congruency (incongruent condition minus the congruent condition) was larger in the cognitive conflict task than in the emotional conflict task, which indicated that cognitive conflict was stronger than the emotional conflict in the present tasks. Analysis of the ERP data revealed a main effect of task type on N2, which may be associated with top-down attention. The N450 results showed an interaction between cognitive and emotional conflict, which might be related to conflict detection. In addition, we found the incongruent condition elicited a larger SP than the congruent condition, which might be related to conflict resolution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A functional approach for research on cognitive control: Analysing cognitive control tasks and their effects in terms of operant conditioning.

    PubMed

    Liefooghe, Baptist; De Houwer, Jan

    2016-02-01

    Cognitive control is an important mental ability that is examined using a multitude of cognitive control tasks and effects. The present paper presents the first steps in the elaboration of a functional approach, which aims to uncover the communalities and differences between different cognitive control tasks and their effects. Based on the idea that responses in cognitive control tasks qualify as operant behaviour, we propose to reinterpret cognitive control tasks in terms of operant contingencies and cognitive control effects as instances of moderated stimulus control. We illustrate how our approach can be used to uncover communalities between topographically different cognitive control tasks and can lead to novel questions about the processes underlying cognitive control. © 2015 International Union of Psychological Science.

  17. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  18. [Effects of COPD on cognitive functions: a case control study].

    PubMed

    Sarınç Ulaşlı, Sevinç; Oruç, Serdar; Günay, Ersin; Aktaş, Orçun; Akar, Olcay; Koyuncu, Tülay; Ünlü, Mehmet

    2013-01-01

    Assessment of disease severity, effects of disease on health status and future events should be considered to direct treatment strategies in chronic obstructive pulmonary disease (COPD) management. Although extrapulmonary effects of COPD are well known, effects of COPD on cognitive functions have not been evaluated sufficiently. therefore we aimed to determine cognitive functions of copd patients in the present study. 112 COPD patients with moderate, severe and very severe irreversible airway obstruction and 44 age matched healthy subjects without COPD and systemic diseases as control group were enrolled to the study. Mini mental state examination (MMSE) was performed to evaluate cognitive functions. MMSE results were compared between patient and control groups. Moreover relationship between exacerbation frequency and cognitive functions was evaluated. Total 156 subjects as 112 COPD patients and 44 healthy subjects were included to the study. Mean age of COPD patients was 65.03 ± 7.63 years, and mean age of control group was 63.63 ± 8.96 years (p= 0.364). Mean score of MMSE in COPD patients was 23.8 ± 4.39, and mean score of MMSE in control group was 26.7 ± 2.88. We determined a significant difference in terms of MMSE scores betweeen patient and control group (p< 0.0001). MMSE scores and FEV1 values were significantly different among patients with moderate, sevre and very severe airflow obstruction (p= 0.001; p< 0.0001 respectively). We found a significant negative correlation between MMSE results and exacerbation frequency during last year (p= 0.003; r= -0.239). Lower MMSE scores of COPD patients than subjects in control group indicates the impairment of cognitive functions in COPD patients. Moreover a negative relationship between MMSE scores with exacerbation frequency during last year suggests that prevention from exacerbation can decrease cognitive impairment in COPD patients. We believe that assessment of cognitive functions and preventive strategies should be considered in COPD management.

  19. Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A2A receptors in mice.

    PubMed

    Moscoso-Castro, Maria; López-Cano, Marc; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2017-11-01

    The study of psychiatric disorders usually focuses on emotional symptoms assessment. However, cognitive deficiencies frequently constitute the core symptoms, are often poorly controlled and handicap individual's quality of life. Adenosine receptors, through the control of both dopamine and glutamate systems, have been implicated in the pathophysiology of several psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder. Indeed, clinical data indicate that poorly responsive schizophrenia patients treated with adenosine adjuvants show improved treatment outcomes. The A 2A adenosine receptor subtype (A 2A R) is highly expressed in brain areas controlling cognition and motivational responses including the striatum, hippocampus and cerebral cortex. Accordingly, we study the role of A 2A R in the regulation of cognitive processes based on a complete cognitive behavioural analysis coupled with the assessment of neurogenesis and sub-synaptic protein expression in adult and middle-aged A 2A R constitutional knockout mice and wild-type littermates. Our results show overall cognitive impairments in A 2A R knockout mice associated with a decrease in new-born hippocampal neuron proliferation and concomitant changes in synaptic protein expression, in both the prefrontal cortex and the hippocampus. These results suggest a deficient adenosine signalling in cognitive processes, thus providing new opportunities for the therapeutic management of cognitive deficits associated with psychiatric disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning

    PubMed Central

    Schad, Daniel J.; Jünger, Elisabeth; Sebold, Miriam; Garbusow, Maria; Bernhardt, Nadine; Javadi, Amir-Homayoun; Zimmermann, Ulrich S.; Smolka, Michael N.; Heinz, Andreas; Rapp, Michael A.; Huys, Quentin J. M.

    2014-01-01

    Theories of decision-making and its neural substrates have long assumed the existence of two distinct and competing valuation systems, variously described as goal-directed vs. habitual, or, more recently and based on statistical arguments, as model-free vs. model-based reinforcement-learning. Though both have been shown to control choices, the cognitive abilities associated with these systems are under ongoing investigation. Here we examine the link to cognitive abilities, and find that individual differences in processing speed covary with a shift from model-free to model-based choice control in the presence of above-average working memory function. This suggests shared cognitive and neural processes; provides a bridge between literatures on intelligence and valuation; and may guide the development of process models of different valuation components. Furthermore, it provides a rationale for individual differences in the tendency to deploy valuation systems, which may be important for understanding the manifold neuropsychiatric diseases associated with malfunctions of valuation. PMID:25566131

  1. From where they look to what they think: Determining controller cognitive strategies from oculometer scanning data

    NASA Technical Reports Server (NTRS)

    Cushing, Steven

    1989-01-01

    The behavior and cognition of air traffic controllers from oculometer scanning data already obtained for another purpose was studied. There was very little work done to develop models of air traffic controllers, much of what was done was done at Langley. One aim of developing such models is to use them as the basis of decision-support or expert-system tools to assist controllers in their tasks. Such tools are more likely to be effective if they incorporate the strategies that controllers actually use, rather than steering them in what might be felt to be unnatural directions.

  2. Cognate effects and cognitive control in patients with parallel and differential bilingual aphasia.

    PubMed

    Van der Linden, Lize; Verreyt, Nele; De Letter, Miet; Hemelsoet, Dimitri; Mariën, Peter; Santens, Patrick; Stevens, Michaël; Szmalec, Arnaud; Duyck, Wouter

    2018-05-01

    Until today, there is no satisfying explanation for why one language may recover worse than another in differential bilingual aphasia. One potential explanation that has been largely unexplored is that differential aphasia is the consequence of a loss of language control rather than a loss of linguistic representations. Language control is part of a general control mechanism that also manages non-linguistic cognitive control. If this system is impaired, patients with differential aphasia could still show bilingual language activation, but they may be unable to manage activation in non-target languages, so that performance in another language is hindered. To investigate whether a loss of cognitive control, rather than the loss of word representations in a particular language, might underlie differential aphasia symptoms. We compared the performance of seven bilinguals with differential and eight bilinguals with parallel aphasia with 19 control bilinguals in a lexical decision and a flanker task to assess bilingual language co-activation and non-linguistic control respectively. We found similar cognate effects in the three groups, indicating similar lexical processing across groups. Additionally, we found a larger non-linguistic control congruency effect only for the patients with differential aphasia. The present data indicate preserved language co-activation for patients with parallel as well as differential aphasia. Furthermore, the results suggest a general cognitive control dysfunction, specifically for differential aphasia. Taken together, the results of the current study provide further support for the hypothesis of impaired cognitive control abilities in patients with differential aphasia, which has both theoretical and practical implications. © 2018 Royal College of Speech and Language Therapists.

  3. The evolution and devolution of cognitive control: The costs of deliberation in a competitive world

    PubMed Central

    Tomlin, Damon; Rand, David G.; Ludvig, Elliot A.; Cohen, Jonathan D.

    2015-01-01

    Dual-system theories of human cognition, under which fast automatic processes can complement or compete with slower deliberative processes, have not typically been incorporated into larger scale population models used in evolutionary biology, macroeconomics, or sociology. However, doing so may reveal important phenomena at the population level. Here, we introduce a novel model of the evolution of dual-system agents using a resource-consumption paradigm. By simulating agents with the capacity for both automatic and controlled processing, we illustrate how controlled processing may not always be selected over rigid, but rapid, automatic processing. Furthermore, even when controlled processing is advantageous, frequency-dependent effects may exist whereby the spread of control within the population undermines this advantage. As a result, the level of controlled processing in the population can oscillate persistently, or even go extinct in the long run. Our model illustrates how dual-system psychology can be incorporated into population-level evolutionary models, and how such a framework can be used to examine the dynamics of interaction between automatic and controlled processing that transpire over an evolutionary time scale. PMID:26078086

  4. The evolution and devolution of cognitive control: The costs of deliberation in a competitive world.

    PubMed

    Tomlin, Damon; Rand, David G; Ludvig, Elliot A; Cohen, Jonathan D

    2015-06-16

    Dual-system theories of human cognition, under which fast automatic processes can complement or compete with slower deliberative processes, have not typically been incorporated into larger scale population models used in evolutionary biology, macroeconomics, or sociology. However, doing so may reveal important phenomena at the population level. Here, we introduce a novel model of the evolution of dual-system agents using a resource-consumption paradigm. By simulating agents with the capacity for both automatic and controlled processing, we illustrate how controlled processing may not always be selected over rigid, but rapid, automatic processing. Furthermore, even when controlled processing is advantageous, frequency-dependent effects may exist whereby the spread of control within the population undermines this advantage. As a result, the level of controlled processing in the population can oscillate persistently, or even go extinct in the long run. Our model illustrates how dual-system psychology can be incorporated into population-level evolutionary models, and how such a framework can be used to examine the dynamics of interaction between automatic and controlled processing that transpire over an evolutionary time scale.

  5. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian

    2015-03-01

    Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.

  6. Prefrontal Markers and Cognitive Performance Are Dissociated during Progressive Dopamine Lesion

    PubMed Central

    Wilson, Charles R. E.; Vezoli, Julien; Faraut, Maïlys C. M.; Leviel, Vincent; Knoblauch, Kenneth; Procyk, Emmanuel

    2016-01-01

    Dopamine is thought to directly influence the neurophysiological mechanisms of both performance monitoring and cognitive control—two processes that are critically linked in the production of adapted behaviour. Changing dopamine levels are also thought to induce cognitive changes in several neurological and psychiatric conditions. But the working model of this system as a whole remains untested. Specifically, although many researchers assume that changing dopamine levels modify neurophysiological mechanisms and their markers in frontal cortex, and that this in turn leads to cognitive changes, this causal chain needs to be verified. Using longitudinal recordings of frontal neurophysiological markers over many months during progressive dopaminergic lesion in non-human primates, we provide data that fail to support a simple interaction between dopamine, frontal function, and cognition. Feedback potentials, which are performance-monitoring signals sometimes thought to drive successful control, ceased to differentiate feedback valence at the end of the lesion, just before clinical motor threshold. In contrast, cognitive control performance and beta oscillatory markers of cognitive control were unimpaired by the lesion. The differing dynamics of these measures throughout a dopamine lesion suggests they are not all driven by dopamine in the same way. These dynamics also demonstrate that a complex non-linear set of mechanisms is engaged in the brain in response to a progressive dopamine lesion. These results question the direct causal chain from dopamine to frontal physiology and on to cognition. They imply that biomarkers of cognitive functions are not directly predictive of dopamine loss. PMID:27824858

  7. Systematic review of the effect of the psychosocial working environment on cognition and dementia.

    PubMed

    Then, Francisca S; Luck, Tobias; Luppa, Melanie; Thinschmidt, Marleen; Deckert, Stefanie; Nieuwenhuijsen, Karen; Seidler, Andreas; Riedel-Heller, Steffi G

    2014-05-01

    The high incidence of cognitive impairment in the ageing population, together with the challenges it imposes to health systems, raises the question of what affect working life has on cognitive abilities. The study, therefore, reviews recent work on the longitudinal impact of psychosocial work conditions on cognitive functioning and on dementia. Relevant articles were identified by a systematic literature search in PubMed and PsycINFO using a standardised search string and specific inclusion and exclusion criteria. We included articles reporting longitudinal effects that were investigated in cohort studies, case-control studies or randomised controlled trials in the working population. Two independent reviewers evaluated the studies in three subsequent phases: (i) title-abstract screening, (ii) full-text screening and (iii) checklist-based quality assessment.Methodical evaluation of the identified articles resulted in 17 studies of adequate quality. We found evidence for a protective effect of high job control and high work complexity with people and data on the risk of cognitive decline and dementia. Moreover, cognitively demanding work conditions seem to be associated with a decreased risk of cognitive deterioration in old age.Psychosocial work conditions can have an impact on cognitive functioning and even on the risk of dementia. As the world of work is undergoing fundamental changes, such as accelerated technological advances and an ageing working population, optimising work conditions is essential in order to promote and maintain cognitive abilities into old age.

  8. Comparisons of Korsakoff and Non-Korsakoff Alcoholics on Neuropsychological Tests of Prefrontal Brain Functioning

    PubMed Central

    Oscar-Berman, Marlene; Kirkley, Shalene M.; Gansler, David A.; Couture, Ashley

    2014-01-01

    Background Evidence suggests that alcoholics exhibit particular deficits in brain systems involving the prefrontal cortex, but few studies have directly compared patients with and without Korsakoff’s syndrome on measures of prefrontal integrity. Methods Neuropsychological tasks sensitive to dysfunction of frontal brain systems were administered, along with standard tests of memory, intelligence, and visuospatial abilities, to 50 healthy, abstinent, nonamnesic alcoholics, 6 patients with alcohol-induced persisting amnestic disorder (Korsakoff’s syndrome), 6 brain-damaged controls with right hemisphere lesions, and 82 healthy nonalcoholic controls. Results Korsakoff patients were impaired on tests of memory, fluency, cognitive flexibility, and perseveration. Non-Korsakoff alcoholics showed some frontal system deficits as well, but these were mild. Cognitive deficits in non-Korsakoff alcoholics were related to age, duration of abstinence (less than 5 years), duration of abuse (more than 20 years), and amount of alcohol intake. Conclusions Abnormalities of frontal system functioning are most apparent in alcoholics with Korsakoff’s syndrome. In non-Korsakoff alcoholics, factors contributing to cognitive performance are age, duration of abstinence, duration of alcoholism, and amount of alcohol consumed. PMID:15100620

  9. White matter hyperintensities, systemic inflammation, brain growth, and cognitive functions in children exposed to air pollution.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Torres-Jardón, Ricardo; Carlos, Esperanza; Solorio-López, Edelmira; Medina-Cortina, Humberto; Kavanaugh, Michael; D'Angiulli, Amedeo

    2012-01-01

    Air pollution exposures are linked to neuroinflammation and neuropathology in young urbanites. Forty percent of exposed children and young adults exhibit frontal tau hyperphosphorylation and 51% have amyloid-β diffuse plaques compared to 0% in low pollution controls. In older adults, white matter hyperintensities (WMH) are associated with cognitive deficits while inflammatory markers correlate with greater atrophy than expected for age. We investigated patterns of WMH, magnetic resonance imaging (MRI) volume growth, blood inflammatory mediators, and cognition in matched children from two urban cohorts: one severely and one minimally exposed to air pollution. Baseline and one year follow-up measurements of cognitive abilities, brain MRI volumes, and blood were collected in 20 Mexico City (MC) children (10 with WMH+, and 10 without WMH-) and 10 matched controls (WMH-). MC WMH- children display the profile of classical pro-inflammatory defensive responses: high interleukin 12, production of powerful pro-inflammatory cytokines, and low concentrations of key cytokines and chemokines associated with neuroprotection. MC WMH+ children exhibit a response involved in resolution of inflammation, immunoregulation, and tissue remodeling. The MC WMH+ group responded to the air pollution-associated brain volumetric alterations with white and grey matter volume increases in temporal, parietal, and frontal regions and better cognitive performance compared to MC WMH-. We conclude that complex modulation of cytokines and chemokines influences children's central nervous system structural and volumetric responses and cognitive correlates resulting from environmental pollution exposures. Identification of biomarkers associating systemic inflammation to brain growth is critical for detecting children at higher risk for cognitive deficits and neurodegeneration, thereby warranting early implementation of neuroprotective measures.

  10. Ubiquitous Wireless Smart Sensing and Control

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  11. Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  12. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    PubMed

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  13. Subconscious detection of threat as reflected by an enhanced response bias.

    PubMed

    Windmann, S; Krüger, T

    1998-12-01

    Neurobiological and cognitive models of unconscious information processing suggest that subconscious threat detection can lead to cognitive misinterpretations and false alarms, while conscious processing is assumed to be perceptually and conceptually accurate and unambiguous. Furthermore, clinical theories suggest that pathological anxiety results from a crude preattentive warning system predominating over more sophisticated and controlled modes of processing. We investigated the hypothesis that subconscious detection of threat in a cognitive task is reflected by enhanced "false signal" detection rather than by selectively enhanced discrimination of threat items in 30 patients with panic disorder and 30 healthy controls. We presented a tachistoscopic word-nonword discrimination task and a subsequent recognition task and analyzed the data by means of process-dissociation procedures. In line with our expectations, subjects of both groups showed more false signal detection to threat than to neutral stimuli as indicated by an enhanced response bias, whereas indices of discriminative sensitivity did not show this effect. In addition, patients with panic disorder showed a generally enhanced response bias in comparison to healthy controls. They also seemed to have processed the stimuli less elaborately and less differentially. Results are consistent with the assumption that subconscious threat detection can lead to misrepresentations of stimulus significance and that pathological anxiety is characterized by a hyperactive preattentive alarm system that is insufficiently controlled by higher cognitive processes. Copyright 1998 Academic Press.

  14. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction.

    PubMed

    Kiehl, Kent A

    2006-06-15

    Psychopathy is a complex personality disorder that includes interpersonal and affective traits such as glibness, lack of empathy, guilt or remorse, shallow affect, and irresponsibility, and behavioral characteristics such as impulsivity, poor behavioral control, and promiscuity. Much is known about the assessment of psychopathy; however, relatively little is understood about the relevant brain disturbances. The present review integrates data from studies of behavioral and cognitive changes associated with focal brain lesions or insults and results from psychophysiology, cognitive psychology and cognitive and affective neuroscience in health and psychopathy. The review illustrates that the brain regions implicated in psychopathy include the orbital frontal cortex, insula, anterior and posterior cingulate, amygdala, parahippocampal gyrus, and anterior superior temporal gyrus. The relevant functional neuroanatomy of psychopathy thus includes limbic and paralimbic structures that may be collectively termed 'the paralimbic system'. The paralimbic system dysfunction model of psychopathy is discussed as it relates to the extant literature on psychopathy.

  15. Non-pharmacological interventions on cognitive functions in older people with mild cognitive impairment (MCI).

    PubMed

    Teixeira, Camila Vieira Ligo; Gobbi, Lilian Teresa Bucken; Corazza, Danilla Icassatti; Stella, Florindo; Costa, José Luiz Riani; Gobbi, Sebastião

    2012-01-01

    Mild cognitive impairment (MCI) can be a stage of pre-dementia. There is no consensus about pharmacological treatment for this population, so it is important to structure non-pharmacological interventions for increasing their cognitive reserve. We intended to analyze the effects of non-pharmacological interventions in the cognitive functions in older people with MC, in form of a systemic review. Data sources were the Web of Science, Biological Abstracts, Medline, Pub Med, EBSCHost, Scirus and Google Scholar. All studies were longitudinal trials, with MCI sample, aged>60 years, community-dwelling, and having cognitive functions as dependent variable. Seven studies, from 91 previously selected ones, were identified according to the inclusion criteria. Six studies used cognitive intervention, improving memory and one study used physical activity as intervention, improving executive functions. The results show evidence that physical activity and cognitive exercise may improve memory and executive functions in older people with MCI. But yet, more controlled studies are needed to establish a protocol of recommendations regarding the systemization of exercise, necessary to produce benefits in the cognitive functioning in older people with MCI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. The Cognition of Multiaircraft Control (MAC): Cognitive Ability Predictors, Working Memory, Interference, and Attention Control in Radio Communication

    DTIC Science & Technology

    2015-03-26

    THE COGNITION OF MULTIAIRCRAFT CONTROL (MAC): COGNITIVE ABILITY PREDICTORS, WORKING MEMORY ...COGNITIVE ABILITY PREDICTORS, WORKING MEMORY , INTERFERENCE, AND ATTENTION CONTROL IN RADIO COMMUNICATION THESIS Presented to the Faculty...UNLIMITED. AFIT-ENV-MS-15-M-205 THE COGNITION OF MULTIAIRCRAFT CONTROL (MAC): COGNITIVE ABILITY PREDICTORS, WORKING MEMORY , INTERFERENCE

  17. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging.

    PubMed

    Neuner, Sarah M; Garfinkel, Benjamin P; Wilmott, Lynda A; Ignatowska-Jankowska, Bogna M; Citri, Ami; Orly, Joseph; Lu, Lu; Overall, Rupert W; Mulligan, Megan K; Kempermann, Gerd; Williams, Robert W; O'Connell, Kristen M S; Kaczorowski, Catherine C

    2016-10-01

    An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. [A review of the effects of lithium on cognitive functions: Effects on the neuropsychiatrically challenged CNS].

    PubMed

    Tsaltas, E; Kontis, D

    2009-04-01

    Recent data attribute neuroprotective and neurotrophic actions to lithium, leading to expectations of cognitive enhancement action. This hypothesis is at odds with the predominant view of clinical psychiatr y which, on the basis of older clinical data as well as on subjective reports of lithiumtreated patients, associates lithium with cognitive blurring and specific memory deficits. Review of the older data and their integration with more recent clinical and experimental work on the primary effects of lithium on cognitive functioning led us to two central conclusions: (a) Data on the primary cognitive effects of lithium, considered in their entirety, do not support a picture of serious or long-lasting cognitive decline. On the contrary, recent evidence suggests cognitive enhancement under certain conditions. (b) The conditions which appear to promote the emergence of cognitive enhancement under lithium are conditions of challenge to the cognitive systems, such as increased task difficulty resulting in deterioration in the performance of untreated controls. We are suggesting that alternative challenges to cognitive functioning, which therefore would facilitate the emergence of lithium's cognitive enhancement action, include biological insults to the central nervous system (CNS). This second part of our review of the cognitive effects of lithium therefore focuses on studies of its action on cognitive dysfunction associated with functional or biological challenge to the CNS, such as stress, trauma, neurodegenerative and psychiatric disorders.

  19. Few believe the world is flat: How embodiment is changing the scientific understanding of cognition.

    PubMed

    Glenberg, Arthur M

    2015-06-01

    Science has changed many of our dearly held and commonsensical (but incorrect) beliefs. For example, few still believe the world is flat, and few still believe the sun orbits the earth. Few still believe humans are unrelated to the rest of the animal kingdom, and soon few will believe human thinking is computer-like. Instead, as with all animals, our thoughts are based on bodily experiences, and our thoughts and behaviors are controlled by bodily and neural systems of perception, action, and emotion interacting with the physical and social environments. We are embodied; nothing more. Embodied cognition is about cognition formatted in sensorimotor experience, and sensorimotor systems make those thoughts dynamic. Even processes that seem abstract, such as language comprehension and goal understanding, are embodied. Thus, embodied cognition is not limited to 1 type of thought or another: It is cognition. (c) 2015 APA, all rights reserved.

  20. Cognitive Changes After Adjuvant Treatment in Older Adults with Early-Stage Breast Cancer.

    PubMed

    Lange, Marie; Heutte, Natacha; Noal, Sabine; Rigal, Olivier; Kurtz, Jean-Emmanuel; Lévy, Christelle; Allouache, Djelila; Rieux, Chantal; Lefel, Johan; Clarisse, Bénédicte; Leconte, Alexandra; Veyret, Corinne; Barthélémy, Philippe; Longato, Nadine; Tron, Laure; Castel, Hélène; Eustache, Francis; Giffard, Bénédicte; Joly, Florence

    2018-06-22

    Group-based trajectory modeling is particularly important to identify subgroups of patients with pathological cognitive changes after cancer treatment. To date, only one study has explored cognitive trajectories in older patients with cancer. The present article describes objective cognitive changes before to after adjuvant treatment in older adults with early-stage breast cancer (EBC) after adjuvant treatment compared with healthy controls. Participants were patients ≥65 years of age with newly diagnosed EBC and healthy controls (age-, sex-, and education-matched). The pretreatment assessment was conducted before adjuvant therapy, and the post-treatment assessment after the end of the first adjuvant treatment. Objective cognitive changes before to after treatment were evaluated based on the Reliable Change Index for cognitive decline accounting for cognitive impairment status. The sample consisted of women newly diagnosed with EBC ( n  = 118) and healthy controls ( n  = 62). Five patterns of changes before to after treatment were identified based on the presence of cognitive decline and cognitive impairment. The distribution of these five change patterns was statistically significant ( p  = .0001). Thirty-six percent of patients had phase shift changes, 31% without initial objective cognitive impairment developed impairment, 15% had a normal aging, 12% had a nonpathological decline, and 6% experienced accelerated cognitive decline. This study described for the first time objective cognitive changes before to after treatment of older adults with EBC immediately after the end of adjuvant treatment. A longer-term remote follow-up of adjuvant treatment is needed to better understand the cognitive trajectories of older patients with EBC. The Oncologist IMPLICATIONS FOR PRACTICE: After the end of adjuvant treatment, 31% of older adults with early-stage breast cancer without initial objective cognitive impairment developed impairment, and 6% experienced accelerated cognitive decline. Initial cognitive functioning should be included in the balance of benefits and harms of systemic therapy for patients who are likely to be at highest risk for cognitive decline after cancer treatments. Regular cognitive follow-up of patients who had cognitive impairment before cancer treatment should monitor symptoms suggestive of neurodegenerative disease and avert the effect of cognitive disorders on patients' autonomy. © AlphaMed Press 2018.

  1. Frontoparietal cognitive control of verbal memory recall in Alzheimer's disease.

    PubMed

    Dhanjal, Novraj S; Wise, Richard J S

    2014-08-01

    Episodic memory retrieval is reliant upon cognitive control systems, of which 2 have been identified with functional neuroimaging: a cingulo-opercular salience network (SN) and a frontoparietal executive network (EN). In Alzheimer's disease (AD), pathology is distributed throughout higher-order cortices. The hypotheses were that this frontoparietal pathology would impair activity associated with verbal memory recall; and that central cholinesterase inhibition (ChI) would modulate this, improving memory recall. Functional magnetic resonance imaging was used to study normal participants and 2 patient groups: mild cognitive impairment (MCI) and AD. Activity within the EN and SN was observed during free recall of previously heard sentences, and related to measures of recall accuracy. In normal subjects, trials with reduced recall were associated with greater activity in both the SN and EN. Better recall was associated with greater activity in medial regions of the default mode network. By comparison, AD patients showed attenuated responses in both the SN and EN compared with either controls or MCI patients, even after recall performance was matched between groups. Following ChI, AD patients showed no modulation of activity within the SN, but increased activity within the EN. There was also enhanced activity within regions associated with episodic and semantic memory during less successful recall, requiring greater cognitive control. The results indicate that in AD, impaired responses of cognitive control networks during verbal memory recall are partly responsible for reduced recall performance. One action of symptom-modifying treatment is partially to reverse the abnormal function of frontoparietal cognitive control and temporal lobe memory networks. © 2014 American Neurological Association.

  2. Association Between Initial Age of Exposure to Childhood Abuse and Cognitive Control: Preliminary Evidence.

    PubMed

    Mackiewicz Seghete, Kristen L; DePrince, Anne P; Banich, Marie T

    2018-05-22

    Cognitive control, which relies on the protracted development of frontal-parietal regions into adolescence, is a brain process that may be particularly vulnerable to the impact of childhood abuse. In this study, we used functional magnetic resonance imaging (fMRI) to examine associations between the age of onset of childhood abuse and alterations to the neural mechanisms supporting cognitive control in early adulthood, which have not been previously examined. During fMRI scanning, participants completed hybrid block/event-related versions of a classic color-word Stroop task as well as emotional Stroop tasks (threat and positive words). Participants were young adult women (N = 15; age range: 23-30 years) who had a history of childhood physical or sexual abuse that began prior to 13 years of age. Results indicated that earlier age of onset of childhood abuse was robustly associated with increased transient (i.e., event-related) recruitment of medial cognitive control regions in the classic color-word paradigm as well as with less suppression of medial frontal regions that are part of the default mode network, βs = -.16 to -.87. In comparison, increased activation in dorsolateral prefrontal regions was associated with earlier age of abuse onset under conditions of sustained (i.e., blocked) cognitive control in the emotional Stroop task for blocks of positive distracting words versus fixation, βs = -.50 to -.60. These results provide preliminary evidence that earlier age of exposure to childhood abuse impacts the functional activation of neural systems involved in cognitive control in adulthood. Copyright © 2018 International Society for Traumatic Stress Studies.

  3. Application of a cognitive neuroscience perspective of cognitive control to late-life anxiety.

    PubMed

    Beaudreau, Sherry A; MacKay-Brandt, Anna; Reynolds, Jeremy

    2013-08-01

    Recent evidence supports a negative association between anxiety and cognitive control. Given age-related reductions in some cognitive abilities and the relation of late life anxiety to cognitive impairment, this negative association may be particularly relevant to older adults. This critical review conceptualizes anxiety and cognitive control from cognitive neuroscience and cognitive aging theoretical perspectives and evaluates the methodological approaches and measures used to assess cognitive control. Consistent with behavioral investigations of young adults, the studies reviewed implicate specific and potentially negative effects of anxiety on cognitive control processes in older adults. Hypotheses regarding the role of both aging and anxiety on cognitive control, the bi-directionality between anxiety and cognitive control, and the potential for specific symptoms of anxiety (particularly worry) to mediate this association, are specified and discussed. Published by Elsevier Ltd.

  4. Application of a cognitive neuroscience perspective of cognitive control to late-life anxiety

    PubMed Central

    Beaudreau, Sherry A.; MacKay-Brandt, Anna; Reynolds, Jeremy

    2013-01-01

    Recent evidence supports a negative association between anxiety and cognitive control. Given age-related reductions in some cognitive abilities and the relation of late life anxiety to cognitive impairment, this negative association may be particularly relevant to older adults. This critical review conceptualizes anxiety and cognitive control from cognitive neuroscience and cognitive aging theoretical perspectives and evaluates the methodological approaches and measures used to assess cognitive control. Consistent with behavioral investigations of young adults, the studies reviewed implicate specific and potentially negative effects of anxiety on cognitive control processes in older adults. Hypotheses regarding the role of both aging and anxiety on cognitive control, the bi-directionality between anxiety and cognitive control, and the potential for specific symptoms of anxiety (particularly worry) to mediate this association, are specified and discussed. PMID:23602352

  5. How Task Representations Guide Attention: Further Evidence for the Shielding Function of Task Sets

    ERIC Educational Resources Information Center

    Dreisbach, Gesine; Haider, Hilde

    2009-01-01

    To pursue goal directed behavior, the cognitive system must be shielded against interference from irrelevant information. Aside from the online adjustment of cognitive control widely discussed in the literature, an additional mechanism of preventive goal shielding is suggested that circumvents irrelevant information from being processed in the…

  6. Artificial Gravity as a Multi-System Countermeasure: Effects on Cognitive Function

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.; Seaton, Kim; Slack, Kellely; Bowie, Kendra

    2007-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a medical requirement on the International Space Station, and its purpose is to evaluate cognitive functioning after physical insult (e.g., head trauma, decompression sickness, exposure to toxic gases, medication side effects). The current objective is to assess cognitive functioning in a long duration space mission analog environment where Artificial Gravity is being applied as a countermeasure in a Bed Rest study. Methods: Fifteen male subjects (8 treatment and 7 control) who participated in 21 days of -6 degree head-down bed rest were assessed. Three practice and three baseline WinSCAT test sessions were administered during the pre-bed rest phase of study participation. During the bed rest phase, the WinSCAT test was scheduled every other day, following the centrifuge, for a total of 10 test sessions. (The treatment group received 60 minutes of centrifugation each day during the 21 days of bed rest. The control subjects were strapped to the centrifuge for the same length of time as the treatment group but were not spun.) During the post-bed rest (reconditioning) phase, the test was administered 4 times. Results: Individual differences were found both within and between the treatment and control groups. After controlling for the number of subjects in each group, the treatment group accounted for more off-nominal WinSCAT scores than the control group. Conclusions:There is some preliminary evidence that centrifuge spinning might negatively impact cognitive functioning. However, due to sample size limitations, it cannot be ascertained whether there were significant differences in cognitive performance between the treatment and control groups. If centrifugation had a negative effect on cognitive functioning, consistent decrements would be expected to be found with all treatment subjects across time. Individual differences in underlying cognitive ability and motivation level are other possible explanations for the results found in this study.

  7. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    PubMed

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Superior Analgesic Effect of an Active Distraction versus Pleasant Unfamiliar Sounds and Music: The Influence of Emotion and Cognitive Style

    PubMed Central

    Garza Villarreal, Eduardo A.; Brattico, Elvira; Vase, Lene; Østergaard, Leif; Vuust, Peter

    2012-01-01

    Listening to music has been found to reduce acute and chronic pain. The underlying mechanisms are poorly understood; however, emotion and cognitive mechanisms have been suggested to influence the analgesic effect of music. In this study we investigated the influence of familiarity, emotional and cognitive features, and cognitive style on music-induced analgesia. Forty-eight healthy participants were divided into three groups (empathizers, systemizers and balanced) and received acute pain induced by heat while listening to different sounds. Participants listened to unfamiliar Mozart music rated with high valence and low arousal, unfamiliar environmental sounds with similar valence and arousal as the music, an active distraction task (mental arithmetic) and a control, and rated the pain. Data showed that the active distraction led to significantly less pain than did the music or sounds. Both unfamiliar music and sounds reduced pain significantly when compared to the control condition; however, music was no more effective than sound to reduce pain. Furthermore, we found correlations between pain and emotion ratings. Finally, systemizers reported less pain during the mental arithmetic compared with the other two groups. These findings suggest that familiarity may be key in the influence of the cognitive and emotional mechanisms of music-induced analgesia, and that cognitive styles may influence pain perception. PMID:22242169

  9. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks.

    PubMed

    Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian

    2017-01-01

    Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.

  10. Cognitive Control in Autism Spectrum Disorders

    PubMed Central

    Solomon, Marjorie; Ozonoff, Sally; Cummings, Neil; Carter, Cameron

    2009-01-01

    Cognitive control refers to the ability to flexibly allocate mental resources to guide thoughts and actions in light of internal goals. Given the behavioral inflexibility exhibited by individuals with autism spectrum disorders (ASDs), it would appear they experience cognitive control deficits. Cognitive correlates of this behavioral inflexibility have been elusive in previous investigations. Study goals were to investigate deficits in cognitive control in ASDs; to explore its developmental trajectory; and to test whether control deficits are related to symptoms of inflexible thoughts and/or behaviors, and attention symptoms. Thirty-one children and adolescents aged 8 to17 with ASDs and 32 age, IQ, and gender matched control subjects completed cognitive, diagnostic, and behavorial assessments, as well as a measure of cognitive control involving overcoming a prepotent response tendency. Compared with typically developing control subjects, individuals with ASDs exhibited deficits in cognitive control. Younger children with ASDs did not demonstrate age related improvements in cognitive control. Modest relationships between cognitive control, IQ, and attention problems were found for the sample. Only the relationship between cognitive control and Full Scale IQ survived correction for multiple comparisons. PMID:18093787

  11. Geometric reasoning

    NASA Technical Reports Server (NTRS)

    Woodbury, R. F.; Oppenheim, I. J.

    1987-01-01

    Cognitive robot systems are ones in which sensing and representation occur, from which task plans and tactics are determined. Such a robot system accomplishes a task after being told what to do, but determines for itself how to do it. Cognition is required when the work environment is uncontrolled, when contingencies are prevalent, or when task complexity is large; it is useful in any robotic mission. A number of distinguishing features can be associated with cognitive robotics, and one emphasized here is the role of artificial intelligence in knowledge representation and in planning. While space telerobotics may elude some of the problems driving cognitive robotics, it shares many of the same demands, and it can be assumed that capabilities developed for cognitive robotics can be employed advantageously for telerobotics in general. The top level problem is task planning, and it is appropriate to introduce a hierarchical view of control. Presented with certain mission objectives, the system must generate plans (typically) at the strategic, tactical, and reflexive levels. The structure by which knowledge is used to construct and update these plans endows the system with its cognitive attributes, and with the ability to deal with contingencies, changes, unknowns, and so on. Issues of representation and reasoning which are absolutely fundamental to robot manipulation, decisions based upon geometry, are discussed here, not AI task planning per se.

  12. Evaluating a Website to Teach Children Safety with Dogs: A Randomized Controlled Trial

    PubMed Central

    Schwebel, David C.; Li, Peng; McClure, Leslie A.; Severson, Joan

    2016-01-01

    Dog bites represent a significant threat to child health. Theory-driven interventions scalable for broad dissemination are sparse. A website was developed to teach children dog safety via increased knowledge, improved cognitive skills in relevant domains, and increased perception of vulnerability to bites. A randomized controlled trial was conducted with 69 children aged 4–5 randomly assigned to use the dog safety website or a control transportation safety website for ~3 weeks. Assessment of dog safety knowledge and behavior plus skill in three relevant cognitive constructs (impulse control, noticing details, and perspective-taking) was conducted both at baseline and following website use. The dog safety website incorporated interactive games, instructional videos including testimonials, a motivational rewards system, and messaging to parents concerning child lessons. Our results showed that about two-thirds of the intervention sample was not adherent to website use at home, so both intent-to-treat and per-protocol analyses were conducted. Intent-to-treat analyses yielded mostly null results. Per-protocol analyses suggested children compliant to the intervention protocol scored higher on knowledge and recognition of safe behavior with dogs following the intervention compared to the control group. Adherent children also had improved scores post-intervention on the cognitive skill of noticing details compared to the control group. We concluded that young children’s immature cognition can lead to dog bites. Interactive eHealth training on websites shows potential to teach children relevant cognitive and safety skills to reduce risk. Compliance to website use is a challenge, and some relevant cognitive skills (e.g., noticing details) may be more amenable to computer-based training than others (e.g., impulse control). PMID:27918466

  13. Evaluating a Website to Teach Children Safety with Dogs: A Randomized Controlled Trial.

    PubMed

    Schwebel, David C; Li, Peng; McClure, Leslie A; Severson, Joan

    2016-12-02

    Dog bites represent a significant threat to child health. Theory-driven interventions scalable for broad dissemination are sparse. A website was developed to teach children dog safety via increased knowledge, improved cognitive skills in relevant domains, and increased perception of vulnerability to bites. A randomized controlled trial was conducted with 69 children aged 4-5 randomly assigned to use the dog safety website or a control transportation safety website for ~3 weeks. Assessment of dog safety knowledge and behavior plus skill in three relevant cognitive constructs (impulse control, noticing details, and perspective-taking) was conducted both at baseline and following website use. The dog safety website incorporated interactive games, instructional videos including testimonials, a motivational rewards system, and messaging to parents concerning child lessons. Our results showed that about two-thirds of the intervention sample was not adherent to website use at home, so both intent-to-treat and per-protocol analyses were conducted. Intent-to-treat analyses yielded mostly null results. Per-protocol analyses suggested children compliant to the intervention protocol scored higher on knowledge and recognition of safe behavior with dogs following the intervention compared to the control group. Adherent children also had improved scores post-intervention on the cognitive skill of noticing details compared to the control group. We concluded that young children's immature cognition can lead to dog bites. Interactive eHealth training on websites shows potential to teach children relevant cognitive and safety skills to reduce risk. Compliance to website use is a challenge, and some relevant cognitive skills (e.g., noticing details) may be more amenable to computer-based training than others (e.g., impulse control).

  14. Brain and nervous system (image)

    MedlinePlus

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, ...

  15. The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions.

    PubMed

    Leibovich, Tali; Ansari, Daniel

    2016-03-01

    How do numerical symbols, such as number words, acquire semantic meaning? This question, also referred to as the "symbol-grounding problem," is a central problem in the field of numerical cognition. Present theories suggest that symbols acquire their meaning by being mapped onto an approximate system for the nonsymbolic representation of number (Approximate Number System or ANS). In the present literature review, we first asked to which extent current behavioural and neuroimaging data support this theory, and second, to which extent the ANS, upon which symbolic numbers are assumed to be grounded, is numerical in nature. We conclude that (a) current evidence that has examined the association between the ANS and number symbols does not support the notion that number symbols are grounded in the ANS and (b) given the strong correlation between numerosity and continuous variables in nonsymbolic number processing tasks, it is next to impossible to measure the pure association between symbolic and nonsymbolic numerosity. Instead, it is clear that significant cognitive control resources are required to disambiguate numerical from continuous variables during nonsymbolic number processing. Thus, if there exists any mapping between the ANS and symbolic number, then this process of association must be mediated by cognitive control. Taken together, we suggest that studying the role of both cognitive control and continuous variables in numerosity comparison tasks will provide a more complete picture of the symbol-grounding problem. (c) 2016 APA, all rights reserved).

  16. Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.

    PubMed

    Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T

    2013-12-01

    It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.

  17. Operator function modeling: An approach to cognitive task analysis in supervisory control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1987-01-01

    In a study of models of operators in complex, automated space systems, an operator function model (OFM) methodology was extended to represent cognitive as well as manual operator activities. Development continued on a software tool called OFMdraw, which facilitates construction of an OFM by permitting construction of a heterarchic network of nodes and arcs. Emphasis was placed on development of OFMspert, an expert system designed both to model human operation and to assist real human operators. The system uses a blackboard method of problem solving to make an on-line representation of operator intentions, called ACTIN (actions interpreter).

  18. Towards a common framework of grounded action cognition: Relating motor control, perception and cognition.

    PubMed

    Gentsch, Antje; Weber, Arne; Synofzik, Matthis; Vosgerau, Gottfried; Schütz-Bosbach, Simone

    2016-01-01

    The relation between motor control and action cognition - including action-related thoughts and action-related perception - has been subject to controversial discussions in the last three decades. During these decades, cognitive neuroscience has been increasingly confronted with a huge variety of different accounts trying to understand and explain the relation between these systems, their interdependencies and the mediating mechanisms by establishing notions such as "internal models", "simulation" or "shared representation". These accounts, however, include a large array of partly overlapping, partly contradictory theories using similar terms for different mechanisms and different terms for similar mechanisms. In the absence of a systematic work-up and comparison, this array of accounts and theories leads to confusion in the field, duplication of experimental work, and unconnected parallelism of theory formation within and between different disciplines. Here we provide a systematic comparison of current models and prospective theories that deal with the relation between cognition, perception and motor control mechanisms. In a second step, we propose "grounded action cognition" as a comprehensive metatheoretical framework which defines different hypothetical possibilities of the relations between these domains, offers systematic insights into current models and theories and last but not least may help to increase comparability of empirical research in the domain of action and action cognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nonlinear dynamical systems for theory and research in ergonomics.

    PubMed

    Guastello, Stephen J

    2017-02-01

    Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.

  20. Vascular endothelial growth factor during hypoglycemia in patients with type 1 diabetes mellitus: relation to cognitive function and renin-angiotensin system activity.

    PubMed

    Kristensen, Peter Lommer; Høi-Hansen, Thomas; Boomsma, Frans; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger

    2009-10-01

    In healthy adults, levels of vascular endothelial growth factor (VEGF) increase in response to mild hypoglycemia. VEGF is implicated in glucose transport over the blood-brain barrier, and the increase during hypoglycemia has been positively correlated with preservation of cognitive function during hypoglycemia. High activity in the renin-angiotensin system (RAS) is associated with an increased risk of severe hypoglycemia in patients with type 1 diabetes mellitus. Renin-angiotensin system possibly exerts its mechanism in hypoglycemia via VEGF. We studied the impact of mild hypoglycemia on plasma VEGF in patients with type 1 diabetes mellitus and high or low RAS activity and analyzed associations between VEGF levels and cognitive function during hypoglycemia. Eighteen patients with type 1 diabetes mellitus-9 with high and 9 with low RAS activity-underwent a single-blinded, placebo-controlled, crossover study with either mild hypoglycemia or stable glycemia. Cognitive function was assessed by the California Cognitive Assessment Package and the Alzheimer Quick Test. Nadir plasma glucose was 2.2 (0.3) mmol/L. During the control study, plasma VEGF did not change. During hypoglycemia, plasma VEGF increased from 39 to 58 pg/L in the high-RAS group (P = .004) and from 76 to 109 pg/L in the low-RAS group (P = .01), with no difference between RAS groups (P = .9). A weak association between reduced preservation of cognitive function during hypoglycemia and low VEGF response was observed. Plasma VEGF levels increase during mild, short-term hypoglycemia in patients with type 1 diabetes mellitus. The VEGF response is not dependent on RAS activity and only weakly associated with preservation of cognitive function during hypoglycemia. Thus, the previously described association between low RAS activity and better cognitive performance during hypoglycemia does not seem to be mediated by VEGF.

  1. Gain in Brain Immunity in the Oldest-Old Differentiates Cognitively Normal from Demented Individuals

    PubMed Central

    Katsel, Pavel; Tan, Weilun; Haroutunian, Vahram

    2009-01-01

    Background Recent findings suggest that Alzheimer's disease (AD) neuropathological features (neuritic plaques and NFTs) are not strongly associated with dementia in extreme old (over 90 years of age) and compel a search for neurobiological indices of dementia in this rapidly growing segment of the elderly population. We sought to characterize transcriptional and protein profiles of dementia in the oldest-old. Methods and Findings Gene and protein expression changes relative to non-demented age-matched controls were assessed by two microarray platforms, qPCR and Western blot in different regions of the brains of oldest-old and younger old persons who died at mild or severe stages of dementia. Our results indicate that: i) consistent with recent neuropathological findings, gene expression changes associated with cognitive impairment in oldest-old persons are distinct from those in cognitively impaired youngest-old persons; ii) transcripts affected in young-old subjects with dementia participate in biological pathways related to synaptic function and neurotransmission while transcripts affected in oldest-old subjects with dementia are associated with immune/inflammatory function; iii) upregulation of immune response genes in cognitively intact oldest-old subjects and their subsequent downregulation in dementia suggests a potential protective role of the brain immune-associated system against dementia in the oldest-old; iv) consistent with gene expression profiles, protein expression of several selected genes associated with the inflammatory/immune system in inferior temporal cortex is significantly increased in cognitively intact oldest-old persons relative to cognitively intact young-old persons, but impaired in cognitively compromised oldest-old persons relative to cognitively intact oldest-old controls. Conclusions These results suggest that disruption of the robust immune homeostasis that is characteristic of oldest-old individuals who avoided dementia may be directly associated with dementia in the oldest-old and contrast with the synaptic and neurotransmitter system failures that typify dementia in younger old persons. PMID:19865478

  2. Parallel Distributed Processing at 25: further explorations in the microstructure of cognition.

    PubMed

    Rogers, Timothy T; McClelland, James L

    2014-08-01

    This paper introduces a special issue of Cognitive Science initiated on the 25th anniversary of the publication of Parallel Distributed Processing (PDP), a two-volume work that introduced the use of neural network models as vehicles for understanding cognition. The collection surveys the core commitments of the PDP framework, the key issues the framework has addressed, and the debates the framework has spawned, and presents viewpoints on the current status of these issues. The articles focus on both historical roots and contemporary developments in learning, optimality theory, perception, memory, language, conceptual knowledge, cognitive control, and consciousness. Here we consider the approach more generally, reviewing the original motivations, the resulting framework, and the central tenets of the underlying theory. We then evaluate the impact of PDP both on the field at large and within specific subdomains of cognitive science and consider the current role of PDP models within the broader landscape of contemporary theoretical frameworks in cognitive science. Looking to the future, we consider the implications for cognitive science of the recent success of machine learning systems called "deep networks"-systems that build on key ideas presented in the PDP volumes. Copyright © 2014 Cognitive Science Society, Inc.

  3. TORTIS (Toddler's Own Recursive Turtle Interpreter System).

    ERIC Educational Resources Information Center

    Perlman, Radia

    TORTIS (Toddler's Own Recursive Turtle Interpreter System) is a device which can be used to study or nurture the cognitive development of preschool children. The device consists of a "turtle" which the child can control by use of buttons on a control panel. The "turtle" can be made to move in prescribed directions, to take a…

  4. "Walking" through the sensory, cognitive, and temporal degradations of healthy aging.

    PubMed

    Paraskevoudi, Nadia; Balcı, Fuat; Vatakis, Argiro

    2018-05-09

    As we age, there is a wide range of changes in motor, sensory, cognitive, and temporal processing due to alterations in the functioning of the central nervous and musculoskeletal systems. Specifically, aging is associated with degradations in gait; altered processing of the individual sensory systems; modifications in executive control, memory, and attention; and changes in temporal processing. These age-related alterations are often inter-related and have been suggested to result from shared neural substrates. Additionally, the overlap between these brain areas and those controlling walking raises the possibility of facilitating performance in several tasks by introducing protocols that can efficiently target all four domains. Attempts to counteract these negative effects of normal aging have been focusing on research to prevent falls and/or enhance cognitive processes, while ignoring the potential multisensory benefits accompanying old age. Research shows that the aging brain tends to increasingly rely on multisensory integration to compensate for degradations in individual sensory systems and for altered neural functioning. This review covers the age-related changes in the above-mentioned domains and the potential to exploit the benefits associated with multisensory integration in aging so as to improve one's mobility and enhance sensory, cognitive, and temporal processing. © 2018 New York Academy of Sciences.

  5. Transcranial Magnetic Stimulation: Decomposing the Processes Underlying Action Preparation.

    PubMed

    Bestmann, Sven; Duque, Julie

    2016-08-01

    Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision-related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation. © The Author(s) 2015.

  6. Emergence of self and other in perception and action: an event-control approach.

    PubMed

    Jordan, J Scott

    2003-12-01

    The present paper analyzes the regularities referred to via the concept 'self.' This is important, for cognitive science traditionally models the self as a cognitive mediator between perceptual inputs and behavioral outputs. This leads to the assertion that the self causes action. Recent findings in social psychology indicate this is not the case and, as a consequence, certain cognitive scientists model the self as being epiphenomenal. In contrast, the present paper proposes an alternative approach (i.e., the event-control approach) that is based on recently discovered regularities between perception and action. Specifically, these regularities indicate that perception and action planning utilize common neural resources. This leads to a coupling of perception, planning, and action in which the first two constitute aspects of a single system (i.e., the distal-event system) that is able to pre-specify and detect distal events. This distal-event system is then coupled with action (i.e., effector-control systems) in a constraining, as opposed to 'causal' manner. This model has implications for how we conceptualize the manner in which one infers the intentions of another, anticipates the intentions of another, and possibly even experiences another. In conclusion, it is argued that it may be possible to map the concept 'self' onto the regularities referred to in the event-control model, not in order to reify 'the self' as a causal mechanism, but to demonstrate its status as a useful concept that refers to regularities that are part of the natural order.

  7. Cognitive function in early clinical phase huntington disease after rivastigmine treatment.

    PubMed

    Sešok, Sanja; Bolle, Nika; Kobal, Jan; Bucik, Valentin; Vodušek, David B

    2014-09-01

    In Huntington disease (HD) patients receiving rivastigmine treatment improvement of behavioral symptoms and of cognitive function (assessed with screening diagnostic instruments) has been reported. The aim of the present study was to verify such improvement in cognitive function by cognitive function assessment with a detailed neuropsychological battery covering all relevant cognitive systems expected to be impaired in early phase HD. Eighteen (18) HD patients entered the study and were randomly allocated to the rivastigmine and placebo group. All subjects underwent neuropsychological assessment at baseline. Follow-up neuropsychological assessment was applied after 6 months of rivastigmine or placebo treatment. Eighteen (18) healthy controls entered the study to control for practice effect and underwent neuropsychological assessment at baseline and after 6 months, without treatment. The neuropsychological battery consisted of assessment tools that are sensitive to cognitive impairment seen in early phase HD: CTMT, SDMT, Stroop (attention and information control), RFFT, TOL, Verbal fluency (executive functioning), CVLT-II, RCFT (learning and memory). Effect of rivastigmine and possible effect of practice was assessed using the mixed ANOVA model. No statistically significant effect of rivastigmine treatment on cognitive function in HD patients was detected. There was no evidence for practice or placebo effect. Detailed neuropsychological assessment did not confirm previously reported effect of rivastigmine treatment on cognitive function in HD patients. The limitations of our study are, in particular, small sample size and the lack of a single measure of relevant cognitive functioning in HD patients. Instead of focusing solely on statistical significance, a clinical relevance study is proposed to clarify the issue of rivastigmine effects in HD.

  8. Cholinergic Dysfunction in Fragile X Syndrome and Potential Intervention

    PubMed Central

    Kesler, Shelli R; Lightbody, Amy A; Reiss, Allan L

    2009-01-01

    Males with fragile X syndrome are at risk for significant cognitive and behavioral deficits, particularly those involving executive prefrontal systems. Disruption of the cholinergic system secondary to fragile X mental retardation protein deficiency may contribute to the cognitive-behavioral impairments associated with fragile X. We measured choline in the dorsolateral prefrontal cortex of 9 males with fragile X syndrome and 9 age-matched typically developing controls using 1H magnetic resonance spectroscopy. Right choline/creatine was significantly reduced in the fragile X group compared to controls. In controls, both left and right choline was significantly positively correlated with intelligence and age was significantly negatively correlated with left choline. There were no correlations in the fragile X group. Subjects with fragile X syndrome participating in a pilot open-label trial of donepezil, an acetylcholinesterase inhibitor, demonstrated significantly improved cognitive-behavioral function. Studies utilizing biochemical neuroimaging techniques such as these have the potential to significantly impact the design of treatment strategies for fragile X syndrome and other genetic disorders by helping identify neurochemical targets for intervention as well as serving as metrics for treatment efficacy. PMID:19215057

  9. Intraindividual variability as a marker of neurological dysfunction: a comparison of Alzheimer's disease and Parkinson's disease.

    PubMed

    Burton, Catherine L; Strauss, Esther; Hultsch, David F; Moll, Alex; Hunter, Michael A

    2006-01-01

    Individuals with certain neurological conditions may demonstrate greater inconsistency (i.e., intraindividual variability) on cognitive tasks compared to healthy controls. Several researchers have suggested that intraindividual variability may be a behavioral marker of compromised neurobiological mechanisms associated with aging, disease, or injury. The present study sought to investigate whether intraindividual variability is associated with general nervous system compromise, or rather, with certain types of neurological disturbances by comparing healthy adults, adults with Alzheimer's disease (AD), and Parkinson's disease (PD). Participants were assessed on four separate occasions using measures of reaction time and memory. Results indicated that inconsistency was correlated with indices of severity of impairment suggesting a dose-response relationship between cognitive disturbance and intraindividual variability: the more severe the cognitive disturbance, the greater the inconsistency. However, participants with AD were more inconsistent than those with PD, with both groups being more variable than the healthy group, even when controlling for group differences in overall severity of cognitive impairment or cognitive decline. Consequently, intraindividual variability may index both the severity of cognitive impairment and the nature of the neurological disturbance.

  10. Common and specific impairments in attention functioning in girls with chromosome 22q11.2 deletion, fragile X or Turner syndromes

    PubMed Central

    2014-01-01

    Background Chromosome 22q11.2 deletion syndrome (22q11.2DS), fragile X syndrome (FXS), and Turner syndrome (TS) are complex and variable developmental syndromes caused by different genetic abnormalities; yet, they share similar cognitive impairments in the domains of numbers, space, and time. The atypical development of foundational neural networks that underpin the attentional system is thought to result in further impairments in higher-order cognitive functions. The current study investigates whether children with similar higher-order cognitive impairments but different genetic disorders also show similar impairments in alerting, orienting, and executive control of attention. Methods Girls with 22q11.2DS, FXS, or TS and typically developing (TD) girls, aged 7 to 15 years, completed an attention network test, a flanker task with alerting and orienting cues. Exploration of reaction times and accuracy allowed us to test for potential commonalities in attentional functioning in alerting, orienting, and executive control. Linear regression models were used to test whether the predictors of group and chronological age were able to predict differences in attention indices. Results Girls with 22q11.2DS, FXS, or TS demonstrated unimpaired function of the alerting system and impaired function of the executive control system. Diagnosis-specific impairments were found such that girls with FXS made more errors and had a reduced orienting index, while girls with 22q11.2DS showed specific age-related deficits in the executive control system. Conclusions These results suggest that the control but not the implementation of attention is selectively impaired in girls with 22q11.2DS, TS or FXS. Additionally, the age effect on executive control in girls with 22q11.2DS implies a possible altered developmental trajectory. PMID:24628892

  11. Multi-platform experiment to cross a boundary between laboratory and real situational studies: experimental discussion of cross-situational consistency of driving behaviors.

    PubMed

    Terai, H; Miwa, K; Okuda, H; Tazaki, Y; Suzuki, T; Kojima, K; Morita, J; Maehigashi, A; Takeda, K

    2012-01-01

    We constructed an innovative experimental platform to study cross-situational consistency in driving behavior, conducted behavioral experiments, and reported the data obtained in the experiment. To discuss cross-situational consistency, we separated situations in which people use some systems to conduct tasks into three independent conceptual factors: environment, context, and system. We report the experimental results with the following systems: a laboratory system with a gaming controller and steering/pedal controllers and a real system, COMS an instrumented vehicle. The results are summarized as follows. 1) The individual behaviors in each system were stable, and consistency was retained. 2) The consistency of the behaviors was also confirmed when the participants drove using different interfaces in identical systems. 3) However, only slight correlation was observed across different systems in a specific situation where a strong high-order cognitive constraint (i.e., rapid driving) and a weak low-order cognitive constraint (driving with easy handling toward a straight-line course) were given.

  12. No evidence for mirror system dysfunction in schizophrenia from a multimodal TMS/EEG study.

    PubMed

    Andrews, Sophie C; Enticott, Peter G; Hoy, Kate E; Thomson, Richard H; Fitzgerald, Paul B

    2015-08-30

    Dysfunctional mirror neuron systems have been proposed to contribute to the social cognitive deficits observed in schizophrenia. A few studies have explored mirror systems in schizophrenia using various techniques such as TMS (levels of motor resonance) or EEG (levels of mu suppression), with mixed results. This study aimed to use a novel multimodal approach (i.e. concurrent TMS and EEG) to further investigate mirror systems and social cognition in schizophrenia. Nineteen individuals with schizophrenia or schizoaffective disorder and 19 healthy controls participated. Single-pulse TMS was applied to M1 during the observation of hand movements designed to elicit mirror system activity. Single EEG electrodes (C3, CZ, C4) recorded brain activity. Participants also completed facial affect recognition and theory of mind tasks. The schizophrenia group showed significant deficits in facial affect recognition and higher level theory of mind compared to healthy controls. A significant positive relationship was revealed between mu suppression and motor resonance for the overall sample, indicating concurrent validity of these measures. Levels of mu suppression and motor resonance were not significantly different between groups. These findings indicate that in stable outpatients with schizophrenia, mirror system functioning is intact, and therefore their social cognitive difficulties may be caused by alternative pathophysiology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Assessing Constraints on Soldier Cognitive and Perceptual Motor Performance During Vehicle Motion

    DTIC Science & Technology

    2008-05-01

    vehicle systems are biomechanical (Sirouspour & Salcudean, 2003; Sövényi & Gillespie, 2007), cognitive (Parasuraman & Riley, 1997), and psychomotor...vs. velocity), pedals for braking/acceleration Environmental constraints associated with the support surface (Seat): Damping, inclination...steering and secondarily, performance differences between a joystick and pedals for throttle and brake control. Eleven participants com- pleted three

  14. Advanced Physiological Estimation of Cognitive Status (APECS)

    DTIC Science & Technology

    2009-09-15

    REPORT Advanced Physiological Estimation of Cognitive Status (APECS) Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: EEG...fitness and transmit data to command and control systems. Some of the signals that the physiological sensors measure are readily interpreted, such as...electroencephalogram (EEG) and other signals requires a complex series of mathematical transformations or algorithms. Overall, research on algorithms

  15. Identification of cognitive factors related to remote work performance using closed circuit TV displays

    NASA Technical Reports Server (NTRS)

    Clarke, M. M.; Garin, J.

    1981-01-01

    Operator perceptual cognitive styles as predictors of remote task performance were identified. Remote tasks which require the use of servo controlled master/slave manipulators and closed circuit television for teleoperator repair and maintenance of nuclear fuel recycling systems are examined. A useful procedure for identifying such perceptual styles is described.

  16. Classroom Motivational Environment Influences on Emotional and Cognitive Dimensions of Student Interest in Mathematics

    ERIC Educational Resources Information Center

    Carmichael, Colin; Callingham, Rosemary; Watt, Helen M. G.

    2017-01-01

    Interest has long been regarded as an important motivational construct in the learning of mathematics. It has been contended that the development of interest is directed by two control systems: an emotional and a cognitive. Under the former, students are attracted to activities that are enjoyable, whereas under the latter they consciously engage…

  17. Augmented Cognition - Phase 4 Cognitive Assessment and Task Management (CAT-M)

    DTIC Science & Technology

    2008-12-01

    Angle Brake Pedal Force Accelerator Pedal ...Wheel Angle • Brake Pedal Force • Accelerator Pedal Deflection Note that we are using the controls as input to the prediction system. This means... Angle . At time >2.5 seconds, the Accelerator Pedal and Brake Pedal become statistically significantly easier to predict than Steering Wheel Angle .

  18. Enhancing Cognition with Video Games: A Multiple Game Training Study

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504

  19. Thinking as the control of imagination: a conceptual framework for goal-directed systems.

    PubMed

    Pezzulo, Giovanni; Castelfranchi, Cristiano

    2009-07-01

    This paper offers a conceptual framework which (re)integrates goal-directed control, motivational processes, and executive functions, and suggests a developmental pathway from situated action to higher level cognition. We first illustrate a basic computational (control-theoretic) model of goal-directed action that makes use of internal modeling. We then show that by adding the problem of selection among multiple action alternatives motivation enters the scene, and that the basic mechanisms of executive functions such as inhibition, the monitoring of progresses, and working memory, are required for this system to work. Further, we elaborate on the idea that the off-line re-enactment of anticipatory mechanisms used for action control gives rise to (embodied) mental simulations, and propose that thinking consists essentially in controlling mental simulations rather than directly controlling behavior and perceptions. We conclude by sketching an evolutionary perspective of this process, proposing that anticipation leveraged cognition, and by highlighting specific predictions of our model.

  20. Role of inflammatory markers in Elderly Type 2 Diabetic Patients with Mild Cognitive Impairment.

    PubMed

    Hosny, Salwa S; Bahaaeldin, Ahmed M; Khater, Mohamed S; Bekhet, Meram M; Hebah, Hayam A; Hasanin, Ghada A

    2018-04-22

    Type 2 diabetes (T2DM) is a risk factor for Alzheimer's disease and mild cognitive impairment. The etiology of cognitive impairment in people with T2DM is uncertain but, chronic hyperglycemia, cerebral micro vascular disease, severe hypoglycemia, and increased prevalence of macro vascular disease are implicated. to determine the serum levels of soluble vascular adhesion molecule (sVCAM-1) and highly sensitive C-reactive protein (hs-CRP) in elderly type 2 diabetics with mild cognitive impairment (MCI). Our study was conducted on 90 elderly subjects (aged 60 years old or more). They were divided into Group І, 30 patients with T2DM and mild cognitive impairment, group ІІ, 30 patients with T2DM without cognitive impairment and group III, 30 healthy subjects as a control group. They were subjected to history taking, full clinical examination, anthropometric measurement, the Addenbrooke's Cognitive Examination III (ACE---III 2012), Fasting plasma glucose, 2 hours plasma glucose, HbA1c, lipid profile, protein/creatinine ratio, serum sVCAM-1 and hs-CRP. Serum levels of sVCAM-1 in diabetic elderly patients with MCI were significantly higher (946.7 ± 162.01 ng/ml) than diabetic elderly patients without cognitive impairment (479.06 ± 65.27 ng/ml) and control (263.7 ± 72.05 ng/ml) with (P=0.002). Serum levels of Hs-CRP in diabetic elderly patients with MCI were significantly higher than as diabetic elderly patients without cognitive impairment and control with (P=0.005). Elderly diabetic patients with mild cognitive impairment, have higher levels of soluble adhesion molecules and markers of low-grade systemic inflammation than other groups. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Effects of a Lutein and Zeaxanthin Intervention on Cognitive Function: A Randomized, Double-Masked, Placebo-Controlled Trial of Younger Healthy Adults.

    PubMed

    Renzi-Hammond, Lisa M; Bovier, Emily R; Fletcher, Laura M; Miller, L Stephen; Mewborn, Catherine M; Lindbergh, Cutter A; Baxter, Jeffrey H; Hammond, Billy R

    2017-11-14

    Background: Past studies have suggested that higher lutein (L) and zeaxanthin (Z) levels in serum and in the central nervous system (as quantified by measuring macular pigment optical density, MPOD) are related to improved cognitive function in older adults. Very few studies have addressed the issue of xanthophylls and cognitive function in younger adults, and no controlled trials have been conducted to date to determine whether or not supplementation with L + Z can change cognitive function in this population. Objective: The purpose of this study was to determine whether or not supplementation with L + Z could improve cognitive function in young (age 18-30), healthy adults. Design: A randomized, double-masked, placebo-controlled trial design was used. Fifty-one young, healthy subjects were recruited as part of a larger study on xanthophylls and cognitive function. Subjects were randomized into active supplement ( n = 37) and placebo groups ( n = 14). MPOD was measured psychophysically using customized heterochromatic flicker photometry. Cognitive function was measured using the CNS Vital Signs testing platform. MPOD and cognitive function were measured every four months for a full year of supplementation. Results: Supplementation increased MPOD significantly over the course of the year, vs. placebo ( p < 0.001). Daily supplementation with L + Z and increases in MPOD resulted in significant improvements in spatial memory ( p < 0.04), reasoning ability ( p < 0.05) and complex attention ( p < 0.04), above and beyond improvements due to practice effects. Conclusions: Supplementation with L + Z improves CNS xanthophyll levels and cognitive function in young, healthy adults. Magnitudes of effects are similar to previous work reporting correlations between MPOD and cognition in other populations.

  2. Embodied artificial agents for understanding human social cognition.

    PubMed

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.

  3. The Influence of Genetic and Environmental Factors among MDMA Users in Cognitive Performance

    PubMed Central

    Cuyàs, Elisabet; Verdejo-García, Antonio; Fagundo, Ana Beatriz; Khymenets, Olha; Rodríguez, Joan; Cuenca, Aida; de Sola Llopis, Susana; Langohr, Klaus; Peña-Casanova, Jordi; Torrens, Marta; Martín-Santos, Rocío; Farré, Magí; de la Torre, Rafael

    2011-01-01

    This study is aimed to clarify the association between MDMA cumulative use and cognitive dysfunction, and the potential role of candidate genetic polymorphisms in explaining individual differences in the cognitive effects of MDMA. Gene polymorphisms related to reduced serotonin function, poor competency of executive control and memory consolidation systems, and high enzymatic activity linked to bioactivation of MDMA to neurotoxic metabolites may contribute to explain variations in the cognitive impact of MDMA across regular users of this drug. Sixty ecstasy polydrug users, 110 cannabis users and 93 non-drug users were assessed using cognitive measures of Verbal Memory (California Verbal Learning Test, CVLT), Visual Memory (Rey-Osterrieth Complex Figure Test, ROCFT), Semantic Fluency, and Perceptual Attention (Symbol Digit Modalities Test, SDMT). Participants were also genotyped for polymorphisms within the 5HTT, 5HTR2A, COMT, CYP2D6, BDNF, and GRIN2B genes using polymerase chain reaction and TaqMan polymerase assays. Lifetime cumulative MDMA use was significantly associated with poorer performance on visuospatial memory and perceptual attention. Heavy MDMA users (>100 tablets lifetime use) interacted with candidate gene polymorphisms in explaining individual differences in cognitive performance between MDMA users and controls. MDMA users carrying COMT val/val and SERT s/s had poorer performance than paired controls on visuospatial attention and memory, and MDMA users with CYP2D6 ultra-rapid metabolizers performed worse than controls on semantic fluency. Both MDMA lifetime use and gene-related individual differences influence cognitive dysfunction in ecstasy users. PMID:22110616

  4. Relationships of cognitive and metacognitive learning strategies to mathematics achievement in four high-performing East Asian education systems.

    PubMed

    Areepattamannil, Shaljan; Caleon, Imelda S

    2013-01-01

    The authors examined the relationships of cognitive (i.e., memorization and elaboration) and metacognitive learning strategies (i.e., control strategies) to mathematics achievement among 15-year-old students in 4 high-performing East Asian education systems: Shanghai-China, Hong Kong-China, Korea, and Singapore. In all 4 East Asian education systems, memorization strategies were negatively associated with mathematics achievement, whereas control strategies were positively associated with mathematics achievement. However, the association between elaboration strategies and mathematics achievement was a mixed bag. In Shanghai-China and Korea, elaboration strategies were not associated with mathematics achievement. In Hong Kong-China and Singapore, on the other hand, elaboration strategies were negatively associated with mathematics achievement. Implications of these findings are briefly discussed.

  5. Cognitive programs: software for attention's executive

    PubMed Central

    Tsotsos, John K.; Kruijne, Wouter

    2014-01-01

    What are the computational tasks that an executive controller for visual attention must solve? This question is posed in the context of the Selective Tuning model of attention. The range of required computations go beyond top-down bias signals or region-of-interest determinations, and must deal with overt and covert fixations, process timing and synchronization, information routing, memory, matching control to task, spatial localization, priming, and coordination of bottom-up with top-down information. During task execution, results must be monitored to ensure the expected results. This description includes the kinds of elements that are common in the control of any kind of complex machine or system. We seek a mechanistic integration of the above, in other words, algorithms that accomplish control. Such algorithms operate on representations, transforming a representation of one kind into another, which then forms the input to yet another algorithm. Cognitive Programs (CPs) are hypothesized to capture exactly such representational transformations via stepwise sequences of operations. CPs, an updated and modernized offspring of Ullman's Visual Routines, impose an algorithmic structure to the set of attentional functions and play a role in the overall shaping of attentional modulation of the visual system so that it provides its best performance. This requires that we consider the visual system as a dynamic, yet general-purpose processor tuned to the task and input of the moment. This differs dramatically from the almost universal cognitive and computational views, which regard vision as a passively observing module to which simple questions about percepts can be posed, regardless of task. Differing from Visual Routines, CPs explicitly involve the critical elements of Visual Task Executive (vTE), Visual Attention Executive (vAE), and Visual Working Memory (vWM). Cognitive Programs provide the software that directs the actions of the Selective Tuning model of visual attention. PMID:25505430

  6. Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia: A Systematic Review.

    PubMed

    Brasure, Michelle; Desai, Priyanka; Davila, Heather; Nelson, Victoria A; Calvert, Collin; Jutkowitz, Eric; Butler, Mary; Fink, Howard A; Ratner, Edward; Hemmy, Laura S; McCarten, J Riley; Barclay, Terry R; Kane, Robert L

    2018-01-02

    The prevalence of cognitive impairment and dementia is expected to increase dramatically as the population ages, creating burdens on families and health care systems. To assess the effectiveness of physical activity interventions in slowing cognitive decline and delaying the onset of cognitive impairment and dementia in adults without diagnosed cognitive impairments. Several electronic databases from January 2009 to July 2017 and bibliographies of systematic reviews. Trials published in English that lasted 6 months or longer, enrolled adults without clinically diagnosed cognitive impairments, and compared cognitive and dementia outcomes between physical activity interventions and inactive controls. Extraction by 1 reviewer and confirmed by a second; dual-reviewer assessment of risk of bias; consensus determination of strength of evidence. Of 32 eligible trials, 16 with low to moderate risk of bias compared a physical activity intervention with an inactive control. Most trials had 6-month follow-up; a few had 1- or 2-year follow-up. Evidence was insufficient to draw conclusions about the effectiveness of aerobic training, resistance training, or tai chi for improving cognition. Low-strength evidence showed that multicomponent physical activity interventions had no effect on cognitive function. Low-strength evidence showed that a multidomain intervention comprising physical activity, diet, and cognitive training improved several cognitive outcomes. Evidence regarding effects on dementia prevention was insufficient for all physical activity interventions. Heterogeneous interventions and cognitive test measures, small and underpowered studies, and inability to assess the clinical significance of cognitive test outcomes. Evidence that short-term, single-component physical activity interventions promote cognitive function and prevent cognitive decline or dementia in older adults is largely insufficient. A multidomain intervention showed a delay in cognitive decline (low-strength evidence). Agency for Healthcare Research and Quality.

  7. Randomized controlled trial of increasing physical activity on objectively measured and self-reported cognitive functioning among breast cancer survivors: The memory & motion study.

    PubMed

    Hartman, Sheri J; Nelson, Sandahl H; Myers, Emily; Natarajan, Loki; Sears, Dorothy D; Palmer, Barton W; Weiner, Lauren S; Parker, Barbara A; Patterson, Ruth E

    2018-01-01

    Increasing physical activity can improve cognition in healthy and cognitively impaired adults; however, the benefits for cancer survivors are unknown. The current study examined a 12-week physical activity intervention, compared with a control condition, on objective and self-reported cognition among breast cancer survivors. Sedentary breast cancer survivors were randomized to an exercise arm (n = 43) or a control arm (n = 44). At baseline and at 12 weeks, objective cognition was measured with the National Institutes of Health Cognitive Toolbox, and self-reported cognition using the Patient-Reported Outcomes Measurement Information System scales. Linear mixed-effects regression models tested intervention effects for changes in cognition scores. On average, participants (n = 87) were aged 57 years (standard deviation, 10.4 years) and were 2.5 years (standard deviation, 1.3 years) post surgery. Scores on the Oral Symbol Digit subscale (a measure of processing speed) evidenced differential improvement in the exercise arm versus the control arm (b = 2.01; P < .05). The between-group differences in improvement on self-reported cognition were not statistically significant but were suggestive of potential group differences. Time since surgery moderated the correlation, and participants who were ≤2 years post surgery had a significantly greater improvement in Oral Symbol Digit score (exercise vs control (b = 4.00; P < .01), but no significant improvement was observed in patients who were >2 years postsurgery (b = -1.19; P = .40). A significant dose response was observed with greater increased physical activity associated with objective and self-reported cognition in the exercise arm. The exercise intervention significantly improved processing speed, but only among those who had been diagnosed with breast cancer within the past 2 years. Slowed processing speed can have substantial implications for independent functioning, supporting the potential importance of early implementation of an exercise intervention among patients with breast cancer. Cancer 2018;124:192-202. © 2017 American Cancer Society. © 2017 American Cancer Society.

  8. Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control

    PubMed Central

    Wise, Richard J.S.; Mehta, Amrish; Leech, Robert

    2014-01-01

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373

  9. Overlapping networks engaged during spoken language production and its cognitive control.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert

    2014-06-25

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. Copyright © 2014 Geranmayeh et al.

  10. Examining the nootropic effects of a special extract of Bacopa monniera on human cognitive functioning: 90 day double-blind placebo-controlled randomized trial.

    PubMed

    Stough, Con; Downey, Luke A; Lloyd, Jenny; Silber, Beata; Redman, Stephanie; Hutchison, Chris; Wesnes, Keith; Nathan, Pradeep J

    2008-12-01

    While Ayurvedic medicine has touted the cognitive enhancing effects of Bacopa monniera for centuries, there is a need for double-blind placebo-controlled investigations. One hundred and seven healthy participants were recruited for this double-blind placebo-controlled independent group design investigation. Sixty-two participants completed the study with 80% treatment compliance. Neuropsychological testing using the Cognitive Drug Research cognitive assessment system was conducted at baseline and after 90 days of treatment with a special extract of Bacopa monniera (2 x 150 mg KeenMind) or placebo. The Bacopa monniera product significantly improved performance on the 'Working Memory' factor, more specifically spatial working memory accuracy. The number of false-positives recorded in the Rapid visual information processing task was also reduced for the Bacopa monniera group following the treatment period. The current study provides support for the two other published studies reporting cognitive enhancing effects in healthy humans after a 90 day administration of the Bacopa monniera extract. Further studies are required to ascertain the effective dosage range, the time required to attain therapeutic levels and the effects over a longer term of administration. (c) 2008 John Wiley & Sons, Ltd.

  11. Elevated cognitive control over reward processing in recovered female patients with anorexia nervosa.

    PubMed

    Ehrlich, Stefan; Geisler, Daniel; Ritschel, Franziska; King, Joseph A; Seidel, Maria; Boehm, Ilka; Breier, Marion; Clas, Sabine; Weiss, Jessika; Marxen, Michael; Smolka, Michael N; Roessner, Veit; Kroemer, Nils B

    2015-09-01

    Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives. This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC). We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding. The results we obtained using monetary stimuli might not generalize to other forms of reward. Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral-frontal brain circuitry in recovered patients suggests an elevated degree of selfregulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom-up and top-down processes may be a trait marker of the disorder.

  12. Electrodermal Activity Is Sensitive to Cognitive Stress under Water.

    PubMed

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Alvaro D; Chon, Ki H

    2017-01-01

    When divers are at depth in water, the high pressure and low temperature alone can cause severe stress, challenging the human physiological control systems. The addition of cognitive stress, for example during a military mission, exacerbates the challenge. In these conditions, humans are more susceptible to autonomic imbalance. Reliable tools for the assessment of the autonomic nervous system (ANS) could be used as indicators of the relative degree of stress a diver is experiencing, which could reveal heightened risk during a mission. Electrodermal activity (EDA), a measure of the changes in conductance at the skin surface due to sweat production, is considered a promising alternative for the non-invasive assessment of sympathetic control of the ANS. EDA is sensitive to stress of many kinds. Therefore, as a first step, we tested the sensitivity of EDA, in the time and frequency domains, specifically to cognitive stress during water immersion of the subject (albeit with their measurement finger dry for safety). The data from 14 volunteer subjects were used from the experiment. After a 4-min adjustment and baseline period after being immersed in water, subjects underwent the Stroop task, which is known to induce cognitive stress. The time-domain indices of EDA, skin conductance level (SCL) and non-specific skin conductance responses (NS.SCRs), did not change during cognitive stress, compared to baseline measurements. Frequency-domain indices of EDA, EDASymp (based on power spectral analysis) and TVSymp (based on time-frequency analysis), did significantly change during cognitive stress. This leads to the conclusion that EDA, assessed by spectral analysis, is sensitive to cognitive stress in water-immersed subjects, and can potentially be used to detect cognitive stress in divers.

  13. Altered Odor-Induced Brain Activity as an Early Manifestation of Cognitive Decline in Patients With Type 2 Diabetes.

    PubMed

    Zhang, Zhou; Zhang, Bing; Wang, Xin; Zhang, Xin; Yang, Qing X; Qing, Zhao; Lu, Jiaming; Bi, Yan; Zhu, Dalong

    2018-05-01

    Type 2 diabetes is reported to be associated with olfactory dysfunction and cognitive decline. However, whether and how olfactory neural circuit abnormalities involve cognitive impairment in diabetes remains uncovered. This study thus aimed to investigate olfactory network alterations and the associations of odor-induced brain activity with cognitive and metabolic parameters in type 2 diabetes. Participants with normal cognition, including 51 patients with type 2 diabetes and 41 control subjects without diabetes, underwent detailed cognitive assessment, olfactory behavior tests, and odor-induced functional MRI measurements. Olfactory brain regions showing significantly different activation between the two groups were selected for functional connectivity analysis. Compared with the control subjects, patients with diabetes demonstrated significantly lower olfactory threshold score, decreased brain activation, and disrupted functional connectivity in the olfactory network. Positive associations of the disrupted functional connectivity with decreased neuropsychology test scores and reduced pancreatic function were observed in patients with diabetes. Notably, the association between pancreatic function and executive function was mediated by olfactory behavior and olfactory functional connectivity. Our results suggested the alteration of olfactory network is present before clinically measurable cognitive decrements in type 2 diabetes, bridging the gap between the central olfactory system and cognitive decline in diabetes. © 2018 by the American Diabetes Association.

  14. Executive control over unconscious cognition: attentional sensitization of unconscious information processing

    PubMed Central

    Kiefer, Markus

    2012-01-01

    Unconscious priming is a prototypical example of an automatic process, which is initiated without deliberate intention. Classical theories of automaticity assume that such unconscious automatic processes occur in a purely bottom-up driven fashion independent of executive control mechanisms. In contrast to these classical theories, our attentional sensitization model of unconscious information processing proposes that unconscious processing is susceptible to executive control and is only elicited if the cognitive system is configured accordingly. It is assumed that unconscious processing depends on attentional amplification of task-congruent processing pathways as a function of task sets. This article provides an overview of the latest research on executive control influences on unconscious information processing. I introduce refined theories of automaticity with a particular focus on the attentional sensitization model of unconscious cognition which is specifically developed to account for various attentional influences on different types of unconscious information processing. In support of the attentional sensitization model, empirical evidence is reviewed demonstrating executive control influences on unconscious cognition in the domains of visuo-motor and semantic processing: subliminal priming depends on attentional resources, is susceptible to stimulus expectations and is influenced by action intentions and task sets. This suggests that even unconscious processing is flexible and context-dependent as a function of higher-level executive control settings. I discuss that the assumption of attentional sensitization of unconscious information processing can accommodate conflicting findings regarding the automaticity of processes in many areas of cognition and emotion. This theoretical view has the potential to stimulate future research on executive control of unconscious processing in healthy and clinical populations. PMID:22470329

  15. Executive control over unconscious cognition: attentional sensitization of unconscious information processing.

    PubMed

    Kiefer, Markus

    2012-01-01

    Unconscious priming is a prototypical example of an automatic process, which is initiated without deliberate intention. Classical theories of automaticity assume that such unconscious automatic processes occur in a purely bottom-up driven fashion independent of executive control mechanisms. In contrast to these classical theories, our attentional sensitization model of unconscious information processing proposes that unconscious processing is susceptible to executive control and is only elicited if the cognitive system is configured accordingly. It is assumed that unconscious processing depends on attentional amplification of task-congruent processing pathways as a function of task sets. This article provides an overview of the latest research on executive control influences on unconscious information processing. I introduce refined theories of automaticity with a particular focus on the attentional sensitization model of unconscious cognition which is specifically developed to account for various attentional influences on different types of unconscious information processing. In support of the attentional sensitization model, empirical evidence is reviewed demonstrating executive control influences on unconscious cognition in the domains of visuo-motor and semantic processing: subliminal priming depends on attentional resources, is susceptible to stimulus expectations and is influenced by action intentions and task sets. This suggests that even unconscious processing is flexible and context-dependent as a function of higher-level executive control settings. I discuss that the assumption of attentional sensitization of unconscious information processing can accommodate conflicting findings regarding the automaticity of processes in many areas of cognition and emotion. This theoretical view has the potential to stimulate future research on executive control of unconscious processing in healthy and clinical populations.

  16. Spatial Working Memory Impairment in Patients with Non-neuropsychiatric Systemic Lupus Erythematosus: A Blood-oxygen-level Dependent Functional Magnetic Resonance Imaging Study.

    PubMed

    Zhu, Chun-Min; Ma, Ye; Xie, Lei; Huang, Jin-Zhuang; Sun, Zong-Bo; Duan, Shou-Xing; Lin, Zhi-Rong; Yin, Jing-Jing; Le, Hong-Bo; Sun, Dan-Miao; Xu, Wen-Can; Ma, Shu-Hua

    2017-02-01

    Using ethology and functional magnetic resonance imaging (fMRI) to explore mild cognitive dysfunction and spatial working memory (WM) impairment in patients with systemic lupus erythematosus (SLE) without overt neuropsychiatric symptoms (non-NPSLE) and to study whether any clinical biomarkers could serve as predictors of brain dysfunction in this disease. Eighteen non-NPSLE patients and 18 matched subjects were all tested using the Montreal cognitive assessment scale test and scanned using blood-oxygen-level dependent fMRI while performing the n-back task to investigate the activation intensity of some cognition-related areas. Ethology results showed that non-NPSLE patients had mild cognitive dysfunction and memory dysfunction (p < 0.05). The fMRI scan confirmed a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), premotor area, parietal lobe, and supplementary motor area (SMA)/anterior cingulate cortex (ACC) that was activated during the n-back task, with right hemisphere dominance. However, only the right SMA/ACC showed a load effect in the non-NPSLE group; the activation intensity of most WM-related brain areas for the non-NPSLE group was lower than for the control group under 3 memory loads. Further, we found that the activation intensity of some cognition-related areas, including the bilateral caudate nucleus/insula and hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. An inverse correlation existed between individual activation intensity and disease duration. Non-NPSLE-related brain damage with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial WM and mild cognitive dysfunction. Patients with longer disease duration would be expected to exhibit increased central nervous system damage.

  17. Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids using the HILIC-ESI-IT-TOF-MS system.

    PubMed

    Song, Shuang; Cheong, Ling-Zhi; Man, Qing-Qing; Pang, Shao-Jie; Li, Yue-Qi; Ren, Biao; Zhang, Jian

    2018-05-01

    Early diagnosis of neural changes causing cognitive impairment is critical for development of preventive therapies for dementia. Biomarkers currently characterized cannot be extensively applied due to the invasive sampling of cerebrospinal fluid. The other imaging approaches are either expensive or require a high technique. Phospholipids (PLs), which are basic constituents of neurons, might be a key variable in the pathogenesis of cognitive impairment. Changes in plasma PL provide the possibility for development of novel biomarkers with minimal invasion and high patient acceptance. In this work, a HILIC-ESI-IT-TOF-MS system was introduced for untargeted profiling of plasma PLs to investigate the relationship between changes of plasma PL profiles and cognitive impairment. A total of 272 types of PL molecular structures were characterized in human plasma and quantified through the internal standard method. Univariate analysis shows 29 PLs were significantly different between the control (n = 41) and the cognitive impairment (CI) group (n = 41). Multivariate analysis (PCA and OPLS-DA) was conducted based on these 29 potential PL biomarkers. Both univariate and multivariate analyses show abnormality of PL metabolism in the CI group, and the downregulation of ethanolamine plasmalogen (pPE) supply, especially those with PUFAs, in the circulation system should be strongly associated with neurodegeneration. A discriminative model was established with satisfied fit (R2) and prediction (Q2) abilities, and the classification test showed better recognition of the CI group than the control group indicating that this model of PL biomarkers could be used as indicators for screening of CI. Graphical abstract Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids.

  18. No Evidence of Narrowly Defined Cognitive Penetrability in Unambiguous Vision

    PubMed Central

    Lammers, Nikki A.; de Haan, Edward H.; Pinto, Yair

    2017-01-01

    The classical notion of cognitive impenetrability suggests that perceptual processing is an automatic modular system and not under conscious control. Near consensus is now emerging that this classical notion is untenable. However, as recently pointed out by Firestone and Scholl, this consensus is built on quicksand. In most studies claiming perception is cognitively penetrable, it remains unclear which actual process has been affected (perception, memory, imagery, input selection or judgment). In fact, the only available “proofs” for cognitive penetrability are proxies for perception, such as behavioral responses and neural correlates. We suggest that one can interpret cognitive penetrability in two different ways, a broad sense and a narrow sense. In the broad sense, attention and memory are not considered as “just” pre- and post-perceptual systems but as part of the mechanisms by which top-down processes influence the actual percept. Although many studies have proven top-down influences in this broader sense, it is still debatable whether cognitive penetrability remains tenable in a narrow sense. The narrow sense states that cognitive penetrability only occurs when top-down factors are flexible and cause a clear illusion from a first person perspective. So far, there is no strong evidence from a first person perspective that visual illusions can indeed be driven by high-level flexible factors. One cannot be cognitively trained to see and unsee visual illusions. We argue that this lack of convincing proof for cognitive penetrability in the narrow sense can be explained by the fact that most research focuses on foveal vision only. This type of perception may be too unambiguous for transient high-level factors to control perception. Therefore, illusions in more ambiguous perception, such as peripheral vision, can offer a unique insight into the matter. They produce a clear subjective percept based on unclear, degraded visual input: the optimal basis to study narrowly defined cognitive penetrability. PMID:28740471

  19. Habitual exercise is associated with cognitive control and cognitive reappraisal success.

    PubMed

    Giles, Grace E; Cantelon, Julie A; Eddy, Marianna D; Brunyé, Tad T; Urry, Heather L; Mahoney, Caroline R; Kanarek, Robin B

    2017-12-01

    Habitual exercise is associated with enhanced domain-general cognitive control, such as inhibitory control, selective attention, and working memory, all of which rely on the frontal cortex. However, whether regular exercise is associated with more specific aspects of cognitive control, such as the cognitive control of emotion, remains relatively unexplored. The present study employed a correlational design to determine whether level of habitual exercise was related to performance on the Stroop test measuring selective attention and response inhibition, the cognitive reappraisal task measuring cognitive reappraisal success, and associated changes in prefrontal cortex (PFC) oxygenation using functional near-infrared spectroscopy. 74 individuals (24 men, 50 women, age 18-32 years) participated. Higher habitual physical activity was associated with lower Stroop interference (indicating greater inhibitory control) and enhanced cognitive reappraisal success. Higher habitual exercise was also associated with lower oxygenated hemoglobin (O 2 Hb) in the PFC in response to emotional information. However, NIRS data indicated that exercise was not associated with cognitive control-associated O 2 Hb in the PFC. Behaviorally, the findings support and extend the previous findings that habitual exercise relates to more successful cognitive control of neutral information and cognitive reappraisal of emotional information. Future research should explore whether habitual exercise exerts causal benefits to cognitive control and PFC oxygenation, as well as isolate specific cognitive control processes sensitive to change through habitual exercise.

  20. Contributions of Attentional Control to Socioemotional and Academic Development

    ERIC Educational Resources Information Center

    Rueda, M. Rosario; Checa, Purificacion; Rothbart, Mary K.

    2010-01-01

    Research Findings: Part of the attention system of the brain is involved in the control of thoughts, emotions, and behavior. As attentional control develops, children are more able to control cognition and responses flexibly and to adjust their behavior in social interactions better. In this article, we discuss evidence from different levels of…

  1. Railway cognitive radio to enhance safety, security, and performance of positive train control.

    DOT National Transportation Integrated Search

    2013-02-01

    Robust and interoperable wireless communications are vital to Positive Train Control (PTC). The railway industry has started adopting software-defined radios (SDRs) for packet-data transmission. SDR systems realize previously fixed components as reco...

  2. The effects of video-game training on broad cognitive transfer in multiple sclerosis: A pilot randomized controlled trial.

    PubMed

    Janssen, Alisha; Boster, Aaron; Lee, HyunKyu; Patterson, Beth; Prakash, Ruchika Shaurya

    2015-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that results in diffuse nerve damage and associated physical and cognitive impairments. Of the few comprehensive rehabilitation options that exist for populations with lower baseline cognitive functioning, those that have been successful at eliciting broad cognitive improvements have focused on a multimodal training approach, emphasizing complex cognitive processing that utilizes multiple domains simultaneously. The current study sought to determine the feasibility of an 8-week, hybrid-variable priority training (HVT) program, with a secondary aim to assess the success of this training paradigm at eliciting broad cognitive transfer effects. Capitalizing on the multimodal training modalities offered by the Space Fortress platform, we compared the HVT strategy-based intervention with a waitlist control group, to primarily assess skill acquisition and secondarily determine presence of cognitive transfer. Twenty-eight participants met inclusionary criteria for the study and were randomized to either training or waitlist control groups. To assess broad transfer effects, a battery of neuropsychological tests was administered pre- and post-intervention. The results indicated an overall improvement in skill acquisition and evidence for the feasibility of the intervention, but a lack of broad transfer to tasks of cognitive functioning. Participants in the training group, however, did show improvements on a measure of spatial short-term memory. The current investigation provided support for the feasibility of a multimodal training approach, using the HVT strategy, within the MS population, but lacked broad transfer to multiple domains of cognitive functioning. Future improvements to obtain greater cognitive transfer efficacy would include a larger sample size, a longer course of training to evoke greater game score improvement, the inclusion of only cognitively impaired individuals, and integration of subjective measures of improvement in addition to objective tests of cognitive performance.

  3. A Generic, Agent-Based Framework for Design and Development of UAV/UCAV Control Systems

    DTIC Science & Technology

    2004-02-27

    37 EID Principles .................................................................................................. 38 Experimental Support for EID...Year 2 Interface design and implementation; creation of the simulation environment; Year 3 Demonstration of the concept and experimental evaluation...UAV/UCAV control in which operators can experience high cognitive workloads. There are several ways in which systems can construct user models by

  4. Cognitive simulation of incident risks in the structure of loading and transport enterprise

    NASA Astrophysics Data System (ADS)

    Shishkina, S. V.; Pristupa, Yu D.; Pavlova, L. D.; Fryanov, V. N.

    2017-09-01

    Organizational and technical system of a manufacturing enterprise was identified, which includes three subsystems: main production, industrial and social infrastructure. Based on the results of cognitive modeling, significant system concepts were identified that reduce the risks of incidents. The internal control influences formed in accordance with level of competence of heads of services, departments, sections, dispatchers, acting on the basis of regulations, job profiles. The second concept influencing the enterprise management system is personnel, which is assessed by the compliance of competencies of crane operators, loader operators, slingers, loaders, and acceptance/delivery agents to job responsibilities and labor functions. At a low level of professional competencies, the personnel does not fully comply with job duties and labor functions, the risk of an incident is maximal. The application of cognitive modeling allows us to identify the essential elements that ensure stable functioning of the system as a whole.

  5. The effects of an 8-week computerized cognitive training program in older adults: a study protocol for a randomized controlled trial.

    PubMed

    Ten Brinke, Lisanne F; Best, John R; Crockett, Rachel A; Liu-Ambrose, Teresa

    2018-01-30

    Given the world's aging population, it is important to identify strategies that promote healthy cognitive aging and minimize cognitive decline. Currently, no curative pharmaceutical therapy exists for cognitive impairment and dementia. As a result, there is much interest in lifestyle approaches. Specifically, complex mental activity, such as cognitive training, may be a promising method to combat cognitive decline in older adults. As such, the industry of commercial computerized cognitive training (CCT) applications has rapidly grown in the last decade. However, the efficacy of these commercial products is largely not established. Moreover, exercise is a recognized strategy for promoting cognitive outcomes in older adults and may augment the efficacy of computerized cognitive training applications. Therefore, we propose a proof-of-concept randomized controlled trial (RCT) to examine the effect of a commercial CCT program in community-dwelling older adults. An 8-week RCT to examine the effect of a commercial CCT program, alone and preceded by a 15-min brisk walk, on cognitive function and explore the underlying neural mechanisms in adults aged 65-85 years old. Participants will be randomized to one of three intervention groups: 1) Computerized cognitive training (FBT); 2) A 15-min brisk walk followed by computerized cognitive training (Ex-FBT); or 3) A combination of educational classes, sham cognitive training, and balanced and tone exercises (active control, BAT). Participants in all intervention groups will attend three one-hour classes per week over the course of the intervention. Participants will be assessed at baseline, trial completion, and 1-year post study completion (1-year follow-up). If results from this study show benefits for cognition at trial completion, CCT programs, alone or in combination with walking, might be a strategy to promote healthy cognitive aging in older adults. In addition, results from the 1-year follow-up measurement could provide important information regarding the long-term benefits of these CCT programs. ClinicalTrials.gov Protocol Registration System: NCT02564809; registered September 1, 2015.

  6. Creativity on tap? Effects of alcohol intoxication on creative cognition

    PubMed Central

    Benedek, Mathias; Panzierer, Lisa; Jauk, Emanuel; Neubauer, Aljoscha C.

    2017-01-01

    Anecdotal reports link alcohol intoxication to creativity, while cognitive research highlights the crucial role of cognitive control for creative thought. This study examined the effects of mild alcohol intoxication on creative cognition in a placebo-controlled design. Participants completed executive and creative cognition tasks before and after consuming either alcoholic beer (BAC of 0.03) or non-alcoholic beer (placebo). Alcohol impaired executive control, but improved performance in the Remote Associates Test, and did not affect divergent thinking ability. The findings indicate that certain aspects of creative cognition benefit from mild attenuations of cognitive control, and contribute to the growing evidence that higher cognitive control is not always associated with better cognitive performance. PMID:28705663

  7. Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies.

    PubMed

    Moccia, Lorenzo; Pettorruso, Mauro; De Crescenzo, Franco; De Risio, Luisa; di Nuzzo, Luigi; Martinotti, Giovanni; Bifone, Angelo; Janiri, Luigi; Di Nicola, Marco

    2017-07-01

    Decreased cognitive control over the urge to be involved in gambling activities is a core feature of Gambling Disorder (GD). Cognitive control can be differentiated into several cognitive sub-processes pivotal in GD clinical phenomenology, such as response inhibition, conflict monitoring, decision-making, and cognitive flexibility. This article aims to systematically review fMRI studies, which investigated the neural mechanisms underlying diminished cognitive control in GD. We conducted a comprehensive literature search and collected neuropsychological and neuroimaging data investigating cognitive control in GD. We included a total of 14 studies comprising 499 individuals. Our results indicate that impaired activity in prefrontal cortex may account for decreased cognitive control in GD, contributing to the progressive loss of control over gambling urges. Among prefrontal regions, orbital and ventromedial areas seem to be a possible nexus for sensory integration, value-based decision-making and emotional processing, thus contributing to both motivational and affective aspects of cognitive control. Finally, we discussed possible therapeutic approaches aimed at the restoration of cognitive control in GD, including pharmacological and brain stimulation treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A Quantitative Near-Infrared Spectroscopy Study: A Decrease in Cerebral Hemoglobin Oxygenation in Alzheimer's Disease and Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Arai, Heii; Takano, Maki; Miyakawa, Koichi; Ota, Tsuneyoshi; Takahashi, Tadashi; Asaka, Hirokazu; Kawaguchi, Tsuneaki

    2006-01-01

    A newly developed quantitative near-infrared spectroscopy (NIRS) system was used to measure changes in cortical hemoglobin oxygenation during the Verbal Fluency Task in 32 healthy controls, 15 subjects with mild cognitive impairment (MCI), and 15 patients with Alzheimer's disease (AD). The amplitude of changes in the waveform, which was…

  9. Psychogenetics of Turner syndrome: an investigation of 28 subjects and respective controls using the Bender test and Piagetian scales.

    PubMed

    Ricardi, F C F; Zaia, L L; Pellegrino-Rosa, I; Rosa, J T; Mantovani de Assis, O Z; Saldanha, P H

    2010-08-31

    Piagetian scales and the Bender visual motor gestalt test (BT) were applied to 28 subjects with universal 45,X Turner syndrome (TS), and their respective controls, in order to investigate their cognitive performance. Dermatoglyphics were also analyzed to obtain clues concerning embryological changes that may have appeared during development of the nervous system and could be associated with cognitive performance of TS patients. Dermatoglyphic pattern distribution was similar to that reported in previous studies of TS individuals: ulnar loops in the digital patterns and finger ridge, a-b, and A'-d counts were more frequent, while arch and whorl patterns were less frequent compared to controls. However, we did not find higher frequencies of hypothenar pattern, maximum atd angle, and ulnarity index in our TS subjects, unlike other investigations. Furthermore, we found significant differences between TS and control T line index values. The BT scores were also lower in probands, as has been previously reported, revealing a neurocognitive deficit of visual motor perception in TS individuals, which could be due to an absence of, or deficiency in, cerebral hemispheric lateralization. However, TS subjects seemed to improve their performance on BT with age. Cognitive performance of the TS subjects was not significantly different from that of controls, confirming a previous study in which TS performance was found to be similar to that of the normal Brazilian population. There were significant correlations between BT scores and Piagetian scale levels with dermatoglyphic parameters. This association could be explained by changes in the common ectodermal origin of the epidermis and the central nervous system. TS subjects seem to succeed in compensating their spatial impairments in adapting their cognitive and social contacts. We concluded that genetic counseling should consider cognitive and psychosocial difficulties presented by TS subjects, providing appropriate treatment and orientation for them and their families.

  10. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure

    PubMed Central

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E.; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M.; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5–19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level. PMID:26928125

  11. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure.

    PubMed

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5-19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level.

  12. Effects of multicomponent training of cognitive control on cognitive function and brain activation in older adults.

    PubMed

    Kim, Hoyoung; Chey, Jeanyung; Lee, Sanghun

    2017-11-01

    The aim of this study was to investigate the changes in cognitive functions and brain activation after multicomponent training of cognitive control in non-demented older adults, utilizing neuropsychological tests and fMRI. We developed and implemented a computerized Multicomponent Training of Cognitive Control (MTCC), characterized by task variability and adaptive procedures, in order to maximize training effects in cognitive control and transfer to other cognitive domains. Twenty-seven community-dwelling adults, aged 64-77 years, without any history of neurological or psychiatric problems, participated in this study (14 in the training group and 13 in the control group). The MTCC was administered to the participants assigned to the training group for 8 weeks, while those in the control group received no training. Neuropsychological tests and fMRI were administered prior to and after the training. Trained participants showed improvements in cognitive control, recognition memory and general cognitive functioning. Furthermore, the MTCC led to an increased brain activation of the regions adjacent to the baseline cognitive control-related areas in the frontoparietal network. Future studies are necessary to confirm our hypothesis that MTCC improves cognitive functioning of healthy elderly individuals by expanding their frontoparietal network that is involved in cognitive control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia.

    PubMed

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.

  14. Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia

    PubMed Central

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J. Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions. PMID:24940743

  15. Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type

    PubMed Central

    Menning, Sanne; de Ruiter, Michiel B.; Veltman, Dick J.; Boogerd, Willem; Oldenburg, Hester S. A.; Reneman, Liesbeth

    2017-01-01

    Background Cognitive problems in breast cancer patients are common after systemic treatment, particularly chemotherapy. An increasing number of fMRI studies show altered brain activation in breast cancer patients after treatment, suggestive of neurotoxicity. Previous prospective fMRI studies administered a single cognitive task. The current study employed two task paradigms to evaluate whether treatment-induced changes depend on the probed cognitive domain. Methods Participants were breast cancer patients scheduled to receive systemic treatment (anthracycline-based chemotherapy +/- endocrine treatment, n = 28), or no systemic treatment (n = 24) and no-cancer controls (n = 31). Assessment took place before adjuvant treatment and six months after chemotherapy, or at similar intervals. Blood oxygen level dependent (BOLD) activation and performance were measured during an executive functioning task and an episodic memory task. Group-by-time interactions were analyzed using a flexible factorial design. Results Task performance did not differ between patient groups and did not change over time. Breast cancer patients who received systemic treatment, however, showed increased parietal activation compared to baseline with increasing executive functioning task load compared to breast cancer patients who did not receive systemic treatment. This hyperactivation was accompanied by worse physical functioning, higher levels of fatigue and more cognitive complaints. In contrast, in breast cancer patients who did not receive systemic treatment, parietal activation normalized over time compared to the other two groups. Conclusions Parietal hyperactivation after systemic treatment in the context of stable levels of executive task performance is compatible with a compensatory processing account of hyperactivation or maintain adequate performance levels. This over-recruitment of brain regions depends on the probed cognitive domain and may represent a response to decreased neural integrity after systemic treatment. Overall these results suggest different neurobehavioral trajectories in breast cancer patients depending on treatment type. PMID:28267750

  16. Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type.

    PubMed

    Menning, Sanne; de Ruiter, Michiel B; Veltman, Dick J; Boogerd, Willem; Oldenburg, Hester S A; Reneman, Liesbeth; Schagen, Sanne B

    2017-01-01

    Cognitive problems in breast cancer patients are common after systemic treatment, particularly chemotherapy. An increasing number of fMRI studies show altered brain activation in breast cancer patients after treatment, suggestive of neurotoxicity. Previous prospective fMRI studies administered a single cognitive task. The current study employed two task paradigms to evaluate whether treatment-induced changes depend on the probed cognitive domain. Participants were breast cancer patients scheduled to receive systemic treatment (anthracycline-based chemotherapy +/- endocrine treatment, n = 28), or no systemic treatment (n = 24) and no-cancer controls (n = 31). Assessment took place before adjuvant treatment and six months after chemotherapy, or at similar intervals. Blood oxygen level dependent (BOLD) activation and performance were measured during an executive functioning task and an episodic memory task. Group-by-time interactions were analyzed using a flexible factorial design. Task performance did not differ between patient groups and did not change over time. Breast cancer patients who received systemic treatment, however, showed increased parietal activation compared to baseline with increasing executive functioning task load compared to breast cancer patients who did not receive systemic treatment. This hyperactivation was accompanied by worse physical functioning, higher levels of fatigue and more cognitive complaints. In contrast, in breast cancer patients who did not receive systemic treatment, parietal activation normalized over time compared to the other two groups. Parietal hyperactivation after systemic treatment in the context of stable levels of executive task performance is compatible with a compensatory processing account of hyperactivation or maintain adequate performance levels. This over-recruitment of brain regions depends on the probed cognitive domain and may represent a response to decreased neural integrity after systemic treatment. Overall these results suggest different neurobehavioral trajectories in breast cancer patients depending on treatment type.

  17. Integrating automatic and controlled processes into neurocognitive models of social cognition.

    PubMed

    Satpute, Ajay B; Lieberman, Matthew D

    2006-03-24

    Interest in the neural systems underlying social perception has expanded tremendously over the past few decades. However, gaps between behavioral literatures in social perception and neuroscience are still abundant. In this article, we apply the concept of dual-process models to neural systems in an effort to bridge the gap between many of these behavioral studies and neural systems underlying social perception. We describe and provide support for a neural division between reflexive and reflective systems. Reflexive systems correspond to automatic processes and include the amygdala, basal ganglia, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and lateral temporal cortex. Reflective systems correspond to controlled processes and include lateral prefrontal cortex, posterior parietal cortex, medial prefrontal cortex, rostral anterior cingulate cortex, and the hippocampus and surrounding medial temporal lobe region. This framework is considered to be a working model rather than a finished product. Finally, the utility of this model and its application to other social cognitive domains such as Theory of Mind are discussed.

  18. Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism

    PubMed Central

    Minshew, Nancy J.; Luna, Beatriz; Sweeney, John A.

    2010-01-01

    Objective To investigate the functional integrity of cerebellar and frontal system in autism using oculomotor paradigms. Background Cerebellar and neocortical systems models of autism have been proposed. Courchesne and colleagues have argued that cognitive deficits such as shifting attention disturbances result from dysfunction of vermal lobules VI and VII. Such a vermal deficit should be associated with dysmetric saccadic eye movements because of the major role these areas play in guiding the motor precision of saccades. In contrast, neocortical models of autism predict intact saccade metrics, but impairments on tasks requiring the higher cognitive control of saccades. Methods A total of 26 rigorously diagnosed nonmentally retarded autistic subjects and 26 matched healthy control subjects were assessed with a visually guided saccade task and two volitional saccade tasks, the oculomotor delayed-response task and the antisaccade task. Results Metrics and dynamic of the visually guided saccades were normal in autistic subjects, documenting the absence of disturbances in cerebellar vermal lobules VI and VII and in automatic shifts of visual attention. Deficits were demonstrated on both volitional saccade tasks, indicating dysfunction in the circuitry of prefrontal cortex and its connections with the parietal cortex, and associated cognitive impairments in spatial working memory and in the ability to voluntarily suppress context-inappropriate responses. Conclusions These findings demonstrate intrinsic neocortical, not cerebellar, dysfunction in autism, and parallel deficits in higher order cognitive mechanisms and not in elementary attentional and sensorimotor systems in autism. PMID:10102406

  19. Bilingualism tunes the anterior cingulate cortex for conflict monitoring.

    PubMed

    Abutalebi, Jubin; Della Rosa, Pasquale Anthony; Green, David W; Hernandez, Mireia; Scifo, Paola; Keim, Roland; Cappa, Stefano F; Costa, Albert

    2012-09-01

    Monitoring and controlling 2 language systems is fundamental to language use in bilinguals. Here, we reveal in a combined functional (event-related functional magnetic resonance imaging) and structural neuroimaging (voxel-based morphometry) study that dorsal anterior cingulate cortex (ACC), a structure tightly bound to domain-general executive control functions, is a common locus for language control and resolving nonverbal conflict. We also show an experience-dependent effect in the same region: Bilinguals use this structure more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts. They adapted better to conflicting situations showing less ACC activity while outperforming monolinguals. Importantly, for bilinguals, brain activity in the ACC, as well as behavioral measures, also correlated positively with local gray matter volume. These results suggest that early learning and lifelong practice of 2 languages exert a strong impact upon human neocortical development. The bilingual brain adapts better to resolve cognitive conflicts in domain-general cognitive tasks.

  20. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders.

    PubMed

    Arnsten, Amy F T; Rubia, Katya

    2012-04-01

    This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Studies of animals, normally developing children, and patients with neurodevelopmental disorders were reviewed, with focus on neuroimaging studies. The PFC provides "top-down" regulation of attention, inhibition/cognitive control, motivation, and emotion through connections with posterior cortical and subcortical structures. Dorsolateral and inferior PFC regulate attention and cognitive/inhibitory control, whereas orbital and ventromedial structures regulate motivation and affect. PFC circuitries are very sensitive to their neurochemical environment, and small changes in the underlying neurotransmitter systems, e.g. by medications, can produce large effects on mediated function. Neuroimaging studies of children with neurodevelopmental disorders show altered brain structure and function in distinctive circuits respecting this organization. Children with attention-deficit/hyperactivity disorder show prominent abnormalities in the inferior PFC and its connections to striatal, cerebellar, and parietal regions, whereas children with conduct disorder show alterations in the paralimbic system, comprising ventromedial, lateral orbitofrontal, and superior temporal cortices together with specific underlying limbic regions, regulating motivation and emotion control. Children with major depressive disorder show alterations in ventral orbital and limbic activity, particularly in the left hemisphere, mediating emotions. Finally, children with obsessive-compulsive disorder appear to have a dysregulation in orbito-fronto-striatal inhibitory control pathways, but also deficits in dorsolateral fronto-parietal systems of attention. Altogether, there is a good correspondence between anatomical circuitry mediating compromised functions and patterns of brain structure and function changes in children with neuropsychiatric disorders. Medications may optimize the neurochemical environment in PFC and associated circuitries, and improve structure and function. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. A comparison of discrimination learning in touchscreen and 2-choice swim tank using an allelic series of Huntington's disease mice.

    PubMed

    Glynn, Dervila; Skillings, Elizabeth A; Morton, A Jennifer

    2016-05-30

    Progressive cognitive impairments are a major, debilitating symptom of neurodegenerative disorders such as Alzheimer's disease (AD) and Huntington's disease (HD). Developing treatments to slow or prevent cognitive decline is a key challenge for these fields. Unfortunately, preclinical therapeutic testing has not kept pace with molecular advances, and the methods for systematic cognitive testing in mice remain largely unchanged. Although higher throughput semi-automated systems exist, the lack of a 'positive control' (i.e. a drug or treatment that works) makes it challenging to test their sensitivity and predict usefulness for preclinical drug testing. We used an allelic series of transgenic HD mice to test the sensitivity and flexibility of two cognitive testing systems; a semi-automated touchscreen system and a traditional water-based task, the 2-choice swim tank. We found significant differences in performance of HD mice with different CAG repeats, with timing and severity of deficits dependent on CAG repeat length. We also found deficits in long-term memory retention that have not been reported previously. Both systems were useful for detecting deficits, and were sensitive enough to detect small changes (10-20%) in cognitive performance. While the touchscreen system is more sensitive and can identify deficits up to 10 weeks earlier than the 2-choice swim tank, both tests detected similar patterns of deficit progression in HD mice, regardless of CAG repeat length. Thus, although it has its limitations, the 2-choice swim tank remains a simple, cheap and accessible system for assessing cognitive function. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Self-organizing high-order cognitive functions in artificial agents: implications for possible prefrontal cortex mechanisms.

    PubMed

    Maniadakis, Michail; Trahanias, Panos; Tani, Jun

    2012-09-01

    In our daily life, we often adapt plans and behaviors according to dynamically changing world circumstances, selecting activities that make us feel more confident about the future. In this adaptation, the prefrontal cortex (PFC) is believed to have an important role, applying executive control on other cognitive processes to achieve context switching and confidence monitoring; however, many questions remain open regarding the nature of neural processes supporting executive control. The current work explores possible mechanisms of this high-order cognitive function, transferring executing control in the domain of artificial cognitive systems. In particular, we study the self-organization of artificial neural networks accomplishing a robotic rule-switching task analogous to the Wisconsin Card Sorting Test. The obtained results show that behavioral rules may be encoded in neuro-dynamic attractors, with their geometric arrangements in phase space affecting the shaping of confidence. Analysis of the emergent dynamical structures suggests possible explanations of the interactions of high-level and low-level processes in the real brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Muscarinic agonists for the treatment of cognition in schizophrenia.

    PubMed

    Sellin, Angela K; Shad, Mujeeb; Tamminga, Carol

    2008-11-01

    It is widely accepted that cholinergic activity at muscarinic receptors is required to maintain cognitive functions, including learning and memory. Memory domains are especially impaired in schizophrenia, which may explain difficulties in psychosocial rehabilitation of individuals with this illness. However, little is known about the mechanism of this impairment. To understand our current knowledge, we reviewed the literature since 1990 via a PubMed search for the terms "muscarinic", "schizophrenia", "cognition", "memory", "learning", and "agonist" in combination. We found 89 basic science/laboratory studies, case reports/series, case-control studies, cross-sectional studies, standardized controlled animal trials, standardized controlled human trials, and reviews. Although further research is required to fully understand the neuropharmacology of the cholinergic system in cognitive function in schizophrenia, we have examined the data currently available. In general, these data suggest that agonist activity at acetylcholine muscarinic type 1 (M1) receptors would enhance memory and learning in schizophrenia. We present an overview of likely side effects of muscarinic agonists. We outline the anticholinergic activity of several available antipsychotics and review the available M1 muscarinic agonists.

  4. Computer-based tools for assessing micro-longitudinal patterns of cognitive function in older adults.

    PubMed

    Brown, Laura J E; Adlam, Tim; Hwang, Faustina; Khadra, Hassan; Maclean, Linda M; Rudd, Bridey; Smith, Tom; Timon, Claire; Williams, Elizabeth A; Astell, Arlene J

    2016-08-01

    Patterns of cognitive change over micro-longitudinal timescales (i.e., ranging from hours to days) are associated with a wide range of age-related health and functional outcomes. However, practical issues of conducting high-frequency assessments make investigations of micro-longitudinal cognition costly and burdensome to run. One way of addressing this is to develop cognitive assessments that can be performed by older adults, in their own homes, without a researcher being present. Here, we address the question of whether reliable and valid cognitive data can be collected over micro-longitudinal timescales using unsupervised cognitive tests.In study 1, 48 older adults completed two touchscreen cognitive tests, on three occasions, in controlled conditions, alongside a battery of standard tests of cognitive functions. In study 2, 40 older adults completed the same two computerized tasks on multiple occasions, over three separate week-long periods, in their own homes, without a researcher present. Here, the tasks were incorporated into a wider touchscreen system (Novel Assessment of Nutrition and Ageing (NANA)) developed to assess multiple domains of health and behavior. Standard tests of cognitive function were also administered prior to participants using the NANA system.Performance on the two "NANA" cognitive tasks showed convergent validity with, and similar levels of reliability to, the standard cognitive battery in both studies. Completion and accuracy rates were also very high. These results show that reliable and valid cognitive data can be collected from older adults using unsupervised computerized tests, thus affording new opportunities for the investigation of cognitive.

  5. The effects of exposure to traumatic stressors on inhibitory control in police officers: a dense electrode array study using a Go/NoGo continuous performance task.

    PubMed

    Covey, Thomas J; Shucard, Janet L; Violanti, John M; Lee, Jeff; Shucard, David W

    2013-03-01

    Exposure to psychologically stressful and traumatic experiences and the requirement of heightened attention to environmental stimuli are common in police work. Police officers are at increased risk for stress-related disorders such as Post-Traumatic Stress Disorder (PTSD). Traumatic experiences can result in changes to brain structure and function associated with attention and cognitive control processes (such as response inhibition). Despite the significance that these cognitive functions may have on job performance in police officers, few studies have examined the effects of exposure to traumatic events on top-down cognitive control functions in police. In the present study, a dense electrode array system was used to examined the N2 and P3 components of the event-related potential (ERP) during a Go/NoGo continuous performance task (Go/NoGo CPT) in trauma-exposed police officers who did not meet criteria for a current diagnosis of PTSD and in non-trauma exposed civilian controls. Amplitude and latency were obtained to Go, NoGo, and non-target trials. The major between-group findings were for P3 amplitude. There were no group effects for N2. Both groups had an enhanced fronto-central P3 amplitude to NoGo compared to Go trials. However, police had greater P3 amplitude compared to controls for all trial types (Go, NoGo, non-target). PTSD symptom scores in police officers were positively correlated with fronto-central NoGo P3 amplitude, but not with posterior NoGo amplitude. This study provides evidence of heightened attention and/or arousal in police officers as indicated by the generally greater P3 amplitude in police compared to controls during a task requiring sustained attention and inhibitory control. Greater PTSD symptom severity in trauma-exposed individuals may affect frontal cognitive control systems related to response inhibition. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Creativity on tap? Effects of alcohol intoxication on creative cognition.

    PubMed

    Benedek, Mathias; Panzierer, Lisa; Jauk, Emanuel; Neubauer, Aljoscha C

    2017-11-01

    Anecdotal reports link alcohol intoxication to creativity, while cognitive research highlights the crucial role of cognitive control for creative thought. This study examined the effects of mild alcohol intoxication on creative cognition in a placebo-controlled design. Participants completed executive and creative cognition tasks before and after consuming either alcoholic beer (BAC of 0.03) or non-alcoholic beer (placebo). Alcohol impaired executive control, but improved performance in the Remote Associates Test, and did not affect divergent thinking ability. The findings indicate that certain aspects of creative cognition benefit from mild attenuations of cognitive control, and contribute to the growing evidence that higher cognitive control is not always associated with better cognitive performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease.

    PubMed

    Tangen, Gro Gujord; Engedal, Knut; Bergland, Astrid; Moger, Tron Anders; Mengshoel, Anne Marit

    2014-08-01

    Balance impairments are common in patients with Alzheimer disease (AD), but which aspects of balance are affected, at which stage of cognitive impairment, and their associations with cognitive domains remain unexplored. The aims of this study were: (1) to explore differences in balance abilities among patients with subjective cognitive impairment (SCI) or mild cognitive impairment (MCI), mild AD, and moderate AD and (2) to examine the relationship between the various aspects of balance and cognitive domains. This was a cross-sectional study. Home-dwelling patients with SCI or MCI (n=33), mild AD (n=99), and moderate AD (n=38) participated in this study. The Balance Evaluation Systems Test (BESTest), comprising 6 subscales-"Biomechanical Constraints," "Stability Limits/Verticality," "Anticipatory Postural Adjustments," "Postural Responses," "Sensory Orientation," and "Stability in Gait"-was used to assess balance. Cognitive domains were assessed using the following measures: Mini-Mental Status Examination, Word-List Learning Test from the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Verbal Fluency Test, Clock Drawing Test, and Trail Making Test, parts A and B (TMT-A and TMT-B, respectively). Two-way between-group analyses of variance, adjusted for age, were used to analyze differences among the groups. Multiple linear regression analysis was used to explore the associations between balance and cognition. Differences were found between the groups on all BESTest subscales; the moderate AD group had the worst scores. The TMT-B (measuring executive function) was associated with all of the BESTest subscales after controlling for demographic factors. The cross-sectional design hampered interpretation of the development of balance impairments. The study findings indicate that all aspects of balance control deteriorate with increasing severity of cognitive impairment and that executive function plays an important role in balance control. Physical therapists should pay attention to these findings both in clinical practice and in future research. © 2014 American Physical Therapy Association.

  8. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  9. S100β is associated with cognitive impairment in childhood-onset systemic lupus erythematosus patients.

    PubMed

    Lapa, A T; Postal, M; Sinicato, N A; Bellini, B S; Fernandes, P T; Marini, R; Appenzeller, S

    2017-04-01

    Objective To investigate serologic S100β protein levels in childhood-onset SLE patients (cSLE) and to elucidate their association with disease activity and neuropsychiatric (NP) manifestations. Methods We included 71 cSLE patients (67 females; median age 18 years; range 9-37 and 53 (47 females; median age of 20 years; range 6-29) age and sex matched healthy controls. Neurological manifestations were analysed according to the American College of Rheumatology (ACR) criteria. Cognitive evaluation was performed in all participants using Wechsler Intelligence Scale for Children (WISC-III) and Wechsler Adult Intelligence Scale (WAIS), according to age, and validated in Portuguese. SLE patients were further assessed for clinical and laboratory SLE manifestations, disease activity (SLE Disease Activity Index (SLEDAI)), damage (Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI)) and current drug exposures. Sera S100β protein levels were measured by enzyme-linked immunosorbent assay using commercial kits. Results The median S100β protein level was 116.55 pg/mL (range 1.53-468.50) in cSLE and 54.98 pg/mL (range 0.69-181.00) in healthy controls ( p < 0.001). An association was observed between S100β protein and NP manifestations ( p = 0.03). The S100β protein levels was associated with cognitive impairment in cSLE patients ( p = 0.006). Conclusions S100β protein levels are increased in cSLE with cognitive impairment. S100β may be considered a potential biomarker that underlies central nervous system (CNS) dysfunction, especially cognitive impairment.

  10. Metabolic Free Energy and Biological Codes: A 'Data Rate Theorem' Aging Model.

    PubMed

    Wallace, Rodrick

    2015-06-01

    A famous argument by Maturana and Varela (Autopoiesis and cognition. Reidel, Dordrecht, 1980) holds that the living state is cognitive at every scale and level of organization. Since it is possible to associate many cognitive processes with 'dual' information sources, pathologies can sometimes be addressed using statistical models based on the Shannon Coding, the Shannon-McMillan Source Coding, the Rate Distortion, and the Data Rate Theorems, which impose necessary conditions on information transmission and system control. Deterministic-but-for-error biological codes do not directly invoke cognition, but may be essential subcomponents within larger cognitive processes. A formal argument, however, places such codes within a similar framework, with metabolic free energy serving as a 'control signal' stabilizing biochemical code-and-translator dynamics in the presence of noise. Demand beyond available energy supply triggers punctuated destabilization of the coding channel, affecting essential biological functions. Aging, normal or prematurely driven by psychosocial or environmental stressors, must interfere with the routine operation of such mechanisms, initiating the chronic diseases associated with senescence. Amyloid fibril formation, intrinsically disordered protein logic gates, and cell surface glycan/lectin 'kelp bed' logic gates are reviewed from this perspective. The results generalize beyond coding machineries having easily recognizable symmetry modes, and strip a layer of mathematical complication from the study of phase transitions in nonequilibrium biological systems.

  11. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children.

    PubMed

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A; Bo, Emily

    2016-09-12

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement.

  12. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children

    PubMed Central

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A.; Bo, Emily

    2016-01-01

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement. PMID:27615029

  13. [Intelligent operating room suite : From passive medical devices to the self-thinking cognitive surgical assistant].

    PubMed

    Kenngott, H G; Wagner, M; Preukschas, A A; Müller-Stich, B P

    2016-12-01

    Modern operating room (OR) suites are mostly digitally connected but until now the primary focus was on the presentation, transfer and distribution of images. Device information and processes within the operating theaters are barely considered. Cognitive assistance systems have triggered a fundamental rethinking in the automotive industry as well as in logistics. In principle, tasks in the OR, some of which are highly repetitive, also have great potential to be supported by automated cognitive assistance via a self-thinking system. This includes the coordination of the entire workflow in the perioperative process in both the operating theater and the whole hospital. With corresponding data from hospital information systems, medical devices and appropriate models of the surgical process, intelligent systems could optimize the workflow in the operating theater in the near future and support the surgeon. Preliminary results on the use of device information and automatically controlled OR suites are already available. Such systems include, for example the guidance of laparoscopic camera systems. Nevertheless, cognitive assistance systems that make use of knowledge about patients, processes and other pieces of information to improve surgical treatment are not yet available in the clinical routine but are urgently needed in order to automatically assist the surgeon in situation-related activities and thus substantially improve patient care.

  14. Cognitively-Impaired-Not-Demented Status Moderates the Time-Varying Association between Finger Tapping Inconsistency and Executive Performance.

    PubMed

    Halliday, Drew W R; Stawski, Robert S; MacDonald, Stuart W S

    2017-02-01

    Response time inconsistency (RTI) in cognitive performance predicts deleterious health outcomes in late-life; however, RTI estimates are often confounded by additional influences (e.g., individual differences in learning). Finger tapping is a basic sensorimotor measure largely independent of higher-order cognition that may circumvent such confounds of RTI estimates. We examined the within-person coupling of finger-tapping mean and RTI on working memory, and the moderation of these associations by cognitive status. A total of 262 older adults were recruited and classified as controls, cognitively-impaired-not-demented (CIND) unstable or CIND stable. Participants completed finger-tapping and working-memory tasks during multiple weekly assessments, repeated annually for 4 years. Within-person coupling estimates from multilevel models indicated that on occasions when RTI was greater, working-memory response latency was slower for the CIND-stable, but not for the CIND-unstable or control individuals. The finger-tapping task shows potential for minimizing confounds on RTI estimates, and for yielding RTI estimates sensitive to central nervous system function and cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. [Cognitive modifications associated with tobacco smoking].

    PubMed

    Lecacheux, Marie; Karila, Laurent; Aubin, Henri-Jean; Dupont, Patrick; Benyamina, Amine; Maman, Judith; Lebert, Amandine; Reynaud, Michel

    2009-09-01

    Tobacco is an important source of somatic diseases and causes high mortality. It is associated with cognitive disorders which tend to maintain addictive mechanisms. In the short term, the nicotine contained in tobacco enhances attention and memory. To realize this review, we made a research, we made a research on Medline, Embase, PsycInfo, Google Scholar using the single or combined key-words "tobacco", "nicotine", "addiction", "dependence", "cognitive disorders", "executive function", "memory", "attention", "neuropsychological". We selected English or French articles from 1987 to 2008 by privileging controlled studies. This effect can be observed in smokers (with or without withdrawal symptoms), non-smokers and in patients suffering from cognitive disorders. In the long term, tobacco accelerates dementia processes. It is associated with an increased risk of cognitive deterioration. This deterioration concerns mainly memory and processing speed. These results were reported in prospective studies. They contradict early reports, that suggested smoking could actually be protective against certain central neural system disorders. These early results relayed on case-control studies, which were certainly biased by a "healthy survival effect". Further studies are required to evaluate nicotine's long term effect and its potential efficacy in treating and preventing cognitive disorders or dementia.

  16. From movement to thought: executive function, embodied cognition, and the cerebellum.

    PubMed

    Koziol, Leonard F; Budding, Deborah Ely; Chidekel, Dana

    2012-06-01

    This paper posits that the brain evolved for the control of action rather than for the development of cognition per se. We note that the terms commonly used to describe brain-behavior relationships define, and in many ways limit, how we conceptualize and investigate them and may therefore constrain the questions we ask and the utility of the "answers" we generate. Many constructs are so nonspecific and over-inclusive as to be scientifically meaningless. "Executive function" is one such term in common usage. As the construct is increasingly focal in neuroscience research, defining it clearly is critical. We propose a definition that places executive function within a model of continuous sensorimotor interaction with the environment. We posit that control of behavior is the essence of "executive function," and we explore the evolutionary advantage conferred by being able to anticipate and control behavior with both implicit and explicit mechanisms. We focus on the cerebellum's critical role in these control processes. We then hypothesize about the ways in which procedural (skill) learning contributes to the acquisition of declarative (semantic) knowledge. We hypothesize how these systems might interact in the process of grounding knowledge in sensorimotor anticipation, thereby directly linking movement to thought and "embodied cognition." We close with a discussion of ways in which the cerebellum instructs frontal systems how to think ahead by providing anticipatory control mechanisms, and we briefly review this model's potential applications.

  17. Cognitive control, cognitive reserve, and memory in the aging bilingual brain

    PubMed Central

    Grant, Angela; Dennis, Nancy A.; Li, Ping

    2014-01-01

    In recent years bilingualism has been linked to both advantages in executive control and positive impacts on aging. Such positive cognitive effects of bilingualism have been attributed to the increased need for language control during bilingual processing and increased cognitive reserve, respectively. However, a mechanistic explanation of how bilingual experience contributes to cognitive reserve is still lacking. The current paper proposes a new focus on bilingual memory as an avenue to explore the relationship between executive control and cognitive reserve. We argue that this focus will enhance our understanding of the functional and structural neural mechanisms underlying bilingualism-induced cognitive effects. With this perspective we discuss and integrate recent cognitive and neuroimaging work on bilingual advantage, and suggest an account that links cognitive control, cognitive reserve, and brain reserve in bilingual aging and memory. PMID:25520695

  18. A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

    NASA Astrophysics Data System (ADS)

    Hanford, Scott D.

    Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the object of interest has been detected, the Soar agent uses the topological map to make decisions about how to efficiently return to the location where the mission began. Additionally, the CRS can send an email containing step-by-step directions using the intersections in the environment as landmarks that describe a direct path from the mission's start location to the object of interest. The CRS has displayed several characteristics of intelligent behavior, including reasoning, planning, learning, and communication of learned knowledge, while autonomously performing two missions. The CRS has also demonstrated how Soar can be integrated with common robotic motor and perceptual systems that complement the strengths of Soar for unmanned vehicles and is one of the few systems that use perceptual systems such as occupancy grid, computer vision, and fuzzy logic algorithms with cognitive architectures for robotics. The use of these perceptual systems to generate symbolic information about the environment during the indoor search mission allowed the CRS to use Soar's planning and learning mechanisms, which have rarely been used by agents to control mobile robots in real environments. Additionally, the system developed for the indoor search mission represents the first known use of a topological map with a cognitive architecture on a mobile robot. The ability to learn both a topological map and production rules allowed the Soar agent used during the indoor search mission to make intelligent decisions and behave more efficiently as it learned about its environment. While the CRS has been applied to two different missions, it has been developed with the intention that it be extended in the future so it can be used as a general system for mobile robot control. The CRS can be expanded through the addition of new sensors and sensor processing algorithms, development of Soar agents with more production rules, and the use of new architectural mechanisms in Soar.

  19. Assessment of Innovative Emergency Department Information Displays in a Clinical Simulation Center

    PubMed Central

    McGeorge, Nicolette; Hegde, Sudeep; Berg, Rebecca L.; Guarrera-Schick, Theresa K.; LaVergne, David T.; Casucci, Sabrina N.; Hettinger, A. Zachary; Clark, Lindsey N.; Lin, Li; Fairbanks, Rollin J.; Benda, Natalie C.; Sun, Longsheng; Wears, Robert L.; Perry, Shawna; Bisantz, Ann

    2016-01-01

    The objective of this work was to assess the functional utility of new display concepts for an emergency department information system created using cognitive systems engineering methods, by comparing them to similar displays currently in use. The display concepts were compared to standard displays in a clinical simulation study during which nurse-physician teams performed simulated emergency department tasks. Questionnaires were used to assess the cognitive support provided by the displays, participants’ level of situation awareness, and participants’ workload during the simulated tasks. Participants rated the new displays significantly higher than the control displays in terms of cognitive support. There was no significant difference in workload scores between the display conditions. There was no main effect of display type on situation awareness, but there was a significant interaction; participants using the new displays showed improved situation awareness from the middle to the end of the session. This study demonstrates that cognitive systems engineering methods can be used to create innovative displays that better support emergency medicine tasks, without increasing workload, compared to more standard displays. These methods provide a means to develop emergency department information systems—and more broadly, health information technology—that better support the cognitive needs of healthcare providers. PMID:27974881

  20. The neurobiology of reward and cognitive control systems and their role in incentivizing health behavior.

    PubMed

    Garavan, Hugh; Weierstall, Karen

    2012-11-01

    This article reviews the neurobiology of cognitive control and reward processes and addresses their role in the treatment of addiction. We propose that the neurobiological mechanisms involved in treatment may differ from those involved in the etiology of addiction and consequently are worthy of increased investigation. We review the literature on reward and control processes and evidence of differences in these systems in drug addicted individuals. We also review the relatively small literature on neurobiological predictors of abstinence. We conclude that prefrontal control systems may be central to a successful recovery from addiction. The frontal lobes have been shown to regulate striatal reward-related processes, to be among the regions that predict treatment outcome, and to show elevated functioning in those who have succeeded in maintaining abstinence. The evidence of the involvement of the frontal lobes in recovery is consistent with the hypothesis that recovery is a distinct process that is more than the undoing of those processes involved in becoming addicted and a return to the pre-addiction state of the individual. The extent to which these frontal systems are engaged by treatment interventions may contribute to their efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Occupant-vehicle dynamics and the role of the internal model

    NASA Astrophysics Data System (ADS)

    Cole, David J.

    2018-05-01

    With the increasing need to reduce time and cost of vehicle development there is increasing advantage in simulating mathematically the dynamic interaction of a vehicle and its occupant. The larger design space arising from the introduction of automated vehicles further increases the potential advantage. The aim of the paper is to outline the role of the internal model hypothesis in understanding and modelling occupant-vehicle dynamics, specifically the dynamics associated with direction and speed control of the vehicle. The internal model is the driver's or passenger's understanding of the vehicle dynamics and is thought to be employed in the perception, cognition and action processes of the brain. The internal model aids the estimation of the states of the vehicle from noisy sensory measurements. It can also be used to optimise cognitive control action by predicting the consequence of the action; thus model predictive control (MPC) theory provides a foundation for modelling the cognition process. The stretch reflex of the neuromuscular system also makes use of the prediction of the internal model. Extensions to the MPC approach are described which account for: interaction with an automated vehicle; robust control; intermittent control; and cognitive workload. Further work to extend understanding of occupant-vehicle dynamic interaction is outlined. This paper is based on a keynote presentation given by the author to the 13th International Symposium on Advanced Vehicle Control (AVEC) conference held in Munich, September 2016.

  2. [Sociophysiology: basic processes of empathy].

    PubMed

    Haker, Helene; Schimansky, Jenny; Rössler, Wulf

    2010-01-01

    The aim of this review is to describe sociophysiological and social cognitive processes that underlie the complex phenomenon of human empathy. Automatic reflexive processes such as physiological contagion and action mirroring are mediated by the mirror neuron system. They are a basis for further processing of social signals and a physiological link between two individuals. This link comprises simultaneous activation of shared motor representations. Shared representations lead implicitly via individual associations in the limbic and vegetative system to a shared affective state. These processes are called sociophysiology. Further controlled- reflective, self-referential processing of those social signals leads to explicit, conscious representations of others' minds. Those higher-order processes are called social cognition. The interaction of physiological and cognitive social processes lets arise the phenomenon of human empathy.

  3. The re-tooled mind: how culture re-engineers cognition

    PubMed Central

    2010-01-01

    One of the main goals of cognitive science is to discover the underlying principles that characterize human cognition, but this enterprise is complicated by culturally-driven variability. While much fruitful work has focused on how culture influences the contents of cognition, here I argue that culture can in addition exercise a profound effect on the how of cognition—the mechanisms by which cognitive tasks get done. I argue that much of the fundamental processes of daily cognitive activity involve the operation of cognitive tools that are not genetically determined but instead are invented and culturally transmitted. Further, these cognitive inventions become ‘firmware’, consituting a re-engineering of the individual’s cognitive architecture. That is, ontogenetic experience from one’s cultural context serves to re-tool the developing mind into a variety of disparate cognitive phenotypes. Drawing on several mutually isolated literatures, I advance four claims to the effect that cognitive tools (i) are ubitquitous in everyday cognition, (ii) result in reorganization of the neural system, (iii) are founded in embodied representations and (iv) were made possible by the evolution of an unprecedented degree of voluntary control over the body. I conclude by discussing the implications for the agenda of cognitive science. PMID:20068033

  4. Childhood adversity and cognitive function in schizophrenia spectrum disorders and healthy controls: evidence for an association between neglect and social cognition.

    PubMed

    Kilian, S; Asmal, L; Chiliza, B; Olivier, M R; Phahladira, L; Scheffler, F; Seedat, S; Marder, S R; Green, M F; Emsley, R

    2017-12-22

    Childhood adversity is associated with cognitive impairments in schizophrenia. However, findings to date are inconsistent and little is known about the relationship between social cognition and childhood trauma. We investigated the relationship between childhood abuse and neglect and cognitive function in patients with a first-episode of schizophrenia or schizophreniform disorder (n = 56) and matched healthy controls (n = 52). To the best of our knowledge, this is the first study assessing this relationship in patients and controls exposed to similarly high levels of trauma. Pearson correlational coefficients were used to assess correlations between Childhood Trauma Questionnaire abuse and neglect scores and cognition. For the MCCB domains displaying significant (p < 0.05) correlations, within group hierarchical linear regression, was done to assess whether abuse and neglect were significant predictors of cognition after controlling for the effect of education. Patients and controls reported similarly high levels of abuse and neglect. Cognitive performance was poorer for patients compared with controls for all cognitive domains except working memory and social cognition. After controlling for education, exposure to childhood neglect remained a significant predictor of impairment in social cognition in both patients and controls. Neglect was also a significant predictor of poorer verbal learning in patients and of attention/vigilance in controls. However, childhood abuse did not significantly predict cognitive impairments in either patients or controls. These findings are cross sectional and do not infer causality. Nonetheless, they indicate that associations between one type of childhood adversity (i.e. neglect) and social cognition are present and are not illness-specific.

  5. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains.

    PubMed

    Abreu, Renata Viana; Silva-Oliveira, Eliane Moretto; Moraes, Márcio Flávio Dutra; Pereira, Grace Schenatto; Moraes-Santos, Tasso

    2011-10-01

    Coffee is a popular beverage consumed worldwide and its effect on health protection has been well studied throughout literature. This study investigates the effect of chronic coffee and caffeine ingestion on cognitive behavior and the antioxidant system of rat brains. The paradigms of open field and object recognition were used to assess locomotor and exploratory activities, as well as learning and memory. The antioxidant system was evaluated by determining the activities of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as the lipid peroxidation and reduced glutathione content. Five groups of male rats were fed for approximately 80 days with different diets: control diet (CD), fed a control diet; 3% coffee diet (3%Co) and 6% coffee diet (6%Co), both fed a diet containing brewed coffee; 0.04% caffeine diet (0.04%Ca) and 0.08% caffeine diet (0.08%Ca), both fed a control diet supplemented with caffeine. The estimated caffeine intake was approximately 20 and 40 mg/kg per day, for the 3%Co-0.04%Ca and 6%Co-0.08%Ca treatments, respectively. At 90 days of life, the animals were subjected to the behavioral tasks and then sacrificed. The results indicated that the intake of coffee, similar to caffeine, improved long-term memory when tested with object recognition; however, this was not accompanied by an increase in locomotor and exploratory activities. In addition, chronic coffee and caffeine ingestion reduced the lipid peroxidation of brain membranes and increased the concentration of reduced-glutathione. The activities of the GR and SOD were similarly increased, but no change in GPx activity could be observed. Thus, besides improving cognitive function, our data show that chronic coffee consumption modulates the endogenous antioxidant system in the brain. Therefore, chronic coffee ingestion, through the protection of the antioxidant system, may play an important role in preventing age-associated decline in the cognitive function. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Conflict processing in juvenile patients with neurofibromatosis type 1 (NF1) and healthy controls - Two pathways to success.

    PubMed

    Bluschke, Annet; von der Hagen, Maja; Papenhagen, Katharina; Roessner, Veit; Beste, Christian

    2017-01-01

    Neurofibromatosis Type 1 (NF1) is a monogenetic autosomal-dominant disorder with a broad spectrum of clinical symptoms and is commonly associated with cognitive deficits. Patients with NF1 frequently exhibit cognitive impairments like attention problems, working memory deficits and dysfunctional inhibitory control. The latter is also relevant for the resolution of cognitive conflicts. However, it is unclear how conflict monitoring processes are modulated in NF1. To examine this question in more detail, we used a system neurophysiological approach combining high-density ERP recordings with source localisation analyses in juvenile patients with NF1 and controls during a flanker task. Behaviourally, patients with NF1 perform significantly slower than controls. Specifically on trials with incompatible flanker-target pairings, however, the patients with NF1 made significantly fewer errors than healthy controls. Yet, importantly, this overall successful conflict resolution was reached via two different routes in the two groups. The healthy controls seem to arrive at a successful conflict monitoring performance through a developing conflict recognition via the N2 accompanied by a selectively enhanced N450 activation in the case of perceived flanker-target conflicts. The presumed dopamine deficiency in the patients with NF1 seems to result in a reduced ability to process conflicts via the N2. However, NF1 patients show an increased N450 irrespective of cognitive conflict. Activation differences in the orbitofrontal cortex (BA11) and anterior cingulate cortex (BA24) underlie these modulations. Taken together, juvenile patients with NF1 and juvenile healthy controls seem to accomplish conflict monitoring via two different cognitive neurophysiological pathways.

  7. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.

    PubMed

    Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J

    2009-10-01

    Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.

  8. Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis

    PubMed Central

    Weygandt, Martin; Meyer-Arndt, Lil; Behrens, Janina Ruth; Wakonig, Katharina; Bellmann-Strobl, Judith; Ritter, Kerstin; Scheel, Michael; Brandt, Alexander U.; Labadie, Christian; Hetzer, Stefan; Gold, Stefan M.; Paul, Friedemann; Haynes, John-Dylan

    2016-01-01

    Prospective clinical studies support a link between psychological stress and multiple sclerosis (MS) disease severity, and peripheral stress systems are frequently dysregulated in MS patients. However, the exact link between neurobiological stress systems and MS symptoms is unknown. To evaluate the link between neural stress responses and disease parameters, we used an arterial-spin–labeling functional MRI stress paradigm in 36 MS patients and 21 healthy controls. Specifically, we measured brain activity during a mental arithmetic paradigm with performance-adaptive task frequency and performance feedback and related this activity to disease parameters. Across all participants, stress increased heart rate, perceived stress, and neural activity in the visual, cerebellar and insular cortex areas compared with a resting condition. None of these responses was related to cognitive load (task frequency). Consistently, although performance and cognitive load were lower in patients than in controls, stress responses did not differ between groups. Insula activity elevated during stress compared with rest was negatively linked to impairment of pyramidal and cerebral functions in patients. Cerebellar activation was related negatively to gray matter (GM) atrophy (i.e., positively to GM volume) in patients. Interestingly, this link was also observed in overlapping areas in controls. Cognitive load did not contribute to these associations. The results show that our task induced psychological stress independent of cognitive load. Moreover, stress-induced brain activity reflects clinical disability in MS. Finally, the link between stress-induced activity and GM volume in patients and controls in overlapping areas suggests that this link cannot be caused by the disease alone. PMID:27821732

  9. Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients.

    PubMed

    Cho, Ki Hun; Kim, Min Kyu; Lee, Hwang-Jae; Lee, Wan Hee

    2015-08-01

    Virtual reality training is considered as an effective intervention method of stroke patients, and the virtual reality system for therapeutic rehabilitation has emphasized the cognitive factors to improve walking function. The purpose of current study was to investigate the effect of virtual reality training with cognitive load (VRTCL) on walking function of chronic stroke. Chronic stroke patients were randomly assigned to the VRTCL group (11 patients, including 5 men; mean age, 60.0 years; post-stroke duration, 273.9 days) or control group (11 patients, including 2 men; mean age, 58.6 years; post-stroke duration, 263.9 days). All subjects participated in the standard rehabilitation program that consisted of physical and occupational therapies. In addition, VRTCL group participated in the VRTCL for 4 weeks (30 min per day and five times a week), while those in the control group participated in virtual reality treadmill training. Walking function under single (walking alone) and dual task (walking with cognitive tasks) conditions was assessed using an electrical walkway system. After the 4-week intervention, under both single and dual task conditions, significant improvement on walking function was observed in VRTCL and control groups (P < 0.05). In addition, in the dual task condition, greater improvement on walking function was observed in the VRTCL group, compared with the control group (P < 0.05). These findings demonstrated the efficacy of VRTCL on the walking function under the dual task condition. Therefore, we suggest that VRTCL may be an effective method for the achievement of independent walking in chronic stroke patients.

  10. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum.

    PubMed

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2015-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.

  11. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum

    PubMed Central

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2016-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine. PMID:26834535

  12. Modeling driver behavior in a cognitive architecture.

    PubMed

    Salvucci, Dario D

    2006-01-01

    This paper explores the development of a rigorous computational model of driver behavior in a cognitive architecture--a computational framework with underlying psychological theories that incorporate basic properties and limitations of the human system. Computational modeling has emerged as a powerful tool for studying the complex task of driving, allowing researchers to simulate driver behavior and explore the parameters and constraints of this behavior. An integrated driver model developed in the ACT-R (Adaptive Control of Thought-Rational) cognitive architecture is described that focuses on the component processes of control, monitoring, and decision making in a multilane highway environment. This model accounts for the steering profiles, lateral position profiles, and gaze distributions of human drivers during lane keeping, curve negotiation, and lane changing. The model demonstrates how cognitive architectures facilitate understanding of driver behavior in the context of general human abilities and constraints and how the driving domain benefits cognitive architectures by pushing model development toward more complex, realistic tasks. The model can also serve as a core computational engine for practical applications that predict and recognize driver behavior and distraction.

  13. A cognitive characterization of dyscalculia in Turner syndrome.

    PubMed

    Bruandet, Marie; Molko, Nicolas; Cohen, Laurent; Dehaene, Stanislas

    2004-01-01

    Current theories of number processing postulate that the human abilities for arithmetic are based on cerebral circuits that are partially laid down under genetic control and later modified by schooling and education. This view predicts the existence of genetic diseases that interfere specifically with components of the number system. Here, we investigate whether Turner syndrome (TS) corresponds to this definition. TS is a genetic disorder which affects one woman in 2500 and is characterized by partial or complete absence of one X chromosome. In addition to well-characterized physical and hormonal dysfunction, TS patients exhibit cognitive deficits including dyscalculia. We tested 12 women with Turner syndrome and 13 control subjects on a cognitive battery including arithmetical tests (addition, subtraction, multiplication, division) as well as tests of the understanding of numerosity and quantity (cognitive estimation, estimation, comparison, bisection, subitizing/counting). Impairments were observed in cognitive estimation, subitizing, and calculation. We examine whether these deficits can be attributed to a single source, and discuss the possible implications of hormonal and genetic factors in the neuropsychological profile of TS patients.

  14. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.

  15. Cerebellar contribution to feedforward control of locomotion.

    PubMed

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed.

  16. Cerebellar contribution to feedforward control of locomotion

    PubMed Central

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing—the process that allows spatial and temporal relationships between events to be recognized—has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed. PMID:25009490

  17. Acetylcholinesterase inhibitors for electroconvulsive therapy-induced cognitive side effects: a systematic review.

    PubMed

    Henstra, Marieke J; Jansma, Elise P; van der Velde, Nathalie; Swart, Eleonora L; Stek, Max L; Rhebergen, Didi

    2017-05-01

    Electroconvulsive therapy (ECT) is an effective treatment for severe late-life depression; however, ECT-induced cognitive side effects frequently occur. The cholinergic system is thought to play an important role in the pathogenesis. We systematically reviewed the evidence for acetylcholinesterase inhibitors (Ache-I) to prevent or reduce ECT-induced cognitive side effects. A systematic search was performed in Pubmed, EMBASE, PsychINFO, and the Cochrane database to identify clinical trials investigating the effect of Ache-I on ECT-induced cognitive side effects. Key search terms included all synonyms for ECT and Ache-I. Risk of bias assessment was conducted by using the Cochrane Collaboration's tool. Five clinical trials were eligible for inclusion. All studies focused on cognitive functioning as primary endpoint, but assessment of cognitive functioning varied widely in time point of assessment and in cognitive tests that were used. There was also great variety in study medication, route and time of administration and dosages, duration of drug administration, and ECT techniques. Finally, only two out of five studies were considered at low risk of bias. Despite the aforementioned shortcomings, without exception, all studies demonstrated significantly better cognitive performance in individuals treated with Ache-I. Despite large heterogeneity in studies, Ache-I appear to have beneficial effects on ECT-induced cognitive side effects, supporting an association with the cholinergic system in ECT-induced cognitive impairment. Methodological sound studies controlling for putative confounders are warranted. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Supporting cognitive control through competition and cooperation in childhood.

    PubMed

    Fischer, Paula; Camba, Letizia; Ooi, Seok Hui; Chevalier, Nicolas

    2018-04-12

    Cognitive control is often engaged in social contexts where actions are socially relevant. Yet, little is known about the immediate influence of the social context on childhood cognitive control. To examine whether competition or cooperation can enhance cognitive control, preschool and school-age children completed the AX Continuous Performance Task (AX-CPT) in competitive, cooperative, and neutral contexts. Children made fewer errors, responded faster, and engaged more cognitive effort, as shown by greater pupil dilation, in the competitive and cooperative social contexts relative to the neutral context. Competition and cooperation yielded greater cognitive control engagement but did not change how control was engaged (reactively or proactively). Manipulating the social context can be a powerful tool to support cognitive control in childhood. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Speech-based E-mail and driver behavior: effects of an in-vehicle message system interface.

    PubMed

    Jamson, A Hamish; Westerman, Stephen J; Hockey, G Robert J; Carsten, Oliver M J

    2004-01-01

    As mobile office technology becomes more advanced, drivers have increased opportunity to process information "on the move." Although speech-based interfaces can minimize direct interference with driving, the cognitive demands associated with such systems may still cause distraction. We studied the effects on driving performance of an in-vehicle simulated "E-mail" message system; E-mails were either system controlled or driver controlled. A high-fidelity, fixed-base driving simulator was used to test 19 participants on a car-following task. Virtual traffic scenarios varying in driving demand. Drivers compensated for the secondary task by adopting longer headways but showed reduced anticipation of braking requirements and shorter time to collision. Drivers were also less reactive when processing E-mails, demonstrated by a reduction in steering wheel inputs. In most circumstances, there were advantages in providing drivers with control over when E-mails were opened. However, during periods without E-mail interaction in demanding traffic scenarios, drivers showed reduced braking anticipation. This may be a result of increased cognitive costs associated with the decision making process when using a driver-controlled interface when the task of scheduling E-mail acceptance is added to those of driving and E-mail response. Actual or potential applications of this research include the design of speech-based in-vehicle messaging systems.

  20. Individual Differences in Algebraic Cognition: Relation to the Approximate Number and Sematic Memory Systems

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara; Rouder, Jeffrey N.

    2015-01-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 (92 girls) 9th graders, controlling parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation, but not schema memory. Frequency of fact-retrieval errors was related to schema memory but not coordinate plane or expression evaluation accuracy. The results suggest the ANS may contribute to or is influenced by spatial-numerical and numerical only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest different brain and cognitive systems are engaged during the learning of different components of algebraic competence, controlling demographic and domain general abilities. PMID:26255604

  1. Age-related decline in cognitive control: the role of fluid intelligence and processing speed

    PubMed Central

    2014-01-01

    Background Research on cognitive control suggests an age-related decline in proactive control abilities whereas reactive control seems to remain intact. However, the reason of the differential age effect on cognitive control efficiency is still unclear. This study investigated the potential influence of fluid intelligence and processing speed on the selective age-related decline in proactive control. Eighty young and 80 healthy older adults were included in this study. The participants were submitted to a working memory recognition paradigm, assessing proactive and reactive cognitive control by manipulating the interference level across items. Results Repeated measures ANOVAs and hierarchical linear regressions indicated that the ability to appropriately use cognitive control processes during aging seems to be at least partially affected by the amount of available cognitive resources (assessed by fluid intelligence and processing speed abilities). Conclusions This study highlights the potential role of cognitive resources on the selective age-related decline in proactive control, suggesting the importance of a more exhaustive approach considering the confounding variables during cognitive control assessment. PMID:24401034

  2. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis

    PubMed Central

    Miller, Matthew James; McGuire, Kerry M.; Feigh, Karen M.

    2016-01-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity. The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design. PMID:28491008

  3. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    PubMed

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  4. Feeding the beast: can microglia in the senescent brain be regulated by diet?

    PubMed

    Johnson, Rodney W

    2015-01-01

    Microglial cells, resident macrophages in the central nervous system (CNS), are relatively quiescent but can respond to signals from the peripheral immune system and induce neuroinflammation. In aging, microglia tend to transition to the M1 pro-inflammatory state and become hypersensitive to messages emerging from immune-to-brain signaling pathways. Thus, whereas in younger individuals where microglia respond to signals from the peripheral immune system and induce a well-controlled neuroinflammatory response that is adaptive (e.g., when well controlled, fever and sickness behavior facilitate recovery from infection), in older individuals with an infection, microglia overreact and produce excessive levels of inflammatory cytokines causing behavioral pathology including cognitive dysfunction. Importantly, recent studies indicate a number of naturally occurring bioactive compounds present in certain foods have anti-inflammatory properties and are capable of mitigating brain microglial cells. These include, e.g., flavonoid and non-flavonoid compounds in fruits and vegetables, and n-3 polyunsaturated fatty acids (PUFA) in oily fish. Thus, dietary bioactives have potential to restore the population of microglial cells in the senescent brain to a more quiescent state. The pragmatic concept to constrain microglia through dietary intervention is significant because neuroinflammation and cognitive deficits are co-morbid factors in many chronic inflammatory diseases. Controlling microglial cell reactivity has important consequences for preserving adult neurogenesis, neuronal structure and function, and cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Distinct alterations in value-based decision-making and cognitive control in suicide attempters: toward a dual neurocognitive model.

    PubMed

    Richard-Devantoy, Stéphane; Olié, Emilie; Guillaume, Sébastien; Bechara, Antoine; Courtet, Philippe; Jollant, Fabrice

    2013-12-01

    The literature suggests that many suicide attempters show impairment in both decision-making and cognitive control. However, it is not clear if these deficits are linked to each other, and if they may be related to more basic alterations in attention. This is a relevant question in the perspective of future interventions targeting cognitive deficits to prevent suicidal acts. Two different populations of patients with histories of suicide attempts were assessed (N=142 and 119). The Iowa Gambling Task (IGT) was used to measure decision-making in both populations. We used a D2 cancellation task and a verbal working memory task in population 1; the Stroop test, the N-Back task, the Trail Making Test, and the Hayling Sentence Completion test in population 2. Regarding decision-making, we only found a small negative correlation between the Hayling test error score (r=-0.24; p=0.01), and the net score from the second half of the IGT. In contrast, working memory, cognitive flexibility and cognitive inhibition measures were largely inter-correlated. Most patients were medicated. Only patients with mood disorders. These results add to previous findings suggesting that the neurocognitive vulnerability to suicidal behavior may rely on impairments in two distinct anatomical systems, one processing value-based decision-making (associated with ventral prefrontal cortex, among others) and one underlying cognitive control (associated with more dorsal prefrontal regions). This distinction may result in tailored-made cognitive interventions. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Functional MRI examination of empathy for pain in people with schizophrenia reveals abnormal activation related to cognitive perspective-taking but typical activation linked to affective sharing

    PubMed Central

    Vistoli, Damien; Lavoie, Marie-Audrey; Sutliff, Stephanie; Jackson, Philip L.; Achim, Amélie M.

    2017-01-01

    Background Schizophrenia is associated with important disturbances in empathy that are related to everyday functioning. Empathy is classically defined as including affective (sharing others’ emotions) and cognitive (taking others’ cognitive perspectives) processes. In healthy individuals, studies on empathy for pain revealed specific brain systems associated with these sets of processes, notably the anterior middle cingulate (aMCC) and anterior insula (AI) for affective sharing and the bilateral temporoparietal junction (TPJ) for the cognitive processes, but the integrity of these systems in patients with schizophrenia remains uncertain. Methods Patients with schizophrenia and healthy controls performed a pain empathy task while undergoing fMRI scanning. Participants observed pictures of hands in either painful or nonpainful situations and rated the level of pain while imagining either themselves (self) or an unknown person (other) in these situations. Results We included 27 patients with schizophrenia and 21 healthy controls in our analyses. For the pain versus no pain contrast, patients showed overall typical activation patterns in the aMCC and AI, with only a small part of the aMCC showing reduced activation compared with controls. For the other versus self contrast, patients showed an abnormal modulation of activation in the TPJ bilaterally (extending to the posterior superior temporal sulcus, referred to as the TPJ/pSTS). Limitations The design included an unnecessary manipulation of the visual perspective that reduced the number of trials for analysis. The sample size may not account for the heterogeneity of schizophrenia. Conclusion People with schizophrenia showed relatively intact brain activation when observing others’ pain, but showed abnormalities when asked to take the cognitive perspectives of others. PMID:28556774

  7. Clock Drawing Test and the diagnosis of amnestic mild cognitive impairment: can more detailed scoring systems do the work?

    PubMed

    Rubínová, Eva; Nikolai, Tomáš; Marková, Hana; Siffelová, Kamila; Laczó, Jan; Hort, Jakub; Vyhnálek, Martin

    2014-01-01

    The Clock Drawing Test is a frequently used cognitive screening test with several scoring systems in elderly populations. We compare simple and complex scoring systems and evaluate the usefulness of the combination of the Clock Drawing Test with the Mini-Mental State Examination to detect patients with mild cognitive impairment. Patients with amnestic mild cognitive impairment (n = 48) and age- and education-matched controls (n = 48) underwent neuropsychological examinations, including the Clock Drawing Test and the Mini-Mental State Examination. Clock drawings were scored by three blinded raters using one simple (6-point scale) and two complex (17- and 18-point scales) systems. The sensitivity and specificity of these scoring systems used alone and in combination with the Mini-Mental State Examination were determined. Complex scoring systems, but not the simple scoring system, were significant predictors of the amnestic mild cognitive impairment diagnosis in logistic regression analysis. At equal levels of sensitivity (87.5%), the Mini-Mental State Examination showed higher specificity (31.3%, compared with 12.5% for the 17-point Clock Drawing Test scoring scale). The combination of Clock Drawing Test and Mini-Mental State Examination scores increased the area under the curve (0.72; p < .001) and increased specificity (43.8%), but did not increase sensitivity, which remained high (85.4%). A simple 6-point scoring system for the Clock Drawing Test did not differentiate between healthy elderly and patients with amnestic mild cognitive impairment in our sample. Complex scoring systems were slightly more efficient, yet still were characterized by high rates of false-positive results. We found psychometric improvement using combined scores from the Mini-Mental State Examination and the Clock Drawing Test when complex scoring systems were used. The results of this study support the benefit of using combined scores from simple methods.

  8. Global Efficiency of Structural Networks Mediates Cognitive Control in Mild Cognitive Impairment

    PubMed Central

    Berlot, Rok; Metzler-Baddeley, Claudia; Ikram, M. Arfan; Jones, Derek K.; O’Sullivan, Michael J.

    2016-01-01

    Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localized white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI). Materials and Methods: Twenty-five patients with MCI and 20 age, sex, and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI). Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusion: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive control but not for episodic memory. Interventions to improve cognitive control will need to address both dysfunction of local circuitry and global network architecture to be maximally effective. PMID:28018208

  9. Cognitive function and its relationship to other psychosocial factors in lymphoma survivors.

    PubMed

    Krolak, Dorothy; Collins, Barbara; Weiss, Lorelle; Harris, Cheryl; Van der Jagt, Richard

    2017-03-01

    The purpose of this study was to estimate the prevalence of cognitive disturbance in lymphoma survivors and to explore relationships between cognitive function and other psychosocial factors. A package of standardized questionnaires was sent to 622 lymphoma patients treated at the Ottawa Hospital in the preceding 5 years. Patients with central nervous system involvement were excluded. The questionnaires addressed cognitive function, pain, insomnia, fatigue, and mood. Of the patients in the sampling frame, 54 % responded to the survey and 42 % met inclusion/exclusion criteria. Sixteen percent (99/622) agreed to undergo computerized neuropsychological testing with CNS vital signs (CNSVS). Scores on the objective and subjective cognitive measures were compared to those of a healthy female control group from a previous study. The lymphoma group scored significantly lower than the controls on a cognitive rating scale (p = .018) and on CNSVS (p = .035). The difference on the CNSVS was primarily due to poorer attention and executive function scores in the lymphoma patients. The patients also had a higher frequency of impairment on both the objective (p = .009) and subjective (p < .001) cognitive measures. Among the lymphoma survivors, fatigue and anxiety were related to subjective cognitive disturbance (p < .001 for both), whereas pain was the only psychosocial measure associated with objective cognitive performance (p < .001). These results suggest that cognitive disturbance may be a significant survivorship issue for lymphoma patients and should be more thoroughly investigated in this population.

  10. The Cannabinoid System and Pain

    PubMed Central

    Woodhams, Stephen G.; Chapman, Victoria; Finn, David P.; Hohmann, Andrea G.; Neugebauer, Volker

    2018-01-01

    Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1 receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. PMID:28625720

  11. Impact of Cancer and Its Treatments on Cognitive Function: Advances in Research From the Paris International Cognition and Cancer Task Force Symposium and Update Since 2012.

    PubMed

    Joly, Florence; Giffard, Bénédicte; Rigal, Olivier; De Ruiter, Michiel B; Small, Brent J; Dubois, Martine; LeFel, Johan; Schagen, Sanne B; Ahles, Tim A; Wefel, Jeffrey S; Vardy, Janette L; Pancré, Véronique; Lange, Marie; Castel, Hélène

    2015-12-01

    Although cognitive impairments have been identified in patients with non-central nervous system cancer, especially breast cancer, the respective roles of cancer and therapies, and the mechanisms involved in cognitive dysfunction remain unclear. To report a state-of-the-art update from the International Cognitive and Cancer Task Force conference held in 2012. A report of the meeting and recent new perspectives are presented. Recent clinical data support that non-central nervous system cancer per se may be involved in cognitive dysfunctions associated with inflammation parameters. The role of chemotherapy on cognitive decline was confirmed in colorectal and testicular cancers. Whereas the impact of hormone therapy remains debatable, some studies support a negative impact of targeted therapies on cognition. Regarding interventions, preliminary results of cognitive rehabilitation showed encouraging results. The methodology of future longitudinal studies has to be optimized by a priori end points, the use of validated test batteries, and the inclusion of control groups. Comorbidities and aging are important factors to be taken into account in future studies. Preclinical studies in animal models highlighted the role of cancer itself on cognition and support the possible benefits of prevention/care during chemotherapy. Progress in neuroimaging will help specify neural processes affected by treatments. Clinical data and animal models confirmed that chemotherapy induces direct cognitive deficit. The benefits of cognitive rehabilitation are still to be confirmed. Studies evaluating the mechanisms underlying cognitive impairments using advanced neuroimaging techniques integrating the evaluation of genetic factors are ongoing. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  12. Modeling the Role of Priming in Executive Control: Cognitive and Neural Constraints

    DTIC Science & Technology

    2012-01-24

    theoretical and empirical advances in our understanding of cognitive control. We discovered new phenomena and developed theories to account for them. We...developed theories of cognitive control and visual attention that integrated mathematical psychology with cognitive science and with neuroscience. We...significant theoretical and empirical advances in our understanding of cognitive control. We discovered new phenomena and developed theories to account

  13. Cognition-based development and evaluation of ergonomic user interfaces for medical image processing and archiving systems.

    PubMed

    Demiris, A M; Meinzer, H P

    1997-01-01

    Whether or not a computerized system enhances the conditions of work in the application domain, very much demands on the user interface. Graphical user interfaces seem to attract the interest of the users but mostly ignore some basic rules of visual information processing thus leading to systems which are difficult to use, lowering productivity and increasing working stress (cognitive and work load). In this work we present some fundamental ergonomic considerations and their application to the medical image processing and archiving domain. We introduce the extensions to an existing concept needed to control and guide the development of GUIs with respect to domain specific ergonomics. The suggested concept, called Model-View-Controller Constraints (MVCC), can be used to programmatically implement ergonomic constraints, and thus has some advantages over written style guides. We conclude with the presentation of existing norms and methods to evaluate user interfaces.

  14. Resilient Control Systems Practical Metrics Basis for Defining Mission Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig G. Rieger

    "Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integritymore » metrics can be applied to establish performance, and« less

  15. [Cognitive abnormalities and cannabis use].

    PubMed

    Solowij, Nadia; Pesa, Nicole

    2010-05-01

    Evidence that cannabis use impairs cognitive function in humans has been accumulating in recent decades. The purpose of this overview is to update knowledge in this area with new findings from the most recent literature. Literature searches were conducted using the Web of Science database up to February 2010. The terms searched were: "cannabi*" or "marijuana", and "cogniti*" or "memory" or "attention" or "executive function", and human studies were reviewed preferentially over the animal literature. Cannabis use impairs memory, attention, inhibitory control, executive functions and decision making, both during the period of acute intoxication and beyond, persisting for hours, days, weeks or more after the last use of cannabis. Pharmacological challenge studies in humans are elucidating the nature and neural substrates of cognitive changes associated with various cannabinoids. Long-term or heavy cannabis use appears to result in longer-lasting cognitive abnormalities and possibly structural brain alterations. Greater adverse cognitive effects are associated with cannabis use commencing in early adolescence. The endogenous cannabinoid system is involved in regulatory neural mechanisms that modulate processes underlying a range of cognitive functions that are impaired by cannabis. Deficits in human users most likely therefore reflect neuroadaptations and altered functioning of the endogenous cannabinoid system.

  16. Developmental trends and individual differences in brain systems involved in intertemporal choice during adolescence.

    PubMed

    Banich, Marie T; De La Vega, Alejandro; Andrews-Hanna, Jessica R; Mackiewicz Seghete, Kristen; Du, Yiping; Claus, Eric D

    2013-06-01

    This study used functional magnetic resonance imaging (fMRI) to examine the neural systems activated during an intertemporal choice task in a group of 14- to 19-year-old adolescents, as well as the relationship of such activation patterns to individual differences in the self-reported ability to engage in nonimmediate thinking (i.e., less impulsive and more future-oriented thoughts and action). With increasing age, there was greater differentiation between patterns of brain activity for immediate versus future choices across three distinct brain systems involved in intertemporal choice--those involved in exerting control over behavior, attributing affective value to choices, and imagining future outcomes. Furthermore, a greater propensity toward self-reported nonimmediate thinking was associated with decreased activity in the systems involved in cognitive control, possibly suggesting that individuals with greater self-reported nonimmediate thinking need to rely less on cognitive control regions during conditions of intertemporal choice. These results highlight the role that both developmental age and individual differences play in influencing neural systems involved in intertemporal choice. Implications for understanding the onset of substance abuse disorders during adolescence are discussed. 2013 APA, all rights reserved

  17. Computational Models of Cognitive Control

    PubMed Central

    O’Reilly, Randall C.; Herd, Seth A.; Pauli, Wolfgang M.

    2010-01-01

    Cognitive control refers to the ability to perform task-relevant processing in the face of other distractions or other forms of interference, in the absence of strong environmental support. It depends on the integrity of the prefrontal cortex and associated biological structures (e.g., the basal ganglia). Computational models have played an influential role in developing our understanding of this system, and we review current developments in three major areas: dynamic gating of prefrontal representations, hierarchies in the prefrontal cortex, and reward, motivation, and goal-related processing in prefrontal cortex. Models in these and other areas are advancing the field further forward. PMID:20185294

  18. A cognitive account of belief: a tentative road map

    PubMed Central

    Connors, Michael H.; Halligan, Peter W.

    2015-01-01

    Over the past decades, delusions have become the subject of growing and productive research spanning clinical and cognitive neurosciences. Despite this, the nature of belief, which underpins the construct of delusions, has received little formal investigation. No account of delusions, however, would be complete without a cognitive level analysis of belief per se. One reason for this neglect is the assumption that, unlike more established and accessible modular psychological process (e.g., vision, audition, face-recognition, language-processing, and motor-control systems), beliefs comprise more distributed and therefore less accessible central cognitive processes. In this paper, we suggest some defining characteristics and functions of beliefs. Working back from cognitive accounts of delusions, we consider potential candidate cognitive processes that may be involved in normal belief formation. Finally, we advance a multistage account of the belief process that could provide the basis for a more comprehensive model of belief. PMID:25741291

  19. Crew performance monitoring: Putting some feeling into it

    NASA Astrophysics Data System (ADS)

    Pattyn, N.; Migeotte, P.-F.; Morais, J.; Soetens, E.; Cluydts, R.; Kolinsky, R.

    2009-08-01

    Two hypotheses have been invoked so far to explain performance decrements in space: the microgravity hypothesis and the multiple stressors hypothesis. Furthermore, previous investigations of cognitive performance did not specifically target executive functions. The aim of this study was to investigate the impact of operational stress on cognitive control, towards both neutral and emotionally loaded material, using both psychometric and physiological indicators (autonomic nervous system activity computed through cardio-respiratory recordings). We applied the same design in a study on student pilots (N=12) in baseline conditions and right before a major evaluation flight and on astronauts (N=3) before, during and after a short-duration spaceflight. To address the problem of scarcity of subjects, we applied analytical methods derived from neuropsychology: comparing each astronaut treated as a single subject to a group of carefully matched controls (N=13). Results from both student pilots and astronauts showed that operational stress resulted in failing cognitive control, especially on emotionally loaded material that was relevant to the subjects' current concern. This impaired cognitive control was associated with a decreased physiological reactivity during mental tasks. Furthermore, for astronauts, this performance decrement appeared on the last data-collection before launch and lasted for the two in-flight measurements. These results thus allow us to conclude that: (i) performance testing including an emotional dimension seems more sensitive to operational stress, (ii) decreased heart rate reactivity was associated with impaired cognitive control and (iii) microgravity is not the sole causal factor of potential performance decrements in space, which are more likely due to the combination of multiple stressors.

  20. Fatigue and cognitive function in systemic lupus erythematosus: associations with white matter microstructural damage. A diffusion tensor MRI study and meta-analysis.

    PubMed

    Wiseman, S J; Bastin, M E; Hamilton, I F; Hunt, D; Ritchie, S J; Amft, E N; Thomson, S; Belch, J F F; Ralston, S H; Wardlaw, J M

    2017-05-01

    Objective The objective of this study was to investigate fatigue and cognitive impairments in systemic lupus erythematous (SLE) in relation to diffuse white matter microstructural brain damage. Methods Diffusion tensor MRI, used to generate biomarkers of brain white matter microstructural integrity, was obtained in patients with SLE and age-matched controls. Fatigue and cognitive function were assessed and related to SLE activity, clinical data and plasma biomarkers of inflammation and endothelial dysfunction. Results Fifty-one patients with SLE (mean age 48.8 ± 14.3 years) were included. Mean diffusivity (MD) was significantly higher in all white matter fibre tracts in SLE patients versus age-matched healthy controls ( p < 0.0001). Fatigue in SLE was higher than a normal reference range ( p < 0.0001) and associated with lower MD ( ß = -0.61, p = 0.02), depression ( ß = 0.17, p = 0.001), anxiety ( ß = 0.13, p = 0.006) and higher body mass index ( ß = 0.10, p = 0.004) in adjusted analyses. Poorer cognitive function was associated with longer SLE disease duration ( p = 0.003) and higher MD ( p = 0.03) and, in adjusted analysis, higher levels of IL-6 ( ß = -0.15, p = 0.02) but not with MD. Meta-analysis (10 studies, n = 261, including the present study) confirmed that patients with SLE have higher MD than controls. Conclusion Patients with SLE have more microstructural brain white matter damage for age than the general population, but this does not explain increased fatigue or lower cognition in SLE. The association between raised IL-6 and worse current cognitive function in SLE should be explored in larger datasets.

  1. Art therapy and music reminiscence activity in the prevention of cognitive decline: study protocol for a randomized controlled trial.

    PubMed

    Mahendran, Rathi; Rawtaer, Iris; Fam, Johnson; Wong, Jonathan; Kumar, Alan Prem; Gandhi, Mihir; Jing, Kenny Xu; Feng, Lei; Kua, Ee Heok

    2017-07-12

    Attention has shifted to the use of non-pharmacological interventions to prevent cognitive decline as a preventive strategy, as well as for those at risk and those with mild cognitive impairment. Early introduction of psycho-social interventions can address cognitive decline and significantly impact quality of life and the wellbeing of elderly individuals. This pilot study explores the feasibility of using art therapy and music reminiscence activity to improve the cognition of community living elderly with mild cognitive impairment. This open-label, interventional study involves a parallel randomized controlled trial design with three arms (two intervention arms and a control group) over a nine-month period. Participants will be community-living elderly individuals aged 60-85 years, both genders, who meet predefined inclusion and exclusion criteria. In the initial three months, interventions will be provided weekly and for the remaining six months fortnightly. A sample size of 90 participants is targeted based on expected neuropsychological test performance, a primary outcome measure, and drop-out rates. The randomization procedure will be carried out via a web-based randomization system. Interventions will be provided by trained staff with a control group not receiving any intervention but continuing life as usual. Assessments will be done at baseline, three months, and nine months, and include neuroimaging to measure cerebral changes and neuropsychological tests to measure for changes in cognition. Secondary outcome measures will include mood changes in anxiety and depression and telomere lengths. Statistical analysis will be undertaken by statisticians; all efficacy analysis will be carried out on an intention-to-treat basis. Primary and secondary outcomes will be modeled using the linear mixed model for repeated measurements and further analysis may be undertaken to adjust for potential confounders. This will be the first study to compare the effectiveness of art therapy and music reminiscence activity in a randomized controlled trial. We expect that the trial will provide useful evidence for developing psychosocial interventions for the elderly with mild cognitive impairment. The study was registered on 7 July 2016 at Clinical Trials.gov, a service of the US National Institute of Health ( NCT02854085 ), retrospectively.

  2. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving tasks that in people require higher-level cognitive functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults

    PubMed Central

    PA, JUDY; POSSIN, KATHERINE L.; WILSON, STEPHEN M.; QUITANIA, LOVINGLY C.; KRAMER, JOEL H.; BOXER, ADAM L.; WEINER, MICHAEL W.; JOHNSON, JULENE K.

    2010-01-01

    There is increasing recognition that set-shifting, a form of cognitive control, is mediated by different neural structures. However, these regions have not yet been carefully identified as many studies do not account for the influence of component processes (e.g., motor speed). We investigated gray matter correlates of set-shifting while controlling for component processes. Using the Design Fluency (DF), Trail Making Test (TMT), and Color Word Interference (CWI) subtests from the Delis-Kaplan Executive Function System (D-KEFS), we investigated the correlation between set-shifting performance and gray matter volume in 160 subjects with neurodegenerative disease, mild cognitive impairment, and healthy older adults using voxel-based morphometry. All three set-shifting tasks correlated with multiple, widespread gray matter regions. After controlling for the component processes, set-shifting performance correlated with focal regions in prefrontal and posterior parietal cortices. We also identified bilateral prefrontal cortex and the right posterior parietal lobe as common sites for set-shifting across the three tasks. There was a high degree of multicollinearity between the set-shifting conditions and the component processes of TMT and CWI, suggesting DF may better isolate set-shifting regions. Overall, these findings highlight the neuroanatomical correlates of set-shifting and the importance of controlling for component processes when investigating complex cognitive tasks. PMID:20374676

  4. Influence of using challenging tasks in biology classrooms on students' cognitive knowledge structure: an empirical video study

    NASA Astrophysics Data System (ADS)

    Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.

    2016-08-01

    Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.

  5. Does lifetime exposure to hormones predict pretreatment cognitive function in women before adjuvant therapy for breast cancer?

    PubMed Central

    Bender, Catherine M.; Sereika, Susan M.; Ryan, Christopher M.; Brufsky, Adam M.; Puhalla, Shannon; Berga, Sarah L.

    2013-01-01

    Objective Women with breast cancer have been found to have poorer cognitive function before the initiation of systemic adjuvant therapy than their age- and education-matched counterparts. The basis for this may partly include hormone exposure during the course of a woman’s life. Methods We compared cognitive function between postmenopausal women with breast cancer before the initiation of systemic adjuvant therapy and healthy age- and education-matched postmenopausal women and examined whether factors related to lifetime exposure to hormones predicted cognitive function before therapy. Results We found that, compared with healthy women, women with breast cancer had poorer memory (P = 0.05) and attention (P = 0.006). Controlling for the covariates age and estimated verbal intelligence, we found that factors related to greater lifetime hormone exposure (oral contraceptive use, greater years since menopause, and longer duration of hormone therapy) predicted cognitive function (executive function, verbal learning and memory, attention, psychomotor efficiency, and visual sustained attention) in women with and without breast cancer but did not explain the differences in cognitive function observed at pretreatment in women with breast cancer. Conclusions Other factors may explain the poorer pretreatment cognitive function in women with breast cancer, including persistent effects of surgical operation and anesthesia, sleep problems, and tumor-related factors. Additional studies are needed to explicate the basis of poorer pretherapy cognitive function in this population. PMID:23481123

  6. Reduced Cerebrospinal Fluid Levels of Brain-Derived Neurotrophic Factor Is Associated With Cognitive Impairment in Late-Life Major Depression

    PubMed Central

    Teixeira, Antonio L.; Machado-Vieira, Rodrigo; Talib, Leda L.; Radanovic, Marcia; Gattaz, Wagner F.; Forlenza, Orestes V.

    2014-01-01

    Objectives. Late-life depression (LLD) is associated with reduced neurotrophic support and abnormalities in neurodegenerative cascades. The aim of the present study is to determine the concentrations of brain-derived neurotrophic factor (BDNF), amyloid-β42, total Tau, and phosphorylated Tau in the cerebrospinal fluid (CSF) of patients with LLD and cognitive impairment compared to healthy older adults. Method. We included 25 antidepressant-free patients with LLD (10 with mild cognitive impairment [LLD + MCI] and 15 with no cognitive decline [LLD + NCD]) and 25 healthy older adults as a comparison group. Depressive symptoms were assessed by the 21-item Hamilton Depression Rating Scale (HDRS-21) and cognitive performance by a comprehensive cognitive battery. Results. Patients with LLD + MCI showed significantly lower CSF BDNF levels compared to LLD + NCD and healthy controls (p = .003). There were no significant differences in Alzheimer’s disease–related CSF biomarkers between groups. CSF BDNF concentrations were positively correlated with Cambridge Cognitive Test (CAMCOG) scores (r = .36, p = .02). Discussion. The present study adds to the growing body of evidence that abnormalities in the BDNF system are involved in the pathophysiology of LLD. The reduction of the availability of BDNF in the central nervous system may indicate increased vulnerability to the development of several age-related neuropsychiatric disorders as well as to adverse cognitive outcomes. PMID:25149921

  7. Active Control of Complex Systems via Dynamic (Recurrent) Neural Networks

    DTIC Science & Technology

    1992-05-30

    course, to on-going changes brought about by learning processes. As research in neurodynamics proceeded, the concept of reverberatory information flows...Microstructure of Cognition . Vol. 1: Foundations, M.I.T. Press, Cambridge, Massachusetts, pp. 354-361, 1986. 100 I Schwarz, G., "Estimating the dimension of a...Continually Running Fully Recurrent Neural Networks, ICS Report 8805, Institute of Cognitive Science, University of California at San Diego, 1988. 10 II

  8. Robotic intelligence kernel

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  9. Resting cardiac vagal tone predicts intraindividual reaction time variability during an attention task in a sample of young and healthy adults.

    PubMed

    Williams, DeWayne P; Thayer, Julian F; Koenig, Julian

    2016-12-01

    Intraindividual reaction time variability (IIV), defined as the variability in trial-to-trial response times, is thought to serve as an index of central nervous system function. As such, greater IIV reflects both poorer executive brain function and cognitive control, in addition to lapses in attention. Resting-state vagally mediated heart rate variability (vmHRV), a psychophysiological index of self-regulatory abilities, has been linked with executive brain function and cognitive control such that those with greater resting-state vmHRV often perform better on cognitive tasks. However, research has yet to investigate the direct relationship between resting vmHRV and task IIV. The present study sought to examine this relationship in a sample of 104 young and healthy participants who first completed a 5-min resting-baseline period during which resting-state vmHRV was assessed. Participants then completed an attentional (target detection) task, where reaction time, accuracy, and trial-to-trial IIV were obtained. Results showed resting vmHRV to be significantly related to IIV, such that lower resting vmHRV predicted higher IIV on the task, even when controlling for several covariates (including mean reaction time and accuracy). Overall, our results provide further evidence for the link between resting vmHRV and cognitive control, and extend these notions to the domain of lapses in attention, as indexed by IIV. Implications and recommendations for future research on resting vmHRV and cognition are discussed. © 2016 Society for Psychophysiological Research.

  10. [PASS neurocognitive dysfunction in attention deficit].

    PubMed

    Pérez-Alvarez, F; Timoneda-Gallart, C

    Attention deficit disorder shows both cognitive and behavioral patterns. To determine a particular PASS (planning, attention, successive and simultaneous) pattern in order to early diagnosis and remediation according to PASS theory. 80 patients were selected from the neuropediatric attendance, aged 6 to 12 years old, 55 boys and 25 girls. Inclusion criteria were inattention (80 cases) and inattention with hyperactive symptoms (40 cases) according to the Diagnostic and Statistical Manual (DSM-IV). Exclusion criteria were the criteria of phonologic awareness previously reported, considered useful to diagnose dyslexia. A control group of 300 individuals, aged 5 to 12 years old, was used, criteria above mentioned being controlled. DN:CAS (Das-Naglieri Cognitive Assessment System) battery, translated to native language, was given to assess PASS cognitive processes. Results were analyzed with cluster analysis and t-Student test. Statistical factor analysis of the control group had previously identified the four PASS processes: planning, attention, successive and simultaneous. The dendrogram of the cluster analysis discriminated three categories of attention deficit disorder: 1. The most frequent, with planning deficit; 2. Without planning deficit but with deficit in other processes, and 3. Just only a few cases, without cognitive processing deficit. Cognitive deficiency in terms of means of scores was statistically significant when compared to control group (p = 0.001). According to PASS pattern, planning deficiency is a relevant factor. Neurological planning is not exactly the same than neurological executive function. The behavioral pattern is mainly linked to planning deficiency, but also to other PASS processing deficits and even to no processing deficit.

  11. Individual differences in cognitive control over emotional material modulate cognitive biases linked to depressive symptoms.

    PubMed

    Everaert, Jonas; Grahek, Ivan; Koster, Ernst H W

    2017-06-01

    Deficient cognitive control over emotional material and cognitive biases are important mechanisms underlying depression, but the interplay between these emotionally distorted cognitive processes in relation to depressive symptoms is not well understood. This study investigated the relations among deficient cognitive control of emotional information (i.e. inhibition, shifting, and updating difficulties), cognitive biases (i.e. negative attention and interpretation biases), and depressive symptoms. Theory-driven indirect effect models were constructed, hypothesising that deficient cognitive control over emotional material predicts depressive symptoms through negative attention and interpretation biases. Bootstrapping analyses demonstrated that deficient inhibitory control over negative material was related to negative attention bias which in turn predicted a congruent bias in interpretation and subsequently depressive symptoms. Both shifting and updating impairments in response to negative material had an indirect effect on depression severity through negative interpretation bias. No evidence was found for direct effects of deficient cognitive control over emotional material on depressive symptoms. These findings may help to formulate an integrated understanding of the cognitive foundations of depressive symptoms.

  12. Meta-cognitive processes in executive control development: The case of reactive and proactive control

    PubMed Central

    Chevalier, Nicolas; Martis, Shaina Bailey; Curran, Tim; Munakata, Yuko

    2015-01-01

    Young children engage cognitive control reactively in response to events, rather than proactively preparing for events. Such limitations in executive control have been explained in terms of fundamental constraints on children’s cognitive capacities. Alternatively, young children might be capable of proactive control but differ from older children in their meta-cognitive decisions regarding when to engage proactive control. We examined these possibilities in three conditions of a task-switching paradigm, varying in whether task cues were available before or after target onset. Reaction times, ERPs, and pupil dilation showed that 5-year-olds did engage in advance preparation, a critical aspect of proactive control, but only when reactive control was made more difficult, whereas 10-year-olds engaged proactive control whenever possible. These findings highlight meta-cognitive processes in children’s cognitive control, an understudied aspect of executive control development. PMID:25603026

  13. Respective and combined effects of impairments in sensorimotor systems and cognition on gait performance: a population-based cross-sectional study.

    PubMed

    Beauchet, Olivier; Launay, Cyrille P; Fantino, Bruno; Allali, Gilles; Annweiler, Cédric

    2015-01-01

    Respective and combined effects of impairments in sensorimotor systems and cognition on gait performance have not been fully studied. This study aims to describe the respective effects of impairments in muscle strength, distance vision, lower-limb proprioception and cognition on the Timed Up & Go (TUG) scores (i.e., performed TUG [pTUG], imagined TUG [iTUG] and the time difference between these two tests [delta TUG]) in older community-dwellers; and to examine their combined effects on TUG scores. Based on a cross-sectional design, 1792 community-dwellers (70.2 ± 4.8 years; 53.6% female) were recruited. Gait performance was assessed using pTUG, iTUG and delta TUG. Participants were divided into healthy individuals and 15 subgroups of individuals according to the presence of impairment in one or more subsystems involved in gait control (i.e., muscle strength and/or distance vision and/or lower-limb proprioception and/or cognition [episodic memory and executive performance]). Impairment in muscle strength, distance vision and lower-limb proprioception was defined as being in the lowest tertile of performance. Impairment in cognition was defined as abnormal episodic memory and executive tests. A total of 191 (10.7%) exhibited impairment in muscle strength, 188 (10.5%) in distance vision, 302 (16.9%) in lower-limb proprioception, and 42 (2.3%) in cognition. Linear regressions showed that cognitive impairment as well as dual combinations of impairments were associated with increased pTUG (P<0.02). Impairment in lower-limb proprioception was associated with decreased iTUG (P=0.015). All combinations of impairments, except those including muscle strength and the combinations of the 4 subsystems, were associated with increased delta TUG (P<0.04). Cognitive integrity is central for efficient gait control and stability, whereas lower-limb proprioception seems to be central for gait imagery.

  14. Cognitive processes and neural basis of language switching: proposal of a new model.

    PubMed

    Moritz-Gasser, Sylvie; Duffau, Hugues

    2009-12-09

    Although studies on bilingualism are abundant, cognitive processes and neural foundations of language switching received less attention. The aim of our study is to provide new insights to this still open question: do dedicated region(s) for language switching exist or is this function underlain by a distributed circuit of interconnected brain areas, part of a more general cognitive system? On the basis of recent behavioral, neuroimaging, and brain stimulation studies, we propose an original 'hodological' model of language switching. This process might be subserved by a large-scale cortico-subcortical network, with an executive system (prefrontal cortex, anterior cingulum, caudate nucleus) controlling a more dedicated language subcircuit, which involves postero-temporal areas, supramarginal and angular gyri, Broca's area, and the superior longitudinal fasciculus.

  15. Envisioning Cognitive Robots for Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Stoica, Adrian

    2010-01-01

    Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given.

  16. Cognitive Models for Learning to Control Dynamic Systems

    DTIC Science & Technology

    2008-09-26

    1992 [47] G. F. Franklin and J. D. Powell, Feedback Control of Dynamic Systems, New Jersey: Pearson Prentice Hall 2006 [48] M . Fishbein and I . Ajzen ...the course of decision making, the valence of an action Vi ( i = A or M ) is defined as the subjective expected payoff for each action also fluctuates...research: The role of formal models, IEEE Transactions on Systems, Man, and Cybernetics 16, 1986, pp. 439–449. [54] M . I . Jordan, Constrained

  17. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity.

    PubMed

    Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Wager, Tor D; Pizzagalli, Diego A

    2015-06-01

    Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. To investigate network dysfunction in MDD through a meta-analysis of rsFC studies. Seed-based voxelwise rsFC studies comparing individuals with MDD with healthy controls (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE) and authors contacted for additional data. Twenty-seven seed-based voxel-wise rsFC data sets from 25 publications (556 individuals with MDD and 518 healthy controls) were included in the meta-analysis. Coordinates of seed regions of interest and between-group effects were extracted. Seeds were categorized into seed-networks by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive or reduced negative connectivity) or hypoconnectivity (increased negative or reduced positive connectivity) with each seed-network. Major depressive disorder was characterized by hypoconnectivity within the frontoparietal network, a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network involved in attending to the external environment. Major depressive disorder was also associated with hyperconnectivity within the default network, a network believed to support internally oriented and self-referential thought, and hyperconnectivity between frontoparietal control systems and regions of the default network. Finally, the MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. Reduced connectivity within frontoparietal control systems and imbalanced connectivity between control systems and networks involved in internal or external attention may reflect depressive biases toward internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression.

  18. On the validity of self-report assessment of cognitive abilities: Attentional control scale associations with cognitive performance, emotional adjustment, and personality.

    PubMed

    Williams, Paula G; Rau, Holly K; Suchy, Yana; Thorgusen, Sommer R; Smith, Timothy W

    2017-05-01

    Individual differences in attentional control involve the ability to voluntarily direct, shift, and sustain attention. In studies of the role of attentional control in emotional adjustment, social relationships, and vulnerability to the effects of stress, self-report questionnaires are commonly used to measure this construct. Yet, convincing evidence of the association between self-report scales and actual cognitive performance has not been demonstrated. Across 2 independent samples, we examined associations between self-reported attentional control (Attentional Control Scale; ACS), self-reported emotional adjustment, Five-Factor Model personality traits (NEO Personality Inventory-Revised) and performance measures of attentional control. Study 1 examined behavioral performance on the Attention Network Test (ANT; Fan, McCandliss, Sommer, Raz, & Posner, 2002) and the Modified Switching Task (MST; Suchy & Kosson, 2006) in a large sample (n = 315) of healthy young adults. Study 2 (n = 78) examined behavioral performance on standardized neuropsychological tests of attention, including Conner's Continuous Performance Test-II and subtests from the Wechsler Adult Intelligence Scales, Third Edition (WAIS-III; Psychological Corporation, 1997) and Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 2001). Results indicated that the ACS was largely unrelated to behavioral performance measures of attentional control but was significantly associated with emotional adjustment, neuroticism, and conscientiousness. These findings suggest that although self-reported attentional control may be a useful construct, researchers using the ACS should exercise caution in interpreting it as a proxy for actual cognitive ability or performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Distributed behavior model orchestration in cognitive internet of things solution

    NASA Astrophysics Data System (ADS)

    Li, Chung-Sheng; Darema, Frederica; Chang, Victor

    2018-04-01

    The introduction of pervasive and ubiquitous instrumentation within Internet of Things (IoT) leads to unprecedented real-time visibility (instrumentation), optimization and fault-tolerance of the power grid, traffic, transportation, water, oil & gas, to give some examples. Interconnecting those distinct physical, people, and business worlds through ubiquitous instrumentation, even though still in its embryonic stage, has the potential to create intelligent IoT solutions that are much greener, more efficient, comfortable, and safer. An essential new direction to materialize this potential is to develop comprehensive models of such systems dynamically interacting with the instrumentation in a feed-back control loop. We describe here opportunities in applying cognitive computing on interconnected and instrumented worlds (Cognitive Internet of Things-CIoT) and call out the system-of-systems trend among distinct but interdependent worlds, and Dynamic Data-Driven Application System (DDDAS)-based methods for advanced understanding, analysis, and real-time decision support capabilities with the accuracy of full-scale models.

  20. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation.

    PubMed

    d'Avila, Joana Costa; Siqueira, Luciana Domett; Mazeraud, Aurélien; Azevedo, Estefania Pereira; Foguel, Debora; Castro-Faria-Neto, Hugo Caire; Sharshar, Tarek; Chrétien, Fabrice; Bozza, Fernando Augusto

    2018-01-30

    Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.

  1. Moving to higher ground: The dynamic field theory and the dynamics of visual cognition

    PubMed Central

    Johnson, Jeffrey S.; Spencer, John P.; Schöner, Gregor

    2009-01-01

    In the present report, we describe a new dynamic field theory that captures the dynamics of visuo-spatial cognition. This theory grew out of the dynamic systems approach to motor control and development, and is grounded in neural principles. The initial application of dynamic field theory to issues in visuo-spatial cognition extended concepts of the motor approach to decision making in a sensori-motor context, and, more recently, to the dynamics of spatial cognition. Here we extend these concepts still further to address topics in visual cognition, including visual working memory for non-spatial object properties, the processes that underlie change detection, and the ‘binding problem’ in vision. In each case, we demonstrate that the general principles of the dynamic field approach can unify findings in the literature and generate novel predictions. We contend that the application of these concepts to visual cognition avoids the pitfalls of reductionist approaches in cognitive science, and points toward a formal integration of brains, bodies, and behavior. PMID:19173013

  2. Proceedings of the international conference on cybernetics and societ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.

  3. Dopamine and the Development of Executive Dysfunction in Autism Spectrum Disorders

    PubMed Central

    Kriete, Trenton; Noelle, David C.

    2015-01-01

    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life. PMID:25811610

  4. Dopamine and the development of executive dysfunction in autism spectrum disorders.

    PubMed

    Kriete, Trenton; Noelle, David C

    2015-01-01

    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life.

  5. Virtual reality and cognitive rehabilitation: a review of current outcome research.

    PubMed

    Larson, Eric B; Feigon, Maia; Gagliardo, Pablo; Dvorkin, Assaf Y

    2014-01-01

    Recent advancement in the technology of virtual reality (VR) has allowed improved applications for cognitive rehabilitation. The aim of this review is to facilitate comparisons of therapeutic efficacy of different VR interventions. A systematic approach for the review of VR cognitive rehabilitation outcome research addressed the nature of each sample, treatment apparatus, experimental treatment protocol, control treatment protocol, statistical analysis and results. Using this approach, studies that provide valid evidence of efficacy of VR applications are summarized. Applications that have not yet undergone controlled outcome study but which have promise are introduced. Seventeen studies conducted over the past eight years are reviewed. The few randomized controlled trials that have been completed show that some applications are effective in treating cognitive deficits in people with neurological diagnoses although further study is needed. Innovations requiring further study include the use of enriched virtual environments that provide haptic sensory input in addition to visual and auditory inputs and the use of commercially available gaming systems to provide tele-rehabilitation services. Recommendations are offered to improve efficacy of rehabilitation, to improve scientific rigor of rehabilitation research and to broaden access to the evidence-based treatments that this research has identified.

  6. Assessing cognitive functioning in ALS: A focus on frontal lobe processes.

    PubMed

    Gillingham, S M; Yunusova, Y; Ganda, A; Rogaeva, E; Black, S E; Stuss, D T; Zinman, L

    2017-05-01

    It is generally acknowledged that at least 50% of individuals with amyotrophic lateral sclerosis (ALS) will exhibit cognitive deficits outside of the characteristic motor neuron involvement. However, a specific cognitive profile has been difficult to ascertain due to disease-related testing barriers and limitations in the sensitivity and specificity of available assessment methods. This study assessed the level of functioning of extramotor frontal cognitive processes in ALS, and the amount of change in the functioning in these processes over time as disease progresses. Empirical tests validated for a model of frontal lobe functioning were modified into an assessment battery appropriate for individuals with ALS in a clinical setting (the ALS-CFB, Computerised Frontal Battery). Twenty ALS participants and 36 age- and education-matched neurologically healthy controls were tested, and a sub-sample of each group (11 ALS and 20 controls) re-tested after approximately nine months. Compared to standard neuropsychological screening tests that did not show a difference between ALS participants and healthy controls, the ALS-CFB illustrated a profile of extramotor frontal dysfunction involving energisation (preparing the neural system to respond) and executive functions, a profile that may be indicative of the nature of neurodegeneration in ALS.

  7. Evidence for a neural dual-process account for adverse effects of cognitive control.

    PubMed

    Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian

    2018-06-09

    Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.

  8. Agents Control in Intelligent Learning Systems: The Case of Reactive Characteristics

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael

    2006-01-01

    Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…

  9. How a submarine returns to periscope depth: analysing complex socio-technical systems using Cognitive Work Analysis.

    PubMed

    Stanton, Neville A; Bessell, Kevin

    2014-01-01

    This paper presents the application of Cognitive Work Analysis to the description of the functions, situations, activities, decisions, strategies, and competencies of a Trafalgar class submarine when performing the function of returning to periscope depth. All five phases of Cognitive Work Analysis are presented, namely: Work Domain Analysis, Control Task Analysis, Strategies Analysis, Social Organisation and Cooperation Analysis, and Worker Competencies Analysis. Complex socio-technical systems are difficult to analyse but Cognitive Work Analysis offers an integrated way of analysing complex systems with the core of functional means-ends analysis underlying all of the other representations. The joined-up analysis offers a coherent framework for understanding how socio-technical systems work. Data were collected through observation and interviews at different sites across the UK. The resultant representations present a statement of how the work domain and current activities are configured in this complex socio-technical system. This is intended to provide a baseline, from which all future conceptions of the domain may be compared. The strength of the analysis is in the multiple representations from which the constraints acting on the work may be analysed. Future research needs to challenge the assumptions behind these constraints in order to develop new ways of working. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. A Meta-analytic Review of Non-specific Effects in Randomized Controlled Trials of Cognitive Remediation for Schizophrenia.

    PubMed

    Radhakrishnan, Rajiv; Kiluk, Brian D; Tsai, Jack

    2016-03-01

    Cognitive remediation (CR) has been found to improve cognitive performance among adults with schizophrenia in randomized controlled trials (RCTs). However, improvements in cognitive performance are often observed in the control groups of RCTs as well. There has been no comprehensive examination of change in control groups for CR, which may inform trial methodology and improve our understanding of measured outcomes for cognitive remediation. In this meta-analysis, we calculated pre-post change in cognitive test performance within control groups of RCTs in 32 CR trials (n = 794 participants) published between 1970 and 2011, and examined the association between pre-post change and sample size, duration of treatment, type of control group, and participants' age, intelligence, duration of illness, and psychiatric symptoms. Results showed that control groups in CR trials showed small effect size changes (Cohen's d = 0.12 ± 0.16) in cognitive test performance over the trial duration. Study characteristics associated with pre-post change included participant age and sample size. These findings suggest attention to change in control groups may help improve detection of cognitive remediation effects for schizophrenia.

  11. Rational adaptation under task and processing constraints: implications for testing theories of cognition and action.

    PubMed

    Howes, Andrew; Lewis, Richard L; Vera, Alonso

    2009-10-01

    The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition-cognitively bounded rational analysis-that sharpens the predictive acuity of general, integrated theories of cognition and action. Such theories provide the necessary computational means to explain the flexible nature of human behavior but in doing so introduce extreme degrees of freedom in accounting for data. The new approach narrows the space of predicted behaviors through analysis of the payoff achieved by alternative strategies, rather than through fitting strategies and theoretical parameters to data. It extends and complements established approaches, including computational cognitive architectures, rational analysis, optimal motor control, bounded rationality, and signal detection theory. The authors illustrate the approach with a reanalysis of an existing account of psychological refractory period (PRP) dual-task performance and the development and analysis of a new theory of ordered dual-task responses. These analyses yield several novel results, including a new understanding of the role of strategic variation in existing accounts of PRP and the first predictive, quantitative account showing how the details of ordered dual-task phenomena emerge from the rational control of a cognitive system subject to the combined constraints of internal variance, motor interference, and a response selection bottleneck.

  12. Visual Reliance for Balance Control in Older Adults Persists When Visual Information Is Disrupted by Artificial Feedback Delays

    PubMed Central

    Balasubramaniam, Ramesh

    2014-01-01

    Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576

  13. Domain-specific cognitive impairment in patients with COPD and control subjects

    PubMed Central

    Cleutjens, Fiona AHM; Franssen, Frits ME; Spruit, Martijn A; Vanfleteren, Lowie EGW; Gijsen, Candy; Dijkstra, Jeanette B; Ponds, Rudolf WHM; Wouters, Emiel FM; Janssen, Daisy JA

    2017-01-01

    Impaired cognitive function is increasingly recognized in COPD. Yet, the prevalence of cognitive impairment in specific cognitive domains in COPD has been poorly studied. The aim of this cross-sectional observational study was to compare the prevalence of domain-specific cognitive impairment between patients with COPD and non-COPD controls. A neuropsychological assessment was administered in 90 stable COPD patients and 90 non-COPD controls with comparable smoking status, age, and level of education. Six core tests from the Maastricht Aging Study were used to assess general cognitive impairment. By using Z-scores, compound scores were constructed for the following domains: psychomotor speed, planning, working memory, verbal memory, and cognitive flexibility. General cognitive impairment and domain-specific cognitive impairment were compared between COPD patients and controls after correction for comorbidities using multivariate linear and logistic regression models. General cognitive impairment was found in 56.7% of patients with COPD and in 13.3% of controls. Deficits in the following domains were more often present in patients with COPD after correction for comorbidities: psychomotor speed (17.8% vs 3.3%; P<0.001), planning (17.8% vs 1.1%; P<0.001), and cognitive flexibility (43.3% vs 12.2%; P<0.001). General cognitive impairment and impairments in the domains psychomotor speed, planning, and cognitive flexibility affect the COPD patients more than their matched controls. PMID:28031706

  14. Adolescent brain maturation and smoking: what we know and where we're headed.

    PubMed

    Lydon, David M; Wilson, Stephen J; Child, Amanda; Geier, Charles F

    2014-09-01

    Smoking is a leading cause of mortality and morbidity worldwide. Smoking initiation often occurs during adolescence. This paper reviews and synthesizes adolescent development and nicotine dependence literatures to provide an account of adolescent smoking from onset to compulsive use. We extend neurobiological models of adolescent risk-taking, that focus on the interplay between incentive processing and cognitive control brain systems, through incorporating psychosocial and contextual factors specific to smoking, to suggest that adolescents are more vulnerable than adults to cigarette use generally, but that individual differences exist placing some adolescents at increased risk for smoking. Upon smoking, adolescents are more likely to continue smoking due to the increased positive effects induced by nicotine during this period. Continued use during adolescence, may be best understood as reflecting drug-related changes to neural systems underlying incentive processing and cognitive control, resulting in decision-making that is biased towards continued smoking. Persistent changes following nicotine exposure that may underlie continued dependence are described. We highlight ways that interventions may benefit from a consideration of cognitive-neuroscience findings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Adolescent Brain Maturation and Smoking: What We Know and Where We’re Headed

    PubMed Central

    Lydon, David M.; Wilson, Stephen J.; Child, Amanda; Geier, Charles F.

    2015-01-01

    Smoking is a leading cause of mortality and morbidity worldwide. Smoking initiation often occurs during adolescence. This paper reviews and synthesizes adolescent development and nicotine dependence literatures to provide an account of adolescent smoking from onset to compulsive use. We extend neurobiological models of adolescent risk-taking, that focus on the interplay between incentive processing and cognitive control brain systems, through incorporating psychosocial and contextual factors specific to smoking, to suggest that adolescents are more vulnerable than adults to cigarette use generally, but that individual differences exist placing some adolescents at increased risk for smoking. Upon smoking, adolescents are more likely to continue smoking due to the increased positive effects induced by nicotine during this period. Continued use during adolescence, may be best understood as reflecting drug-related changes to neural systems underlying incentive processing and cognitive control, resulting in decision-making that is biased towards continued smoking. Persistent changes following nicotine exposure that may underlie continued dependence are described. We highlight ways that interventions may benefit from a consideration of cognitive-neuroscience findings. PMID:25025658

  16. HIV-1 infection and cognitive impairment in the cART era: a review.

    PubMed

    Schouten, Judith; Cinque, Paola; Gisslen, Magnus; Reiss, Peter; Portegies, Peter

    2011-03-13

    With the introduction of combination antiretroviral therapy AIDS dementia complex or HIV-associated dementia, as it was termed later, largely disappeared in clinical practice. However, in the past few years, patients, long-term infected and treated, including those with systemically well controlled infection, started to complain about milder memory problems and slowness, difficulties in concentration, planning, and multitasking. Neuropsychological studies have confirmed that cognitive impairment occurs in a substantial (15-50%) proportion of patients. Among HIV-1-infected patients cognitive impairment was and is one of the most feared complications of HIV-1 infection. In addition, neurocognitive impairment may affect adherence to treatment and ultimately result in increased morbidity for systemic disease. So what may be going on in the CNS after so many years of apparently controlled HIV-1 infection is an urgent and important challenge in the field of HIV medicine. In this review we summarize the key currently available data. We describe the clinical neurological and neuropsychological findings, the preferred diagnostic approach with new imaging techniques and cerebrospinal fluid analysis. We try to integrate data on pathogenesis and finally discuss possible therapeutic interventions.

  17. Social exclusion modulates priorities of attention allocation in cognitive control

    PubMed Central

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Zhang, Lijie; Yuan, Jiajin; Ding, Cody; Yang, Dong

    2016-01-01

    Many studies have investigated how exclusion affects cognitive control and have reported inconsistent results. However, these studies usually treated cognitive control as a unitary concept, whereas it actually involved two main sub-processes: conflict detection and response implementation. Furthermore, existing studies have focused primarily on exclusion’s effects on conscious cognitive control, while recent studies have shown the existence of unconscious cognitive control. Therefore, the present study investigated whether and how exclusion affects the sub-processes underlying conscious and unconscious cognitive control differently. The Cyberball game was used to manipulate social exclusion and participants subsequently performed a masked Go/No-Go task during which event-related potentials were measured. For conscious cognitive control, excluded participants showed a larger N2 but smaller P3 effects than included participants, suggesting that excluded people invest more attention in conscious conflict detection, but less in conscious inhibition of impulsive responses. However, for unconscious cognitive control, excluded participants showed a smaller N2 but larger P3 effects than included participants, suggesting that excluded people invest less attention in unconscious conflict detection, but more in unconscious inhibition of impulsive responses. Together, these results suggest that exclusion causes people to rebalance attention allocation priorities for cognitive control according to a more flexible and adaptive strategy. PMID:27511746

  18. Social exclusion modulates priorities of attention allocation in cognitive control

    NASA Astrophysics Data System (ADS)

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Zhang, Lijie; Yuan, Jiajin; Ding, Cody; Yang, Dong

    2016-08-01

    Many studies have investigated how exclusion affects cognitive control and have reported inconsistent results. However, these studies usually treated cognitive control as a unitary concept, whereas it actually involved two main sub-processes: conflict detection and response implementation. Furthermore, existing studies have focused primarily on exclusion’s effects on conscious cognitive control, while recent studies have shown the existence of unconscious cognitive control. Therefore, the present study investigated whether and how exclusion affects the sub-processes underlying conscious and unconscious cognitive control differently. The Cyberball game was used to manipulate social exclusion and participants subsequently performed a masked Go/No-Go task during which event-related potentials were measured. For conscious cognitive control, excluded participants showed a larger N2 but smaller P3 effects than included participants, suggesting that excluded people invest more attention in conscious conflict detection, but less in conscious inhibition of impulsive responses. However, for unconscious cognitive control, excluded participants showed a smaller N2 but larger P3 effects than included participants, suggesting that excluded people invest less attention in unconscious conflict detection, but more in unconscious inhibition of impulsive responses. Together, these results suggest that exclusion causes people to rebalance attention allocation priorities for cognitive control according to a more flexible and adaptive strategy.

  19. Social exclusion modulates priorities of attention allocation in cognitive control.

    PubMed

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Zhang, Lijie; Yuan, Jiajin; Ding, Cody; Yang, Dong

    2016-08-11

    Many studies have investigated how exclusion affects cognitive control and have reported inconsistent results. However, these studies usually treated cognitive control as a unitary concept, whereas it actually involved two main sub-processes: conflict detection and response implementation. Furthermore, existing studies have focused primarily on exclusion's effects on conscious cognitive control, while recent studies have shown the existence of unconscious cognitive control. Therefore, the present study investigated whether and how exclusion affects the sub-processes underlying conscious and unconscious cognitive control differently. The Cyberball game was used to manipulate social exclusion and participants subsequently performed a masked Go/No-Go task during which event-related potentials were measured. For conscious cognitive control, excluded participants showed a larger N2 but smaller P3 effects than included participants, suggesting that excluded people invest more attention in conscious conflict detection, but less in conscious inhibition of impulsive responses. However, for unconscious cognitive control, excluded participants showed a smaller N2 but larger P3 effects than included participants, suggesting that excluded people invest less attention in unconscious conflict detection, but more in unconscious inhibition of impulsive responses. Together, these results suggest that exclusion causes people to rebalance attention allocation priorities for cognitive control according to a more flexible and adaptive strategy.

  20. Secondary prevention and cognitive function after stroke: a study protocol for a 5-year follow-up of the ASPIRE-S cohort

    PubMed Central

    Williams, David; Gaynor, Eva; Bennett, Kathleen; Dolan, Eamon; Callaly, Elizabeth; Large, Margaret; Hickey, Anne

    2017-01-01

    Introduction Cognitive impairment is common following stroke and can increase disability and levels of dependency of patients, potentially leading to greater burden on carers and the healthcare system. Effective cardiovascular risk factor control through secondary preventive medications may reduce the risk of cognitive decline. However, adherence to medications is often poor and can be adversely affected by cognitive deficits. Suboptimal medication adherence negatively impacts secondary prevention targets, increasing the risk of recurrent stroke and further cognitive decline. The aim of this study is to profile cognitive function and secondary prevention, including adherence to secondary preventive medications and healthcare usage, 5 years post-stroke. The prospective associations between cognition, cardiovascular risk factors, adherence to secondary preventive medications, and rates of recurrent stroke or other cardiovascular events will also be explored. Methods and analysis This is a 5-year follow-up of a prospective study of the Action on Secondary Prevention Interventions and Rehabilitation in Stroke (ASPIRE-S) cohort of patients with stroke. This cohort will have a detailed assessment of cognitive function, adherence to secondary preventive medications and cardiovascular risk factor control. Ethics and dissemination Ethical approval for this study was granted by the Research Ethics Committees at Beaumont Hospital, Dublin and Connolly Hospital, Dublin, Mater Misericordiae University Hospital, Dublin, and the Royal College of Surgeons in Ireland. Findings will be disseminated through presentations and peer-reviewed publications. PMID:28348196

  1. Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia.

    PubMed

    Ryman, Sephira G; Cavanagh, James F; Wertz, Christopher J; Shaff, Nicholas A; Dodd, Andrew B; Stevens, Brigitte; Ling, Josef; Yeo, Ronald A; Hanlon, Faith M; Bustillo, Juan; Stromberg, Shannon F; Lin, Denise S; Abrams, Swala; Mayer, Andrew R

    2018-05-25

    Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Reduced gray matter volume is correlated with frontal cognitive and behavioral impairments in Parkinson's disease.

    PubMed

    Terada, Tatsuhiro; Miyata, Jun; Obi, Tomokazu; Kubota, Manabu; Yoshizumi, Miho; Murai, Toshiya

    2018-07-15

    To identify the brain-volume reductions associated with frontal cognitive and behavioral impairments in Parkinson's disease (PD). Forty PD patients without dementia or amnesia (Hoehn and Yahr stage 3) and 10 age-matched controls underwent brain magnetic resonance imaging. Cognitive and behavioral impairments were assessed by using the Frontal Assessment Battery (FAB) and Frontal Systems Behavioral Scale (FrSBe), respectively. We applied voxel-based morphometry to investigate the correlations of regional gray matter volume with FAB, FrSBe, and physical disability. FAB was significantly lower in PD than in controls. FrSBe was significantly higher after PD onset than before, notably in the apathy subscale. FAB and FrSBe were significantly intercorrelated. In PD patients, left inferior frontal volume was positively correlated with FAB, whereas right precentral volume was negatively correlated with FrSBe total score. The brain volumes in both of these regions were not correlated with the Unified PD Rating Scale III. Behavioral impairments in PD tended to coexist with progression of frontal cognitive impairment. Regional atrophy within the frontal lobe was associated with both frontal cognitive and behavioral impairments. However, the specific region responsible for behavioral impairment differed from that for frontal cognitive impairment. These associations were independent of physical disability. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Cognitive assessment in Amyotrophic Lateral Sclerosis by means of P300-Brain Computer Interface: a preliminary study.

    PubMed

    Poletti, Barbara; Carelli, Laura; Solca, Federica; Lafronza, Annalisa; Pedroli, Elisa; Faini, Andrea; Zago, Stefano; Ticozzi, Nicola; Meriggi, Paolo; Cipresso, Pietro; Lulé, Dorothée; Ludolph, Albert C; Riva, Giuseppe; Silani, Vincenzo

    To investigate the use of P300-based Brain Computer Interface (BCI) technology for the administration of motor-verbal free cognitive tests in Amyotrophic Lateral Sclerosis (ALS). We recruited 15 ALS patients and 15 age- and education-matched healthy subjects. All participants underwent a BCI-based neuropsychological assessment, together with two standard cognitive screening tools (FAB, MoCA), two psychological questionnaires (BDI, STAI-Y) and a usability questionnaire. For patients, clinical and respiratory examinations were also performed, together with a behavioural assessment (FBI). Correlations were observed between standard cognitive and BCI-based neuropsychological assessment, mainly concerning execution times in the ALS group. Moreover, patients provided positive rates concerning the BCI perceived usability and subjective experience. Finally, execution times at the BCI-based neuropsychological assessment were useful to discriminate patients from controls, with patients achieving lower processing speed than controls regarding executive functions. The developed motor-verbal free neuropsychological battery represents an innovative approach, that could provide relevant information for clinical practice and ethical issues. Its use for cognitive evaluation throughout the course of ALS, currently not available by means of standard assessment, must be addressed in further longitudinal validation studies. Further work will be aimed at refining the developed system and enlarging the cognitive spectrum investigated.

  4. Effects of aerobic exercise on mild cognitive impairment: a controlled trial.

    PubMed

    Baker, Laura D; Frank, Laura L; Foster-Schubert, Karen; Green, Pattie S; Wilkinson, Charles W; McTiernan, Anne; Plymate, Stephen R; Fishel, Mark A; Watson, G Stennis; Cholerton, Brenna A; Duncan, Glen E; Mehta, Pankaj D; Craft, Suzanne

    2010-01-01

    To examine the effects of aerobic exercise on cognition and other biomarkers associated with Alzheimer disease pathology for older adults with mild cognitive impairment, and assess the role of sex as a predictor of response. Six-month, randomized, controlled, clinical trial. Veterans Affairs Puget Sound Health Care System clinical research unit. Thirty-three adults (17 women) with amnestic mild cognitive impairment ranging in age from 55 to 85 years (mean age, 70 years). Intervention Participants were randomized either to a high-intensity aerobic exercise or stretching control group. The aerobic group exercised under the supervision of a fitness trainer at 75% to 85% of heart rate reserve for 45 to 60 min/d, 4 d/wk for 6 months. The control group carried out supervised stretching activities according to the same schedule but maintained their heart rate at or below 50% of their heart rate reserve. Before and after the study, glucometabolic and treadmill tests were performed and fat distribution was assessed using dual-energy x-ray absorptiometry. At baseline, month 3, and month 6, blood was collected for assay and cognitive tests were administered. Performance measures on Symbol-Digit Modalities, Verbal Fluency, Stroop, Trails B, Task Switching, Story Recall, and List Learning. Fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulinlike growth factor-I, and beta-amyloids 40 and 42. Six months of high-intensity aerobic exercise had sex-specific effects on cognition, glucose metabolism, and hypothalamic-pituitary-adrenal axis and trophic activity despite comparable gains in cardiorespiratory fitness and body fat reduction. For women, aerobic exercise improved performance on multiple tests of executive function, increased glucose disposal during the metabolic clamp, and reduced fasting plasma levels of insulin, cortisol, and brain-derived neurotrophic factor. For men, aerobic exercise increased plasma levels of insulinlike growth factor I and had a favorable effect only on Trails B performance. This study provides support, using rigorous controlled methodology, for a potent nonpharmacologic intervention that improves executive control processes for older women at high risk of cognitive decline. Moreover, our results suggest that a sex bias in cognitive response may relate to sex-based differences in glucometabolic and hypothalamic-pituitary-adrenal axis responses to aerobic exercise.

  5. A common neural hub resolves syntactic and non-syntactic conflict through cooperation with task-specific networks

    PubMed Central

    Hsu, Nina S.; Jaeggi, Susanne M.; Novick, Jared M.

    2017-01-01

    Regions within the left inferior frontal gyrus (LIFG) have simultaneously been implicated in syntactic processing and cognitive control. Accounts attempting to unify LIFG’s function hypothesize that, during comprehension, cognitive control resolves conflict between incompatible representations of sentence meaning. Some studies demonstrate co-localized activity within LIFG for syntactic and non-syntactic conflict resolution, suggesting domain-generality, but others show non-overlapping activity, suggesting domain-specific cognitive control and/or regions that respond uniquely to syntax. We propose however that examining exclusive activation sites for certain contrasts creates a false dichotomy: both domain-general and domain-specific neural machinery must coordinate to facilitate conflict resolution across domains. Here, subjects completed four diverse tasks involving conflict —one syntactic, three non-syntactic— while undergoing fMRI. Though LIFG consistently activated within individuals during conflict processing, functional connectivity analyses revealed task-specific coordination with distinct brain networks. Thus, LIFG may function as a conflict-resolution “hub” that cooperates with specialized neural systems according to information content. PMID:28110105

  6. Frontal Midline Theta Reflects Anxiety and Cognitive Control: Meta-Analytic Evidence

    PubMed Central

    Cavanagh, James F.; Shackman, Alexander J.

    2014-01-01

    Evidence from imaging and anatomical studies suggests that the midcingulate cortex (MCC) is a dynamic hub lying at the interface of affect and cognition. In particular, this neural system appears to integrate information about conflict and punishment in order to optimize behavior in the face of action-outcome uncertainty. In a series of meta-analyses, we show how recent human electrophysiological research provides compelling evidence that frontal-midline theta signals reflecting MCC activity are moderated by anxiety and predict adaptive behavioral adjustments. These findings underscore the importance of frontal theta activity to a broad spectrum of control operations. We argue that frontal-midline theta provides a neurophysiologically plausible mechanism for optimally adjusting behavior to uncertainty, a hallmark of situations that elicit anxiety and demand cognitive control. These observations compel a new perspective on the mechanisms guiding motivated learning and behavior and provide a framework for understanding the role of the MCC in temperament and psychopathology. PMID:24787485

  7. An eye on reactor and computer control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.; Knee, B.

    1992-01-01

    At ORNL computer software has been developed to make possible an improved eye-gaze measurement technology. Such an inovation could be the basis for advanced eye-gaze systems that may have applications in reactor control, software development, cognitive engineering, evaluation of displays, prediction of mental workloads, and military target recognition.

  8. Supporting productive thinking: The semiotic context for Cognitive Systems Engineering (CSE).

    PubMed

    Flach, John

    2017-03-01

    The central thesis of this paper is that Rasmussen framed his approach to Cognitive Systems Engineering from the perspective of a Triadic Semiotic Model. This frame became the context for integrating multiple intellectual threads including Control Theory, Information Theory, Ecological Psychology, and Gestalt Psychology into a coherent theoretical framework. The case is made that the triadic semiotic framework is essential for a complete appreciation of the constructs that were central to Rasmussen's approach: Abstraction Hierarchy, Skill-Rules-Knowledge Model, Ecological Interface Design, and Proactive Risk Management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. FRIEND: a brain-monitoring agent for adaptive and assistive systems.

    PubMed

    Morris, Alexis; Ulieru, Mihaela

    2012-01-01

    This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.

  10. Low-level alcohol consumption during adolescence and its impact on cognitive control development.

    PubMed

    Jurk, Sarah; Mennigen, Eva; Goschke, Thomas; Smolka, Michael N

    2018-01-01

    Adolescence is a critical period for maturation of cognitive control and most adolescents start experimenting with alcohol around that time. On the one hand, recent studies indicate that low control abilities predict future problematic alcohol use. On the other hand, binge drinking during young adulthood can (further) impair cognitive control. However, so far no study examined the effects of low-level alcohol use during adolescence. In the present longitudinal fMRI study, we therefore investigated the development of cognitive control in a community-based sample of 92 adolescents at ages 14, 16 and 18. Two different cognitive control functions, i.e. inhibition of pre-potent responses (operationalized by incongruence effects) and switching between different task sets, were measured within one task. Alcohol use in our sample was low (mean: 54 g/week at age 18). The study revealed that neither behavioural nor neural measures of cognitive control function at age 14 predicted alcohol use at age 18 but confirmed established predictors such as gender and personality. As expected, from age 14 to 18, cognitive control abilities were improving (decreased reaction times and/or errors), and activation of cognitive control networks (dorsal anterior cingulate cortex and pre-supplementary motor area) during incongruent trials increased. Unexpectedly, higher alcohol consumption during adolescence was associated with a more pronounced increase in cognitive performance and a smaller increase of neural activation when incongruent trials afforded inhibitory control. We conclude that low-level alcohol use during adolescence does not severely impair ongoing maturation of cognitive control abilities and networks. © 2016 Society for the Study of Addiction.

  11. Factors affecting feeling-of-knowing in a medical intelligent tutoring system: the role of immediate feedback as a metacognitive scaffold.

    PubMed

    El Saadawi, Gilan M; Azevedo, Roger; Castine, Melissa; Payne, Velma; Medvedeva, Olga; Tseytlin, Eugene; Legowski, Elizabeth; Jukic, Drazen; Crowley, Rebecca S

    2010-03-01

    Previous studies in our laboratory have shown the benefits of immediate feedback on cognitive performance for pathology residents using an intelligent tutoring system (ITS) in pathology. In this study, we examined the effect of immediate feedback on metacognitive performance, and investigated whether other metacognitive scaffolds will support metacognitive gains when immediate feedback is faded. Twenty-three participants were randomized into intervention and control groups. For both groups, periods working with the ITS under varying conditions were alternated with independent computer-based assessments. On day 1, a within-subjects design was used to evaluate the effect of immediate feedback on cognitive and metacognitive performance. On day 2, a between-subjects design was used to compare the use of other metacognitive scaffolds (intervention group) against no metacognitive scaffolds (control group) on cognitive and metacognitive performance, as immediate feedback was faded. Measurements included learning gains (a measure of cognitive performance), as well as several measures of metacognitive performance, including Goodman-Kruskal gamma correlation (G), bias, and discrimination. For the intervention group, we also computed metacognitive measures during tutoring sessions. Results showed that immediate feedback in an intelligent tutoring system had a statistically significant positive effect on learning gains, G and discrimination. Removal of immediate feedback was associated with decreasing metacognitive performance, and this decline was not prevented when students used a version of the tutoring system that provided other metacognitive scaffolds. Results obtained directly from the ITS suggest that other metacognitive scaffolds do have a positive effect on G and discrimination, as immediate feedback is faded. We conclude that immediate feedback had a positive effect on both metacognitive and cognitive gains in a medical tutoring system. Other metacognitive scaffolds were not sufficient to replace immediate feedback in this study. However, results obtained directly from the tutoring system are not consistent with results obtained from assessments. In order to facilitate transfer to real-world tasks, further research will be needed to determine the optimum methods for supporting metacognition as immediate feedback is faded.

  12. Factors Affecting Feeling-of-knowing in a Medical Intelligent Tutoring System – the role of Immediate Feedback as a Metacognitive Scaffold

    PubMed Central

    El Saadawi, Gilan M.; Azevedo, Roger; Castine, Melissa; Payne, Velma; Medvedeva, Olga; Tseytlin, Eugene; Legowski, Elizabeth; Jukic, Drazen; Crowley, Rebecca S.

    2009-01-01

    Objective Previous studies in our laboratory have shown the benefits of immediate feedback on cognitive performance for pathology residents using an Intelligent Tutoring System in Pathology. In this study, we examined the effect of immediate feedback on metacognitive performance, and investigated whether other metacognitive scaffolds will support metacognitive gains when immediate feedback is faded. Methods Twenty-three (23) participants were randomized into intervention and control groups. For both groups, periods working with the ITS under varying conditions were alternated with independent computer-based assessments. On day 1, a within-subjects design was used to evaluate the effect of immediate feedback on cognitive and metacognitive performance. On day 2, a between-subjects design was used to compare the use of other metacognitive scaffolds (intervention group) against no metacognitive scaffolds (control group) on cognitive and metacognitive performance, as immediate feedback was faded. Measurements included learning gains (a measure of cognitive performance), as well as several measures of metacognitive performance, including Goodman-Kruskal Gamma correlation (G), Bias, and Discrimination. For the intervention group, we also computed metacognitive measures during tutoring sessions. Results Results showed that immediate feedback in an intelligent tutoring system had a statistically significant positive effect on learning gains, G and discrimination. Removal of immediate feedback was associated with decreasing metacognitive performance, and this decline was not prevented when students used a version of the tutoring system that provided other metacognitive scaffolds. Results obtained directly from the ITS suggest that other metacognitive scaffolds do have a positive effect on G and Discrimination, as immediate feedback is faded. Conclusions Immediate feedback had a positive effect on both metacognitive and cognitive gains in a medical tutoring system. Other metacognitive scaffolds were not sufficient to replace immediate feedback in this study. However, results obtained directly from the tutoring system are not consistent with results obtained from assessments. In order to facilitate transfer to real-world tasks, further research will be needed to determine the optimum methods for supporting metacognition as immediate feedback is faded. PMID:19434508

  13. Romantic Love vs. Drug Addiction May Inspire a New Treatment for Addiction

    PubMed Central

    Zou, Zhiling; Song, Hongwen; Zhang, Yuting; Zhang, Xiaochu

    2016-01-01

    Drug addiction is a complex neurological dysfunction induced by recurring drug intoxication. Strategies to prevent and treat drug addiction constitute a topic of research interest. Early-stage romantic love is characterized by some characteristics of addiction, which gradually disappear as the love relationship progresses. Therefore, comparison of the concordance and discordance between romantic love and drug addiction may elucidate potential treatments for addiction. This focused review uses the evidences from our recent studies to compare the neural alterations between romantic love and drug addiction, moreover we also compare the behavioral and neurochemical alterations between romantic love and drug addiction. From the behavioral comparisons we find that there are many similarities between the early stage of romantic love and drug addiction, and this stage romantic love is considered as a behavioral addiction, while significant differences exist between the later stage of romantic love and drug addiction, and this stage of romantic love eventually developed into a prosocial behavior. The neuroimaging comparisons suggest that romantic love and drug addiction both display the functional enhancement in reward and emotion regulation network. Except the similar neural changes, romantic love display special function enhancement in social cognition network, while drug addiction display special dysfunction in cognitive control network. The neurochemical comparisons show that there are many similarities in the dopamine (DA) system, while significant differences in oxytocin (OT) system for romantic love and drug addiction. These findings indicate that the functional alterations in reward and emotion regulation network and the DA system may be the neurophysiological basis of romantic love as a behavioral addiction, and the functional alterations in social cognition network and the OT system may be the neurophysiological basis of romantic love as a prosocial behavior. It seems that the OT system is a critical factor for the development of addiction. So we then discuss strategies to treat drug addiction with OT, and suggest that future research should further investigate OT system interventions aiming to improve cognitive control and/or social cognition functions, in order to develop strategies designed to more effectively treat drug addiction. PMID:27713720

  14. Romantic Love vs. Drug Addiction May Inspire a New Treatment for Addiction.

    PubMed

    Zou, Zhiling; Song, Hongwen; Zhang, Yuting; Zhang, Xiaochu

    2016-01-01

    Drug addiction is a complex neurological dysfunction induced by recurring drug intoxication. Strategies to prevent and treat drug addiction constitute a topic of research interest. Early-stage romantic love is characterized by some characteristics of addiction, which gradually disappear as the love relationship progresses. Therefore, comparison of the concordance and discordance between romantic love and drug addiction may elucidate potential treatments for addiction. This focused review uses the evidences from our recent studies to compare the neural alterations between romantic love and drug addiction, moreover we also compare the behavioral and neurochemical alterations between romantic love and drug addiction. From the behavioral comparisons we find that there are many similarities between the early stage of romantic love and drug addiction, and this stage romantic love is considered as a behavioral addiction, while significant differences exist between the later stage of romantic love and drug addiction, and this stage of romantic love eventually developed into a prosocial behavior. The neuroimaging comparisons suggest that romantic love and drug addiction both display the functional enhancement in reward and emotion regulation network. Except the similar neural changes, romantic love display special function enhancement in social cognition network, while drug addiction display special dysfunction in cognitive control network. The neurochemical comparisons show that there are many similarities in the dopamine (DA) system, while significant differences in oxytocin (OT) system for romantic love and drug addiction. These findings indicate that the functional alterations in reward and emotion regulation network and the DA system may be the neurophysiological basis of romantic love as a behavioral addiction, and the functional alterations in social cognition network and the OT system may be the neurophysiological basis of romantic love as a prosocial behavior. It seems that the OT system is a critical factor for the development of addiction. So we then discuss strategies to treat drug addiction with OT, and suggest that future research should further investigate OT system interventions aiming to improve cognitive control and/or social cognition functions, in order to develop strategies designed to more effectively treat drug addiction.

  15. Evidence for the triadic model of adolescent brain development: Cognitive load and task-relevance of emotion differentially affect adolescents and adults.

    PubMed

    Mueller, Sven C; Cromheeke, Sofie; Siugzdaite, Roma; Nicolas Boehler, C

    2017-08-01

    In adults, cognitive control is supported by several brain regions including the limbic system and the dorsolateral prefrontal cortex (dlPFC) when processing emotional information. However, in adolescents, some theories hypothesize a neurobiological imbalance proposing heightened sensitivity to affective material in the amygdala and striatum within a cognitive control context. Yet, direct neurobiological evidence is scarce. Twenty-four adolescents (12-16) and 28 adults (25-35) completed an emotional n-back working memory task in response to happy, angry, and neutral faces during fMRI. Importantly, participants either paid attention to the emotion (task-relevant condition) or judged the gender (task-irrelevant condition). Behaviorally, for both groups, when happy faces were task-relevant, performance improved relative to when they were task-irrelevant, while performance decrements were seen for angry faces. In the dlPFC, angry faces elicited more activation in adults during low relative to high cognitive load (2-back vs. 0-back). By contrast, happy faces elicited more activation in the amygdala in adolescents when they were task-relevant. Happy faces also generally increased nucleus accumbens activity (regardless of relevance) in adolescents relative to adults. Together, the findings are consistent with neurobiological models of adolescent brain development and identify neurodevelopmental differences in cognitive control emotion interactions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Feasibility study of the BrightBrainer™ integrative cognitive rehabilitation system for elderly with dementia.

    PubMed

    Burdea, Grigore; Polistico, Kevin; Krishnamoorthy, Amalan; House, Gregory; Rethage, Dario; Hundal, Jasdeep; Damiani, Frank; Pollack, Simcha

    2015-01-01

    To describe the development of BrightBrainer™ integrative cognitive rehabilitation system and determine clinical feasibility with nursing home-bound dementia patients. BrightBrainer cognitive rehabilitation simulations were first played uni-manually, then bimanually. Participants sat in front of a laptop and interacted through a game controller that measured hand movements in 3D, as well as flexion of both index fingers. Interactive serious games were designed to improve basic and complex attention (concentration, short-term memory, dual tasking), memory recall, executive functioning and emotional well-being. Individual simulations adapted automatically to each participant's level of motor functioning. The system underwent feasibility trials spanning 16 sessions over 8 weeks. Participants were evaluated pre- and post-intervention, using standardized neuropsychological measures. Computerized measures of movement repetitions and task performance were stored on a remote server. Group analysis for 10 participants showed statistically significant improvement in decision making (p < 0.01), with trend improvements in depression (p < 0.056). Improvements were also seen in processing speed (p < 0.13) and auditory attention (p < 0.17); however, these were not statistically significant (partly attributable to the modest sample size). Eight of nine neuropsychological tests showed changes in the improvement direction indicating an effective rehabilitation (p < 0.01). BrightBrainer technology was well tolerated with mean satisfaction ratings of 4.9/5.0 across participants. Preliminary findings demonstrate utility within an advanced dementia population, suggesting that it will be beneficial to evaluate BrightBrainer through controlled clinical trials and to investigate its application in other clinical populations. Implications for Rehabilitation It is possible to improve cognitive function in older low-functioning patients. Integrative rehabilitation through games combining cognitive (memory, focusing, executive function) and physical (bimanual whole arm movement, grasping, task sequencing) elements is enjoyable for this population. The severity of depression in these elderly can be reduced through virtual reality bimanual games. The number of upper extremity active repetitions performed in the process of solving cognitive problems with the BrightBrainer™ system is 600. This number is 18 times (1875%) larger than those observed by other researchers in conventional physical or occupational rehabilitation sessions.

  17. Cockpit System Situational Awareness Modeling Tool

    NASA Technical Reports Server (NTRS)

    Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara

    2004-01-01

    This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.

  18. University Students With Poor Reading Comprehension: The Hidden Cognitive Processing Deficit.

    PubMed

    Georgiou, George K; Das, J P

    2015-01-01

    The present study aimed to examine the nature of the working memory and general cognitive ability deficits experienced by university students with a specific reading comprehension deficit. A total of 32 university students with poor reading comprehension but average word-reading skills and 60 age-matched controls with no comprehension difficulties participated in the study. The participants were assessed on three verbal working memory tasks that varied in terms of their processing demands and on the Das-Naglieri Cognitive Assessment System, which was used to operationalize intelligence. The results indicated first that the differences between poor and skilled comprehenders on working memory were amplified as the processing demands of the tasks increased. In addition, although poor comprehenders as a group had average intelligence, they experienced significant difficulties in simultaneous and successive processing. Considering that working memory and general cognitive ability are highly correlated processes, these findings suggest that the observed differences between poor and skilled comprehenders are likely a result of a deficient information processing system. © Hammill Institute on Disabilities 2013.

  19. Modelling and Optimizing Mathematics Learning in Children

    ERIC Educational Resources Information Center

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus

    2013-01-01

    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…

  20. Systems and Cascades in Cognitive Development and Academic Achievement

    ERIC Educational Resources Information Center

    Bornstein, Marc H.; Hahn, Chun-Shin; Wolke, Dieter

    2013-01-01

    A large-scale ("N" = 552) controlled multivariate prospective 14-year longitudinal study of a developmental cascade embedded in a developmental system showed that information-processing efficiency in infancy (4 months), general mental development in toddlerhood (18 months), behavior difficulties in early childhood (36 months),…

  1. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control.

    PubMed

    Fischer, Rico; Ventura-Bort, Carlos; Hamm, Alfons; Weymar, Mathias

    2018-04-24

    Response conflicts play a prominent role in the flexible adaptation of behavior as they represent context-signals that indicate the necessity for the recruitment of cognitive control. Previous studies have highlighted the functional roles of the affectively aversive and arousing quality of the conflict signal in triggering the adaptation process. To further test this potential link with arousal, participants performed a response conflict task in two separate sessions with either transcutaneous vagus nerve stimulation (tVNS), which is assumed to activate the locus coeruleus-noradrenaline (LC-NE) system, or with neutral sham stimulation. In both sessions the N2 and P3 event-related potentials (ERP) were assessed. In line with previous findings, conflict interference, the N2 and P3 amplitude were reduced after conflict. Most importantly, this adaptation to conflict was enhanced under tVNS compared to sham stimulation for conflict interference and the N2 amplitude. No effect of tVNS on the P3 component was found. These findings suggest that tVNS increases behavioral and electrophysiological markers of adaptation to conflict. Results are discussed in the context of the potentially underlying LC-NE and other neuromodulatory (e.g., GABA) systems. The present findings add important pieces to the understanding of the neurophysiological mechanisms of conflict-triggered adjustment of cognitive control.

  2. Cognitive control in the self-regulation of physical activity and sedentary behavior

    PubMed Central

    Buckley, Jude; Cohen, Jason D.; Kramer, Arthur F.; McAuley, Edward; Mullen, Sean P.

    2014-01-01

    Cognitive control of physical activity and sedentary behavior is receiving increased attention in the neuroscientific and behavioral medicine literature as a means of better understanding and improving the self-regulation of physical activity. Enhancing individuals’ cognitive control capacities may provide a means to increase physical activity and reduce sedentary behavior. First, this paper reviews emerging evidence of the antecedence of cognitive control abilities in successful self-regulation of physical activity, and in precipitating self-regulation failure that predisposes to sedentary behavior. We then highlight the brain networks that may underpin the cognitive control and self-regulation of physical activity, including the default mode network, prefrontal cortical networks and brain regions and pathways associated with reward. We then discuss research on cognitive training interventions that document improved cognitive control and that suggest promise of influencing physical activity regulation. Key cognitive training components likely to be the most effective at improving self-regulation are also highlighted. The review concludes with suggestions for future research. PMID:25324754

  3. An Integrated Architecture for Grounded Intelligence in Its Development, Experimental, Environmental, and Social Context

    DTIC Science & Technology

    2007-05-01

    supervisory system lie core drives, such as hunger , boredom, attention-seeking, and other domain-specific drives (such as task success), modeled as scalar...the control of routing activities. Cognitive Neuropsychology , 17:297-338. [Davies and Stone, 1995] Davies, M. and Stone, T. (1995). Introduction. In...Thornton, I., J., P., and Shiffrar, M. (1998). The visual perception of human locomotion. Cognitive Neuropsychology , 15:535-552. [Wilson, 2001] Wilson

  4. A pilot randomized trial of two cognitive rehabilitation interventions for mild cognitive impairment: caregiver outcomes.

    PubMed

    Cuc, Andrea V; Locke, Dona E C; Duncan, Noah; Fields, Julie A; Snyder, Charlene Hoffman; Hanna, Sherrie; Lunde, Angela; Smith, Glenn E; Chandler, Melanie

    2017-12-01

    This study aims to provide effect size estimates of the impact of two cognitive rehabilitation interventions provided to patients with mild cognitive impairment: computerized brain fitness exercise and memory support system on support partners' outcomes of depression, anxiety, quality of life, and partner burden. A randomized controlled pilot trial was performed. At 6 months, the partners from both treatment groups showed stable to improved depression scores, while partners in an untreated control group showed worsening depression over 6 months. There were no statistically significant differences on anxiety, quality of life, or burden outcomes in this small pilot trial; however, effect sizes were moderate, suggesting that the sample sizes in this pilot study were not adequate to detect statistical significance. Either form of cognitive rehabilitation may help partners' mood, compared with providing no treatment. However, effect size estimates related to other partner outcomes (i.e., burden, quality of life, and anxiety) suggest that follow-up efficacy trials will need sample sizes of at least 30-100 people per group to accurately determine significance. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial.

    PubMed

    Pase, Matthew P; Scholey, Andrew B; Pipingas, Andrew; Kras, Marni; Nolidin, Karen; Gibbs, Amy; Wesnes, Keith; Stough, Con

    2013-05-01

    This study aimed to examine the acute and sub-chronic effects of cocoa polyphenols on cognition and mood. In a randomized, double-blind study, healthy middle-aged participants received a dark chocolate drink mix standardized to contain 500 mg, 250 mg or 0 mg of polyphenols (placebo) in a parallel-groups design. Participants consumed their assigned treatment once daily for 30 days. Cognition was measured with the Cognitive Drug Research system and self-rated mood with the Bond-Lader Visual Analogue Scale. Participants were tested at baseline, at 1, 2.5 and 4 h after a single acute dose and again after receiving 30 days of treatment. In total, 72 participants completed the trial. After 30 days, the high dose of treatment significantly increased self-rated calmness and contentedness relative to placebo. Mood was unchanged by treatment acutely while cognition was unaffected by treatment at all time points. This randomized controlled trial is perhaps the first to demonstrate the positive effects of cocoa polyphenols on mood in healthy participants. This provides a rationale for exploring whether cocoa polyphenols can ameliorate the symptoms associated with clinical anxiety or depression.

  6. Embodied cognitive evolution and the cerebellum.

    PubMed

    Barton, Robert A

    2012-08-05

    Much attention has focused on the dramatic expansion of the forebrain, particularly the neocortex, as the neural substrate of cognitive evolution. However, though relatively small, the cerebellum contains about four times more neurons than the neocortex. I show that commonly used comparative measures such as neocortex ratio underestimate the contribution of the cerebellum to brain evolution. Once differences in the scaling of connectivity in neocortex and cerebellum are accounted for, a marked and general pattern of correlated evolution of the two structures is apparent. One deviation from this general pattern is a relative expansion of the cerebellum in apes and other extractive foragers. The confluence of these comparative patterns, studies of ape foraging skills and social learning, and recent evidence on the cognitive neuroscience of the cerebellum, suggest an important role for the cerebellum in the evolution of the capacity for planning, execution and understanding of complex behavioural sequences--including tool use and language. There is no clear separation between sensory-motor and cognitive specializations underpinning such skills, undermining the notion of executive control as a distinct process. Instead, I argue that cognitive evolution is most effectively understood as the elaboration of specialized systems for embodied adaptive control.

  7. Rail-CR : railroad cognitive radio.

    DOT National Transportation Integrated Search

    2012-12-01

    Robust, reliable, and interoperable wireless communication devices or technologies are vital to the success of positive train control (PTC) systems. Accordingly, the railway industry has started adopting software-defined radios (SDRs) for packet-data...

  8. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion

    PubMed Central

    Iran-Nejad, Asghar; Bordbar, Fareed

    2017-01-01

    For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of) information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1). According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU), knowers have deliberate attention-allocation control over their first-person “knowthat” and “knowhow” content combined as mutually coherent corequisites. For biofunctional understanding (BU), knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science’s first guiding principle of systematic observation. PMID:29114235

  9. Building brains for bodies

    NASA Technical Reports Server (NTRS)

    Brooks, Rodney Allen; Stein, Lynn Andrea

    1994-01-01

    We describe a project to capitalize on newly available levels of computational resources in order to understand human cognition. We will build an integrated physical system including vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system will learn to 'think' by building on its bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that in attempting to build such an integrated system we will have to fundamentally change the way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of intelligence. We expect to be able to better reconcile the theories that will be developed with current work in neuroscience.

  10. Adolescents’ risky decision-making activates neural networks related to social cognition and cognitive control processes

    PubMed Central

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C.

    2014-01-01

    This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17–18, and young adults: 21–22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes. PMID:24592227

  11. Identifying and individuating cognitive systems: a task-based distributed cognition alternative to agent-based extended cognition.

    PubMed

    Davies, Jim; Michaelian, Kourken

    2016-08-01

    This article argues for a task-based approach to identifying and individuating cognitive systems. The agent-based extended cognition approach faces a problem of cognitive bloat and has difficulty accommodating both sub-individual cognitive systems ("scaling down") and some supra-individual cognitive systems ("scaling up"). The standard distributed cognition approach can accommodate a wider variety of supra-individual systems but likewise has difficulties with sub-individual systems and faces the problem of cognitive bloat. We develop a task-based variant of distributed cognition designed to scale up and down smoothly while providing a principled means of avoiding cognitive bloat. The advantages of the task-based approach are illustrated by means of two parallel case studies: re-representation in the human visual system and in a biomedical engineering laboratory.

  12. A Closer Look at Siblings of Patients with Schizophrenia: The Association of Depression History and Sex with Cognitive Phenotypes

    PubMed Central

    Wisner, Krista M.; Elvevåg, Brita; Gold, James M.; Weinberger, Daniel R.; Dickinson, Dwight

    2010-01-01

    Background Siblings of patients with schizophrenia show impaired cognition and an increased prevalence of depression history. Although sex has been shown to moderate cognition in patients, this effect has not been examined in siblings. Here we elucidate how a history of depression and sex influences cognition in siblings unaffected by schizophrenia. Methods Unaffected siblings of patients with schizophrenia and unrelated healthy controls were evaluated neuropsychologically and completed structured clinical interviews. Participants with a depression history or no psychiatric history were selected for the sample. Cognitive performance of siblings (n = 366) and controls (n = 680) was first examined. Second, cognition of participants with a depression history and those without a psychiatric history was compared while additionally investigating the role of schizophrenia risk and sex. Results Relative to controls, siblings, with and without a psychiatric history, demonstrated significant (p < .05) cognitive deficits. Depression history impaired cognition in siblings, but not in controls; whereas sex affected cognition in both siblings and controls. In siblings alone, sex significantly interacted with depression history to influence cognition. This interaction revealed that in male - but not female - siblings a history of depression was associated with greater cognitive impairments. Conclusion A history of depression impairs cognition in siblings, but not in controls. Moreover, depression history interacts with sex and demonstrates that only cognition in male siblings is significantly and additionally compromised by a history of depression. This interaction may be an important consideration for future phenotype and genetic association studies. PMID:21030214

  13. Dissociable influences of reward motivation and positive emotion on cognitive control.

    PubMed

    Chiew, Kimberly S; Braver, Todd S

    2014-06-01

    It is becoming increasingly appreciated that affective and/or motivational influences contribute strongly to goal-oriented cognition and behavior. An unresolved question is whether emotional manipulations (i.e., direct induction of affectively valenced subjective experience) and motivational manipulations (e.g., delivery of performance-contingent rewards and punishments) have similar or distinct effects on cognitive control. Prior work has suggested that reward motivation can reliably enhance a proactive mode of cognitive control, whereas other evidence is suggestive that positive emotion improves cognitive flexibility, but reduces proactive control. However, a limitation of the prior research is that reward motivation and positive emotion have largely been studied independently. Here, we directly compared the effects of positive emotion and reward motivation on cognitive control with a tightly matched, within-subjects design, using the AX-continuous performance task paradigm, which allows for relative measurement of proactive versus reactive cognitive control. High-resolution pupillometry was employed as a secondary measure of cognitive dynamics during task performance. Robust increases in behavioral and pupillometric indices of proactive control were observed with reward motivation. The effects of positive emotion were much weaker, but if anything, also reflected enhancement of proactive control, a pattern that diverges from some prior findings. These results indicate that reward motivation has robust influences on cognitive control, while also highlighting the complexity and heterogeneity of positive-emotion effects. The findings are discussed in terms of potential neurobiological mechanisms.

  14. Fragmented Sleep Enhances Postoperative Neuroinflammation but Not Cognitive Dysfunction.

    PubMed

    Vacas, Susana; Degos, Vincent; Maze, Mervyn

    2017-01-01

    Sleep is integral to biologic function, and sleep disruption can result in both physiological and psychologic dysfunction including cognitive decline. Surgery activates the innate immune system, inducing neuroinflammatory changes that interfere with cognition. Because surgical patients with sleep disorders have an increased likelihood of exhibiting postoperative delirium, an acute form of cognitive decline, we investigated the contribution of perioperative sleep fragmentation (SF) to the neuroinflammatory and cognitive responses of surgery. The effects of 24-hour SF and surgery were explored in adult C57BL/6J male mice. The SF procedure started at 7 AM with cages being placed on a large platform orbital shaker that cycled every 120 seconds (30 seconds on/90 seconds off) for 24 hours. In separate cohorts, stabilized tibial fracture was performed either before or after the 24-hour SF procedure and assessed for systemic and hippocampal inflammation and cognition. SF-induced nonhippocampal memory dysfunction (mean ± standard deviation [SD] of the difference in time spent between novel and familiar object for control was 4.7 ± 1.4 seconds, n = 8 versus SF -0.5 ± 0.2 seconds, n = 11, yielding an estimated treatment effect of 5.2 seconds [95% confidence interval {CI}, 2.6-7.7]; P < .001) and increased systemic interleukin-6 (median [25%-75% quartile] for control 0.0 [0.0-2.4] pg/mL versus 9.7 [6.3-12.9] pg/mL, n = 8/group, yielding an estimated treatment effect of 9.7 pg/mL [95% CI, 5.8-11.8]; P < .0001). SF reduced freezing time in hippocampal-dependent memory test (mean ± SD for control 49.3% ± 5.8% versus for SF 32.9% ± 5.8%, n = 10/group, estimated treatment effect = 16.4% [95% CI, 11.0-21.8]; P < .0001). Although surgery also reduced freezing time (mean ± SD for control 49.3% ± 5.8% versus for surgery 30.3% ± 3.3%, n = 10/group, estimated treatment effect = 19.0% [95% CI, 14.6-23.4]; P < .0001), memory impairment was not further exacerbated by combining SF with surgery. One day after SF, there was an increase in hippocampal messenger RNA expression of tumor necrosis factor-α (relative quantitation [RQ] 5.12-fold, n = 5/group [95% CI, 1.64-15.97]; P < .01), and 1 day after surgery, there was an increase in messenger RNA interleukin-6 (RQ 4.64-fold, n = 5 [95% CI, 1.48-14.56]; P < .05) and tumor necrosis factor-α (RQ 5.54-fold, n = 5 [95% CI, 2.92-10.51]; P < .01). These increments were more pronounced when either pre- or postoperative SF was combined with surgery. Although SF and surgery can independently produce significant memory impairment, perioperative SF significantly increased hippocampal inflammation without further cognitive impairment. The dissociation between neuroinflammation and cognitive decline may relate to the use of a sole memory paradigm that does not capture other aspects of cognition, especially learning.

  15. Assessment of attention and inhibitory control in rodent developmental neurotoxicity studies.

    PubMed

    Driscoll, Lori L; Strupp, Barbara J

    2015-01-01

    In designing screens to assess potential neurotoxicants, the paramount goal is that the selected assessment tools detect dysfunction if it exists. This goal is particularly challenging in the case of cognitive assessments. Cognition is not a unitary phenomenon, and indeed there is growing evidence that different aspects of cognitive functioning are subserved by distinct neural systems. As a result, if a particular neurotoxicant selectively damages certain neural systems but not others, it can impair some cognitive, sensory, or affective functions, but leave many others intact. Accordingly, studies with human subjects use batteries of cognitive tests, cognizant of the fact that no one test is capable of detecting all forms of cognitive dysfunction. In contrast, assessment of cognitive functioning in non-human animal developmental neurotoxicity (DNT) studies typically consists of a single, presumably representative, "learning and memory" task that is expected to detect all potential effects on cognitive functioning. Streamlining the cognitive assessment in these studies saves time and money, but these shortcuts can have serious consequences if the aspect of cognitive functioning that is impaired is not tapped by the single selected task. In particular, executive functioning - a constellation of cognitive functions which enables the organism to focus on multiple streams of information simultaneously, and revise plans as necessary - is poorly assessed in most animal DNT studies. The failure to adequately assess these functions - which include attention, working memory, inhibitory control, and planning - is particularly worrisome in light of evidence that the neural systems that subserve these functions may be uniquely vulnerable to early developmental insults. We illustrate the importance of tapping these areas of functioning in DNT studies by describing the pattern of effects produced by early developmental Pb exposure. Rats exposed to lead (Pb) early in development were tested on a series of automated attention tasks, as well as on a radial arm maze task. The lead-exposed rats were not impaired in this demanding radial arm maze task, despite conditions which tapped the limits of both working and long-term memory. In contrast, the automated tests designed to assess rodent executive functioning revealed selective and functionally important deficits in attention and regulation of emotion or negative affect (produced by committing an error or not receiving an expected reward). This example underscores the importance of including tasks to specifically tap executive functioning in DNT batteries. Such tasks are not only sensitive but can also shed light on the specific nature of the dysfunction, and they can implicate dysfunction of specific neural systems, information which can be used to design therapeutic interventions. Although the use of such tasks increases the time and effort needed to complete the battery, the benefits outweigh the cost, in light of the greater sensitivity of the battery and the more complete characterization of effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations.

    PubMed

    Bertrams, Alex; Baumeister, Roy F; Englert, Chris

    2016-01-01

    We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests.

  17. Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations

    PubMed Central

    Bertrams, Alex; Baumeister, Roy F.; Englert, Chris

    2016-01-01

    We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests. PMID:27065013

  18. Neurophysiological evidence of an association between cognitive control and defensive reactivity processes in young children.

    PubMed

    Lo, Sharon L; Schroder, Hans S; Moran, Tim P; Durbin, C Emily; Moser, Jason S

    2015-10-01

    Interactions between cognitive control and affective processes, such as defensive reactivity, are intimately involved in healthy and unhealthy human development. However, cognitive control and defensive reactivity processes are often studied in isolation and rarely examined in early childhood. To address these gaps, we examined the relationships between multiple neurophysiological measures of cognitive control and defensive reactivity in young children. Specifically, we assessed two event-related potentials thought to index cognitive control processes--the error-related negativity (ERN) and error positivity (Pe)--measured across two tasks, and two markers of defensive reactivity processes--startle reflex and resting parietal asymmetry--in a sample of 3- to 7-year old children. Results revealed that measures of cognitive control and defensive reactivity were related such that evidence of poor cognitive control (smaller ERN) was associated with high defensive reactivity (larger startle and greater right relative to left parietal activity). The strength of associations between the ERN and measures of defensive reactivity did not vary by age, providing evidence that poor cognitive control relates to greater defensive reactivity across early childhood years. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Cognitive Behavioral Performance of Untreated Depressed Patients with Mild Depressive Symptoms

    PubMed Central

    Li, Mi; Zhong, Ning; Lu, Shengfu; Wang, Gang; Feng, Lei; Hu, Bin

    2016-01-01

    This study evaluated the working memory performance of 18 patients experiencing their first onset of mild depression without treatment and 18 healthy matched controls. The results demonstrated that working memory impairment in patients with mild depression occurred when memorizing the position of a picture but not when memorizing the pictures themselves. There was no significant difference between the two groups in the emotional impact on the working memory, indicating that the attenuation of spatial working memory was not affected by negative emotion; however, cognitive control selectively affected spatial working memory. In addition, the accuracy of spatial working memory in the depressed patients was not significantly reduced, but the reaction time was significantly extended compared with the healthy controls. This finding indicated that there was no damage to memory encoding and function maintenance in the patients but rather only impaired memory retrieval, suggesting that the extent of damage to the working memory system and cognitive control abilities was associated with the corresponding depressive symptoms. The development of mild to severe depressive symptoms may be accompanied by spatial working memory damage from the impaired memory retrieval function extending to memory encoding and memory retention impairments. In addition, the impaired cognitive control began with an inadequate capacity to automatically process internal negative emotions and further extended to impairment of the ability to regulate and suppress external emotions. The results of the mood-congruent study showed that the memory of patients with mild symptoms of depression was associated with a mood-congruent memory effect, demonstrating that mood-congruent memory was a typical feature of depression, regardless of the severity of depression. This study provided important information for understanding the development of cognitive dysfunction. PMID:26730597

  20. Effects of Mental Fatigue on Physical Endurance Performance and Muscle Activation Are Attenuated by Monetary Incentives.

    PubMed

    Brown, Denver M Y; Bray, Steven R

    2017-12-01

    Physical performance is impaired following cognitive control exertion. Incentives can ameliorate adverse carryover effects of cognitive control exertion but have not been investigated for physical endurance. This study examined the effect of monetary incentives on physical performance and muscle activation following exposure to a mentally fatiguing, cognitive control task. Participants (N = 82) performed two isometric endurance handgrip trials separated by a 12-min cognitive control manipulation using a 2 (high cognitive control [HCC]/low cognitive control [LCC]) × 2 (incentive/no incentive) design. Mental fatigue was significantly higher in the HCC conditions. Performance decreased in the HCC/no incentive condition but was unaffected in the HCC/incentive condition, which did not differ from the low cognitive control conditions. Electromyography data revealed increased muscle activation in the HCC/no incentive condition, which was also attenuated in the HCC/incentive condition. Findings show that incentives counteract the negative effects of HCC on physical endurance and alter central drive to motor units.

  1. The role of domain-general cognitive control in language comprehension

    PubMed Central

    Fedorenko, Evelina

    2014-01-01

    What role does domain-general cognitive control play in understanding linguistic input? Although much evidence has suggested that domain-general cognitive control and working memory resources are sometimes recruited during language comprehension, many aspects of this relationship remain elusive. For example, how frequently do cognitive control mechanisms get engaged when we understand language? And is this engagement necessary for successful comprehension? I here (a) review recent brain imaging evidence for the neural separability of the brain regions that support high-level linguistic processing vs. those that support domain-general cognitive control abilities; (b) define the space of possibilities for the relationship between these sets of brain regions; and (c) review the available evidence that constrains these possibilities to some extent. I argue that we should stop asking whether domain-general cognitive control mechanisms play a role in language comprehension, and instead focus on characterizing the division of labor between the cognitive control brain regions and the more functionally specialized language regions. PMID:24803909

  2. Free-flying teleoperator requirements and conceptual design.

    NASA Technical Reports Server (NTRS)

    Onega, G. T.; Clingman, J. H.

    1973-01-01

    A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.

  3. Large-scale network dysfunction in Major Depressive Disorder: Meta-analysis of resting-state functional connectivity

    PubMed Central

    Kaiser, Roselinde H.; Andrews-Hanna, Jessica R.; Wager, Tor D.; Pizzagalli, Diego A.

    2015-01-01

    IMPORTANCE Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. OBJECTIVE To investigate network dysfunction in MDD through the first meta-analysis of rsFC studies. DATA SOURCES Seed-based voxel-wise rsFC studies comparing MDD with healthy individuals (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web-of-Science, EMBASE), and authors contacted for additional data. STUDY SELECTION Twenty-seven datasets from 25 publications (556 MDD adults/teens; 518 controls) were included in the meta-analysis. DATA EXTRACTION AND SYNTHESIS Coordinates of seed regions-of-interest and between-group effects were extracted. Seeds were categorized into “seed-networks” by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive, or reduced negative, connectivity) or hypoconnectivity (increased negative, or reduced positive, connectivity) with each seed-network. RESULTS MDD was characterized by hypoconnectivity within the frontoparietal network (FN), a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network (DAN) involved in attending to the external environment. MDD was also associated with hyperconnectivity within the default network (DN), a network believed to support internally-oriented and self-referential thought, and hyperconnectivity between FN control systems and regions of DN. Finally, MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. CONCLUSIONS AND RELEVANCE Reduced connectivity within frontoparietal control systems, and imbalanced connectivity between control systems and networks involved in internal- or external-attention, may reflect depressive biases towards internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression. PMID:25785575

  4. Oxytocin administration enhances controlled social cognition in patients with schizophrenia

    PubMed Central

    Woolley, J.D.; Chuang, B.; Lam, O.; Lai, W.; O’Donovan, A.; Rankin, K.P.; Mathalon, D.H.; Vinogradov, S.

    2014-01-01

    Summary Background Individuals with schizophrenia have functionally significant deficits in automatic and controlled social cognition, but no currently available pharmacologic treatments reduce these deficits. The neuropeptide oxytocin has multiple prosocial effects when administered intranasally in humans and there is growing interest in its therapeutic potential in schizophrenia. Methods We administered 40 IU of oxytocin and saline placebo intranasally to 29 male subjects with schizophrenia and 31 age-matched, healthy controls in a randomized, double-blind, placebo-controlled, cross-over study. Social cognition was assessed with The Awareness of Social Inference Test (TASIT) and the Reading the Mind in the Eyes Test (RMET). We examined the effects of oxytocin administration on automatic social cognition (the ability to rapidly interpret and understand emotional cues from the voice, face, and body); controlled social cognition (the ability to comprehend indirectly expressed emotions, thoughts, and intentions through complex deliberations over longer time periods); and a control task (the ability to comprehend truthful dialog and perform general task procedures) in individuals with and without schizophrenia using mixed factorial analysis of variance models. Results Patients with schizophrenia showed significant impairments in automatic and controlled social cognition compared to healthy controls, and administration of oxytocin significantly improved their controlled, but not automatic, social cognition, F(1, 58) = 8.75; p = 0.004. Conversely, oxytocin administration had limited effects on social cognition in healthy participants. Patients and controls performed equally well and there were no effects of oxytocin administration on the control task. Discussion Intact social cognitive abilities are associated with better functional outcomes in individuals with schizophrenia. Our data highlight the potentially complex effects of oxytocin on some but not all aspects of social cognition, and support the exploration of intranasal oxytocin as a potential adjunct treatment to improve controlled social cognition in schizophrenia. Published by Elsevier Ltd. PMID:25001961

  5. Multiple Cognitive Control Effects of Error Likelihood and Conflict

    PubMed Central

    Brown, Joshua W.

    2010-01-01

    Recent work on cognitive control has suggested a variety of performance monitoring functions of the anterior cingulate cortex, such as errors, conflict, error likelihood, and others. Given the variety of monitoring effects, a corresponding variety of control effects on behavior might be expected. This paper explores whether conflict and error likelihood produce distinct cognitive control effects on behavior, as measured by response time. A change signal task (Brown & Braver, 2005) was modified to include conditions of likely errors due to tardy as well as premature responses, in conditions with and without conflict. The results discriminate between competing hypotheses of independent vs. interacting conflict and error likelihood control effects. Specifically, the results suggest that the likelihood of premature vs. tardy response errors can lead to multiple distinct control effects, which are independent of cognitive control effects driven by response conflict. As a whole, the results point to the existence of multiple distinct cognitive control mechanisms and challenge existing models of cognitive control that incorporate only a single control signal. PMID:19030873

  6. Inhibition of misleading heuristics as a core mechanism for typical cognitive development: evidence from behavioural and brain-imaging studies.

    PubMed

    Borst, Grégoire; Aïte, Ania; Houdé, Olivier

    2015-04-01

    Cognitive development is generally conceived as incremental with knowledge of increasing complexity acquired throughout childhood and adolescence. However, several studies have now demonstrated not only that infants possess complex cognitive abilities but also that older children, adolescents, and adults tend to make systematic errors even in simple logical reasoning tasks. Therefore, one of the main issues for any theory of typical cognitive development is to provide an explanation of why at some age and in some contexts children, adolescents, and adults do not express a knowledge or cognitive principle that they already acquired when they were younger. In this review, we present convergent behavioural and neurocognitive evidence that cognitive development is more similar to a non-linear dynamic system than to a linear, stage-like system. In this theoretical framework, errors can emerge in problems similar to the ones infants or young children were succeeding when older children, adolescents, and adults rely on a misleading heuristic rather than on the correct logical algorithm to solve such problems. And the core mechanism for overcoming these errors is inhibitory control (i.e. the ability to inhibit the misleading heuristics). Therefore, typical cognitive development relies not only on the ability to acquire knowledge of incremental complexity but also to inhibit previously acquired knowledge. © 2015 The Authors. Developmental Medicine & Child Neurology © 2015 Mac Keith Press.

  7. Reduced emotional empathy in adults with subclinical ADHD: evidence from the empathy and systemizing quotient.

    PubMed

    Groen, Y; den Heijer, A E; Fuermaier, A B M; Althaus, M; Tucha, O

    2018-06-01

    Studies in children with ADHD suggest impairments in social cognitive functions, whereas studies in adults with ADHD are scarce and inconclusive. The aim of this study was to investigate the relationship between ADHD traits and self-reported social cognitive style in a sample of adults from the general population. For this purpose, a community sample of 685 adults filled out online self-report questionnaires about ADHD symptoms (ADHD Rating Scale, ARS), social cognitive functioning and friendships. The Empathy Quotient (EQ) with the subscales Cognitive Empathy (CE), Emotional Empathy (EE) and Social Skills (SS), and the Systemizing Quotient (SQ) were included for measuring social cognitive style and the Friendship Questionnaire (FQ) for the quality of friendships. Participants who met the DSM-5 criteria on the ARS ('subclinical ADHD'; n = 56) were compared regarding their social cognitive functioning scores with a control group (n = 56) that was matched for age, sex and student status. With small effect sizes, the subclinical ADHD group showed reduced EE scores on the EQ and a more male social cognitive profile. This result was not influenced by sex or ADHD subtype. This study points to a relationship between traits of ADHD and the emotional aspect of empathy, whereas more complex aspects of empathy were unrelated. These findings should be corroborated in clinical patients with ADHD, employing neuropsychological tests rather than self-report questionnaires.

  8. The Role of Working Memory for Cognitive Control in Anorexia Nervosa versus Substance Use Disorder

    PubMed Central

    Brooks, Samantha J.; Funk, Sabina G.; Young, Susanne Y.; Schiöth, Helgi B.

    2017-01-01

    Prefrontal cortex executive functions, such as working memory (WM) interact with limbic processes to foster impulse control. Such an interaction is referred to in a growing body of publications by terms such as cognitive control, cognitive inhibition, affect regulation, self-regulation, top-down control, and cognitive–emotion interaction. The rising trend of research into cognitive control of impulsivity, using various related terms reflects the importance of research into impulse control, as failure to employ cognitions optimally may eventually result in mental disorder. Against this background, we take a novel approach using an impulse control spectrum model – where anorexia nervosa (AN) and substance use disorder (SUD) are at opposite extremes – to examine the role of WM for cognitive control. With this aim, we first summarize WM processes in the healthy brain in order to frame a systematic review of the neuropsychological, neural and genetic findings of AN and SUD. In our systematic review of WM/cognitive control, we found n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93 studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we consider how WM load/capacity may support the neural process of excessive epistemic foraging (cognitive sampling of the environment to test predictions about the world) in AN that reduces distraction from salient stimuli. We also consider the link between WM and cognitive control in people with SUD who are prone to ‘jumping to conclusions’ and reduced epistemic foraging. Finally, in light of our review, we consider WM training as a novel research tool and an adjunct to enhance treatment that improves cognitive control of impulsivity. PMID:29018381

  9. Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems.

    PubMed

    Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N

    2015-12-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The cognitive neuroscience of time perception: how psychological studies might help to dissect the timing system.

    PubMed

    Wearden, John H

    2013-01-01

    It is argued that the cognitive neuroscience of time perception does not make sufficient use of a range of experimental techniques and theoretical approaches which might be useful in "dissecting" the human timing system, and thus helping to uncover its neural basis. These techniques are mostly inspired by scalar expectancy theory, but do not depend on acceptance of that model. Most of the methods result in the same physical stimuli giving rise to systematically different time judgements, thus they avoid problems of control which have haunted some areas of the cognitive neuroscience of timing. Among the possibilities are (a) changing the basic duration judgement of stimuli and events, (b) manipulating working memory and reference memories for duration, and (c) changing temporal decision processes. Copyright © 2012. Published by Elsevier Ltd.

  11. Methods of the pharmacological imaging of the cannabinoid system (PhICS) study: towards understanding the role of the brain endocannabinoid system in human cognition.

    PubMed

    van Hell, Hendrika H; Bossong, Matthijs G; Jager, Gerry; Kahn, René S; Ramsey, Nick F

    2011-03-01

    Various lines of (pre)clinical research indicate that cannabinoid agents carry the potential for therapeutic application to reduce symptoms in several psychiatric disorders. However, direct testing of the involvement of cannabinoid brain systems in psychiatric syndromes is essential for further development. In the Pharmacological Imaging of the Cannabinoid System (PhICS) study, the involvement of the endocannabinoid system in cognitive brain function is assessed by comparing acute effects of the cannabinoid agonist Δ9-tetrahydrocannabinol (THC) on brain function between healthy controls and groups of psychiatric patients showing cognitive dysfunction. This article describes the objectives and methods of the PhICS study and presents preliminary results of the administration procedure on subjective and neurophysiological parameters. Core elements in the methodology of PhICS are the administration method (THC is administered by inhalation using a vaporizing device) and a comprehensive use of pharmacological magnetic resonance imaging (phMRI) combining several types of MRI scans including functional MRI (fMRI), Arterial Spin Labeling (ASL) to measure brain perfusion, and resting-state fMRI. Additional methods like neuropsychological testing further specify the exact role of the endocannabinoid system in regulating cognition. Preliminary results presented in this paper indicate robust behavioral and subjective effects of THC. In addition, fMRI paradigms demonstrate activation of expected networks of brain regions in the cognitive domains of interest. The presented administration and assessment protocol provides a basis for further research on the involvement of the endocannabionoid systems in behavior and in psychopathology, which in turn may lead to development of therapeutic opportunities of cannabinoid ligands. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Pharmacological Treatment Effects on Eye Movement Control

    ERIC Educational Resources Information Center

    Reilly, James L.; Lencer, Rebekka; Bishop, Jeffrey R.; Keedy, Sarah; Sweeney, John A.

    2008-01-01

    The increasing use of eye movement paradigms to assess the functional integrity of brain systems involved in sensorimotor and cognitive processing in clinical disorders requires greater attention to effects of pharmacological treatments on these systems. This is needed to better differentiate disease and medication effects in clinical samples, to…

  13. Embedding Cognitive Systems into Systems Engineering Practice

    DTIC Science & Technology

    2008-12-01

    application. Brahms, developed out of NASA Ames, is free for research and to the An Analysis of Alternatives consists of eight steps 1. Determine...said to look like a Star Trek ™ control panel. Fields dynamically resize when user click on them. This is helpful for those with vision degradation

  14. Poka-yoke process controller: designed for individuals with cognitive impairments.

    PubMed

    Erlandson, R F; Sant, D

    1998-01-01

    Poka-yoke is a Japanese term meaning "error proofing." Poka-yoke techniques were developed to achieve zero defects in manufacturing and assembly processes. The application of these techniques tends to reduce both the physical and cognitive demands of tasks and thereby make them more accessible. Poka-yoke interventions create a dialogue between the worker and the process, and this dialogue provides the feedback necessary for workers to prevent errors. For individuals with cognitive impairments, weighing and counting tasks can be difficult or impossible. Interventions that provide sufficient feedback to workers without disabilities tend to be too subtle for workers with cognitive impairments; hence, the feedback must be enhanced. The Poka-Yoke Controller (PYC) was designed to assist individuals with counting and weighing tasks. The PYC interfaces to an Ohaus CT6000 digital scale for weighing parts and for counting parts by weight. It also interfaces to sensors and switches for object counting tasks. The PYC interfaces to a variety of programmable voice output devices so that voice feedback or prompting can be provided at specific points in the weighing or counting process. The PYC can also be interfaced to conveyor systems, indexed turntables, and other material handling systems for coordinated counting and material handling operations. In all of our applications to date, we have observed improved worker performance, improved process quality, and greater worker independence. These observed benefits have also significantly reduced the need for staff intervention. The process controller is described and three applications are presented: a weighing task and two counting applications.

  15. The Neural Mechanisms of Meditative Practices: Novel Approaches for Healthy Aging.

    PubMed

    Acevedo, Bianca P; Pospos, Sarah; Lavretsky, Helen

    2016-01-01

    Meditation has been shown to have physical, cognitive, and psychological health benefits that can be used to promote healthy aging. However, the common and specific mechanisms of response remain elusive due to the diverse nature of mind-body practices. In this review, we aim to compare the neural circuits implicated in focused-attention meditative practices that focus on present-moment awareness to those involved in active-type meditative practices (e.g., yoga) that combine movement, including chanting, with breath practices and meditation. Recent meta-analyses and individual studies demonstrated common brain effects for attention-based meditative practices and active-based meditations in areas involved in reward processing and learning, attention and memory, awareness and sensory integration, and self-referential processing and emotional control, while deactivation was seen in the amygdala, an area implicated in emotion processing. Unique effects for mindfulness practices were found in brain regions involved in body awareness, attention, and the integration of emotion and sensory processing. Effects specific to active-based meditations appeared in brain areas involved in self-control, social cognition, language, speech, tactile stimulation, sensorimotor integration, and motor function. This review suggests that mind-body practices can target different brain systems that are involved in the regulation of attention, emotional control, mood, and executive cognition that can be used to treat or prevent mood and cognitive disorders of aging, such as depression and caregiver stress, or serve as "brain fitness" exercise. Benefits may include improving brain functional connectivity in brain systems that generally degenerate with Alzheimer's disease, Parkinson's disease, and other aging-related diseases.

  16. When do people cooperate? The neuroeconomics of prosocial decision making.

    PubMed

    Declerck, Carolyn H; Boone, Christophe; Emonds, Griet

    2013-02-01

    Understanding the roots of prosocial behavior is an interdisciplinary research endeavor that has generated an abundance of empirical data across many disciplines. This review integrates research findings from different fields into a novel theoretical framework that can account for when prosocial behavior is likely to occur. Specifically, we propose that the motivation to cooperate (or not), generated by the reward system in the brain (extending from the striatum to the ventromedial prefrontal cortex), is modulated by two neural networks: a cognitive control system (centered on the lateral prefrontal cortex) that processes extrinsic cooperative incentives, and/or a social cognition system (including the temporo-parietal junction, the medial prefrontal cortex and the amygdala) that processes trust and/or threat signals. The independent modulatory influence of incentives and trust on the decision to cooperate is substantiated by a growing body of neuroimaging data and reconciles the apparent paradox between economic versus social rationality in the literature, suggesting that we are in fact wired for both. Furthermore, the theoretical framework can account for substantial behavioral heterogeneity in prosocial behavior. Based on the existing data, we postulate that self-regarding individuals (who are more likely to adopt an economically rational strategy) are more responsive to extrinsic cooperative incentives and therefore rely relatively more on cognitive control to make (un)cooperative decisions, whereas other-regarding individuals (who are more likely to adopt a socially rational strategy) are more sensitive to trust signals to avoid betrayal and recruit relatively more brain activity in the social cognition system. Several additional hypotheses with respect to the neural roots of social preferences are derived from the model and suggested for future research. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Community-Dwelling Elderly with a 3-D Virtual Reality Kayak Program.

    PubMed

    Park, Junhyuck; Yim, JongEun

    2016-01-01

    Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.

  18. Dream features in the early stages of Parkinson's disease.

    PubMed

    Bugalho, Paulo; Paiva, Teresa

    2011-11-01

    Few studies have investigated the relation between dream features and cognition in Parkinson's disease (PD), although vivid dreams, hallucinations and cognitive decline have been proposed as successive steps of a pathological continuum. Our objectives were therefore to characterize the dreams of early stage PD and to study the relation between dream characteristics, cognitive function, motor status, depression, dopaminergic treatment, and the presence of REM sleep behaviour disorder (RBD) and hallucinations. Dreams of 19 male PD patients and 21 matched control subjects were classified according to Hall and van de Castle system. h statistics was used to compare the dream content between patients and controls. We tested the relation between patients' dreams characteristics and cognitive function (Frontal assessment battery (FAB) and Mini-Mental State Examination tests) depression (Beck depression inventory), motor function (UPDRS), dopaminergic treatment, the presence of RBD (according to clinical criteria) and hallucinations, using general linear model statistics. Patients and controls differed only on FAB scores. Relevant differences in the Hall and van de Castle scale were found between patient's dreams and those of the control group, regarding animals, aggression/friendliness, physical aggression, befriender (higher in the patient group) and aggressor and bodily misfortunes (lower in the patient group) features. Cognitive and particularly frontal dysfunction had a significant influence on the frequency of physical aggression and animal related features, while dopaminergic doses, depressive symptoms, hallucinations and RBD did not. We found a pattern of dream alteration characterized by heightened aggressiveness and the presence of animals. These were related to more severe frontal dysfunction, which could be the origin of such changes.

  19. Neuromodelling based on evolutionary robotics: on the importance of motor control for spatial attention.

    PubMed

    Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio

    2015-09-01

    Mainstream approaches to modelling cognitive processes have typically focused on (1) reproducing their neural underpinning, without regard to sensory-motor systems and (2) producing a single, ideal computational model. Evolutionary robotics is an alternative possibility to bridge the gap between neural substrate and behavior by means of a sensory-motor apparatus, and a powerful tool to build a population of individuals rather than a single model. We trained 4 populations of neurorobots, equipped with a pan/tilt/zoom camera, and provided with different types of motor control in order to perform a cancellation task, often used to tap spatial cognition. Neurorobots' eye movements were controlled by (a) position, (b) velocity, (c) simulated muscles and (d) simulated muscles with fixed level of zoom. Neurorobots provided with muscle and velocity control showed better performances than those controlled in position. This is an interesting result since muscle control can be considered a particular type of position control. Finally, neurorobots provided with muscle control and zoom outperformed those without zooming ability.

  20. Estrogen Replacement Improves Verbal Memory and Executive Control in Oligomenorrheic/Amenorrheic Athletes in a Randomized Controlled Trial.

    PubMed

    Baskaran, Charumathi; Cunningham, Brooke; Plessow, Franziska; Singhal, Vibha; Woolley, Ryan; Ackerman, Kathryn E; Slattery, Meghan; Lee, Hang; Lawson, Elizabeth A; Eddy, Kamryn; Misra, Madhusmita

    2017-05-01

    Both estrogen and exercise may have cognition enhancing benefits; however, young oligomenorrheic/amenorrheic athletes (OA) with estrogen deficiency have not been evaluated for cognitive deficits. Our objective was to determine whether 6 months of estrogen replacement will impact cognitive domains in OA. We hypothesized that estrogen replacement would improve verbal memory and executive control in OA. We performed cognitive assessments at baseline and after 6 months in 48 OA (14-25 years) randomized to estrogen (EST+) (oral 30 µg ethinyl estradiol [n = 16] or transdermal 100 µg 17-β-estradiol patch [n = 13]) or no estrogen (EST-) (n = 19) in an ongoing clinical trial. Neurocognitive testing included California Verbal Learning Test-Second Edition (CVLT-II) (for verbal memory) and Delis-Kaplan Executive Function System Color-Word Interference Test (D-KEFS-CWIT) (executive control). On average, subjects (mean ± SEM age: 19.9 ± 3.1 years, body mass index: 20.6 ± 2.3 kg/m²) participated in 10.3 ± 5.9 hours per week of weight-bearing activities of their lower limbs. The EST+ group performed better for CVLT-II verbal memory scores for immediate recall over 6 months of therapy compared to EST- (P < .05) even after controlling for baseline scores and age. Changes in D-KEFS-CWIT scores over 6 months did not differ between the groups. However, the EST+ group had greater improvements in inhibition-switching completion time over 6 months compared with the EST- group after controlling for baseline scores and age (P = .01). OA show improvements in verbal memory and executive control following 6 months of estrogen replacement. These findings in athletes, who are in their prime of neurocognitive development, underscore the need for future studies exploring cognition in OA. ClinicalTrials.gov identifier: NCT00946192. © Copyright 2017 Physicians Postgraduate Press, Inc.

  1. Optimal trajectories of brain state transitions

    PubMed Central

    Gu, Shi; Betzel, Richard F.; Mattar, Marcelo G.; Cieslak, Matthew; Delio, Philip R.; Grafton, Scott T.; Pasqualetti, Fabio; Bassett, Danielle S.

    2017-01-01

    The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how white matter structure constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question by drawing on recent advances in network control theory to model the underlying mechanisms of brain state transitions as elicited by the collective control of region sets. We find that previously identified attention and executive control systems are poised to affect a broad array of state transitions that cannot easily be classified by traditional engineering-based notions of control. This theoretical versatility comes with a vulnerability to injury. In patients with mild traumatic brain injury, we observe a loss of specificity in putative control processes, suggesting greater susceptibility to neurophysiological noise. These results offer fundamental insights into the mechanisms driving brain state transitions in healthy cognition and their alteration following injury. PMID:28088484

  2. The role of meta-cognitions and thought control techniques in predisposition to auditory and visual hallucinations.

    PubMed

    García-Montes, José M; Cangas, Adolfo; Pérez-Alvarez, M; Fidalgo, Angel M; Gutiérrez, Olga

    2006-09-01

    This study examines the relationship between a predisposition to hallucinations and meta-cognitive variables and thought-control techniques, controlling for the possible effect of anxiety. In order to do so, we start out with the hypothesis that anxiety does not, in itself, explain the association between meta-cognitions and a predisposition to auditory and visual hallucinations. A within-participants correlational design was employed. Four psychometric tests relating to predisposition to hallucinations, anxiety, meta-cognitions and thought-control techniques were administered to 150 participants. It was found that, after controlling for participants' anxiety levels, the 'loss of cognitive confidence' factor predicted the score on the scale of predisposition to both auditory and visual hallucinations. Thought-control strategies based on worry were also found to be predictive of a greater predisposition to hallucinations, regardless of whether or not participants' anxiety level was controlled. Meta-cognitive variables of cognitive confidence and thought control through worry are positively associated with a predisposition to hallucinations. The correlational nature of the design does not allow inferences about causal relationships.

  3. Oscillatory mechanisms of process binding in memory.

    PubMed

    Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul

    2010-06-01

    A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Cognitive network organization and cockpit automation

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, R. J.; Paap, K. R.

    1985-01-01

    Attention is given to a technique for the derivation of pilot cognitive networks from empirical data, which has been successfully used to guide the redesign of the Control Display Unit that serves as the primary interface of the complex flight management system being developed by NASA's Advanced Concepts Flight Simulator program. The 'pathfinder' algorithm of Schvaneveldt et al. (1985) is used to obtain the conceptual organization of four pilots by generating a family of link-weighted networks from a set of psychological distance data derived through similarity ratings. The degree of conceptual agreement between pilots is assessed, and the means of translating a cognitive network into a menu structure are noted.

  5. The Influence of Negative Emotion on Cognitive and Emotional Control Remains Intact in Aging

    PubMed Central

    Zinchenko, Artyom; Obermeier, Christian; Kanske, Philipp; Schröger, Erich; Villringer, Arno; Kotz, Sonja A.

    2017-01-01

    Healthy aging is characterized by a gradual decline in cognitive control and inhibition of interferences, while emotional control is either preserved or facilitated. Emotional control regulates the processing of emotional conflicts such as in irony in speech, and cognitive control resolves conflict between non-affective tendencies. While negative emotion can trigger control processes and speed up resolution of both cognitive and emotional conflicts, we know little about how aging affects the interaction of emotion and control. In two EEG experiments, we compared the influence of negative emotion on cognitive and emotional conflict processing in groups of younger adults (mean age = 25.2 years) and older adults (69.4 years). Participants viewed short video clips and either categorized spoken vowels (cognitive conflict) or their emotional valence (emotional conflict), while the visual facial information was congruent or incongruent. Results show that negative emotion modulates both cognitive and emotional conflict processing in younger and older adults as indicated in reduced response times and/or enhanced event-related potentials (ERPs). In emotional conflict processing, we observed a valence-specific N100 ERP component in both age groups. In cognitive conflict processing, we observed an interaction of emotion by congruence in the N100 responses in both age groups, and a main effect of congruence in the P200 and N200. Thus, the influence of emotion on conflict processing remains intact in aging, despite a marked decline in cognitive control. Older adults may prioritize emotional wellbeing and preserve the role of emotion in cognitive and emotional control. PMID:29163132

  6. The Influence of Negative Emotion on Cognitive and Emotional Control Remains Intact in Aging.

    PubMed

    Zinchenko, Artyom; Obermeier, Christian; Kanske, Philipp; Schröger, Erich; Villringer, Arno; Kotz, Sonja A

    2017-01-01

    Healthy aging is characterized by a gradual decline in cognitive control and inhibition of interferences, while emotional control is either preserved or facilitated. Emotional control regulates the processing of emotional conflicts such as in irony in speech, and cognitive control resolves conflict between non-affective tendencies. While negative emotion can trigger control processes and speed up resolution of both cognitive and emotional conflicts, we know little about how aging affects the interaction of emotion and control. In two EEG experiments, we compared the influence of negative emotion on cognitive and emotional conflict processing in groups of younger adults (mean age = 25.2 years) and older adults (69.4 years). Participants viewed short video clips and either categorized spoken vowels (cognitive conflict) or their emotional valence (emotional conflict), while the visual facial information was congruent or incongruent. Results show that negative emotion modulates both cognitive and emotional conflict processing in younger and older adults as indicated in reduced response times and/or enhanced event-related potentials (ERPs). In emotional conflict processing, we observed a valence-specific N100 ERP component in both age groups. In cognitive conflict processing, we observed an interaction of emotion by congruence in the N100 responses in both age groups, and a main effect of congruence in the P200 and N200. Thus, the influence of emotion on conflict processing remains intact in aging, despite a marked decline in cognitive control. Older adults may prioritize emotional wellbeing and preserve the role of emotion in cognitive and emotional control.

  7. Maternal control, cognitive style, and childhood anxiety: a test of a theoretical model in a multi-ethnic sample.

    PubMed

    Creveling, C Christiane; Varela, R Enrique; Weems, Carl F; Corey, David M

    2010-08-01

    This study tested a theoretical model of the interrelations among controlling parenting, negative cognitive styles, children's anxiety, and race/ethnicity. The model suggests that, in general, cognitive style mediates the relation between maternal control and child anxiety but that the set of associations may differ as a function of ethnicity. African American (n = 235), Latin American (n = 56), and European American (n = 136) children completed measures of their anxiety, cognitive schemas reflecting impaired autonomy/performance and disconnection/rejection domains, and maternal control. Results indicated that a disconnection/rejection negative cognitive style mediated the effect of perceived maternal control on childhood anxiety only for the European American group. Maternal control was associated with the impaired autonomy/performance cognitive style for each of the three ethnic groups and with a disconnection/rejection cognitive style only for the European American and Latin American groups. Maternal control had an indirect effect on anxiety through the disconnection/rejection cognitive style for the Latin American group. The results are discussed in terms of how the model presented extends current theories of anxiety problems to African American and Latin American children by noting that significant cultural variations may exist in how parenting practices and cognitive styles relate to children's anxiety levels.

  8. Is there a cognitive signature for MS-related fatigue?

    PubMed

    Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut

    2015-04-01

    The compensatory approach of fatigue argues that it is a state caused by task load. The neuropsychiatric approach argues that fatigue is a trait (like depression), unrelated to environmental challenges. We propose that fatigue is an internal state that can be measured behaviorally only by applying specific cognitive tasks. PubMed was searched for articles concerning the relation between fatigue and cognitive performance or brain atrophy or functional MRI, distinguishing between the following cognitive domains: learning/memory, cognitive speed/selective attention, language, visuospatial processing, working memory, alerting/vigilance. Only tasks assessing alerting/vigilance are strongly related to fatigue. Areas with brain atrophy in fatigue patients overlap with brain regions activated in healthy controls performing alerting/vigilance tasks. Fatigue is not a compensatory state, nor a psychogenic trait. It is a feeling with behavioral effects that seems to be caused by brain atrophy or a neurochemical dysfunction of the alerting/vigilance system. © The Author(s), 2014.

  9. Control Networks and Neuromodulators of Early Development

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale

    2012-01-01

    In adults, most cognitive and emotional self-regulation is carried out by a network of brain regions, including the anterior cingulate, insula, and areas of the basal ganglia, related to executive attention. We propose that during infancy, control systems depend primarily upon a brain network involved in orienting to sensory events that includes…

  10. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  11. Learning and Adaptive Hybrid Systems for Nonlinear Control

    DTIC Science & Technology

    1991-05-01

    34 Invention Report, S81-64, File 1, Office of Technology Liscensirig, Stanford University, 1982. [Ros62J Rosenblatt, F., Principles of Neurodynamics ...Explorations in the Microstructure of Cognition , vol. 1, Rumelhart, D., and J. McClelland, ed., MIT Press, Carbnbdge, MA, 1986. [RI-1W86] Rumnelhart, D., 0...Microstructure of Cognition , vol. 1, Rumelhart, D., and J. McClelland, ed., MIT Pres, Cambridge, MA, 1986. [Sain67] Samuel, A., "Some Studies in Machine Learning

  12. Relationship between fruit and vegetable intake and interference control in breast cancer survivors.

    PubMed

    Zuniga, Krystle E; Mackenzie, Michael J; Roberts, Sarah A; Raine, Lauren B; Hillman, Charles H; Kramer, Arthur F; McAuley, Edward

    2016-06-01

    Nutrition plays an important role in brain structure and function, and the effects of diet may even be greater in those at greater risk of cognitive decline, such as individuals with cancer-related cognitive impairment. However, the relation of dietary components to cognitive function in cancer survivors is unknown. The objective of this study was to determine whether breast cancer survivors (BCS) evidenced impairments in interference control, a component of cognitive control, compared to age-matched women with no prior history of cancer, and to examine the moderating role of diet on cognitive function. In this cross-sectional study, a modified flanker task was used to assess interference control in BCS (n = 31) and age-matched women with no prior history of cancer (n = 30). Diet was assessed with 3-day food records. Differences between BCS and age-matched controls were assessed using linear mixed models, and multilevel regression analyses were conducted to assess the moderating role of diet on cognitive performance. Cognitive performance was not different between groups. Fruit intake and vegetable intake were significantly associated with better performance on the incompatible condition of the flanker task (i.e., shorter reaction time and increased accuracy), independent of disease status. The association between dietary components and cognition was stronger for the incompatible incongruent condition, suggesting that fruit and vegetables may be important for the up-regulation of cognitive control when faced with higher cognitive demands. There was no difference in performance on an interference control task between BCS and age-matched controls. The data suggest that greater fruit intake and vegetable intake were positively associated with interference control in both BCS and age-matched controls.

  13. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    PubMed

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision.

  14. Approximate entropy: a new evaluation approach of mental workload under multitask conditions

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Li, Xiaoling; Wang, Wei; Dong, Yuanzhe; Jiang, Ying

    2014-04-01

    There are numerous instruments and an abundance of complex information in the traditional cockpit display-control system, and pilots require a long time to familiarize themselves with the cockpit interface. This can cause accidents when they cope with emergency events, suggesting that it is necessary to evaluate pilot cognitive workload. In order to establish a simplified method to evaluate cognitive workload under a multitask condition. We designed a series of experiments involving different instrument panels and collected electroencephalograms (EEG) from 10 healthy volunteers. The data were classified and analyzed with an approximate entropy (ApEn) signal processing. ApEn increased with increasing experiment difficulty, suggesting that it can be used to evaluate cognitive workload. Our results demonstrate that ApEn can be used as an evaluation criteria of cognitive workload and has good specificity and sensitivity. Moreover, we determined an empirical formula to assess the cognitive workload interval, which can simplify cognitive workload evaluation under multitask conditions.

  15. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    PubMed

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  16. Pharmacological cognitive enhancement: treatment of neuropsychiatric disorders and lifestyle use by healthy people.

    PubMed

    Sahakian, Barbara J; Morein-Zamir, Sharon

    2015-04-01

    Neuropsychiatric disorders typically manifest as problems with attentional biases, aberrant learning, dysfunctional reward systems, and an absence of top-down cognitive control by the prefrontal cortex. In view of the cost of common mental health disorders, in terms of distress to the individual and family in addition to the financial cost to society and governments, new developments for treatments that address cognitive dysfunction should be a priority so that all members of society can flourish. Cognitive enhancing drugs, such as cholinesterase inhibitors and methylphenidate, are used as treatments for the cognitive symptoms of Alzheimer's disease and attention deficit hyperactivity disorder. However, these drugs and others, including modafinil, are being increasingly used by healthy people for enhancement purposes. Importantly for ethical and safety reasons, the drivers for this increasing lifestyle use of so-called smart drugs by healthy people should be considered and discussions must occur about how to ensure present and future pharmacological cognitive enhancers are used for the benefit of society. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    PubMed Central

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  18. Functional near-infrared spectroscopy for adaptive human-computer interfaces

    NASA Astrophysics Data System (ADS)

    Yuksel, Beste F.; Peck, Evan M.; Afergan, Daniel; Hincks, Samuel W.; Shibata, Tomoki; Kainerstorfer, Jana; Tgavalekos, Kristen; Sassaroli, Angelo; Fantini, Sergio; Jacob, Robert J. K.

    2015-03-01

    We present a brain-computer interface (BCI) that detects, analyzes and responds to user cognitive state in real-time using machine learning classifications of functional near-infrared spectroscopy (fNIRS) data. Our work is aimed at increasing the narrow communication bandwidth between the human and computer by implicitly measuring users' cognitive state without any additional effort on the part of the user. Traditionally, BCIs have been designed to explicitly send signals as the primary input. However, such systems are usually designed for people with severe motor disabilities and are too slow and inaccurate for the general population. In this paper, we demonstrate with previous work1 that a BCI that implicitly measures cognitive workload can improve user performance and awareness compared to a control condition by adapting to user cognitive state in real-time. We also discuss some of the other applications we have used in this field to measure and respond to cognitive states such as cognitive workload, multitasking, and user preference.

  19. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  20. Cognitive Training and Transcranial Direct Current Stimulation for Mild Cognitive Impairment in Parkinson's Disease: A Randomized Controlled Trial

    PubMed Central

    Gasson, Natalie; Johnson, Andrew R.; Booth, Leon; Loftus, Andrea M.

    2018-01-01

    This study examined whether standard cognitive training, tailored cognitive training, transcranial direct current stimulation (tDCS), standard cognitive training + tDCS, or tailored cognitive training + tDCS improved cognitive function and functional outcomes in participants with PD and mild cognitive impairment (PD-MCI). Forty-two participants with PD-MCI were randomized to one of six groups: (1) standard cognitive training, (2) tailored cognitive training, (3) tDCS, (4) standard cognitive training + tDCS, (5) tailored cognitive training + tDCS, or (6) a control group. Interventions lasted 4 weeks, with cognitive and functional outcomes measured at baseline, post-intervention, and follow-up. The trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR: 12614001039673). While controlling for moderator variables, Generalized Linear Mixed Models (GLMMs) showed that when compared to the control group, the intervention groups demonstrated variable statistically significant improvements across executive function, attention/working memory, memory, language, activities of daily living (ADL), and quality of life (QOL; Hedge's g range = 0.01 to 1.75). More outcomes improved for the groups that received standard or tailored cognitive training combined with tDCS. Participants with PD-MCI receiving cognitive training (standard or tailored) or tDCS demonstrated significant improvements on cognitive and functional outcomes, and combining these interventions provided greater therapeutic effects. PMID:29780572

  1. Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat

    PubMed Central

    Newman, Lori A.; Creer, David J.; McGaughy, Jill A.

    2014-01-01

    Converging evidence supports the hypothesis that the prefrontal cortex is critical for cognitive control. One prefrontal subregion, the anterior cingulate cortex, is hypothesized to be necessary to resolve response conflicts, disregard salient distractors and alter behavior in response to the generation of an error. These situations all involve goal-oriented monitoring of performance in order to effectively adjust cognitive processes. Several neuropsychological disorders, e.g., schizophrenia, attention deficit hyperactivity and obsessive compulsive disorder, are accompanied by morphological changes in the anterior cingulate cortex. These changes are hypothesized to underlie the impairments on tasks that require cognitive control found in these subjects. A novel conflict monitoring task was used to assess the effects on cognitive control of excitotoxic lesions to anterior cingulate cortex in rats. Prior to surgery all subjects showed improved accuracy on the second of two consecutive, incongruent trials. Lesions to the anterior cingulate cortex abolished this. Lesioned animals had difficulty in adjusting cognitive control on a trial-by-trial basis regardless of whether cognitive changes were increased or decreased. These results support a role for the anterior cingulate cortex in adjustments in cognitive control. PMID:25051488

  2. Higher education is an age-independent predictor of white matter integrity and cognitive control in late adolescence.

    PubMed

    Noble, Kimberly G; Korgaonkar, Mayuresh S; Grieve, Stuart M; Brickman, Adam M

    2013-09-01

    Socioeconomic status is an important predictor of cognitive development and academic achievement. Late adolescence provides a unique opportunity to study how the attainment of socioeconomic status (in the form of years of education) relates to cognitive and neural development, during a time when age-related cognitive and neural development is ongoing. During late adolescence it is possible to disambiguate age- and education-related effects on the development of these processes. Here we assessed the degree to which higher educational attainment was related to performance on a cognitive control task, controlling for age. We then used diffusion tensor imaging (DTI) to assess the degree to which white matter microstructure might mediate this relationship. When covarying age, significant associations were found between educational attainment and fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF) and cingulum bundle (CB). Further, when covarying age, FA in these regions was associated with cognitive control. Finally, mediation analyses revealed that the age-independent association between educational attainment and cognitive control was completely accounted for by FA in these regions. The uncinate fasciculus, a late-myelinated control region not implicated in cognitive control, did not mediate this effect. © 2013 John Wiley & Sons Ltd.

  3. Task control and cognitive abilities of self and spouse in collaboration in middle-aged and older couples.

    PubMed

    Berg, Cynthia A; Smith, Timothy W; Ko, Kelly J; Beveridge, Ryan M; Story, Nathan; Henry, Nancy J M; Florsheim, Paul; Pearce, Gale; Uchino, Bert N; Skinner, Michelle A; Glazer, Kelly

    2007-09-01

    Collaborative problem solving may be used by older couples to optimize cognitive functioning, with some suggestion that older couples exhibit greater collaborative expertise. The study explored age differences in 2 aspects of collaborative expertise: spouses' knowledge of their own and their spouse's cognitive abilities and the ability to fit task control to these cognitive abilities. The participants were 300 middle-aged and older couples who completed a hypothetical errand task. The interactions were coded for control asserted by husbands and wives. Fluid intelligence was assessed, and spouses rated their own and their spouse's cognitive abilities. The results revealed no age differences in couple expertise, either in the ability to predict their own and their spouse's cognitive abilities or in the ability to fit task control to abilities. However, gender differences were found. Women fit task control to their own and their spouse's cognitive abilities; men only fit task control to their spouse's cognitive abilities. For women only, the fit between control and abilities was associated with better performance. The results indicate no age differences in couple expertise but point to gender as a factor in optimal collaboration. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  4. Cognitive functioning following stabilisation from first episode mania.

    PubMed

    Daglas, Rothanthi; Allott, Kelly; Yücel, Murat; Henry, Lisa P; Macneil, Craig A; Hasty, Melissa K; Berk, Michael; Cotton, Sue M

    2017-12-18

    The purpose of this study was to examine cognitive functioning in people following first-episode mania relative to a demographically similar healthy control group. Forty-one patients, who had recently stabilised from a first manic episode, and twenty-one healthy controls, were compared in an extensive cognitive assessment. First-episode mania participants had significantly lower Full-Scale IQ (FSIQ) relative to healthy controls; however, this finding could be driven by premorbid differences in intellectual functioning. There were no significant differences between groups in Verbal IQ (VIQ) and Performance IQ (PIQ). First-episode mania participants performed significantly poorer than healthy controls in processing speed, verbal learning and memory, working memory, and cognitive flexibility with medium-to-large effects. There were no group differences in other measures of cognition. Participants following first-episode mania have poorer global intelligence than healthy controls, and have cognitive difficulties in some, but not all areas of cognitive functioning. This highlights the importance of early intervention and cognitive assessment in the early course of the disorder.

  5. Emotional foundations of cognitive control.

    PubMed

    Inzlicht, Michael; Bartholow, Bruce D; Hirsh, Jacob B

    2015-03-01

    Often seen as the paragon of higher cognition, here we suggest that cognitive control is dependent on emotion. Rather than asking whether control is influenced by emotion, we ask whether control itself can be understood as an emotional process. Reviewing converging evidence from cybernetics, animal research, cognitive neuroscience, and social and personality psychology, we suggest that cognitive control is initiated when goal conflicts evoke phasic changes to emotional primitives that both focus attention on the presence of goal conflicts and energize conflict resolution to support goal-directed behavior. Critically, we propose that emotion is not an inert byproduct of conflict but is instrumental in recruiting control. Appreciating the emotional foundations of control leads to testable predictions that can spur future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Emotional foundations of cognitive control

    PubMed Central

    Inzlicht, Michael; Bartholow, Bruce D.; Hirsh, Jacob B.

    2015-01-01

    Often seen as the paragon of higher cognition, here we suggest that cognitive control is dependent on emotion. Rather than asking whether control is influenced by emotion, we ask whether control itself can be understood as an emotional process. Reviewing converging evidence from cybernetics, animal research, cognitive neuroscience, and social and personality psychology, we suggest that cognitive control is initiated when goal conflicts evoke phasic changes to emotional primitives that both focus attention on the presence of goal conflicts and energize conflict resolution to support goal-directed behavior. Critically, we propose that emotion is not an inert byproduct of conflict but is instrumental in recruiting control. Appreciating the emotional foundations of control leads to testable predictions that can spur future research. PMID:25659515

  7. Challenges of CAC in Heterogeneous Wireless Cognitive Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiazheng; Fu, Xiuhua

    Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.

  8. Characterizing neurocognitive late effects in childhood leukemia survivors using a combination of neuropsychological and cognitive neuroscience measures.

    PubMed

    Van Der Plas, Ellen; Erdman, Lauren; Nieman, Brian J; Weksberg, Rosanna; Butcher, Darci T; O'connor, Deborah L; Aufreiter, Susanne; Hitzler, Johann; Guger, Sharon L; Schachar, Russell J; Ito, Shinya; Spiegler, Brenda J

    2017-10-10

    Knowledge about cognitive late effects in survivors of childhood acute lymphoblastic leukemia (ALL) is largely based on standardized neuropsychological measures and parent reports. To examine whether cognitive neuroscience paradigms provided additional insights into neurocognitive and behavioral late effects in ALL survivors, we assessed cognition and behavior using a selection of cognitive neuroscience tasks and standardized measures probing domains previously demonstrated to be affected by chemotherapy. 130 ALL survivors and 158 control subjects, between 8 and 18 years old at time of testing, completed the n-back (working memory) and stop-signal (response inhibition) tasks. ALL survivors also completed standardized measures of intelligence (Wechsler Intelligence Scales [WISC-IV]), motor skills (Grooved Pegboard), math abilities (WIAT-III), and executive functions (Delis-Kaplan Executive Function System). Parents completed behavioral measures of executive functions (Behavior Rating Inventory of Executive Function [BRIEF]) and attention (Conners-3). ALL survivors exhibited deficiencies in working memory and response inhibition compared with controls. ALL survivors also exhibited deficits on WISC-IV working memory and processing speed, Grooved Pegboard, WIAT-III addition and subtraction fluency, and numerical operations, as well as DKEFS number-letter switching. Parent reports suggested more attention deficits (Conners-3) and behavioral difficulties (BRIEF) in ALL survivors compared with referenced norms. Low correspondence between standardized and experimental measures of working memory and response inhibition was noted. The use of cognitive neuroscience paradigms complements our understanding of the cognitive deficits evident after treatment of ALL. These measures could further delineate cognitive processes involved in neurocognitive late effects, providing opportunities to explore their underlying mechanisms.

  9. Levels of integration in cognitive control and sequence processing in the prefrontal cortex.

    PubMed

    Bahlmann, Jörg; Korb, Franziska M; Gratton, Caterina; Friederici, Angela D

    2012-01-01

    Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.

  10. Levels of Integration in Cognitive Control and Sequence Processing in the Prefrontal Cortex

    PubMed Central

    Bahlmann, Jörg; Korb, Franziska M.; Gratton, Caterina; Friederici, Angela D.

    2012-01-01

    Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex. PMID:22952762

  11. An Abstract Process and Metrics Model for Evaluating Unified Command and Control: A Scenario and Technology Agnostic Approach

    DTIC Science & Technology

    2004-06-01

    18 EBO Cognitive or Memetic input type ..................................................................... 18 Unanticipated EBO generated... Memetic Effects Based COA.................................................................................... 23 Policy...41 Belief systems or Memetic Content Metrics

  12. An evaluation of the cognitive and mood effects of an energy shot over a 6h period in volunteers: a randomized, double-blind, placebo controlled, cross-over study.

    PubMed

    Wesnes, Keith A; Barrett, Marilyn L; Udani, Jay K

    2013-08-01

    Energy drinks are widely available mostly containing glucose, and several have been demonstrated to improve alertness and cognitive function; these effects generally being identified 30-60min after administration. The present study assessed whether an energy shot without carbohydrates would affect major aspects of cognitive function and also mood in volunteers over a 6h time period. This randomized, double-blind, placebo-controlled,crossover study compared the acute effects of the energy shot with a matching placebo in 94 healthy volunteers. Cognitive function was assessed with a widely used set of automated tests of attention and memory. Mood was assessed with the Bond-Lader, Beck Anxiety Index, Beck Depression Index, Chalder Fatigue Scales (CFS), and the POMS. The volunteers were requested to limit their sleep to between 3 and 6h the night before each testing day. Compared to the placebo, the energy shot significantly improved 6 validated composite cognitive function measures from the CDR System as well as self-rated alertness; the benefits on 4 of the cognitive measures still remaining at 6h. The overall effect sizes of the performance improvements were in the small to medium range and thus notable in this field. In conclusion, an energy shot can significantly improve important aspects of cognitive function for up to 6h compared to placebo in partially sleep-deprived healthy volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The effect of telephone-based cognitive-behavioural therapy on parenting stress: A randomised controlled trial.

    PubMed

    Ngai, Fei Wan; Wong, Paul Wai-Ching; Chung, Ka Fai; Leung, Kwok Yin

    2016-07-01

    Objective Stress related to parenting has detrimental effects on the well-being of children, parents and the family system as a whole. There are limited studies about the efficacy of cognitive-behavioural therapy delivered by telephone in reducing parenting stress. The present study investigates the effect of telephone-based cognitive-behavioural therapy on parenting stress at six weeks and six months postpartum. This is a multi-site randomised controlled trial. A total of 397 Chinese mothers at risk of postnatal depression were randomly assigned to receive either telephone-based cognitive-behavioural therapy or routine postpartum care. Parental stress was assessed by the Parenting Stress Index Short Form at six weeks and six months postpartum. The findings revealed that mothers who had received telephone-based cognitive-behavioural therapy showed significantly lower levels of parenting stress than women only receiving routine postpartum care at six weeks (mean difference=9.42, 95% confidence interval 5.85-12.99, p<0.001, Cohen's d=0.52) and six months postpartum (mean difference=3.58, 95% confidence interval 0.07-7.09, p=0.046, Cohen's d=0.20). Telephone-based cognitive-behavioural therapy is a promising treatment modality for supporting parenting and reducing stress during the transition period. Integration of telephone-based cognitive-behavioural therapy into routine postpartum care might facilitate positive adaptation in particular for mothers at risk of postnatal depression. Copyright © 2016. Published by Elsevier Inc.

  14. No negative priming without cognitive control.

    PubMed

    de Fockert, Jan W; Mizon, Guy A; D'Ubaldo, Mariangela

    2010-12-01

    There is evidence that the efficiency of selective attention depends on the availability of cognitive control mechanisms as distractor processing has been found to increase with high load on working memory or dual task coordination (Lavie, Hirst, de Fockert, & Viding, 2004). We tested the prediction that cognitive control load would also affect the negative priming effect produced when a distractor from 1 trial appears as a target on the next trial. We measured priming on trials that involved either high or low cognitive control load, and found that under high control load, negative priming was eliminated, and could even be reversed to positive priming, suggesting that the negative priming effect depends on the availability of cognitive control resources.

  15. Improving fluid intelligence with training on working memory: a meta-analysis.

    PubMed

    Au, Jacky; Sheehan, Ellen; Tsai, Nancy; Duncan, Greg J; Buschkuehl, Martin; Jaeggi, Susanne M

    2015-04-01

    Working memory (WM), the ability to store and manipulate information for short periods of time, is an important predictor of scholastic aptitude and a critical bottleneck underlying higher-order cognitive processes, including controlled attention and reasoning. Recent interventions targeting WM have suggested plasticity of the WM system by demonstrating improvements in both trained and untrained WM tasks. However, evidence on transfer of improved WM into more general cognitive domains such as fluid intelligence (Gf) has been more equivocal. Therefore, we conducted a meta-analysis focusing on one specific training program, n-back. We searched PubMed and Google Scholar for all n-back training studies with Gf outcome measures, a control group, and healthy participants between 18 and 50 years of age. In total, we included 20 studies in our analyses that met our criteria and found a small but significant positive effect of n-back training on improving Gf. Several factors that moderate this transfer are identified and discussed. We conclude that short-term cognitive training on the order of weeks can result in beneficial effects in important cognitive functions as measured by laboratory tests.

  16. Psychological interventions for behavioral adjustments in diabetes care - a value-based approach to disease control.

    PubMed

    Chew, Boon-How; Fernandez, Aaron; Shariff-Ghazali, Sazlina

    2018-01-01

    Psychological aspects of a person, such as the personal value and belief systems, cognition and emotion, form the basis of human health behaviors, which, in turn, influence self-management, self-efficacy, quality of life, disease control and clinical outcomes in people with chronic diseases such as diabetes mellitus. However, psychological, psychosocial and behavioral interventions aimed at these groups of patients have yielded inconsistent effects in terms of clinical outcomes in clinical trials. This might have been due to differing conceptualization of health behavioral theories and models in the interventions. Assimilating different theories of human behavior, this narrative review attempts to demonstrate the potential modulatory effects of intrinsic values on cognitive and affective health-directed interventions. Interventions that utilize modification of cognition alone via education or that focuses on both cognitive and emotional levels are hardly adequate to initiate health-seeking behavior and much less to sustain them. People who are aware of their own personal values and purpose in life would be more motivated to practice good health-related behavior and persevere in them.

  17. Gerontechnology: Providing a Helping Hand When Caring for Cognitively Impaired Older Adults—Intermediate Results from a Controlled Study on the Satisfaction and Acceptance of Informal Caregivers

    PubMed Central

    Mitseva, Anelia; Peterson, Carrie Beth; Karamberi, Christina; Oikonomou, Lamprini Ch.; Ballis, Athanasios V.; Giannakakos, Charalampos; Dafoulas, George E.

    2012-01-01

    The incidence of cognitive impairment in older age is increasing, as is the number of cognitively impaired older adults living in their own homes. Due to lack of social care resources for these adults and their desires to remain in their own homes and live as independently as possible, research shows that the current standard care provisions are inadequate. Promising opportunities exist in using home assistive technology services to foster healthy aging and to realize the unmet needs of these groups of citizens in a user-centered manner. ISISEMD project has designed, implemented, verified, and assessed an assistive technology platform of personalized home care (telecare) for the elderly with cognitive impairments and their caregivers by offering intelligent home support services. Regions from four European countries have carried out long-term pilot-controlled study in real-life conditions. This paper presents the outcomes from intermediate evaluations pertaining to user satisfaction with the system, acceptance of the technology and the services, and quality of life outcomes as a result of utilizing the services. PMID:22536230

  18. Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey

    PubMed Central

    Islam, A. K. M. Muzahidul; Baharun, Sabariah; Mansoor, Nafees

    2017-01-01

    New wireless network paradigms will demand higher spectrum use and availability to cope with emerging data-hungry devices. Traditional static spectrum allocation policies cause spectrum scarcity, and new paradigms such as Cognitive Radio (CR) and new protocols and techniques need to be developed in order to have efficient spectrum usage. Medium Access Control (MAC) protocols are accountable for recognizing free spectrum, scheduling available resources and coordinating the coexistence of heterogeneous systems and users. This paper provides an ample review of the state-of-the-art MAC protocols, which mainly focuses on Cognitive Radio Ad Hoc Networks (CRAHN). First, a description of the cognitive radio fundamental functions is presented. Next, MAC protocols are divided into three groups, which are based on their channel access mechanism, namely time-slotted protocol, random access protocol and hybrid protocol. In each group, a detailed and comprehensive explanation of the latest MAC protocols is presented, as well as the pros and cons of each protocol. A discussion on future challenges for CRAHN MAC protocols is included with a comparison of the protocols from a functional perspective. PMID:28926952

  19. Kinematic and Pressure Features of Handwriting and Drawing: Preliminary Results Between Patients with Mild Cognitive Impairment, Alzheimer Disease and Healthy Controls

    PubMed Central

    Garre-Olmo, Josep; Faúndez-Zanuy, Marcos; López-de-Ipiña, Karmele; Calvó-Perxas, Laia; Turró-Garriga, Oriol

    2017-01-01

    Background: Alzheimer’s disease (AD) is the most common neurodegenerative dementia of old age, and the leading chronic disease contributor to disability and dependence among older people worldwide. Clinically, AD is characterized by a progressive cognitive decline that interferes with the abil-ity to perform the activities of daily living. Handwriting and drawing are complex human activities that entail an intricate blend of cognitive, kinesthetic, and perceptual-motor features. Objective: To compare the kinematic characteristics of handwriting and drawing between patients with AD, patients with mild cognitive impairment (MCI) and healthy controls. Methods: We used a cross-sectional and observational design to assess the kinematic and pressure fea-tures of handwriting and drawing using a computerized system. Participants were asked to copy one sen-tence, write a dictated sentence and an own sentence, copy two and-three dimensions drawings, and to execute the clock drawing test. By means of discriminant analyses, we explored the value of several kin-ematic features in order to classify participants depending on their degree of cognitive functioning. Results: The sample consisted of 52 participants (23 AD, 12 MCI, and 17 healthy controls) with a mean age of 69.7 years (SD=8.11). The degree of correct classification was largely dependent on the nature of the groups to be classified and the specific task, and ranged between 63.5% and 100%. Diagnostic accu-racy based on kinematic measures showed higher specificity values for distinguishing between normal and impaired cognition (MCI and AD), and higher sensitivity was obtained when distinguishing between impaired cognition levels (MCI vs. AD). Conclusion: The kinematic features of writing and drawing procedures, rather than the final product, may be a useful and objective complement to the clinical assessment of patients with cognitive impairment. PMID:28290244

  20. Kinematic and Pressure Features of Handwriting and Drawing: Preliminary Results Between Patients with Mild Cognitive Impairment, Alzheimer Disease and Healthy Controls.

    PubMed

    Garre-Olmo, Josep; Faúndez-Zanuy, Marcos; López-de-Ipiña, Karmele; Calvó-Perxas, Laia; Turró-Garriga, Oriol

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative dementia of old age, and the leading chronic disease contributor to disability and dependence among older people worldwide. Clinically, AD is characterized by a progressive cognitive decline that interferes with the ability to perform the activities of daily living. Handwriting and drawing are complex human activities that entail an intricate blend of cognitive, kinesthetic, and perceptual-motor features. To compare the kinematic characteristics of handwriting and drawing between patients with AD, patients with mild cognitive impairment (MCI) and healthy controls. We used a cross-sectional and observational design to assess the kinematic and pressure features of handwriting and drawing using a computerized system. Participants were asked to copy one sentence, write a dictated sentence and an own sentence, copy two and-three dimensions drawings, and to execute the clock drawing test. By means of discriminant analyses, we explored the value of several kinematic features in order to classify participants depending on their degree of cognitive functioning. The sample consisted of 52 participants (23 AD, 12 MCI, and 17 healthy controls) with a mean age of 69.7 years (SD=8.11). The degree of correct classification was largely dependent on the nature of the groups to be classified and the specific task, and ranged between 63.5% and 100%. Diagnostic accuracy based on kinematic measures showed higher specificity values for distinguishing between normal and impaired cognition (MCI and AD), and higher sensitivity was obtained when distinguishing between impaired cognition levels (MCI vs. AD). The kinematic features of writing and drawing procedures, rather than the final product, may be a useful and objective complement to the clinical assessment of patients with cognitive impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Effects of Aerobic Exercise on Mild Cognitive Impairment

    PubMed Central

    Baker, Laura D.; Frank, Laura L.; Foster-Schubert, Karen; Green, Pattie S.; Wilkinson, Charles W.; McTiernan, Anne; Plymate, Stephen R.; Fishel, Mark A.; Stennis Watson, G.; Cholerton, Brenna A.; Duncan, Glen E.; Mehta, Pankaj D.; Craft, Suzanne

    2011-01-01

    Objectives To examine the effects of aerobic exercise on cognition and other biomarkers associated with Alzheimer disease pathology for older adults with mild cognitive impairment, and assess the role of sex as a predictor of response. Design Six-month, randomized, controlled, clinical trial. Setting Veterans Affairs Puget Sound Health Care System clinical research unit. Participants Thirty-three adults (17 women) with amnestic mild cognitive impairment ranging in age from 55 to 85 years (mean age,70 years). Intervention Participants were randomized either to a high-intensity aerobic exercise or stretching control group. The aerobic group exercised under the supervision of a fitness trainer at 75% to 85% of heart rate reserve for 45 to 60 min/d, 4 d/wk for 6 months. The control group carried out supervised stretching activities according to the same schedule but maintained their heart rate at or below 50% of their heart rate reserve. Before and after the study, glucometabolic and treadmill tests were performed and fat distribution was assessed using dual-energy x-ray absorptiometry. At baseline, month 3, and month 6, blood was collected for assay and cognitive tests were administered. Main Outcome Measures Performance measures on Symbol-Digit Modalities, Verbal Fluency, Stroop, Trails B, Task Switching, Story Recall, and List Learning. Fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulinlike growth factor-I, and β-amyloids 40 and 42. Results Six months of high-intensity aerobic exercise had sex-specific effects on cognition, glucose metabolism, and hypothalamic-pituitary-adrenal axis and trophic activity despite comparable gains in cardiorespiratory fitness and body fat reduction. For women, aerobic exercise improved performance on multiple tests of executive function, increased glucose disposal during the metabolic clamp, and reduced fasting plasma levels of insulin, cortisol, and brain-derived neurotrophic factor. For men, aerobic exercise increased plasma levels of insulinlike growth factor I and had a favorable effect only on Trails B performance. Conclusions This study provides support, using rigorous controlled methodology, for a potent nonpharma-cologic intervention that improves executive control processes for older women at high risk of cognitive decline. Moreover, our results suggest that a sex bias in cognitive response may relate to sex-based differences in glucometabolic and hypothalamic-pituitary-adrenal axis responses to aerobic exercise. PMID:20065132

  2. Anatomical differences in the mirror neuron system and social cognition network in autism.

    PubMed

    Hadjikhani, Nouchine; Joseph, Robert M; Snyder, Josh; Tager-Flusberg, Helen

    2006-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social and emotional skills, the anatomical substrate of which is still unknown. In this study, we compared a group of 14 high-functioning ASD adults with a group of controls matched for sex, age, intelligence quotient, and handedness. We used an automated technique of analysis that accurately measures the thickness of the cerebral cortex and generates cross-subject statistics in a coordinate system based on cortical anatomy. We found local decreases of gray matter in the ASD group in areas belonging to the mirror neuron system (MNS), argued to be the basis of empathic behavior. Cortical thinning of the MNS was correlated with ASD symptom severity. Cortical thinning was also observed in areas involved in emotion recognition and social cognition. These findings suggest that the social and emotional deficits characteristic of autism may reflect abnormal thinning of the MNS and the broader network of cortical areas subserving social cognition.

  3. Hedonic orientation moderates the association between cognitive control and affect reactivity to daily hassles in adolescent boys.

    PubMed

    Klipker, Kathrin; Wrzus, Cornelia; Rauers, Antje; Riediger, Michaela

    2017-04-01

    People often seek to regulate their affective reactions when confronted with hassles. Hassle reactivity is lower for people with higher cognitive control, presumably because of better affect regulation. Many adolescents, however, show higher hassle reactivity than children, despite better cognitive control. The present study aims to understand whether motivational differences when seeking to regulate affective experiences moderate the association between cognitive control and hassle reactivity in adolescence. We hypothesized that higher cognitive control is related to lower hassle reactivity only for adolescents with a strong hedonic orientation, that is, for adolescents who seek to maintain or enhance positive or to dampen negative affect. We investigated 149 boys' (age range: 10-20 years) hedonic orientation and affect reactivity toward daily hassles during 2 weeks of experience sampling. Higher cognitive control, assessed with a working memory battery in the laboratory, was associated with stronger hassle reactivity in individuals with low hedonic orientation. The more hedonic-oriented individuals were, the lower was their hassle reactivity, but only in combination with high cognitive control. Our findings illustrate that higher cognitive control is not always related to lower hassle reactivity. Rather, when daily hassles compromise affect balance, hedonic orientation is equally important to understand affect reactivity in adolescent boys. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Cognitive control moderates parenting stress effects on children's diurnal cortisol

    PubMed Central

    Raffington, Laurel; Schmiedek, Florian; Heim, Christine

    2018-01-01

    This study investigated associations between parenting stress in parents and self-reported stress in children with children's diurnal cortisol secretion and whether these associations are moderated by known stress-regulating capacities, namely child cognitive control. Salivary cortisol concentrations were assessed from awakening to evening on two weekend days from 53 6-to-7-year-old children. Children completed a cognitive control task and a self-report stress questionnaire with an experimenter, while parents completed a parenting stress inventory. Hierarchical, linear mixed effects models revealed that higher parenting stress was associated with overall reduced cortisol secretion in children, and this effect was moderated by cognitive control. Specifically, parenting stress was associated with reduced diurnal cortisol levels in children with lower cognitive control ability and not in children with higher cognitive control ability. There were no effects of self-reported stress in children on their cortisol secretion, presumably because 6-to-7-year-old children cannot yet self-report on stress experiences. Our results suggest that higher cognitive control skills may buffer the effects of parenting stress in parents on their children’s stress regulation in middle childhood. This could indicate that training cognitive control skills in early life could be a target to prevent stress-related disorders. PMID:29329340

  5. Conceptual model of knowledge base system

    NASA Astrophysics Data System (ADS)

    Naykhanova, L. V.; Naykhanova, I. V.

    2018-05-01

    In the article, the conceptual model of the knowledge based system by the type of the production system is provided. The production system is intended for automation of problems, which solution is rigidly conditioned by the legislation. A core component of the system is a knowledge base. The knowledge base consists of a facts set, a rules set, the cognitive map and ontology. The cognitive map is developed for implementation of a control strategy, ontology - the explanation mechanism. Knowledge representation about recognition of a situation in the form of rules allows describing knowledge of the pension legislation. This approach provides the flexibility, originality and scalability of the system. In the case of changing legislation, it is necessary to change the rules set. This means that the change of the legislation would not be a big problem. The main advantage of the system is that there is an opportunity to be adapted easily to changes of the legislation.

  6. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults.

    PubMed

    Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A

    2010-12-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.

  7. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults

    PubMed Central

    Costa, Madalena D.; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C. K.; Novak, Vera; Lipsitz, Lewis A.

    2010-01-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = −0.34, P = 0.002) and percent (R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors. PMID:20947715

  8. Canonical failure modes of real-time control systems: insights from cognitive theory

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2016-04-01

    Newly developed necessary conditions statistical models from cognitive theory are applied to generalisation of the data-rate theorem for real-time control systems. Rather than graceful degradation under stress, automatons and man/machine cockpits appear prone to characteristic sudden failure under demanding fog-of-war conditions. Critical dysfunctions span a spectrum of phase transition analogues, ranging from a ground state of 'all targets are enemies' to more standard data-rate instabilities. Insidious pathologies also appear possible, akin to inattentional blindness consequent on overfocus on an expected pattern. Via no-free-lunch constraints, different equivalence classes of systems, having structure and function determined by 'market pressures', in a large sense, will be inherently unreliable under different but characteristic canonical stress landscapes, suggesting that deliberate induction of failure may often be relatively straightforward. Focusing on two recent military case histories, these results provide a caveat emptor against blind faith in the current path-dependent evolutionary trajectory of automation for critical real-time processes.

  9. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia

    PubMed Central

    Berridge, Michael J.

    2013-01-01

    Neurons have highly developed Ca2+ signaling systems responsible for regulating a large number of neural functions such as the control of brain rhythms, information processing and the changes in synaptic plasticity that underpin learning and memory. The tonic excitatory drive, which is activated by the ascending arousal system, is particularly important for processes such as sensory perception, cognition and consciousness. The Ca2+ signaling pathway is a key component of this arousal system that regulates the neuronal excitability responsible for controlling the neural brain rhythms required for information processing and cognition. Dysregulation of the Ca2+ signaling pathway responsible for many of these neuronal processes has been implicated in the development of some of the major neural diseases in man such as Alzheimer disease, bipolar disorder and schizophrenia. Various treatments, which are known to act by reducing the activity of Ca2+ signaling, have proved successful in alleviating the symptoms of some of these neural diseases. PMID:22895098

  10. Real-time bio-sensors for enhanced C2ISR operator performance

    NASA Astrophysics Data System (ADS)

    Miller, James C.

    2005-05-01

    The objectives of two Air Force Small Business research topics were to develop a real-time, unobtrusive, biological sensing and monitoring technology for evaluating cognitive readiness in command and control environments (i.e., console operators). We sought an individualized status monitoring system for command and control operators and teams. The system was to consist of a collection of bio-sensing technologies and processing and feedback algorithms that could eventually guide the effective incorporation of fatigue-adaptive workload interventions into weapon systems to mitigate episodes of cognitive overload and lapses in operator attention that often result in missed signals and catastrophic failures. Contractors set about determining what electro-physiological and other indicators of compromised operator states are most amenable for unobtrusive monitoring of psychophysiological and warfighter performance data. They proposed multi-sensor platforms of bio-sensing technologies for development. The sensors will be continuously-wearable or off-body and will not require complicated or uncomfortable preparation. A general overview of the proposed approaches and of progress toward the objective is presented.

  11. Cognitive rehabilitation system for children with autism spectrum disorder using serious games: A pilot study.

    PubMed

    Aresti-Bartolome, Nuria; Garcia-Zapirain, Begonya

    2015-01-01

    This paper studies and assesses how rehabilitation activities and supervised computer games incorporated into a system aimed at people diagnosed with Autism Spectrum Disorder (ASD) can be used to work on the areas affected by ASD at any time and in any place. This research specifically assesses the areas that affect communication and interaction between people with ASD and professionals. In order to do this, a group of 20 children diagnosed with ASD of between 3 and 8 years old (clinical group) was used, together with a group of 20 children of between 3 and 8 years old with a neurotypical development, which served as a control group. During the tests, response time and visual interaction with the session leader were evaluated. Despite the fact that the clinical group spent more time (M = 21.08 sec) than the control group (M = 4.52) to interact leader, eye contact predominated in the interaction. As a result of the pilot study, the system obtained could help in cognitive rehabilitation.

  12. Developing Cognitive Control: Three Key Transitions

    PubMed Central

    Munakata, Yuko; Snyder, Hannah R.; Chatham, Christopher H.

    2012-01-01

    The ability to flexibly break out of routine behaviors develops gradually and is essential for success in life. We discuss three key developmental transitions toward more flexible behavior. First, children develop an increasing ability to overcome habits by engaging cognitive control in response to environmental signals. Second, children shift from recruiting cognitive control reactively, as needed in the moment, to recruiting cognitive control proactively, in preparation for needing it. Third, children shift from relying on environmental signals for engaging cognitive control to becoming more self-directed. All three transitions can be understood in terms of the development of increasingly active and abstract goal representations in prefrontal cortex. PMID:22711982

  13. Cognitive Behavioral Therapy Is Associated With Enhanced Cognitive Control Network Activity in Major Depression and Posttraumatic Stress Disorder

    PubMed Central

    Yang, Zhen; Oathes, Desmond J.; Linn, Kristin A.; Bruce, Steven E.; Satterthwaite, Theodore D.; Cook, Philip A.; Satchell, Emma K.; Shou, Haochang; Sheline, Yvette I.

    2018-01-01

    BACKGROUND Both major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are characterized by depressive symptoms, abnormalities in brain regions important for cognitive control, and response to cognitive behavioral therapy (CBT). However, whether a common neural mechanism underlies CBT response across diagnoses is unknown. METHODS Brain activity during a cognitive control task was measured using functional magnetic resonance imaging in 104 participants: 28 patients with MDD, 53 patients with PTSD, and 23 healthy control subjects; depression and anxiety symptoms were determined on the same day. A patient subset (n = 31) entered manualized CBT and, along with controls (n = 19), was rescanned at 12 weeks. Linear mixed effects models assessed the relationship between depression and anxiety symptoms and brain activity before and after CBT. RESULTS At baseline, activation of the left dorsolateral prefrontal cortex was negatively correlated with Montgomery–Åsberg Depression Rating Scale scores across all participants; this brain–symptom association did not differ between MDD and PTSD. Following CBT treatment of patients, regions within the cognitive control network, including ventrolateral prefrontal cortex and dorsolateral prefrontal cortex, showed a significant increase in activity. CONCLUSIONS Our results suggest that dimensional abnormalities in the activation of cognitive control regions were associated primarily with symptoms of depression (with or without controlling for anxious arousal). Furthermore, following treatment with CBT, activation of cognitive control regions was similarly increased in both MDD and PTSD. These results accord with the Research Domain Criteria conceptualization of mental disorders and implicate improved cognitive control activation as a transdiagnostic mechanism for CBT treatment outcome. PMID:29628063

  14. Predictors of cognitive enhancement after training in preschoolers from diverse socioeconomic backgrounds

    PubMed Central

    Segretin, M. Soledad; Lipina, Sebastián J.; Hermida, M. Julia; Sheffield, Tiffany D.; Nelson, Jennifer M.; Espy, Kimberly A.; Colombo, Jorge A.

    2014-01-01

    The association between socioeconomic status and child cognitive development, and the positive impact of interventions aimed at optimizing cognitive performance, are well-documented. However, few studies have examined how specific socio-environmental factors may moderate the impact of cognitive interventions among poor children. In the present study, we examined how such factors predicted cognitive trajectories during the preschool years, in two samples of children from Argentina, who participated in two cognitive training programs (CTPs) between the years 2002 and 2005: the School Intervention Program (SIP; N = 745) and the Cognitive Training Program (CTP; N = 333). In both programs children were trained weekly for 16 weeks and tested before and after the intervention using a battery of tasks assessing several cognitive control processes (attention, inhibitory control, working memory, flexibility and planning). After applying mixed model analyses, we identified sets of socio-environmental predictors that were associated with higher levels of pre-intervention cognitive control performance and with increased improvement in cognitive control from pre- to post-intervention. Child age, housing conditions, social resources, parental occupation and family composition were associated with performance in specific cognitive domains at baseline. Housing conditions, social resources, parental occupation, family composition, maternal physical health, age, group (intervention/control) and the number of training sessions were related to improvements in specific cognitive skills from pre- to post-training. PMID:24659975

  15. The relationship between social cognition and executive function in Major Depressive Disorder in high-functioning adolescents and young adults.

    PubMed

    Förster, Katharina; Jörgens, Silke; Air, Tracy M; Bürger, Christian; Enneking, Verena; Redlich, Ronny; Zaremba, Dario; Grotegerd, Dominik; Dohm, Katharina; Meinert, Susanne; Leehr, Elisabeth J; Böhnlein, Joscha; Repple, Jonathan; Opel, Nils; Kavakbasi, Erhan; Arolt, Volker; Zwitserlood, Pienie; Dannlowski, Udo; Baune, Bernhard T

    2018-05-01

    To understand how cognitive dysfunction contributes to social cognitive deficits in depression, we investigated the relationship between executive function and social cognitive performance in adolescents and young adults during current and remitted depression, compared to healthy controls. Social cognition and executive function were measured in 179 students (61 healthy controls and 118 patients with depression; M age = 20.60 years; SD age = 3.82 years). Hierarchical regression models were employed within each group (healthy controls, remitted depression, current depression) to examine the nature of associations between cognitive measures. Social cognitive and executive function did not significantly differ overall between depressed patients and healthy controls. There was no association between executive function and social cognitive function in healthy controls or in remitted patients. However, in patients with a current state of depression, lower cognitive flexibility was associated with lower performance in facial-affect recognition, theory-of-mind tasks and overall affect recognition. In this group, better planning abilities were associated with decreased performance in facial affect recognition and overall social cognitive performance. While we infer that less cognitive flexibility might lead to a more rigid interpretation of ambiguous social stimuli, we interpret the counterintuitive negative correlation of planning ability and social cognition as a compensatory mechanism. Copyright © 2018. Published by Elsevier B.V.

  16. Associations between cognition and internalizing problems in young adults with early-onset schizophrenia: A 13-year follow-up study.

    PubMed

    Strugstad, Benedicte; Lau, Bjørn; Glenne Øie, Merete

    2018-04-12

    The present follow-up study examines the associations between cognition and parent-rated internalizing problems among adolescents with early-onset schizophrenia (EOS) at baseline (T1) and self-rated internalizing problems 13 years later (T2). Twelve individuals (8 male/4 female) with EOS and 30 healthy controls (16 male/14 female) were included in the study. All were between 12 and 18 years of age at T1. Internalizing problems were measured with the Achenbach System of Empirically Based Assessment Internalizing Scale. Cognition was examined with a neuropsychological test battery measuring auditory attention/working memory, visuomotor processing, cognitive flexibility and verbal memory. Compared to healthy controls, the EOS group had significant cognitive deficits and more internalizing problems both at T1 and T2. There was no correlation between parent-rated internalizing problems at T1 and self-rated internalizing problems at T2 in the EOS group. However, deficits in auditory attention/working memory at T1 were significantly associated with internalizing problems at T2. A focus on improving the treatment of cognitive impairments may be important in preventing the development of internalizing problems in young patients with schizophrenia. The small sample size of the study is a limitation and further research is recommended. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Treatment of chronically depressed patients: A multisite randomized controlled trial testing the effectiveness of 'Cognitive Behavioral Analysis System of Psychotherapy' (CBASP) for chronic depressions versus usual secondary care

    PubMed Central

    Wiersma, Jenneke E; van Schaik, Digna JF; van Oppen, Patricia; McCullough, James P; Schoevers, Robert A; Dekker, Jack J; Blom, Marc BJ; Maas, Kristel; Smit, Johannes H; Penninx, Brenda WJH; Beekman, Aartjan TF

    2008-01-01

    Background 'Cognitive Behavioral Analysis System of Psychotherapy' (CBASP) is a form of psychotherapy specifically developed for patients with chronic depression. In a study in the U.S., remarkable favorable effects of CBASP have been demonstrated. However, no other studies have as yet replicated these findings and CBASP has not been tested outside the United States. This protocol describes a randomized controlled trial on the effectiveness of CBASP in the Netherlands. Methods/Design The purpose of the present paper is to report the study protocol of a multisite randomized controlled trial testing the effectiveness of 'Cognitive Behavioral Analysis System of Psychotherapy' (CBASP) for chronic depression in the Netherlands. In this study, CBASP in combination with medication, will be tested versus usual secondary care in combination with medication. The aim is to recruit 160 patients from three mental health care organizations. Depressive symptoms will be assessed at baseline, after 8 weeks, 16 weeks, 32 weeks and 52 weeks, using the 28-item Inventory for Depressive Symptomatology (IDS). Effect modification by co morbid anxiety, alcohol consumption, general and social functioning and working alliance will be tested. GEE analyses of covariance, controlling for baseline value and center will be used to estimate the overall treatment effectiveness (difference in IDS score) at post-treatment and follow up. The primary analysis will be by 'intention to treat' using double sided tests. An economic analysis will compare the two groups in terms of mean costs and cost-effectiveness from a societal perspective. Discussion The study will provide an answer to the question whether the favorable effects of CBASP can be replicated outside the US. Trial Registration The Dutch Cochrane Center, NTR1090. PMID:18366729

  18. Cognitive dysfunction in Body Dysmorphic Disorder: New implications for nosological systems & neurobiological models

    PubMed Central

    Jefferies-Sewell, K; Chamberlain, SR; Fineberg, NA; Laws, KR

    2017-01-01

    Background Body dysmorphic disorder (BDD) is a debilitating disorder, characterised by obsessions and compulsions relating specifically to perceived appearance, newly classified within the DSM-5 Obsessive-Compulsive and Related Disorders grouping. Until now, little research has been conducted into the cognitive profile of this disorder. Materials and Methods Participants with BDD (n=12) and healthy controls (n=16) were tested using a computerised neurocognitive battery investigating attentional set-shifting (Intra/Extra Dimensional Set Shift Task), decision-making (Cambridge Gamble Task), motor response-inhibition (Stop-Signal Reaction Time Task) and affective processing (Affective Go-No Go Task). The groups were matched for age, IQ and education. Results In comparison to controls, patients with BDD showed significantly impaired attentional set shifting, abnormal decision-making, impaired response inhibition and greater omission and commission errors on the emotional processing task. Conclusions Despite the modest sample size, our results showed that individuals with BDD performed poorly compared to healthy controls on tests of cognitive flexibility, reward and motor impulsivity and affective processing. Results from separate studies in OCD patients suggest similar cognitive dysfunction. Therefore, these findings are consistent with the re-classification of BDD alongside OCD. These data also hint at additional areas of decision-making abnormalities that might contribute specifically to the psychopathology of BDD. PMID:27899165

  19. External locus of control contributes to racial disparities in memory and reasoning training gains in ACTIVE

    PubMed Central

    Zahodne, Laura B.; Meyer, Oanh L.; Choi, Eunhee; Thomas, Michael L.; Willis, Sherry L.; Marsiske, Michael; Gross, Alden L.; Rebok, George W.; Parisi, Jeanine M.

    2015-01-01

    Racial disparities in cognitive outcomes may be partly explained by differences in locus of control. African Americans report more external locus of control than non-Hispanic Whites, and external locus of control is associated with poorer health and cognition. The aims of this study were to compare cognitive training gains between African American and non-Hispanic White participants in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study and determine whether racial differences in training gains are mediated by locus of control. The sample comprised 2,062 (26% African American) adults aged 65 and older who participated in memory, reasoning, or speed training. Latent growth curve models evaluated predictors of 10-year cognitive trajectories separately by training group. Multiple group modeling examined associations between training gains and locus of control across racial groups. Compared to non-Hispanic Whites, African Americans evidenced less improvement in memory and reasoning performance after training. These effects were partially mediated by locus of control, controlling for age, sex, education, health, depression, testing site, and initial cognitive ability. African Americans reported more external locus of control, which was associated with smaller training gains. External locus of control also had a stronger negative association with reasoning training gain for African Americans than for Whites. No racial difference in training gain was identified for speed training. Future intervention research with African Americans should test whether explicitly targeting external locus of control leads to greater cognitive improvement following cognitive training. PMID:26237116

  20. Cognitive reappraisal and secondary control coping: associations with working memory, positive and negative affect, and symptoms of anxiety/depression.

    PubMed

    Andreotti, Charissa; Thigpen, Jennifer E; Dunn, Madeleine J; Watson, Kelly; Potts, Jennifer; Reising, Michelle M; Robinson, Kristen E; Rodriguez, Erin M; Roubinov, Danielle; Luecken, Linda; Compas, Bruce E

    2013-01-01

    The current study examined the relations of measures of cognitive reappraisal and secondary control coping with working memory abilities, positive and negative affect, and symptoms of anxiety and depression in young adults (N=124). Results indicate significant relations between working memory abilities and reports of secondary control coping and between reports of secondary control coping and cognitive reappraisal. Associations were also found between measures of secondary control coping and cognitive reappraisal and positive and negative affect and symptoms of depression and anxiety. Further, the findings suggest that reports of cognitive reappraisal may be more strongly predictive of positive affect whereas secondary control coping may be more strongly predictive of negative affect and symptoms of depression and anxiety. Overall, the results suggest that current measures of secondary control coping and cognitive reappraisal capture related but distinct constructs and suggest that the assessment of working memory may be more strongly related to secondary control coping in predicting individual differences in distress.

Top