Sample records for cognitive control task

  1. A functional approach for research on cognitive control: Analysing cognitive control tasks and their effects in terms of operant conditioning.

    PubMed

    Liefooghe, Baptist; De Houwer, Jan

    2016-02-01

    Cognitive control is an important mental ability that is examined using a multitude of cognitive control tasks and effects. The present paper presents the first steps in the elaboration of a functional approach, which aims to uncover the communalities and differences between different cognitive control tasks and their effects. Based on the idea that responses in cognitive control tasks qualify as operant behaviour, we propose to reinterpret cognitive control tasks in terms of operant contingencies and cognitive control effects as instances of moderated stimulus control. We illustrate how our approach can be used to uncover communalities between topographically different cognitive control tasks and can lead to novel questions about the processes underlying cognitive control. © 2015 International Union of Psychological Science.

  2. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  3. Conflict-specific effects of accessory stimuli on cognitive control in the Stroop task and the Simon task.

    PubMed

    Soutschek, Alexander; Müller, Hermann J; Schubert, Torsten

    2013-01-01

    Both the Stroop and the Simon paradigms are often used in research on cognitive control, however, there is evidence that dissociable control processes are involved in these tasks: While conflicts in the Stroop task may be resolved mainly by enhanced task-relevant stimulus processing, conflicts in the Simon task may be resolved rather by suppressing the influence of task-irrelevant information on response selection. In the present study, we show that these control mechanisms interact in different ways with the presentation of accessory stimuli. Accessory stimuli do not affect cognitive control in the Simon task, but they impair the efficiency of cross-trial control processes in the Stroop task. Our findings underline the importance of differentiating between different types of conflicts and mechanisms of cognitive control.

  4. Cognitive Fatigue Influences Time-On-Task during Bodyweight Resistance Training Exercise

    PubMed Central

    Head, James R.; Tenan, Matthew S.; Tweedell, Andrew J.; Price, Thomas F.; LaFiandra, Michael E.; Helton, William S.

    2016-01-01

    Prior investigations have shown measurable performance impairments on continuous physical performance tasks when preceded by a cognitively fatiguing task. However, the effect of cognitive fatigue on bodyweight resistance training exercise task performance is unknown. In the current investigation 18 amateur athletes completed a full body exercise task preceded by either a cognitive fatiguing or control intervention. In a randomized repeated measure design, each participant completed the same exercise task preceded by a 52 min cognitively fatiguing intervention (vigilance) or control intervention (video). Data collection sessions were separated by 1 week. Participants rated the fatigue intervention with a significantly higher workload compared to the control intervention (p < 0.001). Additionally, participants self-reported significantly greater energetic arousal for cognitively fatiguing task (p = 0.02). Cognitive fatigue did not significantly impact number of repetitions completed during the exercise task (p = 0.77); however, when cognitively fatigued, participants had decreased percent time-on-task (57%) relative to the no fatigue condition (60%; p = 0.04). RPE significantly changed over time (p < 0.001), but failed to show significant differences between the cognitive fatigue intervention and control intervention (p > 0.05). There was no statistical difference for heart rate or metabolic expenditure as a function of fatigue intervention during exercise. Cognitively fatigued athletes have decreased time-on-task in bodyweight resistance training exercise tasks. PMID:27635122

  5. The Applicability of Rhythm-Motor Tasks to a New Dual Task Paradigm for Older Adults

    PubMed Central

    Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul

    2017-01-01

    Given the interplay between cognitive and motor functions during walking, cognitive demands required during gait have been investigated with regard to dual task performance. Along with the needs to understand how the type of concurrent task while walking affects gait performance, there are calls for diversified dual tasks that can be applied to older adults with varying levels of cognitive decline. Therefore, this study aimed to examine how rhythm-motor tasks affect dual task performance and gait control, compared to a traditional cognitive-motor task. Also, it examined whether rhythm-motor tasks are correlated with traditional cognitive-motor task performance and cognitive measures. Eighteen older adults without cognitive impairment participated in this study. Each participant was instructed to walk at self-paced tempo without performing a concurrent task (single walking task) and walk while separately performing two types of concurrent tasks: rhythm-motor and cognitive-motor tasks. Rhythm-motor tasks included instrument playing (WalkIP), matching to rhythmic cueing (WalkRC), and instrument playing while matching to rhythmic cueing (WalkIP+RC). The cognitive-motor task involved counting forward by 3s (WalkCount.f3). In each condition, dual task costs (DTC), a measure for how dual tasks affect gait parameters, were measured in terms of walking speed and stride length. The ratio of stride length to walking speed, a measure for dynamic control of gait, was also examined. The results of this study demonstrated that the task type was found to significantly influence these measures. Rhythm-motor tasks were found to interfere with gait parameters to a lesser extent than the cognitive-motor task (WalkCount.f3). In terms of ratio measures, stride length remained at a similar level, walking speed greatly decreased in the WalkCount.f3 condition. Significant correlations between dual task-related measures during rhythm-motor and cognitive-motor tasks support the potential of applying rhythm-motor tasks to dual task methodology. This study presents how rhythm-motor tasks demand cognitive control at different levels than those engaged by cognitive-motor tasks. It also indicates how these new dual tasks can effectively mediate dual task performance indicative of fall risks, while requiring increased cognitive resources but facilitating gait control as a compensatory strategy to maintain gait stability. PMID:29375462

  6. Characterization of cognitive and motor performance during dual-tasking in healthy older adults and patients with Parkinson's disease.

    PubMed

    Wild, Lucia Bartmann; de Lima, Daiane Borba; Balardin, Joana Bisol; Rizzi, Luana; Giacobbo, Bruno Lima; Oliveira, Henrique Bianchi; de Lima Argimon, Irani Iracema; Peyré-Tartaruga, Leonardo Alexandre; Rieder, Carlos R M; Bromberg, Elke

    2013-02-01

    The primary purpose of this study was to investigate the effect of dual-tasking on cognitive performance and gait parameters in patients with idiopathic Parkinson's disease (PD) without dementia. The impact of cognitive task complexity on cognition and walking was also examined. Eighteen patients with PD (ages 53-88, 10 women; Hoehn and Yahr stage I-II) and 18 older adults (ages 61-84; 10 women) completed two neuropsychological measures of executive function/attention (the Stroop Test and Wisconsin Card Sorting Test). Cognitive performance and gait parameters related to functional mobility of stride were measured under single (cognitive task only) and dual-task (cognitive task during walking) conditions with different levels of difficulty and different types of stimuli. In addition, dual-task cognitive costs were calculated. Although cognitive performance showed no significant difference between controls and PD patients during single or dual-tasking conditions, only the patients had a decrease in cognitive performance during walking. Gait parameters of patients differed significantly from controls at single and dual-task conditions, indicating that patients gave priority to gait while cognitive performance suffered. Dual-task cognitive costs of patients increased with task complexity, reaching significantly higher values then controls in the arithmetic task, which was correlated with scores on executive function/attention (Stroop Color-Word Page). Baseline motor functioning and task executive/attentional load affect the performance of cognitive tasks of PD patients while walking. These findings provide insight into the functional strategies used by PD patients in the initial phases of the disease to manage dual-task interference.

  7. Increased alertness, better than posture prioritization, explains dual-task performance in prosthesis users and controls under increasing postural and cognitive challenge.

    PubMed

    Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S

    2017-11-01

    Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.

  8. Evidence that communication impairment in schizophrenia is associated with generalized poor task performance.

    PubMed

    Merrill, Anne M; Karcher, Nicole R; Cicero, David C; Becker, Theresa M; Docherty, Anna R; Kerns, John G

    2017-03-01

    People with schizophrenia exhibit wide-ranging cognitive deficits, including slower processing speed and decreased cognitive control. Disorganized speech symptoms, such as communication impairment, have been associated with poor cognitive control task performance (e.g., goal maintenance and working memory). Whether communication impairment is associated with poorer performance on a broader range of non-cognitive control measures is unclear. In the current study, people with schizophrenia (n =51) and non-psychiatric controls (n =26) completed speech interviews allowing for reliable quantitative assessment of communication impairment. Participants also completed multiple goal maintenance and working memory tasks. In addition, we also examined (a) simple measures of processing speed involving highly automatic prepotent responses and (b) a non-cognitive control measure of general task performance. Schizophrenia communication impairment was significantly associated with poor performance in all cognitive domains, with the largest association found with processing speed (r s =-0.52). Further, communication impairment was also associated with the non-cognitive control measure of poor general task performance (r s =-0.43). In contrast, alogia, a negative speech symptom, and positive symptoms were less if at all related to cognitive task performance. Overall, this study suggests that communication impairment in schizophrenia may be associated with relatively generalized poor cognitive task performance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Task control and cognitive abilities of self and spouse in collaboration in middle-aged and older couples.

    PubMed

    Berg, Cynthia A; Smith, Timothy W; Ko, Kelly J; Beveridge, Ryan M; Story, Nathan; Henry, Nancy J M; Florsheim, Paul; Pearce, Gale; Uchino, Bert N; Skinner, Michelle A; Glazer, Kelly

    2007-09-01

    Collaborative problem solving may be used by older couples to optimize cognitive functioning, with some suggestion that older couples exhibit greater collaborative expertise. The study explored age differences in 2 aspects of collaborative expertise: spouses' knowledge of their own and their spouse's cognitive abilities and the ability to fit task control to these cognitive abilities. The participants were 300 middle-aged and older couples who completed a hypothetical errand task. The interactions were coded for control asserted by husbands and wives. Fluid intelligence was assessed, and spouses rated their own and their spouse's cognitive abilities. The results revealed no age differences in couple expertise, either in the ability to predict their own and their spouse's cognitive abilities or in the ability to fit task control to abilities. However, gender differences were found. Women fit task control to their own and their spouse's cognitive abilities; men only fit task control to their spouse's cognitive abilities. For women only, the fit between control and abilities was associated with better performance. The results indicate no age differences in couple expertise but point to gender as a factor in optimal collaboration. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  10. β-Amyloid Deposition Is Associated with Decreased Right Prefrontal Activation during Task Switching among Cognitively Normal Elderly

    PubMed Central

    Steffener, Jason; Razlighi, Qolamreza R.; Habeck, Christian; Stern, Yaakov

    2016-01-01

    The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD), has been associated with functional alterations, often in an episodic memory system with a particular emphasis on medial temporal lobe function. The topography of Aβ deposition, however, largely overlaps with frontoparietal control (FPC) regions implicated in cognitive control that has been shown to be impaired in early mild AD. To understand the neural mechanism underlying early changes in cognitive control with AD, we examined the impact of Aβ deposition on task-evoked FPC activation using functional magnetic resonance imaging (fMRI) in humans. Forty-three young and 62 cognitively normal older adults underwent an fMRI session during an executive contextual task in which task difficulty varied: single (either letter case or vowel/consonant judgment task) vs dual (switching between letter case and vowel/consonant decisions) task. Older subjects additionally completed 18F-florbetaben positron emission tomography scans and were classified as either amyloid positive (Aβ+) or negative (Aβ−). Consistent with previous reports, age-related increases in brain activity were found in FPC regions commonly identified across groups. For both task conditions, Aβ-related increases in brain activity were found compared with baseline activity. For higher cognitive control load, however, Aβ+ elderly showed reduced task-switching activation in the right inferior frontal cortex. Our findings suggest that with Aβ deposition, brain activation in the cognitive control region reaches a maximum with lower control demand and decreases with higher control demand, which may underlie early impairment in cognitive control with AD progression. SIGNIFICANCE STATEMENT The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease, spatially overlaps with frontoparietal control (FPC) regions implicated in cognitive control, but the impact of Aβ deposition on FPC regions is largely unknown. Using functional magnetic resonance imaging with a task-switching task, we found Aβ-related increases in FPC regions compared with baseline activity. For higher cognitive control load, however, Aβ-related hypoactivity was found in the right inferior frontal cortex, a region highly implicated in cognitive control. The findings suggest that with Aβ deposition, task-related brain activity may reach a plateau early and undergo downstream pathways of neural dysfunction, which may relate to the early impairment of cognitive control seen in the progression of Aβ pathology. PMID:26865619

  11. Topographical differences of frontal-midline theta activity reflect functional differences in cognitive control abilities.

    PubMed

    Eschmann, Kathrin C J; Bader, Regine; Mecklinger, Axel

    2018-06-01

    Electrophysiological oscillations are assumed to be the core mechanism for large-scale network communication. The specific role of frontal-midline theta oscillations as cognitive control mechanism is under debate. According to the dual mechanisms of control framework, cognitive control processes can be divided into proactive and reactive control. The present study aimed at investigating the role of frontal-midline theta activity by assessing oscillations in two tasks varying in the type of cognitive control needed. More specifically, a delayed match to sample (DMTS) task requiring proactive control and a color Stroop task recruiting reactive control processes were conducted within the same group of participants. Moreover, both tasks contained conditions with low and high need for cognitive control. As expected larger frontal-midline theta activity was found in conditions with high need for cognitive control. However, theta activity was focally activated at frontal sites in the DMTS task whereas it had a broader topographical distribution in the Stroop task, indicating that both proactive and reactive control are reflected in frontal-midline theta activity but reactive control is additionally characterized by a broader theta activation. These findings support the conclusion that frontal-midline theta acts functionally different depending on task requirements. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Fatigue does not conjointly alter postural and cognitive performance when standing in a shooting position under dual-task conditions.

    PubMed

    Bermejo, José Luis; García-Massó, Xavier; Paillard, Thierry; Noé, Frédéric

    2018-02-01

    This study investigated the effects of fatigue on balance control and cognitive performance in a standing shooting position. Nineteen soldiers were asked to stand while holding a rifle (single task - ST). They also had to perform this postural task while simultaneously completing a cognitive task (dual task - DT). Both the ST and DT were performed in pre- and post-fatigue conditions. In pre-fatigue, participants achieved better balance control in the DT than in the ST, thus suggesting that the increased cognitive activity associated with the DT improves balance control by shifting the attentional focus away from a highly automatised activity. In post-fatigue, balance control was degraded in both the ST and DT, while reaction time was enhanced in the first minutes following the fatiguing exercise without affecting the accuracy of response in the cognitive task, which highlights the relative independent effects of fatigue on balance control and cognitive performance.

  13. Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    PubMed Central

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.

    2016-01-01

    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513

  14. Characterizing "fibrofog": Subjective appraisal, objective performance, and task-related brain activity during a working memory task.

    PubMed

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L; Rayhan, Rakib; VanMeter, John W; Gracely, Richard H

    2016-01-01

    The subjective experience of cognitive dysfunction ("fibrofog") is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, "fibrofog" appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks.

  15. Designing to Support Command and Control in Urban Firefighting

    DTIC Science & Technology

    2008-06-01

    complex human- machine systems. Keywords: Command and control, firefighting, cognitive systems engineering, cognitive task analysis 1...Elm, W. (2000). Bootstrapping multiple converging cognitive task analysis techniques for system design. In J.M.C. Schraagen, S.F. Chipman, & V.L...Shalin, (Eds.), Cognitive Task Analysis . (pp. 317-340). Mahwah, NJ: Lawrence Erlbaum. Rasmussen, J., Pejtersen, A., Goodman, L. (1994). Cognitive

  16. Bilingual Language Control and General Purpose Cognitive Control among Individuals with Bilingual Aphasia: Evidence Based on Negative Priming and Flanker Tasks

    PubMed Central

    Dash, Tanya; Kar, Bhoomika R.

    2014-01-01

    Background. Bilingualism results in an added advantage with respect to cognitive control. The interaction between bilingual language control and general purpose cognitive control systems can also be understood by studying executive control among individuals with bilingual aphasia. Objectives. The current study examined the subcomponents of cognitive control in bilingual aphasia. A case study approach was used to investigate whether cognitive control and language control are two separate systems and how factors related to bilingualism interact with control processes. Methods. Four individuals with bilingual aphasia performed a language background questionnaire, picture description task, and two experimental tasks (nonlinguistic negative priming task and linguistic and nonlinguistic versions of flanker task). Results. A descriptive approach was used to analyse the data using reaction time and accuracy measures. The cumulative distribution function plots were used to visualize the variations in performance across conditions. The results highlight the distinction between general purpose cognitive control and bilingual language control mechanisms. Conclusion. All participants showed predominant use of the reactive control mechanism to compensate for the limited resources system. Independent yet interactive systems for bilingual language control and general purpose cognitive control were postulated based on the experimental data derived from individuals with bilingual aphasia. PMID:24982591

  17. Coactivation of cognitive control networks during task switching.

    PubMed

    Yin, Shouhang; Deák, Gedeon; Chen, Antao

    2018-01-01

    The ability to flexibly switch between tasks is considered an important component of cognitive control that involves frontal and parietal cortical areas. The present study was designed to characterize network dynamics across multiple brain regions during task switching. Functional magnetic resonance images (fMRI) were captured during a standard rule-switching task to identify switching-related brain regions. Multiregional psychophysiological interaction (PPI) analysis was used to examine effective connectivity between these regions. During switching trials, behavioral performance declined and activation of a generic cognitive control network increased. Concurrently, task-related connectivity increased within and between cingulo-opercular and fronto-parietal cognitive control networks. Notably, the left inferior frontal junction (IFJ) was most consistently coactivated with the 2 cognitive control networks. Furthermore, switching-dependent effective connectivity was negatively correlated with behavioral switch costs. The strength of effective connectivity between left IFJ and other regions in the networks predicted individual differences in switch costs. Task switching was supported by coactivated connections within cognitive control networks, with left IFJ potentially acting as a key hub between the fronto-parietal and cingulo-opercular networks. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. The Acute Effects of Aerobic Exercise on Cognitive Flexibility and Task-Related Heart Rate Variability in Children With ADHD and Healthy Controls.

    PubMed

    Ludyga, Sebastian; Gerber, Markus; Mücke, Manuel; Brand, Serge; Weber, Peter; Brotzmann, Mark; Pühse, Uwe

    2018-02-01

    To investigate cognitive flexibility and task-related heart rate variability following moderately intense aerobic exercise and after watching a video in both children with ADHD and healthy controls. Using a cross-over design, participants completed cognitive assessments following exercise and a physically inactive control condition. Behavioral performance was assessed using the Alternate Uses task. Heart rate variability was recorded via electrocardiography during the cognitive task. The statistical analysis revealed that in comparison with the control condition, both groups showed higher cognitive flexibility following aerobic exercise. Moreover, decreased low frequency and high frequency power was observed in the exercise condition. The findings suggest that exercise elicits similar benefits for cognitive flexibility in children with ADHD and healthy controls, partly due to an increase in arousal induced by parasympathetic withdrawal.

  19. Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.

    PubMed

    Borel, L; Alescio-Lautier, B

    2014-01-01

    In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Cognitive tasks promote automatization of postural control in young and older adults.

    PubMed

    Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves

    2017-09-01

    Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An Integrated Model of Cognitive Control in Task Switching

    ERIC Educational Resources Information Center

    Altmann, Erik M.; Gray, Wayne D.

    2008-01-01

    A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…

  2. A Comparative Study of Autistic Subjects' Performance at Two Levels of Visual and Cognitive Perspective Taking.

    ERIC Educational Resources Information Center

    Reed, Taffy; Peterson, Candida

    1990-01-01

    This study found that 13 autistic subjects performed less well on cognitive than on visual perspective-taking tasks at two levels of difficulty. Autistic subjects performed as well as 13 intellectually handicapped controls and 13 normal controls on visual perspective-taking tasks but more poorly than controls on cognitive perspective-taking tasks.…

  3. Prior cognitive activity implicitly modulates subsequent emotional responses to subliminally presented emotional stimuli.

    PubMed

    Iida, Saea; Nakao, Takashi; Ohira, Hideki

    2012-06-01

    It has been reported that engagement in several kinds of cognitive activity can successfully inhibit unpleasant emotions. In this study, we tried to replicate the previous finding that cognitive activity can modulate subsequent psychological and physiological emotional processes and to investigate whether prior cognitive activity can attenuate implicit emotional processes triggered by subliminal emotional stimuli. Sixty students were randomly divided into three groups (cognitive task group, noncognitive task group, control group). The cognitive task group was asked to engage in an n-back task, while the control group was asked to stay calm. The noncognitive task group was asked to do a handgrip-squeezing task. All participants then engaged in a version of a subliminal affective priming task where they were unconsciously exposed to affectively negative pictures. The cognitive task group showed lower negative experiences after the subliminal affective priming task and a substantial reduction in their heart rate responses, as compared with the other groups. These results provide evidence that engagement in cognitive activity can attenuate emotional processes in an automatic and unconscious manner.

  4. Cognitive control components and speech symptoms in people with schizophrenia.

    PubMed

    Becker, Theresa M; Cicero, David C; Cowan, Nelson; Kerns, John G

    2012-03-30

    Previous schizophrenia research suggests poor cognitive control is associated with schizophrenia speech symptoms. However, cognitive control is a broad construct. Two important cognitive control components are poor goal maintenance and poor verbal working memory storage. In the current research, people with schizophrenia (n=45) performed three cognitive tasks that varied in their goal maintenance and verbal working memory storage demands. Speech symptoms were assessed using clinical rating scales, ratings of disorganized speech from typed transcripts, and self-reported disorganization. Overall, alogia was associated with both goal maintenance and verbal working memory tasks. Objectively rated disorganized speech was associated with poor goal maintenance and with a task that included both goal maintenance and verbal working memory storage demands. In contrast, self-reported disorganization was unrelated to either amount of objectively rated disorganized speech or to cognitive control task performance, instead being associated with negative mood symptoms. Overall, our results suggest that alogia is associated with both poor goal maintenance and poor verbal working memory storage and that disorganized speech is associated with poor goal maintenance. In addition, patients' own assessment of their disorganization is related to negative mood, but perhaps not to objective disorganized speech or to cognitive control task performance. Published by Elsevier Ireland Ltd.

  5. Cognitive Control Signals in Posterior Cingulate Cortex

    PubMed Central

    Hayden, Benjamin Y.; Smith, David V.; Platt, Michael L.

    2010-01-01

    Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain. PMID:21160560

  6. Cognitive Control Acts Locally

    ERIC Educational Resources Information Center

    Notebaert, Wim; Verguts, Tom

    2008-01-01

    Cognitive control adjusts information processing to momentary needs and task requirements. We investigated conflict adaptation when participants are performing two tasks, a Simon task and a SNARC task. The results indicated that one congruency effect (e.g., Simon) was reduced after conflict in the other task (e.g., SNARC), but only when both tasks…

  7. Context-Sensitive Adjustment of Cognitive Control in Dual-Task Performance

    ERIC Educational Resources Information Center

    Fischer, Rico; Gottschalk, Caroline; Dreisbach, Gesine

    2014-01-01

    Performing 2 highly similar tasks at the same time requires an adaptive regulation of cognitive control to shield prioritized primary task processing from between-task (cross-talk) interference caused by secondary task processing. In the present study, the authors investigated how implicitly and explicitly delivered information promotes the…

  8. The Role of Intelligence Quotient and Emotional Intelligence in Cognitive Control Processes

    PubMed Central

    Checa, Purificación; Fernández-Berrocal, Pablo

    2015-01-01

    The relationship between intelligence quotient (IQ) and cognitive control processes has been extensively established. Several studies have shown that IQ correlates with cognitive control abilities, such as interference suppression, as measured with experimental tasks like the Stroop and Flanker tasks. By contrast, there is a debate about the role of Emotional Intelligence (EI) in individuals' cognitive control abilities. The aim of this study is to examine the relation between IQ and EI, and cognitive control abilities evaluated by a typical laboratory control cognitive task, the Stroop task. Results show a negative correlation between IQ and the interference suppression index, the ability to inhibit processing of irrelevant information. However, the Managing Emotions dimension of EI measured by the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), but not self-reported of EI, negatively correlates with the impulsivity index, the premature execution of the response. These results suggest that not only is IQ crucial, but also competences related to EI are essential to human cognitive control processes. Limitations and implications of these results are also discussed. PMID:26648901

  9. Exploring adolescent cognitive control in a combined interference switching task.

    PubMed

    Mennigen, Eva; Rodehacke, Sarah; Müller, Kathrin U; Ripke, Stephan; Goschke, Thomas; Smolka, Michael N

    2014-08-01

    Cognitive control enables individuals to flexibly adapt to environmental challenges. In the present functional magnetic resonance imaging (fMRI) study, we investigated 185 adolescents at the age of 14 with a combined response interference switching task measuring behavioral responses (reaction time, RT and error rate, ER) and brain activity during the task. This task comprises two types of conflict which are co-occurring, namely, task switching and stimulus-response incongruence. Data indicated that already in adolescents an overlapping cognitive control network comprising the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA) and posterior parietal cortex (PPC) is recruited by conflicts arising from task switching and response incongruence. Furthermore our study revealed higher blood oxygenation level dependent (BOLD) responses elicited by incongruent stimuli in participants with a pronounced incongruence effect, calculated as the RT difference between incongruent and congruent trials. No such correlation was observed for switch costs. Furthermore, increased activation of the default mode network (DMN) was only observed in congruent trials compared to incongruent trials, but not in task repetition relative to task switch trials. These findings suggest that even though the two processes of task switching and response incongruence share a common cognitive control network they might be processed differentially within the cognitive control network. Results are discussed in the context of a novel hypothesis concerning antagonistic relations between the DMN and the cognitive control network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Empirical Support for 'Hastening-Through-Re-Automatization' by Contrasting Two Motor-Cognitive Dual Tasks.

    PubMed

    Langhanns, Christine; Müller, Hermann

    2018-01-01

    Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening . A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by "higher-order" cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing.

  11. Empirical Support for ‘Hastening-Through-Re-Automatization’ by Contrasting Two Motor-Cognitive Dual Tasks

    PubMed Central

    Langhanns, Christine; Müller, Hermann

    2018-01-01

    Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening. A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by “higher-order” cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing. PMID:29887815

  12. A Matched Filter Hypothesis for Cognitive Control

    PubMed Central

    Thompson-Schill, Sharon L.

    2013-01-01

    The prefrontal cortex exerts top-down influences on several aspects of higher-order cognition by functioning as a filtering mechanism that biases bottom-up sensory information toward a response that is optimal in context. However, research also indicates that not all aspects of complex cognition benefit from prefrontal regulation. Here we review and synthesize this research with an emphasis on the domains of learning and creative cognition, and outline how the appropriate level of cognitive control in a given situation can vary depending on the organism's goals and the characteristics of the given task. We offer a Matched Filter Hypothesis for cognitive control, which proposes that the optimal level of cognitive control is task-dependent, with high levels of cognitive control best suited to tasks that are explicit, rule-based, verbal or abstract, and can be accomplished given the capacity limits of working memory and with low levels of cognitive control best suited to tasks that are implicit, reward-based, non-verbal or intuitive, and which can be accomplished irrespective of working memory limitations. Our approach promotes a view of cognitive control as a tool adapted to a subset of common challenges, rather than an all-purpose optimization system suited to every problem the organism might encounter. PMID:24200920

  13. Insula Demonstrates a Non-Linear Response to Varying Demand for Cognitive Control and Weaker Resting Connectivity With the Executive Control Network in Smokers.

    PubMed

    Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A

    2016-09-01

    Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible.

  14. Cognitive Abilities, Monitoring Confidence, and Control Thresholds Explain Individual Differences in Heuristics and Biases

    PubMed Central

    Jackson, Simon A.; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar

    2016-01-01

    In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants (N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation. PMID:27790170

  15. Cognitive Abilities, Monitoring Confidence, and Control Thresholds Explain Individual Differences in Heuristics and Biases.

    PubMed

    Jackson, Simon A; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar

    2016-01-01

    In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants ( N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation.

  16. Effects of simultaneously performed cognitive and physical training in older adults

    PubMed Central

    2013-01-01

    Background While many studies confirm the positive effect of cognitive and physical training on cognitive performance of older adults, only little is known about the effects of simultaneously performed cognitive and physical training. In the current study, older adults simultaneously performed a verbal working memory and a cardiovascular training to improve cognitive and motor-cognitive dual task performance. Twenty training sessions of 30 minutes each were conducted over a period of ten weeks, with a test session before, in the middle, and after the training. Training gains were tested in measures of selective attention, paired-associates learning, executive control, reasoning, memory span, information processing speed, and motor-cognitive dual task performance in the form of walking and simultaneously performing a working memory task. Results Sixty-three participants with a mean age of 71.8 ± 4.9 years (range 65 to 84) either performed the simultaneous training (N = 21), performed a single working memory training (N = 16), or attended no training at all (N = 26). The results indicate similar training progress and larger improvements in the executive control task for both training groups when compared to the passive control group. In addition, the simultaneous training resulted in larger improvements compared to the single cognitive training in the paired-associates task and was able to reduce the step-to-step variability during the motor-cognitive dual task when compared to the single cognitive training and the passive control group. Conclusions The simultaneous training of cognitive and physical abilities presents a promising training concept to improve cognitive and motor-cognitive dual task performance, offering greater potential on daily life functioning, which usually involves the recruitment of multiple abilities and resources rather than a single one. PMID:24053148

  17. Emotion, working memory task demands and individual differences predict behavior, cognitive effort and negative affect.

    PubMed

    Storbeck, Justin; Davidson, Nicole A; Dahl, Chelsea F; Blass, Sara; Yung, Edwin

    2015-01-01

    We examined whether positive and negative affect motivates verbal and spatial working memory processes, respectively, which have implications for the expenditure of mental effort. We argue that when emotion promotes cognitive tendencies that are goal incompatible with task demands, greater cognitive effort is required to perform well. We sought to investigate whether this increase in cognitive effort impairs behavioural control over a broad domain of self-control tasks. Moreover, we predicted that individuals with higher behavioural inhibition system (BIS) sensitivities would report more negative affect within the goal incompatible conditions because such individuals report higher negative affect during cognitive challenge. Positive or negative affective states were induced followed by completing a verbal or spatial 2-back working memory task. All participants then completed one of three self-control tasks. Overall, we observed that conditions of emotion and working memory incompatibility (positive/spatial and negative/verbal) performed worse on the self-control tasks, and within the incompatible conditions individuals with higher BIS sensitivities reported more negative affect at the end of the study. The combination of findings suggests that emotion and working memory compatibility reduces cognitive effort and impairs behavioural control.

  18. Does conflict help or hurt cognitive control? Initial evidence for an inverted U-shape relationship between perceived task difficulty and conflict adaptation.

    PubMed

    van Steenbergen, Henk; Band, Guido P H; Hommel, Bernhard

    2015-01-01

    Sequential modulation of congruency effects in conflict tasks indicates that cognitive control quickly adapts to changing task demands. We investigated in four experiments how this behavioral congruency-sequence effect relates to different levels of perceived task difficulty in a flanker and a Stroop task. In addition, online measures of pupil diameter were used as a physiological index of effort mobilization. Consistent with motivational accounts predicting that increased levels of perceived task difficulty will increase effort mobilization only up to a certain limit, reliable dynamic conflict-driven adjustment in cognitive control was only observed when task difficulty was relatively low. Instead, tasks tentatively associated with high levels of difficulty showed no or reversed conflict adaptation. Although the effects could not be linked consistently to effects in self-reported task difficulty in all experiments, regression analyses showed associations between perceived task difficulty and conflict adaptation in some of the experiments, which provides some initial evidence for an inverted U-shape relationship between perceived difficulty and adaptations in cognitive control. Furthermore, high levels of task difficulty were associated with a conflict-driven reduction in pupil dilation, suggesting that pupil dilation can be used as a physiological marker of mental overload. Our findings underscore the importance of developing models that are grounded in motivational accounts of cognitive control.

  19. Does conflict help or hurt cognitive control? Initial evidence for an inverted U-shape relationship between perceived task difficulty and conflict adaptation

    PubMed Central

    van Steenbergen, Henk; Band, Guido P. H.; Hommel, Bernhard

    2015-01-01

    Sequential modulation of congruency effects in conflict tasks indicates that cognitive control quickly adapts to changing task demands. We investigated in four experiments how this behavioral congruency-sequence effect relates to different levels of perceived task difficulty in a flanker and a Stroop task. In addition, online measures of pupil diameter were used as a physiological index of effort mobilization. Consistent with motivational accounts predicting that increased levels of perceived task difficulty will increase effort mobilization only up to a certain limit, reliable dynamic conflict-driven adjustment in cognitive control was only observed when task difficulty was relatively low. Instead, tasks tentatively associated with high levels of difficulty showed no or reversed conflict adaptation. Although the effects could not be linked consistently to effects in self-reported task difficulty in all experiments, regression analyses showed associations between perceived task difficulty and conflict adaptation in some of the experiments, which provides some initial evidence for an inverted U-shape relationship between perceived difficulty and adaptations in cognitive control. Furthermore, high levels of task difficulty were associated with a conflict-driven reduction in pupil dilation, suggesting that pupil dilation can be used as a physiological marker of mental overload. Our findings underscore the importance of developing models that are grounded in motivational accounts of cognitive control. PMID:26217287

  20. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.

    PubMed

    Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B

    2018-06-21

    Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2 h in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8 Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Respiratory sinus arrhythmia responses to cognitive tasks: effects of task factors and RSA indices.

    PubMed

    Overbeek, Thérèse J M; van Boxtel, Anton; Westerink, Joyce H D M

    2014-05-01

    Many studies show that respiratory sinus arrhythmia (RSA) decreases while performing cognitive tasks. However, there is uncertainty about the role of contaminating factors such as physical activity and stress-inducing task variables. Different methods to quantify RSA may also contribute to variable results. In 83 healthy subjects, we studied RSA responses to a working memory task requiring varying levels of cognitive control and a perceptual attention task not requiring strong cognitive control. RSA responses were quantified in the time and frequency domain and were additionally corrected for differences in mean interbeat interval and respiration rate, resulting in eight different RSA indices. The two tasks were clearly differentiated by heart rate and facial EMG reference measures. Cognitive control induced inhibition of RSA whereas perceptual attention generally did not. However, the results show several differences between different RSA indices, emphasizing the importance of methodological variables. Age and sex did not influence the results. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Task Uncertainty Can Account for Mixing and Switch Costs in Task-Switching

    PubMed Central

    Rennie, Jaime L.

    2015-01-01

    Cognitive control is required in situations that involve uncertainty or change, such as when resolving conflict, selecting responses and switching tasks. Recently, it has been suggested that cognitive control can be conceptualised as a mechanism which prioritises goal-relevant information to deal with uncertainty. This hypothesis has been supported using a paradigm that requires conflict resolution. In this study, we examine whether cognitive control during task switching is also consistent with this notion. We used information theory to quantify the level of uncertainty in different trial types during a cued task-switching paradigm. We test the hypothesis that differences in uncertainty between task repeat and task switch trials can account for typical behavioural effects in task-switching. Increasing uncertainty was associated with less efficient performance (i.e., slower and less accurate), particularly on switch trials and trials that afford little opportunity for advance preparation. Interestingly, both mixing and switch costs were associated with a common episodic control process. These results support the notion that cognitive control may be conceptualised as an information processor that serves to resolve uncertainty in the environment. PMID:26107646

  3. Mood states determine the degree of task shielding in dual-task performance.

    PubMed

    Zwosta, Katharina; Hommel, Bernhard; Goschke, Thomas; Fischer, Rico

    2013-01-01

    Current models of multitasking assume that dual-task performance and the degree of multitasking are affected by cognitive control strategies. In particular, cognitive control is assumed to regulate the amount of shielding of the prioritised task from crosstalk from the secondary task. We investigated whether and how task shielding is influenced by mood states. Participants were exposed to two short film clips, one inducing high and one inducing low arousal, of either negative or positive content. Negative mood led to stronger shielding of the prioritised task (i.e., less crosstalk) than positive mood, irrespective of arousal. These findings support the assumption that emotional states determine the parameters of cognitive control and play an important role in regulating dual-task performance.

  4. Theory of Mind in Schizophrenia: Associations With Clinical and Cognitive Insight Controlling for Levels of Psychopathology.

    PubMed

    Popolo, Raffaele; Dimaggio, Giancarlo; Luther, Lauren; Vinci, Giancarlo; Salvatore, Giampaolo; Lysaker, Paul H

    2016-03-01

    Poor insight in schizophrenia is a risk factor for both poor outcomes and treatment adherence. Accordingly, interest in identifying causes of poor insight has increased. This study explored whether theory of mind (ToM) impairments are linked to poor clinical and cognitive insight independent of psychopathology. Participants with schizophrenia (n = 37) and control subjects (n = 40) completed assessments of ToM with the Hinting Task and the Brüne Picture Sequencing Task, clinical insight and psychopathology with the Positive and Negative Syndrome Scale, and cognitive insight with the Beck Cognitive Insight Scale. Results indicated that the schizophrenia group had greater impairments in ToM relative to control subjects. In the schizophrenia group, the Hinting Task performance was related to both cognitive and clinical insight, with only the relationship with cognitive insight persisting after controlling for psychopathology. Picture Sequencing Task performance was related to cognitive insight only. Future research directions and clinical implications are discussed.

  5. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke.

    PubMed

    Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der

    2018-05-01

    Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (<6 months post-stroke) participated. Patients' conscious control inclination was not associated with single-task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Heart rate variability and cognitive processing: The autonomic response to task demands.

    PubMed

    Luque-Casado, Antonio; Perales, José C; Cárdenas, David; Sanabria, Daniel

    2016-01-01

    This study investigated variations in heart rate variability (HRV) as a function of cognitive demands. Participants completed an execution condition including the psychomotor vigilance task, a working memory task and a duration discrimination task. The control condition consisted of oddball versions (participants had to detect the rare event) of the tasks from the execution condition, designed to control for the effect of the task parameters (stimulus duration and stimulus rate) on HRV. The NASA-TLX questionnaire was used as a subjective measure of cognitive workload across tasks and conditions. Three major findings emerged from this study. First, HRV varied as a function of task demands (with the lowest values in the working memory task). Second, and crucially, we found similar HRV values when comparing each of the tasks with its oddball control equivalent, and a significant decrement in HRV as a function of time-on-task. Finally, the NASA-TLX results showed larger cognitive workload in the execution condition than in the oddball control condition, and scores variations as a function of task. Taken together, our results suggest that HRV is highly sensitive to overall demands of sustained attention over and above the influence of other cognitive processes suggested by previous literature. In addition, our study highlights a potential dissociation between objective and subjective measures of mental workload, with important implications in applied settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Evidence for a neural dual-process account for adverse effects of cognitive control.

    PubMed

    Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian

    2018-06-09

    Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.

  8. Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults?

    PubMed Central

    Basak, Chandramallika; Boot, Walter R.; Voss, Michelle W.; Kramer, Arthur F.

    2014-01-01

    Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults. PMID:19140648

  9. Reduced Dual-Task Performance in MS Patients Is Further Decreased by Muscle Fatigue.

    PubMed

    Wolkorte, Ria; Heersema, Dorothea J; Zijdewind, Inge

    2015-06-01

    Multiple sclerosis (MS) can be accompanied by motor, cognitive, and sensory impairments. Additionally, MS patients often report fatigue as one of their most debilitating symptoms. It is, therefore, expected that MS patients will have difficulties in performing cognitive-motor dual tasks (DTs), especially in a fatiguing condition. To determine whether MS patients are more challenged by a DT than controls in a fatiguing and less-fatiguing condition and whether DT performance is associated with perceived fatigue. A group of 19 MS patients and 19 age-, sex-, and education-matched controls performed a cognitive task (2-choice reaction time task) separately or concurrent with a low-force or a high-force motor task (index finger abduction at 10% or 30% maximal voluntary contraction). MS patients performed less well on a cognitive task than controls. Cognitive task performance under DT conditions decreased more for MS patients. Moreover, under high-force DT conditions, cognitive performance declined in both groups but to a larger degree for MS patients. Besides a decline in cognitive task performance, MS patients also showed a stronger decrease in motor performance under high-force DT conditions. DT costs were positively related to perceived fatigue as measured by questionnaires. Compared with controls, MS patients performed less well on DTs as demonstrated by a reduction in both cognitive and motor performances. This performance decrease was stronger under fatiguing conditions and was related to the sense of fatigue of MS patients. These data illustrate problems that MS patients may encounter in daily life because of their fatigue. © The Author(s) 2014.

  10. Investigating the Impact of Cognitive Load and Motivation on Response Control in Relation to Delay Discounting in Children with ADHD.

    PubMed

    Martinelli, Mary K; Mostofsky, Stewart H; Rosch, Keri S

    2017-10-01

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by deficits in impulse control across a range of behaviors, from simple actions to those involving complex decision-making (e.g., preference for smaller-sooner versus larger later rewards). This study investigated whether changes in motor response control with increased cognitive load and motivational contingencies are associated with decision-making in the form of delay discounting among 8-12 year old children with and without ADHD. Children with ADHD (n = 26; 8 girls) and typically developing controls (n = 40; 11 girls) completed a standard go/no-go (GNG) task, a GNG task with motivational contingencies, a GNG task with increased cognitive load, and two measures of delay discounting: a real-time task in which the delays and immediately consumable rewards are experienced in real-time, and a classic task involving choices about money at longer delays. Children with ADHD, particularly girls, exhibited greater delay discounting than controls during the real-time discounting task, whereas diagnostic groups did not significantly differ on the classic discounting task. The effect of cognitive load on response control was uniquely associated with greater discounting on the real-time task for children with ADHD, but not for control children. The effect of motivational contingencies on response control was not significantly associated with delay discounting for either diagnostic group. The findings from this study help to inform our understanding of the factors that influence deficient self-control in ADHD, suggesting that impairments in cognitive control may contribute to greater delay discounting in ADHD.

  11. Musical dual-task training in patients with mild-to-moderate dementia: a randomized controlled trial.

    PubMed

    Chen, Yu-Ling; Pei, Yu-Cheng

    2018-01-01

    Dual-task training may improve dual-task gait performance, balance, and cognition in older adults with and without cognitive impairment. Although music has been widely utilized in dementia management, there are no existing protocols for music-based dual-task training. This randomized controlled study developed a Musical Dual-Task Training (MDTT) protocol that patients with dementia can use to practice walking and making music simultaneously, to enhance attention control in patients during dual-tasking. Twenty-eight adults diagnosed with mild-to-moderate dementia were assigned to the MDTT (n=15) or control groups (n=13). The MDTT group received MDTT, while the control group participated in non-musical cognitive and walking activities. The effects of MDTT were evaluated through the primary outcome of attention control, and secondary outcomes of dual-task performance, balance, falls efficacy, and agitation. The MDTT group showed a significant improvement in attention control, while the control group did not ( P <0.001). A significant effect favored MDTT over control treatment for the secondary outcome of falls efficacy ( P =0.02) and agitation ( P <0.01). MDTT, a music therapy intervention that demands a high level of cognitive processing, enhances attention control, falls efficacy, and helps alleviate agitation in patients with mild-to-moderate dementia.

  12. Musical dual-task training in patients with mild-to-moderate dementia: a randomized controlled trial

    PubMed Central

    Chen, Yu-Ling; Pei, Yu-Cheng

    2018-01-01

    Background/aims Dual-task training may improve dual-task gait performance, balance, and cognition in older adults with and without cognitive impairment. Although music has been widely utilized in dementia management, there are no existing protocols for music-based dual-task training. This randomized controlled study developed a Musical Dual-Task Training (MDTT) protocol that patients with dementia can use to practice walking and making music simultaneously, to enhance attention control in patients during dual-tasking. Methods Twenty-eight adults diagnosed with mild-to-moderate dementia were assigned to the MDTT (n=15) or control groups (n=13). The MDTT group received MDTT, while the control group participated in non-musical cognitive and walking activities. The effects of MDTT were evaluated through the primary outcome of attention control, and secondary outcomes of dual-task performance, balance, falls efficacy, and agitation. Results The MDTT group showed a significant improvement in attention control, while the control group did not (P<0.001). A significant effect favored MDTT over control treatment for the secondary outcome of falls efficacy (P=0.02) and agitation (P<0.01). Conclusion MDTT, a music therapy intervention that demands a high level of cognitive processing, enhances attention control, falls efficacy, and helps alleviate agitation in patients with mild-to-moderate dementia. PMID:29881275

  13. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  14. Deficits of long-term memory in ecstasy users are related to cognitive complexity of the task.

    PubMed

    Brown, John; McKone, Elinor; Ward, Jeff

    2010-03-01

    Despite animal evidence that methylenedioxymethamphetamine (ecstasy) causes lasting damage in brain regions related to long-term memory, results regarding human memory performance have been variable. This variability may reflect the cognitive complexity of the memory tasks. However, previous studies have tested only a limited range of cognitive complexity. Furthermore, comparisons across different studies are made difficult by regional variations in ecstasy composition and patterns of use. The objective of this study is to evaluate ecstasy-related deficits in human verbal memory over a wide range of cognitive complexity using subjects drawn from a single geographical population. Ecstasy users were compared to non-drug using controls on verbal tasks with low cognitive complexity (stem completion), moderate cognitive complexity (stem-cued recall and word list learning) and high cognitive complexity (California Verbal Learning Test, Verbal Paired Associates and a novel Verbal Triplet Associates test). Where significant differences were found, both groups were also compared to cannabis users. More cognitively complex memory tasks were associated with clearer ecstasy-related deficits than low complexity tasks. In the most cognitively demanding task, ecstasy-related deficits remained even after multiple learning opportunities, whereas the performance of cannabis users approached that of non-drug using controls. Ecstasy users also had weaker deliberate strategy use than both non-drug and cannabis controls. Results were consistent with the proposal that ecstasy-related memory deficits are more reliable on tasks with greater cognitive complexity. This could arise either because such tasks require a greater contribution from the frontal lobe or because they require greater interaction between multiple brain regions.

  15. Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task.

    PubMed

    Fischer, Tara D; Red, Stuart D; Chuang, Alice Z; Jones, Elizabeth B; McCarthy, James J; Patel, Saumil S; Sereno, Anne B

    2016-07-01

    This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement-based tablet test, the King-Devick(®) (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms.

  16. Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task

    PubMed Central

    Red, Stuart D.; Chuang, Alice Z.; Jones, Elizabeth B.; McCarthy, James J.; Patel, Saumil S.; Sereno, Anne B.

    2016-01-01

    Abstract This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement–based tablet test, the King-Devick® (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms. PMID:26398492

  17. Continuous cognitive task promotes greater postural stability than an internal or external focus of attention.

    PubMed

    Polskaia, Nadia; Richer, Natalie; Dionne, Eliane; Lajoie, Yves

    2015-02-01

    Research has demonstrated clear advantages of using an external focus of attention in postural control tasks, presumably since it allows a more automatic control of posture to emerge. However, the influence of cognitive tasks on postural stability has produced discordant results. This study aimed to compare the effects of an internal focus of attention, an external focus of attention and a continuous cognitive task on postural control. Twenty healthy participants (21.4±2.6 years) were recruited for this study. They were asked to stand quietly on a force platform with their feet together in three different attentional focus conditions: an internal focus condition (minimizing movements of the hips), an external focus condition (minimizing movements of markers placed on the hips) and a cognitive task condition (silently counting the total number of times a single digit was verbalized in a 3-digit sequence comprised of 30 numbers). Results demonstrated improved stability while performing the cognitive task as opposed to the internal and external focus conditions, as evidenced by a reduction in sway area, sway variability in the anterior-posterior (AP) and medial-lateral (ML) directions, and mean velocity (ML only). Results suggest that the use of a continuous cognitive task permits attention to be withdrawn from the postural task, thereby facilitating a more automatic control of posture. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of aging on the relationship between cognitive demand and step variability during dual-task walking.

    PubMed

    Decker, Leslie M; Cignetti, Fabien; Hunt, Nathaniel; Potter, Jane F; Stergiou, Nicholas; Studenski, Stephanie A

    2016-08-01

    A U-shaped relationship between cognitive demand and gait control may exist in dual-task situations, reflecting opposing effects of external focus of attention and attentional resource competition. The purpose of the study was twofold: to examine whether gait control, as evaluated from step-to-step variability, is related to cognitive task difficulty in a U-shaped manner and to determine whether age modifies this relationship. Young and older adults walked on a treadmill without attentional requirement and while performing a dichotic listening task under three attention conditions: non-forced (NF), forced-right (FR), and forced-left (FL). The conditions increased in their attentional demand and requirement for inhibitory control. Gait control was evaluated by the variability of step parameters related to balance control (step width) and rhythmic stepping pattern (step length and step time). A U-shaped relationship was found for step width variability in both young and older adults and for step time variability in older adults only. Cognitive performance during dual tasking was maintained in both young and older adults. The U-shaped relationship, which presumably results from a trade-off between an external focus of attention and competition for attentional resources, implies that higher-level cognitive processes are involved in walking in young and older adults. Specifically, while these processes are initially involved only in the control of (lateral) balance during gait, they become necessary for the control of (fore-aft) rhythmic stepping pattern in older adults, suggesting that attentional resources turn out to be needed in all facets of walking with aging. Finally, despite the cognitive resources required by walking, both young and older adults spontaneously adopted a "posture second" strategy, prioritizing the cognitive task over the gait task.

  19. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.

    PubMed

    Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael

    2015-02-01

    Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Aging and Concurrent Task Performance: Cognitive Demand and Motor Control

    ERIC Educational Resources Information Center

    Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn

    2006-01-01

    A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…

  1. The performance of stroke survivors in turning-while-walking while carrying out a concurrent cognitive task compared with controls.

    PubMed

    Chan, Wing-Nga; Tsang, William Wai-Nam

    2017-01-01

    Turning-while-walking is one of the commonest causes of falls in stroke survivors. It involves cognitive processing and may be challenging when performed concurrently with a cognitive task. Previous studies of dual-tasking involving turning-while-walking in stroke survivors show that the performance of physical tasks is compromised. However, the design of those studies did not address the response of stroke survivors under dual-tasking condition without specifying the task-preference and its effect on the performance of the cognitive task. First, to compare the performance of single-tasking and dual-tasking in stroke survivors. Second, to compare the performance of stroke survivors with non-stroke controls. Fifty-nine stroke survivors and 45 controls were assessed with an auditory Stroop test, a turning-while-walking test, and a combination of the two single tasks. The outcome of the cognitive task was measured by the reaction time and accuracy of the task. The physical task was evaluated by measuring the turning duration, number of steps to turn, and time to complete the turning-while-walking test. Stroke survivors showed a significantly reduced accuracy in the auditory Stroop test when dual-tasking, but there was no change in the reaction time. Their performance in the turning-while-walking task was similar under both single-tasking and dual-tasking condition. Additionally, stroke survivors demonstrated a significantly longer reaction time and lower accuracy than the controls both when single-tasking and dual-tasking. They took longer to turn, with more steps, and needed more time to complete the turning-while-walking task in both tasking conditions. The results show that stroke survivors with high mobility function performed the auditory Stroop test less accurately while preserving simultaneous turning-while-walking performance. They also demonstrated poorer performance in both single-tasking and dual-tasking as compared with controls.

  2. Mid-frontal theta activity is diminished during cognitive control in Parkinson's disease.

    PubMed

    Singh, Arun; Richardson, Sarah Pirio; Narayanan, Nandakumar; Cavanagh, James F

    2018-05-23

    Mid-frontal theta activity underlies cognitive control. These 4-8 Hz rhythms are modulated by cortical dopamine and can be abnormal in patients with Parkinson's disease (PD). Here, we investigated mid-frontal theta deficits in PD patients during a task explicitly involving cognitive control. We collected scalp EEG from high-performing PD patients and demographically matched controls during performance of a modified Simon reaction-time task. This task involves cognitive control to adjudicate response conflict and error-related adjustments. Task performance of PD patients was indistinguishable from controls, but PD patients had less mid-frontal theta modulations around cues and responses. Critically, PD patients had attenuated mid-frontal theta activity specifically associated with response conflict and post-error processing. These signals were unaffected by medication or motor scores. Post-error mid-frontal theta activity was correlated with disease duration. Classification of control vs. PD from these data resulted in a specificity of 69% and a sensitivity of 72%. These findings help define the scope of mid-frontal theta aberrations during cognitive control in PD, and may provide insight into the nature of PD-related cognitive dysfunction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The effects of a concurrent task on walking in persons with transfemoral amputation compared to persons without limb loss.

    PubMed

    Morgan, Sara J; Hafner, Brian J; Kelly, Valerie E

    2016-08-01

    Many people with lower limb loss report the need to concentrate on walking. This may indicate increased reliance on cognitive resources when walking compared to individuals without limb loss. This study quantified changes in walking associated with addition of a concurrent cognitive task in persons with transfemoral amputation using microprocessor knees compared to age- and sex-matched controls. Observational, cross-sectional study. Quantitative motion analysis was used to assess walking under both single-task (walking alone) and dual-task (walking while performing a cognitive task) conditions. Primary outcomes were walking speed, step width, step time asymmetry, and cognitive task response latency and accuracy. Repeated-measures analysis of variance was used to examine the effects of task (single-task and dual-task) and group (transfemoral amputation and control) for each outcome. No significant interactions between task and group were observed (all p > 0.11) indicating that a cognitive task did not differentially affect walking between groups. However, walking was slower with wider steps and more asymmetry in people with transfemoral amputation compared to controls under both conditions. Although there were significant differences in walking between people with transfemoral amputation and matched controls, the effects of a concurrent cognitive task on walking were similar between groups. The addition of a concurrent task did not differentially affect walking outcomes in people with and without transfemoral amputation. However, compared to people without limb loss, people with transfemoral amputation adopted a conservative walking strategy. This strategy may reduce the need to concentrate on walking but also contributed to notable gait deviations. © The International Society for Prosthetics and Orthotics 2015.

  4. Use of Structure as a Basis for Abstraction in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2004-01-01

    The safety and efficiency of the air traffic control domain is highly dependent on the capabilities and limitations of its human controllers. Past research has indicated that structure provided by the airspace and procedures could aid in simplifying the controllers cognitive tasks. In this paper, observations, interviews, voice command data analyses, and radar analyses were conducted at the Boston Terminal Route Control (TRACON) facility to determine if there was evidence of controllers using structure to simplify their cognitive processes. The data suggest that controllers do use structure-based abstractions to simplify their cognitive processes, particularly the projection task. How structure simplifies the projection task and the implications of understanding the benefits structure provides to the projection task was discussed.

  5. Training Attentional Control Improves Cognitive and Motor Task Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  6. Continuous and difficult discrete cognitive tasks promote improved stability in older adults.

    PubMed

    Lajoie, Yves; Jehu, Deborah A; Richer, Natalie; Chan, Alan

    2017-06-01

    Directing attention away from postural control and onto a cognitive task affords the emergence of automatic control processes. Perhaps the continuous withdrawal of attention from the postural task facilitates an automatization of posture as opposed to only intermittent withdrawal; however this is unknown in the aging population. Twenty older adults (69.9±3.5years) stood with feet together on a force platform for 60s while performing randomly assigned discrete and continuous cognitive tasks. Participants were instructed to stand comfortably with their arms by their sides while verbally responding to the auditory stimuli as fast as possible during the discrete tasks, or mentally performing the continuous cognitive tasks. Participants also performed single-task standing. Results demonstrate significant reductions in sway amplitude and sway variability for the difficult discrete task as well as the continuous tasks relative to single-task standing. The continuous cognitive tasks also prompted greater frequency of sway in the anterior-posterior direction compared to single-standing and discrete tasks, and greater velocity in both directions compared to single-task standing, which could suggest ankle stiffening. No differences in the simple discrete condition were shown compared to single-task standing, perhaps due to the simplicity of the task. Therefore, we propose that the level of difficulty of the task, the specific neuropsychological process engaged during the cognitive task, and the type of task (discrete vs. continuous) influence postural control in older adults. Dual-tasking is a common activity of daily living; this work provides insight into the age-related changes in postural stability and attention demand. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Influence of Positive Mood on Different Aspects of Cognitive Control

    PubMed Central

    Martin, Elizabeth A.; Kerns, John G.

    2010-01-01

    Some evidence suggests that positive mood influences cognitive control. The current research investigated whether positive mood has differential effects on two aspects of cognitive control, working memory and prepotent response inhibition. In Study 1, following either a positive or neutral mood induction, participants completed the Running Memory Span (RMS), a measure primarily of working memory storage capacity, and the Stroop task, a measure of prepotent response inhibition. Results were that the positive mood group performed worse on the RMS task but not on the Stroop task. In Study 2, participants completed the RMS and another measure of prepotent response inhibition, the Flanker task. Results were that when in a positive mood state participants performed worse on the RMS but not on the Flanker task. Overall, this research suggests that positive mood has differential effects on cognitive control, impairing working memory but having no effect on prepotent response inhibition. PMID:21399720

  8. Enhancing cognition with video games: a multiple game training study.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2013-01-01

    Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.

  9. Dissociable early attentional control mechanisms underlying cognitive and affective conflicts

    PubMed Central

    Chen, Taolin; Kendrick, Keith M.; Feng, Chunliang; Sun, Shiyue; Yang, Xun; Wang, Xiaogang; Luo, Wenbo; Yang, Suyong; Huang, Xiaoqi; Valdés-Sosa, Pedro A.; Gong, Qiyong; Fan, Jin; Luo, Yue-Jia

    2016-01-01

    It has been well documented that cognitive conflict is sensitive to the relative proportion of congruent and incongruent trials. However, few studies have examined whether affective conflict processing is modulated as a function of proportion congruency (PC). To address this question we recorded event-related potentials (ERP) while subjects performed both cognitive and affective face-word Stroop tasks. By varying the proportion of congruent and incongruent trials in each block, we examined the extent to which PC impacts both cognitive and affective conflict control at different temporal stages. Results showed that in the cognitive task an anteriorly localized early N2 component occurred predominantly in the low proportion congruency context, whereas in the affective task it was found to occur in the high proportion congruency one. The N2 effects across the two tasks were localized to the dorsolateral prefrontal cortex, where responses were increased in the cognitive task but decreased in the affective one. Furthermore, high proportions of congruent items produced both larger amplitude of a posteriorly localized sustained potential component and a larger behavioral Stroop effect in cognitive and affective tasks. Our findings suggest that cognitive and affective conflicts engage early dissociable attentional control mechanisms and a later common conflict response system. PMID:27892513

  10. Cognitive task analysis: harmonizing tasks to human capacities.

    PubMed

    Neerincx, M A; Griffioen, E

    1996-04-01

    This paper presents the development of a cognitive task analysis that assesses the task load of jobs and provides indicators for the redesign of jobs. General principles of human task performance were selected and, subsequently, integrated into current task modelling techniques. The resulting cognitive task analysis centres around four aspects of task load: the number of actions in a period, the ratio between knowledge- and rule-based actions, lengthy uninterrupted actions, and momentary overloading. The method consists of three stages: (1) construction of a hierarchical task model, (2) a time-line analysis and task load assessment, and (3), if necessary, adjustment of the task model. An application of the cognitive task analysis in railway traffic control showed its benefits over the 'old' task load analysis of the Netherlands Railways. It provided a provisional standard for traffic control jobs, conveyed two load risks -- momentary overloading and underloading -- and resulted in proposals to satisfy the standard and to diminish the two load risk.

  11. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk.

    PubMed

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S

    2016-01-01

    Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style toward flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task-an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style toward more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias.

  12. Absence without leave or leave without absence: Examining the interrelations among mind wandering, metacognition and cognitive control.

    PubMed

    Drescher, Leonhard Hakon; Van den Bussche, Eva; Desender, Kobe

    2018-01-01

    Despite the abundance of recent publications about mind wandering (i.e., off-task thought), its interconnection with metacognition and cognitive control has not yet been examined. In the current study, we hypothesized that these three constructs would show clear interrelations. Metacognitive capacity was predicted to correlate positively with cognitive control ability, which in turn was predicted to be positively related to resistance to mind wandering during sustained attention. Moreover, it was expected that participants with good metacognitive capacity would be better at the subjective recognition of behaviorally present mind wandering. Three tasks were used: The Sustained Attention to Response Task (SART) to measure mind wandering, a perceptual decision task with confidence ratings to measure metacognitive efficiency, and a conflict task to measure cognitive control. Structural Equation Modelling was used to test the interrelations among the three constructs. As expected, metacognitive efficiency was positively related to cognitive control ability. Surprisingly, there was a negative relation between metacognitive efficiency and the degree to which subjective mind wandering reports tracked the behavioral index of mind wandering. No relation was found between cognitive control and behavioral mind wandering. The results of the current work are the first to shed light on the interrelations among these three constructs.

  13. Absence without leave or leave without absence: Examining the interrelations among mind wandering, metacognition and cognitive control

    PubMed Central

    Van den Bussche, Eva; Desender, Kobe

    2018-01-01

    Despite the abundance of recent publications about mind wandering (i.e., off-task thought), its interconnection with metacognition and cognitive control has not yet been examined. In the current study, we hypothesized that these three constructs would show clear interrelations. Metacognitive capacity was predicted to correlate positively with cognitive control ability, which in turn was predicted to be positively related to resistance to mind wandering during sustained attention. Moreover, it was expected that participants with good metacognitive capacity would be better at the subjective recognition of behaviorally present mind wandering. Three tasks were used: The Sustained Attention to Response Task (SART) to measure mind wandering, a perceptual decision task with confidence ratings to measure metacognitive efficiency, and a conflict task to measure cognitive control. Structural Equation Modelling was used to test the interrelations among the three constructs. As expected, metacognitive efficiency was positively related to cognitive control ability. Surprisingly, there was a negative relation between metacognitive efficiency and the degree to which subjective mind wandering reports tracked the behavioral index of mind wandering. No relation was found between cognitive control and behavioral mind wandering. The results of the current work are the first to shed light on the interrelations among these three constructs. PMID:29425205

  14. Cognitive effort and pupil dilation in controlled and automatic processes.

    PubMed

    Querino, Emanuel; Dos Santos, Lafaiete; Ginani, Giuliano; Nicolau, Eduardo; Miranda, Débora; Romano-Silva, Marco; Malloy-Diniz, Leandro

    2015-01-01

    The Five Digits Test (FDT) is a Stroop paradigm test that aims to evaluate executive functions. It is composed of four parts, two of which are related to automatic and two of which are related to controlled processes. It is known that pupillary diameter increases as the task's cognitive demand increases. In the present study, we evaluated whether the pupillary diameter could distinguish cognitive effort between automated and controlled cognitive processing during the FDT as the task progressed. As a control task, we used a simple reading paradigm with a similar visual aspect as the FDT. We then divided each of the four parts into two blocks in order to evaluate the differences between the first and second half of the task. Results indicated that, compared to a control task, the FDT required higher cognitive effort for each consecutive part. Moreover, the first half of every part of the FDT induced dilation more than the second. The differences in pupil dilation during the first half of the four FDT parts were statistically significant between the parts 2 and 4 (p=0.023), and between the parts 3 and 4 (p=0.006). These results provide further evidence that cognitive effort and pupil diameter can distinguish controlled from automatic processes.

  15. The effects of bilingualism on conflict monitoring, cognitive control, and garden-path recovery.

    PubMed

    Teubner-Rhodes, Susan E; Mishler, Alan; Corbett, Ryan; Andreu, Llorenç; Sanz-Torrent, Monica; Trueswell, John C; Novick, Jared M

    2016-05-01

    Bilinguals demonstrate benefits on non-linguistic tasks requiring cognitive control-the regulation of mental activity to resolve information-conflict during processing. This "bilingual advantage" has been attributed to the consistent management of two languages, yet it remains unknown if these benefits extend to sentence processing. In monolinguals, cognitive control helps detect and revise misinterpretations of sentence meaning. Here, we test if the bilingual advantage extends to parsing and interpretation by comparing bilinguals' and monolinguals' syntactic ambiguity resolution before and after practicing N-back, a non-syntactic cognitive-control task. Bilinguals outperformed monolinguals on a high-conflict but not a no-conflict version of N-back and on sentence comprehension, indicating that the advantage extends to language interpretation. Gains on N-back conflict trials also predicted comprehension improvements for ambiguous sentences, suggesting that the bilingual advantage emerges across tasks tapping shared cognitive-control procedures. Because the overall task benefits were observed for conflict and non-conflict trials, bilinguals' advantage may reflect increased cognitive flexibility. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Can training in a real-time strategy video game attenuate cognitive decline in older adults?

    PubMed

    Basak, Chandramallika; Boot, Walter R; Voss, Michelle W; Kramer, Arthur F

    2008-12-01

    Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. In the current study, the authors trained older adults in a real-time strategy video game for 23.5 hr in an effort to improve their executive functions. A battery of cognitive tasks, including tasks of executive control and visuospatial skills, were assessed before, during, and after video-game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the control participants in executive control functions, such as task switching, working memory, visual short-term memory, and reasoning. Individual differences in changes in game performance were correlated with improvements in task switching. The study has implications for the enhancement of executive control processes of older adults. Copyright (c) 2009 APA, all rights reserved.

  17. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.

    PubMed

    Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J

    2009-10-01

    Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.

  18. Social anhedonia associated with poor evaluative processing but not with poor cognitive control.

    PubMed

    Martin, Elizabeth A; Kerns, John G

    2010-07-30

    Emotion researchers have distinguished between automatic vs. controlled processing of evaluative information. There is suggestive evidence that social anhedonia might be associated with problems in controlled evaluative processing. The current study examined whether college students with elevated social anhedonia would exhibit an increased processing effect on tasks involving either evaluative processing or cognitive control. On an evaluative processing task, affective primes and targets could be either congruent or incongruent and participants judged the valence of targets. On a cognitive control task, participants completed the color-naming Stroop task. Compared to control participants (n=47), people with elevated social anhedonia (n=27) exhibited an increased evaluative processing effect as they were slower and made more errors for incongruent than for congruent trials on the evaluative processing task. In contrast, there were no group differences on the Stroop task or on a semantic priming task. Overall, these results suggest that people with elevated social anhedonia might have problems with some aspects of evaluative processing. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Altered attentional control strategies but spared executive functioning in chronic cannabis users.

    PubMed

    Nusbaum, Amy T; Whitney, Paul; Cuttler, Carrie; Spradlin, Alexander; Hinson, John M; McLaughlin, Ryan J

    2017-12-01

    Cannabis use has increased rapidly in recent decades. The increase in cannabis use makes it important to understand the potential influence of chronic use on attentional control and other executive functions (EFs). Because cannabis is often used to reduce stress, and because stress can constrain attentional control and EFs, the primary goal of this study was to determine the joint effect of acute stress and chronic cannabis use on specific EFs. Thirty-nine cannabis users and 40 non-users were assigned to either a stress or no stress version of the Maastricht Acute Stress Test. Participants then completed two cognitive tasks that involve EFs: (1) task switching, and (2) a novel Flexible Attentional Control Task. These two tasks provided assessments of vigilant attention, inhibitory control, top-down attentional control, and cognitive flexibility. Salivary cortisol was assessed throughout the study. Reaction time indices showed an interaction between stress and cannabis use on top-down attentional control (p=0.036, n p 2 =0.059). Follow-up tests showed that cannabis users relied less on top-down attentional control than did non-users in the no stress version. Despite not relying on top-down control, the cannabis users showed no overall performance deficits on the tasks. Chronic cannabis users performed cognitive tasks involving EFs as well as non-users while not employing cognitive control processes that are typical for such tasks. These results indicate alterations in cognitive processing in cannabis users, but such alterations do not necessarily lead to global performance deficits. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Social priming improves cognitive control in elderly adults--evidence from the Simon task.

    PubMed

    Aisenberg, Daniela; Cohen, Noga; Pick, Hadas; Tressman, Iris; Rappaport, Michal; Shenberg, Tal; Henik, Avishai

    2015-01-01

    We examined whether social priming of cognitive states affects the inhibitory process in elderly adults, as aging is related to deficits in inhibitory control. Forty-eight elderly adults and 45 young adults were assigned to three groups and performed a cognitive control task (Simon task), which was followed by 3 different manipulations of social priming (i.e., thinking about an 82 year-old person): 1) negative--characterized by poor cognitive abilities, 2) neutral--characterized by acts irrelevant to cognitive abilities, and 3) positive--excellent cognitive abilities. After the manipulation, the Simon task was performed again. Results showed improvement in cognitive control effects in seniors after the positive manipulation, indicated by a significant decrease in the magnitude of the Simon and interference effects, but not after the neutral and negative manipulations. Furthermore, a healthy pattern of sequential effect (Gratton) that was absent before the manipulation in all 3 groups appeared after the positive manipulation. Namely, the Simon effect was only present after congruent but not after incongruent trials for the positive manipulation group. No influence of manipulations was found in young adults. These meaningful results were replicated in a second experiment and suggest a decrease in conflict interference resulting from positive cognitive state priming. Our study provides evidence that an implicit social concept of a positive cognitive condition in old age can affect the control process of the elderly and improve cognitive abilities.

  1. Social Priming Improves Cognitive Control in Elderly Adults—Evidence from the Simon Task

    PubMed Central

    Aisenberg, Daniela; Cohen, Noga; Pick, Hadas; Tressman, Iris; Rappaport, Michal; Shenberg, Tal; Henik, Avishai

    2015-01-01

    We examined whether social priming of cognitive states affects the inhibitory process in elderly adults, as aging is related to deficits in inhibitory control. Forty-eight elderly adults and 45 young adults were assigned to three groups and performed a cognitive control task (Simon task), which was followed by 3 different manipulations of social priming (i.e., thinking about an 82 year-old person): 1) negative—characterized by poor cognitive abilities, 2) neutral—characterized by acts irrelevant to cognitive abilities, and 3) positive—excellent cognitive abilities. After the manipulation, the Simon task was performed again. Results showed improvement in cognitive control effects in seniors after the positive manipulation, indicated by a significant decrease in the magnitude of the Simon and interference effects, but not after the neutral and negative manipulations. Furthermore, a healthy pattern of sequential effect (Gratton) that was absent before the manipulation in all 3 groups appeared after the positive manipulation. Namely, the Simon effect was only present after congruent but not after incongruent trials for the positive manipulation group. No influence of manipulations was found in young adults. These meaningful results were replicated in a second experiment and suggest a decrease in conflict interference resulting from positive cognitive state priming. Our study provides evidence that an implicit social concept of a positive cognitive condition in old age can affect the control process of the elderly and improve cognitive abilities. PMID:25635946

  2. Effects of Cognitive Load on Driving Performance: The Cognitive Control Hypothesis.

    PubMed

    Engström, Johan; Markkula, Gustav; Victor, Trent; Merat, Natasha

    2017-08-01

    The objective of this paper was to outline an explanatory framework for understanding effects of cognitive load on driving performance and to review the existing experimental literature in the light of this framework. Although there is general consensus that taking the eyes off the forward roadway significantly impairs most aspects of driving, the effects of primarily cognitively loading tasks on driving performance are not well understood. Based on existing models of driver attention, an explanatory framework was outlined. This framework can be summarized in terms of the cognitive control hypothesis: Cognitive load selectively impairs driving subtasks that rely on cognitive control but leaves automatic performance unaffected. An extensive literature review was conducted wherein existing results were reinterpreted based on the proposed framework. It was demonstrated that the general pattern of experimental results reported in the literature aligns well with the cognitive control hypothesis and that several apparent discrepancies between studies can be reconciled based on the proposed framework. More specifically, performance on nonpracticed or inherently variable tasks, relying on cognitive control, is consistently impaired by cognitive load, whereas the performance on automatized (well-practiced and consistently mapped) tasks is unaffected and sometimes even improved. Effects of cognitive load on driving are strongly selective and task dependent. The present results have important implications for the generalization of results obtained from experimental studies to real-world driving. The proposed framework can also serve to guide future research on the potential causal role of cognitive load in real-world crashes.

  3. A Randomized Controlled ERP Study on the Effects of Multi-Domain Cognitive Training and Task Difficulty on Task Switching Performance in Older Adults.

    PubMed

    Küper, Kristina; Gajewski, Patrick D; Frieg, Claudia; Falkenstein, Michael

    2017-01-01

    Executive functions are subject to a marked age-related decline, but have been shown to benefit from cognitive training interventions. As of yet, it is, however, still relatively unclear which neural mechanism can mediate training-related performance gains. In the present electrophysiological study, we examined the effects of multi-domain cognitive training on performance in an untrained cue-based task switch paradigm featuring Stroop color words: participants either had to indicate the word meaning of Stroop stimuli (word task) or perform the more difficult task of color naming (color task). One-hundred and three older adults (>65 years old) were randomly assigned to a training group receiving a 4-month multi-domain cognitive training, a passive no-contact control group or an active (social) control group receiving a 4-month relaxation training. For all groups, we recorded performance and EEG measures before and after the intervention. For the cognitive training group, but not for the two control groups, we observed an increase in response accuracy at posttest, irrespective of task and trial type. No training-related effects on reaction times were found. Cognitive training was also associated with an overall increase in N2 amplitude and a decrease of P2 latency on single trials. Training-related performance gains were thus likely mediated by an enhancement of response selection and improved access to relevant stimulus-response mappings. Additionally, cognitive training was associated with an amplitude decrease in the time window of the target-locked P3 at fronto-central electrodes. An increase in the switch positivity during advance task preparation emerged after both cognitive and relaxation training. Training-related behavioral and event-related potential (ERP) effects were not modulated by task difficulty. The data suggest that cognitive training increased slow negative potentials during target processing which enhanced the N2 and reduced a subsequent P3-like component on both switch and non-switch trials and irrespective of task difficulty. Our findings further corroborate the effectiveness of multi-domain cognitive training in older adults and indicate that ERPs can be instrumental in uncovering the neural processes underlying training-related performance gains.

  4. Non-visual spatial tasks reveal increased interactions with stance postural control.

    PubMed

    Woollacott, Marjorie; Vander Velde, Timothy

    2008-05-07

    The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.

  5. The cognitive bases of the development of past and future episodic cognition in preschoolers.

    PubMed

    Ünal, Gülten; Hohenberger, Annette

    2017-10-01

    The aim of this study was to use a minimalist framework to examine the joint development of past and future episodic cognition and their underlying cognitive abilities in 3- to 5-year-old Turkish preschoolers. Participants engaged in two main tasks, a what-where-when (www) task to measure episodic memory and a future prediction task to measure episodic future thinking. Three additional tasks were used for predicting children's performance in the two main tasks: a temporal language task, an executive function task, and a spatial working memory task. Results indicated that past and future episodic tasks were significantly correlated with each other even after controlling for age. Hierarchical multiple regressions showed that, after controlling for age, the www task was predicted by executive functions, possibly supporting binding of episodic information and by linguistic abilities. The future prediction task was predicted by linguistic abilities alone, underlining the importance of language for episodic past and future thinking. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Working Memory and Cognitive Flexibility Mediates Visuoconstructional Abilities in Older Adults with Heterogeneous Cognitive Ability.

    PubMed

    Ávila, Rafaela T; de Paula, Jonas J; Bicalho, Maria A; Moraes, Edgar N; Nicolato, Rodrigo; Malloy-Diniz, Leandro F; Diniz, Breno S

    2015-05-01

    Previous studies suggest that executive functions influence the performance on visuoconstructional tasks. This study aims to investigate whether the relationship between planning ability and the copy of complex figures is mediated by distinct components of executive functions (i.e., working memory, inhibitory control and cognitive flexibility). We included a 129 older adults with Alzheimer's disease (n=36, AD), mild cognitive impairment (MCI, n=67), and with no evidence of cognitive impairment (controls, n=26). We evaluated the mediation effect of planning abilities, working memory, cognitive flexibility and inhibitory control on visuoconstructional tasks using a multiple mediation models. We found a significant direct effect of planning on visuoconstructional abilities and a partial mediation effect of working memory and cognitive flexibility on visuoconstructional abilities. The present results indicate that the performance on visuoconstructional task is mediated by multiple interrelated executive functions components, in particular working memory and cognitive flexibility.

  7. Cognitive Control over Learning: Creating, Clustering, and Generalizing Task-Set Structure

    ERIC Educational Resources Information Center

    Collins, Anne G. E.; Frank, Michael J.

    2013-01-01

    Learning and executive functions such as task-switching share common neural substrates, notably prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for…

  8. The Stationary-Gaze Task Should Not Be Systematically Used as the Control Task in Studies of Postural Control.

    PubMed

    Bonnet, Cédrick T; Szaffarczyk, Sébastien

    2017-01-01

    In studies of postural control, a control task is often used to understand significant effects obtained with experimental manipulations. This task should be the easiest task and (therefore) engage the lowest behavioral variability and cognitive workload. Since 1983, the stationary-gaze task is considered as the most relevant control task. Instead, the authors expected that free looking at small targets (white paper or images; visual angle: 12°) could be an easier task. To verify this assumption, 16 young individuals performed stationary-gaze, white-panel, and free-viewing 12° tasks in steady and relaxed stances. The stationary-gaze task led to significantly higher cognitive workload (mean score in the National Aeronotics and Space Administration Task Load Index questionnaire), higher interindividual body (head, neck, and lower back) linear variability, and higher interindividual body angular variability-not systematically yet-than both other tasks. There was more cognitive workload in steady than relaxed stances. The authors also tested if a free-viewing 24° task could lead to greater angular displacement, and hence greater body sway, than could the other tasks in relaxed stance. Unexpectedly, the participants mostly moved their eyes and not their body in this task. In the discussion, the authors explain why the stationary-gaze task may not be an ideal control task and how to choose this neutral task.

  9. Domain-specific control mechanisms for emotional and nonemotional conflict processing.

    PubMed

    Soutschek, Alexander; Schubert, Torsten

    2013-02-01

    Recent neuroimaging studies suggest that the human brain activates dissociable cognitive control networks in response to conflicts arising within the cognitive and the affective domain. The present study tested the hypothesis that nonemotional and emotional conflict regulation can also be dissociated on a functional level. For that purpose, we examined the effects of a working memory and an emotional Go/Nogo task on cognitive control in an emotional and a nonemotional variant of the Stroop paradigm. The data confirmed the hypothesized dissociation: Working memory efforts selectively suppressed conflict regulation in the nonemotional Stroop task, while the demands of an emotional Go/Nogo task impaired only conflict regulation in the emotional Stroop task. We conclude that these findings support a modular architecture of cognitive control with domain-specific conflict regulation processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Effect of a Six-Month Dancing Program on Motor-Cognitive Dual-Task Performance in Older Adults.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Rehfeld, Kathrin; Hökelmann, Anita; Schega, Lutz

    2015-10-01

    Dancing is a complex sensorimotor activity involving physical and mental elements which have positive effects on cognitive functions and motor control. The present randomized controlled trial aims to analyze the effects of a dancing program on the performance on a motor-cognitive dual task. Data of 35 older adults, who were assigned to a dancing group or a health-related exercise group, are presented in the study. In pretest and posttest, we assessed cognitive performance and variability of minimum foot clearance, stride time, and stride length while walking. Regarding the cognitive performance and the stride-to-stride variability of minimum foot clearance, interaction effects have been found, indicating that dancing lowers gait variability to a higher extent than conventional health-related exercise. The data show that dancing improves minimum foot clearance variability and cognitive performance in a dual-task situation. Multi-task exercises (like dancing) might be a powerful tool to improve motor-cognitive dual-task performance.

  11. Motivational and Emotional Influences on Cognitive Control in Depression: A Pupillometry Study

    PubMed Central

    Jones, Neil P.; Siegle, Greg J.; Mandell, Darcy

    2014-01-01

    Depressed people perform poorly on cognitive tasks, however under certain conditions they show intact cognitive performance with physiological reactivity consistent with needing to recruit additional cognitive control. We hypothesize that this apparent compensation is driven by the presence of affective processes (e.g., state anxiety) which in turn are moderated by the depressed individual’s motivational state. Clarifying these processes may help researchers identify targets for treatment that if addressed may improve depressed patients’ cognitive functioning. To test this hypothesis, 36 participants with unipolar depression and 36 never-depressed controls completed a problem-solving task modified to elicit anxiety. Participants completed measures of motivation, anxiety, sadness, and rumination, while pupillary responses were continuously measured during problem-solving as an index of cognitive control. Anxiety increased throughout the task for all participants, while both sadness and rumination were decreased during the task. In addition, anxiety more strongly affected planning accuracy in depressed participants relative to controls, regardless of participants’ levels of motivation. In contrast, differential effects of anxiety on pupillary responses were observed as a function of depressed participants’ levels of motivation. Consistent with behavioral results, less-motivated and anxious depressed participants demonstrated smaller pupillary responses, whereas more highly-motivated and anxious depressed participants demonstrated larger pupillary responses than controls. Strong effects of sadness and rumination on cognitive control in depression were not observed. Thus, we conclude that anxiety inhibits the recruitment of cognitive control in depression and that a depressed individual’s motivational state determines, in part, whether they are able to compensate by recruiting additional cognitive control. PMID:25280561

  12. Cognitive task demands, self-control demands and the mental well-being of office workers.

    PubMed

    Bridger, Robert S; Brasher, Kate

    2011-09-01

    The cognitive task demands of office workers and the self-control demands of their work roles were measured in a sample of 196 employees in two different office layouts using a self-report questionnaire, which was circulated electronically. Multiple linear regression analysis revealed that both factors were associated with mental well-being, but not with physical well-being, while controlling for exposure to psychosocial stressors. The interaction between cognitive task demands and self-control demands had the strongest association with mental well-being, suggesting that the deleterious effect of one was greater when the other was present. An exploratory analysis revealed that the association was stronger for employees working in a large open-plan office than for those working in smaller offices with more privacy. Frustration of work goals was the cognitive task demand having the strongest negative impact on mental well-being. Methodological limitations and scale psychometrics (particularly the use of the NASA Task Load Index) are discussed. STATEMENT OF RELEVANCE: Modern office work has high mental demands and low physical demands and there is a need to design offices to prevent adverse psychological reactions. It is shown that cognitive task demands interact with self-control demands to degrade mental well-being. The association was stronger in an open-plan office.

  13. Adolescent risk-taking is predicted by individual differences in cognitive control over emotional, but not non-emotional, response conflict.

    PubMed

    Botdorf, Morgan; Rosenbaum, Gail M; Patrianakos, Jamie; Steinberg, Laurence; Chein, Jason M

    2017-08-01

    While much research on adolescent risk behaviour has focused on the development of prefrontal self-regulatory mechanisms, prior studies have elicited mixed evidence of a relationship between individual differences in the capacity for self-regulation and individual differences in risk taking. To explain these inconsistent findings, it has been suggested that the capacity for self-regulation may be, for most adolescents, adequately mature to produce adaptive behaviour in non-affective, "cold" circumstances, but that adolescents have a more difficult time exerting control in affective, "hot" contexts. To further explore this claim, the present study examined individual differences in self-control in the face of affective and non-affective response conflict, and examined whether differences in the functioning of cognitive control processes under these different conditions was related to risk taking. Participants completed a cognitive Stroop task, an emotional Stroop task, and a risky driving task known as the Stoplight game. Regression analyses showed that performance on the emotional Stroop task predicted laboratory risk-taking in the driving task, whereas performance on the cognitive Stroop task did not exhibit the same trend. This pattern of results is consistent with theories of adolescent risk-taking that emphasise the impacts of affective contextual influences on the ability to enact effective cognitive control.

  14. Task difficulty modulates brain-behavior correlations in language production and cognitive control: Behavioral and fMRI evidence from a phonological go/no-go picture-naming paradigm.

    PubMed

    Zhang, Haoyun; Eppes, Anna; Beatty-Martínez, Anne; Navarro-Torres, Christian; Diaz, Michele T

    2018-06-19

    Language production and cognitive control are complex processes that involve distinct yet interacting brain networks. However, the extent to which these processes interact and their neural bases have not been thoroughly examined. Here, we investigated the neural and behavioral bases of language production and cognitive control via a phonological go/no-go picture-naming task. Naming difficulty and cognitive control demands (i.e., conflict monitoring and response inhibition) were manipulated by varying the proportion of naming trials (go trials) and inhibition trials (no-go trials) across task runs. The results demonstrated that as task demands increased, participants' behavioral performance declined (i.e., longer reaction times on naming trials, more commission errors on inhibition trials) whereas brain activation generally increased. Increased activation was found not only within the language network but also in domain-general control regions. Additionally, right superior and inferior frontal and left supramarginal gyri were sensitive to increased task difficulty during both language production and response inhibition. We also found both positive and negative brain-behavior correlations. Most notably, increased activation in sensorimotor regions, such as precentral and postcentral gyri, was associated with better behavioral performance, in both successful picture naming and successful inhibition. Moreover, comparing the strength of correlations across conditions indicated that the brain-behavior correlations in sensorimotor regions that were associated with improved performance became stronger as task demands increased. Overall, our results suggest that cognitive control demands affect language production, and that successfully coping with increases in task difficulty relies on both language-specific and domain-general cognitive control regions.

  15. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls.

    PubMed

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-03-01

    There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of cognitive control functions, however, exist in paediatric depression. This study investigated whether medication-naïve adolescents with MDD show abnormal brain activation of fronto-striatal and fronto-cingulate networks when performing tasks of attentional and cognitive control. Event-related functional magnetic resonance imaging was used to compare brain activation between 21 medication-naïve adolescents with a first-episode of MDD aged 14-17 years and 21 healthy adolescents, matched for handedness, age, sex, demographics and IQ. Activation paradigms were tasks of selective attention (Simon task), attentional switching (Switch task), and motor response inhibition and error detection (Stop task). In all three tasks, adolescents with depression compared to healthy controls demonstrated reduced activation in task-relevant right dorsolateral (DLPFC), inferior prefrontal cortex (IFC) and anterior cingulate gyrus (ACG). Additional areas of relatively reduced activation were in the parietal lobes during the Stop and Switch tasks, putamen, insula and temporal lobes during the Switch task and precuneus during the Simon task. This study shows first evidence that medication-naïve adolescents with MDD are characterised by abnormal function in ACG and right lateral prefrontal cortex during tasks of attention and performance monitoring, suggesting an early pathogenesis of these functional abnormalities attributed to MDD.

  16. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: a randomized controlled trial

    PubMed Central

    Delbroek, Tom; Vermeylen, Wietse; Spildooren, Joke

    2017-01-01

    [Purpose] This study investigates whether cognition, balance and dual task performance in institutionalized older adults improves by a virtual reality dual task training. [Subjects and Methods] Randomized controlled trial; Twenty institutionalized older adults with mild cognitive impairment (13 female, 7 male; average age, 87.2 ± 5.96 years) were randomized to the intervention (i.e. Virtual reality dual-task training using the BioRescue) or control group (no additional training). The intervention group took part in a 6-week training program while the elderly in the control group maintained their daily activities. Balance was measured with the Instrumented Timed Up-and-Go Test with and without a cognitive task. The Observed Emotion Rating Scale and Intrinsic Motivation Inventory were administered to evaluate the emotions and motivation regarding the exergaming program. [Results] The intervention group improved significantly on the total Timed Up-and-Go duration and the turn-to-sit duration during single-task walking in comparison to the control group who received no additional training. Participants found the virtual reality dual task training pleasant and useful for their concentration, memory and balance. Pleasure and alertness were the two emotions which were mostly seen during the intervention. [Conclusion] The BioRescue is a pleasant and interesting treatment method, well suited for institutionalized older adults in need of lifelong physical therapy. PMID:28744033

  17. Performance costs when emotion tunes inappropriate cognitive abilities: implications for mental resources and behavior.

    PubMed

    Storbeck, Justin

    2012-08-01

    Emotion tunes cognition, such that approach-motivated positive states promote verbal cognition, whereas withdrawal-motivated negative states promote spatial cognition (Gray, 2001). The current research examined whether self-control resources become depleted and influence subsequent behavior when emotion tunes an inappropriate cognitive tendency. In 2 experiments, either an approach-motivated positive state or a withdrawal-motivated negative state was induced, and then participants completed a verbal or a spatial working memory task creating conditions of emotion-cognition alignment (e.g., approach/verbal) or misalignment (e.g., approach/spatial). A control condition was also included. To examine behavioral costs due to depleted self-control resources, participants completed either a Stroop task (Stroop, 1935; Experiment 1) or a Black/White implicit association test (IAT; Greenwald, McGhee, & Schwartz, 1998; Experiment 2). Participants in the misalignment conditions performed worse on the Stroop task, and they were worse at controlling their implicit attitude biases on the IAT. Thus, when emotion tunes inappropriate cognitive tendencies for one's current environment, self-control resources become depleted, impairing behavioral control. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  18. Cognitive Load Differentially Impacts Response Control in Girls and Boys with ADHD

    PubMed Central

    Mostofsky, Stewart H.; Rosch, Keri S.

    2015-01-01

    Children with attention-deficit hyperactivity disorder (ADHD) consistently show impaired response control, including deficits in response inhibition and increased intrasubject variability (ISV) compared to typically-developing (TD) children. However, significantly less research has examined factors that may influence response control in individuals with ADHD, such as task or participant characteristics. The current study extends the literature by examining the impact of increasing cognitive demands on response control in a large sample of 81children with ADHD (40 girls) and 100 TD children (47 girls), ages 8–12 years. Participants completed a simple Go/No-Go (GNG) task with minimal cognitive demands, and a complex GNG task with increased cognitive load. Results showed that increasing cognitive load differentially impacted response control (commission error rate and tau, an ex-Gaussian measure of ISV) for girls, but not boys, with ADHD compared to same-sex TD children. Specifically, a sexually dimorphic pattern emerged such that boys with ADHD demonstrated higher commission error rate and tau on both the simple and complex GNG tasks as compared to TD boys, whereas girls with ADHD did not differ from TD girls on the simple GNG task, but showed higher commission error rate and tau on the complex GNG task. These findings suggest that task complexity influences response control in children with ADHD in a sexually dimorphic manner. The findings have substantive implications for the pathophysiology of ADHD in boys versus girls with ADHD. PMID:25624066

  19. Effects of task-irrelevant emotional stimuli on working memory processes in mild cognitive impairment.

    PubMed

    Berger, Christoph; Erbe, Anna-Katharina; Ehlers, Inga; Marx, Ivo; Hauenstein, Karlheinz; Teipel, Stefan

    2015-01-01

    Research suggests generally impaired cognitive control functions in working memory (WM) processes in amnestic mild cognitive impairment (MCI) and incipient Alzheimer's disease (AD). Little is known how emotional salience of task-irrelevant stimuli may modulate cognitive control of WM performance and neurofunctional activation in MCI and AD individuals. We investigated the impact of emotional task-irrelevant visual stimuli on cortical activation during verbal WM. Twelve AD/MCI individuals and 12 age-matched healthy individuals performed a verbal WM (nback-) task with task-irrelevant emotionally neutral and emotionally negative background pictures during fMRI measurement. AD/MCI individuals showed decreased WM performance compared with controls; both AD/MCI and control groups reacted slower during presentation of negative pictures, regardless of WM difficulty. The AD/MCI group showed increased activation in the left hemispheric prefrontal network, higher amygdala and less cerebellar activation with increasing WM task difficulty compared to healthy controls. Correlation analysis between neurofunctional activation and WM performance revealed a negative correlation between task sensitivity and activation in the dorsal anterior cingulum for the healthy controls but not for the AD/MCI group. Our data suggest compensatory activation in prefrontal cortex and amygdala, but also dysfunctional inhibition of distracting information in the AD/MCI group during higher WM task difficulty. Additionally, attentional processes affecting the correlation between WM performance and neurofunctional activation seem to be different between incipient AD and healthy aging.

  20. Cognitive Control of Auditory Distraction: Impact of Task Difficulty, Foreknowledge, and Working Memory Capacity Supports Duplex-Mechanism Account

    ERIC Educational Resources Information Center

    Hughes, Robert W.; Hurlstone, Mark J.; Marsh, John E.; Vachon, Francois; Jones, Dylan M.

    2013-01-01

    The influence of top-down cognitive control on 2 putatively distinct forms of distraction was investigated. Attentional capture by a task-irrelevant auditory deviation (e.g., a female-spoken token following a sequence of male-spoken tokens)--as indexed by its disruption of a visually presented recall task--was abolished when focal-task engagement…

  1. To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.

    PubMed

    Basak, Chandramallika; O'Connell, Margaret A

    2016-01-01

    It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.

  2. Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects.

    PubMed

    Yang, Guochun; Nan, Weizhi; Zheng, Ya; Wu, Haiyan; Li, Qi; Liu, Xun

    2017-04-01

    Cognitive control is essential to resolve conflict in stimulus-response compatibility (SRC) tasks. The SRC effect in the current trial is reduced after an incongruent trial as compared with a congruent trial, a phenomenon being termed conflict adaptation (CA). The CA effect is found to be domain-specific , such that it occurs when adjacent trials contain the same type of conflict, but disappears when the conflicts are of different types. Similar patterns have been observed when tasks involve different modalities, but the modality-specific effect may have been confounded by task switching. In the current study, we investigated whether or not cognitive control could transfer across auditory and visual conflicts when task-switching was controlled. Participants were asked to respond to a visual or auditory (Experiments 1A/B) stimulus, with conflict coming from either the same or a different modality. CA effects showed modality-specific patterns. To account for potential confounding effects caused by differences in task-irrelevant properties, we specifically examined the influence of task-irrelevant properties on CA effects within the visual modality (Experiments 2A/B). Significant CA effects were observed across different conflicts from distinct task-irrelevant properties, ruling out that the lack of cross-modal CA effects in Experiments 1A/B resulted from differences in task-irrelevant information. Task-irrelevant properties were further matched in Experiments 3A/B to examine the pure effect of modality. Results replicated Experiments 1A/B showing robust modality-specific CA effects. Taken together, we provide supporting evidences that modality affects cognitive control in conflict resolution, which should be taken into account in theories of cognitive control. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. The Role of Executive Control and Readiness to Change in Problematic Drinkers with Mild to Borderline Intellectual Disability.

    PubMed

    van Duijvenbode, Neomi; Didden, Robert; Korzilius, Hubert P L M; Engels, Rutger C M E

    2017-09-01

    Problematic alcohol use is associated with neuropsychological consequences, including cognitive biases. The goal of the study was to explore the moderating role of executive control and readiness to change on the relationship between alcohol use and cognitive biases in light and problematic drinkers with and without mild to borderline intellectual disability (MBID). Participants (N = 112) performed the visual dot probe task to measure the strength of the cognitive biases. Executive control was measured using two computerised tasks for working memory capacity (Corsi block-tapping task) and inhibitory control (Go/No-go task). Readiness to change was measured using the Readiness to Change Questionnaire. No cognitive biases or executive dysfunctions were found in problematic drinkers. Working memory capacity and inhibitory control were impaired among individuals with MBID, irrespective of severity of alcohol use-related problems. Executive control and readiness to change did not moderate the relationship between alcohol use and cognitive biases. The results fail to support the dual-process models of addiction, but results need to be treated with caution given the problematic psychometric qualities of the visual dot probe task. Implementing a neurocognitive assessment and protocols in the treatment of substance use disorders seems premature. © 2016 John Wiley & Sons Ltd.

  4. The effects of concurrent cognitive tasks on postural sway in healthy subjects.

    PubMed

    Mujdeci, Banu; Turkyilmaz, Didem; Yagcioglu, Suha; Aksoy, Songul

    2016-01-01

    Keeping balance of the upright stance is a highly practiced daily task for healthy adults and is effectively performed without overt attentional control in most. The purpose of this study was to examine the influence of concurrent cognitive tasks on postural sway in healthy participants. This was a prospective study. 20 healthy volunteer subjects were included. The cognitive and balance tasks were performed separately and then, concurrently. Postural control task consisted of 6 conditions (C) of the Sensory Organization Test. The cognitive task consisted of digit rehearsal task of varying presentation and varying levels of difficulty. A statistically significant difference was noted between dual task and no task for C1, C2, C3 and C4 Sensory Organization Test scores (p<0.05). There was no statistically significant difference between dual task versus non-task for C5, C6 and combined Sensory Organization Test scores (p>0.05). During dual task, increase has been determined in postural sway for C1, C2, C3 and C4 for all presentation modes and difficulty levels of the cognitive tasks. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity.

    PubMed

    Clément, Francis; Gauthier, Serge; Belleville, Sylvie

    2013-05-01

    Our goal was to test the effect of disease severity on the brain activation associated with two executive processes: manipulation and divided attention. This was achieved by administrating a manipulation task and a divided attention task using functional magnetic resonance imaging to 24 individuals with mild cognitive impairment (MCI) and 14 healthy controls matched for age, sex and education. The Mattis Dementia Rating Scale was used to divide persons with MCI into those with better and worse cognitive performances. Both tasks were associated with more brain activation in the MCI group with higher cognition than in healthy controls, particularly in the left frontal areas. Correlational analyses indicated that greater activation in a frontostriatal network hyperactivated by the higher-cognition group was related with better task performance, suggesting that these activations may support functional reorganization of a compensatory nature. By contrast, the lower-cognition group failed to show greater cerebral hyperactivation than controls during the divided attention task and, during the manipulation task, and showed less brain activation than controls in the left ventrolateral cortex, a region commonly hypoactivated in patients with Alzheimer's disease. These findings indicate that, during the early phase of MCI, executive functioning benefits from neural reorganization, but that a breakdown of this brain plasticity characterizes the late stages of MCI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Impaired cognitive plasticity and goal-directed control in adolescent obsessive-compulsive disorder.

    PubMed

    Gottwald, Julia; de Wit, Sanne; Apergis-Schoute, Annemieke M; Morein-Zamir, Sharon; Kaser, Muzaffer; Cormack, Francesca; Sule, Akeem; Limmer, Winifred; Morris, Anna Conway; Robbins, Trevor W; Sahakian, Barbara J

    2018-01-22

    Youths with obsessive-compulsive disorder (OCD) experience severe distress and impaired functioning at school and at home. Critical cognitive domains for daily functioning and academic success are learning, memory, cognitive flexibility and goal-directed behavioural control. Performance in these important domains among teenagers with OCD was therefore investigated in this study. A total of 36 youths with OCD and 36 healthy comparison subjects completed two memory tasks: Pattern Recognition Memory (PRM) and Paired Associates Learning (PAL); as well as the Intra-Extra Dimensional Set Shift (IED) task to quantitatively gauge learning as well as cognitive flexibility. A subset of 30 participants of each group also completed a Differential-Outcome Effect (DOE) task followed by a Slips-of-Action Task, designed to assess the balance of goal-directed and habitual behavioural control. Adolescent OCD patients showed a significant learning and memory impairment. Compared with healthy comparison subjects, they made more errors on PRM and PAL and in the first stages of IED involving discrimination and reversal learning. Patients were also slower to learn about contingencies in the DOE task and were less sensitive to outcome devaluation, suggesting an impairment in goal-directed control. This study advances the characterization of juvenile OCD. Patients demonstrated impairments in all learning and memory tasks. We also provide the first experimental evidence of impaired goal-directed control and lack of cognitive plasticity early in the development of OCD. The extent to which the impairments in these cognitive domains impact academic performance and symptom development warrants further investigation.

  7. Effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome.

    PubMed

    Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh

    2018-04-01

    To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.

  8. Enhancing Cognition with Video Games: A Multiple Game Training Study

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504

  9. Symbiosis of executive and selective attention in working memory

    PubMed Central

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved. PMID:25152723

  10. Symbiosis of executive and selective attention in working memory.

    PubMed

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  11. Right Fronto-Subcortical White Matter Microstructure Predicts Cognitive Control Ability on the Go/No-go Task in a Community Sample.

    PubMed

    Hinton, Kendra E; Lahey, Benjamin B; Villalta-Gil, Victoria; Boyd, Brian D; Yvernault, Benjamin C; Werts, Katherine B; Plassard, Andrew J; Applegate, Brooks; Woodward, Neil D; Landman, Bennett A; Zald, David H

    2018-01-01

    Go/no-go tasks are widely used to index cognitive control. This construct has been linked to white matter microstructure in a circuit connecting the right inferior frontal gyrus (IFG), subthalamic nucleus (STN), and pre-supplementary motor area. However, the specificity of this association has not been tested. A general factor of white matter has been identified that is related to processing speed. Given the strong processing speed component in successful performance on the go/no-go task, this general factor could contribute to task performance, but the general factor has often not been accounted for in past studies of cognitive control. Further, studies on cognitive control have generally employed small unrepresentative case-control designs. The present study examined the relationship between go/no-go performance and white matter microstructure in a large community sample of 378 subjects that included participants with a range of both clinical and subclinical nonpsychotic psychopathology. We found that white matter microstructure properties in the right IFG-STN tract significantly predicted task performance, and remained significant after controlling for dimensional psychopathology. The general factor of white matter only reached statistical significance when controlling for dimensional psychopathology. Although the IFG-STN and general factor tracts were highly correlated, when both were included in the model, only the IFG-STN remained a significant predictor of performance. Overall, these findings suggest that while a general factor of white matter can be identified in a young community sample, white matter microstructure properties in the right IFG-STN tract show a specific relationship to cognitive control. The findings highlight the importance of examining both specific and general correlates of cognition, especially in tasks with a speeded component.

  12. The neuropsychology of male adults with high-functioning autism or asperger syndrome.

    PubMed

    Wilson, C Ellie; Happé, Francesca; Wheelwright, Sally J; Ecker, Christine; Lombardo, Michael V; Johnston, Patrick; Daly, Eileen; Murphy, Clodagh M; Spain, Debbie; Lai, Meng-Chuan; Chakrabarti, Bhismadev; Sauter, Disa A; Baron-Cohen, Simon; Murphy, Declan G M

    2014-10-01

    Autism Spectrum Disorder (ASD) is diagnosed on the basis of behavioral symptoms, but cognitive abilities may also be useful in characterizing individuals with ASD. One hundred seventy-eight high-functioning male adults, half with ASD and half without, completed tasks assessing IQ, a broad range of cognitive skills, and autistic and comorbid symptomatology. The aims of the study were, first, to determine whether significant differences existed between cases and controls on cognitive tasks, and whether cognitive profiles, derived using a multivariate classification method with data from multiple cognitive tasks, could distinguish between the two groups. Second, to establish whether cognitive skill level was correlated with degree of autistic symptom severity, and third, whether cognitive skill level was correlated with degree of comorbid psychopathology. Fourth, cognitive characteristics of individuals with Asperger Syndrome (AS) and high-functioning autism (HFA) were compared. After controlling for IQ, ASD and control groups scored significantly differently on tasks of social cognition, motor performance, and executive function (P's < 0.05). To investigate cognitive profiles, 12 variables were entered into a support vector machine (SVM), which achieved good classification accuracy (81%) at a level significantly better than chance (P < 0.0001). After correcting for multiple correlations, there were no significant associations between cognitive performance and severity of either autistic or comorbid symptomatology. There were no significant differences between AS and HFA groups on the cognitive tasks. Cognitive classification models could be a useful aid to the diagnostic process when used in conjunction with other data sources-including clinical history. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  13. The Decision to Engage Cognitive Control Is Driven by Expected Reward-Value: Neural and Behavioral Evidence

    PubMed Central

    Dixon, Matthew L.; Christoff, Kalina

    2012-01-01

    Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel ‘free-choice’ versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives. PMID:23284730

  14. Reward Motivation Enhances Task Coding in Frontoparietal Cortex

    PubMed Central

    Etzel, Joset A.; Cole, Michael W.; Zacks, Jeffrey M.; Kay, Kendrick N.; Braver, Todd S.

    2016-01-01

    Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. PMID:25601237

  15. Context matters: Social cognition task performance in psychometric schizotypes.

    PubMed

    Pflum, Madeline J; Gooding, Diane C

    2018-06-01

    Patients with schizophrenia show performance deficits on tasks requiring empathy-related social cognition. The extent to which empathy impairments are observed in psychometric schizotypy is unclear. We compared accuracy and reaction time in three groups of individuals characterized by positive schizotypy (n = 79), negative schizotypy (n = 123), or low schizotypy group (n = 137). On a social cognition task that provided context, namely, the Emotion Perspective Taking Task, the positive schizotypes showed poorer performance than the negative schizotypy and control groups. These results suggest that some schizotypes differ in their ability to make use of context (e.g., social cues from the environment) to affect their social cognitive performance. However, on the Affective Responsiveness Task, in which no context was given, both groups of psychometric schizotypes displayed lower performance than the controls. These findings highlight the importance of assessing multiple groups of schizotypes as well as the value of including several social cognition tasks in order to reveal relative performance deficits. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Functional mobility in a divided attention task in older adults with cognitive impairment.

    PubMed

    Borges, Sheila de Melo; Radanovic, Márcia; Forlenza, Orestes Vicente

    2015-01-01

    Motor disorders may occur in mild cognitive impairment (MCI) and at early stages of Alzheimer's disease (AD), particularly under divided attention conditions. We examined functional mobility in 104 older adults (42 with MCI, 26 with mild AD, and 36 cognitively healthy) using the Timed Up and Go test (TUG) under 4 experimental conditions: TUG single task, TUG plus a cognitive task, TUG plus a manual task, and TUG plus a cognitive and a manual task. Statistically significant differences in mean time of execution were found in all four experimental conditions when comparing MCI and controls (p < .001), and when comparing MCI and AD patients (p < .05). Receiver-operating characteristic curve analyses showed that all four testing conditions could differentiate the three groups (area under the curve > .8, p < .001 for MCI vs. controls; area under the curve > .7, p < .001 for MCI vs. AD). The authors conclude that functional motor deficits occurring in MCI can be assessed by the TUG test, in single or dual task modality.

  17. Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task.

    PubMed

    Sachs, Matthew; Kaplan, Jonas; Der Sarkissian, Alissa; Habibi, Assal

    2017-01-01

    Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports ("sports" group, N = 13, mean age = 8.85) and another not involved in music or sports ("control" group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance.

  18. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk

    PubMed Central

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S.

    2016-01-01

    Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style toward flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task—an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style toward more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias. PMID:27605922

  19. Meta-cognitive processes in executive control development: The case of reactive and proactive control

    PubMed Central

    Chevalier, Nicolas; Martis, Shaina Bailey; Curran, Tim; Munakata, Yuko

    2015-01-01

    Young children engage cognitive control reactively in response to events, rather than proactively preparing for events. Such limitations in executive control have been explained in terms of fundamental constraints on children’s cognitive capacities. Alternatively, young children might be capable of proactive control but differ from older children in their meta-cognitive decisions regarding when to engage proactive control. We examined these possibilities in three conditions of a task-switching paradigm, varying in whether task cues were available before or after target onset. Reaction times, ERPs, and pupil dilation showed that 5-year-olds did engage in advance preparation, a critical aspect of proactive control, but only when reactive control was made more difficult, whereas 10-year-olds engaged proactive control whenever possible. These findings highlight meta-cognitive processes in children’s cognitive control, an understudied aspect of executive control development. PMID:25603026

  20. A Randomized Controlled ERP Study on the Effects of Multi-Domain Cognitive Training and Task Difficulty on Task Switching Performance in Older Adults

    PubMed Central

    Küper, Kristina; Gajewski, Patrick D.; Frieg, Claudia; Falkenstein, Michael

    2017-01-01

    Executive functions are subject to a marked age-related decline, but have been shown to benefit from cognitive training interventions. As of yet, it is, however, still relatively unclear which neural mechanism can mediate training-related performance gains. In the present electrophysiological study, we examined the effects of multi-domain cognitive training on performance in an untrained cue-based task switch paradigm featuring Stroop color words: participants either had to indicate the word meaning of Stroop stimuli (word task) or perform the more difficult task of color naming (color task). One-hundred and three older adults (>65 years old) were randomly assigned to a training group receiving a 4-month multi-domain cognitive training, a passive no-contact control group or an active (social) control group receiving a 4-month relaxation training. For all groups, we recorded performance and EEG measures before and after the intervention. For the cognitive training group, but not for the two control groups, we observed an increase in response accuracy at posttest, irrespective of task and trial type. No training-related effects on reaction times were found. Cognitive training was also associated with an overall increase in N2 amplitude and a decrease of P2 latency on single trials. Training-related performance gains were thus likely mediated by an enhancement of response selection and improved access to relevant stimulus-response mappings. Additionally, cognitive training was associated with an amplitude decrease in the time window of the target-locked P3 at fronto-central electrodes. An increase in the switch positivity during advance task preparation emerged after both cognitive and relaxation training. Training-related behavioral and event-related potential (ERP) effects were not modulated by task difficulty. The data suggest that cognitive training increased slow negative potentials during target processing which enhanced the N2 and reduced a subsequent P3-like component on both switch and non-switch trials and irrespective of task difficulty. Our findings further corroborate the effectiveness of multi-domain cognitive training in older adults and indicate that ERPs can be instrumental in uncovering the neural processes underlying training-related performance gains. PMID:28446870

  1. Dispositional mindfulness and the wandering mind: Implications for attentional control in older adults.

    PubMed

    Fountain-Zaragoza, Stephanie; Londerée, Allison; Whitmoyer, Patrick; Prakash, Ruchika Shaurya

    2016-08-01

    Age-related cognitive decline brings decreases in functional status. Dispositional mindfulness, the tendency towards present-moment attention, is hypothesized to correspond with enhanced attention, whereas mind-wandering may be detrimental to cognition. The relationships among mindfulness, task-related and task-unrelated thought, and attentional control performance on Go/No-Go and Continuous Performance tasks were examined in older adults. Dispositional mindfulness was negatively associated with task-unrelated thought and was positively associated with reactive control, but not proactive control or Go/No-Go performance. Although mind-wandering was not directly associated with performance, task-unrelated thought mediated the mindfulness-proactive control relation. Fewer task-unrelated thoughts were associated with lower proactive control. Interestingly, this effect was moderated by working memory such that it was present for those with low-average, but not high, working memory. This study highlights the importance of dispositional mindfulness and mind-wandering propensity in accounting for individual differences in attentional control in older adults, providing important targets for future cognitive remediation interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cognitive Slowing in Gulf War Illness Predicts Executive Network Hyperconnectivity: Study in a Population-Representative Sample.

    PubMed

    Turner, Monroe P; Hubbard, Nicholas A; Himes, Lyndahl M; Faghihahmadabadi, Shawheen; Hutchison, Joanna L; Bennett, Ilana J; Motes, Michael A; Haley, Robert W; Rypma, Bart

    Cognitive slowing is a prevalent symptom observed in Gulf War Illness (GWI). The present study assessed the extent to which functional connectivity between dorsolateral prefrontal cortex (DLPFC) and other task-relevant brain regions was predictive of GWI-related cognitive slowing. GWI patients (n = 54) and healthy veteran controls (n = 29) were assessed on performance of a processing speed task (the Digit Symbol Substitution Task; DSST) while undergoing functional magnetic resonance imaging (fMRI). GWI patients were slower on the DSST relative to controls. Bilateral DLPFC connectivity with task-relevant nodes was altered in GWI patients compared to healthy controls during DSST performance. Moreover, hyperconnectivity in these networks predicted GWI-related increases in reaction time on the DSST, whereas hypoconnectivity did not. These results suggest that GWI-related cognitive slowing reflects reduced efficiency in cortical networks.

  3. Reduced Cognitive-Motor Interference on Voluntary Balance Control in Older Tai Chi Practitioners.

    PubMed

    Varghese, Rini; Hui-Chan, Christina W Y; Bhatt, Tanvi

    2016-01-01

    Recent dual-task studies suggest that Tai Chi practitioners displayed better control of standing posture and maintained a quicker response time of postural muscle activation during a stepping down activity. Whether this effect extends to voluntary balance control, specifically the limits of excursion of the center of pressure, remains to be examined. The purpose of this study was to evaluate the cognitive-motor interference pattern by examining the effects of a concurrently performed cognitive task on attention of voluntary balance control in older adults who are long-term practitioners of Tai Chi. Ten older Tai Chi practitioners and 10 age-matched nonpractitioners performed a voluntary balance task that required them to shift their weight to reach a preset target in the forward and backward directions, with (single task, ST) and without (dual task, DT) a secondary cognitive task, which was the counting backward task. The counting backward task required the individual to compute and verbalize a series of arithmetic differences between a given pair of randomly generated numbers. The cognitive task was also performed independently (cognitive-ST). All trials were performed in a random order. Balance outcomes included reaction time, movement velocity, and maximal excursion of the center of pressure provided by the NeuroCom system. Cognitive outcome was the number of correct responses generated within the 8-second trial during the ST and DT conditions. Outcome variables were analyzed using a 2-factor, group by task, analysis of variance. DT costs for the variables were calculated as the relative difference between ST and DT conditions and were compared between the 2 groups using independent t tests. Tai Chi practitioners displayed shorter reaction times (P < .001) and faster movement velocities (P < .05) of their center of pressure than older nonpractitioners for both directions; however, no difference was found between the maximal excursions of the 2 groups. Cost analyses revealed that reaction time and cognitive costs were significantly lower in the Tai Chi practitioners for both forward and backward directions (P < .05); however, similar findings for movement velocity costs were significant only in the backward direction (P < .05). Our results suggest that Tai Chi practitioners expended fewer motor and cognitive resources than older nonpractitioners during a fairly complex (dynamic) postural equilibrium task while performing a verbal working memory task. They exhibited lesser cognitive-motor interference and thus better allocation of attentional resources toward the voluntary balance control task. Given that dynamic balance is a crucial prerequisite for walking and dual-tasking ability is considered to be a significant predictor of falls in older adults, our results might point at the possible long-term benefits of Tai Chi practice to counteract age-related decline in dual-tasking ability. Findings present preliminary data for further investigation, especially related to potential benefits in fall prevention.

  4. The dissociable neural dynamics of cognitive conflict and emotional conflict control: An ERP study.

    PubMed

    Xue, Song; Li, Yu; Kong, Xia; He, Qiaolin; Liu, Jia; Qiu, Jiang

    2016-04-21

    This study investigated differences in the neural time-course of cognitive conflict and emotional conflict control, using event-related potentials (ERPs). Although imaging studies have provided some evidence that distinct, dissociable neural systems underlie emotional and nonemotional conflict resolution, no ERP study has directly compared these two types of conflict. Therefore, the present study used a modified face-word Stroop task to explore the electrophysiological correlates of cognitive and emotional conflict control. The behavioral data showed that the difference in response time of congruency (incongruent condition minus the congruent condition) was larger in the cognitive conflict task than in the emotional conflict task, which indicated that cognitive conflict was stronger than the emotional conflict in the present tasks. Analysis of the ERP data revealed a main effect of task type on N2, which may be associated with top-down attention. The N450 results showed an interaction between cognitive and emotional conflict, which might be related to conflict detection. In addition, we found the incongruent condition elicited a larger SP than the congruent condition, which might be related to conflict resolution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Multiple Systems for Cognitive Control: Evidence from a Hybrid Prime-Simon Task

    ERIC Educational Resources Information Center

    Schlaghecken, Friederike; Refaat, Malik; Maylor, Elizabeth A.

    2011-01-01

    Cognitive control resolves conflicts between appropriate and inappropriate response tendencies. Is this achieved by a unitary all-purpose conflict control system, or do independent subsystems deal with different aspects of conflicting information? In a fully factorial hybrid prime-Simon task, participants responded to the identity of targets…

  6. Social cognition in schizophrenia: cognitive and affective factors.

    PubMed

    Ziv, Ido; Leiser, David; Levine, Joseph

    2011-01-01

    Social cognition refers to how people conceive, perceive, and draw inferences about mental and emotional states of others in the social world. Previous studies suggest that the concept of social cognition involves several abilities, including those related to affect and cognition. The present study analyses the deficits of individuals with schizophrenia in two areas of social cognition: Theory of Mind (ToM) and emotion recognition and processing. Examining the impairment of these abilities in patients with schizophrenia has the potential to elucidate the neurophysiological regions involved in social cognition and may also have the potential to aid rehabilitation. Two experiments were conducted. Both included the same five tasks: first- and second-level false-belief ToM tasks, emotion inferencing, understanding of irony, and matrix reasoning (a WAIS-R subtest). The matrix reasoning task was administered to evaluate and control for the association of the other tasks with analytic reasoning skills. Experiment 1 involved factor analysis of the task performance of 75 healthy participants. Experiment 2 compared 30 patients with schizophrenia to an equal number of matched controls. Results. (1) The five tasks were clearly divided into two factors corresponding to the two areas of social cognition, ToM and emotion recognition and processing. (2) Schizophrenics' performance was impaired on all tasks, particularly on those loading heavily on the analytic component (matrix reasoning and second-order ToM). (3) Matrix reasoning, second-level ToM (ToM2), and irony were found to distinguish patients from controls, even when all other tasks that revealed significant impairment in the patients' performance were taken into account. The two areas of social cognition examined are related to distinct factors. The mechanism for answering ToM questions (especially ToM2) depends on analytic reasoning capabilities, but the difficulties they present to individuals with schizophrenia are due to other components as well. The impairment in social cognition in schizophrenia stems from deficiencies in several mechanisms, including the ability to think analytically and to process emotion information and cues.

  7. Neural substrates of the influence of emotional cues on cognitive control in risk-taking adolescents.

    PubMed

    Lee, Nikki C; Weeda, Wouter D; Insel, Catherine; Somerville, Leah H; Krabbendam, Lydia; Huizinga, Mariëtte

    2018-06-01

    Adolescence is a period characterised by increases in risk-taking. This behaviour has been associated with an imbalance in the integration of the networks involved in cognitive control and motivational processes. We examined whether the influence of emotional cues on cognitive control differs between adolescents who show high or low levels of risk-taking behaviour. Participants who scored especially high or low on a risky decision task were subsequently administered an emotional go/no-go fMRI task comprising angry, happy and calm faces. Both groups showed decreased cognitive control when confronted with appetitive and aversive emotional cues. Activation in the inferior frontal gyrus (IFG) increased in line with the cognitive control demands of the task. Though the risk taking groups did not differ in their behavioural performance, functional connectivity analyses revealed the dorsal striatum plays a more central role in the processing of cognitive control in high than low risk-takers. Overall, these findings suggest that variance in fronto-striatal circuitry may underlie individual differences in risk-taking behaviour. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Dynamics of the cognitive procedural learning in alcoholics with Korsakoff's syndrome.

    PubMed

    Beaunieux, Hélène; Pitel, Anne L; Witkowski, Thomas; Vabret, François; Viader, Fausto; Eustache, Francis

    2013-06-01

    While procedures acquired before the development of amnesia are likely to be preserved in alcoholic patients with Korsakoff's syndrome, the ability of Korsakoff patients (KS) to learn new cognitive procedures is called in question. According to the Adaptive Control of Thoughts model, learning a new cognitive procedure requires highly controlled processes in the initial cognitive phase, which may be difficult for KS with episodic and working memory deficits. The goals of the present study were to examine the learning dynamics of KS compared with uncomplicated alcoholic patients (AL) and control subjects (CS) and to determine the contribution of episodic and working memory abilities in cognitive procedural learning performance. Fourteen KS, 15 AL, and 15 CS were submitted to 40 trials (4 daily learning sessions) of the Tower of Toronto task (disk-transfer task similar to the tower of Hanoi task) as well as episodic and working memory tasks. The 10 KS who were able to perform the cognitive procedural learning task obtained lower results than both CS and AL. The cognitive phase was longer in the Korsakoff's syndrome group than in the other 2 groups but did not differ between the 3 groups any more when episodic memory abilities were controlled. Our results indicate that KS have impaired cognitive procedural learning abilities compared with both AL and CS. Episodic memory deficits observed in KS result in a delayed transition from the cognitive learning phase to more advanced learning phases and, as a consequence, in an absence of automation of the procedure within 40 trials. Copyright © 2012 by the Research Society on Alcoholism.

  9. Effects of the Addition of a Dual Task to a Supervised Physical Exercise Program on Older Adults' Cognitive Performance.

    PubMed

    Ansai, Juliana Hotta; de Andrade, Larissa Pires; de Souza Buto, Marcele Stephanie; de Vassimon Barroso, Verena; Farche, Ana Claudia Silva; Rossi, Paulo Giusti; de Medeiros Takahashi, Anielle Cristhine

    2017-04-01

    The purpose of this study was to investigate the effects of the addition of a dual task to multicomponent training on cognition of active older adults. Eighty physically active older adults were divided into an intervention group (IG) and a control group (CG). Both groups performed multicomponent training over 12 weeks. The IG simultaneously performed exercises and cognitive tasks. The Mini-Mental State Examination, the Montreal Cognitive Assessment, and the Clock Drawing Test were used for cognitive assessments. The Timed Up and Go Test associated with a cognitive task was used for dual-task assessment. Significant interactions were not observed between groups in terms of the cognitive variables or the dual-task performance. An interaction was observed only for Timed Up and Go Test performance, which was better in the CG than in the IG. Active older adults showed no improvement in cognition following the addition of the dual task to the multicomponent training.

  10. No evidence for common processes of cognitive control and self-control.

    PubMed

    Scherbaum, Stefan; Frisch, Simon; Holfert, Anna-Maria; O'Hora, Denis; Dshemuchadse, Maja

    2018-01-01

    Cognitive control and self-control are often used as interchangeable terms. Both terms refer to the ability to pursue long-term goals, but the types of controlled behavior that are typically associated with these terms differ, at least superficially. Cognitive control is observed in the control of attention and the overcoming of habitual responses, while self-control is observed in resistance to short-term impulses and temptations. Evidence from clinical studies and neuroimaging studies suggests that below these superficial differences, common control process (e.g., inhibition) might guide both types of controlled behavior. Here, we study this hypothesis in a behavioral experiment, which interlaced trials of a Simon task with trials of an intertemporal decision task. If cognitive control and self-control depend on a common control process, we expected conflict adaptation from Simon task trials to lead to increased self-control in the intertemporal decision trials. However, despite successful manipulations of conflict and conflict adaptation, we found no evidence for this hypothesis. We investigate a number of alternative explanations of this result and conclude that the differences between cognitive control and self-control are not superficial, but rather reflect differences at the process level. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Improved Cognition While Cycling in Parkinson’s Disease Patients and Healthy Adults

    PubMed Central

    Hazamy, Audrey A.; Altmann, Lori J. P.; Stegemöller, Elizabeth; Bowers, Dawn; Lee, Hyo Keun; Wilson, Jonathan; Okun, Michael S.; Hass, Chris J.

    2017-01-01

    Persons with Parkinson’s disease (PD) are typically more susceptible than healthy adults to impaired performance when two tasks (dual task interference) are performed simultaneously. This limitation has by many experts been attributed to limitations in cognitive resources. Nearly all studies of dual task performance in PD employ walking or balance-based motor tasks, which are commonly impaired in PD. These tasks can be performed using a combination of one or two executive function tasks. The current study examined whether persons with PD would demonstrate greater dual task effects on cognition compared to healthy older adults (HOAs) during a concurrent cycling task. Participants with and without PD completed a battery of 12 cognitive tasks assessing visual and verbal processing in the following cognitive domains: speed of processing, controlled processing, working memory and executive function. Persons with PD exhibited impairments compared to healthy participants in select tasks (i.e., 0-Back, 2-Back and operation span). Further, both groups unexpectedly exhibited dual task facilitation of response times in visual tasks across cognitive domains, and improved verbal recall during an executive function task. Only one measure, 2-back, showed a speed-accuracy trade-off in the dual task. These results demonstrate that, when paired with a motor task in which they are not impaired, people with PD exhibit similar dual task effects on cognitive tasks as HOAs, even when these dual task effects are facilitative. More generally, these findings demonstrate that pairing cognitive tasks with cycling may actually improve cognitive performance which may have therapeutic relevance to cognitive decline associated with aging and PD pathology. PMID:28088064

  12. Does Dysphoria Lead to Divergent Mental Fatigue Effects on a Cognitive Task?

    PubMed

    Hopstaken, Jesper F; Wanmaker, Sabine; van der Linden, Dimitri; Bakker, Arnold B

    2015-01-01

    Tiredness, low energy, and listlessness are common symptoms to be associated with depression. The question remains to what extent these symptoms influence the effects of fatigue on sustained performance tasks, such as impaired task engagement and performance. Based on earlier findings, it was hypothesized that dysphoric (i.e., mildly depressed) individuals, compared to healthy controls, would display earlier fatigue onset and more severe fatigue effects on task engagement and performance during a cognitive task. Sixty-one dysphoric and twenty-one non-dysphoric control participants were compared during one hour of continuous performance on a 2-back task. During the task subjective fatigue, subjective engagement, objective task performance, baseline pupil diameter and stimulus-evoked pupil dilation were measured. While we found that the dysphoric group reported relatively higher subjective fatigue than the healthy control group at the start of the experiment, we did not find any other divergent fatigue effects during the experimental task. One explanation for the absence of divergent effect is that dysphoria may not have such a profound impact on available cognitive resources, like attention, as initially thought. Based on the results of the present study, we conclude that dysphoria is not necessarily an increased risk factor for impaired sustained performance on cognitive tasks that may induce mental fatigue.

  13. The impact of cognitive control on children's goal monitoring in a time-based prospective memory task.

    PubMed

    Mahy, Caitlin E V; Voigt, Babett; Ballhausen, Nicola; Schnitzspahn, Katharina; Ellis, Judi; Kliegel, Matthias

    2015-01-01

    The present study investigated whether developmental changes in cognitive control may underlie improvements of time-based prospective memory. Five-, 7-, 9-, and 11-year-olds (N = 166) completed a driving simulation task (ongoing task) in which they had to refuel their vehicle at specific points in time (PM task). The availability of cognitive control resources was experimentally manipulated by imposing a secondary task that required divided attention. Children completed the driving simulation task both in a full-attention condition and a divided-attention condition where they had to carry out a secondary task. Results revealed that older children performed better than younger children on the ongoing task and PM task. Children performed worse on the ongoing and PM tasks in the divided-attention condition compared to the full-attention condition. With respect to time monitoring in the final interval prior to the PM target, divided attention interacted with age such that older children's time monitoring was more negatively affected by the secondary task compared to younger children. Results are discussed in terms of developmental shifts from reactive to proactive monitoring strategies.

  14. Glancing and Then Looking: On the Role of Body, Affect, and Meaning in Cognitive Control

    PubMed Central

    Su, Li; Bowman, Howard; Barnard, Philip

    2011-01-01

    In humans, there is a trade-off between the need to respond optimally to the salient environmental stimuli and the need to meet our long-term goals. This implies that a system of salience sensitive control exists, which trades task-directed processing off against monitoring and responding to potentially high salience stimuli that are irrelevant to the current task. Much cognitive control research has attempted to understand these mechanisms using non-affective stimuli. However, recent research has emphasized the importance of emotions, which are a major factor in the prioritization of competing stimuli and in directing attention. While relatively mature theories of cognitive control exist for non-affective settings, exactly how emotions modulate cognitive processes is less well understood. The attentional blink (AB) task is a useful experimental paradigm to reveal the dynamics of both cognitive and affective control in humans. Hence, we have developed the glance–look model, which has replicated a broad profile of data on the semantic AB task and characterized how attentional deployment is modulated by emotion. Taking inspiration from Barnard’s Interacting Cognitive Subsystems, the model relies on a distinction between two levels of meaning: implicational and propositional, which are supported by two corresponding mental subsystems: the glance and the look respectively. In our model, these two subsystems reflect the central engine of cognitive control and executive function. In particular, the interaction within the central engine dynamically establishes a task filter for salient stimuli using a neurobiologically inspired learning mechanism. In addition, the somatic contribution of emotional effects is modeled by a body-state subsystem. We argue that stimulus-driven interaction among these three subsystems governs the movement of control between them. The model also predicts attenuation effects and fringe awareness during the AB. PMID:22194729

  15. Glancing and then looking: on the role of body, affect, and meaning in cognitive control.

    PubMed

    Su, Li; Bowman, Howard; Barnard, Philip

    2011-01-01

    In humans, there is a trade-off between the need to respond optimally to the salient environmental stimuli and the need to meet our long-term goals. This implies that a system of salience sensitive control exists, which trades task-directed processing off against monitoring and responding to potentially high salience stimuli that are irrelevant to the current task. Much cognitive control research has attempted to understand these mechanisms using non-affective stimuli. However, recent research has emphasized the importance of emotions, which are a major factor in the prioritization of competing stimuli and in directing attention. While relatively mature theories of cognitive control exist for non-affective settings, exactly how emotions modulate cognitive processes is less well understood. The attentional blink (AB) task is a useful experimental paradigm to reveal the dynamics of both cognitive and affective control in humans. Hence, we have developed the glance-look model, which has replicated a broad profile of data on the semantic AB task and characterized how attentional deployment is modulated by emotion. Taking inspiration from Barnard's Interacting Cognitive Subsystems, the model relies on a distinction between two levels of meaning: implicational and propositional, which are supported by two corresponding mental subsystems: the glance and the look respectively. In our model, these two subsystems reflect the central engine of cognitive control and executive function. In particular, the interaction within the central engine dynamically establishes a task filter for salient stimuli using a neurobiologically inspired learning mechanism. In addition, the somatic contribution of emotional effects is modeled by a body-state subsystem. We argue that stimulus-driven interaction among these three subsystems governs the movement of control between them. The model also predicts attenuation effects and fringe awareness during the AB.

  16. The Use of Cognitive Cues for Anticipatory Strategies in a Dynamic Postural Control Task - Validation of a Novel Approach to Dual-Task Testing.

    PubMed

    Laessoe, Uffe; Grarup, Bo; Bangshaab, Jette

    2016-01-01

    Dual-task testing is relevant in the assessment of postural control. A combination of a primary (motor) and a secondary (distracting cognitive) tasks is most often used. It remains a challenge however, to standardize and monitor the cognitive task. In this study a new dual-task testing approach with a facilitating, rather than distracting, cognitive component was evaluated. Thirty-one community-dwelling elderly and fifteen young people were tested with respect to their ability to use anticipatory postural control strategies. The motor task consisted of twenty-five repetitive tasks in which the participants needed to exceed their limit of stability in order to touch one out of eight lights. The participants performed three tests. In two of the tests the color cues of the lights allowed the participants to utilize cognitive strategies to plan their next movement and improve their performance time. The young performed the baseline motor task test in an average of 29 seconds, while the average time for the elderly was 44 seconds. When comparing the performance time with a leading cue to the time with no cue, the young group improved their performance time significantly better than the elderly did: young: 17% (5), elderly: 5% (8); p<0.001. Similar differences were seen with a more complicated leading cue: young: 12% (5), elderly: 4% (9); p<0.01. The reliability of the test showed moderate to substantial agreement (ICC = 0.74), with a small learning effect between two sessions. The dual-task test was sensitive enough to discriminate between elderly and young people. It revealed that the elderly did not utilize cognitive cues for their anticipatory postural control strategies as well as the young were able to. The test procedure was feasible and comprehensible for the participants, and it may be relevant to standardize a similar test for an alternative dual-task approach in the clinical setting.

  17. Testing cognition in the wild: factors affecting performance and individual consistency in two measures of avian cognition.

    PubMed

    Shaw, Rachael C

    2017-01-01

    Developing cognitive tasks to reliably quantify individual differences in cognitive ability is critical to advance our understanding of the fitness consequences of cognition in the wild. Several factors may influence individual performance in a cognitive task, with some being unrelated to the cognitive ability that is the target of the test. It is therefore essential to assess how extraneous factors may affect task performance, particularly for those tasks that are frequently used to quantify individual differences in cognitive ability. The current study therefore measured the performance of wild North Island robins in two tasks commonly used to measure individual differences in avian cognition: a novel motor task and a detour reaching task. The robins' performance in the motor task was affected by prior experience; individuals that had previously participated in a similar task that required a different motor action pattern outperformed naïve subjects. By contrast, detour reaching performance was influenced by an individual's body condition, suggesting that energetic state may affect inhibitory control in robins. Designing tasks that limit the influence of past experience and developing means of standardising motivation across animals tested in the wild remain key challenges to improving current measurements of cognitive ability in birds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Performance on a computerized shopping task significantly predicts real world functioning in persons diagnosed with bipolar disorder.

    PubMed

    Laloyaux, Julien; Pellegrini, Nadia; Mourad, Haitham; Bertrand, Hervé; Domken, Marc-André; Van der Linden, Martial; Larøi, Frank

    2013-12-15

    Persons diagnosed with bipolar disorder often suffer from cognitive impairments. However, little is known concerning how these cognitive deficits impact their real world functioning. We developed a computerized real-life activity task, where participants are required to shop for a list of grocery store items. Twenty one individuals diagnosed with bipolar disorder and 21 matched healthy controls were administered the computerized shopping task. Moreover, the patient group was assessed with a battery of cognitive tests and clinical scales. Performance on the shopping task significantly differentiated patients and healthy controls for two variables: Total time to complete the shopping task and Mean time spent to consult the shopping list. Moreover, in the patient group, performance on these variables from the shopping task correlated significantly with cognitive functioning (i.e. processing speed, verbal episodic memory, planning, cognitive flexibility, and inhibition) and with clinical variables including duration of illness and real world functioning. Finally, variables from the shopping task were found to significantly explain 41% of real world functioning of patients diagnosed with bipolar disorder. These findings suggest that the shopping task provides a good indication of real world functioning and cognitive functioning of persons diagnosed with bipolar disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. The influence of an auditory-memory attention-demanding task on postural control in blind persons.

    PubMed

    Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit

    2011-05-01

    In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Divergent Effects of Cognitive Load on Quiet Stance and Task-Linked Postural Coordination

    ERIC Educational Resources Information Center

    Mitra, Suvobrata; Knight, Alec; Munn, Alexandra

    2013-01-01

    Performing a cognitive task while maintaining upright stance can lead to increased or reduced body sway depending on tasks and experimental conditions. Because greater sway is commonly taken to indicate loosened postural control, and vice versa, the precise impact of cognitive load on postural stability has remained unclear. In much of the large…

  1. Does a multicomponent exercise program improve dual-task performance in amnestic mild cognitive impairment? A randomized controlled trial.

    PubMed

    Makizako, Hyuma; Doi, Takehiko; Shimada, Hiroyuki; Yoshida, Daisuke; Tsutsumimoto, Kota; Uemura, Kazuki; Suzuki, Takao

    2012-12-01

    There has been much interest in exercise interventions as a primary behavioral prevention strategy against cognitive decline. The aim of this study was to evaluate the effect of a multicomponent exercise program on physical and dual-task performances in community-dwelling older adults with amnestic mild cognitive impairment (aMCI). Fifty older adults (23 women) with aMCI (mean age, 76 years) were randomized to an intervention (n=25) or a control group (n=25). The intervention group received a multicomponent exercise program for 90 minutes/day, 2 days/week, or 40 times over six months. The multicomponent exercises included aerobic exercise, muscle strength training and postural balance retraining, which was conducted under multi-task conditions to stimulate attention and memory. Participants in the control group attended two health promotion education classes within six months. Physical and dual-task performances were measured before randomization and after six months. Dual-task performances using reaction times with balance and cognitive demands were measured. The improvement effects on dual-task performances with both balance and cognitive demands were not statistically significant: reaction time with balance demand F1,45=3.3, p=0.07, and cognitive demand F1,45=2.6, p=0.12. However, there was a significant group-by-time interaction on maximal walking speed, which decreased significantly in the control group (F1,45=5.9, p=0.02). This six-month multicomponent exercise program improved maximal walking speed in older adults with aMCI; however, it did not improve dual-task performances assessed by reaction times.

  2. Tai Chi practitioners have better postural control and selective attention in stepping down with and without a concurrent auditory response task.

    PubMed

    Lu, Xi; Siu, Ka-Chun; Fu, Siu N; Hui-Chan, Christina W Y; Tsang, William W N

    2013-08-01

    To compare the performance of older experienced Tai Chi practitioners and healthy controls in dual-task versus single-task paradigms, namely stepping down with and without performing an auditory response task, a cross-sectional study was conducted in the Center for East-meets-West in Rehabilitation Sciences at The Hong Kong Polytechnic University, Hong Kong. Twenty-eight Tai Chi practitioners (73.6 ± 4.2 years) and 30 healthy control subjects (72.4 ± 6.1 years) were recruited. Participants were asked to step down from a 19-cm-high platform and maintain a single-leg stance for 10 s with and without a concurrent cognitive task. The cognitive task was an auditory Stroop test in which the participants were required to respond to different tones of voices regardless of their word meanings. Postural stability after stepping down under single- and dual-task paradigms, in terms of excursion of the subject's center of pressure (COP) and cognitive performance, was measured for comparison between the two groups. Our findings demonstrated significant between-group differences in more outcome measures during dual-task than single-task performance. Thus, the auditory Stroop test showed that Tai Chi practitioners achieved not only significantly less error rate in single-task, but also significantly faster reaction time in dual-task, when compared with healthy controls similar in age and other relevant demographics. Similarly, the stepping-down task showed that Tai Chi practitioners not only displayed significantly less COP sway area in single-task, but also significantly less COP sway path than healthy controls in dual-task. These results showed that Tai Chi practitioners achieved better postural stability after stepping down as well as better performance in auditory response task than healthy controls. The improved performance that was magnified by dual motor-cognitive task performance may point to the benefits of Tai Chi being a mind-and-body exercise.

  3. The system neurophysiological basis of non-adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions.

    PubMed

    Stock, Ann-Kathrin; Steenbergen, Laura; Colzato, Lorenza; Beste, Christian

    2016-12-01

    Cognitive control is adaptive in the sense that it inhibits automatic processes to optimize goal-directed behavior, but high levels of control may also have detrimental effects in case they suppress beneficial automatisms. Until now, the system neurophysiological mechanisms and functional neuroanatomy underlying these adverse effects of cognitive control have remained elusive. This question was examined by analyzing the automatic exploitation of a beneficial implicit predictive feature under conditions of high versus low cognitive control demands, combining event-related potentials (ERPs) and source localization. It was found that cognitive control prohibits the beneficial automatic exploitation of additional implicit information when task demands are high. Bottom-up perceptual and attentional selection processes (P1 and N1 ERPs) are not modulated by this, but the automatic exploitation of beneficial predictive information in case of low cognitive control demands was associated with larger response-locked P3 amplitudes and stronger activation of the right inferior frontal gyrus (rIFG, BA47). This suggests that the rIFG plays a key role in the detection of relevant task cues, the exploitation of alternative task sets, and the automatic (bottom-up) implementation and reprogramming of action plans. Moreover, N450 amplitudes were larger under high cognitive control demands, which was associated with activity differences in the right medial frontal gyrus (BA9). This most likely reflects a stronger exploitation of explicit task sets which hinders the exploration of the implicit beneficial information in case of high cognitive control demands. Hum Brain Mapp 37:4511-4522, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Investigating cognitive ability and self-reported driving performance of post-stroke adults in a driving simulator.

    PubMed

    Blane, Alison; Falkmer, Torbjörn; Lee, Hoe C; Dukic Willstrand, Tania

    2018-01-01

    Background Safe driving is a complex activity that requires calibration. This means the driver can accurately assess the level of task demand required for task completion and can accurately evaluate their driving capability. There is much debate on the calibration ability of post-stroke drivers. Objectives The aim of this study was to assess the cognition, self-rated performance, and estimation of task demand in a driving simulator with post-stroke drivers and controls. Methods A between-groups study design was employed, which included a post-stroke driver group and a group of similarly aged older control drivers. Both groups were observed driving in two simulator-based driving scenarios and asked to complete the NASA Task Load Index (TLX) to assess their perceived task demand and self-rate their driving performance. Participants also completed a battery of psychometric tasks to assess attention and executive function, which was used to determine whether post-stroke cognitive impairment impacted on calibration. Results There was no difference in the amount of perceived task demand required to complete the driving task. Despite impairments in cognition, the post-stroke drivers were not more likely to over-estimate their driving abilities than controls. On average, the post-stroke drivers self-rated themselves more poorly than the controls and this rating was related to cognitive ability. Conclusion This study suggests that post-stroke drivers may be aware of their deficits and adjust their driving behavior. Furthermore, using self-performance measures alongside a driving simulator and cognitive assessments may provide complementary fitness-to-drive assessments, as well as rehabilitation tools during post-stroke recovery.

  5. The Neuropsychology of Male Adults With High-Functioning Autism or Asperger Syndrome†

    PubMed Central

    Wilson, C Ellie; Happé, Francesca; Wheelwright, Sally J; Ecker, Christine; Lombardo, Michael V; Johnston, Patrick; Daly, Eileen; Murphy, Clodagh M; Spain, Debbie; Lai, Meng-Chuan; Chakrabarti, Bhismadev; Sauter, Disa A; Baron-Cohen, Simon; Murphy, Declan G M

    2014-01-01

    Autism Spectrum Disorder (ASD) is diagnosed on the basis of behavioral symptoms, but cognitive abilities may also be useful in characterizing individuals with ASD. One hundred seventy-eight high-functioning male adults, half with ASD and half without, completed tasks assessing IQ, a broad range of cognitive skills, and autistic and comorbid symptomatology. The aims of the study were, first, to determine whether significant differences existed between cases and controls on cognitive tasks, and whether cognitive profiles, derived using a multivariate classification method with data from multiple cognitive tasks, could distinguish between the two groups. Second, to establish whether cognitive skill level was correlated with degree of autistic symptom severity, and third, whether cognitive skill level was correlated with degree of comorbid psychopathology. Fourth, cognitive characteristics of individuals with Asperger Syndrome (AS) and high-functioning autism (HFA) were compared. After controlling for IQ, ASD and control groups scored significantly differently on tasks of social cognition, motor performance, and executive function (P's < 0.05). To investigate cognitive profiles, 12 variables were entered into a support vector machine (SVM), which achieved good classification accuracy (81%) at a level significantly better than chance (P < 0.0001). After correcting for multiple correlations, there were no significant associations between cognitive performance and severity of either autistic or comorbid symptomatology. There were no significant differences between AS and HFA groups on the cognitive tasks. Cognitive classification models could be a useful aid to the diagnostic process when used in conjunction with other data sources—including clinical history. Autism Res 2014, 7: 568–581. © 2014 International Society for Autism Research, Wiley Periodicals, Inc. PMID:24903974

  6. Theory of mind in a first-episode psychosis population using the Hinting Task.

    PubMed

    Lindgren, Maija; Torniainen-Holm, Minna; Heiskanen, Inkeri; Voutilainen, Greta; Pulkkinen, Ulla; Mehtälä, Tuukka; Jokela, Markus; Kieseppä, Tuula; Suvisaari, Jaana; Therman, Sebastian

    2018-05-01

    Deficiencies in theory of mind (ToM) are common in psychosis and may largely explain impaired social functioning. Currently, it is unclear whether impairments in ToM are explained by the more general cognitive deficits related to psychosis or whether ToM is impaired in psychosis independently of other cognitive deficits. This study examined ToM using the Hinting Task in young adults (n = 66) with first-episode psychosis and matched controls (n = 62). The participants were administered a broad neuropsychological assessment. Participants with psychosis performed worse than controls on the Hinting Task. However, 75% of the variance between the groups was explained by general cognitive deficits, especially impaired processing speed and episodic memory. Hinting Task performance of the best functioning patient group did not differ from that of the control group. When the psychosis group was divided according to diagnosis, the Hinting Task difference between individuals with schizophrenia and controls remained significant even when general cognitive performance was controlled for, suggesting specific verbal ToM deficits in schizophrenia. In contrast, those with other psychotic disorders did not differ from controls. Our results suggest that ToM deficits can be seen in early phases of psychotic disorders, schizophrenia in particular, and are partly independent of other cognitive functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Understanding how train dispatchers manage and control trains : results of a cognitive task analysis

    DOT National Transportation Integrated Search

    2001-05-01

    This report documents the results of a Cognitive Task Analysis that examined how experienced railroad dispatchers manage and : schedule trains in todays environment. The objective was to understand the cognitive demands placed on railroad dispatch...

  8. Understanding how train dispatchers manage and control trains : results of a cognitive task analysis

    DOT National Transportation Integrated Search

    2001-05-01

    This report documents the results ofaCognitive Task Analysis that examined how experienced railroad dispatchers manage and : schedule trains in today's environment. The objective was to understand the cognitive demands placed on railroad dispatchers ...

  9. Understanding how train dispatchers manage and control trains : results of a cognitive task analysis.

    DOT National Transportation Integrated Search

    2001-05-01

    This report documents the results of a Cognitive Task Analysis that examined how experienced railroad dispatchers manage and schedule trains in todays environment. The objective was to understand the cognitive demands placed on railroad dispatcher...

  10. Emotional and cognitive influences in air traffic controller tasks: An investigation using a virtual environment?

    PubMed

    Truschzinski, Martina; Betella, Alberto; Brunnett, Guido; Verschure, Paul F M J

    2018-05-01

    Air traffic controllers are required to perform complex tasks which require attention and high precision. This study investigates how the difficulty of such tasks influences emotional states, cognitive workload and task performance. We use quantitative and qualitative measurements, including the recording of pupil dilation and changes in affect using questionnaires. Participants were required to perform a number of air traffic control tasks using the immersive human accessible Virtual Reality space in the "eXperience Induction Machine". Based on the data collected, we developed and validated a model which integrates personality, workload and affective theories. Our results indicate that the difficulty of an air traffic control task has a direct influence on cognitive workload as well as on the self-reported mood; whereas both mood and workload seem to change independently. In addition, we show that personality, in particular neuroticism, affects both mood and performance of the participants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Age affects the adjustment of cognitive control after a conflict: evidence from the bivalency effect.

    PubMed

    Rey-Mermet, Alodie; Meier, Beat

    2015-01-01

    Age affects cognitive control. When facing a conflict, older adults are less able to activate goal-relevant information and inhibit irrelevant information. However, cognitive control also affects the events after a conflict. The purpose of this study was to determine whether age affects the adjustment of cognitive control following a conflict. To this end, we investigated the bivalency effect, that is, the performance slowing occurring after the conflict induced by bivalent stimuli (i.e., stimuli with features for two tasks). In two experiments, we tested young adults (aged 20-30) and older adults (aged 65-85) in a paradigm requiring alternations between three tasks, with bivalent stimuli occasionally occurring on one task. The young adults showed a slowing for all trials following bivalent stimuli. This indicates a widespread and long-lasting bivalency effect, replicating previous findings. In contrast, the older adults showed a more specific and shorter-lived slowing. Thus, age affects the adjustment of cognitive control following a conflict.

  12. Weaker cognitive control abilities of Pi (Spleen) qi-deficient individuals supported Chinese medicine diagnosis.

    PubMed

    Lin, Hui-Yan; Zhao, Yan-Ping; Xu, Gui-Ping; Li, Yun-Si; Xie, Wei-Yun; Bai, Li-Hua; Jin, Hua

    2017-07-28

    To investigate whether Pi (Spleen) qi-deficiency affected psychological and neural responses in relevance to cognitive control. Pi qi-deficient and balanced participants were asked to perform the Stroop task, a classical cognitive control paradigm. In this paradigm, participants had to judge the color of the prompted word. The word's meaning indicated the color (the consistent condition) or not (the inconsistent condition), or were unrelated to the color (the neutral condition). Electroencephalograph (EEG) was recorded during the task. Event-related potential (ERP) results showed that Pi qi-deficient individuals failed to exhibit a normal Stroop effect as Balanced individuals did, such as the accuracy differences between the consistent and the inconsistent conditions as well as the N450 effect (P>0.05). Meanwhile, Pi qi-deficient individuals displayed larger P2 and P3 amplitudes than balanced individuals did during performing the cognitive control task (P<0.05). Pi qi-deficiency had psychological and neural basis at least in cognitive control aspect.

  13. CNTRICS Final Task Selection: Control of Attention

    PubMed Central

    Nuechterlein, Keith H.; Luck, Steven J.; Lustig, Cindy; Sarter, Martin

    2009-01-01

    The construct of attention has many facets that have been examined in human and animal research and in healthy and psychiatrically disordered conditions. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) group concluded that control of attention—the processes that guide selection of task-relevant inputs—is particularly impaired in schizophrenia and could profit from further work with refined measurement tools. Thus, nominations for cognitive tasks that provide discrete measures of control of attention were sought and were then evaluated at the third CNTRICS meeting for their promise for future use in treatment development. This article describes the 5 nominated measures and their strengths and weaknesses for cognitive neuroscience work relevant to treatment development. Two paradigms, Guided Search and the Distractor Condition Sustained Attention Task, were viewed as having the greatest immediate promise for development into tools for treatment research in schizophrenia and are described in more detail by their nominators. PMID:19074499

  14. Positive emotion impedes emotional but not cognitive conflict processing.

    PubMed

    Zinchenko, Artyom; Obermeier, Christian; Kanske, Philipp; Schröger, Erich; Kotz, Sonja A

    2017-06-01

    Cognitive control enables successful goal-directed behavior by resolving a conflict between opposing action tendencies, while emotional control arises as a consequence of emotional conflict processing such as in irony. While negative emotion facilitates both cognitive and emotional conflict processing, it is unclear how emotional conflict processing is affected by positive emotion (e.g., humor). In 2 EEG experiments, we investigated the role of positive audiovisual target stimuli in cognitive and emotional conflict processing. Participants categorized either spoken vowels (cognitive task) or their emotional valence (emotional task) and ignored the visual stimulus dimension. Behaviorally, a positive target showed no influence on cognitive conflict processing, but impeded emotional conflict processing. In the emotional task, response time conflict costs were higher for positive than for neutral targets. In the EEG, we observed an interaction of emotion by congruence in the P200 and N200 ERP components in emotional but not in cognitive conflict processing. In the emotional conflict task, the P200 and N200 conflict effect was larger for emotional than neutral targets. Thus, our results show that emotion affects conflict processing differently as a function of conflict type and emotional valence. This suggests that there are conflict- and valence-specific mechanisms modulating executive control.

  15. Game-based training of flexibility and attention improves task-switch performance: near and far transfer of cognitive training in an EEG study.

    PubMed

    Olfers, Kerwin J F; Band, Guido P H

    2018-01-01

    There is a demand for ways to enhance cognitive flexibility, as it can be a limiting factor for performance in daily life. Video game training has been linked to advantages in cognitive functioning, raising the question if training with video games can promote cognitive flexibility. In the current study, we investigated if game-based computerized cognitive training (GCCT) could enhance cognitive flexibility in a healthy young adult sample (N = 72), as measured by task-switch performance. Three GCCT schedules were contrasted, which targeted: (1) cognitive flexibility and task switching, (2) attention and working memory, or (3) an active control involving basic math games, in twenty 45-min sessions across 4-6 weeks. Performance on an alternating-runs task-switch paradigm during pretest and posttest sessions indicated greater overall reaction time improvements after both flexibility and attention training as compared to control, although not related to local switch cost. Flexibility training enhanced performance in the presence of distractor-related interference. In contrast, attention training was beneficial when low task difficulty undermined sustained selective attention. Furthermore, flexibility training improved response selection as indicated by a larger N2 amplitude after training as compared to control, and more efficient conflict monitoring as indicated by reduced Nc/CRN and larger Pe amplitude after training. These results provide tentative support for the efficacy of GCCT and suggest that an ideal training might include both task switching and attention components, with maximal task diversity both within and between training games.

  16. Multimodal exercise intervention improves frontal cognitive functions and gait in Alzheimer's disease: a controlled trial.

    PubMed

    Coelho, Flávia Gomes de Melo; Andrade, Larissa Pires; Pedroso, Renata Valle; Santos-Galduroz, Ruth Ferreira; Gobbi, Sebastião; Costa, José Luiz Riani; Gobbi, Lilian Teresa Bucken

    2013-01-01

    The objective of the present study was to investigate the effect of a multimodal exercise intervention on frontal cognitive functions and kinematic gait parameters in patients with Alzheimer's disease. A sample of elderly patients with Alzheimer's disease (n=27) were assigned to a training group (n=14; aged 78.0±7.3 years) and a control group (n=13; aged 77.1±7.4 years). Multimodal exercise intervention includes motor activities and cognitive tasks simultaneously. The participants attended a 1-h session three times a week for 16 weeks, and the control participants maintained their regular daily activities during the same period. The frontal cognitive functions were evaluated using the Frontal Assessment Battery, the Clock Drawing Test and the Symbol Search Subtest. The kinematic parameters of gait-cadence, stride length and stride speed were analyzed under two conditions: (i) free gait (single task); and (ii) gait with frontal cognitive task (walking and counting down from 20--dual task). The patients in the intervention group significantly increased the scores in frontal cognitive variables, Frontal Assessment Battery (P<0.001) and Symbol Search Subtest (P<0.001) after the 16-week period. The control group decreased the scores in the Clock Drawing Test (P=0.001) and increased the number of counting errors during the dual task (P=0.008) after the same period. The multimodal exercise intervention improved the frontal cognitive functions in patients with Alzheimer's disease. © 2012 Japan Geriatrics Society.

  17. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years.

    PubMed

    Huijgen, Barbara C H; Leemhuis, Sander; Kok, Niels M; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T; Visscher, Chris

    2015-01-01

    Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13-17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for "higher-level" cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). "Lower-level" cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA's showed that elite players outscored sub-elite players at the "higher-level" cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA's showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the "lower-level" cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the need for longitudinal studies to further investigate the importance of "higher-level" cognitive functions for talent identification, talent development and performance in soccer.

  18. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years

    PubMed Central

    Huijgen, Barbara C. H.; Leemhuis, Sander; Kok, Niels M.; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T.; Visscher, Chris

    2015-01-01

    Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13–17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for “higher-level” cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). “Lower-level” cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA’s showed that elite players outscored sub-elite players at the “higher-level” cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA’s showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the “lower-level” cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the need for longitudinal studies to further investigate the importance of “higher-level” cognitive functions for talent identification, talent development and performance in soccer. PMID:26657073

  19. Continuous Cognitive Task Promotes Greater Postural Stability than an Internal or External Focus of Attention in Older Adults.

    PubMed

    Richer, Natalie; Polskaia, Nadia; Lajoie, Yves

    2017-01-01

    Background/Study Context: Recent evidence suggests that removing attention from postural control using either an external focus or a cognitive task will improve stability in healthy young adults. Due to increases in attentional requirements of upright stance in older adults, it is unclear if similar benefits would be observed in this population. The aim of the present study was to examine the effect of attentional focus and of a continuous cognitive task on postural control in older adults. Sixteen healthy older adults (71.9 ± 4.32 years) were asked to stand quietly on a force platform with feet together in three different conditions: internal focus (minimizing movement of the hips), external focus (minimizing movement of markers placed on the hips), and cognitive task (silently counting the occurrence of a single digit in a 3-digit number sequence). A one-way analysis of variance with repeated measures on condition was performed for each postural control measure. Hypotheses were partially supported because the cognitive task led to greater stability than both focus conditions, as evidenced by a smaller sway area (p < .01, η p 2 = .41), reduced sway variability (anterior-posterior: p = .001, η p 2 = .37; medial-lateral: p < .0001, η p 2 = .49), and higher mean power frequency in the anterior-posterior direction (p = .01, η p 2 = .78). However, no difference was observed between internal and external focus conditions. A continuous, attention-demanding cognitive task significantly improved stability in older adults compared with an internal or external focus of attention. This suggests that older adults were able to effectively allocate their attention away from postural control, allowing a more automatic type of control to operate. Future studies should investigate a variety of cognitive tasks to determine the degree of postural improvement that can be observed in older adults.

  20. The Development of the Neural Substrates of Cognitive Control in Adolescents with Autism Spectrum Disorders

    PubMed Central

    Solomon, Marjorie; Yoon, Jong; Ragland, J. Daniel; Niendam, Tara; Lesh, Tyler A.; Fairbrother, Wonja; Carter, Cameron S.

    2013-01-01

    Background Autism spectrum disorders (ASD) involve impairments in cognitive control. In typical development (TYP), neural systems underlying cognitive control undergo substantial maturation during adolescence. Development is delayed in adolescents with ASD. Little is known about the neural substrates of this delay. Method We used event-related functional magnetic resonance imaging (fMRI) and a cognitive control task involving overcoming a prepotent response tendency to examine the development of cognitive control in young (ages 12–15; n = 13 with ASD and n = 13 with TYP) and older (ages 16–18; n= 14 with ASD and n = 14 with TYP) adolescents with whole-brain voxel-wise univariate and task-related functional connectivity analyses. Results Older ASD and TYP showed reduced activation in sensory and premotor areas relative to younger ones. The older ASD group showed reduced left parietal activation relative to TYP. Functional connectivity analyses showed a significant age by group interaction with the older ASD group exhibiting increased functional connectivity strength between the ventrolateral prefrontal cortex (VLPFC) and the anterior cingulate cortex (ACC), bilaterally. This functional connectivity strength was related to task performance in ASD, whereas that between DLPFC and parietal cortex (BA 9 and BA 40) was related to task performance in TYP. Conclusions Adolescents with ASD rely more on “reactive” cognitive control, involving last minute conflict detection and control implementation by the ACC and VLPFC, versus “proactive” cognitive control requiring processing by DLPFC and parietal cortex. Findings await replication in larger longitudinal studies that examine their functional consequences and amenability to intervention. PMID:24209777

  1. Psychological and neural mechanisms associated with effort-related cardiovascular reactivity and cognitive control: An integrative approach.

    PubMed

    Silvestrini, Nicolas

    2017-09-01

    Numerous studies have assessed cardiovascular (CV) reactivity as a measure of effort mobilization during cognitive tasks. However, psychological and neural processes underlying effort-related CV reactivity are still relatively unclear. Previous research reliably found that CV reactivity during cognitive tasks is mainly determined by one region of the brain, the dorsal anterior cingulate cortex (dACC), and that this region is systematically engaged during cognitively demanding tasks. The present integrative approach builds on the research on cognitive control and its brain correlates that shows that dACC function can be related to conflict monitoring and integration of information related to task difficulty and success importance-two key variables in determining effort mobilization. In contrast, evidence also indicates that executive cognitive functioning is processed in more lateral regions of the prefrontal cortex. The resulting model suggests that, when automatic cognitive processes are insufficient to sustain behavior, the dACC determines the amount of required and justified effort according to task difficulty and success importance, which leads to proportional adjustments in CV reactivity and executive cognitive functioning. These propositions are discussed in relation to previous findings on effort-related CV reactivity and cognitive performance, new predictions for future studies, and relevance for other self-regulatory processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Reduced prefrontal activation during working and long-term memory tasks and impaired patient-reported cognition among cancer survivors postchemotherapy compared with healthy controls.

    PubMed

    Wang, Lei; Apple, Alexandra C; Schroeder, Matthew P; Ryals, Anthony J; Voss, Joel L; Gitelman, Darren; Sweet, Jerry J; Butt, Zeeshan A; Cella, David; Wagner, Lynne I

    2016-01-15

    Patients who receive adjuvant chemotherapy have reported cognitive impairments that may last for years after the completion of treatment. Working memory-related and long-term memory-related changes in this population are not well understood. The objective of this study was to demonstrate that cancer-related cognitive impairments are associated with the under recruitment of brain regions involved in working and recognition memory compared with controls. Oncology patients (n = 15) who were receiving adjuvant chemotherapy and had evidence of cognitive impairment according to neuropsychological testing and self-report and a group of age-matched, education group-matched, cognitively normal control participants (n = 14) underwent functional magnetic resonance imaging. During functional magnetic resonance imaging, participants performed a nonverbal n-back working memory task and a visual recognition task. On the working memory task, when 1-back and 2-back data were averaged and contrasted with 0-back data, significantly reduced activation was observed in the right dorsolateral prefrontal cortex for oncology patients versus controls. On the recognition task, oncology patients displayed decreased activity of the left-middle hippocampus compared with controls. Neuroimaging results were not associated with patient-reported cognition. Decreased recruitment of brain regions associated with the encoding of working memory and recognition memory was observed in the oncology patients compared with the control group. These results suggest that there is a reduction in neural functioning postchemotherapy and corroborate patient-reported cognitive difficulties after cancer treatment, although a direct association was not observed. Cancer 2016;122:258-268. © 2015 American Cancer Society. © 2015 American Cancer Society.

  3. Working memory load and distraction: dissociable effects of visual maintenance and cognitive control.

    PubMed

    Konstantinou, Nikos; Beal, Eleanor; King, Jean-Remi; Lavie, Nilli

    2014-10-01

    We establish a new dissociation between the roles of working memory (WM) cognitive control and visual maintenance in selective attention as measured by the efficiency of distractor rejection. The extent to which focused selective attention can prevent distraction has been shown to critically depend on the level and type of load involved in the task. High perceptual load that consumes perceptual capacity leads to reduced distractor processing, whereas high WM load that reduces WM ability to exert priority-based executive cognitive control over the task results in increased distractor processing (e.g., Lavie, Trends in Cognitive Sciences, 9(2), 75-82, 2005). WM also serves to maintain task-relevant visual representations, and such visual maintenance is known to recruit the same sensory cortices as those involved in perception (e.g., Pasternak & Greenlee, Nature Reviews Neuroscience, 6(2), 97-107, 2005). These findings led us to hypothesize that loading WM with visual maintenance would reduce visual capacity involved in perception, thus resulting in reduced distractor processing-similar to perceptual load and opposite to WM cognitive control load. Distractor processing was assessed in a response competition task, presented during the memory interval (or during encoding; Experiment 1a) of a WM task. Loading visual maintenance or encoding by increased set size for a memory sample of shapes, colors, and locations led to reduced distractor response competition effects. In contrast, loading WM cognitive control with verbal rehearsal of a random letter set led to increased distractor effects. These findings confirm load theory predictions and provide a novel functional distinction between the roles of WM maintenance and cognitive control in selective attention.

  4. Investigating the Neural Correlates of Emotion–Cognition Interaction Using an Affective Stroop Task

    PubMed Central

    Raschle, Nora M.; Fehlbaum, Lynn V.; Menks, Willeke M.; Euler, Felix; Sterzer, Philipp; Stadler, Christina

    2017-01-01

    The human brain has the capacity to integrate various sources of information and continuously adapts our behavior according to situational needs in order to allow a healthy functioning. Emotion–cognition interactions are a key example for such integrative processing. However, the neuronal correlates investigating the effects of emotion on cognition remain to be explored and replication studies are needed. Previous neuroimaging studies have indicated an involvement of emotion and cognition related brain structures including parietal and prefrontal cortices and limbic brain regions. Here, we employed whole brain event-related functional magnetic resonance imaging (fMRI) during an affective number Stroop task and aimed at replicating previous findings using an adaptation of an existing task design in 30 healthy young adults. The Stroop task is an indicator of cognitive control and enables the quantification of interference in relation to variations in cognitive load. By the use of emotional primes (negative/neutral) prior to Stroop task performance, an emotional variation is added as well. Behavioral in-scanner data showed that negative primes delayed and disrupted cognitive processing. Trials with high cognitive demand furthermore negatively influenced cognitive control mechanisms. Neuronally, the emotional primes consistently activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions) while Stroop task performance lead to activations in cognition networks of the brain (prefrontal cortices, superior temporal lobe, and insula). When assessing the effect of emotion on cognition, increased cognitive demand led to decreases in neural activation in response to emotional stimuli (negative > neutral) within prefrontal cortex, amygdala, and insular cortex. Overall, these results suggest that emotional primes significantly impact cognitive performance and increasing cognitive demand leads to reduced neuronal activation in emotion related brain regions, and therefore support previous findings investigating emotion–cognition interaction in healthy adults. Moreover, emotion and cognition seem to be tightly related to each other, as indicated by shared neural networks involved in both of these processes. Emotion processing, cognitive control, and their interaction are crucial for healthy functioning and a lack thereof is related to psychiatric disorders such as, disruptive behavior disorders. Future studies may investigate the neural characteristics of children and adolescents with disruptive behavior disorders. PMID:28919871

  5. Evaluating Cognitive Action Control Using Eye-Movement Analysis: An Oculomotor Adaptation of the Simon Task.

    PubMed

    Duprez, Joan; Houvenaghel, Jean-François; Naudet, Florian; Dondaine, Thibaut; Auffret, Manon; Robert, Gabriel; Drapier, Dominique; Argaud, Soizic; Vérin, Marc; Sauleau, Paul

    2016-01-01

    Cognitive action control has been extensively studied using conflict tasks such as the Simon task. In most recent studies, this process has been investigated in the light of the dual route hypothesis and more specifically of the activation-suppression model using distributional analyses. Some authors have suggested that cognitive action control assessment is not specific to response modes. In this study we adapted the Simon task, using oculomotor responses instead of manual responses, in order to evaluate whether the resolution of conflict induced by a two-dimensional stimulus yielded similar results to what is usually reported in tasks with manual responses. Results obtained from 43 young healthy participants revealed the typical congruence effect, with longer reaction times (RT) and lesser accuracy in the incongruent condition. Conditional accuracy functions (CAF) also revealed a higher proportion of fast errors in the incongruent condition and delta plots confirmed that conflict resolution was easier, as the time taken to respond increased. These results are very similar to what has been reported in the literature. Furthermore, our observations are in line with the assumptions of the activation-suppression model, in which automatic activation in conflict situations is captured in the fastest responses and selective inhibition of cognitive action control needs time to build up. Altogether, our results suggest that conflict resolution has core mechanisms whatever the response mode, manual or oculomotor. Using oculomotor responses in such tasks could be of interest when investigating cognitive action control in patients with severe motor disorders.

  6. Understanding how train dispatchers manage and control trains : results of a cognitive task analysis

    DOT National Transportation Integrated Search

    1999-03-01

    This report documents the results of a preliminary Cognitive Task Analysis (CTA) that examined how experienced train dispatchers manage and : schedule trains in today's environment The objective was to understand the cognitive demands placed on train...

  7. The Impact of Social Pressure and Monetary Incentive on Cognitive Control.

    PubMed

    Ličen, Mina; Hartmann, Frank; Repovš, Grega; Slapničar, Sergeja

    2016-01-01

    We compare the effects of two prominent organizational control mechanisms-social pressure and monetary incentive-on cognitive control. Cognitive control underlies the human ability to regulate thoughts and actions in the pursuit of behavioral goals. Previous studies show that monetary incentives can contribute to goal-oriented behavior by activating proactive control. There is, however, much less evidence of how social pressure affects cognitive control and task performance. In a within-subject experimental design, we tested 47 subjects performing the AX-CPT task to compare the activation of cognitive control modes under social pressure and monetary incentive beyond mere instructions to perform better. Our results indicate that instructing participants to improve their performance on its own leads to a significant shift from a reactive to a proactive control mode and that both social pressure and monetary incentive further enhance performance.

  8. Temporal Dynamics of Motivation-Cognitive Control Interactions Revealed by High-Resolution Pupillometry

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2013-01-01

    Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control. PMID:23372557

  9. The effect of dual tasking on foot kinematics in people with functional ankle instability.

    PubMed

    Tavakoli, Sanam; Forghany, Saeed; Nester, Christopher

    2016-09-01

    Some cases of repeated inversion ankle sprains are thought to have a neurological basis and are termed functional ankle instability (FAI). In addition to factors local to the ankle, such as loss of proprioception, cognitive demands have the ability to influence motor control and may increase the risk of repetitive lateral sprains. The purpose of this study was to investigate the effect of cognitive demand on foot kinematics in physically active people with functional ankle instability. 21 physically active participants with FAI and 19 matched healthy controls completed trials of normal walking (single task) and normal walking while performing a cognitive task (dual task). Foot motion relative to the shank was recorded. Cognitive performance, ankle kinematics and movement variability in single and dual task conditions was characterized. During normal walking, the ankle joint was significantly more inverted in FAI compared to the control group pre and post initial contact. Under dual task conditions, there was a statistically significant increase in frontal plane foot movement variability during the period 200ms pre and post initial contact in people with FAI compared to the control group (p<0.05). Dual task also significantly increased plantar flexion and inversion during the period 200ms pre and post initial contact in the FAI group (p<0.05). participants with FAI demonstrated different ankle movement patterns and increased movement variability during a dual task condition. Cognitive load may increase risk of ankle instability in these people. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Variation in working memory capacity and cognitive control: goal maintenance and microadjustments of control.

    PubMed

    Unsworth, Nash; Redick, Thomas S; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    Variation in working memory capacity (WMC) and cognitive control was examined in four experiments. In the experiments high- and low-WMC individuals performed a choice reaction time task (Experiment 1), a version of the antisaccade task (Experiment 2), a version of the Stroop task (Experiment 3), and an arrow version of the flanker task (Experiment 4). An examination of response time distributions suggested that high- and low-WMC individuals primarily differed in the slowest responses in each experiment, consistent with the notion that WMC is related to active maintenance abilities. Examination of two indicators of microadjustments of control (posterror slowing and conflict adaptation effects) suggested no differences between high- and low-WMC individuals. Collectively these results suggest that variation in WMC is related to some, but not all, cognitive control operations. The results are interpreted within the executive attention theory of WMC.

  11. Cognitive structure, flexibility, and plasticity in human multitasking-An integrative review of dual-task and task-switching research.

    PubMed

    Koch, Iring; Poljac, Edita; Müller, Hermann; Kiesel, Andrea

    2018-06-01

    Numerous studies showed decreased performance in situations that require multiple tasks or actions relative to appropriate control conditions. Because humans often engage in such multitasking activities, it is important to understand how multitasking affects performance. In the present article, we argue that research on dual-task interference and sequential task switching has proceeded largely separately using different experimental paradigms and methodology. In our article we aim at organizing this complex set of research in terms of three complementary research perspectives on human multitasking. One perspective refers to structural accounts in terms of cognitive bottlenecks (i.e., critical processing stages). A second perspective refers to cognitive flexibility in terms of the underlying cognitive control processes. A third perspective emphasizes cognitive plasticity in terms of the influence of practice on human multitasking abilities. With our review article we aimed at highlighting the value of an integrative position that goes beyond isolated consideration of a single theoretical research perspective and that broadens the focus from single experimental paradigms (dual task and task switching) to favor instead a view that emphasizes the fundamental similarity of the underlying cognitive mechanisms across multitasking paradigms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Cognitive features of psychotic states arising in late life (late paraphrenia).

    PubMed

    Almeida, O P; Howard, R J; Levy, R; David, A S; Morris, R G; Sahakian, B J

    1995-07-01

    The cognitive performance of 47 elderly psychotic patients with onset of symptoms in late life (late paraphrenia) was compared to that of 33 controls matched for age, sex, ethnic origin, number of years of education, and pre-morbid IQ as measured by the NART. Neuropsychological indices of general cognitive functioning (MMSE, CAMCOG, WAIS-R verbal and performance scores) showed that patients were performing the tasks at a significantly lower level than controls. Patients also showed a trend to have a lower span capacity than controls, particularly at the spatial span subtest. There was no obvious impairment of learning as measured by the digit and spatial recurring span tasks nor of simultaneous matching-to-sample ability. However, patients' performance on a delayed-matching-to-sample procedure was significantly worse than that of controls. In addition, patients performed worse than controls on the Recognition Memory Test for Faces, but not for Words. Finally, the performance of patients on tests assessing executive functioning (Verbal Fluency Test, Computerized Extra and Intra-Dimensional Shift Task, Computerized Spatial Working Memory Task, and Computerized Tower of London Task) was consistently worse than that of controls. These results suggest that psychotic states arising in late life are predominantly associated with a decline on measures of general cognitive ability and executive functioning. The neuropsychological meaning of these findings is discussed in the light of cognitive models of psychotic symptoms, as well as of schizophrenia and dementia research. We concluded that the lack of a clear pattern of impairment among these patients may be the result of their clinical and cognitive diversity.

  13. Task switching in video game players: Benefits of selective attention but not resistance to proactive interference.

    PubMed

    Karle, James W; Watter, Scott; Shedden, Judith M

    2010-05-01

    Research into the perceptual and cognitive effects of playing video games is an area of increasing interest for many investigators. Over the past decade, expert video game players (VGPs) have been shown to display superior performance compared to non-video game players (nVGPs) on a range of visuospatial and attentional tasks. A benefit of video game expertise has recently been shown for task switching, suggesting that VGPs also have superior cognitive control abilities compared to nVGPs. In two experiments, we examined which aspects of task switching performance this VGP benefit may be localized to. With minimal trial-to-trial interference from minimally overlapping task set rules, VGPs demonstrated a task switching benefit compared to nVGPs. However, this benefit disappeared when proactive interference between tasks was increased, with substantial stimulus and response overlap in task set rules. We suggest that VGPs have no generalized benefit in task switching-related cognitive control processes compared to nVGPs, with switch cost reductions due instead to a specific benefit in controlling selective attention. Copyright 2009 Elsevier B.V. All rights reserved.

  14. An on-road assessment of cognitive distraction: impacts on drivers' visual behavior and braking performance.

    PubMed

    Harbluk, Joanne L; Noy, Y Ian; Trbovich, Patricia L; Eizenman, Moshe

    2007-03-01

    In this on-road experiment, drivers performed demanding cognitive tasks while driving in city traffic. All task interactions were carried out in hands-free mode so that the 21 drivers were not required to take their visual attention away from the road or to manually interact with a device inside the vehicle. Visual behavior and vehicle control were assessed while they drove an 8 km city route under three conditions: no additional task, easy cognitive task and difficult cognitive task. Changes in visual behavior were most apparent when performance between the No Task and Difficult Task conditions were compared. When looking outside of the vehicle, drivers spent more time looking centrally ahead and spent less time looking to the areas in the periphery. Drivers also reduced their visual monitoring of the instruments and mirrors, with some drivers abandoning these tasks entirely. When approaching and driving through intersections, drivers made fewer inspection glances to traffic lights compared to the No Task condition and their scanning of intersection areas to the right was also reduced. Vehicle control was also affected; during the most difficult cognitive tasks there were more occurrences of hard braking. Although hands-free designs for telematics devices are intended to reduce or eliminate the distraction arising from manual operation of these units, the potential for cognitive distraction associated with their use must also be considered and appropriately assessed. These changes are captured in measures of drivers' visual behavior.

  15. An fMRI Study of Risky Decision Making: The Role of Mental Preparation and Conflict.

    PubMed

    Sohrabi, Ahmad; Smith, Andra M; West, Robert L; Cameron, Ian

    2015-10-01

    The current study aimed to elucidate the role of preparatory cognitive control in decision making and its neural correlates using functional Magnetic Resonance Imaging (fMRI). To this effect, by employing a series of new cognitive tasks, we assessed the role of preparatory cognitive control in monetary (risky) decision making. The participants had to decide between a risky and a safe gamble based on their chance of winning (high or low). In the 2-phase gambling task (similar to Cambridge gambling task), the chance and the gamble were presented at the same time (i.e. in a single phase), but in a new 3-phase gambling task, the chance is presented before the gamble. The tasks ended with a feedback phase. In the 3-phase task, holding the chance in memory to guide their decision enabled the participants to have more control on their risk taking behaviors as shown by activation in a network of brain areas involved in the control and conflict, including dorsal Anterior Cingulate Cortex (dACC), indexed by faster reaction times and better performance in the gambling task, and the temporal lobe, which has a role in holding contextual information. Holding information in memory to guide decision presumably enables the participants to have more control on their risk taking behaviors. The conflict and uncertainty resulting from this risky decision was indexed by the activation of dACC, known to be activated in conflict and cognitive control.

  16. Influence of motivation on control hierarchy in the human frontal cortex.

    PubMed

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.

  17. Effects of dual task difficulty in motor and cognitive performance: Differences between adults and adolescents.

    PubMed

    Bustillo-Casero, Pilar; Villarrasa-Sapiña, Israel; García-Massó, Xavier

    2017-10-01

    In the present study our aim was to compare dual-task performance in thirteen adolescents and fifteen young adults while concurrently performing a cognitive and a motor task. The postural control variables were obtained under three different conditions: i) bipedal stance, ii) tandem stance and iii) unipedal stance. The cognitive task consisted of a backward digit span test in which the participants were asked to memorize a sequence of numbers and then repeat the number in reverse order at three different difficulty levels (i.e. with 3, 4 and 5 digits). The difficulty of the cognitive task was seen to have different effects on adolescents and young adults. Adolescents seem to prioritize postural control during high difficulty postural conditions while a cross-domain competition model appeared in easy postural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Impaired Attentional Control in Pedophiles in a Sexual Distractor Task.

    PubMed

    Jordan, Kirsten; Fromberger, Peter; von Herder, Jakob; Steinkrauss, Henrike; Nemetschek, Rebekka; Witzel, Joachim; Müller, Jürgen L

    2016-01-01

    Pedophilic disorder, a subtype of paraphilia, is defined as a recurrent sexual interest in prepubescent children, which is characterized by persistent thoughts, fantasies, urges, sexual arousal, or behavior. Besides a deviant sexual preference, sexual preoccupation was found to be a dynamic risk factor for reoffending. Thus, it is conceivable that sex offenders and especially sex offenders against children have difficulties to control their responses to sexual stimuli. In the current study pedophiles, forensic and non-forensic control subjects had to solve a cognitive task, while sexual distractors were presented simultaneously. This kind of task also requires control functions. Therefore, data were analyzed with respect to attentional control while comparing eye movements toward sexual distractors and toward the cognitive task. We were mainly interested in how early (fixation latency) and late (relative fixation time) attentional processes were allocated to both, the cognitive target stimuli and the sexual distractors. Pedophiles demonstrated significantly lower attentional control in the sexual distractor task than both control groups (non-pedophiles). They showed a shorter fixation latency and longer fixation time for sexual distractors than non-pedophiles. Furthermore, pedophiles demonstrated a longer fixation latency and shorter fixation time for cognitive target stimuli. For classification analyses, an attentional control index (ACI) was built, i.e., the difference between eye movements on cognitive target stimuli and sexual distractors. For the ACI of early attentional processes, i.e., fixation latency, a good classification between pedophiles and non-pedophiles was found. We assumed that the measured attentional control represents inhibitory executive functions, specifically interference control. Further studies should examine if low attentional control in pedophiles is due to low motivation to solve the task or rather to a lack of ability to control attention with respect to sexual and/or neutral distractors. Prospectively, this design could be useful to generate hypotheses about clinical important aspects of controllability, the capacity of self-control, and the severity of a paraphilic disorder.

  19. Impaired Attentional Control in Pedophiles in a Sexual Distractor Task

    PubMed Central

    Jordan, Kirsten; Fromberger, Peter; von Herder, Jakob; Steinkrauss, Henrike; Nemetschek, Rebekka; Witzel, Joachim; Müller, Jürgen L.

    2016-01-01

    Pedophilic disorder, a subtype of paraphilia, is defined as a recurrent sexual interest in prepubescent children, which is characterized by persistent thoughts, fantasies, urges, sexual arousal, or behavior. Besides a deviant sexual preference, sexual preoccupation was found to be a dynamic risk factor for reoffending. Thus, it is conceivable that sex offenders and especially sex offenders against children have difficulties to control their responses to sexual stimuli. In the current study pedophiles, forensic and non-forensic control subjects had to solve a cognitive task, while sexual distractors were presented simultaneously. This kind of task also requires control functions. Therefore, data were analyzed with respect to attentional control while comparing eye movements toward sexual distractors and toward the cognitive task. We were mainly interested in how early (fixation latency) and late (relative fixation time) attentional processes were allocated to both, the cognitive target stimuli and the sexual distractors. Pedophiles demonstrated significantly lower attentional control in the sexual distractor task than both control groups (non-pedophiles). They showed a shorter fixation latency and longer fixation time for sexual distractors than non-pedophiles. Furthermore, pedophiles demonstrated a longer fixation latency and shorter fixation time for cognitive target stimuli. For classification analyses, an attentional control index (ACI) was built, i.e., the difference between eye movements on cognitive target stimuli and sexual distractors. For the ACI of early attentional processes, i.e., fixation latency, a good classification between pedophiles and non-pedophiles was found. We assumed that the measured attentional control represents inhibitory executive functions, specifically interference control. Further studies should examine if low attentional control in pedophiles is due to low motivation to solve the task or rather to a lack of ability to control attention with respect to sexual and/or neutral distractors. Prospectively, this design could be useful to generate hypotheses about clinical important aspects of controllability, the capacity of self-control, and the severity of a paraphilic disorder. PMID:27994559

  20. Heuristic and analytic processing: age trends and associations with cognitive ability and cognitive styles.

    PubMed

    Kokis, Judite V; Macpherson, Robyn; Toplak, Maggie E; West, Richard F; Stanovich, Keith E

    2002-09-01

    Developmental and individual differences in the tendency to favor analytic responses over heuristic responses were examined in children of two different ages (10- and 11-year-olds versus 13-year-olds), and of widely varying cognitive ability. Three tasks were examined that all required analytic processing to override heuristic processing: inductive reasoning, deductive reasoning under conditions of belief bias, and probabilistic reasoning. Significant increases in analytic responding with development were observed on the first two tasks. Cognitive ability was associated with analytic responding on all three tasks. Cognitive style measures such as actively open-minded thinking and need for cognition explained variance in analytic responding on the tasks after variance shared with cognitive ability had been controlled. The implications for dual-process theories of cognition and cognitive development are discussed.

  1. The influence of focused-attention meditation states on the cognitive control of sequence learning.

    PubMed

    Chan, Russell W; Immink, Maarten A; Lushington, Kurt

    2017-10-01

    Cognitive control processes influence how motor sequence information is utilised and represented. Since cognitive control processes are shared amongst goal-oriented tasks, motor sequence learning and performance might be influenced by preceding cognitive tasks such as focused-attention meditation (FAM). Prior to a serial reaction time task (SRTT), participants completed either a single-session of FAM, a single-session of FAM followed by delay (FAM+) or no meditation (CONTROL). Relative to CONTROL, FAM benefitted performance in early, random-ordered blocks. However, across subsequent sequence learning blocks, FAM+ supported the highest levels of performance improvement resulting in superior performance at the end of the SRTT. Performance following FAM+ demonstrated greater reliance on embedded sequence structures than FAM. These findings illustrate that increased top-down control immediately after FAM biases the implementation of stimulus-based planning. Introduction of a delay following FAM relaxes top-down control allowing for implementation of response-based planning resulting in sequence learning benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cognitive Control and Language across the Life Span: Does Labeling Improve Reactive Control?

    ERIC Educational Resources Information Center

    Lucenet, Joanna; Blaye, Agnès; Chevalier, Nicolas; Kray, Jutta

    2014-01-01

    How does cognitive control change with age, and what are the processes underlying these changes? This question has been extensively studied using versions of the task-switching paradigm, which allow participants to actively prepare for the upcoming task (Kray, Eber, & Karbach, 2008). Little is known, however, about age-related changes in this…

  3. The Role of Executive Functions in Social Cognition among Children with Down Syndrome: Relationship Patterns

    PubMed Central

    Amadó, Anna; Serrat, Elisabet; Vallès-Majoral, Eduard

    2016-01-01

    Many studies show a link between social cognition, a set of cognitive and emotional abilities applied to social situations, and executive functions in typical developing children. Children with Down syndrome (DS) show deficits both in social cognition and in some subcomponents of executive functions. However this link has barely been studied in this population. The aim of this study is to investigate the links between social cognition and executive functions among children with DS. We administered a battery of social cognition and executive function tasks (six theory of mind tasks, a test of emotion comprehension, and three executive function tasks) to a group of 30 participants with DS between 4 and 12 years of age. The same tasks were administered to a chronological-age control group and to a control group with the same linguistic development level. Results showed that apart from deficits in social cognition and executive function abilities, children with DS displayed a slight improvement with increasing chronological age and language development in those abilities. Correlational analysis suggested that working memory was the only component that remained constant in the relation patterns of the three groups of participants, being the relation patterns similar among participants with DS and the language development control group. A multiple linear regression showed that working memory explained above 50% of the variability of social cognition in DS participants and in language development control group, whereas in the chronological-age control group this component only explained 31% of the variability. These findings, and specifically the link between working memory and social cognition, are discussed on the basis of their theoretical and practical implications for children with DS. We discuss the possibility to use a working memory training to improve social cognition in this population. PMID:27679588

  4. Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training.

    PubMed

    Schweizer, Susanne; Hampshire, Adam; Dalgleish, Tim

    2011-01-01

    So-called 'brain-training' programs are a huge commercial success. However, empirical evidence regarding their effectiveness and generalizability remains equivocal. This study investigated whether brain-training (working memory [WM] training) improves cognitive functions beyond the training task (transfer effects), especially regarding the control of emotional material since it constitutes much of the information we process daily. Forty-five participants received WM training using either emotional or neutral material, or an undemanding control task. WM training, regardless of training material, led to transfer gains on another WM task and in fluid intelligence. However, only brain-training with emotional material yielded transferable gains to improved control over affective information on an emotional Stroop task. The data support the reality of transferable benefits of demanding WM training and suggest that transferable gains across to affective contexts require training with material congruent to those contexts. These findings constitute preliminary evidence that intensive cognitively demanding brain-training can improve not only our abstract problem-solving capacity, but also ameliorate cognitive control processes (e.g. decision-making) in our daily emotive environments.

  5. Evidence for the triadic model of adolescent brain development: Cognitive load and task-relevance of emotion differentially affect adolescents and adults.

    PubMed

    Mueller, Sven C; Cromheeke, Sofie; Siugzdaite, Roma; Nicolas Boehler, C

    2017-08-01

    In adults, cognitive control is supported by several brain regions including the limbic system and the dorsolateral prefrontal cortex (dlPFC) when processing emotional information. However, in adolescents, some theories hypothesize a neurobiological imbalance proposing heightened sensitivity to affective material in the amygdala and striatum within a cognitive control context. Yet, direct neurobiological evidence is scarce. Twenty-four adolescents (12-16) and 28 adults (25-35) completed an emotional n-back working memory task in response to happy, angry, and neutral faces during fMRI. Importantly, participants either paid attention to the emotion (task-relevant condition) or judged the gender (task-irrelevant condition). Behaviorally, for both groups, when happy faces were task-relevant, performance improved relative to when they were task-irrelevant, while performance decrements were seen for angry faces. In the dlPFC, angry faces elicited more activation in adults during low relative to high cognitive load (2-back vs. 0-back). By contrast, happy faces elicited more activation in the amygdala in adolescents when they were task-relevant. Happy faces also generally increased nucleus accumbens activity (regardless of relevance) in adolescents relative to adults. Together, the findings are consistent with neurobiological models of adolescent brain development and identify neurodevelopmental differences in cognitive control emotion interactions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Cognitive performance under motor demands - On the influence of task difficulty and postural control.

    PubMed

    Liebherr, Magnus; Weiland-Breckle, Hanna; Grewe, Tanja; Schumacher, Petra B

    2018-04-01

    We often walk around when we have to think about something, but suddenly stop when we are confronted with a demanding cognitive task, such as calculating 1540*24. While previous neurophysiological research investigated cognitive and motor performance separately, findings that combine both are rare. To get a deeper understanding of the influence of motor demands as well as the difficulty of a simultaneously performed cognitive task, we investigated 20 healthy individuals. Participants performed two cognitive tasks with different levels of difficulty while sitting or standing on one leg. In addition to behavioral data, we recorded the electroencephalogram from 26Ag/AgCI scalp electrodes. The critical time-windows, predefined by visual inspection, yielded an early (200-300 ms, P2) and a subsequent positivity (350-500 ms, P3). Statistical analysis of the early time window registered a motor × cognition interaction. Resolution of this interaction revealed an effect of the cognitive task in the one-legged stance motor condition, with a more pronounced positivity for the difficult task. No significant differences between cognitive tasks emerged for the simple motor condition. The time-window between 350 and 500 ms registered main effects of the motor task and a trend for the cognitive task. While the influence of cognitive task difficulty (in the P3) is in accordance with previous studies, the motor task effect is specific to one-legged stance (cf. no effects for running in previous research). The motor-cognition interaction found in the P2 indicates that the more difficult motor task (one-legged stance) facilitates cognitive task performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    PubMed

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  8. Different motor tasks impact differently on cognitive performance of older persons during dual task tests.

    PubMed

    Simoni, David; Rubbieri, Gaia; Baccini, Marco; Rinaldi, Lucio; Becheri, Dimitri; Forconi, Tatiana; Mossello, Enrico; Zanieri, Samanta; Marchionni, Niccolò; Di Bari, Mauro

    2013-07-01

    Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Meta-Analysis of Functional Neuroimaging and Cognitive Control Studies in Schizophrenia: Preliminary Elucidation of a Core Dysfunctional Timing Network

    PubMed Central

    Alústiza, Irene; Radua, Joaquim; Albajes-Eizagirre, Anton; Domínguez, Manuel; Aubá, Enrique; Ortuño, Felipe

    2016-01-01

    Timing and other cognitive processes demanding cognitive control become interlinked when there is an increase in the level of difficulty or effort required. Both functions are interrelated and share neuroanatomical bases. A previous meta-analysis of neuroimaging studies found that people with schizophrenia had significantly lower activation, relative to normal controls, of most right hemisphere regions of the time circuit. This finding suggests that a pattern of disconnectivity of this circuit, particularly in the supplementary motor area, is a trait of this mental disease. We hypothesize that a dysfunctional temporal/cognitive control network underlies both cognitive and psychiatric symptoms of schizophrenia and that timing dysfunction is at the root of the cognitive deficits observed. The goal of our study was to look, in schizophrenia patients, for brain structures activated both by execution of cognitive tasks requiring increased effort and by performance of time perception tasks. We conducted a signed differential mapping (SDM) meta-analysis of functional neuroimaging studies in schizophrenia patients assessing the brain response to increasing levels of cognitive difficulty. Then, we performed a multimodal meta-analysis to identify common brain regions in the findings of that SDM meta-analysis and our previously-published activation likelihood estimate (ALE) meta-analysis of neuroimaging of time perception in schizophrenia patients. The current study supports the hypothesis that there exists an overlap between neural structures engaged by both timing tasks and non-temporal cognitive tasks of escalating difficulty in schizophrenia. The implication is that a deficit in timing can be considered as a trait marker of the schizophrenia cognitive profile. PMID:26925013

  10. Cognitive control training for emotion-related impulsivity.

    PubMed

    Peckham, Andrew D; Johnson, Sheri L

    2018-06-01

    Many forms of psychopathology are tied to a heightened tendency to respond impulsively to strong emotions, and this tendency, in turn, is closely tied to problems with cognitive control. The goal of the present study was to test whether a two-week, six-session cognitive control training program is efficacious in reducing emotion-related impulsivity. Participants (N = 52) reporting elevated scores on an emotion-related impulsivity measure completed cognitive control training targeting working memory and response inhibition. A subset of participants were randomized to a waitlist control group. Impulsivity, emotion regulation, and performance on near and far-transfer cognitive tasks were assessed at baseline and after completion of training. Emotion-related impulsivity declined significantly from pre-training to post-training and at two-week follow-up; improvements were not observed in the waitlist control group. A decrease in brooding rumination and an increase in reappraisal were also observed. Participants showed significant improvements on trained versions of the working memory and inhibition tasks as well as improvements on an inhibition transfer task. In sum, these preliminary findings show that cognitive training appears to be well-tolerated for people with significant emotion-driven impulsivity. Results provide preliminary support for the efficacy of cognitive training interventions as a way to reduce emotion-related impulsivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Nondeclarative learning in children with specific language impairment: predicting regularities in the visuomotor, phonological, and cognitive domains.

    PubMed

    Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E

    2014-01-01

    Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.

  12. Relationship between fruit and vegetable intake and interference control in breast cancer survivors.

    PubMed

    Zuniga, Krystle E; Mackenzie, Michael J; Roberts, Sarah A; Raine, Lauren B; Hillman, Charles H; Kramer, Arthur F; McAuley, Edward

    2016-06-01

    Nutrition plays an important role in brain structure and function, and the effects of diet may even be greater in those at greater risk of cognitive decline, such as individuals with cancer-related cognitive impairment. However, the relation of dietary components to cognitive function in cancer survivors is unknown. The objective of this study was to determine whether breast cancer survivors (BCS) evidenced impairments in interference control, a component of cognitive control, compared to age-matched women with no prior history of cancer, and to examine the moderating role of diet on cognitive function. In this cross-sectional study, a modified flanker task was used to assess interference control in BCS (n = 31) and age-matched women with no prior history of cancer (n = 30). Diet was assessed with 3-day food records. Differences between BCS and age-matched controls were assessed using linear mixed models, and multilevel regression analyses were conducted to assess the moderating role of diet on cognitive performance. Cognitive performance was not different between groups. Fruit intake and vegetable intake were significantly associated with better performance on the incompatible condition of the flanker task (i.e., shorter reaction time and increased accuracy), independent of disease status. The association between dietary components and cognition was stronger for the incompatible incongruent condition, suggesting that fruit and vegetables may be important for the up-regulation of cognitive control when faced with higher cognitive demands. There was no difference in performance on an interference control task between BCS and age-matched controls. The data suggest that greater fruit intake and vegetable intake were positively associated with interference control in both BCS and age-matched controls.

  13. Machine Learning EEG to Predict Cognitive Functioning and Processing Speed Over a 2-Year Period in Multiple Sclerosis Patients and Controls.

    PubMed

    Kiiski, Hanni; Jollans, Lee; Donnchadha, Seán Ó; Nolan, Hugh; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B; Whelan, Robert

    2018-05-01

    Event-related potentials (ERPs) show promise to be objective indicators of cognitive functioning. The aim of the study was to examine if ERPs recorded during an oddball task would predict cognitive functioning and information processing speed in Multiple Sclerosis (MS) patients and controls at the individual level. Seventy-eight participants (35 MS patients, 43 healthy age-matched controls) completed visual and auditory 2- and 3-stimulus oddball tasks with 128-channel EEG, and a neuropsychological battery, at baseline (month 0) and at Months 13 and 26. ERPs from 0 to 700 ms and across the whole scalp were transformed into 1728 individual spatio-temporal datapoints per participant. A machine learning method that included penalized linear regression used the entire spatio-temporal ERP to predict composite scores of both cognitive functioning and processing speed at baseline (month 0), and months 13 and 26. The results showed ERPs during the visual oddball tasks could predict cognitive functioning and information processing speed at baseline and a year later in a sample of MS patients and healthy controls. In contrast, ERPs during auditory tasks were not predictive of cognitive performance. These objective neurophysiological indicators of cognitive functioning and processing speed, and machine learning methods that can interrogate high-dimensional data, show promise in outcome prediction.

  14. Attention control in mood and anxiety disorders: evidence from the antisaccade task.

    PubMed

    Ainsworth, Ben; Garner, Matthew

    2013-05-01

    The antisaccade task (in which participants must suppress a reflexive saccade towards a sudden, peripheral stimulus and generate a volitional saccade in the opposite direction) is considered a measure of cognitive inhibition. The task has been used to examine cognitive control deficits in several neuropsychiatric conditions, most notably schizophrenia. This commentary summarizes recent evidence from antisaccade tasks in mood and anxiety disorders, with reference to neuropsychological models and psychopharmacological mechanisms. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Influence of using challenging tasks in biology classrooms on students' cognitive knowledge structure: an empirical video study

    NASA Astrophysics Data System (ADS)

    Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.

    2016-08-01

    Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.

  16. Cognitive Support for Learning Computer-Based Tasks Using Animated Demonstration

    ERIC Educational Resources Information Center

    Chen, Chun-Ying

    2016-01-01

    This study investigated the influence of cognitive support for learning computer-based tasks using animated demonstration (AD) on instructional efficiency. Cognitive support included (1) segmentation and learner control introducing interactive devices that allow content sequencing through a navigational menu, and content pacing through stop and…

  17. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    PubMed

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-12-01

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions hypothesized to be modulated by cognitive control signaling, such as visual cortex. Taken together, these results illustrate the potential utility of multi-modal analyses in identifying the neural correlates of cognitive control across different indicators of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A cognitive dual task affects gait variability in patients suffering from chronic low back pain.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Schega, Lutz

    2014-11-01

    Chronic pain and gait variability in a dual-task situation are both associated with higher risk of falling. Executive functions regulate (dual-task) gait variability. A possible cause explaining why chronic pain increases risk of falling in an everyday dual-task situation might be that pain interferes with executive functions and results in a diminished dual-task capability with performance decrements on the secondary task. The main goal of this experiment was to evaluate the specific effects of a cognitive dual task on gait variability in chronic low back pain (CLBP) patients. Twelve healthy participants and twelve patients suffering from CLBP were included. The subjects were asked to perform a cognitive single task, a walking single task and a motor-cognitive dual task. Stride variability of trunk movements was calculated. A two-way ANOVA was performed to compare single-task walking with dual-task walking and the single cognitive task performance with the motor-cognitive dual-task performance. We did not find any differences in both of the single-task performances between groups. However, regarding single-task walking and dual-task walking, we observed an interaction effect indicating that low back pain patients show significantly higher gait variability in the dual-task condition as compared to controls. Our data suggest that chronic pain reduces motor-cognitive dual-task performance capability. We postulate that the detrimental effects are caused by central mechanisms where pain interferes with executive functions which, in turn, might contribute to increased risk of falling.

  19. Monkey Prefrontal Neurons Reflect Logical Operations for Cognitive Control in a Variant of the AX Continuous Performance Task (AX-CPT)

    PubMed Central

    Blackman, Rachael K.; Crowe, David A.; DeNicola, Adele L.; Sakellaridi, Sofia; MacDonald, Angus W.

    2016-01-01

    Cognitive control is the ability to modify the behavioral response to a stimulus based on internal representations of goals or rules. We sought to characterize neural mechanisms in prefrontal cortex associated with cognitive control in a context that would maximize the potential for future translational relevance to human neuropsychiatric disease. To that end, we trained monkeys to perform a dot-pattern variant of the AX continuous performance task that is used to measure cognitive control impairment in patients with schizophrenia (MacDonald, 2008; Jones et al., 2010). Here we describe how information processing for cognitive control in this task is related to neural activity patterns in prefrontal cortex of monkeys, to advance our understanding of how behavioral flexibility is implemented by prefrontal neurons in general, and to model neural signals in the healthy brain that may be disrupted to produce cognitive control deficits in schizophrenia. We found that the neural representation of stimuli in prefrontal cortex is strongly biased toward stimuli that inhibit prepotent or automatic responses. We also found that population signals encoding different stimuli were modulated to overlap in time specifically in the case that information from multiple stimuli had to be integrated to select a conditional response. Finally, population signals relating to the motor response were biased toward less frequent and therefore less automatic actions. These data relate neuronal activity patterns in prefrontal cortex to logical information processing operations required for cognitive control, and they characterize neural events that may be disrupted in schizophrenia. SIGNIFICANCE STATEMENT Functional imaging studies have demonstrated that cognitive control deficits in schizophrenia are associated with reduced activation of the dorsolateral prefrontal cortex (MacDonald et al., 2005). However, these data do not reveal how the disease has disrupted the function of prefrontal neurons to produce the observed deficits in cognitive control. Relating cognitive control to neurophysiological signals at a cellular level in prefrontal cortex is a necessary first step toward understanding how disruption of these signals could lead to cognitive control failure in neuropsychiatric disease. To that end, we translated a task that measures cognitive control deficits in patients with schizophrenia to monkeys and describe here how neural signals in prefrontal cortex relate to performance. PMID:27053213

  20. The Impact of Social Pressure and Monetary Incentive on Cognitive Control

    PubMed Central

    Ličen, Mina; Hartmann, Frank; Repovš, Grega; Slapničar, Sergeja

    2016-01-01

    We compare the effects of two prominent organizational control mechanisms—social pressure and monetary incentive—on cognitive control. Cognitive control underlies the human ability to regulate thoughts and actions in the pursuit of behavioral goals. Previous studies show that monetary incentives can contribute to goal-oriented behavior by activating proactive control. There is, however, much less evidence of how social pressure affects cognitive control and task performance. In a within-subject experimental design, we tested 47 subjects performing the AX-CPT task to compare the activation of cognitive control modes under social pressure and monetary incentive beyond mere instructions to perform better. Our results indicate that instructing participants to improve their performance on its own leads to a significant shift from a reactive to a proactive control mode and that both social pressure and monetary incentive further enhance performance. PMID:26903901

  1. Control and Interference in Task Switching--A Review

    ERIC Educational Resources Information Center

    Kiesel, Andrea; Steinhauser, Marco; Wendt, Mike; Falkenstein, Michael; Jost, Kerstin; Philipp, Andrea M.; Koch, Iring

    2010-01-01

    The task-switching paradigm offers enormous possibilities to study cognitive control as well as task interference. The current review provides an overview of recent research on both topics. First, we review different experimental approaches to task switching, such as comparing mixed-task blocks with single-task blocks, predictable task-switching…

  2. Cognitive conflict increases processing of negative, task-irrelevant stimuli.

    PubMed

    Ligeza, Tomasz S; Wyczesany, Miroslaw

    2017-10-01

    The detection of cognitive conflict is thought to trigger adjustments in executive control. It has been recently shown that cognitive conflict increases processing of stimuli that are relevant to the ongoing task and that these modulations are exerted by the dorsolateral prefrontal cortex (DLPFC). However, it is still unclear whether such control influences are unspecific and might also affect the processing of task-irrelevant stimuli. The aim of the study was to examine if cognitive conflict affects processing of neutral and negative, task-irrelevant pictures. Participants responded to congruent (non-conflict) or to incongruent (conflict-eliciting) trials of a modified flanker task. Each response was followed by a presentation of a neutral or negative picture. The late positive potential (LPP) in response to picture presentation was used to assess the level of picture processing after conflict vs non-conflict trials. Connectivity between the DLPFC and attentional and perceptual areas during picture presentation was analysed to check if the DLPFC might be a source of these modulations. ERP results showed an effect of cognitive conflict only on processing of negative pictures: LPP in response to negative pictures was increased after conflict trials, whereas LPP in response to neutral pictures remained unchanged. Cortical connectivity analysis showed that conflict trials intensified information flow from the DLPFC towards attentional and perceptual regions. Results suggest that cognitive conflict increases processing of task-irrelevant stimuli; however, they must display high biological salience. Increase in cognitive control exerted by the DLPFC over attentional and perceptual regions is a probable mechanism of the effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aging of theory of mind: the influence of educational level and cognitive processing.

    PubMed

    Li, Xiaoming; Wang, Kai; Wang, Fan; Tao, Qian; Xie, Yu; Cheng, Qi

    2013-01-01

    Previous studies of theory of mind (ToM) in old age have provided mixed results. We predicted that educational level and cognitive processing are two factors influencing the pattern of the aging of ToM. To test this hypothesis, a younger group who received higher education (mean age 20.46 years), an older group with an education level equal to that of the young group (mean age 76.29 years), and an older group with less education (mean age 73.52 years) were recruited. ToM tasks included the following tests: the second-order false-belief task, the faux-pas task, the eyes test, and tests of fundamental aspects of cognitive function that included two background tests (memory span and processing speed) and three subcomponents of executive function (inhibition, updating, and shifting). We found that the younger group and the older group with equally high education outperformed the older group with less education in false-belief and faux-pas tasks. However, there was no significant difference between the two former groups. The three groups of participants performed equivalently in the eyes test as well as in control tasks (false-belief control question, faux-pas control question, faux-pas control story, and Eyes Test control task). The younger group outperformed the other two groups in the cognitive processing tasks. Mediation analyses showed that difficulties in inhibition, memory span, and processing speed mediated the age differences in false-belief reasoning. Also, the variables of inhibition, updating, memory span, and processing speed mediated age-related variance in faux-pas. Discussion focused on the links between ToM aging, educational level, and cognitive processing. Supported by Chinese National Natural Science Foundation (number: 30870766) and Anhui Province Natural Science Foundation (number: 11040606M166).

  4. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood

    PubMed Central

    Dörrenbächer, Sandra; Müller, Philipp M.; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8–11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  5. Effect of cognitive and motor tasks on postural stability in Parkinson's disease: a posturographic study.

    PubMed

    Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni

    2003-06-01

    To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society

  6. Job characteristics in nursing and cognitive failure at work.

    PubMed

    Elfering, Achim; Grebner, Simone; Dudan, Anna

    2011-06-01

    Stressors in nursing put high demands on cognitive control and, therefore, may increase the risk of cognitive failures that put patients at risk. Task-related stressors were expected to be positively associated with cognitive failure at work and job control was expected to be negatively associated with cognitive failure at work. Ninety-six registered nurses from 11 Swiss hospitals were investigated (89 women, 7 men, mean age = 36 years, standard deviation = 12 years, 80% supervisors, response rate 48%). A new German version of the Workplace Cognitive Failure Scale (WCFS) was employed to assess failure in memory function, failure in attention regulation, and failure in action exertion. In linear regression analyses, WCFS was related to work characteristics, neuroticism, and conscientiousness. The German WCFS was valid and reliable. The factorial structure of the original WCF could be replicated. Multilevel regression task-related stressors and conscientiousness were significantly related to attention control and action exertion. The study sheds light on the association between job characteristics and work-related cognitive failure. These associations were unique, i.e. associations were shown even when individual differences in conscientiousness and neuroticism were controlled for. A job redesign in nursing should address task stressors.

  7. Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task

    PubMed Central

    2017-01-01

    Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports (“sports” group, N = 13, mean age = 8.85) and another not involved in music or sports (“control” group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance. PMID:29084283

  8. C145 as a short-latency electrophysiological index of cognitive compensation in Alzheimer's disease

    PubMed Central

    Chapman, Robert M.; Porsteinsson, Anton P.; Gardner, Margaret N.; Mapstone, Mark; McCrary, John W.; Sandoval, Tiffany C.; Guillily, Maria D.; DeGrush, Elizabeth; Reilly, Lindsey A.

    2012-01-01

    Brain plasticity and cognitive compensation in the elderly are of increasing interest, and Alzheimer's disease (AD) offers an opportunity to elucidate how the brain may overcome damage. We provide neurophysiological evidence of a short-latency ERP component (C145) linked to stimulus relevancy that may reflect cognitive compensation in early-stage Alzheimer's disease (AD). Thirty-six subjects with early-stage, mild AD and 36 like-aged normal elderly (Controls) had their EEG recorded while performing our Number-Letter task, a cognitive/perceptual paradigm that manipulates stimulus relevancies. ERP components, including C145, were extracted from ERPs using Principal Components Analysis. C145 amplitudes and spatial distributions were compared among Controls, AD subjects with high performance on the Number-Letter task, and AD subjects with low performance. Compared to AD subjects, Control subjects showed enhanced C145 processing of visual stimuli in the occipital region where differential processing of relevant stimuli occurred. AD high performers recruited central brain areas in processing task relevancy. Controls and AD low performers did not show a significant task relevancy effect in these areas. We conclude that short-latency ERP components can detect electrophysiological differences in early-stage AD that reflect altered cognition. Differences in C145 amplitudes between AD and normal elderly groups regarding brain locations and types of task effects suggest compensatory mechanisms can occur in the AD brain to overcome loss of normal functionality, and this early compensation may have a profound effect on the cognitive efficiency of AD individuals. PMID:22886016

  9. Amygdala functional connectivity is associated with locus of control in the context of cognitive aging

    PubMed Central

    Ren, Ping; Anthony, Mia; Chapman, Benjamin P.; Heffner, Kathi; Lin, Feng

    2017-01-01

    Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more “internal” LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more “external” LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20 minutes, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC’s role in cognitive aging. PMID:28315366

  10. How providing more or less time to solve a cognitive task interferes with upright stance control; a posturographic analysis on healthy young adults.

    PubMed

    Rougier, Patrice R; Bonnet, Cédrick T

    2016-06-01

    Contrasted postural effects have been reported in dual-task protocols associating balance control and cognitive task that could be explained by the nature and the relative difficulty of the cognitive task and the biomechanical significance of the force platform data. To better assess their respective role, eleven healthy young adults were required to stand upright quietly on a force platform while concomitantly solving mental-calculation or mental-navigation cognitive tasks. Various levels of difficulty were applied by adjusting the velocity rate at which the instructions were provided to the subject according to his/her maximal capacities measured beforehand. A condition without any concomitant cognitive task was added to constitute a baseline behavior. Two basic components, the horizontal center-of-gravity movements and the horizontal difference between center-of-gravity and center-of-pressures were computed from the complex center-of-pressure recorded movements. It was hypothesized that increasing the delay should infer less interaction between postural control and task solution. The results indicate that both mental-calculation and mental-navigation tasks induce reduced amplitudes for the center-of-pressure minus center-of-gravity movements, only along the mediolateral axis, whereas center-of-gravity movements were not affected, suggesting that different circuits are involved in the central nervous system to control these two movements. Moreover, increasing the delays task does not infer any effect for both movements. Since center-of-pressure minus center-of-gravity expresses the horizontal acceleration communicated to the center-of-gravity, one may assume that the control of the latter should be facilitated in dual-tasks conditions, inferring reduced center-of-gravity movements, which is not seen in our results. This lack of effect should be thus interpreted as a modification in the control of these center-of-gravity movements. Taken together, these results emphasized how undisturbed upright stance control can be impacted by mental tasks requiring attention, whatever their nature (calculation or navigation) and their relative difficulty. Depending on the provided instructions, i.e. focusing our attention on body movements or on the opposite diverting this attention toward other objectives, the evaluation of upright stance control capacities might be drastically altered. Copyright © 2016. Published by Elsevier B.V.

  11. Short-term exposure to mobile phone base station signals does not affect cognitive functioning or physiological measures in individuals who report sensitivity to electromagnetic fields and controls.

    PubMed

    Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Fox, Elaine

    2009-10-01

    Individuals who report sensitivity to electromagnetic fields often report cognitive impairments that they believe are due to exposure to mobile phone technology. Previous research in this area has revealed mixed results, however, with the majority of research only testing control individuals. Two studies using control and self-reported sensitive participants found inconsistent effects of mobile phone base stations on cognitive functioning. The aim of the present study was to clarify whether short-term (50 min) exposure at 10 mW/m(2) to typical Global System for Mobile Communication (GSM) and Universal Mobile Telecommunications System (UMTS) base station signals affects attention, memory, and physiological endpoints in sensitive and control participants. Data from 44 sensitive and 44 matched-control participants who performed the digit symbol substitution task (DSST), digit span task (DS), and a mental arithmetic task (MA), while being exposed to GSM, UMTS, and sham signals under double-blind conditions were analyzed. Overall, cognitive functioning was not affected by short-term exposure to either GSM or UMTS signals in the current study. Nor did exposure affect the physiological measurements of blood volume pulse (BVP), heart rate (HR), and skin conductance (SC) that were taken while participants performed the cognitive tasks.

  12. Balancing the Demands of Two Tasks: An Investigation of Cognitive-Motor Dual-Tasking in Relapsing Remitting Multiple Sclerosis.

    PubMed

    Butchard-MacDonald, Emma; Paul, Lorna; Evans, Jonathan J

    2018-03-01

    People with relapsing remitting multiple sclerosis (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls, and (2) dual-task decrements are associated with everyday dual-tasking difficulties. The impact of mood, fatigue, and disease severity on dual-tasking was also examined. A total of 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of center of pressure on Biosway on stable and unstable surfaces) tasks under single- and dual-task conditions. Everyday dual-tasking was measured using the Dual-Tasking Questionnaire. Mood was measured by the Hospital Anxiety & Depression Scale. Fatigue was measured via the Modified Fatigue Index Scale. No differences in age, gender, years of education, estimated pre-morbid IQ, or baseline digit span between groups. Compared with controls, PwRRMS showed significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=.007), but not a stable surface (p=.679). Balance decrement scores were not correlated with everyday dual-tasking difficulties or fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527; p=.001) and depression (rho=0.451; p=.007). RRMS causes dual-tasking difficulties, impacting balance under challenging conditions, which may contribute to increased risk of gait difficulties and falls. The relationship between anxiety/depression and dual-task decrement suggests that emotional factors may be contributing to dual-task difficulties. (JINS, 2018, 24, 247-258).

  13. Operator selection for unmanned aerial systems: comparing video game players and pilots.

    PubMed

    McKinley, R Andy; McIntire, Lindsey K; Funke, Margaret A

    2011-06-01

    Popular unmanned aerial system (UAS) platforms such as the MQ-1 Predator and MQ-9 Reaper have experienced accelerated operations tempos that have outpaced current operator training regimens, leading to a shortage of qualified UAS operators. To find a surrogate to replace pilots of manned aircraft as UAS operators, this study evaluated video game players (VGPs), pilots, and a control group on a set of UAS operation relevant cognitive tasks. There were 30 participants who volunteered for this study and were divided into 3 groups: experienced pilots (P), experienced VGPs, and a control group (C). Each was trained on eight cognitive performance tasks relevant to unmanned flight tasks. The results indicated that pilots significantly outperform the VGP and control groups on multi-attribute cognitive tasks (Tank mean: VGP = 465 +/- 1.046 vs. P = 203 +/- 0.237 vs. C = 351 +/- 0.601). However, the VGPs outperformed pilots on cognitive tests related to visually acquiring, identifying, and tracking targets (final score: VGP = 594.28 +/- 8.708 vs. P = 563.33 +/- 8.787 vs. C = 568.21 +/- 8.224). Likewise, both VGPs and pilots performed similarly on the UAS landing task, but outperformed the control group (glide slope: VGP = 40.982 +/- 3.244 vs. P = 30.461 +/- 2.251 vs. C = 57.060 +/- 4.407). Cognitive skills learned in video game play may transfer to novel environments and improve performance in UAS tasks over individuals with no video game experience.

  14. Cognitive control during a spatial Stroop task: Comparing conflict monitoring and prediction of response-outcome theories.

    PubMed

    Pires, Luís; Leitão, José; Guerrini, Chiara; Simões, Mário R

    2017-07-03

    Cognitive control allows information processing and behaviour to vary adaptively from moment to moment depending on current goals. Two of the most prominent theories that have been proposed to account for the processing of cognitive control are the Conflict Monitoring Theory (CMT) and the Prediction of Response-Outcome Theory (PRO). According to both theories, the implementation of cognitive control during a trial in a conflict task reflects processing events that occurred in the preceding trial. Both CMT and PRO advocate that the detection of conflict situations leads to the recruitment of cognitive control, but they differ regarding the processing underpinnings of cognitive control during conflict resolution. CMT proposes that conflict between alternative responses is resolved by enhancing the task's relevant dimension, reducing interference from the task's irrelevant dimension(s). This control setup promotes conflict adaptation in the subsequent trial. PRO proposes that conflict is resolved by means of a cost-effectiveness analysis that identifies and suppresses action plans linked to the less appropriate responses, facilitating conflict resolution in the subsequent trial. To adjudicate between these alternatives, we manipulated contingencies pertaining to two-trial sequences (n-1; n), namely, the congruency between task relevant/irrelevant dimensions in trial n-1 and response repetition in trial n. A spatial Stroop task was used, in which task-relevant and irrelevant information were integrated within the same stimulus. In this task, participants were required to attend to the direction of an arrow while ignoring its position. The arrow's direction and position could be congruent (C) or incongruent (IC). In one experiment, trials in which the participant was required to respond according to the position of a circle (PO; position only trials), occupying the sequential position n, were the focus of the analyses. Three experiments were conducted manipulating the trials' sequence structure. In Experiment 1, we studied a low control/low conflict condition (cC trials), and two high control/low conflict conditions (icC with and without response repetition). In Experiment 2, we studied two low control/no conflict conditions (cPO with and without response repetition) and two high control/no conflict conditions (icPO with and without response repetition). In Experiment 3, we studied a high control/high conflict condition (icIC) and two low control/high conflict conditions (cIC with and without response repetition). Overall, our findings are in agreement with previous studies in which both bottom-up processing, linked to response and stimulus position repetition, and top-down processing, linked to cognitive control, were shown to contribute to sequence effects in conflict tasks. Specifically, our observations mainly support PRO's account of conflict resolution, in which the intervention of top-down processing is substantially more complex than in CMT's account. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Memory and language improvements following cognitive control training.

    PubMed

    Hussey, Erika K; Harbison, J Isaiah; Teubner-Rhodes, Susan E; Mishler, Alan; Velnoskey, Kayla; Novick, Jared M

    2017-01-01

    Cognitive control refers to adjusting thoughts and actions when confronted with conflict during information processing. We tested whether this ability is causally linked to performance on certain language and memory tasks by using cognitive control training to systematically modulate people's ability to resolve information-conflict across domains. Different groups of subjects trained on 1 of 3 minimally different versions of an n-back task: n-back-with-lures (High-Conflict), n-back-without-lures (Low-Conflict), or 3-back-without-lures (3-Back). Subjects completed a battery of recognition memory and language processing tasks that comprised both high- and low-conflict conditions before and after training. We compared the transfer profiles of (a) the High- versus Low-Conflict groups to test how conflict resolution training contributes to transfer effects, and (b) the 3-Back versus Low-Conflict groups to test for differences not involving cognitive control. High-Conflict training-but not Low-Conflict training-produced discernable benefits on several untrained transfer tasks, but only under selective conditions requiring cognitive control. This suggests that the conflict-focused intervention influenced functioning on ostensibly different outcome measures across memory and language domains. 3-Back training resulted in occasional improvements on the outcome measures, but these were not selective for conditions involving conflict resolution. We conclude that domain-general cognitive control mechanisms are plastic, at least temporarily, and may play a causal role in linguistic and nonlinguistic performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Increasing self-other integration through divergent thinking.

    PubMed

    Colzato, Lorenza S; van den Wildenberg, Wery P M; Hommel, Bernhard

    2013-10-01

    Increasing evidence suggests that people may cognitively represent themselves and others just like any other, nonsocial event. Here, we provide evidence that the degree of self-other integration (as reflected by the joint Simon effect; JSE) is systematically affected by the control characteristics of temporally overlapping but unrelated and nonsocial creativity tasks. In particular, the JSE was found to be larger in the context of a divergent-thinking task (alternate uses task) than in the context of a convergent-thinking task (remote association task). This suggests that self-other integration and action corepresentation are controlled by domain-general cognitive-control parameters that regulate the integrativeness (strong vs. weak top-down control and a resulting narrow vs. broad attentional focus) of information processing irrespective of its social implications.

  17. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  18. Parkinson's Disease and Dopaminergic Therapy--Differential Effects on Movement, Reward and Cognition

    ERIC Educational Resources Information Center

    Rowe, J. B.; Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.

    2008-01-01

    Cognitive deficits are very common in Parkinson's disease particularly for "executive functions" associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex…

  19. Effects of the FITKids randomized controlled trial on executive control and brain function.

    PubMed

    Hillman, Charles H; Pontifex, Matthew B; Castelli, Darla M; Khan, Naiman A; Raine, Lauren B; Scudder, Mark R; Drollette, Eric S; Moore, Robert D; Wu, Chien-Ting; Kamijo, Keita

    2014-10-01

    To assess the effect of a physical activity (PA) intervention on brain and behavioral indices of executive control in preadolescent children. Two hundred twenty-one children (7-9 years) were randomly assigned to a 9-month afterschool PA program or a wait-list control. In addition to changes in fitness (maximal oxygen consumption), electrical activity in the brain (P3-ERP) and behavioral measures (accuracy, reaction time) of executive control were collected by using tasks that modulated attentional inhibition and cognitive flexibility. Fitness improved more among intervention participants from pretest to posttest compared with the wait-list control (1.3 mL/kg per minute, 95% confidence interval [CI]: 0.3 to 2.4; d = 0.34 for group difference in pre-to-post change score). Intervention participants exhibited greater improvements from pretest to posttest in inhibition (3.2%, 95% CI: 0.0 to 6.5; d = 0.27) and cognitive flexibility (4.8%, 95% CI: 1.1 to 8.4; d = 0.35 for group difference in pre-to-post change score) compared with control. Only the intervention group increased attentional resources from pretest to posttest during tasks requiring increased inhibition (1.4 µV, 95% CI: 0.3 to 2.6; d = 0.34) and cognitive flexibility (1.5 µV, 95% CI: 0.6 to 2.5; d = 0.43). Finally, improvements in brain function on the inhibition task (r = 0.22) and performance on the flexibility task correlated with intervention attendance (r = 0.24). The intervention enhanced cognitive performance and brain function during tasks requiring greater executive control. These findings demonstrate a causal effect of a PA program on executive control, and provide support for PA for improving childhood cognition and brain health. Copyright © 2014 by the American Academy of Pediatrics.

  20. Oxytocin administration enhances controlled social cognition in patients with schizophrenia

    PubMed Central

    Woolley, J.D.; Chuang, B.; Lam, O.; Lai, W.; O’Donovan, A.; Rankin, K.P.; Mathalon, D.H.; Vinogradov, S.

    2014-01-01

    Summary Background Individuals with schizophrenia have functionally significant deficits in automatic and controlled social cognition, but no currently available pharmacologic treatments reduce these deficits. The neuropeptide oxytocin has multiple prosocial effects when administered intranasally in humans and there is growing interest in its therapeutic potential in schizophrenia. Methods We administered 40 IU of oxytocin and saline placebo intranasally to 29 male subjects with schizophrenia and 31 age-matched, healthy controls in a randomized, double-blind, placebo-controlled, cross-over study. Social cognition was assessed with The Awareness of Social Inference Test (TASIT) and the Reading the Mind in the Eyes Test (RMET). We examined the effects of oxytocin administration on automatic social cognition (the ability to rapidly interpret and understand emotional cues from the voice, face, and body); controlled social cognition (the ability to comprehend indirectly expressed emotions, thoughts, and intentions through complex deliberations over longer time periods); and a control task (the ability to comprehend truthful dialog and perform general task procedures) in individuals with and without schizophrenia using mixed factorial analysis of variance models. Results Patients with schizophrenia showed significant impairments in automatic and controlled social cognition compared to healthy controls, and administration of oxytocin significantly improved their controlled, but not automatic, social cognition, F(1, 58) = 8.75; p = 0.004. Conversely, oxytocin administration had limited effects on social cognition in healthy participants. Patients and controls performed equally well and there were no effects of oxytocin administration on the control task. Discussion Intact social cognitive abilities are associated with better functional outcomes in individuals with schizophrenia. Our data highlight the potentially complex effects of oxytocin on some but not all aspects of social cognition, and support the exploration of intranasal oxytocin as a potential adjunct treatment to improve controlled social cognition in schizophrenia. Published by Elsevier Ltd. PMID:25001961

  1. Lifelong Bilingualism Maintains Neural Efficiency for Cognitive Control in Aging

    PubMed Central

    Gold, Brian T.; Kim, Chobok; Johnson, Nathan F.; Kryscio, Richard J.; Smith, Charles D.

    2013-01-01

    Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task switching paradigm, and including a total of 110 participants. In Experiment 1, older adult bilinguals showed better perceptual switching performance than their monolingual peers. In Experiment 2, younger and older adult monolinguals and bilinguals completed the same perceptual task switching experiment while fMRI was performed. Typical age-related performance reductions and fMRI activation increases were observed. However, like younger adults, bilingual older adults outperformed their monolingual peers while displaying decreased activation in left lateral frontal cortex and cingulate cortex. Critically, this attenuation of age-related over-recruitment associated with bilingualism was directly correlated with better task switching performance. In addition, the lower BOLD response in frontal regions accounted for 82% of the variance in the bilingual task switching reaction time advantage. These results suggest that lifelong bilingualism offsets age-related declines in the neural efficiency for cognitive control processes. PMID:23303919

  2. Transcranial Direct Current Stimulation Improves Executive Dysfunctions in ADHD: Implications for Inhibitory Control, Interference Control, Working Memory, and Cognitive Flexibility.

    PubMed

    Nejati, Vahid; Salehinejad, Mohammad Ali; Nitsche, Michael A; Najian, Asal; Javadi, Amir-Homayoun

    2017-09-01

    This study examined effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) on major executive functions (EFs), including response inhibition, executive control, working memory (WM), and cognitive flexibility/task switching in ADHD. ADHD children received (a) left anodal/right cathodal DLPFC tDCS and (b) sham stimulation in Experiment 1 and (a) left anodal DLPFC/right cathodal OFC tDCS, (b) left cathodal DLPFC/right anodal OFC tDCS, and (c) sham stimulation in Experiment 2. The current intensity was 1 mA for 15 min with a 72-hr interval between sessions. Participants underwent Go/No-Go task, N-back test, Wisconsin Card Sorting Test (WCST), and Stroop task after each tDCS condition. Anodal left DLPFC tDCS most clearly affected executive control functions (e.g., WM, interference inhibition), while cathodal left DLPFC tDCS improved inhibitory control. Cognitive flexibility/task switching benefited from combined DLPFC-OFC, but not DLPFC stimulation alone. Task-specific stimulation protocols can improve EFs in ADHD.

  3. Contextual within-trial adaptation of cognitive control: Evidence from the combination of conflict tasks.

    PubMed

    Rey-Mermet, Alodie; Gade, Miriam

    2016-10-01

    It is assumed that we recruit cognitive control (i.e., attentional adjustment and/or inhibition) to resolve 2 conflicts at a time, such as driving toward a red traffic light and taking care of a near-by ambulance car. A few studies have addressed this issue by combining a Simon task (that required responding with left or right key-press to a stimulus presented on the left or right side of the screen) with either a Stroop task (that required identifying the color of color words) or a Flanker task (that required identifying the target character among flankers). In most studies, the results revealed no interaction between the conflict tasks. However, these studies include a small stimulus set, and participants might have learned the stimulus-response mappings for each stimulus. Thus, it is possible that participants have more relied on episodic memory than on cognitive control to perform the task. In 5 experiments, we combined the 3 tasks pairwise, and we increased the stimulus set size to circumvent episodic memory contributions. The results revealed an interaction between the conflict tasks: Irrespective of task combination, the congruency effect of 1 task was smaller when the stimulus was incongruent for the other task. This suggests that when 2 conflicts are presented concurrently, the control processes induced by 1 conflict source can affect the control processes induced by the other conflict source. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. The cerebellum and cognition: evidence from functional imaging studies.

    PubMed

    Stoodley, Catherine J

    2012-06-01

    Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

  5. Multi-task functional MRI in multiple sclerosis patients without clinical disability.

    PubMed

    Colorado, René A; Shukla, Karan; Zhou, Yuxiang; Wolinsky, Jerry S; Narayana, Ponnada A

    2012-01-02

    While the majority of individuals with multiple sclerosis (MS) develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). Functional magnetic resonance imaging (fMRI) in MS patients with low disability suggests that increased use of the cognitive control system may limit the clinical manifestation of the disease. The current fMRI studies tested the hypothesis that nondisabled MS patients show increased recruitment of cognitive control regions while performing sensory, motor and cognitive tasks. Twenty two patients with relapsing-remitting MS and an Expanded Disability Status Scale (EDSS) score of ≤1.5 and 23 matched healthy controls were recruited. Subjects underwent fMRI while observing flashing checkerboards, performing right or left hand movements, or executing the 2-back working memory task. Compared to control subjects, patients demonstrated increased activation of the right dorsolateral prefrontal cortex and anterior cingulate cortex during the performance of the working memory task. This pattern of functional recruitment also was observed during the performance of non-dominant hand movements. These results support the mounting evidence of increased functional recruitment of cognitive control regions in the working memory system of MS patients with low disability and provide new evidence for the role of increased cognitive control recruitment in the motor system. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Reward Motivation Enhances Task Coding in Frontoparietal Cortex.

    PubMed

    Etzel, Joset A; Cole, Michael W; Zacks, Jeffrey M; Kay, Kendrick N; Braver, Todd S

    2016-04-01

    Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The Impact of Emotional States on Cognitive Control Circuitry and Function.

    PubMed

    Cohen, Alexandra O; Dellarco, Danielle V; Breiner, Kaitlyn; Helion, Chelsea; Heller, Aaron S; Rahdar, Ahrareh; Pedersen, Gloria; Chein, Jason; Dyke, Jonathan P; Galvan, Adriana; Casey, B J

    2016-03-01

    Typically in the laboratory, cognitive and emotional processes are studied separately or as a stream of fleeting emotional stimuli embedded within a cognitive task. Yet in life, thoughts and actions often occur in more lasting emotional states of arousal. The current study examines the impact of emotions on actions using a novel behavioral paradigm and functional neuroimaging to assess cognitive control under sustained states of threat (anticipation of an aversive noise) and excitement (anticipation of winning money). Thirty-eight healthy adult participants were scanned while performing an emotional go/no-go task with positive (happy faces), negative (fearful faces), and neutral (calm faces) emotional cues, under threat or excitement. Cognitive control performance was enhanced during the excited state relative to a nonarousing control condition. This enhanced performance was paralleled by heightened activity of frontoparietal and frontostriatal circuitry. In contrast, under persistent threat, cognitive control was diminished when the valence of the emotional cue conflicted with the emotional state. Successful task performance in this conflicting emotional condition was associated with increased activity in the posterior cingulate cortex, a default mode network region implicated in complex processes such as processing emotions in the context of self and monitoring performance. This region showed positive coupling with frontoparietal circuitry implicated in cognitive control, providing support for a role of the posterior cingulate cortex in mobilizing cognitive resources to improve performance. These findings suggest that emotional states of arousal differentially modulate cognitive control and point to the potential utility of this paradigm for understanding effects of situational and pathological states of arousal on behavior.

  8. The Swedish Hayling task, and its relation to working memory, verbal ability, and speech-recognition-in-noise.

    PubMed

    Stenbäck, Victoria; Hällgren, Mathias; Lyxell, Björn; Larsby, Birgitta

    2015-06-01

    Cognitive functions and speech-recognition-in-noise were evaluated with a cognitive test battery, assessing response inhibition using the Hayling task, working memory capacity (WMC) and verbal information processing, and an auditory test of speech recognition. The cognitive tests were performed in silence whereas the speech recognition task was presented in noise. Thirty young normally-hearing individuals participated in the study. The aim of the study was to investigate one executive function, response inhibition, and whether it is related to individual working memory capacity (WMC), and how speech-recognition-in-noise relates to WMC and inhibitory control. The results showed a significant difference between initiation and response inhibition, suggesting that the Hayling task taps cognitive activity responsible for executive control. Our findings also suggest that high verbal ability was associated with better performance in the Hayling task. We also present findings suggesting that individuals who perform well on tasks involving response inhibition, and WMC, also perform well on a speech-in-noise task. Our findings indicate that capacity to resist semantic interference can be used to predict performance on speech-in-noise tasks. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  9. Learner-controlled practice difficulty in the training of a complex task: cognitive and motivational mechanisms.

    PubMed

    Hughes, Michael G; Day, Eric Anthony; Wang, Xiaoqian; Schuelke, Matthew J; Arsenault, Matthew L; Harkrider, Lauren N; Cooper, Olivia D

    2013-01-01

    An inherent aspect of learner-controlled instructional environments is the ability of learners to affect the degree of difficulty faced during training. However, research has yet to examine how learner-controlled practice difficulty affects learning. Based on the notion of desirable difficulties (Bjork, 1994), this study examined the cognitive and motivational antecedents and outcomes of learner-controlled practice difficulty in relation to learning a complex task. Using a complex videogame involving both strong cognitive and psychomotor demands, 112 young adult males were given control over their practice difficulty, which was reflected in the complexity of the training task. Results show that general mental ability, prior experience, pre-training self-efficacy, and error encouragement were positively related to learner-controlled practice difficulty. In turn, practice difficulty was directly related to task knowledge and post-training performance, and it was related to adaptive performance through the mediating influences of task knowledge and post-training performance. In general, this study supports the notion that training difficulty operationalized in terms of task complexity is positively related to both knowledge and performance outcomes. Results are discussed with respect to the need for more research examining how task complexity and other forms of difficulty could be leveraged to advance learner-controlled instructional practices. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information.

    PubMed

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; Giordano, Marianna; Grossi, Dario; Trojano, Luigi

    2015-01-01

    Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person's visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants' tendency to adopt another's point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males' responses to threatening faces whereas it interferes with the ability to adopt another's viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.

  11. The influence of emotional interference on cognitive control: A meta-analysis of neuroimaging studies using the emotional Stroop task.

    PubMed

    Song, Sensen; Zilverstand, Anna; Song, Hongwen; d'Oleire Uquillas, Federico; Wang, Yongming; Xie, Chao; Cheng, Li; Zou, Zhiling

    2017-05-18

    The neural correlates underlying the influence of emotional interference on cognitive control remain a topic of discussion. Here, we assessed 16 neuroimaging studies that used an emotional Stroop task and that reported a significant interaction effect between emotion (stimulus type) and cognitive conflict. There were a total of 330 participants, equaling 132 foci for an activation likelihood estimation (ALE) analysis. Results revealed consistent brain activation patterns related to emotionally-salient stimuli (as compared to emotionally-neutral trials) during cognitive conflict trials [incongruent trials (with task-irrelevant information interfering), versus congruent/baseline trials (less disturbance from task-irrelevant information)], that span the lateral prefrontal cortex (dorsolateral prefrontal cortex and inferior frontal gyrus), the medial prefrontal cortex, and the dorsal anterior cingulate cortex. Comparing mild emotional interference trials (without semantic conflict) versus intense emotional interference trials (with semantic conflict), revealed that while concurrent activation in similar brain regions as mentioned above was found for intense emotional interference trials, activation for mild emotional interference trials was only found in the precentral/postcentral gyrus. These data provide evidence for the potential neural mechanisms underlying emotional interference on cognitive control, and further elucidate an important distinction in brain activation patterns for different levels of emotional conflict across emotional Stroop tasks.

  12. Naturalistic Assessment of Everyday Functioning in Individuals with Mild Cognitive Impairment: The Day Out Task

    PubMed Central

    Schmitter-Edgecombe, Maureen; McAlister, Courtney; Weakley, Alyssa

    2012-01-01

    Objective The Day Out Task (DOT), a naturalistic task that requires multitasking in a real-world setting, was used to examine everyday functioning in individuals with mild cognitive impairment (MCI). Method Thirty-eight participants with MCI and 38 cognitively healthy older adult controls prioritized, organized, initiated and completed a number of subtasks in a campus apartment to prepare for a day out (e.g., determine and gather change for bus, bring a magazine). Participants also completed tests assessing cognitive constructs important in multitasking (i.e., retrospective memory, prospective memory, planning). Results Compared to controls, the MCI group required more time to complete the DOT and demonstrated poorer task accuracy, performing more subtasks incompletely and inaccurately. Despite poorer DOT task accuracy, the MCI and control groups approached completion of the DOT in a similar manner. For the MCI group, retrospective memory was a unique predictor of the number of subtasks left incomplete and inaccurate, while prospective memory was a unique predictor of DOT sequencing. The DOT measures, but not the cognitive tests, were predictive of knowledgeable informant report of everyday functioning. Conclusions These findings suggest that difficulty remembering and keeping track of multiple goals and subgoals may contribute to the poorer performance of individuals with MCI in complex everyday situations. PMID:22846035

  13. Functional brain imaging across development.

    PubMed

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to a more mature and controlled cognition.

  14. Self-control depletion in tufted capuchin monkeys (Sapajus spp.): does delay of gratification rely on a limited resource?

    PubMed Central

    Petrillo, Francesca De; Gori, Emanuele; Truppa, Valentina; Ariely, Dan; Addessi, Elsa

    2015-01-01

    Self-control failure has enormous personal and societal consequences. One of the most debated models explaining why self-control breaks down is the Strength Model, according to which self-control depends on a limited resource. Either previous acts of self-control or taking part in highly demanding cognitive tasks have been shown to reduce self-control, possibly due to a reduction in blood glucose levels. However, several studies yielded negative findings, and recent meta-analyses questioned the robustness of the depletion effect in humans. We investigated, for the first time, whether the Strength Model applies to a non-human primate species, the tufted capuchin monkey. We tested five capuchins in a self-control task (the Accumulation task) in which food items were accumulated within individual’s reach for as long as the subject refrained from taking them. We evaluated whether capuchins’ performance decreases: (i) when tested before receiving their daily meal rather than after consuming it (Energy Depletion Experiment), and (ii) after being tested in two tasks with different levels of cognitive complexity (Cognitive Depletion Experiment). We also tested, in both experiments, how implementing self-control in each trial of the Accumulation task affected this capacity within each session and/or across consecutive sessions. Repeated acts of self-control in each trial of the Accumulation task progressively reduced this capacity within each session, as predicted by the Strength Model. However, neither experiencing a reduction in energy level nor taking part in a highly demanding cognitive task decreased performance in the subsequent Accumulation task. Thus, whereas capuchins seem to be vulnerable to within-session depletion effects, to other extents our findings are in line with the growing body of studies that failed to find a depletion effect in humans. Methodological issues potentially affecting the lack of depletion effects in capuchins are discussed. PMID:26322001

  15. Self-control depletion in tufted capuchin monkeys (Sapajus spp.): does delay of gratification rely on a limited resource?

    PubMed

    Petrillo, Francesca De; Micucci, Antonia; Gori, Emanuele; Truppa, Valentina; Ariely, Dan; Addessi, Elsa

    2015-01-01

    Self-control failure has enormous personal and societal consequences. One of the most debated models explaining why self-control breaks down is the Strength Model, according to which self-control depends on a limited resource. Either previous acts of self-control or taking part in highly demanding cognitive tasks have been shown to reduce self-control, possibly due to a reduction in blood glucose levels. However, several studies yielded negative findings, and recent meta-analyses questioned the robustness of the depletion effect in humans. We investigated, for the first time, whether the Strength Model applies to a non-human primate species, the tufted capuchin monkey. We tested five capuchins in a self-control task (the Accumulation task) in which food items were accumulated within individual's reach for as long as the subject refrained from taking them. We evaluated whether capuchins' performance decreases: (i) when tested before receiving their daily meal rather than after consuming it (Energy Depletion Experiment), and (ii) after being tested in two tasks with different levels of cognitive complexity (Cognitive Depletion Experiment). We also tested, in both experiments, how implementing self-control in each trial of the Accumulation task affected this capacity within each session and/or across consecutive sessions. Repeated acts of self-control in each trial of the Accumulation task progressively reduced this capacity within each session, as predicted by the Strength Model. However, neither experiencing a reduction in energy level nor taking part in a highly demanding cognitive task decreased performance in the subsequent Accumulation task. Thus, whereas capuchins seem to be vulnerable to within-session depletion effects, to other extents our findings are in line with the growing body of studies that failed to find a depletion effect in humans. Methodological issues potentially affecting the lack of depletion effects in capuchins are discussed.

  16. The interplay of trait worry and trait anxiety in determining episodic retrieval: The role of cognitive control.

    PubMed

    Pajkossy, Péter; Keresztes, Attila; Racsmány, Mihály

    2017-11-01

    Worrying is a key concept in describing the complex relationship between anxiety and cognitive control. On the one hand, cognitive control processes might underlie the specific tendency to engage in worrying (i.e., trait worry), conceptualized as a future-oriented mental problem-solving activity. On the other hand, the general tendency to experience the signs and symptoms of anxiety (i.e., trait anxiety) is suggested to impair cognitive control because worrisome thoughts interfere with task-relevant processing. Based on these opposing tendencies, we predicted that the effect of the two related constructs, trait anxiety and trait worry, might cancel out one another. In statistics, such instances have been termed suppressor situations. In four experiments, we found evidence for such a suppressor situation: When their shared variance was controlled, trait worry was positively whereas trait anxiety was negatively related to performance in a memory task requiring strategic, effortful retrieval. We also showed that these opposing effects are related to temporal context reinstatement. Our results suggest that trait worry and trait anxiety possess unique sources of variance, which differently relate to performance in memory tasks requiring cognitive control.

  17. The Role of Training, Individual Differences and Knowledge Representation in Cognitive-Oriented Task Performance.

    ERIC Educational Resources Information Center

    Koubek, Richard J.

    The roles of training, problem representation, and individual differences on performance of both automated (simple) and controlled (complex) process tasks were studied. The following hypotheses were tested: (1) training and cognitive style affect the representation developed; (2) training and cognitive style affect the development and performance…

  18. The normalities and abnormalities associated with speech in psychometrically-defined schizotypy.

    PubMed

    Cohen, Alex S; Auster, Tracey L; McGovern, Jessica E; MacAulay, Rebecca K

    2014-12-01

    Speech deficits are thought to be an important feature of schizotypy--defined as the personality organization reflecting a putative liability for schizophrenia. There is reason to suspect that these deficits manifest as a function of limited cognitive resources. To evaluate this idea, we examined speech from individuals with psychometrically-defined schizotypy during a low cognitively-demanding task versus a relatively high cognitively-demanding task. A range of objective, computer-based measures of speech tapping speech production (silence, number and length of pauses, number and length of utterances), speech variability (global and local intonation and emphasis) and speech content (word fillers, idea density) were employed. Data for control (n=37) and schizotypy (n=39) groups were examined. Results did not confirm our hypotheses. While the cognitive-load task reduced speech expressivity for subjects as a group for most variables, the schizotypy group was not more pathological in speech characteristics compared to the control group. Interestingly, some aspects of speech in schizotypal versus control subjects were healthier under high cognitive load. Moreover, schizotypal subjects performed better, at a trend level, than controls on the cognitively demanding task. These findings hold important implications for our understanding of the neurocognitive architecture associated with the schizophrenia-spectrum. Of particular note concerns the apparent mismatch between self-reported schizotypal traits and objective performance, and the resiliency of speech under cognitive stress in persons with high levels of schizotypy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Early Life Cognitive Abilities and Body Weight: Cross-Sectional Study of the Association of Inhibitory Control, Cognitive Flexibility, and Sustained Attention with BMI Percentiles in Primary School Children

    PubMed Central

    Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M.

    2015-01-01

    The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494. PMID:25874122

  20. Early life cognitive abilities and body weight: cross-sectional study of the association of inhibitory control, cognitive flexibility, and sustained attention with BMI percentiles in primary school children.

    PubMed

    Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M

    2015-01-01

    The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494.

  1. Cognitive task load in a naval ship control centre: from identification to prediction.

    PubMed

    Grootjen, M; Neerincx, M A; Veltman, J A

    Deployment of information and communication technology will lead to further automation of control centre tasks and an increasing amount of information to be processed. A method for establishing adequate levels of cognitive task load for the operators in such complex environments has been developed. It is based on a model distinguishing three load factors: time occupied, task-set switching, and level of information processing. Application of the method resulted in eight scenarios for eight extremes of task load (i.e. low and high values for each load factor). These scenarios were performed by 13 teams in a high-fidelity control centre simulator of the Royal Netherlands Navy. The results show that the method provides good prediction of the task load that will actually appear in the simulator. The model allowed identification of under- and overload situations showing negative effects on operator performance corresponding to controlled experiments in a less realistic task environment. Tools proposed to keep the operator at an optimum task load are (adaptive) task allocation and interface support.

  2. Improving cognitive control in adolescents with post-traumatic stress disorder (PTSD).

    PubMed

    Schweizer, Susanne; Samimi, Zobair; Hasani, Jafar; Moradi, Alireza; Mirdoraghi, Fatemeh; Khaleghi, Mohammad

    2017-06-01

    The adverse impact of posttraumatic stress disorder (PTSD) on the developing mind in adolescence can extend well into adulthood. The developmental malleability of cognitive control capacity in this age group, however, may hold particular promise for cognitive training interventions. The present study investigated the effects of affective working memory (aWMT) compared to placebo-training on cognitive and affective functioning in adolescents with PTSD. 30 treatment-seeking adolescents trained for 20 days on either an affective dual n-back task (aWMT; n = 15) or a feature match task (placebo; n = 15). The aWMT group showed greater pre-to post-training increases in cognitive control as measured by the GoNogo task as well as improvements in symptoms of PTSD and increased use of adaptive emotion regulation strategies. These preliminary findings are promising given the potential for free and easy dissemination of the aWMT in schools and online. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Static and dynamic single leg postural control performance during dual-task paradigms.

    PubMed

    Talarico, Maria K; Lynall, Robert C; Mauntel, Timothy C; Weinhold, Paul S; Padua, Darin A; Mihalik, Jason P

    2017-06-01

    Combining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat as deep and squatted slower (P < 0.001) during dual-task paradigms (≤12.69 ± 3.4 cm squat depth, ≤16.20 ± 4.6 cm · s -1 squat speed) compared to single-task paradigms (14.57 ± 3.6 cm squat depth, 19.65 ± 5.5 cm · s -1 squat speed). The percentage of correct answers did not change across testing conditions, but Stroop reaction time (725.81 ± 59.2 ms; F 2,58  = 7.725, P = 0.001) was slowest during single-leg squats compared to baseline (691.64 ± 80.1 ms; P = 0.038) and single-task paradigms (681.33 ± 51.5 ms; P < 0.001). Dynamic dual-task assessments may be more challenging to the postural control system and may better represent postural control performance during dynamic activities.

  4. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    NASA Astrophysics Data System (ADS)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  5. Lessons learnt? The importance of metacognition and its implications for Cognitive Remediation in schizophrenia

    PubMed Central

    Cella, Matteo; Reeder, Clare; Wykes, Til

    2015-01-01

    The cognitive problems experienced by people with schizophrenia not only impede recovery but also interfere with treatments designed to improve overall functioning. Hence there has been a proliferation of new therapies to treat cognitive problems with the hope that improvements will benefit future intervention and recovery outcomes. Cognitive remediation therapy (CR) that relies on intensive task practice can support basic cognitive functioning but there is little evidence on how these therapies lead to transfer to real life skills. However, there is increasing evidence that CR including elements of transfer training (e.g., strategy use and problem solving schemas) produce higher functional outcomes. It is hypothesized that these therapies achieve higher transfer by improving metacognition. People with schizophrenia have metacognitive problems; these include poor self-awareness and difficulties in planning for complex tasks. This paper reviews this evidence as well as research on why metacognition needs to be explicitly taught as part of cognitive treatments. The evidence is based on research on learning spanning from neuroscience to the field of education. Learning programmes, and CRT, may be able to achieve better outcomes if they explicitly teach metacognition including metacognitive knowledge (i.e., awareness of the cognitive requirements and approaches to tasks) and metacognitive regulation (i.e., cognitive control over the different task relevant cognitive requirements). These types of metacognition are essential for successful task performance, in particular, for controlling effort, accuracy and efficient strategy use. We consider metacognition vital for the transfer of therapeutic gains to everyday life tasks making it a therapy target that may yield greater gains compared to cognition alone for recovery interventions. PMID:26388797

  6. Automaticity of Cognitive Control: Goal Priming in Response-Inhibition Paradigms

    ERIC Educational Resources Information Center

    Verbruggen, Frederick; Logan, Gordon D.

    2009-01-01

    Response inhibition is a hallmark of cognitive control. An executive system inhibits responses by activating a stop goal when a stop signal is presented. The authors asked whether the stop goal could be primed by task-irrelevant information in stop-signal and go/no-go paradigms. In Experiment 1, the task-irrelevant primes "GO," ###, or "STOP" were…

  7. Amygdala functional connectivity is associated with locus of control in the context of cognitive aging.

    PubMed

    Ren, Ping; Anthony, Mia; Chapman, Benjamin P; Heffner, Kathi; Lin, Feng

    2017-05-01

    Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more "internal" LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more "external" LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20min, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC's role in cognitive aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Affective Modulation of Cognitive Control is Determined by Performance-Contingency and Mediated by Ventromedial Prefrontal and Cingulate Cortex

    PubMed Central

    King, Joseph A.; Korb, Franziska M.; Krebs, Ruth M.; Notebaert, Wim; Egner, Tobias

    2013-01-01

    Cognitive control requires a fine balance between stability, the protection of an on-going task-set, and flexibility, the ability to update a task-set in line with changing contingencies. It is thought that emotional processing modulates this balance, but results have been equivocal regarding the direction of this modulation. Here, we tested the hypothesis that a crucial determinant of this modulation is whether affective stimuli represent performance-contingent or task-irrelevant signals. Combining functional magnetic resonance imaging with a conflict task-switching paradigm, we contrasted the effects of presenting negative- and positive-valence pictures on the stability/flexibility trade-off in humans, depending on whether picture presentation was contingent on behavioral performance. Both the behavioral and neural expressions of cognitive control were modulated by stimulus valence and performance contingency: in the performance-contingent condition, cognitive flexibility was enhanced following positive pictures, whereas in the nonperformance-contingent condition, positive stimuli promoted cognitive stability. The imaging data showed that, as anticipated, the stability/flexibility trade-off per se was reflected in differential recruitment of dorsolateral frontoparietal and striatal regions. In contrast, the affective modulation of stability/flexibility shifts was mirrored, unexpectedly, by neural responses in ventromedial prefrontal and posterior cingulate cortices, core nodes of the “default mode” network. Our results demonstrate that the affective modulation of cognitive control depends on the performance contingency of the affect-inducing stimuli, and they document medial default mode regions to mediate the flexibility-promoting effects of performance-contingent positive affect, thus extending recent work that recasts these regions as serving a key role in on-task control processes. PMID:24155301

  9. Postural control and attentional demand during adolescence.

    PubMed

    Palluel, Estelle; Nougier, Vincent; Olivier, Isabelle

    2010-10-28

    In the present study we aimed to determine the attentional cost of postural control during adolescence by studying the influence of a cognitive task on concurrent postural control. 38 teenagers aged 12 to 17years and 13 young adults (mean age=26.1) stood barefoot on a force platform in a semi-tandem position. A dual-task paradigm consisted of performing a Stroop or a COUNTING BACKWARD task while simultaneously standing quietly on a firm or foam support surface. Different centre of pressure (CoP) measures were calculated (90% confidence ellipse area, mean velocity, root mean square on the antero-posterior (AP) and medio-lateral (ML) axes). The number and percentage of correct responses in the cognitive tasks were also recorded. Our results indicate (1) higher values of surface, ML mean velocity and ML RMS in the COUNTING BACKWARD task in adolescents aged 12 to 15 than in teenagers aged 16 to 17 and in adults, regardless of the complexity of the postural task and, (2) better cognitive performances in the Stroop than in the COUNTING BACKWARD task. The difference in the dual-task performance between the different age groups and particularly the existence of a turning point around 14-15years of age might be due to 1) difficulties in properly allocating attentional resources to two simultaneous tasks and/or, 2) the inability to manage increased cognitive requests because of a limited information processing capacity in adolescents aged 14-15years. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Effect of Yoga practice on reducing cognitive-motor interference for improving dynamic balance control in healthy adults.

    PubMed

    Subramaniam, Savitha; Bhatt, Tanvi

    2017-02-01

    The purpose of our study was to investigate the effects of Yoga on reducing cognitive-motor interference (CMI) for maintaining balance control during varied balance tasks. Yoga (N=10) and age-similar non-practitioners (N=10) performed three balance tasks including the Limits of Stability test (LOS - Intentional balance), Motor Control test (MCT - Reactive balance), and Sensory Organization Test (SOT -condition 6: inducing both somatosensory and visual conflicts) under single-task (ST) and dual-task (DT, addition of a cognitive working memory task) conditions. The motor performance was assessed by recording the response time (RT) and movement velocity (MV) of the center of pressure (CoP) on LOS test, weight symmetry (WS) of CoP on the MCT test and equilibrium (EQ) of CoP on the SOT test. Cognitive performance was recorded as the number of correct responses enumerated in sitting (ST) and under DT conditions. The Motor cost (MC) and cognitive cost (CC) were computed using the formula ([ST-DT]/ST)*100 for all the variables. Greater cost indicates lower performance under DT versus ST condition. The Yoga group showed a significantly lesser MC for both MCT and SOT tests (p<0.05) in comparison to their counterparts. The CC were significantly lower on LOS and MCT test for the Yoga group (p<0.05). Results suggest that Yoga practice can significantly reduce CMI by improving allocation and utilization of attentional resources for both balance control and executive cognitive functioning; thus resulting in better performance under DT conditions. Copyright © 2016. Published by Elsevier Ltd.

  11. Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer's disease biomarkers.

    PubMed

    Gordon, Brian A; Zacks, Jeffrey M; Blazey, Tyler; Benzinger, Tammie L S; Morris, John C; Fagan, Anne M; Holtzman, David M; Balota, David A

    2015-05-01

    There is a growing emphasis on examining preclinical levels of Alzheimer's disease (AD)-related pathology in the absence of cognitive impairment. Previous work examining biomarkers has focused almost exclusively on memory, although there is mounting evidence that attention also declines early in disease progression. In the current experiment, 2 attentional control tasks were used to examine alterations in task-evoked functional magnetic resonance imaging data related to biomarkers of AD pathology. Seventy-one cognitively normal individuals (females = 44, mean age = 63.5 years) performed 2 attention-demanding cognitive tasks in a design that modeled both trial- and task-level functional magnetic resonance imaging changes. Biomarkers included amyloid β42, tau, and phosphorylated tau measured from cerebrospinal fluid and positron emission tomography measures of amyloid deposition. Both tasks elicited widespread patterns of activation and deactivation associated with large task-level manipulations of attention. Importantly, results from both tasks indicated that higher levels of tau and phosphorylated tau pathologies were associated with block-level overactivations of attentional control areas. This suggests early alteration in attentional control with rising levels of AD pathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A Systematic Review of the Evidence for Impaired Cognitive Theory of Mind in Maltreated Children

    PubMed Central

    Benarous, Xavier; Guilé, Jean-Marc; Consoli, Angèle; Cohen, David

    2015-01-01

    Compared to the large number of studies exploring difficulties in emotion recognition in maltreated children, few (N = 12) have explored the cognitive aspect of theory of mind (ToM), i.e., the ability to understand others’ thoughts and intentions. A systematic review of these studies shows inconsistent results regarding cognitive ToM tasks. Youths with a history of maltreatment are more likely to fail at false-belief tasks (N = 2). However, results are less conclusive regarding other tasks (perspective-taking tasks, N = 4; and hostile attribution tasks, N = 7). Additionally, only one study controlled for potential psychopathology. Measures of psychopathology and other cognitive abilities, in addition to ToM, are required to establish a specific association between maltreatment and the cognitive dimension of ToM. PMID:26283975

  13. A Systematic Review of the Evidence for Impaired Cognitive Theory of Mind in Maltreated Children.

    PubMed

    Benarous, Xavier; Guilé, Jean-Marc; Consoli, Angèle; Cohen, David

    2015-01-01

    Compared to the large number of studies exploring difficulties in emotion recognition in maltreated children, few (N = 12) have explored the cognitive aspect of theory of mind (ToM), i.e., the ability to understand others' thoughts and intentions. A systematic review of these studies shows inconsistent results regarding cognitive ToM tasks. Youths with a history of maltreatment are more likely to fail at false-belief tasks (N = 2). However, results are less conclusive regarding other tasks (perspective-taking tasks, N = 4; and hostile attribution tasks, N = 7). Additionally, only one study controlled for potential psychopathology. Measures of psychopathology and other cognitive abilities, in addition to ToM, are required to establish a specific association between maltreatment and the cognitive dimension of ToM.

  14. Changes in Predictive Task Switching with Age and with Cognitive Load.

    PubMed

    Levy-Tzedek, Shelly

    2017-01-01

    Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.

  15. A 24-Week Multi-Modality Exercise Program Improves Executive Control in Older Adults with a Self-Reported Cognitive Complaint: Evidence from the Antisaccade Task.

    PubMed

    Heath, Matthew; Shellington, Erin; Titheridge, Sam; Gill, Dawn P; Petrella, Robert J

    2017-01-01

    Exercise programs involving aerobic and resistance training (i.e., multiple-modality) have shown promise in improving cognition and executive control in older adults at risk, or experiencing, cognitive decline. It is, however, unclear whether cognitive training within a multiple-modality program elicits an additive benefit to executive/cognitive processes. This is an important question to resolve in order to identify optimal training programs that delay, or ameliorate, executive deficits in persons at risk for further cognitive decline. In the present study, individuals with a self-reported cognitive complaint (SCC) participated in a 24-week multiple-modality (i.e., the M2 group) exercise intervention program. In addition, a separate group of individuals with a SCC completed the same aerobic and resistance training as the M2 group but also completed a cognitive-based stepping task (i.e., multiple-modality, mind-motor intervention: M4 group). Notably, pre- and post-intervention executive control was examined via the antisaccade task (i.e., eye movement mirror-symmetrical to a target). Antisaccades are an ideal tool for the study of individuals with subtle executive deficits because of its hands- and language-free nature and because the task's neural mechanisms are linked to neuropathology in cognitive decline (i.e., prefrontal cortex). Results showed that M2 and M4 group antisaccade reaction times reliably decreased from pre- to post-intervention and the magnitude of the decrease was consistent across groups. Thus, multi-modality exercise training improved executive performance in persons with a SCC independent of mind-motor training. Accordingly, we propose that multiple-modality training provides a sufficient intervention to improve executive control in persons with a SCC.

  16. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial.

    PubMed

    Yokoyama, Hisayo; Okazaki, Kazunobu; Imai, Daiki; Yamashina, Yoshihiro; Takeda, Ryosuke; Naghavi, Nooshin; Ota, Akemi; Hirasawa, Yoshikazu; Miyagawa, Toshiaki

    2015-05-28

    Physical activity reduces the incidence and progression of cognitive impairment. Cognitive-motor dual-task training, which requires dividing attention between cognitive tasks and exercise, may improve various cognitive domains; therefore, we examined the effect of dual-task training on the executive functions and on plasma amyloid β peptide (Aβ) 42/40 ratio, a potent biomarker of Alzheimer's disease, in healthy elderly people. Twenty-seven sedentary elderly people participated in a 12-week randomized, controlled trial. The subjects assigned to the dual-task training (DT) group underwent a specific cognitive-motor dual-task training, and then the clinical outcomes, including cognitive functions by the Modified Mini-Mental State (3MS) examination and the Trail-Making Test (TMT), and the plasma Aβ 42/40 ratio following the intervention were compared with those of the control single-task training (ST) group by unpaired t-test. Among 27 participants, 25 completed the study. The total scores in the 3MS examination as well as the muscular strength of quadriceps were equally improved in both groups after the training. The specific cognitive domains, "registration & recall", "attention", "verbal fluency & understanding", and "visuospatial skills" were significantly improved only in the DT group. Higher scores in "attention", "verbal fluency & understanding", and "similarities" were found in the DT group than in the ST group at post-intervention. The absolute changes in the total (8.5 ± 1.6 vs 2.4 ± 0.9, p = 0.004, 95 % confidence interval (CI) 0.75-3.39) and in the scores of "attention" (1.9 ± 0.5 vs -0.2 ± 0.4, p = 0.004, 95 % CI 2.25-9.98) were greater in the DT group than in the ST group. We found no changes in the TMT results in either group. Plasma Aβ 42/40 ratio decreased in both groups following the training (ST group: 0.63 ± 0.13 to 0.16 ± 0.03, p = 0.001; DT group: 0.60 ± 0.12 to 0.25 ± 0.06, p = 0.044), although the pre- and post-intervention values were not different between the groups for either measure. Cognitive-motor dual-task training was more beneficial than single-task training alone in improving broader domains of cognitive functions of elderly persons, and the improvement was not directly due to modulating Aβ metabolism.

  17. Working memory training shows immediate and long-term effects on cognitive performance in children

    PubMed Central

    Pugin, Fiona; Metz, Andreas J.; Stauffer, Madlaina; Wolf, Martin; Jenni, Oskar G.; Huber, Reto

    2014-01-01

    Working memory is important for mental reasoning and learning processes. Several studies in adults and school-age children have shown performance improvement in cognitive tests after working memory training. Our aim was to examine not only immediate but also long-term effects of intensive working memory training on cognitive performance tests in children. Fourteen healthy male subjects between 10 and 16 years trained a visuospatial n-back task over 3 weeks (30 min daily), while 15 individuals of the same age range served as a passive control group. Significant differences in immediate (after 3 weeks of training) and long-term effects (after 2-6 months) in an auditory n-back task were observed compared to controls (2.5 fold immediate and 4.7 fold long-term increase in the training group compared to the controls). The improvement was more pronounced in subjects who improved their performance during the training. Other cognitive functions (matrices test and Stroop task) did not change when comparing the training group to the control group. We conclude that visuospatial working memory training in children boosts performance in similar memory tasks such as the auditory n-back task. The sustained performance improvement several months after the training supports the effectiveness of the training. PMID:25671082

  18. Cerebral blood flow regulation during cognitive tasks

    PubMed Central

    Sorond, Farzaneh A.; Schnyer, D.M.; Serrador, J.M.; Milberg, W.P.; Lipsitz, L.A.

    2008-01-01

    Aging is associated with frontal subcortical microangiopathy and executive cognitive dysfunction, suggesting that elderly individuals may have impaired metabolic activation of cerebral blood flow to the frontal lobes. We used transcranial Doppler (TCD) ultrasound to examine the cerebral blood flow response to executive control and visual tasks in the anterior and posterior cerebral circulations and to determine the effects of healthy aging on cerebral blood flow regulation during cognitive tasks. Continuous simultaneous anterior cerebral artery (ACA) and posterior cerebral artery (PCA) blood flow velocities (BFVs) and mean arterial pressure (MAP) were measured in response to word stem completion (WSC) and a visual search (VS) task in 29 healthy subjects (14 young, 30 ± 1.5 years; 15 old, 74 ± 1.4 years). We found that: (1) ACA and PCA blood flow velocities are both significantly increased during WSC and VS cognitive tasks, (2) ACA and PCA activations were task specific in our young volunteers, with ACA > PCA BFV during the WSC task and PCA > ACA BFV during the VS task, (3) while healthy elderly subjects also had PCA > ACA BFV during the VS task, they did not have ACA > PCA activation during the WSC task, and (4) healthy elderly subjects tend to have overall greater increases in BFV during both cognitive tasks. We conclude that TCD can be used to monitor cerebrovascular hemodynamics during the performance of cognitive tasks. Our data suggest that there is differential blood flow increase in the ACA and PCA in young versus elderly subjects during cognitive tasks. PMID:18387547

  19. Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat

    PubMed Central

    Newman, Lori A.; Creer, David J.; McGaughy, Jill A.

    2014-01-01

    Converging evidence supports the hypothesis that the prefrontal cortex is critical for cognitive control. One prefrontal subregion, the anterior cingulate cortex, is hypothesized to be necessary to resolve response conflicts, disregard salient distractors and alter behavior in response to the generation of an error. These situations all involve goal-oriented monitoring of performance in order to effectively adjust cognitive processes. Several neuropsychological disorders, e.g., schizophrenia, attention deficit hyperactivity and obsessive compulsive disorder, are accompanied by morphological changes in the anterior cingulate cortex. These changes are hypothesized to underlie the impairments on tasks that require cognitive control found in these subjects. A novel conflict monitoring task was used to assess the effects on cognitive control of excitotoxic lesions to anterior cingulate cortex in rats. Prior to surgery all subjects showed improved accuracy on the second of two consecutive, incongruent trials. Lesions to the anterior cingulate cortex abolished this. Lesioned animals had difficulty in adjusting cognitive control on a trial-by-trial basis regardless of whether cognitive changes were increased or decreased. These results support a role for the anterior cingulate cortex in adjustments in cognitive control. PMID:25051488

  20. Long-term treatment with antioxidants and a program of behavioral enrichment reduces age-dependent impairment in discrimination and reversal learning in beagle dogs.

    PubMed

    Milgram, Norton W; Head, Elizabeth; Zicker, Steven C; Ikeda-Douglas, Candace; Murphey, Heather; Muggenberg, Bruce A; Siwak, Christina T; Tapp, P Dwight; Lowry, Stephen R; Cotman, Carl W

    2004-05-01

    The effects of long-term treatment with both antioxidants and a program of behavioral enrichment were studied as part of a longitudinal investigation of cognitive aging in beagle dogs. Baseline performance on a battery of cognitive tests was used to assign 48 aged dogs (9-12 years) into four cognitively equivalent groups, of 12 animals per group: Group CC (control food-control environment), group CE (control food-enriched environment); Group AC (antioxidant fortified food-control environment); Group AE (fortified food-enriched environment). We also tested a group of young dogs fed the control food and a second group fed the fortified food. Both groups of young dogs received a program of behavioral enrichment. To evaluate the effects of the interventions on cognition after 1 year, the dogs were tested on a size discrimination learning task and subsequently on a size discrimination reversal learning task. Both tasks showed age-sensitivity, with old dogs performing more poorly than young dogs. Both tasks were also improved by both the fortified food and the behavioral enrichment. However, in both instances the treatment effects largely reflected improved performance in the combined treatment group. These results suggest that the effectiveness of antioxidants in attenuating age-dependent cognitive decline is dependent on behavioral and environmental experience.

  1. Cognitive Control Deficits Associated with Antisocial Personality Disorder and Psychopathy

    PubMed Central

    Zeier, Joshua D.; Baskin-Sommers, Arielle R.; Newman, Joseph P.; Racer, Kristina Hiatt

    2011-01-01

    Antisociality has been linked to a variety of executive functioning deficits, including poor cognitive control. Surprisingly, cognitive control deficits are rarely found in psychopathic individuals, despite their notoriously severe and persistent antisocial behavior. In fact, primary (low-anxious) psychopathic individuals display superior performance on cognitive control-type tasks under certain circumstances. To clarify these seemingly contradictory findings, we administered a response competition (i.e. flanker) task to incarcerated offenders, who were assessed for Antisocial Personality Disorder (APD) symptoms and psychopathy. As hypothesized, APD related to poorer accuracy, especially on incongruent trials. Contrary to expectation, however, the same pattern of results was found in psychopathy. Additional analyses indicated that these effects of APD and psychopathy were associated with overlapping variance. The findings suggest that psychopathy and APD symptoms are both associated with deficits in cognitive control, and that this deficit relates to general antisociality as opposed to a specific antisocial syndrome. PMID:22452754

  2. Modulatory Effects of Modafinil on Neural Circuits Regulating Emotion and Cognition

    PubMed Central

    Rasetti, Roberta; Mattay, Venkata S; Stankevich, Beth; Skjei, Kelsey; Blasi, Giuseppe; Sambataro, Fabio; Arrillaga-Romany, Isabel C; Goldberg, Terry E; Callicott, Joseph H; Apud, José A; Weinberger, Daniel R

    2010-01-01

    Modafinil differs from other arousal-enhancing agents in chemical structure, neurochemical profile, and behavioral effects. Most functional neuroimaging studies to date examined the effect of modafinil only on information processing underlying executive cognition, but cognitive enhancers in general have been shown to have pronounced effects on emotional behavior, too. We examined the effect of modafinil on neural circuits underlying affective processing and cognitive functions. Healthy volunteers were enrolled in this double-blinded placebo-controlled trial (100 mg/day for 7 days). They underwent BOLD fMRI while performing an emotion information-processing task that activates the amygdala and two prefrontally dependent cognitive tasks—a working memory (WM) task and a variable attentional control (VAC) task. A clinical assessment that included measurement of blood pressure, heart rate, the Hamilton anxiety scale, and the profile of mood state (POMS) questionnaire was also performed on each test day. BOLD fMRI revealed significantly decreased amygdala reactivity to fearful stimuli on modafinil compared with the placebo condition. During executive cognition tasks, a WM task and a VAC task, modafinil reduced BOLD signal in the prefrontal cortex and anterior cingulate. Although not statistically significant, there were trends for reduced anxiety, for decreased fatigue-inertia and increased vigor-activity, as well as decreased anger-hostility on modafinil. Modafinil in low doses has a unique physiologic profile compared with stimulant drugs: it enhances the efficiency of prefrontal cortical cognitive information processing, while dampening reactivity to threatening stimuli in the amygdala, a brain region implicated in anxiety. PMID:20555311

  3. Factors influencing the role of cardiac autonomic regulation in the service of cognitive control.

    PubMed

    Capuana, Lesley J; Dywan, Jane; Tays, William J; Elmers, Jamie L; Witherspoon, Richelle; Segalowitz, Sidney J

    2014-10-01

    Working from a model of neurovisceral integration, we examined whether adding response contingencies and motivational involvement would increase the need for cardiac autonomic regulation in maintaining effective cognitive control. Respiratory sinus arrhythmia (RSA) was recorded during variants of the Stroop color-word task. The Basic task involved "accepting" congruent items and "rejecting" words printed in incongruent colors (BLUE in red font); an added contingency involved rejecting a particular congruent word (e.g., RED in red font), or a congruent word repeated on an immediately subsequent trial. Motivation was increased by adding a financial incentive phase. Results indicate that pre-task RSA predicted accuracy best when response contingencies required the maintenance of a specific item in memory or on the Basic Stroop task when errors resulted in financial loss. Overall, RSA appeared to be most relevant to performance when the task encouraged a more proactive style of cognitive control, a control strategy thought to be more metabolically costly, and hence, more reliant on flexible cardiac autonomic regulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. RACE/A: an architectural account of the interactions between learning, task control, and retrieval dynamics.

    PubMed

    van Maanen, Leendert; van Rijn, Hedderik; Taatgen, Niels

    2012-01-01

    This article discusses how sequential sampling models can be integrated in a cognitive architecture. The new theory Retrieval by Accumulating Evidence in an Architecture (RACE/A) combines the level of detail typically provided by sequential sampling models with the level of task complexity typically provided by cognitive architectures. We will use RACE/A to model data from two variants of a picture-word interference task in a psychological refractory period design. These models will demonstrate how RACE/A enables interactions between sequential sampling and long-term declarative learning, and between sequential sampling and task control. In a traditional sequential sampling model, the onset of the process within the task is unclear, as is the number of sampling processes. RACE/A provides a theoretical basis for estimating the onset of sequential sampling processes during task execution and allows for easy modeling of multiple sequential sampling processes within a task. Copyright © 2011 Cognitive Science Society, Inc.

  5. Cognitive processes in children's reading and attention: the role of working memory, divided attention, and response inhibition.

    PubMed

    Savage, Robert; Cornish, Kim; Manly, Tom; Hollis, Chris

    2006-08-01

    Children experiencing attention difficulties have documented cognitive deficits in working memory (WM), response inhibition and dual tasks. Recent evidence suggests however that these same cognitive processes are also closely associated with reading acquisition. This paper therefore explores whether these variables predicted attention difficulties or reading among 123 children with and without significant attention problems sampled from the school population. Children were screened using current WM and attention task measures. Three factors explained variance in WM and attention tasks. Response inhibition tasks loaded mainly with central executive measures, but a dual processing task loaded with the visual-spatial WM measures. Phonological loop measures loaded independently of attention measures. After controls for age, IQ and attention-group membership, phonological loop and 'central processing' measures both predicted reading ability. A 'visual memory/dual-task' factor predicted attention group membership after controls for age, IQ and reading ability. Results thus suggest that some of the processes previously assumed to be predictive of attention problems may reflect processes involved in reading acquisition. Visual memory and dual-task functioning are, however, purer indices of cognitive difficulty in children experiencing attention problems.

  6. Unravelling the influence of mild traumatic brain injury (MTBI) on cognitive-linguistic processing: a comparative group analysis.

    PubMed

    Barwood, Caroline H S; Murdoch, Bruce E

    2013-06-01

    Cognitive-linguistic deficits often accompany traumatic brain injury (TBI) and can negatively impact communicative competency. The linguistic sequelae underpinning mild TBI (MTBI) remain largely unexplored in contemporary literature. The present research methods aim to provide group evidence pertaining to the influence of MTBI on linguistic and higher-level language processing. Extrapolating on the findings of recent case reports, it is hypothesized that performance of the MTBI patients will be significantly reduced compared to normal controls performance on the employed high-level linguistic tasks. Sixteen patients with MTBI and 16 age- and education-matched normal control participants were assessed using a comprehensive battery of cognitive-linguistic assessments. The results demonstrated statistically significant differences between MTBI and normal control group performance across a number of higher-level linguistic, general cognitive and general language tasks. MTBI group performance was significantly lower than the normal control group on tasks requiring complex lexical semantic operations and memory demands, including: Recall, organization, making inferences, naming and perception/discrimination. These outcomes confer that post-MTBI, cognitive, high-level language and isolated general language performance (e.g. naming) is significantly reduced in MTBI patients, compared to normal controls. Furthermore, the detailed cognitive-linguistic profile offered provides a necessary direction for the identification of areas of linguistic decline in MTBI and targets for therapeutic intervention of impaired cognitive-linguistic processes to ultimately improve communicative outcomes in MTBI.

  7. Cognitive Conflict in a Syllable Identification Task Causes Transient Activation of Speech Perception Area

    ERIC Educational Resources Information Center

    Saetrevik, Bjorn; Specht, Karsten

    2012-01-01

    It has previously been shown that task performance and frontal cortical activation increase after cognitive conflict. This has been argued to support a model of attention where the level of conflict automatically adjusts the amount of cognitive control applied. Conceivably, conflict could also modulate lower-level processing pathways, which would…

  8. Involuntary autobiographical memories are relatively more often reported during high cognitive load tasks.

    PubMed

    Barzykowski, Krystian; Niedźwieńska, Agnieszka

    2018-01-01

    Recent studies on involuntary autobiographical memories (IAMs) in daily life have shown that they are most frequently reported during daily routines (e.g. while ironing). Such studies have suggested that reporting IAMs may be influenced by the level of the ongoing task demands and availability of cognitive resources. In two studies, we investigated the effects of cognitive load on reporting IAMs. To examine the presumed cognitive load dependency of IAMs, we utilised an often-employed experimental paradigm (Schlagman & Kvavilashvili, 2008) to elicit IAMs under conditions that differed in cognitive load. When performing a vigilance task, participants had to interrupt the task each time they experienced any spontaneous mental contents and write them down. We manipulated the level of cognitive load by either instructing (cognitive load group) or not instructing (control group) participants to perform an additional demanding task. We compared the groups on the number of IAMs and other mental contents (non-IAM contents) recorded, as well as on the frequency of IAMs that was calculated as a proportion of IAMs in all mental contents reported by the participant. We expected that if reporting IAMs depends on the level of cognitive demands, then we should observe lower frequency of IAMs in the cognitive load group compared to the control group. Consistently across studies, we observed a lower number of IAMs and non-IAM contents in the cognitive load group. However, IAMs unexpectedly constituted a higher percentage of all mental contents when participants were cognitively loaded. Further implications of the cognitive load effects for IAMs research and experimental methodology are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects.

    PubMed

    Martin, Donel M; McClintock, Shawn M; Forster, Jane J; Lo, Tin Yan; Loo, Colleen K

    2017-11-01

    Repetitive transcranial magnetic stimulation (rTMS) is an approved therapeutic treatment of major depressive disorder and has increasing clinical use throughout the world. However, it remains unclear whether an rTMS course for depression may also produce cognitive enhancement. In a recent meta-analysis of sham-controlled randomized controlled studies (RCTs) conducted in patients with neuropsychiatric conditions, no evidence was found for generalized cognitive enhancing effects across cognitive domains with active compared to sham rTMS. Notwithstanding, there remains the possibility of cognitive effects following an rTMS course that are more highly specific, for example, in specific clinical conditions, or at the individual task level. This study aimed to determine whether a therapeutic rTMS course in patients with depression is associated with cognitive enhancing effects at the task level. A systematic review and meta-analysis of outcomes on individual neuropsychological tasks from sham-controlled RCTs where an rTMS course was administered to the dorsolateral prefrontal cortex (DLPFC) in patients with depression. Eighteen studies met the inclusion criteria. Active rTMS treatment showed no specific enhancing effects on the majority of cognitive tasks. Modest effect size improvements with active compared to sham rTMS treatment were found for performance on the Trail Making Test Parts A (g = 0.28, 95% CI = 0.06-0.50) and B (g = 0.26, 95% CI = 0.06-0.47). A therapeutic rTMS course administered to the prefrontal cortex for depression may produce modest cognitive enhancing effects specific to psychomotor speed, visual scanning, and set-shifting ability. © 2017 Wiley Periodicals, Inc.

  10. Reduced but broader prefrontal activity in patients with schizophrenia during n-back working memory tasks: a multi-channel near-infrared spectroscopy study.

    PubMed

    Koike, Shinsuke; Takizawa, Ryu; Nishimura, Yukika; Kinou, Masaru; Kawasaki, Shingo; Kasai, Kiyoto

    2013-09-01

    Caudal regions of the prefrontal cortex, including the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex, are involved in essential cognitive functions such as working memory. In contrast, more rostral regions, such as the frontopolar cortex (FpC), have integrative functions among cognitive functions and thereby contribute crucially to real-world social activity. Previous functional magnetic resonance imaging studies have shown patients with schizophrenia had different DLPFC activity pattern in response to cognitive load changes compared to healthy controls; however, the spatial relationship between the caudal and rostral prefrontal activation has not been evaluated under less-constrained conditions. Twenty-six patients with schizophrenia and 26 age-, sex-, and premorbid-intelligence-matched healthy controls participated in this study. Hemodynamic changes during n-back working memory tasks with different cognitive loads were measured using multi-channel near-infrared spectroscopy (NIRS). Healthy controls showed significant task-related activity in the bilateral VLPFC and significant task-related decreased activity in the DLPFC, with greater signal changes when the task required more cognitive load. In contrast, patients with schizophrenia showed activation in the more rostral regions, including bilateral DLPFC and FpC. Neither decreased activity nor greater activation in proportion to elevated cognitive load occurred. This multi-channel NIRS study demonstrated that activation intensity did not increase in patients with schizophrenia associated with cognitive load changes, suggesting hypo-frontality as cognitive impairment in schizophrenia. On the other hand, patients had broader prefrontal activity in areas such as the bilateral DLPFC and FpC regions, thus suggesting a hyper-frontality compensatory response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The effects of aging on postural control and selective attention when stepping down while performing a concurrent auditory response task.

    PubMed

    Tsang, William W N; Lam, Nazca K Y; Lau, Kit N L; Leung, Harry C H; Tsang, Crystal M S; Lu, Xi

    2013-12-01

    To investigate the effects of aging on postural control and cognitive performance in single- and dual-tasking. A cross-sectional comparative design was conducted in a university motion analysis laboratory. Young adults (n = 30; age 21.9 ± 2.4 years) and older adults (n = 30; age 71.9 ± 6.4 years) were recruited. Postural control after stepping down was measured with and without performing a concurrent auditory response task. Measurement included: (1) reaction time and (2) error rate in performing the cognitive task; (3) total sway path and (4) total sway area after stepping down. Our findings showed that the older adults had significantly longer reaction times and higher error rates than the younger subjects in both the single-tasking and dual-tasking conditions. The older adults had significantly longer reaction times and higher error rates when dual-tasking compared with single-tasking, but the younger adults did not. The older adults demonstrated significantly less total sway path, but larger total sway area in single-leg stance after stepping down than the young adults. The older adults showed no significant change in total sway path and area between the dual-tasking and when compared with single-tasking conditions, while the younger adults showed significant decreases in sway. Older adults prioritize postural control by sacrificing cognitive performance when faced with dual-tasking.

  12. Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction.

    PubMed

    Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker

    2016-01-01

    Whether cognitive load-and other aspects of task difficulty-increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information-which decreases distractibility-as a side effect of the increased activity in a focused-attention network.

  13. Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction

    PubMed Central

    Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker

    2016-01-01

    Whether cognitive load—and other aspects of task difficulty—increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information—which decreases distractibility—as a side effect of the increased activity in a focused-attention network. PMID:27242485

  14. Resting cardiac vagal tone predicts intraindividual reaction time variability during an attention task in a sample of young and healthy adults.

    PubMed

    Williams, DeWayne P; Thayer, Julian F; Koenig, Julian

    2016-12-01

    Intraindividual reaction time variability (IIV), defined as the variability in trial-to-trial response times, is thought to serve as an index of central nervous system function. As such, greater IIV reflects both poorer executive brain function and cognitive control, in addition to lapses in attention. Resting-state vagally mediated heart rate variability (vmHRV), a psychophysiological index of self-regulatory abilities, has been linked with executive brain function and cognitive control such that those with greater resting-state vmHRV often perform better on cognitive tasks. However, research has yet to investigate the direct relationship between resting vmHRV and task IIV. The present study sought to examine this relationship in a sample of 104 young and healthy participants who first completed a 5-min resting-baseline period during which resting-state vmHRV was assessed. Participants then completed an attentional (target detection) task, where reaction time, accuracy, and trial-to-trial IIV were obtained. Results showed resting vmHRV to be significantly related to IIV, such that lower resting vmHRV predicted higher IIV on the task, even when controlling for several covariates (including mean reaction time and accuracy). Overall, our results provide further evidence for the link between resting vmHRV and cognitive control, and extend these notions to the domain of lapses in attention, as indexed by IIV. Implications and recommendations for future research on resting vmHRV and cognition are discussed. © 2016 Society for Psychophysiological Research.

  15. Social cognition in pediatric-onset multiple sclerosis (MS)

    PubMed Central

    Charvet, LE; Cleary, RE; Vazquez, K; Belman, A; Krupp, LB

    2014-01-01

    Background Pediatric-onset multiple sclerosis (MS) patients represent a subpopulation who are diagnosed during the course of development. Social cognitive deficits have recently been recognized in adults with MS. It is critical to identify if these youngest patients with the disorder are also at risk. Objective To determine whether pediatric-onset MS is associated with social cognitive deficits. Methods Consecutively-recruited participants with pediatric-onset MS were compared to a group of age- and gender-matched healthy controls on Theory of Mind (ToM) task performance. Tasks measured facial affect recognition (Reading the Mind in the Eyes Test), understanding social faux pas (Faux Pas Test), and understanding the perspective of another (False Beliefs Task). Results Twenty-eight (28) pediatric-onset MS participants (median age 17 years) and 32 healthy controls (median age 16 years) completed the study. The MS participants performed worse than controls on all three ToM tasks: Reading the Mind in the Eyes Test (p=0.008), the Faux-Pas Test (p=0.009), and the False Beliefs Task (p=0.06). While more MS than control participants were impaired on a measure of information processing speed (the Symbol Digit Modalities Test; 38% versus 6%), it did not account for the differences in ToM performance. Conclusions Social cognition may represent an area of cognitive functioning affected by MS in the pediatric-onset population. These processes are especially important to study in younger patients as these deficits could have long range implications on social adjustment, employment, and well-being. PMID:24647558

  16. Social cognition in pediatric-onset multiple sclerosis (MS).

    PubMed

    Charvet, L E; Cleary, R E; Vazquez, K; Belman, A L; Krupp, L B

    2014-10-01

    Pediatric-onset multiple sclerosis (MS) patients represent a subpopulation who are diagnosed during the course of development. Social cognitive deficits have recently been recognized in adults with MS. It is critical to identify whether these youngest patients with the disorder are also at risk. To determine whether pediatric-onset MS is associated with social cognitive deficits. Consecutively-recruited participants with pediatric-onset MS were compared to a group of age- and gender-matched healthy controls on Theory of Mind (ToM) task performance. Tasks measured facial affect recognition (Reading the Mind in the Eyes Test), detecting social faux pas (Faux Pas Test), and understanding the perspective of another (False Beliefs Task). Twenty-eight (28) pediatric-onset MS participants (median age 17 years) and 32 healthy controls (median age 16 years) completed the study. The MS participants performed worse than controls on all three ToM tasks: Reading the Mind in the Eyes Test (p = 0.008), the Faux Pas Test (p = 0.009), and the False Beliefs Task (p = 0.06). While more MS than control participants were impaired on a measure of information processing speed (the Symbol Digit Modalities Test; 38% versus 6%), it did not account for the differences in ToM performance. Social cognition may represent an area of cognitive functioning affected by MS in the pediatric-onset population. These processes are especially important to study in younger patients as they may have long range implications for social adjustment, employment, and well-being. © The Author(s) 2014.

  17. Methylphenidate Reduces State Anxiety During a Continuous Performance Test That Distinguishes Adult ADHD Patients From Controls.

    PubMed

    Bloch, Yuval; Aviram, Shai; Segev, Aviv; Nitzan, Uri; Levkovitz, Yechiel; Braw, Yoram; Mimouni Bloch, Aviva

    2017-01-01

    We hypothesized that patients with ADHD were typified by distress more than by functional difficulties. Thus, a decline in state anxiety while performing a cognitive task when taking methylphenidate would discriminate between ADHD patients and controls. State anxiety and cognitive performance on a continuous performance test were assessed in ADHD patients and controls with and without taking methylphenidate. State anxiety and cognitive performance improved from baseline in 36 ADHD adults after taking methylphenidate. In 25 controls, cognitive performance improved, but state anxiety did not abate after a recess. In two additional studies, 5 controls were evaluated at baseline and after receiving methylphenidate, and showed improvement in cognitive assessment but not in state anxiety. Five ADHD adults were assessed at baseline and after a recess, and showed no improvement. Our results support the hypothesis that adult ADHD patients are characterized by distress and the relief of this distress under effective therapy as expressed by a decline in state anxiety while they perform a cognitive task.

  18. A single bout of meditation biases cognitive control but not attentional focusing: Evidence from the global-local task.

    PubMed

    Colzato, Lorenza S; van der Wel, Pauline; Sellaro, Roberta; Hommel, Bernhard

    2016-01-01

    Recent studies show that a single bout of meditation can impact information processing. We were interested to see whether this impact extends to attentional focusing and the top-down control over irrelevant information. Healthy adults underwent brief single bouts of either focused attention meditation (FAM), which is assumed to increase top-down control, or open monitoring meditation (OMM), which is assumed to weaken top-down control, before performing a global-local task. While the size of the global-precedence effect (reflecting attentional focusing) was unaffected by type of meditation, the congruency effect (indicating the failure to suppress task-irrelevant information) was considerably larger after OMM than after FAM. Our findings suggest that engaging in particular kinds of meditation creates particular cognitive-control states that bias the individual processing style toward either goal-persistence or cognitive flexibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Regulation of Task Performance: A Trans-Disciplinary Review

    PubMed Central

    Clark, Ian; Dumas, Guillaume

    2016-01-01

    Definitions of meta-cognition typically have two components: (1) knowledge about one's own cognitive functioning; and, (2) control over one's own cognitive activities. Since Flavell and his colleagues provided the empirical foundation on which to build studies of meta-cognition and the autonoetic (self) knowledge required for effective learning, the intervening years have seen the extensive dissemination of theoretical and empirical research on meta-cognition, which now encompasses a variety of issues and domains including educational psychology and neuroscience. Nevertheless, the psychological and neural underpinnings of meta-cognitive predictions and reflections that determine subsequent regulation of task performance remain ill understood. This article provides an outline of meta-cognition in the science of education with evidence drawn from neuroimaging, psycho-physiological, and psychological literature. We will rigorously explore research that addresses the pivotal role of the prefrontal cortex (PFC) in controlling the meta-cognitive processes that underpin the self-regulated learning (SRL) strategies learners employ to regulate task performance. The article delineates what those strategies are, and how the learning environment can facilitate or frustrate strategy use by influencing learners' self-efficacy. PMID:26779050

  20. Effect of divided attention on gait in subjects with and without cognitive impairment.

    PubMed

    Pettersson, Anna F; Olsson, Elisabeth; Wahlund, Lars-Olof

    2007-03-01

    The aim of this study was to investigate the influence of cognition on motor function using 2 simple everyday tasks, talking and walking, in younger subjects with Alzheimer's disease and mild cognitive impairment. A second aim was to evaluate reliability for the dual-task test Talking While Walking. Walking speed during single and dual task and time change between single and dual task were compared between groups. The test procedure was repeated after 1 week. Subjects with AD had lower walking speed and greater time change between single and dual task compared with healthy controls. Reliability for Talking While Walking was very good. The results show that motor function in combination with a cognitive task, as well as motor function alone, influences subjects with Alzheimer's disease in a negative way and that decreased walking speed during single- and dual-task performance may be an early symptom in Alzheimer's disease.

  1. Impaired cognition and decision-making in bipolar depression but no 'affective bias' evident.

    PubMed

    Rubinsztein, J S; Michael, A; Underwood, B R; Tempest, M; Sahakian, B J

    2006-05-01

    Depression is usually the predominant affective state in bipolar disorder. There are few studies, with discrepant views, examining the extent of cognitive impairment in patients with bipolar depression. To our knowledge, there are no previous studies examining decision-making ability or whether there is an affective attentional bias in bipolar depression. We ascertained 24 depressed bipolar I patients from acute psychiatric hospital wards and out-patient clinics and 26 age- and IQ-matched healthy controls. Using computerized tests we evaluated their performance on 'neutral' (non-emotional) cognitive tasks (i.e. memory, attention and executive function) and on novel tasks of emotional cognition (i.e. the decision-making task and the affective go/no-go task). Accuracy measures were significantly impaired on tests of visual and spatial recognition and attentional set-shifting in bipolar depression compared with age- and IQ-matched controls. The quality of decision-making was also significantly impaired in the patients. A mood-congruent attentional bias for 'sad' targets was not evident on the affective go/no-go task. We found widespread evidence of significant cognitive impairment and impaired quality of decision-making in symptomatically severe depressed bipolar patients. This cognitive impairment may contribute to difficulties with daily living, decision-making and the ability to engage and comply with psychological and drug treatments.

  2. Knee Arthroscopy Simulation: A Randomized Controlled Trial Evaluating the Effectiveness of the Imperial Knee Arthroscopy Cognitive Task Analysis (IKACTA) Tool.

    PubMed

    Bhattacharyya, Rahul; Davidson, Donald J; Sugand, Kapil; Bartlett, Matthew J; Bhattacharya, Rajarshi; Gupte, Chinmay M

    2017-10-04

    Virtual-reality and cadaveric simulations are expensive and not readily accessible. Innovative and accessible training adjuncts are required to help to meet training needs. Cognitive task analysis has been used extensively to train pilots and in other surgical specialties. However, the use of cognitive task analyses within orthopaedics is in its infancy. The purpose of this study was to evaluate the effectiveness of a novel cognitive task analysis tool to train novice surgeons in diagnostic knee arthroscopy in high-fidelity, phantom-limb simulation. Three expert knee surgeons were interviewed independently to generate a list of technical steps, decision points, and errors for diagnostic knee arthroscopy. A modified Delphi technique was used to generate the final cognitive task analysis. A video and a voiceover were recorded for each phase of this procedure. These were combined to produce the Imperial Knee Arthroscopy Cognitive Task Analysis (IKACTA) tool that utilizes written and audiovisual stimuli to describe each phase of a diagnostic knee arthroscopy. In this double-blinded, randomized controlled trial, a power calculation was performed prior to recruitment. Sixteen novice orthopaedic trainees who performed ≤10 diagnostic knee arthroscopies were randomized into 2 equal groups. The intervention group (IKACTA group) was given the IKACTA tool and the control group had no additional learning material. They were assessed objectively (validated Arthroscopic Surgical Skill Evaluation Tool [ASSET] global rating scale) on a high-fidelity, phantom-knee simulator. All participants, using the Likert rating scale, subjectively rated the tool. The mean ASSET score (and standard deviation) was 19.5 ± 3.7 points in the IKACTA group and 10.6 ± 2.3 points in the control group, resulting in an improvement of 8.9 points (95% confidence interval, 7.6 to 10.1 points; p = 0.002); the score was determined as 51.3% (19.5 of 38) for the IKACTA group, 27.9% (10.6 of 38) for the control group, and 23.4% (8.9 of 38) for the improvement. All participants agreed that the cognitive task analysis learning tool was a useful training adjunct to learning in the operating room. To our knowledge, this is the first cognitive task analysis in diagnostic knee arthroscopy that is user-friendly and inexpensive and has demonstrated significant benefits in training. The IKACTA will provide trainees with a demonstrably strong foundation in diagnostic knee arthroscopy that will flatten learning curves in both technical skills and decision-making.

  3. Context, Not Conflict, Drives Cognitive Control

    ERIC Educational Resources Information Center

    Schlaghecken, Friederike; Martini, Paolo

    2012-01-01

    Theories of cognitive control generally assume that perceived conflict acts as a signal to engage inhibitory mechanisms that suppress subsequent conflicting information. Crucially, an absence of conflict is not regarded as being a relevant signal for cognitive control. Using a cueing, a priming, and a Simon task, we provide evidence that conflict…

  4. Memory and Language Improvements Following Cognitive Control Training

    ERIC Educational Resources Information Center

    Hussey, Erika K.; Harbison, J. Isaiah; Teubner-Rhodes, Susan E.; Mishler, Alan; Velnoskey, Kayla; Novick, Jared M.

    2017-01-01

    Cognitive control refers to adjusting thoughts and actions when confronted with conflict during information processing. We tested whether this ability is causally linked to performance on certain language and memory tasks by using cognitive control training to systematically modulate people's ability to resolve information-conflict across domains.…

  5. No Negative Priming without Cognitive Control

    ERIC Educational Resources Information Center

    de Fockert, Jan W.; Mizon, Guy A.; D'Ubaldo, Mariangela

    2010-01-01

    There is evidence that the efficiency of selective attention depends on the availability of cognitive control mechanisms as distractor processing has been found to increase with high load on working memory or dual task coordination (Lavie, Hirst, de Fockert, & Viding, 2004). We tested the prediction that cognitive control load would also…

  6. Rational adaptation under task and processing constraints: implications for testing theories of cognition and action.

    PubMed

    Howes, Andrew; Lewis, Richard L; Vera, Alonso

    2009-10-01

    The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition-cognitively bounded rational analysis-that sharpens the predictive acuity of general, integrated theories of cognition and action. Such theories provide the necessary computational means to explain the flexible nature of human behavior but in doing so introduce extreme degrees of freedom in accounting for data. The new approach narrows the space of predicted behaviors through analysis of the payoff achieved by alternative strategies, rather than through fitting strategies and theoretical parameters to data. It extends and complements established approaches, including computational cognitive architectures, rational analysis, optimal motor control, bounded rationality, and signal detection theory. The authors illustrate the approach with a reanalysis of an existing account of psychological refractory period (PRP) dual-task performance and the development and analysis of a new theory of ordered dual-task responses. These analyses yield several novel results, including a new understanding of the role of strategic variation in existing accounts of PRP and the first predictive, quantitative account showing how the details of ordered dual-task phenomena emerge from the rational control of a cognitive system subject to the combined constraints of internal variance, motor interference, and a response selection bottleneck.

  7. Evaluating visual and auditory contributions to the cognitive restoration effect.

    PubMed

    Emfield, Adam G; Neider, Mark B

    2014-01-01

    It has been suggested that certain real-world environments can have a restorative effect on an individual, as expressed in changes in cognitive performance and mood. Much of this research builds on Attention Restoration Theory (ART), which suggests that environments that have certain characteristics induce cognitive restoration via variations in attentional demands. Specifically, natural environments that require little top-down processing have a positive effect on cognitive performance, while city-like environments show no effect. We characterized the cognitive restoration effect further by examining (1) whether natural visual stimuli, such as blue spaces, were more likely to provide a restorative effect over urban visual stimuli, (2) if increasing immersion with environment-related sound produces a similar or superior effect, (3) if this effect extends to other cognitive tasks, such as the functional field of view (FFOV), and (4) if we could better understand this effect by providing controls beyond previous works. We had 202 participants complete a cognitive task battery, consisting of a reverse digit span task, the attention network task, and the FFOV task prior to and immediately after a restoration period. In the restoration period, participants were assigned to one of seven conditions in which they listened to natural or urban sounds, watched images of natural or urban environments, or a combination of both. Additionally, some participants were in a control group with exposure to neither picture nor sound. While we found some indication of practice effects, there were no differential effects of restoration observed in any of our cognitive tasks, regardless of condition. We did, however, find evidence that our nature images and sounds were more relaxing than their urban counterparts. Overall, our findings suggest that acute exposure to relaxing pictorial and auditory stimulus is insufficient to induce improvements in cognitive performance.

  8. Gait assessment in mild cognitive impairment and Alzheimer's disease: the effect of dual-task challenges across the cognitive spectrum.

    PubMed

    Muir, Susan W; Speechley, Mark; Wells, Jennie; Borrie, Michael; Gopaul, Karen; Montero-Odasso, Manuel

    2012-01-01

    Gait impairment is a prominent falls risk factor and a prevalent feature among older adults with cognitive impairment. However, there is a lack of comparative studies on gait performance and fall risk covering the continuum from normal cognition through mild cognitive impairment (MCI) to Alzheimer's disease (AD). We evaluated gait performance and the response to dual-task challenges in older adults with AD, MCI and normal cognition without a history of falls. We hypothesized that, in older people without history of falls, gait performance will deteriorate across the cognitive spectrum with changes being more evident under dual-tasking. Gait was assessed using an electronic walkway under single and three dual-tasks conditions. Gait velocity and stride time variability were not significantly different between the three groups under the single-task condition. By contrast, significant differences of decreasing velocity (p<0.0001), increasing stride time (p=0.0057) and increasing stride time variability (p=0.0037) were found under dual-task testing for people with MCI and AD. Less automatic and more complex dual-task tests, such as naming animals and serial subtraction by sevens from 100, created the greatest deterioration of gait performance. Gait changes under dual-tasking for the MCI and AD groups were statistically different from the cognitively normal controls. Dual-task assessment exposed gait impairments not obvious under a single-task test condition and may facilitate falls risk identification in cognitively impaired persons without a history of falls. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.

    PubMed

    Koenig, Alexander; Novak, Domen; Omlin, Ximena; Pulfer, Michael; Perreault, Eric; Zimmerli, Lukas; Mihelj, Matjaz; Riener, Robert

    2011-08-01

    Cognitively challenging training sessions during robot-assisted gait training after stroke were shown to be key requirements for the success of rehabilitation. Despite a broad variability of cognitive impairments amongst the stroke population, current rehabilitation environments do not adapt to the cognitive capabilities of the patient, as cognitive load cannot be objectively assessed in real-time. We provided healthy subjects and stroke patients with a virtual task during robot-assisted gait training, which allowed modulating cognitive load by adapting the difficulty level of the task. We quantified the cognitive load of stroke patients by using psychophysiological measurements and performance data. In open-loop experiments with healthy subjects and stroke patients, we obtained training data for a linear, adaptive classifier that estimated the current cognitive load of patients in real-time. We verified our classification results via questionnaires and obtained 88% correct classification in healthy subjects and 75% in patients. Using the pre-trained, adaptive classifier, we closed the cognitive control loop around healthy subjects and stroke patients by automatically adapting the difficulty level of the virtual task in real-time such that patients were neither cognitively overloaded nor under-challenged. © 2011 IEEE

  10. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder?

    PubMed

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2011-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.

  11. Can Task-Switching Training Enhance Executive Control Functioning in Children with Attention Deficit/-Hyperactivity Disorder?

    PubMed Central

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2012-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD. PMID:22291628

  12. Specific Interference between a Cognitive Task and Sensory Organization for Stance Balance Control in Healthy Young Adults: Visuospatial Effects

    ERIC Educational Resources Information Center

    Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun

    2010-01-01

    We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…

  13. Protocol for a randomized comparison of integrated versus consecutive dual task practice in Parkinson’s disease: the DUALITY trial

    PubMed Central

    2014-01-01

    Background Multiple tasking is an integral part of daily mobility. Patients with Parkinson’s disease have dual tasking difficulties due to their combined motor and cognitive deficits. Two contrasting physiotherapy interventions have been proposed to alleviate dual tasking difficulties: either to discourage simultaneous execution of dual tasks (consecutive training); or to practice their concurrent use (integrated training). It is currently unclear which of these training methods should be adopted to achieve safe and consolidated dual task performance in daily life. Therefore, the proposed randomized controlled trial will compare the effects of integrated versus consecutive training of dual tasking (tested by combining walking with cognitive exercises). Methods and design Hundred and twenty patients with Parkinson’s disease will be recruited to participate in this multi-centered, single blind, randomized controlled trial. Patients in Hoehn & Yahr stage II-III, with or without freezing of gait, and who report dual task difficulties will be included. All patients will undergo a six-week control period without intervention after which they will be randomized to integrated or consecutive task practice. Training will consist of standardized walking and cognitive exercises delivered at home four times a week during six weeks. Treatment is guided by a physiotherapist twice a week and consists of two sessions of self-practice using an MP3 player. Blinded testers will assess patients before and after the control period, after the intervention period and after a 12-week follow-up period. The primary outcome measure is dual task gait velocity, i.e. walking combined with a novel untrained cognitive task to evaluate the consolidation of learning. Secondary outcomes include several single and dual task gait and cognitive measures, functional outcomes and a quality of life scale. Falling will be recorded as a possible adverse event using a weekly phone call for the entire study period. Discussion This randomized study will evaluate the effectiveness and safety of integrated versus consecutive task training in patients with Parkinson’s disease. The study will also highlight whether dual task gait training leads to robust motor learning effects, and whether these can be retained and carried-over to untrained dual tasks and functional mobility. Trial registration Clinicaltrials.gov NCT01375413. PMID:24674594

  14. Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis.

    PubMed

    Keller, Jürgen; Böhm, Sarah; Aho-Özhan, Helena E A; Loose, Markus; Gorges, Martin; Kassubek, Jan; Uttner, Ingo; Abrahams, Sharon; Ludolph, Albert C; Lulé, Dorothée

    2018-06-01

    Cognitive deficits, especially in the domains of social cognition and executive function including verbal fluency, are common in amyotrophic lateral sclerosis (ALS) patients. There is yet sparse understanding of pathogenesis of the underlying, possibly adaptive, cortical patterns. To address this issue, 65 patients with ALS and 33 age-, gender- and education-matched healthy controls were tested on cognitive and behavioral deficits with the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Using functional magnetic resonance imaging (fMRI), cortical activity during social cognition and executive function tasks (theory of mind, verbal fluency, alternation) adapted from the ECAS was determined in a 3 Tesla scanner. Compared to healthy controls, ALS patients performed worse in the ECAS overall (p < 0.001) and in all of its subdomains (p < 0.02), except memory. Imaging revealed altered cortical activation during all tasks, with patients consistently showing a hyperactivation in relevant brain areas compared to healthy controls. Additionally, cognitively high performing ALS patients consistently exhibited more activation in frontal brain areas than low performing patients and behaviorally unimpaired patients presented with more neuronal activity in orbitofrontal areas than behaviorally impaired patients. In conclusion, hyperactivation in fMRI cognitive tasks seems to represent an early adaptive process to overcome neuronal cell loss in relevant brain areas. The hereby presented cortical pattern change might suggest that, once this loss passes a critical threshold and no cortical buffering is possible, clinical representation of cognitive and behavioral impairment evolves. Future studies might shed light on the pattern of cortical pattern change in the course of ALS.

  15. Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task.

    PubMed

    Zarafshan, Hadi; Khaleghi, Ali; Mohammadi, Mohammad Reza; Moeini, Mahdi; Malmir, Nastaran

    2016-01-01

    The aim of this study was to investigate electroencephalogram (EEG) dynamics using complexity analysis in children with attention-deficit/hyperactivity disorder (ADHD) compared with healthy control children when performing a cognitive task. Thirty 7-12-year-old children meeting Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) criteria for ADHD and 30 healthy control children underwent an EEG evaluation during a cognitive task, and Lempel-Ziv complexity (LZC) values were computed. There were no significant differences between ADHD and control groups on age and gender. The mean LZC of the ADHD children was significantly larger than healthy children over the right anterior and right posterior regions during the cognitive performance. In the ADHD group, complexity of the right hemisphere was higher than that of the left hemisphere, but the complexity of the left hemisphere was higher than that of the right hemisphere in the normal group. Although fronto-striatal dysfunction is considered conclusive evidence for the pathophysiology of ADHD, our arithmetic mental task has provided evidence of structural and functional changes in the posterior regions and probably cerebellum in ADHD.

  16. Perception Measurement in Clinical Trials of Schizophrenia: Promising Paradigms From CNTRICS

    PubMed Central

    Green, Michael F.; Butler, Pamela D.; Chen, Yue; Geyer, Mark A.; Silverstein, Steven; Wynn, Jonathan K.; Yoon, Jong H.; Zemon, Vance

    2009-01-01

    The third meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) focused on selecting promising measures for each of the cognitive constructs selected in the first CNTRICS meeting. In the domain of perception, the 2 constructs of interest were gain control and visual integration. CNTRICS received 5 task nominations for gain control and three task nominations for visual integration. The breakout group for perception evaluated the degree to which each of these tasks met prespecified criteria. For gain control, the breakout group for perception believed that 2 of the tasks (prepulse inhibition of startle and mismatch negativity) were already mature and in the process of being incorporated into multisite clinical trials. However, the breakout group recommended that steady-state visual-evoked potentials be combined with contrast sensitivity to magnocellular vs parvocellular biased stimuli and that this combined task and the contrast-contrast effect task be recommended for translation for use in clinical trial contexts in schizophrenia research. For visual integration, the breakout group recommended the Contour Integration and Coherent Motion tasks for translation for use in clinical trials. This manuscript describes the ways in which each of these tasks met the criteria used by the breakout group to evaluate and recommend tasks for further development. PMID:19023123

  17. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task.

    PubMed

    Goldstein, Rita Z; Woicik, Patricia A; Maloney, Thomas; Tomasi, Dardo; Alia-Klein, Nelly; Shan, Juntian; Honorio, Jean; Samaras, Dimitris; Wang, Ruiliang; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  18. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function)more » in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.« less

  19. First-degree relatives of suicide completers may have impaired decision-making but functional cognitive control.

    PubMed

    Hoehne, A; Richard-Devantoy, S; Ding, Y; Turecki, G; Jollant, F

    2015-09-01

    The heritability of suicide is well established. Transmission of risk appears to follow traits more than disorders like depression. In the present project, we aimed at investigating the potential for transmission of cognitive deficits previously observed in suicide attempters, specifically impaired decision-making and cognitive control. Seventeen healthy first-degree relatives of suicide completers with no personal history of suicidal act were compared to 18 first-degree relatives of individuals with major depressive disorder but no family history of suicidal act, and 19 healthy controls. Decision-making was assessed with the Iowa Gambling Task, and cognitive control with the Stroop Task, the Hayling Sentence Completion Test, and the Trail-Making Test. Both suicide and depressed relatives showed lower gambling task net scores than healthy controls. However, there were trends toward lower learning abilities in suicide than depressed relatives (interaction: p = 0.07), with more risky choices at the end of the test. Suicide relatives also showed a higher number of self-corrected errors relative to the total number of errors in the Stroop colour test compared to both control groups, with no difference in interference scores. There was no group-difference for any other cognitive tests. Our findings suggest that decision-making impairment may be found in healthy relatives of suicides and represent a cognitive endophenotype of suicidal behaviour. Normal cognitive control (or self-corrected deficits) may protect relatives against suicidal acts. Impairments in value-based and control processes may, therefore, be part of the suicide vulnerability and represent potential targets of preventative interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Theory of mind impairments in patients with first-episode schizophrenia and their unaffected siblings.

    PubMed

    Ho, Karen K Y; Lui, Simon S Y; Hung, Karen S Y; Wang, Yi; Li, Zhi; Cheung, Eric F C; Chan, Raymond C K

    2015-08-01

    Theory of mind (ToM) impairment has been consistently demonstrated in patients with schizophrenia, but whether ToM impairments exist in unaffected siblings of patients with schizophrenia remains unclear. Few studies have examined the affective and cognitive components of ToM in schizophrenia. This study aimed to examine whether ToM impairments exist in patients with first-episode schizophrenia and their unaffected siblings, and whether there is any dissociation between the affective and cognitive components of ToM. We adopted a family-based case-control design. Participants were 41 patients with first-episode schizophrenia, 43 unaffected siblings, and 42 healthy controls. The Yoni Task which measures the participants' ability to understand first- and second-order affective versus cognitive ToM and the Faux Pas Task which taps into integration of the affective and cognitive components of ToM were administered. Multivariate and univariate ANCOVAs were used to examine the group differences in ToM, while controlling for other neurocognitive functions. Compared with controls, patients with schizophrenia and their unaffected siblings performed poorer on the Faux Pas Task (p<0.001), with siblings having intermediate performance between patients and controls. Patients with schizophrenia performed worse than controls on second-order affective condition of the Yoni Task (p=0.004), but their unaffected siblings did not (p=0.063). We did not find any significant Group-by-Condition interaction in the Yoni Task (p=0.358). Patients with first-episode schizophrenia and their unaffected siblings exhibit ToM impairments, but no dissociation between affective and cognitive component of ToM was found. Our findings support the notion that ToM deficit may be a trait marker of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Prefrontal inhibition of threat processing reduces working memory interference

    PubMed Central

    Clarke, Robert; Johnstone, Tom

    2013-01-01

    Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference. PMID:23750133

  2. The Effect of Prior Task Success on Older Adults' Memory Performance: Examining the Influence of Different Types of Task Success.

    PubMed

    Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L

    2016-01-01

    Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.

  3. Affective attention under cognitive load: reduced emotional biases but emergent anxiety-related costs to inhibitory control

    PubMed Central

    Berggren, Nick; Richards, Anne; Taylor, Joseph; Derakshan, Nazanin

    2013-01-01

    Trait anxiety is associated with deficits in attentional control, particularly in the ability to inhibit prepotent responses. Here, we investigated this effect while varying the level of cognitive load in a modified antisaccade task that employed emotional facial expressions (neutral, happy, and angry) as targets. Load was manipulated using a secondary auditory task requiring recognition of tones (low load), or recognition of specific tone pitch (high load). Results showed that load increased antisaccade latencies on trials where gaze toward face stimuli should be inhibited. This effect was exacerbated for high anxious individuals. Emotional expression also modulated task performance on antisaccade trials for both high and low anxious participants under low cognitive load, but did not influence performance under high load. Collectively, results (1) suggest that individuals reporting high levels of anxiety are particularly vulnerable to the effects of cognitive load on inhibition, and (2) support recent evidence that loading cognitive processes can reduce emotional influences on attention and cognition. PMID:23717273

  4. Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control

    PubMed Central

    Cole, Michael W.; Laurent, Patryk; Stocco, Andrea

    2012-01-01

    The human ability to flexibly adapt to novel circumstances is extraordinary. Perhaps the most illustrative yet underappreciated form of this cognitive flexibility is rapid instructed task learning (RITL) – the ability to rapidly reconfigure our minds to perform new tasks from instruction. This ability is important for everyday life (e.g., learning to use new technologies), and is used to instruct participants in nearly every study of human cognition. We review the development of RITL as a circumscribed domain of cognitive neuroscience investigation, culminating in recent demonstrations that RITL is implemented via brain circuits centered on lateral prefrontal cortex. We then build on this and other insights to develop an integrative theory of cognitive flexibility and cognitive control, identifying theoretical principles and mechanisms that may make RITL possible in the human brain. Insights gained from this new theoretical account have important implications for further developments and applications of RITL research. PMID:23065743

  5. Cognitive Inflexibility in Gamblers is Primarily Present in Reward-Related Decision Making

    PubMed Central

    Boog, Michiel; Höppener, Paul; v. d. Wetering, Ben J. M.; Goudriaan, Anna E.; Boog, Matthijs C.; Franken, Ingmar H. A.

    2014-01-01

    One hallmark of gambling disorder (GD) is the observation that gamblers have problems stopping their gambling behavior once it is initiated. On a neuropsychological level, it has been hypothesized that this is the result of a cognitive inflexibility. The present study investigated cognitive inflexibility in patients with GD using a task involving cognitive inflexibility with a reward element (i.e., reversal learning) and a task measuring general cognitive inflexibility without such a component (i.e., response perseveration). For this purpose, scores of a reward-based reversal learning task (probabilistic reversal learning task) and the Wisconsin card sorting task were compared between a group of treatment seeking patients with GD and a gender and age matched control group. The results show that pathological gamblers have impaired performance on the neurocognitive task measuring reward-based cognitive inflexibility. However, no difference between the groups is observed regarding non-reward-based cognitive inflexibility. This suggests that cognitive inflexibility in GD is the result of an aberrant reward-based learning, and not based on a more general problem with cognitive flexibility. The pattern of observed problems is suggestive of a dysfunction of the orbitofrontal cortex, the ventrolateral prefrontal cortex, and the ventral regions of the striatum in gamblers. Relevance for the neurocognition of problematic gambling is discussed. PMID:25165438

  6. Effect of Aging on ERP Components of Cognitive Control

    PubMed Central

    Kropotov, Juri; Ponomarev, Valery; Tereshchenko, Ekaterina P.; Müller, Andreas; Jäncke, Lutz

    2016-01-01

    As people age, their performance on tasks requiring cognitive control often declines. Such a decline is frequently explained as either a general or specific decline in cognitive functioning with age. In the context of hypotheses suggesting a general decline, it is often proposed that processing speed generally declines with age. A further hypothesis is that an age-related compensation mechanism is associated with a specific cognitive decline. One prominent theory is the compensation hypothesis, which proposes that deteriorated functions are compensated for by higher performing functions. In this study, we used event-related potentials (ERPs) in the context of a GO/NOGO task to examine the age-related changes observed during cognitive control in a large group of healthy subjects aged between 18 and 84 years. The main question we attempted to answer was whether we could find neurophysiological support for either a general decline in processing speed or a compensation strategy. The subjects performed a relatively demanding cued GO/NOGO task with similar omissions and reaction times across the five age groups. The ERP waves of cognitive control, such as N2, P3cue and CNV, were decomposed into latent components by means of a blind source separation method. Based on this decomposition, it was possible to more precisely delineate the different neurophysiological and psychological processes involved in cognitive control. These data support the processing speed hypothesis because the latencies of all cognitive control ERP components increased with age, by 8 ms per decade for the early components (<200 ms) and by 20 ms per decade for the late components. At the same time, the compensatory hypothesis of aging was also supported, as the amplitudes of the components localized in posterior brain areas decreased with age, while those localized in the prefrontal cortical areas increased with age in order to maintain performance on this simple task at a relatively stable level. PMID:27092074

  7. Prefrontal Cortex Structure Predicts Training-Induced Improvements in Multitasking Performance.

    PubMed

    Verghese, Ashika; Garner, K G; Mattingley, Jason B; Dux, Paul E

    2016-03-02

    The ability to perform multiple, concurrent tasks efficiently is a much-desired cognitive skill, but one that remains elusive due to the brain's inherent information-processing limitations. Multitasking performance can, however, be greatly improved through cognitive training (Van Selst et al., 1999, Dux et al., 2009). Previous studies have examined how patterns of brain activity change following training (for review, see Kelly and Garavan, 2005). Here, in a large-scale human behavioral and imaging study of 100 healthy adults, we tested whether multitasking training benefits, assessed using a standard dual-task paradigm, are associated with variability in brain structure. We found that the volume of the rostral part of the left dorsolateral prefrontal cortex (DLPFC) predicted an individual's response to training. Critically, this association was observed exclusively in a task-specific training group, and not in an active-training control group. Our findings reveal a link between DLPFC structure and an individual's propensity to gain from training on a task that taps the limits of cognitive control. Cognitive "brain" training is a rapidly growing, multibillion dollar industry (Hayden, 2012) that has been touted as the panacea for a variety of disorders that result in cognitive decline. A key process targeted by such training is "cognitive control." Here, we combined an established cognitive control measure, multitasking ability, with structural brain imaging in a sample of 100 participants. Our goal was to determine whether individual differences in brain structure predict the extent to which people derive measurable benefits from a cognitive training regime. Ours is the first study to identify a structural brain marker-volume of left hemisphere dorsolateral prefrontal cortex-associated with the magnitude of multitasking performance benefits induced by training at an individual level. Copyright © 2016 the authors 0270-6474/16/362638-08$15.00/0.

  8. Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis.

    PubMed

    Clawson, Ann; Clayson, Peter E; Keith, Cierra M; Catron, Christina; Larson, Michael J

    2017-03-01

    Cognitive control includes higher-level cognitive processes used to evaluate environmental conflict. Given the importance of cognitive control in regulating behavior, understanding the developmental course of these processes may contribute to a greater understanding of normal and abnormal development. We examined behavioral (response times [RTs], error rates) and event-related potential data (N2, error-related negativity [ERN], correct-response negativity [CRN], error positivity [Pe]) during a flanker task in cross-sectional groups of 45 youth (ages 8-18), 52 younger adults (ages 20-28), and 58 older adults (ages 56-91). Younger adults displayed the most efficient processing, including significantly reduced CRN and N2 amplitude, increased Pe amplitude, and significantly better task performance than youth or older adults (e.g., faster RTs, fewer errors). Youth displayed larger CRN and N2, attenuated Pe, and significantly worse task performance than younger adults. Older adults fell either between youth and younger adults (e.g., CRN amplitudes, N2 amplitudes) or displayed neural and behavioral performance that was similar to youth (e.g., Pe amplitudes, error rates). These findings point to underdeveloped neural and cognitive processes early in life and reduced efficiency in older adulthood, contributing to poor implementation and modulation of cognitive control in response to conflict. Thus, cognitive control processing appears to reach peak performance and efficiency in younger adulthood, marked by improved task performance with less neural activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of Tai Chi intervention on dual-task ability in older adults: a pilot study.

    PubMed

    Hall, Courtney D; Miszko, Tanya; Wolf, Steven L

    2009-03-01

    To determine if a 12-week program of Tai Chi that has been shown to reduce falls incidence in older adults would improve the ability to allocate attention to balance under dual-task conditions. Pre-/posttest experimental research design. Movement studies research laboratory. Community dwelling older adults (N=15; range, 62-85y) participated in either Tai Chi training or health education classes (controls) for 12 weeks. Participants in the Tai Chi group attended a twice-weekly, 1.5-hour class taught by an experienced instructor. The control group attended a biweekly, 1-hour class for lectures on health-related topics. Two cognitive tasks (responding to auditory or visual stimulus as quickly as possible) were performed concurrently while maintaining static balance during the Sensory Organization Test (SOT) and while avoiding obstacles while walking. The percent change in performance relative to the single-task condition was calculated and defined as the dual-task cost. The dual-task cost was calculated for both the postural and cognitive measures. There was no improvement in the performance of postural stability or cognitive task under dual-task conditions for the SOT for Tai Chi versus controls. There was no improvement in avoiding obstacles under dual-task conditions for Tai Chi versus controls. Contrary to our hypothesis, the findings of this study did not support a benefit of Tai Chi on the ability to allocate attention to balance under dual-task conditions.

  10. Control processes through the suppression of the automatic response activation triggered by task-irrelevant information in the Simon-type tasks.

    PubMed

    Kim, Sanga; Lee, Sang Ho; Cho, Yang Seok

    2015-11-01

    The congruency sequence effect, one of the indices of cognitive control, refers to a smaller congruency effect after an incongruent than congruent trial. Although the effect has been found across a variety of conflict tasks, there is not yet agreement on the underlying mechanism. The present study investigated the mechanism underlying cognitive control by using a cross-task paradigm. In Experiments 1, 2, and 3, participants performed a modified Simon task and a spatial Stroop task alternately in a trial-by-trial manner. The task-irrelevant dimension of the two tasks was perceptually and conceptually identical in Experiment 1, whereas it was perceptually different but conceptually identical in Experiment 2. The response sets for both tasks were different in Experiment 3. In Experiment 4, participants performed two Simon tasks with different task-relevant dimensions. In all experiments in which the task-irrelevant dimension and response mode were shared, significant congruency sequence effects were found between the two different congruencies, indicating that Simon-type conflicts were resolved by a control mechanism, which is specific to an abstract task-irrelevant stimulus spatial dimension. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Measuring the construct of executive control in schizophrenia: defining and validating translational animal paradigms for discovery research.

    PubMed

    Gilmour, Gary; Arguello, Alexander; Bari, Andrea; Brown, Verity J; Carter, Cameron; Floresco, Stan B; Jentsch, David J; Tait, David S; Young, Jared W; Robbins, Trevor W

    2013-11-01

    Executive control is an aspect of cognitive function known to be impaired in schizophrenia. Previous meetings of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) group have more precisely defined executive control in terms of two constructs: "rule generation and selection", and "dynamic adjustments of control". Next, human cognitive tasks that may effectively measure performance with regard to these constructs were identified to be developed into practical and reliable measures for use in treatment development. The aim of this round of CNTRICS meetings was to define animal paradigms that have sufficient promise to warrant further investigation for their utility in measuring these constructs. Accordingly, "reversal learning" and the "attentional set-shifting task" were nominated to assess the construct of rule generation and selection, and the "stop signal task" for the construct of dynamic adjustments of control. These tasks are described in more detail here, with a particular focus on their utility for drug discovery efforts. Presently, each assay has strengths and weaknesses with regard to this point and increased emphasis on improving practical aspects of testing, understanding predictive validity, and defining biomarkers of performance represent important objectives in attaining confidence in translational validity here. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment.

    PubMed

    Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter

    2016-01-01

    Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.

  13. What does cognitive control feel like? Effective and ineffective cognitive control is associated with divergent phenomenology.

    PubMed

    Saunders, Blair; Milyavskaya, Marina; Inzlicht, Michael

    2015-09-01

    Cognitive control is accompanied by observable negative affect. But how is this negative affect experienced subjectively, and are these feelings related to variation in cognitive control? To address these questions, 42 participants performed a punished inhibitory control task while periodically reporting their subjective experience. We found that within-subject variation in subjective experience predicted control implementation, but not neural monitoring (i.e., the error-related negativity, ERN). Specifically, anxiety and frustration predicted increased and decreased response caution, respectively, while hopelessness accompanied reduced inhibitory control, and subjective effort coincided with the increased ability to inhibit prepotent responses. Clarifying the nature of these phenomenological results, the effects of frustration, effort, and hopelessness-but not anxiety-were statistically independent from the punishment manipulation. Conversely, while the ERN was increased by punishment, the lack of association between this component and phenomenology suggests that early monitoring signals might precede the development of control-related subjective experience. Our results indicate that the types of feelings experienced during cognitively demanding tasks are related to different aspects of controlled performance, critically suggesting that the relationship between emotion and cognitive control extends beyond the dimension of valence. © 2015 Society for Psychophysiological Research.

  14. Dissociable influences of reward motivation and positive emotion on cognitive control.

    PubMed

    Chiew, Kimberly S; Braver, Todd S

    2014-06-01

    It is becoming increasingly appreciated that affective and/or motivational influences contribute strongly to goal-oriented cognition and behavior. An unresolved question is whether emotional manipulations (i.e., direct induction of affectively valenced subjective experience) and motivational manipulations (e.g., delivery of performance-contingent rewards and punishments) have similar or distinct effects on cognitive control. Prior work has suggested that reward motivation can reliably enhance a proactive mode of cognitive control, whereas other evidence is suggestive that positive emotion improves cognitive flexibility, but reduces proactive control. However, a limitation of the prior research is that reward motivation and positive emotion have largely been studied independently. Here, we directly compared the effects of positive emotion and reward motivation on cognitive control with a tightly matched, within-subjects design, using the AX-continuous performance task paradigm, which allows for relative measurement of proactive versus reactive cognitive control. High-resolution pupillometry was employed as a secondary measure of cognitive dynamics during task performance. Robust increases in behavioral and pupillometric indices of proactive control were observed with reward motivation. The effects of positive emotion were much weaker, but if anything, also reflected enhancement of proactive control, a pattern that diverges from some prior findings. These results indicate that reward motivation has robust influences on cognitive control, while also highlighting the complexity and heterogeneity of positive-emotion effects. The findings are discussed in terms of potential neurobiological mechanisms.

  15. The use of cognitive task analysis to improve the learning of percutaneous tracheostomy placement.

    PubMed

    Sullivan, Maura E; Brown, Carlos V R; Peyre, Sarah E; Salim, Ali; Martin, Matthew; Towfigh, Shirin; Grunwald, Tiffany

    2007-01-01

    The purpose of the current study was to determine the effectiveness of using cognitive task analysis (CTA) to develop a curriculum to teach the behavioral skills and the cognitive strategies of a percutaneous tracheostomy (PT) placement. Postgraduate 2, 3, and 4 general surgery residents were randomly assigned to either the CTA group (N = 9) or the control group (N = 11). The CTA group was taught percutaneous tracheostomy placement using the CTA curriculum. The control group received the traditional curriculum. The CTA group performed significantly higher on the PT procedure at 1 month (CTA: 43.5 +/- 3.7, control 35.2 +/- 3.9, P = .001) and at 6 months post-instruction (CTA: 39.4 +/- 4.2, control: 31.8 +/- 5.8, P = .004). In addition, the CTA group demonstrated superior cognitive strategies than the control group (CTA: 25.4 +/- 5.3, control: 19.2 +/- 2.0, P = .004). The use of CTA was effective in improving the cognitive processes and technical skills of performing a PT for surgical residents.

  16. Control Group Paradigms in Studies Investigating Acute Effects of Exercise on Cognitive Performance-An Experiment on Expectation-Driven Placebo Effects.

    PubMed

    Oberste, Max; Hartig, Philipp; Bloch, Wilhelm; Elsner, Benjamin; Predel, Hans-Georg; Ernst, Bernhard; Zimmer, Philipp

    2017-01-01

    Introduction: Many studies report improvements in cognitive performance following acute endurance exercise compared to control group treatment. These cognitive benefits are interpreted as a result of a physiological response to exercise. However, it was also hypothesized that expectation-driven placebo effects account for these positive effects. The purpose of this study was to investigate the differences between expectations for cognitive benefits toward acute endurance exercise and multiple control group treatments. Methods: Healthy individuals ( N = 247, 24.26 ± 3.88 years) were randomized to eight different groups watching videos of a moderate, a vigorous exercise treatment or one control group treatment (waiting, reading, video-watching, stretching, myofascial release workout, and very light exercise). Then, they were introduced to three commonly used cognitive test procedures in acute exercise-cognition research (Stroop-test, Trail-Making-test, Free-recall-task). Participants rated the effect they would expect on their performance in those tasks, if they had received the treatment shortly before the task, on an 11-point Likert scale. Results: No significantly different expectations for cognitive benefits toward acute moderate exercise and control group treatments could be revealed. Participants expected significantly worse performance following vigorous exercise compared to following waiting and stretching for all cognitive tests. Significantly worse performance after vigorous exercise compared to after very light exercise was expected for Stroop and Free-recall. For Free-recall, participants expected worse performance after vigorous exercise compared to myofascial release training as well. Conclusion: Our results indicate that expectation-driven placebo effects are unlikely to cause the reported greater cognitive improvements following acute moderate and vigorous endurance exercise compared to following common control group treatments.

  17. Control Group Paradigms in Studies Investigating Acute Effects of Exercise on Cognitive Performance–An Experiment on Expectation-Driven Placebo Effects

    PubMed Central

    Oberste, Max; Hartig, Philipp; Bloch, Wilhelm; Elsner, Benjamin; Predel, Hans-Georg; Ernst, Bernhard; Zimmer, Philipp

    2017-01-01

    Introduction: Many studies report improvements in cognitive performance following acute endurance exercise compared to control group treatment. These cognitive benefits are interpreted as a result of a physiological response to exercise. However, it was also hypothesized that expectation-driven placebo effects account for these positive effects. The purpose of this study was to investigate the differences between expectations for cognitive benefits toward acute endurance exercise and multiple control group treatments. Methods: Healthy individuals (N = 247, 24.26 ± 3.88 years) were randomized to eight different groups watching videos of a moderate, a vigorous exercise treatment or one control group treatment (waiting, reading, video-watching, stretching, myofascial release workout, and very light exercise). Then, they were introduced to three commonly used cognitive test procedures in acute exercise-cognition research (Stroop-test, Trail-Making-test, Free-recall-task). Participants rated the effect they would expect on their performance in those tasks, if they had received the treatment shortly before the task, on an 11-point Likert scale. Results: No significantly different expectations for cognitive benefits toward acute moderate exercise and control group treatments could be revealed. Participants expected significantly worse performance following vigorous exercise compared to following waiting and stretching for all cognitive tests. Significantly worse performance after vigorous exercise compared to after very light exercise was expected for Stroop and Free-recall. For Free-recall, participants expected worse performance after vigorous exercise compared to myofascial release training as well. Conclusion: Our results indicate that expectation-driven placebo effects are unlikely to cause the reported greater cognitive improvements following acute moderate and vigorous endurance exercise compared to following common control group treatments. PMID:29276483

  18. Patients with Parkinson's disease learn to control complex systems-an indication for intact implicit cognitive skill learning.

    PubMed

    Witt, Karsten; Daniels, Christine; Daniel, Victoria; Schmitt-Eliassen, Julia; Volkmann, Jens; Deuschl, Günther

    2006-01-01

    Implicit memory and learning mechanisms are composed of multiple processes and systems. Previous studies demonstrated a basal ganglia involvement in purely cognitive tasks that form stimulus response habits by reinforcement learning such as implicit classification learning. We will test the basal ganglia influence on two cognitive implicit tasks previously described by Berry and Broadbent, the sugar production task and the personal interaction task. Furthermore, we will investigate the relationship between certain aspects of an executive dysfunction and implicit learning. To this end, we have tested 22 Parkinsonian patients and 22 age-matched controls on two implicit cognitive tasks, in which participants learned to control a complex system. They interacted with the system by choosing an input value and obtaining an output that was related in a complex manner to the input. The objective was to reach and maintain a specific target value across trials (dynamic system learning). The two tasks followed the same underlying complex rule but had different surface appearances. Subsequently, participants performed an executive test battery including the Stroop test, verbal fluency and the Wisconsin card sorting test (WCST). The results demonstrate intact implicit learning in patients, despite an executive dysfunction in the Parkinsonian group. They lead to the conclusion that the basal ganglia system affected in Parkinson's disease does not contribute to the implicit acquisition of a new cognitive skill. Furthermore, the Parkinsonian patients were able to reach a specific goal in an implicit learning context despite impaired goal directed behaviour in the WCST, a classic test of executive functions. These results demonstrate a functional independence of implicit cognitive skill learning and certain aspects of executive functions.

  19. Specific interference between a cognitive task and sensory organization for stance balance control in healthy young adults: visuospatial effects.

    PubMed

    Chong, Raymond K Y; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun

    2010-07-01

    We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed), normal (eyes open) or high (eyes open, sway-referenced surround) visuospatial processing load while concurrently performing a cognitive task of either subtracting backwards by seven or generating words of the same first letter. A decrease in the performance of the balance control task and a decrement in the speed and accuracy of responses were noted during the subtraction but not the word generation task. The interference in the subtraction task was isolated to the first trial of the high but not normal or low visuospatial conditions. Balance control improvements with repeated exposures were observed only in the low visuospatial conditions while performance in the other conditions remained compromised. These results suggest that sensory organization for balance control appear to draw on similar visuospatial computational resources needed for the subtraction but not the word generation task. In accordance with the theory of modularity in human performance, the contrast in results between the subtraction and word generation tasks suggests that the neural overload is related to competition for similar visuospatial processes rather than limited attentional resources. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Uncovering the requirements of cognitive work.

    PubMed

    Roth, Emilie M

    2008-06-01

    In this article, the author provides an overview of cognitive analysis methods and how they can be used to inform system analysis and design. Human factors has seen a shift toward modeling and support of cognitively intensive work (e.g., military command and control, medical planning and decision making, supervisory control of automated systems). Cognitive task analysis and cognitive work analysis methods extend traditional task analysis techniques to uncover the knowledge and thought processes that underlie performance in cognitively complex settings. The author reviews the multidisciplinary roots of cognitive analysis and the variety of cognitive task analysis and cognitive work analysis methods that have emerged. Cognitive analysis methods have been used successfully to guide system design, as well as development of function allocation, team structure, and training, so as to enhance performance and reduce the potential for error. A comprehensive characterization of cognitive work requires two mutually informing analyses: (a) examination of domain characteristics and constraints that define cognitive requirements and challenges and (b) examination of practitioner knowledge and strategies that underlie both expert and error-vulnerable performance. A variety of specific methods can be adapted to achieve these aims within the pragmatic constraints of particular projects. Cognitive analysis methods can be used effectively to anticipate cognitive performance problems and specify ways to improve individual and team cognitive performance (be it through new forms of training, user interfaces, or decision aids).

  1. The effects of soy milk and isoflavone supplements on cognitive performance in healthy, postmenopausal women.

    PubMed

    Fournier, L R; Ryan Borchers, T A; Robison, L M; Wiediger, M; Park, J S; Chew, B P; McGuire, M K; Sclar, D A; Skaer, T L; Beerman, K A

    2007-01-01

    The decline in estrogen concentrations in women after menopause can contribute to health related changes including impairments in cognition, especially memory. Because of the health concerns related to hormone replacement therapy (HRT), alternative approaches to treat menopausal symptoms, such as nutritional supplements and/or diet containing isoflavones, are of interest. This study investigated whether soy isoflavones (soy milk and supplement) could improve cognitive functioning in healthy, postmenopausal women. PARTICIPANTS, INTERVENTION AND DESIGN: A total of 79 postmenopausal women, 48-65 years of age, completed a double-blind, placebo-controlled trial in which they were randomly assigned to one of three experimental groups: cow's milk and a placebo supplement (control); soy milk and placebo supplement (soy milk, 72 mg isoflavones/day); or cow's milk and isoflavone supplement (isoflavone supplement, 70 mg isoflavones/day). Cognitive functioning was assessed using various cognitive tasks before the intervention (baseline) and after the intervention (test). In contrast to predictions, soy isoflavones did not improve selective attention (Stroop task), visual long-term memory (pattern recognition), short-term visuospatial memory (Benton Visual Retention Test), or visuo-spatial working memory (color match task). Also, the soy milk group showed a decline in verbal working memory (Digit Ordering Task) compared to the soy supplement and control groups. Soy isoflavones consumed as a food or supplement over a 16-week period did not improve or appreciably affect cognitive functioning in healthy, postmenopausal women.

  2. Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical, and relaxation training.

    PubMed

    Gajewski, Patrick D; Falkenstein, Michael

    2012-01-01

    Cognitive control functions decline with increasing age. The present study examines if different types of group-based and trainer-guided training effectively enhance performance of older adults in a task switching task, and how this expected enhancement is reflected in changes of cognitive functions, as measured in electrophysiological brain activity (event-related potentials). One hundred forty-one healthy participants aged 65 years and older were randomly assigned to one of four groups: physical training (combined aerobic and strength training), cognitive training (paper-pencil and computer-aided), relaxation and wellness (social control group), and a control group that did not receive any intervention. Training sessions took place twice a week for 90 min for a period of 4 months. The results showed a greater improvement of performance for attendants of the cognitive training group compared to the other groups. This improvement was evident in a reduction of mixing costs in accuracy and intraindividual variability of speed, indexing improved maintenance of multiple task sets in working memory, and an enhanced coherence of neuronal processing. These findings were supported by event-related brain potentials which showed higher amplitudes in a number of potentials associated with response selection (N2), allocation of cognitive resources (P3b), and error detection (Ne). Taken together, our findings suggest neurocognitive plasticity of aging brains which can be stimulated by broad and multilayered cognitive training and assessed in detail by electrophysiological methods.

  3. Training-Induced Improvement of Response Selection and Error Detection in Aging Assessed by Task Switching: Effects of Cognitive, Physical, and Relaxation Training

    PubMed Central

    Gajewski, Patrick D.; Falkenstein, Michael

    2012-01-01

    Cognitive control functions decline with increasing age. The present study examines if different types of group-based and trainer-guided training effectively enhance performance of older adults in a task switching task, and how this expected enhancement is reflected in changes of cognitive functions, as measured in electrophysiological brain activity (event-related potentials). One hundred forty-one healthy participants aged 65 years and older were randomly assigned to one of four groups: physical training (combined aerobic and strength training), cognitive training (paper–pencil and computer-aided), relaxation and wellness (social control group), and a control group that did not receive any intervention. Training sessions took place twice a week for 90 min for a period of 4 months. The results showed a greater improvement of performance for attendants of the cognitive training group compared to the other groups. This improvement was evident in a reduction of mixing costs in accuracy and intraindividual variability of speed, indexing improved maintenance of multiple task sets in working memory, and an enhanced coherence of neuronal processing. These findings were supported by event-related brain potentials which showed higher amplitudes in a number of potentials associated with response selection (N2), allocation of cognitive resources (P3b), and error detection (Ne). Taken together, our findings suggest neurocognitive plasticity of aging brains which can be stimulated by broad and multilayered cognitive training and assessed in detail by electrophysiological methods. PMID:22593740

  4. The narcoleptic cognitive pupillary response.

    PubMed

    O'Neill, W D; Trick, K P

    2001-09-01

    It has been reported that narcoleptics exhibit deficits in short-term memory, list recall, and stimulus frequency estimation compared with control subjects. It is also well-known that pupil dilation during cognitive tasks is a measure of subject attention state. Here we present results from six narcoleptics and six controls, a total of 360 experimental records in which pupillograms were made during cognitive tests, which indicate that narcoleptics begin pupillary dilations at a smaller diameter, begin dilating earlier poststimulus, attain higher pupillary diameter velocities, yet achieve the same equilibrium dilation diameter as controls. These findings are derived from statistical tests performed on the parameters of a nonlinear regression model of pupillary cognitive dilation as a function of time. In our experiments, the standard 1-s interdigit time between cognitive stimuli was increased to 2.3 s, which yielded pupillographic time records showing that the process of short-term memory overload sets in gradually at about four memory digits for controls and three memory digits for narcoleptics. We suggest our results can be partially explained by a narcoleptic stimulus-encoding deficit, which limits the time available for subjects to rehearse cognitive tasks. However, we also report the unexpected finding that the inferred encoding deficit is a transient one in that repeated tasks at the same memory load elicit a near normal naroleptic pupillary dilation.

  5. The organization of perception and action in complex control skills

    NASA Technical Reports Server (NTRS)

    Miller, Richard A.; Jagacinski, Richard J.

    1989-01-01

    An attempt was made to describe the perceptual, cognitive, and action processes that account for highly skilled human performance in complex task environments. In order to study such a performance in a controlled setting, a laboratory task was constructed and three experiments were performed using human subjects. A general framework was developed for describing the organization of perceptual, cognitive, and action process.

  6. The role of cognitive training in endourology: a randomised controlled trial.

    PubMed

    Shah, M; Aydin, A; Moran, A; Khan, M S; Dasgupta, P; Ahmed, K

    2018-04-01

    Cognitive training is an important training modality which allows the user to rehearse a procedure without physically carrying it out. This has led to recent interests to incorporate cognitive training within surgical education but research is currently limited. The use of cognitive training in surgery is not clear-cut and so this study aimed to determine whether, relative to a control condition, the use of cognitive training improves technical surgical skills on a ureteroscopy simulator, and if so whether one cognitive training method is superior. This prospective, comparative study recruited 59 medical students and randomised them to one of three groups: control- simulation training only (n=20), flashcards cognitive training group (n=20) or mental imagery cognitive training group (n=19). All participants completed three tasks at baseline on the URO Mentor simulator followed by the cognitive intervention if randomised to receive it. Participants then returned to perform an assessment task on the simulator. Outcome measures from the URO Mentor performance report was used for analysis and a quantitative survey was given to all participants to assess usefulness of training received. This study showed cognitive training to have minimal effects on technical skills of participants. The mental imagery group had fewer laser misfires in the assessment task when compared to both control and flashcards group (P=.017, P=.036, respectively). The flashcards group rated their preparation to be most useful when compared to control (P=.0125). Other parameters analysed between the groups did not reach statistical significance. Cognitive training was found to be feasible and cost effective when carried out in addition to simulation training. This study has shown that the role of cognitive training within acquisition of surgical skills is minimal and that no form of cognitive training was superior to another. Further research needs to be done to evaluate other ways of performing cognitive training. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  7. Editorial: Cognitive Architectures, Model Comparison and AGI

    NASA Astrophysics Data System (ADS)

    Lebiere, Christian; Gonzalez, Cleotilde; Warwick, Walter

    2010-12-01

    Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly generating broadly intelligent behavior. In order to determine if progress is made, it is essential to be able to evaluate the behavior of complex computational models, especially those built on general cognitive architectures, and compare it to benchmarks of intelligent behavior such as human performance. Significant methodological challenges arise, however, when trying to extend approaches used to compare model and human performance from tightly controlled laboratory tasks to complex tasks involving more open-ended behavior. This paper describes a model comparison challenge built around a dynamic control task, the Dynamic Stocks and Flows. We present and discuss distinct approaches to evaluating performance and comparing models. Lessons drawn from this challenge are discussed in light of the challenge of using cognitive architectures to achieve Artificial General Intelligence.

  8. Adaptive effort investment in cognitive and physical tasks: a neurocomputational model

    PubMed Central

    Verguts, Tom; Vassena, Eliana; Silvetti, Massimo

    2015-01-01

    Despite its importance in everyday life, the computational nature of effort investment remains poorly understood. We propose an effort model obtained from optimality considerations, and a neurocomputational approximation to the optimal model. Both are couched in the framework of reinforcement learning. It is shown that choosing when or when not to exert effort can be adaptively learned, depending on rewards, costs, and task difficulty. In the neurocomputational model, the limbic loop comprising anterior cingulate cortex (ACC) and ventral striatum in the basal ganglia allocates effort to cortical stimulus-action pathways whenever this is valuable. We demonstrate that the model approximates optimality. Next, we consider two hallmark effects from the cognitive control literature, namely proportion congruency and sequential congruency effects. It is shown that the model exerts both proactive and reactive cognitive control. Then, we simulate two physical effort tasks. In line with empirical work, impairing the model's dopaminergic pathway leads to apathetic behavior. Thus, we conceptually unify the exertion of cognitive and physical effort, studied across a variety of literatures (e.g., motivation and cognitive control) and animal species. PMID:25805978

  9. Cognitive rehabilitation in schizophrenia: a quantitative analysis of controlled studies.

    PubMed

    Krabbendam, Lydia; Aleman, André

    2003-09-01

    Cognitive rehabilitation is now recognized as an important tool in the treatment of schizophrenia, and findings in this area are emerging rapidly. There is a need for a systematic review of the effects of the different training programs. To review quantitatively the controlled studies on cognitive rehabilitation in schizophrenia for the effect of training on performance on tasks other than those practiced in the training procedure. A meta-analysis was conducted on 12 controlled studies of cognitive rehabilitation in schizophrenia taking into account the effects of type of rehabilitation approach (rehearsal or strategy learning) and duration of training. The mean weighted effect size was 0.45, with a 95% confidence interval from 0.26 to 0.64. Effect sizes differed slightly, depending on rehabilitation approach, in favor of strategy learning, but this difference did not reach statistical significance. Duration of training did not influence effect size. Cognitive rehabilitation can improve task performance in patients with schizophrenia and this effect is apparent on tasks outside those practiced during the training procedure. Future studies should include more real-world outcomes and perform longitudinal evaluations.

  10. Navigation experience and mental representations of the environment: do pilots build better cognitive maps?

    PubMed

    Sutton, Jennifer E; Buset, Melanie; Keller, Mikayla

    2014-01-01

    A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context.

  11. Navigation Experience and Mental Representations of the Environment: Do Pilots Build Better Cognitive Maps?

    PubMed Central

    Sutton, Jennifer E.; Buset, Melanie; Keller, Mikayla

    2014-01-01

    A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context. PMID:24603608

  12. Trait susceptibility to worry modulates the effects of cognitive load on cognitive control: An ERP study.

    PubMed

    Owens, Max; Derakshan, Nazanin; Richards, Anne

    2015-10-01

    According to the predictions of attentional control theory (ACT) of anxiety (Eysenck, Derakshan, Santos, & Calvo, 2007), worry is a central feature of anxiety that interferes with the ability to inhibit distracting information necessary for successful task performance. However, it is unclear how such cognitive control deficits are modulated by task demands and by the emotionality of the distractors. A sample of 31 participants (25 female) completed a novel flanker task with emotional and neutral distractors under low- and high-cognitive-load conditions. The negative-going N2 event-related potential was measured to index participants' level of top-down resource allocation in the inhibition of distractors under high- and low-load conditions. Results showed N2 amplitudes were larger under high- compared with low-load conditions. In addition, under high but not low load, trait worry was associated with greater N2 amplitudes. Our findings support ACT predictions that trait worry adversely affects goal-directed behavior, and is associated with greater recruitment of cognitive resources to inhibit the impact of distracting information under conditions in which cognitive resources are taxed. (c) 2015 APA, all rights reserved).

  13. Higher order balance control: Distinct effects between cognitive task and manual steadiness constraint on automatic postural responses.

    PubMed

    Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto

    2016-12-01

    In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Interactive effects of sex hormones and gender stereotypes on cognitive sex differences--a psychobiosocial approach.

    PubMed

    Hausmann, Markus; Schoofs, Daniela; Rosenthal, Harriet E S; Jordan, Kirsten

    2009-04-01

    Biological and social factors have been shown to affect cognitive sex differences. For example, several studies have found that sex hormones have activating effects on sex-sensitive tasks. On the other hand, it has been shown that gender stereotypes can influence the cognitive performance of (gender-) stereotyped individuals. However, few studies have investigated the combined effects of both factors. The present study investigated the interaction between sex hormones and gender stereotypes within a psychobiosocial approach. One hundred and fourteen participants (59 women) performed a battery of sex-sensitive cognitive tasks, including mental rotation, verbal fluency, and perceptual speed. Saliva samples were taken immediately after cognitive testing. Levels of testosterone (T) were analysed using chemiluminescence immunoassay (LIA). To activate gender stereotypes, a questionnaire was applied to the experimental group that referred to the cognitive tasks used. The control group received an identical questionnaire but with a gender-neutral content. As expected, significant sex differences favouring males and females appeared for mental rotation and verbal fluency tasks, respectively. The results revealed no sex difference in perceptual speed. The male superiority in the Revised Vandenberg and Kuse Mental Rotations Tests (MRT-3D) was mainly driven by the stereotype-active group. No significant sex difference in MRT-3D appeared in the control group. The MRT-3D was also the task in which a strong gender-stereotype favouring males was present for both males and females. Interestingly, T levels of the stereotype-activated group were 60% higher than that of male controls. The results suggest that sex hormones mediate the effects of gender stereotypes on specific cognitive abilities.

  15. Evidence for Narrow Transfer after Short-Term Cognitive Training in Older Adults.

    PubMed

    Souders, Dustin J; Boot, Walter R; Blocker, Kenneth; Vitale, Thomas; Roque, Nelson A; Charness, Neil

    2017-01-01

    The degree to which "brain training" can improve general cognition, resulting in improved performance on tasks dissimilar from the trained tasks (transfer of training), is a controversial topic. Here, we tested the degree to which cognitive training, in the form of gamified training activities that have demonstrated some degree of success in the past, might result in broad transfer. Sixty older adults were randomly assigned to a gamified cognitive training intervention or to an active control condition that involved playing word and number puzzle games. Participants were provided with tablet computers and asked to engage in their assigned training for 30 45-min training sessions over the course of 1 month. Although intervention adherence was acceptable, little evidence for transfer was observed except for the performance of one task that most resembled the gamified cognitive training: There was a trend for greater improvement on a version of the corsi block tapping task for the cognitive training group relative to the control group. This task was very similar to one of the training games. Results suggest that participants were learning specific skills and strategies from game training that influenced their performance on a similar task. However, even this near-transfer effect was weak. Although the results were not positive with respect to broad transfer of training, longer duration studies with larger samples and the addition of a retention period are necessary before the benefit of this specific intervention can be ruled out.

  16. Students Apply Research Methods to Consumer Decisions About Cognitive Enhancing Drinks

    PubMed Central

    Walters, Charles B.; Hill, Katherine G.; Zavilla, Anastasia R.; Erickson, Cynthia A.

    2014-01-01

    The goal of this class project was to provide students with a hands-on research experience that allowed autonomy, but eliminated duplication of effort and could be completed within one semester. Our resources were limited to a small supply budget and an introductory psychology subject pool. Six students from a behavioral neuroscience class tested claims made by a drink company that their product improves cognitive function. The students each chose a cognitive task for their part of the project. The tasks included the Donders Reaction Time Task, the Stroop Task, the Raven’s Progressive Matrices, a short-term memory span test, the Rey-Osterrieth Complex Figure Test and a simple measure of prefrontal EEG activity. Participants were randomly assigned to an experimental or control drink. The experimental group received the putative cognitive enhancing drink and the control group received a placebo drink that was very similar in color and taste. The two drinks shared no active ingredients. Results suggest that the putative cognitive enhancing drink did not improve performance on any of the tasks and decreased performance on the short-term memory task. These findings are discussed in regard to implications for consumers as well as further research into supplements and their ability to improve cognitive performance. Each student presented his/her results at a university-wide research conference. This project provided a rich experience in which students had the opportunity to carry out a research project from conception to presentation. PMID:25565916

  17. Pupil diameter as predictor of cognitive load: A novel tool for geoscience education research

    NASA Astrophysics Data System (ADS)

    Mitra, R.; McNeal, K.

    2015-12-01

    Pupils can truly serve as windows to the mind. Since the early part of the last decade, pupillometry, the study of pupils in response to cognitive tasks, have gained traction in psychophysiological studies. Muscles of the iris work in tandem with the autonomic nervous system in response to light condition to either dilate or contract the pupil, usually between 2 to 7 mm. Along with this response to light conditions, the pupils also contract or dilate in response to emotional or mental response. Therefore, for a cognitive task, if the ambient brightness is controlled, pupil dilation reflects the cognitive load associated with the task. Simple tasks such as counting, memorizing, multiplying and visual searching have been found to have pupillometry profiles reflective of the cognitive load involved with such tasks. In this study, we investigate whether pupil diameter can be used for education research where tasks can be more complex. In particular, we look at two specific types of tasks common in geoscience and several other STEM fields: graph reading and spatial problem solving.

  18. Rules and more rules: the effects of multiple tasks, extensive training, and aging on task-switching performance.

    PubMed

    Buchler, Norbou G; Hoyer, William J; Cerella, John

    2008-06-01

    Task-switching performance was assessed in young and older adults as a function of the number of task sets to be actively maintained in memory (varied from 1 to 4) over the course of extended training (5 days). Each of the four tasks required the execution of a simple computational algorithm, which was instantaneously cued by the color of the two-digit stimulus. Tasks were presented in pure (task set size 1) and mixed blocks (task set sizes 2, 3, 4), and the task sequence was unpredictable. By considering task switching beyond two tasks, we found evidence for a cognitive control system that is not overwhelmed by task set size load manipulations. Extended training eliminated age effects in task-switching performance, even when the participants had to manage the execution of up to four tasks. The results are discussed in terms of current theories of cognitive control, including task set inertia and production system postulates.

  19. “No level up!”: no effects of video game specialization and expertise on cognitive performance

    PubMed Central

    Gobet, Fernand; Johnston, Stephen J.; Ferrufino, Gabriella; Johnston, Matthew; Jones, Michael B.; Molyneux, Antonia; Terzis, Argyrios; Weeden, Luke

    2014-01-01

    Previous research into the effects of action video gaming on cognition has suggested that long term exposure to this type of game might lead to an enhancement of cognitive skills that transfer to non-gaming cognitive tasks. However, these results have been controversial. The aim of the current study was to test the presence of positive cognitive transfer from action video games to two cognitive tasks. More specifically, this study investigated the effects that participants' expertise and genre specialization have on cognitive improvements in one task unrelated to video gaming (a flanker task) and one related task (change detection task with both control and genre-specific images). This study was unique in three ways. Firstly, it analyzed a continuum of expertise levels, which has yet to be investigated in research into the cognitive benefits of video gaming. Secondly, it explored genre-specific skill developments on these tasks by comparing Action and Strategy video game players (VGPs). Thirdly, it used a very tight experiment design, including the experimenter being blind to expertise level and genre specialization of the participant. Ninety-two university students aged between 18 and 30 (M = 21.25) were recruited through opportunistic sampling and were grouped by video game specialization and expertise level. While the results of the flanker task were consistent with previous research (i.e., effect of congruence), there was no effect of expertise, and the action gamers failed to outperform the strategy gamers. Additionally, contrary to expectation, there was no interaction between genre specialization and image type in the change detection task, again demonstrating no expertise effect. The lack of effects for game specialization and expertise goes against previous research on the positive effects of action video gaming on other cognitive tasks. PMID:25506330

  20. "No level up!": no effects of video game specialization and expertise on cognitive performance.

    PubMed

    Gobet, Fernand; Johnston, Stephen J; Ferrufino, Gabriella; Johnston, Matthew; Jones, Michael B; Molyneux, Antonia; Terzis, Argyrios; Weeden, Luke

    2014-01-01

    Previous research into the effects of action video gaming on cognition has suggested that long term exposure to this type of game might lead to an enhancement of cognitive skills that transfer to non-gaming cognitive tasks. However, these results have been controversial. The aim of the current study was to test the presence of positive cognitive transfer from action video games to two cognitive tasks. More specifically, this study investigated the effects that participants' expertise and genre specialization have on cognitive improvements in one task unrelated to video gaming (a flanker task) and one related task (change detection task with both control and genre-specific images). This study was unique in three ways. Firstly, it analyzed a continuum of expertise levels, which has yet to be investigated in research into the cognitive benefits of video gaming. Secondly, it explored genre-specific skill developments on these tasks by comparing Action and Strategy video game players (VGPs). Thirdly, it used a very tight experiment design, including the experimenter being blind to expertise level and genre specialization of the participant. Ninety-two university students aged between 18 and 30 (M = 21.25) were recruited through opportunistic sampling and were grouped by video game specialization and expertise level. While the results of the flanker task were consistent with previous research (i.e., effect of congruence), there was no effect of expertise, and the action gamers failed to outperform the strategy gamers. Additionally, contrary to expectation, there was no interaction between genre specialization and image type in the change detection task, again demonstrating no expertise effect. The lack of effects for game specialization and expertise goes against previous research on the positive effects of action video gaming on other cognitive tasks.

  1. Trait impulsivity components correlate differently with proactive and reactive control

    PubMed Central

    Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju

    2017-01-01

    The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems. PMID:28423021

  2. Trait impulsivity components correlate differently with proactive and reactive control.

    PubMed

    Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju

    2017-01-01

    The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems.

  3. Impact of Working Memory Load on Cognitive Control in Trait Anxiety: An ERP Study

    PubMed Central

    Qi, Senqing; Zeng, Qinghong; Luo, Yangmei; Duan, Haijun; Ding, Cody; Hu, Weiping; Li, Hong

    2014-01-01

    Whether trait anxiety is associated with a general impairment of cognitive control is a matter of debate. This study investigated whether and how experimentally manipulated working memory (WM) load modulates the relation between trait anxiety and cognitive control. This question was investigated using a dual-task design in combination with event-related potentials. Participants were required to remember either one (low WM load) or six letters (high WM load) while performing a flanker task. Our results showed that a high WM load disrupted participants' ability to overcome distractor interference and this effect was exacerbated for the high trait-anxious (HTA) group. This exacerbation was reflected by larger interference effects (i.e., incongruent minus congruent) on reaction times (RTs) and N2 amplitudes for the HTA group than for the low trait-anxious group under high WM load. The two groups, however, did not differ in their ability to inhibit task-irrelevant distractors under low WM load, as indicated by both RTs and N2 amplitudes. These findings underscore the significance of WM-related cognitive demand in contributing to the presence (or absence) of a general cognitive control deficit in trait anxiety. Furthermore, our findings show that when limited WM resources are depleted by high WM load, HTA individuals exhibit less efficient recruitments of cognitive control required for the inhibition of distractors, therefore resulting in a greater degree of response conflict. PMID:25369121

  4. Impact of working memory load on cognitive control in trait anxiety: an ERP study.

    PubMed

    Qi, Senqing; Zeng, Qinghong; Luo, Yangmei; Duan, Haijun; Ding, Cody; Hu, Weiping; Li, Hong

    2014-01-01

    Whether trait anxiety is associated with a general impairment of cognitive control is a matter of debate. This study investigated whether and how experimentally manipulated working memory (WM) load modulates the relation between trait anxiety and cognitive control. This question was investigated using a dual-task design in combination with event-related potentials. Participants were required to remember either one (low WM load) or six letters (high WM load) while performing a flanker task. Our results showed that a high WM load disrupted participants' ability to overcome distractor interference and this effect was exacerbated for the high trait-anxious (HTA) group. This exacerbation was reflected by larger interference effects (i.e., incongruent minus congruent) on reaction times (RTs) and N2 amplitudes for the HTA group than for the low trait-anxious group under high WM load. The two groups, however, did not differ in their ability to inhibit task-irrelevant distractors under low WM load, as indicated by both RTs and N2 amplitudes. These findings underscore the significance of WM-related cognitive demand in contributing to the presence (or absence) of a general cognitive control deficit in trait anxiety. Furthermore, our findings show that when limited WM resources are depleted by high WM load, HTA individuals exhibit less efficient recruitments of cognitive control required for the inhibition of distractors, therefore resulting in a greater degree of response conflict.

  5. Influence of dual-task constraints on the interaction between posture and movement during a lower limb pointing task.

    PubMed

    Silva, Marcelo Guimarães; Struber, Lucas; Brandão, José Geraldo T; Daniel, Olivier; Nougier, Vincent

    2018-04-01

    One of the challenges regarding human motor control is making the movement fluid and at a limited cognitive cost. The coordination between posture and movement is a necessary requirement to perform daily life tasks. The present experiment investigated this interaction in 20 adult men, aged 18-30 years. The cognitive costs associated to postural and movement control when kicking towards a target was estimated using a dual-task paradigm (secondary auditory task). Results showed that addition of the attentional demanding cognitive task yielded a decreased kicking accuracy and an increased timing to perform the movement, mainly during the backswing motion. In addition, significant differences between conditions were found for COP and COM displacement (increased amplitude, mean speed) on the anteroposterior axis. However, no significant differences between conditions were found on the mediolateral axis. Finally, EMG analysis showed that dual-task condition modified the way anticipatory postural adjustments (APAs) were generated. More specifically, we observed an increase of the peroneus longus activity, whereas the temporal EMG showed a decrease of its latency with respect to movement onset. These results suggested a functional adaptation resulting in an invariance of overall APAs, emphasizing that cognitive, postural, and motor processes worked dependently.

  6. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD).

    PubMed

    Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas

    2016-10-01

    While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Identifying balance and fall risk in community-dwelling older women: the effect of executive function on postural control.

    PubMed

    Muir-Hunter, Susan W; Clark, Jennifer; McLean, Stephanie; Pedlow, Sam; Van Hemmen, Alysia; Montero Odasso, Manuel; Overend, Tom

    2014-01-01

    The mechanisms linking cognition, balance function, and fall risk among older adults are not fully understood. An evaluation of the effect of cognition on balance tests commonly used in clinical practice to assess community-dwelling older adults could enhance the identification of at-risk individuals. The study aimed to determine (1) the association between cognition and clinical tests of balance and (2) the relationship between executive function (EF) and balance under single- and dual-task testing. Participants (24 women, mean age of 76.18 [SD 16.45] years) completed six clinical balance tests, four cognitive tests, and two measures of physical function. Poor balance function was associated with poor performance on cognitive testing of EF. In addition, the association with EF was strongest under the dual-task timed up-and-go (TUG) test and the Fullerton Advanced Balance Scale. Measures of global cognition were associated only with the dual-task performance of the TUG. Postural sway measured with the Standing Balance Test, under single- or dual-task test conditions, was not associated with cognition. Decreased EF was associated with worse performance on functional measures of balance. The relationship between EF and balance was more pronounced with dual-task testing using a complex cognitive task combined with the TUG.

  8. Cognitive dysfunction in Body Dysmorphic Disorder: New implications for nosological systems & neurobiological models

    PubMed Central

    Jefferies-Sewell, K; Chamberlain, SR; Fineberg, NA; Laws, KR

    2017-01-01

    Background Body dysmorphic disorder (BDD) is a debilitating disorder, characterised by obsessions and compulsions relating specifically to perceived appearance, newly classified within the DSM-5 Obsessive-Compulsive and Related Disorders grouping. Until now, little research has been conducted into the cognitive profile of this disorder. Materials and Methods Participants with BDD (n=12) and healthy controls (n=16) were tested using a computerised neurocognitive battery investigating attentional set-shifting (Intra/Extra Dimensional Set Shift Task), decision-making (Cambridge Gamble Task), motor response-inhibition (Stop-Signal Reaction Time Task) and affective processing (Affective Go-No Go Task). The groups were matched for age, IQ and education. Results In comparison to controls, patients with BDD showed significantly impaired attentional set shifting, abnormal decision-making, impaired response inhibition and greater omission and commission errors on the emotional processing task. Conclusions Despite the modest sample size, our results showed that individuals with BDD performed poorly compared to healthy controls on tests of cognitive flexibility, reward and motor impulsivity and affective processing. Results from separate studies in OCD patients suggest similar cognitive dysfunction. Therefore, these findings are consistent with the re-classification of BDD alongside OCD. These data also hint at additional areas of decision-making abnormalities that might contribute specifically to the psychopathology of BDD. PMID:27899165

  9. Creativity on tap? Effects of alcohol intoxication on creative cognition

    PubMed Central

    Benedek, Mathias; Panzierer, Lisa; Jauk, Emanuel; Neubauer, Aljoscha C.

    2017-01-01

    Anecdotal reports link alcohol intoxication to creativity, while cognitive research highlights the crucial role of cognitive control for creative thought. This study examined the effects of mild alcohol intoxication on creative cognition in a placebo-controlled design. Participants completed executive and creative cognition tasks before and after consuming either alcoholic beer (BAC of 0.03) or non-alcoholic beer (placebo). Alcohol impaired executive control, but improved performance in the Remote Associates Test, and did not affect divergent thinking ability. The findings indicate that certain aspects of creative cognition benefit from mild attenuations of cognitive control, and contribute to the growing evidence that higher cognitive control is not always associated with better cognitive performance. PMID:28705663

  10. Neural Correlates of Changes in a Visual Search Task due to Cognitive Training in Seniors

    PubMed Central

    Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.

    2012-01-01

    This study aimed to elucidate the underlying neural sources of near transfer after a multidomain cognitive training in older participants in a visual search task. Participants were randomly assigned to a social control, a no-contact control and a training group, receiving a 4-month paper-pencil and PC-based trainer guided cognitive intervention. All participants were tested in a before and after session with a conjunction visual search task. Performance and event-related potentials (ERPs) suggest that the cognitive training improved feature processing of the stimuli which was expressed in an increased rate of target detection compared to the control groups. This was paralleled by enhanced amplitudes of the frontal P2 in the ERP and by higher activation in lingual and parahippocampal brain areas which are discussed to support visual feature processing. Enhanced N1 and N2 potentials in the ERP for nontarget stimuli after cognitive training additionally suggest improved attention and subsequent processing of arrays which were not immediately recognized as targets. Possible test repetition effects were confined to processes of stimulus categorisation as suggested by the P3b potential. The results show neurocognitive plasticity in aging after a broad cognitive training and allow pinpointing the functional loci of effects induced by cognitive training. PMID:23029625

  11. Working memory capacity predicts conflict-task performance.

    PubMed

    Gulbinaite, Rasa; Johnson, Addie

    2014-01-01

    The relationship between the ability to maintain task goals and working memory capacity (WMC) is firmly established, but evidence for WMC-related differences in conflict processing is mixed. We investigated whether WMC (measured using two complex-span tasks) mediates differences in adjustments of cognitive control in response to conflict. Participants performed a Simon task in which congruent and incongruent trials were equiprobable, but in which the proportion of congruency repetitions (congruent trials followed by congruent trials or incongruent trials followed by incongruent trials) and thus the need for trial-by-trial adjustments in cognitive control varied by block. The overall Simon effect did not depend on WMC capacity. However, for the low-WMC participants the Simon effect decreased as the proportion of congruency repetitions decreased, whereas for the high- and average-WMC participants it was relatively constant across conditions. Distribution analysis of the Simon effect showed more evidence for the inhibition of stimulus location in the low- than in the high-WMC participants, especially when the proportion of congruency repetitions was low. We hypothesize that low-WMC individuals exhibit more interference from task-irrelevant information due to weaker preparatory control prior to stimulus presentation and, thus, stronger reliance on reactive recruitment of cognitive control.

  12. Dual Task Gait Performance in Frail Individuals with and without Mild Cognitive Impairment.

    PubMed

    Martínez-Ramírez, Alicia; Martinikorena, Ion; Lecumberri, Pablo; Gómez, Marisol; Millor, Nora; Casas-Herrero, Alvaro; Zambom-Ferraresi, Fabrício; Izquierdo, Mikel

    2016-01-01

    Several studies have stated that frailty is associated with cognitive impairment. Based on various studies, cognition impairment has been considered as a component of frailty. Other authors have shown that physical frailty is associated with low cognitive performance. Dual task gait tests are used as a strong predictor of falls in either dementia or frailty. Consequently, it is important to investigate dual task walking tests in elderly populations including control robust oldest old, frail oldest old with mild cognitive impairment (MCI) and frail oldest old without MCI. Dual task walking tests were carried out to examine the association between frailty and cognitive impairment in a population with advanced age. Forty-one elderly men and women participated in this study. The subjects from control, frail with MCI and frail without MCI groups, completed the 5-meter walk test at their own gait velocity. Arithmetic and verbal dual task walking performance was also assessed. Kinematic data were acquired from a unique tri-axial inertial sensor. The spatiotemporal and frequency parameters related to gait disorders did not show any significant differences between frail with and without MCI groups. The evaluation of these parameters extracted from the acceleration signals led us to conclude that these results expand the knowledge regarding the common conditions in frailty and MCI and may highlight the idea that the impairment in walking performance does not depend of frailty and cognitive status. © 2016 S. Karger AG, Basel.

  13. Normal Performance in Non-Visual Social Cognition Tasks in Women with Turner Syndrome.

    PubMed

    Anaki, David; Zadikov-Mor, Tal; Gepstein, Vardit; Hochberg, Ze'ev

    2018-01-01

    Turner syndrome (TS) is a chromosomal disorder in women resulting from a partial or complete absence of the X chromosome. In addition to physical and hormonal dysfunctions, along with a unique neurocognitive profile, women with TS are reported to suffer from social functioning difficulties. Yet, it is unclear whether these difficulties stem from impairments in social cognition per se or from other deficits that characterize TS but are not specific to social cognition. Previous research that has probed social functioning in TS is equivocal regarding the source of these psychosocial problems since they have mainly used tasks that were dependent on visual-spatial skills, which are known to be compromised in TS. In the present study, we tested 26 women with TS and 26 matched participants on three social cognition tasks that did not require any visual-spatial capacities but rather relied on auditory-verbal skills. The results revealed that in all three tasks the TS participants did not differ from their control counterparts. The same TS cohort was found, in an earlier study, to be impaired, relative to controls, in other social cognition tasks that were dependent on visual-spatial skills. Taken together these findings suggest that the social problems, documented in TS, may be related to non-specific spatial-visual factors that affect their social cognition skills.

  14. Stimulus ambiguity elicits response conflict.

    PubMed

    Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, André; De Baene, Wouter; Verguts, Tom; Notebaert, Wim

    2008-04-18

    Conflict monitoring theory [M.M. Botvinick, T. Braver, D. Barch, C. Carter, J.D. Cohen, Conflict monitoring and cognitive control, Psychol. Rev. 108 (2001) 625-652] assumes that perceptual ambiguity among choice stimuli elicits response conflict in choice reaction. It hence predicts that response conflict is also involved in elementary variants of choice reaction time (RT) tasks, i.e., those variants that, by contrast with the Stroop task or the Go/No-Go task for instance, are rarely associated with cognitive control. In order to test this prediction, an experiment was designed in which participants performed a simple RT task and a regular between-hand 2-choice RT task under three different levels of stimulus ambiguity. The data show that response conflict, as measured by the N2 component of the event-related brain potential (ERP), was elicited in the 2-choice RT task but not in the simple RT task and that the degree of response conflict in the 2-choice RT task was a function of stimulus ambiguity. These results show that response conflict is also present in a regular choice RT task which is traditionally not considered to be a measure of cognitive conflict.

  15. The Association Between Computer Use and Cognition Across Adulthood: Use it so You Won't Lose it?

    PubMed Central

    Tun, Patricia A.; Lachman, Margie E.

    2012-01-01

    Understanding the association between computer use and adult cognition has been limited until now by self-selected samples with restricted ranges of age and education. Here we studied effects of computer use in a large national sample (N=2671) of adults aged 32 to 84, assessing cognition with the Brief Test of Adult Cognition by Telephone (Tun & Lachman, 2005), and executive function with the Stop and Go Switch Task (Tun & Lachman, 2008). Frequency of computer activity was associated with cognitive performance after controlling for age, sex, education, and health status: that is, individuals who used the computer frequently scored significantly higher than those who seldom used the computer. Greater computer use was also associated with better executive function on a task-switching test, even after controlling for basic cognitive ability as well as demographic variables. These findings suggest that frequent computer activity is associated with good cognitive function, particularly executive control, across adulthood into old age, especially for those with lower intellectual ability. PMID:20677884

  16. Cognitive control deficits associated with antisocial personality disorder and psychopathy.

    PubMed

    Zeier, Joshua D; Baskin-Sommers, Arielle R; Hiatt Racer, Kristina D; Newman, Joseph P

    2012-07-01

    Antisociality has been linked to a variety of executive functioning deficits, including poor cognitive control. Surprisingly, cognitive control deficits are rarely found in psychopathic individuals, despite their notoriously severe and persistent antisocial behavior. In fact, primary (low-anxious) psychopathic individuals display superior performance on cognitive control-type tasks under certain circumstances. To clarify these seemingly contradictory findings, we administered a response competition (i.e., flanker) task to incarcerated offenders, who were assessed for Antisocial Personality Disorder (APD) symptoms and psychopathy. As hypothesized, APD related to poorer accuracy, especially on incongruent trials. Contrary to expectation, however, the same pattern of results was found in psychopathy. Additional analyses indicated that these effects of APD and psychopathy were associated with overlapping variance. The findings suggest that psychopathy and APD symptoms are both associated with deficits in cognitive control, and that this deficit relates to general antisociality as opposed to a specific antisocial syndrome. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  17. Return to activity after concussion affects dual-task gait balance control recovery.

    PubMed

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2015-04-01

    Recent work has identified deficits in dual-task gait balance control for up to 2 months after adolescent concussion; however, how resumption of preinjury physical activities affects recovery is unknown. The objective of this study is to examine how return to activity (RTA) affects recovery from concussion on measures of symptom severity, cognition, and balance control during single-task and dual-task walking. Nineteen adolescents with concussion who returned to preinjury activity within 2 months after injury and 19 uninjured, matched controls completed symptom inventories, computerized cognitive testing, and single-task and dual-task gait analyses. Concussion participants were assessed at five time points: within 72 h, 1 wk, 2 wk, 1 month, and 2 months postinjury. Control participants were assessed at the same time points as their matched concussion counterparts. RTA day was documented as the postinjury day in which physical activity participation was allowed. The effect of returning to physical activity was assessed by examining the percent change on each dependent variable across time before and directly after the RTA. Data were analyzed by two-way mixed effects ANOVAs. After the RTA day, concussion participants significantly increased their total center-of-mass medial/lateral displacement (P = 0.009, ηp = .175) and peak velocity (P = 0.048, ηp = 0.104) during dual-task walking when compared with pre-RTA data, whereas no changes for the concussion group or between groups were detected on measures of single-task walking, forward movement, or cognition. Adolescents with concussion displayed increased center-of-mass medial/lateral displacement and velocity during dual-task walking after RTA, suggesting a regression of recovery in gait balance control. This study reinforces the need for a multifaceted approach to concussion management and continued monitoring beyond the point of clinical recovery.

  18. Understanding and Improving Knowledge Transactions in Command and Control

    DTIC Science & Technology

    2003-06-01

    implications for the development of tools to facilitate efficient and effectiv and knowledge exchange. Cognitive task analysis (CTA) in support...makers]?” *quotes taken from K-web cognitive task analysis , Global 2000 and Global 2001 War Games, interviews with Carl Vinson K-Web users following

  19. Auditory working memory load impairs visual ventral stream processing: toward a unified model of attentional load.

    PubMed

    Klemen, Jane; Büchel, Christian; Bühler, Mira; Menz, Mareike M; Rose, Michael

    2010-03-01

    Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.

  20. Attentional fluctuations in preschoolers: Direct and indirect relations with task accuracy, academic readiness, and school performance.

    PubMed

    Isbell, Elif; Calkins, Susan D; Swingler, Margaret M; Leerkes, Esther M

    2018-03-01

    Attentional control fluctuates in the presence of internal and external distractors, wandering on and off a given task. The current study investigated individual differences in attentional fluctuations in 250 preschoolers. Attentional fluctuations were assessed via intra-individual variability in response time in a Go/No-Go task. Greater fluctuations in attentional control were linked to lower task accuracy. In addition, greater attentional fluctuations predicted lower performance in a task of cognitive flexibility, the Dimensional Change Card Sort task. Attentional fluctuations were also associated with laboratory measures of academic readiness in preschool, as assessed by the Applied Problems and Letter-Word Identification subscales of the Woodcock-Johnson III Tests of Achievement, which in turn predicted teacher reports of academic performance in first grade. Attentional fluctuations also had indirect associations with emergent math skills in preschool, via cognitive flexibility, as well as indirect associations with first-grade teacher reports of academic performance, via the relations between cognitive flexibility and emergent math skills in preschool. These results suggest that consistency is an important aspect of attentional control during early childhood. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The puzzle of processing speed, memory, and executive function impairments in schizophrenia: fitting the pieces together.

    PubMed

    Knowles, Emma E M; Weiser, Mark; David, Anthony S; Glahn, David C; Davidson, Michael; Reichenberg, Abraham

    2015-12-01

    Substantial impairment in performance on the digit-symbol substitution task in patients with schizophrenia is well established, which has been widely interpreted as denoting a specific impairment in processing speed. However, other higher order cognitive functions might be more critical to performance on this task. To date, this idea has not been rigorously investigated in patients with schizophrenia. Neuropsychological measures of processing speed, memory, and executive functioning were completed by 125 patients with schizophrenia and 272 control subjects. We implemented a series of confirmatory factor and structural regression modeling to build an integrated model of processing speed, memory, and executive function with which to deconstruct the digit-symbol substitution task and characterize discrepancies between patients with schizophrenia and control subjects. The overall structure of the processing speed, memory, and executive function model was the same across groups (χ(2) = 208.86, p > .05), but the contribution of the specific cognitive domains to coding task performance differed significantly. When completing the task, control subjects relied on executive function and, indirectly, on working memory ability, whereas patients with schizophrenia used an alternative set of cognitive operations whereby they relied on the same processes required to complete verbal fluency tasks. Successful coding task performance relies predominantly on executive function, rather than processing speed or memory. Patients with schizophrenia perform poorly on this task because of an apparent lack of appropriate executive function input; they rely instead on an alternative cognitive pathway. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Preliminary assessment of cognitive impairments in canine idiopathic epilepsy.

    PubMed

    Winter, Joshua; Packer, Rowena Mary Anne; Volk, Holger Andreas

    2018-06-02

    In humans, epilepsy can induce or accelerate cognitive impairment (CI). There is emerging evidence of CI in dogs with idiopathic epilepsy (IE) from recent epidemiological studies. The aim of our study was to assess CI in dogs with IE using two tests of cognitive dysfunction designed for use in a clinical setting. Dogs with IE (n=17) were compared against controls (n=18) in their performance in two tasks; a spatial working memory task and a problem-solving task. In addition, owners completed the Canine Cognitive Dysfunction Rating (CCDR) scale for their dog. The groups did not differ statistically with respect to age and breed. Dogs with IE performed significantly worse than controls on the spatial working memory task (P = 0.016), but not on the problem solving task (P=0.683). CCDR scores were significantly higher in the IE group (P=0.016); however, no dogs reach the recommended threshold score for CCD diagnosis. Our preliminary data suggest that dogs with IE exhibit impairments in a spatial working memory task. Further research is required to explore the effect of IE on other cognitive abilities in dogs with a larger sample, characterising the age of onset, nature and progression of any impairments and the impact of anti-epileptic drugs. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Role of Emotion and Cognition on Age Differences in the Framing Effect.

    PubMed

    Pu, Bingyan; Peng, Huamao; Xia, Shiyong

    2017-09-01

    Framing effect studies indicate that individuals are risk averse for decisions framed as gains but risk-seeking for decisions framed as losses. Findings of age-related differences in susceptibility to framing are mixed. In the current study, we examined emotional arousal in two decision tasks (life saving vs. money gambling) to evaluate the effects of emotion on age differences in the framing effect. When cognitive abilities and styles were controlled, there was a framing effect in the younger group in the life-saving task, a high-emotional arousal task, while older adults did not display this classic framing effect pattern. They showed risk aversion in both positive and negative framing. Age differences existed in the framing effect. Conversely, younger and older adults in the money-gambling task both displayed the framing effect; there was no age difference. When the cognitive abilities were not controlled, the pattern of results in the high-emotional arousal task remained unchanged, while greater framing effects were found, from the perspective of effect size, for older than younger adults in the low-emotional arousal task. Limited cognitive resources would not hamper older adults' performances when their emotional arousal was high. However, older adults with low-level emotional arousal were more susceptible than younger adults to framing because of declining cognitive capacities. This implied the importance of emotion in older adults' decision making and supported the selective engagement hypothesis.

  4. Social context modulates cognitive markers in Obsessive-Compulsive Disorder.

    PubMed

    Santamaría-García, Hernando; Soriano-Mas, Carles; Burgaleta, Miguel; Ayneto, Alba; Alonso, Pino; Menchón, José M; Cardoner, Narcis; Sebastián-Gallés, Nuria

    2017-08-03

    Error monitoring, cognitive control and motor inhibition control are proposed as cognitive alterations disrupted in obsessive-compulsive disorder (OCD). OCD has also been associated with an increased sensitivity to social evaluations. The effect of a social simulation over electrophysiological indices of cognitive alterations in OCD was examined. A case-control cross-sectional study measuring event-related potentials (ERP) for error monitoring (Error-Related Negativity), cognitive control (N2) and motor control (LRP) was conducted. We analyzed twenty OCD patients and twenty control participants. ERP were recorded during a social game consisting of a visual discrimination task, which was performed in the presence of a simulated superior or an inferior player. Significant social effects (different ERP amplitudes in Superior vs. Inferior player conditions) were found for OCD patients, but not for controls, in all ERP components. Performing the task against a simulated inferior player reduced abnormal ERP responses in OCD to levels observed in controls. The hierarchy-induced ERP effects were accompanied effects over reaction times in OCD patients. Social context modulates signatures of abnormal cognitive functioning in OCD, therefore experiencing a social superiority position impacts over cognitive processes in OCD such as error monitoring mechanisms. These results open the door for the research of new therapeutic choices.

  5. Towards a cognitive resource limitations model of diminished expression in schizotypy.

    PubMed

    Cohen, Alex S; Morrison, Sean C; Brown, Laura A; Minor, Kyle S

    2012-02-01

    Diminished expression of speech is a pernicious feature of both schizophrenia and schizotypy--defined as the personality organization reflecting a putative genetic schizophrenia liability. As yet, the mechanism underlying diminished expression is unclear. We tested the hypothesis that diminished expression reflects a cognitive resource issue--that is, as cognitive resources are depleted, expression becomes diminished in individuals with psychometrically defined schizotypy. Acoustic analysis of natural speech was procured during experimentally manipulated baseline and high cognitive-load dual tasks and examined in 38 individuals with psychometrically defined schizotypy and 34 controls. For both groups, expression significantly decreased as a function of increased task demands, although there were no group differences in expression or magnitude of change across baseline to high cognitive-load conditions. Participants with self-reported constricted affect showed significant reductions in expression under high-load versus baseline speaking conditions relative to other schizotypal and control participants. Moreover, psychometrically defined schizotypal participants with poor cognitive performance on the high-load task, suggestive of depleted cognitive resources, also showed expressivity reductions compared with other participants. These findings suggest that diminished expression occurs as a function of limited cognitive resources in psychometrically defined schizotypy. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  6. Dissociating intuitive physics from intuitive psychology: Evidence from Williams syndrome.

    PubMed

    Kamps, Frederik S; Julian, Joshua B; Battaglia, Peter; Landau, Barbara; Kanwisher, Nancy; Dilks, Daniel D

    2017-11-01

    Prior work suggests that our understanding of how things work ("intuitive physics") and how people work ("intuitive psychology") are distinct domains of human cognition. Here we directly test the dissociability of these two domains by investigating knowledge of intuitive physics and intuitive psychology in adults with Williams syndrome (WS) - a genetic developmental disorder characterized by severely impaired spatial cognition, but relatively spared social cognition. WS adults and mental-age matched (MA) controls completed an intuitive physics task and an intuitive psychology task. If intuitive physics is a distinct domain (from intuitive psychology), then we should observe differential impairment on the physics task for individuals with WS compared to MA controls. Indeed, adults with WS performed significantly worse on the intuitive physics than the intuitive psychology task, relative to controls. These results support the hypothesis that knowledge of the physical world can be disrupted independently from knowledge of the social world. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Catechol-O-methyltransferase (COMT) polymorphisms modulate working memory in individuals with schizophrenia and healthy controls.

    PubMed

    Matsuzaka, Camila T; Christofolini, Denise; Ota, Vanessa K; Gadelha, Ary; Berberian, Arthur A; Noto, Cristiano; Mazzotti, Diego R; Spindola, Leticia M; Moretti, Patricia N; Smith, Marilia A C; Melaragno, Maria I; Belangero, Sintia I; Bressan, Rodrigo A

    2017-01-01

    Cognitive impairment is a core feature of schizophrenia, related to dopaminergic dysfunction in the prefrontal cortex (PFC). It is hypothesized that functional single nucleotide polymorphism (SNP) rs4680 of the catechol-O-methyltransferase (COMT) gene could mediate the relationship between cognition and dopamine activity in the PFC. Other COMT SNPs could also play a role. We evaluated the role of three COMT SNPs (rs737865, rs165599, and rs4680) in schizophrenia and their impact on three working memory tasks. For genetic association analyses, 212 individuals with schizophrenia and 257 healthy controls (HCs) were selected. The Visual Working Memory (VWM) Task, Keep Track Task, and Letter Memory Task were administered to 133 schizophrenics and 93 HCs. We found a significant association of rs737865, with the GG genotype exerting a protective effect and the GA haplotype (rs4680/rs165599) exerting a risk effect for schizophrenia. COMT rs4680 AA carriers and rs737865 AA carriers scored lowest on the Keep Track Task. When the genotype*group interaction effect was evaluated, rs165599 exerted opposite effects for VWM and Keep Track task performance in patients and controls, with AA carriers scoring lowest on both tests among controls, but highest among patients. These data support the hypothesis that COMT polymorphisms may be associated with schizophrenia and modulate cognition in patients and controls.

  8. Control-related systems in the human brain

    PubMed Central

    Power, Jonathan D; Petersen, Steven E

    2013-01-01

    A fundamental question in cognitive neuroscience is how the human brain self-organizes to perform tasks. Multiple accounts of this self-organization are currently influential and in this article we survey one of these accounts. We begin by introducing a psychological model of task control and several neuroimaging signals it predicts. We then discuss where such signals are found across tasks with emphasis on brain regions where multiple control signals are present. We then present results derived from spontaneous task-free functional connectivity between control-related regions that dovetail with distinctions made by control signals present in these regions, leading to a proposal that there are at least two task control systems in the brain. This prompts consideration of whether and how such control systems distinguish themselves from other brain regions in a whole-brain context. We present evidence from whole-brain networks that such distinctions do occur and that control systems comprise some of the basic system-level organizational elements of the human brain. We close with observations from the whole-brain networks that may suggest parsimony between multiple accounts of cognitive control. PMID:23347645

  9. Does media multitasking always hurt? A positive correlation between multitasking and multisensory integration.

    PubMed

    Lui, Kelvin F H; Wong, Alan C-N

    2012-08-01

    Heavy media multitaskers have been found to perform poorly in certain cognitive tasks involving task switching, selective attention, and working memory. An account for this is that with a breadth-biased style of cognitive control, multitaskers tend to pay attention to various information available in the environment, without sufficient focus on the information most relevant to the task at hand. This cognitive style, however, may not cause a general deficit in all kinds of tasks. We tested the hypothesis that heavy media multitaskers would perform better in a multisensory integration task than would others, due to their extensive experience in integrating information from different modalities. Sixty-three participants filled out a questionnaire about their media usage and completed a visual search task with and without synchronous tones (pip-and-pop paradigm). It was found that a higher degree of media multitasking was correlated with better multisensory integration. The fact that heavy media multitaskers are not deficient in all kinds of cognitive tasks suggests that media multitasking does not always hurt.

  10. Low-level alcohol consumption during adolescence and its impact on cognitive control development.

    PubMed

    Jurk, Sarah; Mennigen, Eva; Goschke, Thomas; Smolka, Michael N

    2018-01-01

    Adolescence is a critical period for maturation of cognitive control and most adolescents start experimenting with alcohol around that time. On the one hand, recent studies indicate that low control abilities predict future problematic alcohol use. On the other hand, binge drinking during young adulthood can (further) impair cognitive control. However, so far no study examined the effects of low-level alcohol use during adolescence. In the present longitudinal fMRI study, we therefore investigated the development of cognitive control in a community-based sample of 92 adolescents at ages 14, 16 and 18. Two different cognitive control functions, i.e. inhibition of pre-potent responses (operationalized by incongruence effects) and switching between different task sets, were measured within one task. Alcohol use in our sample was low (mean: 54 g/week at age 18). The study revealed that neither behavioural nor neural measures of cognitive control function at age 14 predicted alcohol use at age 18 but confirmed established predictors such as gender and personality. As expected, from age 14 to 18, cognitive control abilities were improving (decreased reaction times and/or errors), and activation of cognitive control networks (dorsal anterior cingulate cortex and pre-supplementary motor area) during incongruent trials increased. Unexpectedly, higher alcohol consumption during adolescence was associated with a more pronounced increase in cognitive performance and a smaller increase of neural activation when incongruent trials afforded inhibitory control. We conclude that low-level alcohol use during adolescence does not severely impair ongoing maturation of cognitive control abilities and networks. © 2016 Society for the Study of Addiction.

  11. The interacting effect of cognitive and motor task demands on performance of gait, balance and cognition in young adults.

    PubMed

    Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant

    2013-09-01

    Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson's disease: a randomized controlled trial.

    PubMed

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa

    2017-12-01

    Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.

  13. Working memory load affects repetitive behaviour but not cognitive flexibility in adolescent autism spectrum disorder.

    PubMed

    Wolff, Nicole; Chmielewski, Witold X; Beste, Christian; Roessner, Veit

    2017-03-16

    Autism spectrum disorder (ASD) is associated with repetitive and stereotyped behaviour, suggesting that cognitive flexibility may be deficient in ASD. A central, yet not examined aspect to understand possible deficits in flexible behaviour in ASD relates (i) to the role of working memory and (ii) to neurophysiological mechanisms underlying behavioural modulations. We analysed behavioural and neurophysiological (EEG) correlates of cognitive flexibility using a task-switching paradigm with and without working memory load in adolescents with ASD and typically developing controls (TD). Adolescents with ASD versus TD show similar performance in task switching with no memory load, indicating that 'pure' cognitive flexibility is not in deficit in adolescent ASD. However performance during task repetition decreases with increasing memory load. Neurophysiological data reflect the pattern of behavioural effects, showing modulations in P2 and P3 event-related potentials. Working memory demands affect repetitive behaviour while processes of cognitive flexibility are unaffected. Effects emerge due to deficits in preparatory attentional processes and deficits in task rule activation, organisation and implementation of task sets when repetitive behaviour is concerned. It may be speculated that the habitual response mode in ASD (i.e. repetitive behaviour) is particularly vulnerable to additional demands on executive control processes.

  14. Total sleep deprivation does not significantly degrade semantic encoding.

    PubMed

    Honn, K A; Grant, D A; Hinson, J M; Whitney, P; Van Dongen, Hpa

    2018-01-17

    Sleep deprivation impairs performance on cognitive tasks, but it is unclear which cognitive processes it degrades. We administered a semantic matching task with variable stimulus onset asynchrony (SOA) and both speeded and self-paced trial blocks. The task was administered at the baseline and 24 hours later after 30.8 hours of total sleep deprivation (TSD) or matching well-rested control. After sleep deprivation, the 20% slowest response times (RTs) were significantly increased. However, the semantic encoding time component of the RTs remained at baseline level. Thus, the performance impairment induced by sleep deprivation on this task occurred in cognitive processes downstream of semantic encoding.

  15. Age-Related Differences in the Reliance on Executive Control in Working Memory: Role of Task Demand

    PubMed Central

    Isingrini, Michel; Angel, Lucie; Fay, Séverine; Taconnat, Laurence; Lemaire, Patrick; Bouazzaoui, Badiâa

    2015-01-01

    We examined the hypothesis that age-related differences in the reliance on executive control may be better explained by variations of task demand than by a mechanism specifically linked to aging. To this end, we compared the relationship between the performance of young and older adults on two executive functioning tests and an updating working-memory task with different load levels. The results revealed a significant interaction between age, task demand, and individual executive capacities, indicating that executive resources were only involved at lower loads in older adults, and only at higher loads in young adults. Overall, the results are not consistent with the proposition that cognition places greater demand on executive control in older adults. However, they support the view that how much young and older adults rely on executive control to accomplish cognitive tasks depends on task demand. Finally, interestingly these results are consistent with the CRUNCH model accounting for age-related differences in brain activations. PMID:26700019

  16. Age-Related Differences in the Reliance on Executive Control in Working Memory: Role of Task Demand.

    PubMed

    Isingrini, Michel; Angel, Lucie; Fay, Séverine; Taconnat, Laurence; Lemaire, Patrick; Bouazzaoui, Badiâa

    2015-01-01

    We examined the hypothesis that age-related differences in the reliance on executive control may be better explained by variations of task demand than by a mechanism specifically linked to aging. To this end, we compared the relationship between the performance of young and older adults on two executive functioning tests and an updating working-memory task with different load levels. The results revealed a significant interaction between age, task demand, and individual executive capacities, indicating that executive resources were only involved at lower loads in older adults, and only at higher loads in young adults. Overall, the results are not consistent with the proposition that cognition places greater demand on executive control in older adults. However, they support the view that how much young and older adults rely on executive control to accomplish cognitive tasks depends on task demand. Finally, interestingly these results are consistent with the CRUNCH model accounting for age-related differences in brain activations.

  17. Short-term changes in general and memory-specific control beliefs and their relationship to cognition in younger and older adults.

    PubMed

    Bielak, Allison A M; Hultsch, David F; Levy-Ajzenkopf, Judi; MacDonald, Stuart W S; Hunter, Michael A; Strauss, Esther

    2007-01-01

    We examined short-term changes in younger and older adults' control beliefs. Participants completed measures of general and memory-specific competence and locus of control on 10 bi-monthly occasions. At each occasion, participants rated their control beliefs prior to and following completion of a battery of cognitive tasks. Exposure to the set of cognitively demanding tasks led to declines in older adults' ratings of both general and memory-specific competence compared to little change or increases in younger adults' ratings. Older adults were also more inconsistent in their reported locus of control beliefs across the 10 occasions. Analyses examining the relationship between control beliefs and actual cognitive performance revealed few significant effects, suggesting that short-term changes in perceived control are not driven by monitoring changes in actual performance. The results suggest the importance of assessing short-term as well as long-term changes in perceived control to obtain a complete picture of aging-related changes.

  18. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance.

    PubMed

    Kable, Joseph W; Caulfield, M Kathleen; Falcone, Mary; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Hornik, Robert; Diefenbach, Paul; Lee, Frank J; Lerman, Caryn

    2017-08-02

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults ( N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. Copyright © 2017 the authors 0270-6474/17/377390-13$15.00/0.

  19. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance

    PubMed Central

    Caulfield, M. Kathleen; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Lee, Frank J.; Lerman, Caryn

    2017-01-01

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults (N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. PMID:28694338

  20. A Newly Designed Mobile-Based Computerized Cognitive Addiction Therapy App for the Improvement of Cognition Impairments and Risk Decision Making in Methamphetamine Use Disorder: Randomized Controlled Trial.

    PubMed

    Zhu, Youwei; Jiang, Haifeng; Su, Hang; Zhong, Na; Li, Runji; Li, Xiaotong; Chen, Tianzhen; Tan, Haoye; Du, Jiang; Xu, Ding; Yan, Huan; Xu, Dawen; Zhao, Min

    2018-06-20

    Cognitive rehabilitation therapy has been found to improve cognitive deficits and impulse control problems in methamphetamine use disorder (MUD). However, there is limited research regarding this therapy's feasibility when using mobile-based health technologies in supporting recovery from MUD in China. The main aim of this study was to test whether 4 weeks of a newly designed computerized cognitive addiction therapy (CCAT) app can improve cognitive impairments, eliminate drug-related attention bias, and attenuate risk decision-making behaviors in participants with MUD. Forty MUD participants were assigned randomly to either the CCAT group (n=20), who received 4 weeks of CCAT plus regular detoxification treatment as usual, or the control group (n=20), who only received the regular detoxification treatment as usual, in drug rehabilitation centers in Shanghai. The CCAT was designed by combine methamphetamine use-related picture stimuli with cognitive training with the aim of improving cognitive function and eliminating drug-related attention bias. The CogState Battery, Delay Discounting Task (DDT), Iowa Gambling Task (IGT), and Balloon Analog Risk Task (BART) were administered face-to-face to all participants before and after CCAT interventions. Forty male patients were recruited. The mean age was 32.70 (SD 5.27) years in the CCAT group and mean 35.05 (SD 8.02) years in the control group. Compared to the control group, CCAT improved working memory in the CCAT group (P=.01). Group×time interactions were observed among DDT, IGT, and BART tasks, with rates of discounting delayed rewards, IGT, and BART scores (P<.001) being reduced among those who received CCAT, whereas no changes were found in the control group. The newly designed CCAT can help to improve cognitive impairment and impulsive control in MUD. Further study is needed to understand the underlying brain mechanisms of the cognitive therapy. ClinicalTrials.gov NCT03318081; https://clinicaltrials.gov/ct2/show/NCT03318081 (Archived by WebCite at https://clinicaltrials.gov/ct2/show/NCT03318081). ©Youwei Zhu, Haifeng Jiang, Hang Su, Na Zhong, Runji Li, Xiaotong Li, Tianzhen Chen, Haoye Tan, Jiang Du, Ding Xu, Huan Yan, Dawen Xu, Min Zhao. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 20.06.2018.

  1. Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development

    PubMed Central

    Cohen, Alexandra O.; Dreyfuss, Michael F. W.; Casey, B. J.

    2016-01-01

    The capacity to suppress inappropriate thoughts, emotions and actions in favor of appropriate ones shows marked changes throughout childhood and adolescence. Most research has focused on pre-frontal circuit development to explain these changes. Yet, subcortical circuitry involving the amygdala and ventral striatum (VS) has been shown to modulate cue-triggered motivated behaviors in rodents. The nature of the interaction between these two subcortical regions in humans is less well understood, especially during development when there appears to be heightened sensitivity to emotional cues. In the current study, we tested how task-based cortico-subcortical and subcortico-subcortical functional connectivity in 155 participants ages from 5 to 32 impacted cognitive control performance on an emotional go/nogo task. Functional connectivity between the amygdala and VS was inversely correlated with age and predicted cognitive control to emotional cues, when controlling for performance to neutral cues. In contrast, increased medial pre-frontal-amygdala connectivity was associated with better cognitive control to emotional cues and this cortical-subcortical connectivity mediated the association between amygdala-VS connectivity and emotional cognitive control. These findings suggest a dissociation in how subcortical-subcortical and cortical-subcortical connectivity impact cognitive control across development. PMID:27445212

  2. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke - A Pilot Study.

    PubMed

    Faria, Ana L; Cameirão, Mónica S; Couras, Joana F; Aguiar, Joana R O; Costa, Gabriel M; Bermúdez I Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  3. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    PubMed Central

    Faria, Ana L.; Cameirão, Mónica S.; Couras, Joana F.; Aguiar, Joana R. O.; Costa, Gabriel M.; Bermúdez i Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device. PMID:29899719

  4. Cognitive Inhibition in Students with and without Dyslexia and Dyscalculia

    ERIC Educational Resources Information Center

    Wang, Li-Chih; Tasi, Hung-Ju; Yang, Hsien-Ming

    2012-01-01

    The present study presents a comparison of the cognitive inhibition abilities of dyslexic, dyscalculic, and control students. The participants were 45 dyslexic students, 45 dyscalculic students, and 45 age-, gender-, and IQ-matched control students. The major evaluation tools included six cognitive inhibition tasks which were restructured during…

  5. A Developmental Window into Trade-offs in Executive Function: The Case of Task Switching versus Response Inhibition in 6-year-olds

    PubMed Central

    Chatham, Christopher H.; Wiseheart, Melody; Munakata, Yuko

    2014-01-01

    Good executive function has been linked to many positive outcomes in academic performance, health, and social competence. However, some aspects of executive function may interfere with other cognitive processes. Childhood provides a unique test case for investigating such cognitive trade-offs, given the dramatic failures and developments observed during this period. For example, most children categorically switch or perseverate when asked to switch between rules on a card-sorting task. To test potential trade-offs with the development of task switching abilities, we compared 6-year-olds who switched versus perseverated in a card-sorting task on two aspects of inhibitory control: response inhibition (via a stop signal task) and interference control (via a Simon task). Across two studies, switchers showed worse response inhibition than perseverators, consistent with the idea of cognitive trade-offs; however, switchers showed better interference control than perseverators, consistent with prior work documenting benefits associated with the development of executive function. This pattern of positive and negative associations may reflect aspects of working memory (active maintenance of current goals, and clearing of prior goals) that help children focused on a single task-goal but hurt in situations with conflicting goals. Implications for understanding components of executive function and their relationships across development are discussed. PMID:24791710

  6. EEG Correlates of Fluctuation in Cognitive Performance in an Air Traffic Control Task

    DTIC Science & Technology

    2014-11-01

    using non-parametric statistical analysis to identify neurophysiological patterns due to the time-on-task effect. Significant changes in EEG power...EEG, Cognitive Performance, Power Spectral Analysis , Non-Parametric Analysis Document is available to the public through the Internet...3 Performance Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 EEG

  7. A new perspective on the interplay between self-control and cognitive performance: Modeling progressive depletion patterns.

    PubMed

    Lindner, Christoph; Nagy, Gabriel; Ramos Arhuis, Wolfgang Andreas; Retelsdorf, Jan

    2017-01-01

    Exerting self-control in a first task weakens self-control performance in a subsequent unrelated task (ego depletion). In self-control research new strategies are required to investigate the ego-depletion effect, which has recently been shown to be more fragile than previously assumed. Moreover, the relation between ego depletion and trait self-control is still unclear, as various studies have reported heterogeneous findings concerning the interplay of both variables. We addressed these lacunas by drawing on a sample of N = 120 students, who participated in two test sessions. In the first test session, we assessed trait self-control and several control variables. The second test session followed an experimental design and tested the effects of ego depletion on invested effort and cognitive performance trajectories in an ecologically valid computer-based assessment setting (i.e., a 30-minute mathematical problem-solving and reasoning test). Trait self-control was then used as a moderator of the ego-depletion effect. Combining an established ego-depletion paradigm (i.e., the sequential-task paradigm) with multilevel modeling of time-on-task and performance changes, our results indicate (1) that trait self-control predicted the motivation to solve cognitive tasks, (2) that ego depletion led to a progressive performance decrease, and (3) that the negative effect of ego depletion on performance was stronger for students with high trait self-control. Additional analyses revealed that our results could not be alternatively explained by fatigue effects. All effects were robust even after controlling for the students' cognitive abilities, which are known to be closely related to mathematical performance. Our results provide evidence that the self-control invested in order to keep performance at a consistently high level wanes over time. By modeling progressive ego-depletion effects while considering trait self-control, we provide an alternative approach that may help future researchers to investigate the underlying mechanisms of self-control.

  8. A new perspective on the interplay between self-control and cognitive performance: Modeling progressive depletion patterns

    PubMed Central

    Nagy, Gabriel; Ramos Arhuis, Wolfgang Andreas; Retelsdorf, Jan

    2017-01-01

    Exerting self-control in a first task weakens self-control performance in a subsequent unrelated task (ego depletion). In self-control research new strategies are required to investigate the ego-depletion effect, which has recently been shown to be more fragile than previously assumed. Moreover, the relation between ego depletion and trait self-control is still unclear, as various studies have reported heterogeneous findings concerning the interplay of both variables. We addressed these lacunas by drawing on a sample of N = 120 students, who participated in two test sessions. In the first test session, we assessed trait self-control and several control variables. The second test session followed an experimental design and tested the effects of ego depletion on invested effort and cognitive performance trajectories in an ecologically valid computer-based assessment setting (i.e., a 30-minute mathematical problem-solving and reasoning test). Trait self-control was then used as a moderator of the ego-depletion effect. Combining an established ego-depletion paradigm (i.e., the sequential-task paradigm) with multilevel modeling of time-on-task and performance changes, our results indicate (1) that trait self-control predicted the motivation to solve cognitive tasks, (2) that ego depletion led to a progressive performance decrease, and (3) that the negative effect of ego depletion on performance was stronger for students with high trait self-control. Additional analyses revealed that our results could not be alternatively explained by fatigue effects. All effects were robust even after controlling for the students’ cognitive abilities, which are known to be closely related to mathematical performance. Our results provide evidence that the self-control invested in order to keep performance at a consistently high level wanes over time. By modeling progressive ego-depletion effects while considering trait self-control, we provide an alternative approach that may help future researchers to investigate the underlying mechanisms of self-control. PMID:28662176

  9. Assessment of planning abilities in individuals with mild cognitive impairment using an open-ended problem-solving task.

    PubMed

    Sanders, Chad; Low, Christina; Schmitter-Edgecombe, Maureen

    2014-01-01

    There is currently limited research evaluating planning abilities, a core subcomponent of executive functioning, in individuals with mild cognitive impairment (MCI). In the present study, we utilized the "Amap Task," an open-ended problem-solving task, to separately evaluate the formulation and execution components of planning ability in individuals with MCI. Thirty-seven cognitively healthy older adults and 37 individuals with MCI used a map layout of a university apartment to develop and write out a strategy (formulation stage) to successfully complete a list of tasks (e.g., retrieve and fill a water pitcher before placing it in the refrigerator). Subsequently, participants carried out the tasks in the apartment with the aid of their formulated plan (execution stage). MCI participants performed more poorly than older adult (OA) controls during both the formulation and execution stages on measures of task accuracy and task efficiency. However, both groups were able to adjust and improve task accuracy and efficiency from formulation to task execution. Finally, MCI participants took significantly longer to complete the task and adhered less to their formulated plans during task completion. Using an open-ended problem-solving task, the findings revealed that individuals with MCI experienced difficulties with both the formulation and execution components of planning. Like controls, participants with MCI were able to successfully modify their plan online, improving their performance from task formulation to task execution.

  10. Cognitive Resources Necessary for Motor Control in Older Adults Are Reduced by Walking and Coordination Training

    PubMed Central

    Godde, Ben; Voelcker-Rehage, Claudia

    2017-01-01

    We examined if physical exercise interventions were effective to reduce cognitive brain resources recruited while performing motor control tasks in older adults. Forty-three older adults (63–79 years of age) participated in either a walking (n = 17) or a motor coordination (n = 15) intervention (1 year, 3 times per week) or were assigned to a control group (n = 11) doing relaxation and stretching exercises. Pre and post the intervention period, we applied functional MRI to assess brain activation during imagery of forward and backward walking and during counting backwards from 100 as control task. In both experimental groups, activation in the right dorsolateral prefrontal cortex (DLPFC) during imagery of forward walking decreased from pre- to post-test (Effect size: −1.55 and −1.16 for coordination and walking training, respectively; Cohen’s d). Regression analysis revealed a significant positive association between initial motor status and activation change in the right DLPFC (R2 = 0.243, F(3,39) = 4.18, p = 0.012). Participants with lowest motor status at pretest profited most from the interventions. Data suggest that physical training in older adults is effective to free up cognitive resources otherwise needed for the control of locomotion. Training benefits may become particularly apparent in so-called dual-task situations where subjects must perform motor and cognitive tasks concurrently. PMID:28443006

  11. The use of a cognitive task analysis-based multimedia program to teach surgical decision making in flexor tendon repair.

    PubMed

    Luker, Kali R; Sullivan, Maura E; Peyre, Sarah E; Sherman, Randy; Grunwald, Tiffany

    2008-01-01

    The aim of this study was to compare the surgical knowledge of residents before and after receiving a cognitive task analysis-based multimedia teaching module. Ten plastic surgery residents were evaluated performing flexor tendon repair on 3 occasions. Traditional learning occurred between the first and second trial and served as the control. A teaching module was introduced as an intervention between the second and third trial using cognitive task analysis to illustrate decision-making skills. All residents showed improvement in their decision-making ability when performing flexor tendon repair after each surgical procedure. The group improved through traditional methods as well as exposure to our talk-aloud protocol (P > .01). After being trained using the cognitive task analysis curriculum the group displayed a statistically significant knowledge expansion (P < .01). Residents receiving cognitive task analysis-based multimedia surgical curriculum instruction achieved greater command of problem solving and are better equipped to make correct decisions in flexor tendon repair.

  12. Consequences of Learned Helplessness and Recognition of the State of Cognitive Exhaustion in Persons with Mild Intellectual Disability

    PubMed Central

    Gacek, Michał; Smoleń, Tomasz; Pilecka, Władysława

    2017-01-01

    Persons with intellectual disability are a group at risk of being exposed to overly demanding problem-solving situations, which may produce learned helplessness. The research was based on the informational model of learned helplessness. The consequences of exposure to an unsolvable task and the ability to recognize the symptoms of cognitive exhaustion were tested in 120 students with mild intellectual disability. After the exposure to the unsolvable task, persons in the experimental group obtained lower results than the control group in the escape/avoidance learning task, but a similar result was found in the divergent thinking fluency task. Also, participants in the experimental group had difficulties recognizing the symptoms of the cognitive exhaustion state. After a week’s time, the difference in escape/avoidance learning performance was still observed. The results indicate that exposure to unsolvable tasks may negatively influence the cognitive performance in persons with intellectual disability, although those persons may not identify the cognitive state related to lowered performance. PMID:28479937

  13. Consequences of Learned Helplessness and Recognition of the State of Cognitive Exhaustion in Persons with Mild Intellectual Disability.

    PubMed

    Gacek, Michał; Smoleń, Tomasz; Pilecka, Władysława

    2017-01-01

    Persons with intellectual disability are a group at risk of being exposed to overly demanding problem-solving situations, which may produce learned helplessness . The research was based on the informational model of learned helplessness. The consequences of exposure to an unsolvable task and the ability to recognize the symptoms of cognitive exhaustion were tested in 120 students with mild intellectual disability. After the exposure to the unsolvable task, persons in the experimental group obtained lower results than the control group in the escape/avoidance learning task, but a similar result was found in the divergent thinking fluency task. Also, participants in the experimental group had difficulties recognizing the symptoms of the cognitive exhaustion state. After a week's time, the difference in escape/avoidance learning performance was still observed. The results indicate that exposure to unsolvable tasks may negatively influence the cognitive performance in persons with intellectual disability, although those persons may not identify the cognitive state related to lowered performance.

  14. Evaluating the Specificity of Cognitive Control Deficits in Schizophrenia Using Antisaccades, Functional Magnetic Resonance Imaging, and Healthy Individuals With Poor Cognitive Control.

    PubMed

    Rodrigue, Amanda L; Schaeffer, David J; Pierce, Jordan E; Clementz, Brett A; McDowell, Jennifer E

    2018-01-01

    Cognitive control impairments in schizophrenia (SZ) can be evaluated using antisaccade tasks and functional magnetic resonance imaging (fMRI). Studies, however, often compare people with SZ to high performing healthy people, making it unclear if antisaccade-related disruptions are specific to the disease or due to generalized deficits in cognitive control. We included two healthy comparison groups in addition to people with SZ: healthy people with high cognitive control (HCC), who represent a more typical comparison group, and healthy people with low cognitive control (LCC), who perform similarly on antisaccade measures as people with SZ. Using two healthy comparison groups may help determine which antisaccade-related deficits are specific to SZ (distinguish SZ from LCC and HCC groups) and which are due to poor cognitive control (distinguish the LCC and SZ groups from the HCC group). People with SZ and healthy people with HCC or LCC performed an antisaccade task during fMRI acquisition. LCC and SZ groups showed under-activation of saccade circuitry. SZ-specific disruptions were observed in the left superior temporal gyrus and insula during error trials (suppression of activation in the SZ group compared to the LCC and HCC group). Differences related to antisaccade errors may distinguish people with SZ from healthy people with LCC.

  15. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian

    2015-03-01

    Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.

  16. Abnormalities of the executive control network in multiple sclerosis phenotypes: An fMRI effective connectivity study.

    PubMed

    Dobryakova, Ekaterina; Rocca, Maria Assunta; Valsasina, Paola; Ghezzi, Angelo; Colombo, Bruno; Martinelli, Vittorio; Comi, Giancarlo; DeLuca, John; Filippi, Massimo

    2016-06-01

    The Stroop interference task is a cognitively demanding task of executive control, a cognitive ability that is often impaired in patients with multiple sclerosis (MS). The aim of this study was to compare effective connectivity patterns within a network of brain regions involved in the Stroop task performance between MS patients with three disease clinical phenotypes [relapsing-remitting (RRMS), benign (BMS), and secondary progressive (SPMS)] and healthy subjects. Effective connectivity analysis was performed on Stroop task data using a novel method based on causal Bayes networks. Compared with controls, MS phenotypes were slower at performing the task and had reduced performance accuracy during incongruent trials that required increased cognitive control. MS phenotypes also exhibited connectivity abnormalities reflected as weaker shared connections, presence of extra connections (i.e., connections absent in the HC connectivity pattern), connection reversal, and loss. In SPMS and the BMS groups but not in the RRMS group, extra connections were associated with deficits in the Stroop task performance. In the BMS group, the response time associated with correct responses during the congruent condition showed a positive correlation with the left posterior parietal → dorsal anterior cingulate connection. In the SPMS group, performance accuracy during the congruent condition showed a negative correlation with the right insula → left insula connection. No associations between extra connections and behavioral performance measures were observed in the RRMS group. These results suggest that, depending on the phenotype, patients with MS use different strategies when cognitive control demands are high and rely on different network connections. Hum Brain Mapp, 37:2293-2304, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Cognitive and affective control in a flanker word task: common and dissociable brain mechanisms.

    PubMed

    Alguacil, Sonia; Tudela, Pío; Ruz, María

    2013-08-01

    In the present study we compared the nature of cognitive and affective conflict modulations at different stages of information processing using electroencephalographic recordings. Participants performed a flanker task in which they had to focus on a central word target and indicate its semantic category (cognitive version) or its valence (affective version). Targets were flanked by congruent or incongruent words in both versions. Although tasks were equivalent at the behavioral level, event-related potentials (ERPs) showed common and dissociable cognitive and emotional conflict modulations. At early stages of information processing, both tasks generated parallel sequential conflict effects in the P1 and N170 potentials. Later, the N2 and the first part of the P3 wave were exclusively modulated by cognitive conflict, whereas the last section of the P3 deflection/Late Positive Component (LPC) was only involved in affective current conflict processing. Therefore, the whole data set suggests the existence of early common mechanisms that are equivalent for cognitive and affective materials and later task-specific conflict processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms

    PubMed Central

    Takács, Ádám

    2017-01-01

    Response inhibition is frequently measured by the Go/no-go and Stop-signal tasks. These two are often used indiscriminately under the assumption that both measure similar inhibitory control abilities. However, accumulating evidence show differences in both tasks' modulations, raising the question of whether they tap into equivalent cognitive mechanisms. In the current study, a comparison of the performance in both tasks took place under the influence of negative stimuli, following the assumption that ''controlled inhibition'', as measured by Stop-signal, but not ''automatic inhibition'', as measured by Go/no-go, will be affected. 54 young adults performed a task in which negative pictures, neutral pictures or no-pictures preceded go trials, no-go trials, and stop-trials. While the exposure to negative pictures impaired performance on go trials and improved the inhibitory capacity in Stop-signal task, the inhibitory performance in Go/no-go task was generally unaffected. The results support the conceptualization of different mechanisms operated by both tasks, thus emphasizing the necessity to thoroughly fathom both inhibitory processes and identify their corresponding cognitive measures. Implications regarding the usage of cognitive tasks for strengthening inhibitory capacity among individuals struggling with inhibitory impairments are discussed. PMID:29065184

  19. Cognitive rigidity in unipolar depression and obsessive compulsive disorder: examination of task switching, Stroop, working memory updating and post-conflict adaptation.

    PubMed

    Meiran, Nachshon; Diamond, Gary M; Toder, Doron; Nemets, Boris

    2011-01-30

    Obsessive compulsive disorder (OCD) and depressive rumination are both characterized by cognitive rigidity. We examined the performance of 17 patients (9 suffering from unipolar depression [UD] without OCD, and 8 suffering from OCD without UD), and 17 control participants matched on age, gender, language and education, on a battery covering the four main executive functions. Results indicated that, across both disorders, patients required more trials to adjust to single-task conditions after experiencing task switching, reflecting slow disengagement from switching mode, and showed abnormal post-conflict adaptation of processing mode following high conflict Stroop trials in comparison to controls. Rumination, which was elevated in UD and not in OCD, was associated with poor working memory updating and less task preparation. The results show that OCD and UD are associated with similar cognitive rigidity in the presently tested paradigms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Distinct alterations in value-based decision-making and cognitive control in suicide attempters: toward a dual neurocognitive model.

    PubMed

    Richard-Devantoy, Stéphane; Olié, Emilie; Guillaume, Sébastien; Bechara, Antoine; Courtet, Philippe; Jollant, Fabrice

    2013-12-01

    The literature suggests that many suicide attempters show impairment in both decision-making and cognitive control. However, it is not clear if these deficits are linked to each other, and if they may be related to more basic alterations in attention. This is a relevant question in the perspective of future interventions targeting cognitive deficits to prevent suicidal acts. Two different populations of patients with histories of suicide attempts were assessed (N=142 and 119). The Iowa Gambling Task (IGT) was used to measure decision-making in both populations. We used a D2 cancellation task and a verbal working memory task in population 1; the Stroop test, the N-Back task, the Trail Making Test, and the Hayling Sentence Completion test in population 2. Regarding decision-making, we only found a small negative correlation between the Hayling test error score (r=-0.24; p=0.01), and the net score from the second half of the IGT. In contrast, working memory, cognitive flexibility and cognitive inhibition measures were largely inter-correlated. Most patients were medicated. Only patients with mood disorders. These results add to previous findings suggesting that the neurocognitive vulnerability to suicidal behavior may rely on impairments in two distinct anatomical systems, one processing value-based decision-making (associated with ventral prefrontal cortex, among others) and one underlying cognitive control (associated with more dorsal prefrontal regions). This distinction may result in tailored-made cognitive interventions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Is there a cognitive signature for MS-related fatigue?

    PubMed

    Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut

    2015-04-01

    The compensatory approach of fatigue argues that it is a state caused by task load. The neuropsychiatric approach argues that fatigue is a trait (like depression), unrelated to environmental challenges. We propose that fatigue is an internal state that can be measured behaviorally only by applying specific cognitive tasks. PubMed was searched for articles concerning the relation between fatigue and cognitive performance or brain atrophy or functional MRI, distinguishing between the following cognitive domains: learning/memory, cognitive speed/selective attention, language, visuospatial processing, working memory, alerting/vigilance. Only tasks assessing alerting/vigilance are strongly related to fatigue. Areas with brain atrophy in fatigue patients overlap with brain regions activated in healthy controls performing alerting/vigilance tasks. Fatigue is not a compensatory state, nor a psychogenic trait. It is a feeling with behavioral effects that seems to be caused by brain atrophy or a neurochemical dysfunction of the alerting/vigilance system. © The Author(s), 2014.

  2. Evaluation of a novel Serious Game based assessment tool for patients with Alzheimer's disease.

    PubMed

    Vallejo, Vanessa; Wyss, Patric; Rampa, Luca; Mitache, Andrei V; Müri, René M; Mosimann, Urs P; Nef, Tobias

    2017-01-01

    Despite growing interest in developing ecological assessment of difficulties in patients with Alzheimer's disease new methods assessing the cognitive difficulties related to functional activities are missing. To complete current evaluation, the use of Serious Games can be a promising approach as it offers the possibility to recreate a virtual environment with daily living activities and a precise and complete cognitive evaluation. The aim of the present study was to evaluate the usability and the screening potential of a new ecological tool for assessment of cognitive functions in patients with Alzheimer's disease. Eighteen patients with Alzheimer's disease and twenty healthy controls participated to the study. They were asked to complete six daily living virtual tasks assessing several cognitive functions: three navigation tasks, one shopping task, one cooking task and one table preparation task following a one-day scenario. Usability of the game was evaluated through a questionnaire and through the analysis of the computer interactions for the two groups. Furthermore, the performances in terms of time to achieve the task and percentage of completion on the several tasks were recorded. Results indicate that both groups subjectively found the game user friendly and they were objectively able to play the game without computer interactions difficulties. Comparison of the performances between the two groups indicated a significant difference in terms of percentage of achievement of the several tasks and in terms of time they needed to achieve the several tasks. This study suggests that this new Serious Game based assessment tool is a user-friendly and ecological method to evaluate the cognitive abilities related to the difficulties patients can encounter in daily living activities and can be used as a screening tool as it allowed to distinguish Alzheimer's patient's performance from healthy controls.

  3. Creativity on tap? Effects of alcohol intoxication on creative cognition.

    PubMed

    Benedek, Mathias; Panzierer, Lisa; Jauk, Emanuel; Neubauer, Aljoscha C

    2017-11-01

    Anecdotal reports link alcohol intoxication to creativity, while cognitive research highlights the crucial role of cognitive control for creative thought. This study examined the effects of mild alcohol intoxication on creative cognition in a placebo-controlled design. Participants completed executive and creative cognition tasks before and after consuming either alcoholic beer (BAC of 0.03) or non-alcoholic beer (placebo). Alcohol impaired executive control, but improved performance in the Remote Associates Test, and did not affect divergent thinking ability. The findings indicate that certain aspects of creative cognition benefit from mild attenuations of cognitive control, and contribute to the growing evidence that higher cognitive control is not always associated with better cognitive performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Costs and benefits linked to developments in cognitive control.

    PubMed

    Blackwell, Katharine A; Munakata, Yuko

    2014-03-01

    Developing cognitive control over one's thoughts, emotions, and actions is a fundamental process that predicts important life outcomes. Such control begins in infancy, and shifts during development from a predominantly reactive form (e.g. retrieving task-relevant information when needed) to an increasingly proactive form (e.g. maintaining task-relevant information in anticipation of needing it). While such developments are generally viewed as adaptive, cognitive abilities can also involve trade-offs, such that the benefits of developing increasingly proactive control may come with associated costs. In two experiments, we test for such cognitive trade-offs in children who are transitioning to proactive control. We find that proactive control predicts expected benefits in children's working memory, but is also associated with predicted costs in disproportionately slowing children under conditions of distraction. These findings highlight unique advantages and disadvantages of proactive and reactive control, and suggest caution in attempting to alter their balance during development. © 2013 John Wiley & Sons Ltd.

  5. Neural signature of reward-modulated unconscious inhibitory control.

    PubMed

    Diao, Liuting; Qi, Senqing; Xu, Mengsi; Li, Zhiai; Ding, Cody; Chen, Antao; Zheng, Yan; Yang, Dong

    2016-09-01

    Consciously initiated cognitive control is generally determined by motivational incentives (e.g., monetary reward). Recent studies have revealed that human cognitive control processes can nevertheless operate without awareness. However, whether monetary reward can impinge on unconscious cognitive control remains unclear. To clarify this issue, a task consisting of several runs was designed to combine a modified version of the reward-priming paradigm with an unconscious version of the Go/No-Go task. At the beginning of each run, participants were exposed to a high- or low-value coin, followed by the modified Go/No-Go task. Participants could earn the coin only if they responded correctly to each trial of the run. Event-related potential (ERP) results indicated that high-value rewards (vs. low-value rewards) induced a greater centro-parietal P3 component associated with conscious and unconscious inhibitory control. Moreover, the P3 amplitude correlated positively with the magnitude of reaction time slowing reflecting the intensity of activation of unconscious inhibitory control in the brain. These findings suggest that high-value reward may facilitate human higher-order inhibitory processes that are independent of conscious awareness, which provides insights into the brain processes that underpin motivational modulation of cognitive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pilot study of cognition in children with unilateral hearing loss.

    PubMed

    Ead, Banan; Hale, Sandra; DeAlwis, Duneesha; Lieu, Judith E C

    2013-11-01

    The objective of this study was to obtain preliminary data on the cognitive function of children with unilateral hearing loss in order to identify, quantify, and interpret differences in cognitive and language functions between children with unilateral hearing loss and with normal hearing. Fourteen children ages 9-14 years old (7 with severe-to-profound sensorineural unilateral hearing loss and 7 sibling controls with normal hearing) were administered five tests that assessed cognitive functions of working memory, processing speed, attention, and phonological processing. Mean composite scores for phonological processing were significantly lower for the group with unilateral hearing loss than for controls on one composite and four subtests. The unilateral hearing loss group trended toward worse performance on one additional composite and on two additional phonological processing subtests. The unilateral hearing loss group also performed worse than the control group on the complex letter span task. Analysis examining performance on the two levels of task difficulty revealed a significant main effect of task difficulty and an interaction between task difficulty and group. Cognitive function and phonological processing test results suggest two related deficits associated with unilateral hearing loss: (1) reduced accuracy and efficiency associated with phonological processing, and (2) impaired executive control function when engaged in maintaining verbal information in the face of processing incoming, irrelevant verbal information. These results provide a possible explanation for the educational difficulties experienced by children with unilateral hearing loss. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Decision-Making in Multiple Sclerosis Patients: A Systematic Review.

    PubMed

    Neuhaus, Mireille; Calabrese, Pasquale; Annoni, Jean-Marie

    2018-01-01

    Multiple sclerosis (MS) is frequently associated with cognitive and behavioural deficits. A growing number of studies suggest an impact of MS on decision-making abilities. The aim of this systematic review was to assess if (1) performance of MS patients in decision-making tasks was consistently different from controls and (2) whether this modification was associated with cognitive dysfunction and emotional alterations. The search was conducted on Pubmed/Medline database. 12 studies evaluating the difference between MS patients and healthy controls using validated decision-making tasks were included. Outcomes considered were quantitative (net scores) and qualitative measurements (deliberation time and learning from feedback). Quantitative and qualitative decision-making impairment in MS was present in 64.7% of measurements. Patients were equally impaired in tasks for decision-making under risk and ambiguity. A correlation to other cognitive functions was present in 50% of cases, with the highest associations in the domains of processing speed and attentional capacity. In MS patients, qualitative and quantitative modifications may be present in any kind of decision-making task and can appear independently of other cognitive measures. Since decision-making abilities have a significant impact on everyday life, this cognitive aspect has an influential importance in various MS-related treatment settings.

  8. Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs.

    PubMed

    Nashiro, Kaoru; Qin, Shuo; O'Connell, Margaret A; Basak, Chandramallika

    2018-05-15

    It is well documented that older adults recruit additional brain regions compared to those recruited by younger adults while performing a wide variety of cognitive tasks. However, it is unclear how such age-related over-recruitment interacts with different types of cognitive control, and whether this over-recruitment is compensatory. To test this, we used a multitasking paradigm, which allowed us to examine age-related over-activation associated with three types of cognitive costs (i.e., global switch, local switch, compatibility-switch costs). We found age-related impairments in global switch cost (GSC), evidenced by slower response times for maintaining and coordinating two tasks vs. performing only one task. However, no age-related declines were observed in either local switch cost (LSC), a cognitive cost associated with switching between the two tasks while maintaining two task loads, or compatibility-switch cost (CSC), a cognitive cost associated with incompatible vs. compatible stimulus-response mappings across the two tasks. The fMRI analyses allowed for identification of distinct cognitive cost-sensitive brain regions associated with GSC and LSC. In fronto-parietal GSC and LSC regions, older adults' increased activations were associated with poorer performance (greater costs), whereas a reverse relationship was observed in younger adults. Older adults also recruited additional fronto-parietal brain regions outside the cognitive cost-sensitive areas, which was associated with poorer performance or no behavioral benefits. Our results suggest that older adults exhibit a combination of inefficient activation within cognitive cost-sensitive regions, specifically the GSC and LSC regions, and non-compensatory over-recruitment in age-sensitive regions. Age-related declines in global switching, compared to local switching, was observed earlier in old age at both neural and behavioral levels. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Long-Term Aftereffects of Response Inhibition: Memory Retrieval, Task Goals, and Cognitive Control

    ERIC Educational Resources Information Center

    Verbruggen, Frederick; Logan, Gordon D.

    2008-01-01

    Cognitive control theories attribute control to executive processes that adjust and control behavior online. Theories of automaticity attribute control to memory retrieval. In the present study, online adjustments and memory retrieval were examined, and their roles in controlling performance in the stop-signal paradigm were elucidated. There was…

  10. Working memory span in mild cognitive impairment. Influence of processing speed and cognitive reserve.

    PubMed

    Facal, David; Juncos-Rabadán, Onésimo; Pereiro, Arturo X; Lojo-Seoane, Cristina

    2014-04-01

    Mild cognitive impairment (MCI) often includes episodic memory impairment, but can also involve other types of cognitive decline. Although previous studies have shown poorer performance of MCI patients in working memory (WM) span tasks, different MCI subgroups were not studied. In the present exploratory study, 145 participants underwent extensive cognitive evaluation, which included three different WM span tasks, and were classified into the following groups: multiple-domain amnestic MCI (mda-MCI), single-domain amnestic MCI (sda-MCI), and controls. General linear model was conducted by considering the WM span tasks as the within-subject factor; the group (mda-MCI, sda-MCI, and controls) as the inter-subject factor; and processing speed, vocabulary and age as covariates. Multiple linear regression models were also used to test the influence of processing speed, vocabulary, and other cognitive reserve (CR) proxies. Results indicate different levels of impairment of WM, with more severe impairment in mda-MCI patients. The differences were still present when processing resources and CR were controlled. Between-group differences can be understood as a manifestation of the greater severity and widespread memory impairment in mda-MCI patients and may contribute to a better understanding of continuum from normal controls to mda-MCI patients. Processing speed and CR have a limited influence on WM scores, reducing but not removing differences between groups.

  11. The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control.

    PubMed

    O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H

    2011-08-01

    The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Exploring the association between working memory and driving performance in Parkinson's disease.

    PubMed

    Vardaki, Sophia; Devos, Hannes; Beratis, Ion; Yannis, George; Papageorgiou, Sokratis G

    2016-05-18

    The aim of this study was to explore whether varying levels of operational and tactical driving task demand differentially affect drivers with Parkinson's disease (PD) and control drivers in their sign recall. Study participants aged between 50 and 70 years included a group of drivers with PD (n = 10) and a group of age- and sex-matched control drivers (n = 10). Their performance in a sign recall task was measured using a driving simulator. Drivers in the control group performed better than drivers with PD in a sign recall task, but this trend was not statistically significant (P =.43). In addition, regardless of group membership, subjects' performance differed according to varying levels of task demand. Performance in the sign recall task was more likely to drop with increasing task demand (P =.03). This difference was significant when the variation in task demand was associated with a cognitive task; that is, when drivers were required to apply the instructions from working memory. Although the conclusions drawn from this study are tentative, the evidence presented here is encouraging with regard to the use of a driving simulator to examine isolated cognitive functions underlying driving performance in PD. With an understanding of its limitations, such driving simulation in combination with functional assessment batteries measuring physical, visual, and cognitive abilities could comprise one component of a multitiered system to evaluate medical fitness to drive.

  13. Divided visual attention: A comparison of patients with multiple sclerosis and controls, assessed with an optokinetic nystagmus suppression task.

    PubMed

    Williams, Isla M; Schofield, Peter; Khade, Neha; Abel, Larry A

    2016-12-01

    Multiple sclerosis (MS) frequently causes impairment of cognitive function. We compared patients with MS with controls on divided visual attention tasks. The MS patients' and controls' stare optokinetic nystagmus (OKN) was recorded in response to a 24°/s full field stimulus. Suppression of the OKN response, judged by the gain, was measured during tasks dividing visual attention between the fixation target and a second stimulus, central or peripheral, static or dynamic. All participants completed the Audio Recorded Cognitive Screen. MS patients had lower gain on the baseline stare OKN. OKN suppression in divided attention tasks was the same in MS patients as in controls but in both groups was better maintained in static than in dynamic tasks. In only dynamic tasks, older age was associated with less effective OKN suppression. MS patients had lower scores on a timed attention task and on memory. There was no significant correlation between attention or memory and eye movement parameters. Attention, a complex multifaceted construct, has different neural combinations for each task. Despite impairments on some measures of attention, MS patients completed the divided visual attention tasks normally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cue Utilization and Cognitive Load in Novel Task Performance

    PubMed Central

    Brouwers, Sue; Wiggins, Mark W.; Helton, William; O’Hare, David; Griffin, Barbara

    2016-01-01

    This study was designed to examine whether differences in cue utilization were associated with differences in performance during a novel, simulated rail control task, and whether these differences reflected a reduction in cognitive load. Two experiments were conducted, the first of which involved the completion of a 20-min rail control simulation that required participants to re-route trains that periodically required a diversion. Participants with a greater level of cue utilization recorded a consistently greater response latency, consistent with a strategy that maintained accuracy, but reduced the demands on cognitive resources. In the second experiment, participants completed the rail task, during which a concurrent, secondary task was introduced. The results revealed an interaction, whereby participants with lesser levels of cue utilization recorded an increase in response latency that exceeded the response latency recorded for participants with greater levels of cue utilization. The relative consistency of response latencies for participants with greater levels of cue utilization, across all blocks, despite the imposition of a secondary task, suggested that those participants with greater levels of cue utilization had adopted a strategy that was effectively minimizing the impact of additional sources of cognitive load on their performance. PMID:27064669

  15. Functional Connectivity in Brain Networks Underlying Cognitive Control in Chronic Cannabis Users

    PubMed Central

    Harding, Ian H; Solowij, Nadia; Harrison, Ben J; Takagi, Michael; Lorenzetti, Valentina; Lubman, Dan I; Seal, Marc L; Pantelis, Christos; Yücel, Murat

    2012-01-01

    The long-term effect of regular cannabis use on brain function underlying cognitive control remains equivocal. Cognitive control abilities are thought to have a major role in everyday functioning, and their dysfunction has been implicated in the maintenance of maladaptive drug-taking patterns. In this study, the Multi-Source Interference Task was employed alongside functional magnetic resonance imaging and psychophysiological interaction methods to investigate functional interactions between brain regions underlying cognitive control. Current cannabis users with a history of greater than 10 years of daily or near-daily cannabis smoking (n=21) were compared with age, gender, and IQ-matched non-using controls (n=21). No differences in behavioral performance or magnitude of task-related brain activations were evident between the groups. However, greater connectivity between the prefrontal cortex and the occipitoparietal cortex was evident in cannabis users, as compared with controls, as cognitive control demands increased. The magnitude of this connectivity was positively associated with age of onset and lifetime exposure to cannabis. These findings suggest that brain regions responsible for coordinating behavioral control have an increased influence on the direction and switching of attention in cannabis users, and that these changes may have a compensatory role in mitigating cannabis-related impairments in cognitive control or perceptual processes. PMID:22534625

  16. Reward favours the prepared: incentive and task-informative cues interact to enhance attentional control

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2015-01-01

    The dual mechanisms of control account suggests that cognitive control may be implemented through relatively proactive mechanisms in anticipation of stimulus onset, or through reactive mechanisms, triggered in response to changing stimulus demands. Reward incentives and task-informative cues (signaling the presence/absence of upcoming cognitive demand) have both been found to influence cognitive control in a proactive or preparatory fashion; yet, it is currently unclear whether and how such cue effects interact. We investigated this in two experiments using an adapted flanker paradigm, where task-informative and reward incentive cues were orthogonally manipulated on a trial-by-trial basis. In Experiment 1, results indicated that incentives not only speed RTs, but specifically reduce both interference and facilitation effects when combined with task-informative cues, suggesting enhanced proactive attentional control. Experiment 2 manipulated the timing of incentive cue information, demonstrating that such proactive control effects were only replicated with sufficient time to process the incentive cue (Early Incentive); when incentive signals were presented close to target onset (Late Incentive) the primary effect was a speed-accuracy tradeoff. Together, results suggest that advance cueing may trigger differing control strategies, and that these strategies may critically depend on both the timing – and the motivational incentive – to use such cues. PMID:26322689

  17. Controlling the stream of thought: working memory capacity predicts adjustment of mind-wandering to situational demands.

    PubMed

    Rummel, Jan; Boywitt, C Dennis

    2014-10-01

    Although engaging in task-unrelated thoughts can be enjoyable and functional under certain circumstances, allowing one's mind to wander off-task will come at a cost to performance in many situations. Given that task-unrelated thoughts need to be blocked out when the current task requires full attention, it has been argued that cognitive control is necessary to prevent mind-wandering from becoming maladaptive. Extending this idea, we exposed participants to tasks of different demands and assessed mind-wandering via thought probes. Employing a latent-change model, we found mind-wandering to be adjusted to current task demands. As hypothesized, the degree of adjustment was predicted by working memory capacity, indicating that participants with higher working memory capacity were more flexible in their coordination of on- and off-task thoughts. Notably, the better the adjustment, the smaller performance decrements due to increased task demands were. On the basis of these findings, we argue that cognitive control does not simply allow blocking out task-unrelated thoughts but, rather, allows one to flexibly adjust mind-wandering to situational demands.

  18. Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer's disease: a controlled trial.

    PubMed

    de Andrade, Larissa P; Gobbi, Lilian T B; Coelho, Flávia G M; Christofoletti, Gustavo; Costa, José L Riani; Stella, Florindo

    2013-11-01

    To verify the effects of a systematized multimodal exercise intervention program on frontal cognitive function, postural control, and functional capacity components of individuals with Alzheimer's disease (AD). Nonrandomized controlled trial with pre- and posttraining tests in a training group and a control group. Kinesiotherapy program for seniors with AD, São Paulo State University. Convenience sample of older adults with AD (n = 30) were assigned to a training (n = 14; aged 78.6 ± 7.1) and a control (n = 16; aged 77.0 ± 6.3) group. The intervention program was structured with the aim of simultaneously promoting better balance and frontal cognitive capacity. The participants attended a 1-hour session three times a week for 16 weeks, whereas the control group did not participate in any activity during the same period. Frontal cognitive function was evaluated using the Montreal Cognitive Assessment, the Clock Drawing Test, the Frontal Assessment Battery, and the Symbol Search Subtest. Postural control (center of pressure area) was analyzed under four dual-task conditions. Functional capacity components were analyzed using the Timed Up and Go Test, the 30-second sit-to-stand test, the sit-and-reach test, and the Berg Functional Balance Scale. Intervention group participants showed a significant increase in frontal cognitive function (P < .001, partial η(2) = 0.838), with less body sway (P = .04, partial η(2) = 0.04) during the dual tasks, and greater functional capacity (P = .001, partial η(2) = 0.676) after the 16-week period. Intervention participants performed better on dual-task activities and had better postural balance and greater functional capacity than controls. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  19. III. The importance of physical activity and aerobic fitness for cognitive control and memory in children.

    PubMed

    Chaddock-Heyman, Laura; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F

    2014-12-01

    In this chapter, we review literature that examines the association among physical activity, aerobic fitness, cognition, and the brain in elementary school children (ages 7-10 years). Specifically, physical activity and higher levels of aerobic fitness in children have been found to benefit brain structure, brain function, cognition, and school achievement. For example, higher fit children have larger brain volumes in the basal ganglia and hippocampus, which relate to superior performance on tasks of cognitive control and memory, respectively, when compared to their lower fit peers. Higher fit children also show superior brain function during tasks of cognitive control, better scores on tests of academic achievement, and higher performance on a real-world street crossing task, compared to lower fit and less active children. The cross-sectional findings are strengthened by a few randomized, controlled trials, which demonstrate that children randomly assigned to a physical activity intervention group show greater brain and cognitive benefits compared to a control group. Because these findings suggest that the developing brain is plastic and sensitive to lifestyle factors, we also discuss typical structural and functional brain maturation in children to provide context in which to interpret the effects of physical activity and aerobic fitness on the developing brain. This research is important because children are becoming increasingly sedentary, physically inactive, and unfit. An important goal of this review is to emphasize the importance of physical activity and aerobic fitness for the cognitive and brain health of today's youth. © 2014 The Society for Research in Child Development, Inc.

  20. Aerobic Exercise Improves Mood, Cognition, and Language Function in Parkinson's Disease: Results of a Controlled Study.

    PubMed

    Altmann, Lori J P; Stegemöller, Elizabeth; Hazamy, Audrey A; Wilson, Jonathan P; Bowers, Dawn; Okun, Michael S; Hass, Chris J

    2016-10-01

    Parkinson's disease (PD) results in a range of non-motor deficits that can affect mood, cognition, and language, and many of these issues are unresponsive to pharmacological intervention. Aerobic exercise can improve mood and cognition in healthy older adults, although only a few studies have examined exercise effects on these domains in PD. The current study assesses the effects of aerobic exercise on aspects of cognition, mood, and language production in people with PD. This study compares the effects of aerobic exercise to stretch-balance training and a no-contact control group in participants with idiopathic PD. The aerobic and stretch-balance groups trained three times a week for 16 weeks, while controls continued normal activities. Outcome measures included disease severity, mood, cognition (speed of processing, memory, and executive function), and language production (picture descriptions). Cognition and language were assessed in single and dual task conditions. Depressive symptoms increased only in the control group (p<.02). Executive function improved in the aerobic exercise group only in the single task (p=.007) and declined in controls in the dual task. Completeness of picture descriptions improved significantly more in the aerobic group than in the stretch-balance group (p<.02). Aerobic exercise is a viable intervention for PD that can be protective against increased depressive symptoms, and can improve several non-motor domains, including executive dysfunction and related aspects of language production. (JINS, 2016, 22, 878-889).

  1. Adolescent social defeat decreases spatial working memory performance in adulthood.

    PubMed

    Novick, Andrew M; Miiller, Leah C; Forster, Gina L; Watt, Michael J

    2013-10-17

    Adolescent social stress is associated with increased incidence of mental illnesses in adulthood that are characterized by deficits in cognitive focus and flexibility. Such enhanced vulnerability may be due to psychosocial stress-induced disruption of the developing mesocortical dopamine system, which plays a fundamental role in facilitating complex cognitive processes such as spatial working memory. Adolescent rats exposed to repeated social defeat as a model of social stress develop dopaminergic hypofunction in the medial prefrontal cortex as adults. To evaluate a direct link between adolescent social stress and later deficits in cognitive function, the present study tested the effects of adolescent social defeat on two separate tests of spatial working memory performance. Adult rats exposed to adolescent social defeat and their controls were trained on either the delayed win-shift task or the delayed alternating T-Maze task and then challenged with various delay periods. To evaluate potential differences in motivation for the food reward used in memory tasks, consumption and conditioned place preference for sweetened condensed milk were tested in a separate cohort of previously defeated rats and controls. Compared to controls, adult rats defeated in adolescence showed a delay-dependent deficit in spatial working memory performance, committing more errors at a 90 s and 5 min delay period on the T-maze and win-shift tasks, respectively. Observed memory deficits were likely independent of differences in reward motivation, as conditioned place preference for the palatable food used on both tasks was similar between the adolescent social defeat group and control. The results demonstrate that severe social stressors during adolescence can produce long term deficits in aspects of cognitive function. Given the dependence of spatial working memory on prefrontal dopamine, pharmacologically reversing dopaminergic deficiencies caused by adolescent social stress has the potential to treat such cognitive deficits.

  2. Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory

    PubMed Central

    Sestieri, Carlo; Corbetta, Maurizio; Spadone, Sara; Romani, Gian Luca; Shulman, Gordon L.

    2014-01-01

    We investigated the functional properties of a previously described cingulo-opercular network (CON) putatively involved in cognitive control. Analyses of common fMRI task-evoked activity during perceptual and episodic memory search tasks that differently recruited the dorsal attention (DAN) and default mode network (DMN) established the generality of this network. Regions within the CON (anterior insula/frontal operculum and anterior cingulate/presupplementary cortex) displayed sustained signals during extended periods in which participants searched for behaviourally relevant information in a dynamically changing environment or from episodic memory in the absence of sensory stimulation. The CON was activated during all phases of both tasks, which involved trial initiation, target detection, decision and response, indicating its consistent involvement in a broad range of cognitive processes. Functional connectivity analyses showed that the CON flexibly linked with the DAN or DMN regions during perceptual or memory search, respectively. Aside from the CON, only a limited number of regions, including the lateral prefrontal cortex, showed evidence of domain-general, sustained activity, although in some cases the common activations may have reflected the functional-anatomical variability of domain-specific regions rather than a true domain-generality. These additional regions also showed task-dependent functional connectivity with the DMN and DAN, suggesting that this feature is not a specific marker of cognitive control. Finally, multivariate clustering analyses separated the CON from other fronto-parietal regions previously associated with cognitive control, indicating a unique fingerprint. We conclude that the CON’s functional properties and interactions with other brain regions support a broad role in cognition, consistent with its characterization as a task-control network. PMID:24144246

  3. Evaluation of Cognitive Function of Children with Developmental Disabilities by means of Button-Press Task

    NASA Astrophysics Data System (ADS)

    Nakazono, Shogo; Kobori, Satoshi

    The button-press task means that the subject observes a moving target and presses a button to stop it when the target enters a specified area on a computer display. Subjects perform normal task, suppressed task and delayed task. In the suppressed task, the moving target disappears at some point during the trial. In the delayed task, there is some lag time between the time of pressing button and of stopping target. In these tasks, subjects estimate the movement of the target, and press the button considering his/her own reaction time. In our previous study, we showed that cognitive and motor function was able to be evaluated by these tasks. In this study, we examined error data of children with developmental disabilities to evaluate the cognitive function, and investigated the learning processes. Moreover, we discussed the developmental stages by comparing the children with disabilities to normal control children, and we clarified the behavior characteristics of children with developmental disabilities. Asa result, it was shown that our evaluation method and system for the button-press task were effective to evaluate cognitive ability of children with developmental disabilities.

  4. Analysis of collaborative communication for linguistic cues of cognitive load.

    PubMed

    Khawaja, M Asif; Chen, Fang; Marcus, Nadine

    2012-08-01

    Analyses of novel linguistic and grammatical features, extracted from transcribed speech of people working in a collaborative environment, were performed for cognitive load measurement Prior studies have attempted to assess users' cognitive load with several measures, but most of them are intrusive and disrupt normal task flow. An effective measurement of people's cognitive load can help improve their performance by deploying appropriate output and support strategies accordingly. The authors studied 33 members of bushfire management teams working collaboratively in computerized incident control rooms and involved in complex bushfire management tasks. The participants' communication was analyzed for some novel linguistic features as potential indices of cognitive load, which included sentence length, use of agreement and disagreement phrases, and use of personal pronouns, including both singular and plural pronoun types. Results showed users' different linguistic and grammatical patterns with various cognitive load levels. Specifically, with high load, people spoke more and used longer sentences, used more words that indicated disagreement with other team members, and exhibited increased use of plural personal pronouns and decreased use of singular pronouns. The article provides encouraging evidence for the use of linguistic and grammatical analysis for measuring users' cognitive load and proposes some novel features as cognitive load indices. The proposed approach may be applied to many data-intense and safety-critical task scenarios, such as emergency management departments, for example, bushfire or traffic incident management centers; air traffic control rooms; and call centers, where speech is used as part of everyday tasks.

  5. Vestibular control of standing balance is enhanced with increased cognitive load.

    PubMed

    McGeehan, Michael A; Woollacott, Marjorie H; Dalton, Brian H

    2017-04-01

    When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.

  6. Contributions of COMT Val[superscript 158]Met to Cognitive Stability and Flexibility in Infancy

    ERIC Educational Resources Information Center

    Markant, Julie; Cicchetti, Dante; Hetzel, Susan; Thomas, Kathleen M.

    2014-01-01

    Adaptive behavior requires focusing on relevant tasks while remaining sensitive to novel information. In adult studies of cognitive control, cognitive stability involves maintaining robust cognitive representations while cognitive flexibility involves updating of representations in response to novel information. Previous adult research has shown…

  7. Cognitions and 'placebos' in behavioral research on ambient noise.

    NASA Technical Reports Server (NTRS)

    Harcum, E. R.; Monti, P. M.

    1973-01-01

    The study investigated effects of noise on visual and psychomotor tasks, with particular concern for influences of certain cognitive variables. A first experiment, using visual and card-sorting tasks, found no effects of 100 dB ambient noise per se, although cognitive variables in the testing situation affected both performance and ratings of disturbance. In two subsequent experiments some of the subjects were told that a noise was extraneous to their task of reproducing tachistoscopic patterns, and others were told that effects of the noise were being studied. It appears that in the absence of an adequate 'placebo' to control for cognitive factors, deceptive instructions may always be necessary in studies of ambient noise.

  8. Draft Cognitive Skills Training Program for En-Route Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Redding, Richard E.

    This document begins with a discussion of the cognitive task analysis (CTA) that was commissioned by the Federal Aviation Administration to identify the cognitive skills-related training needs of en-route air traffic controllers. Concluding the introductory section are a brief list of recommendations regarding the design of a training program…

  9. Differentiating Processes of Control and Understanding in the Early Development of Emotion and Cognition

    ERIC Educational Resources Information Center

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.

    2012-01-01

    In this study, we examined the hypothesis that preschoolers' performance on emotion and cognitive tasks is organized into discrete processes of control and understanding within the domains of emotion and cognition. Additionally, we examined the relations among component processes using mother report, behavioral observation, and physiological…

  10. Dual-task effects of simulated lane navigation and story recall in older adults with and without memory impairment

    PubMed Central

    Cook, Sarah E.; Sisco, Shannon M.; Marsiske, Michael

    2013-01-01

    While driving is a complex task, it becomes relatively automatic over time although unfamiliar situations require increased cognitive effort. Much research has examined driving risk in cognitively impaired elders and found little effect. This study assessed whether mildly memory impaired elders made disproportionate errors in driving or story recall, under simultaneous simulated driving and story recall. Forty-six healthy (61% women; mean age = 76.4) and 15 memory impaired (66% women, mean age = 79.4) elders participated. Cognitive status was determined by neuropsychological performance. Results showed that during dual-task conditions, participants stayed in lane more, and recalled stories more poorly, than when they did the tasks separately. Follow-up analysis revealed that verbatim recall, in particular, was reduced while driving for healthy participants. While memory impaired participants performed more poorly than healthy controls on both tasks, cognitive status was not associated with greater dual-task costs when driving and story recall were combined. PMID:23043546

  11. Dual-task effects of simulated lane navigation and story recall in older adults with and without memory impairment.

    PubMed

    Cook, Sarah E; Sisco, Shannon M; Marsiske, Michael

    2013-01-01

    While driving is a complex task, it becomes relatively automatic over time although unfamiliar situations require increased cognitive effort. Much research has examined driving risk in cognitively impaired elders and found little effect. This study assessed whether mildly memory impaired elders made disproportionate errors in driving or story recall, under simultaneous simulated driving and story recall. Forty-six healthy (61% women; mean age = 76.4) and 15 memory impaired (66% women, mean age = 79.4) elders participated. Cognitive status was determined by neuropsychological performance. Results showed that during dual-task conditions, participants stayed in lane more, and recalled stories more poorly, than when they did the tasks separately. Follow-up analysis revealed that verbatim recall, in particular, was reduced while driving for healthy participants. While memory impaired participants performed more poorly than healthy controls on both tasks, cognitive status was not associated with greater dual-task costs when driving and story recall were combined.

  12. Motivation enhances control of positive and negative emotional distractions.

    PubMed

    Walsh, Amy T; Carmel, David; Harper, David; Grimshaw, Gina M

    2018-01-03

    Using cognitive control to ignore distractions is essential for successfully achieving our goals. In emotionally-neutral contexts, motivation can reduce interference from irrelevant stimuli by enhancing cognitive control. However, attention is commonly biased towards emotional stimuli, making them potent distractors. Can motivation aid control of emotional distractions, and does it do so similarly for positive and negative stimuli? Here, we examined how task motivation influences control of distraction from positive, negative, and neutral scenes. Participants completed a simple perceptual task while attempting to ignore task-irrelevant images. One group received monetary reward for fast and accurate task performance; another (control) group did not. Overall, both negative (mutilation) and positive (erotic) images caused greater slowing of responses than neutral images of people, but emotional distraction was reduced with reward. Crucially, despite the different motivational directions associated with negative and positive stimuli, reward reduced negative and positive distraction equally. Our findings suggest that motivation may encourage the use of a sustained proactive control strategy that can effectively reduce the impact of emotional distraction.

  13. Crosswords to computers: a critical review of popular approaches to cognitive enhancement.

    PubMed

    Jak, Amy J; Seelye, Adriana M; Jurick, Sarah M

    2013-03-01

    Cognitive enhancement strategies have gained recent popularity and have the potential to benefit clinical and non-clinical populations. As technology advances and the number of cognitively healthy adults seeking methods of improving or preserving cognitive functioning grows, the role of electronic (e.g., computer and video game based) cognitive training becomes more relevant and warrants greater scientific scrutiny. This paper serves as a critical review of empirical evaluations of publically available electronic cognitive training programs. Many studies have found that electronic training approaches result in significant improvements in trained cognitive tasks. Fewer studies have demonstrated improvements in untrained tasks within the trained cognitive domain, non-trained cognitive domains, or on measures of everyday function. Successful cognitive training programs will elicit effects that generalize to untrained, practical tasks for extended periods of time. Unfortunately, many studies of electronic cognitive training programs are hindered by methodological limitations such as lack of an adequate control group, long-term follow-up and ecologically valid outcome measures. Despite these limitations, evidence suggests that computerized cognitive training has the potential to positively impact one's sense of social connectivity and self-efficacy.

  14. Network Controllability in the Inferior Frontal Gyrus Relates to Controlled Language Variability and Susceptibility to TMS.

    PubMed

    Medaglia, John D; Harvey, Denise Y; White, Nicole; Kelkar, Apoorva; Zimmerman, Jared; Bassett, Danielle S; Hamilton, Roy H

    2018-06-08

    In language production, humans are confronted with considerable word selection demands. Often, we must select a word from among similar, acceptable, and competing alternative words in order to construct a sentence that conveys an intended meaning. In recent years, the left inferior frontal gyrus (LIFG) has been identified as critical to this ability. Despite a recent emphasis on network approaches to understanding language, how the LIFG interacts with the brain's complex networks to facilitate controlled language performance remains unknown. Here, we take a novel approach to understand word selection as a network control process in the brain. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging (DSI), we computed network controllability underlying the site of transcranial magnetic stimulation in the LIFG between administrations of language tasks that vary in response (cognitive control) demands: open-response (word generation) vs. closed-response (number naming) tasks. We find that a statistic that quantifies the LIFG's theoretically predicted control of communication across modules in the human connectome explains TMS-induced changes in open-response language task performance only. Moreover, we find that a statistic that quantifies the LIFG's theoretically predicted control of difficult-to-reach states explains vulnerability to TMS in the closed-ended (but not open-ended) response task. These findings establish a link between network controllability, cognitive function, and TMS effects. SIGNIFICANCE STATEMENT This work illustrates that network control statistics applied to anatomical connectivity data demonstrate relationships with cognitive variability during controlled language tasks and TMS effects. Copyright © 2018 the authors.

  15. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood.

    PubMed

    Walk, Anne M; Khan, Naiman A; Barnett, Sasha M; Raine, Lauren B; Kramer, Arthur F; Cohen, Neal J; Moulton, Christopher J; Renzi-Hammond, Lisa M; Hammond, Billy R; Hillman, Charles H

    2017-08-01

    Lutein and zeaxanthin are plant pigments known to preferentially accumulate in neural tissue. Macular Pigment Optical Density (MPOD), a non-invasive measure of retinal carotenoids and surrogate measure of brain carotenoid concentration, has been associated with disease prevention and cognitive health. Superior MPOD status in later adulthood has been shown to provide neuroprotective effects on cognition. Given that childhood signifies a critical period for carotenoid accumulation in brain, it is likely that the beneficial impact would be evident during development, though this relationship has not been directly investigated. The present study investigated the relationship between MPOD and the behavioral and neuroelectric indices elicited during a cognitive control task in preadolescent children. 49 participants completed a modified flanker task while event-related potentials (ERPs) were recorded to assess the P3 component of the ERP waveform. MPOD was associated with both behavioral performance and P3 amplitude such that children with higher MPOD had more accurate performance and lower P3 amplitudes. These relationships were more pronounced for trials requiring greater amounts of cognitive control. These results indicate that children with higher MPOD may respond to cognitive tasks more efficiently, maintaining high performance while displaying neural indices indicative of lower cognitive load. These findings provide novel support for the neuroprotective influence of retinal carotenoids during preadolescence. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. How Task Representations Guide Attention: Further Evidence for the Shielding Function of Task Sets

    ERIC Educational Resources Information Center

    Dreisbach, Gesine; Haider, Hilde

    2009-01-01

    To pursue goal directed behavior, the cognitive system must be shielded against interference from irrelevant information. Aside from the online adjustment of cognitive control widely discussed in the literature, an additional mechanism of preventive goal shielding is suggested that circumvents irrelevant information from being processed in the…

  17. Conflict Adaptation and Congruency Sequence Effects to Social-Emotional Stimuli in Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Worsham, Whitney; Gray, Whitney E.; Larson, Michael J.; South, Mikle

    2015-01-01

    Background: The modification of performance following conflict can be measured using conflict adaptation tasks thought to measure the change in the allocation of cognitive resources in order to reduce conflict interference and improve performance. While previous studies have suggested atypical processing during nonsocial cognitive control tasks,…

  18. Your brain on speed: cognitive performance of a spatial working memory task is not affected by walking speed

    PubMed Central

    Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.

    2014-01-01

    When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239

  19. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): A randomized and sham-controlled exploratory study.

    PubMed

    Ouellet, Julien; McGirr, Alexander; Van den Eynde, Frederique; Jollant, Fabrice; Lepage, Martin; Berlim, Marcelo T

    2015-10-01

    Decision-making and impulse control (both cognitive and motor) are complex interrelated processes which rely on a distributed neural network that includes multiple cortical and subcortical regions. Among them, the orbitofrontal cortex (OFC) seems to be particularly relevant as demonstrated by several neuropsychological and neuroimaging investigations. In the present study we assessed whether transcranial direct current stimulation (tDCS) applied bilaterally over the OFC is able to modulate decision-making and cognitive impulse control. More specifically, 45 healthy subjects were randomized to receive a single 30-min session of active or sham anodal tDCS (1.5 mA) applied over either the left or the right OFC (coupled with contralateral cathodal tDCS). They were also assessed pre- and post-tDCS with a battery of computerized tasks. Our results show that participants who received active anodal tDCS (irrespective of laterality), vs. those who received sham tDCS, displayed more advantageous decision-making (i.e., increased Iowa Gambling Task "net scores" [p = 0.04]), as well as improved cognitive impulse control (i.e., decreased "interference" in the Stroop Word-Colour Task [p = 0.007]). However, we did not observe tDCS-related effects on mood (assessed by visual analogue scales), attentional levels (assessed by the Continuous Performance Task) or motor impulse control (assessed by the Stop-Signal Task). Our study potentially serves as a key translational step towards the development of novel non-invasive neuromodulation-based therapeutic interventions directly targeting vulnerability factors for psychiatric conditions such as suicidal behaviour and addiction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cognition and aging in a complex work environment: relationships with performance among air traffic control specialists.

    PubMed

    Becker, J T; Milke, R M

    1998-10-01

    Chronological age affects the performance of demanding cognitive tasks within the aviation environment. Within the domain of air traffic control (ATC), the ability to handle simultaneous visual and auditory input, or to return to a task after a break to complete another task, is critical to success and is the sort of cognitive function most affected by age. The limited available data suggest a strong relationship between age and job performance among ATC specialists, whether measured at the time of entry into the system or during the working lifetime of a full-performance-level controller. An analysis of the distribution of the ages of controllers currently in the system, and a projection for the years 2001 and 2006, leads to the conclusion that a high proportion of the ATC work force will be at risk for displaying age-related changes in job performance efficiency over the next 10 yr. It seems important, therefore, to determine the nature and extent of the age-related cognitive changes that can occur during the lifespan of a controller (i.e., 25-55 yr of age) and how these changes may affect job performance. The results of such an analysis should aid in the design and implementation of new control systems to minimize any deleterious effects of aging on performance.

  1. Strengthening of Top-Down Frontal Cognitive Control Networks Underlying the Development of Inhibitory Control: An fMRI Effective Connectivity Study

    PubMed Central

    Hwang, Kai; Velanova, Katerina; Luna, Beatriz

    2010-01-01

    The ability to voluntarily inhibit responses to task irrelevant stimuli, which is a fundamental component of cognitive control, has a protracted development through adolescence. Prior human developmental imaging studies have found immaturities in localized brain activity in children and adolescents. However, little is known about how these regions integrate with age to form the distributed networks known to support cognitive control. In the present study, we used Granger Causality analysis to characterize developmental changes in effective connectivity underlying inhibitory control (antisaccade task) compared to reflexive responses (prosaccade task) in human participants. By childhood few top-down connectivity were evident with increased parietal interconnectivity. By adolescence connections from prefrontal cortex increased and parietal interconnectivity decreased in number. From adolescence to adulthood there was evidence of increased number and strength of frontal connections to cortical regions as well as subcortical regions. Taken together, results suggest that developmental improvements in inhibitory control may be supported by age related enhancements in top-down effective connectivity between frontal, oculomotor and subcortical regions. PMID:21084608

  2. Terminal-decline effects for select cognitive tasks after controlling for preclinical dementia.

    PubMed

    Laukka, Erika J; MacDonald, Stuart W S; Bäckman, Lars

    2008-05-01

    In a previous study, the authors found no accelerated decline in close proximity to death for a measure of global cognitive functioning, after excluding persons in a preclinical phase of dementia. However, specific cognitive tasks might be more sensitive to terminal-decline effects. The purpose of this study was to explore possible terminal-decline effects for a range of cognitive tasks after controlling for preclinical dementia. Community-based cohort study. The Kungsholmen district of Stockholm. A total of 585 persons (75+ years) were repeatedly assessed over an 11-year period. Level and change in cognitive performance were compared for three groups: persons in close proximity to death, persons in a preclinical phase of dementia, and persons who remained alive and nondemented throughout the study. Tasks assessing primary and episodic memory, verbal ability, and visuospatial skill. Compared with an analysis where all dead subjects were included in the impending-death group, removing the preclinical dementia cases resulted in markedly attenuated mortality-related effects. However, the impending-death group still declined at a faster rate relative to the comparison group on Digit Span-forward, word recognition, and category fluency. Notably, these were tasks for which the comparison group showed no significant decline. A considerable proportion of the terminal-decline effect is accounted for by the impact of preclinical dementia. However, for tasks that are relatively resistant to age-related change, such effects might be detected independently of preclinical dementia.

  3. Electrophysiological evidence for cognitive control during conflict processing in visual spatial attention.

    PubMed

    Kehrer, Stefanie; Kraft, Antje; Irlbacher, Kerstin; Koch, Stefan P; Hagendorf, Herbert; Kathmann, Norbert; Brandt, Stephan A

    2009-11-01

    Event-related potentials were measured to investigate the role of visual spatial attention mechanisms in conflict processing. We suggested that a more difficult target selection leads to stronger attentional top-down control, thereby reducing the effects of arising conflicts. This hypothesis was tested by varying the selection difficulty in a location negative priming (NP) paradigm. The difficult task resulted in prolonged responses as compared to the easy task. A behavioral NP effect was only evident in the easy task. Psychophysiologically the easy task was associated with reduced parietal N1, enhanced frontocentral N2 and N2pc components and a prolonged P3 latency for the conflict as compared to the control condition. The N2pc effect was also obvious in the difficult task. Additionally frontocentral N2 amplitudes increased and latencies of N2pc and P3 were delayed compared to the easy task. The differences at frontocentral and parietal electrodes are consistent with previous studies ascribing activity in the prefrontal and parietal cortex as the source of top-down attentional control. Thus, we propose that stronger cognitive control is involved in the difficult task, resulting in a reduced behavioral NP conflict.

  4. Exploring N-Back Cognitive Training for Children With ADHD.

    PubMed

    Jones, Masha R; Katz, Benjamin; Buschkuehl, Martin; Jaeggi, Susanne M; Shah, Priti

    2018-06-01

    The efficacy of n-back training for children with attention deficit hyperactivity disorder (ADHD) was tested in a randomized controlled trial. 41 children aged 7 to 14 years with ADHD were trained on an n-back task, and their performance was compared with that of an active control group ( n = 39) who were trained on a general knowledge and vocabulary task. The experimental group demonstrated transfer of training to a nontrained n-back task as well as to a measure of inhibitory control. These effects were correlated with the magnitude of training gains. Our results suggest that n-back training may be useful in addressing some of the cognitive and behavioral issues associated with ADHD.

  5. Altered segregation between task-positive and task-negative regions in mild traumatic brain injury.

    PubMed

    Sours, Chandler; Kinnison, Joshua; Padmala, Srikanth; Gullapalli, Rao P; Pessoa, Luiz

    2018-06-01

    Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were investigated using functional magnetic resonance imaging (fMRI) during the N-back working memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined during the chronic stage of injury and compared to 28 control participants. Demographics and behavioral performance were matched across groups. Due to the diffuse nature of injury, we hypothesized that there would be an imbalance in the communication between task-positive and Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a graph-theoretic measure of modularity was used to quantify the extent to which groups of brain regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI patients showed reduced segregation between the DMN and task-positive networks, but increased functional connectivity within the DMN regions during the more cognitively demanding 2-back task. Together, our findings reveal that patients exhibit alterations in the communication between and within neural networks during a cognitively demanding task. These findings reveal altered processes that persist through the chronic stage of injury, highlighting the need for longitudinal research to map the neural recovery of mTBI patients.

  6. Association Between Initial Age of Exposure to Childhood Abuse and Cognitive Control: Preliminary Evidence.

    PubMed

    Mackiewicz Seghete, Kristen L; DePrince, Anne P; Banich, Marie T

    2018-05-22

    Cognitive control, which relies on the protracted development of frontal-parietal regions into adolescence, is a brain process that may be particularly vulnerable to the impact of childhood abuse. In this study, we used functional magnetic resonance imaging (fMRI) to examine associations between the age of onset of childhood abuse and alterations to the neural mechanisms supporting cognitive control in early adulthood, which have not been previously examined. During fMRI scanning, participants completed hybrid block/event-related versions of a classic color-word Stroop task as well as emotional Stroop tasks (threat and positive words). Participants were young adult women (N = 15; age range: 23-30 years) who had a history of childhood physical or sexual abuse that began prior to 13 years of age. Results indicated that earlier age of onset of childhood abuse was robustly associated with increased transient (i.e., event-related) recruitment of medial cognitive control regions in the classic color-word paradigm as well as with less suppression of medial frontal regions that are part of the default mode network, βs = -.16 to -.87. In comparison, increased activation in dorsolateral prefrontal regions was associated with earlier age of abuse onset under conditions of sustained (i.e., blocked) cognitive control in the emotional Stroop task for blocks of positive distracting words versus fixation, βs = -.50 to -.60. These results provide preliminary evidence that earlier age of exposure to childhood abuse impacts the functional activation of neural systems involved in cognitive control in adulthood. Copyright © 2018 International Society for Traumatic Stress Studies.

  7. Modafinil combined with cognitive training is associated with improved learning in healthy volunteers--a randomised controlled trial.

    PubMed

    Gilleen, J; Michalopoulou, P G; Reichenberg, A; Drake, R; Wykes, T; Lewis, S W; Kapur, S

    2014-04-01

    Improving cognition in people with neuropsychiatric disorders remains a major clinical target. By themselves pharmacological and non-pharmacological approaches have shown only modest effects in improving cognition. In the present study we tested a recently-proposed methodology to combine CT with a 'cognitive-enhancing' drug to improve cognitive test scores and expanded on previous approaches by delivering combination drug and CT, over a long intervention of repeated sessions, and used multiple tasks to reveal the cognitive processes being enhanced. We also aimed to determine whether gains from this combination approach generalised to untrained tests. In this proof of principle randomised-controlled trial thirty-three healthy volunteers were randomised to receive either modafinil or placebo combined with daily cognitive training over two weeks. Volunteers were trained on tasks of new-language learning, working memory and verbal learning following 200 mg modafinil or placebo for ten days. Improvements in trained and untrained tasks were measured. Rate of new-language learning was significantly enhanced with modafinil, and effects were greatest over the first five sessions. Modafinil improved within-day learning rather than between-day retention. No enhancement of gains with modafinil was observed in working memory nor rate of verbal learning. Gains in all tasks were retained post drug-administration, but transfer effects to broad cognitive abilities were not seen. This study shows that combining CT with modafinil specifically elevates learning over early training sessions compared to CT with placebo and provides a proof of principle experimental paradigm for pharmacological enhancement of cognitive remediation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  8. Auditory working memory impairments in individuals at familial high risk for schizophrenia.

    PubMed

    Seidman, Larry J; Meyer, Eric C; Giuliano, Anthony J; Breiter, Hans C; Goldstein, Jill M; Kremen, William S; Thermenos, Heidi W; Toomey, Rosemary; Stone, William S; Tsuang, Ming T; Faraone, Stephen V

    2012-05-01

    The search for predictors of schizophrenia has accelerated with a growing focus on early intervention and prevention of psychotic illness. Studying nonpsychotic relatives of individuals with schizophrenia enables identification of markers of vulnerability for the illness independent of confounds associated with psychosis. The goal of these studies was to develop new auditory continuous performance tests (ACPTs) and evaluate their effects in individuals with schizophrenia and their relatives. We carried out two studies of auditory vigilance with tasks involving working memory (WM) and interference control with increasing levels of cognitive load to discern the information-processing vulnerabilities in a sample of schizophrenia patients, and two samples of nonpsychotic relatives of individuals with schizophrenia and controls. Study 1 assessed adults (mean age = 41), and Study 2 assessed teenagers and young adults age 13-25 (M = 19). Patients with schizophrenia were impaired on all five versions of the ACPTs, whereas relatives were impaired only on WM tasks, particularly the two interference tasks that maximize cognitive load. Across all groups, the interference tasks were more difficult to perform than the other tasks. Schizophrenia patients performed worse than relatives, who performed worse than controls. For patients, the effect sizes were large (Cohen's d = 1.5), whereas for relatives they were moderate (d = ~0.40-0.50). There was no age by group interaction in the relatives-control comparison except for participants <31 years of age. Novel WM tasks that manipulate cognitive load and interference control index an important component of the vulnerability to schizophrenia.

  9. Disentangling cognition and emotion in older adults: the role of cognitive control and mental health in emotional conflict adaptation.

    PubMed

    Hantke, Nathan C; Gyurak, Anett; Van Moorleghem, Katie; Waring, Jill D; Adamson, Maheen M; O'Hara, Ruth; Beaudreau, Sherry A

    2017-08-01

    Recent research suggests cognition has a bidirectional relationship with emotional processing in older adults, yet the relationship is still poorly understood. We aimed to examine a potential relationship between late-life cognitive function, mental health symptoms, and emotional conflict adaptation. We hypothesized that worse cognitive control abilities would be associated with poorer emotional conflict adaptation. We further hypothesized that a higher severity of mental health symptoms would be associated with poorer emotional conflict adaptation. Participants included 83 cognitively normal community-dwelling older adults who completed a targeted mental health and cognitive battery, and emotion and gender conflict-adaptation tasks. Consistent with our hypothesis, poorer performance on components of cognitive control, specifically attention and working memory, was associated with poorer emotional conflict adaptation. This association with attention and working memory was not observed in the non-affective-based gender conflict adaptation task. Mental health symptoms did not predict emotional conflict adaptation, nor did performance on other cognitive measures. Our findings suggest that emotion conflict adaptation is disrupted in older individuals who have poorer attention and working memory. Components of cognitive control may therefore be an important potential source of inter-individual differences in late-life emotion regulation and cognitive affective deficits. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Reduced Electromyographic Fatigue Threshold after Performing a Cognitive Fatiguing Task.

    PubMed

    Ferris, Justine R; Tomlinson, Mary A; Ward, Tayler N; Pepin, Marie E; Malek, Moh H

    2018-02-22

    Cognitive fatigue tasks performed prior to exercise may reduce exercise capacity. The electromyographic fatigue threshold (EMGFT) is the highest exercise intensity that can be maintained without significant increase in the EMG amplitude versus time relationship. To date, no studies have examined the effect of cognitive fatigue on the estimation of the EMGFT. The purpose of this study, therefore, was to determine whether or not cognitive fatigue prior to performing exercise reduces the estimated EMGFT. Eight healthy college-aged men were recruited from a university student population and visited the laboratory on multiple occasions. In a randomized order, subjects performed either the cognitive fatigue task (AX Continuous Performance Test; AX-CPT) for 60 min on one visit (experimental condition) or watched a video on trains for 60 min on the other visit (control condition). After each condition, subjects performed the incremental single-leg knee-extensor ergometry test while the EMG amplitude was recorded from the rectus femoris muscle and heart rate was monitored throughout. Thereafter, the EMGFT was calculated for each participant for each visit and compared using paired samples t-test. For exercise outcomes, there were no significant mean differences for maximal power output between the two conditions (control: 51 ± 5 vs. fatigue: 50 ± 3 W), but a significant decrease in EMGFT between the two conditions (control: 31 ± 3 vs. fatigue: 24 ± 2 W; p = 0.013). Moreover, maximal heart rate was significantly different between the two conditions (control: 151 ± 5 vs. fatigue: 132 ± 6; p = 0.027). These results suggest that performing the cognitive fatiguing task reduces the EMGFT with a corresponding reduction in maximal heart rate response.

  11. Development of a novel task for investigating decision making in a social context following traumatic brain injury.

    PubMed

    Kelly, Michelle; McDonald, Skye; Kellett, David

    2014-01-01

    Examination of social cognition as a target for assessment and intervention is beginning to gain momentum in a number of illnesses and acquired disorders. One facet of social cognition is decision making within interpersonal situations. This skill forms an important part of our everyday lives and is commonly impaired in those with neurological and mental health conditions. A novel task was developed to allow the assessment of decision making specifically within a social context and was examined within a group known to experience this difficulty. Participants with severe traumatic brain injury (TBI) were compared to healthy control participants on the Social Decision Making Task (SDMT), which required the participant to learn who the "friendly" players were in a game of toss. Participants also completed a nonsocial decision-making task, the Iowa Gambling Task (IGT) as well as a battery of neuropsychological tests and social cognition tasks. Current social functioning was also examined. Consistent with predictions, the TBI group made poorer decisions on the SDMT than the control group; however, group differences were not evident on the IGT. No significant relationships were observed between the SDMT and either measures of executive functioning (including working memory and reversal learning) or social cognition (including emotion recognition and theory of mind). Performance on the SDMT and the IGT were not associated, suggesting that the two tasks measure different constructs. The SDMT offers a novel way of examining decision making within a social context following TBI and may also be useful in other populations known to have specific social cognition impairment. Future research should aim to provide further clarification of the mechanisms of action and neuroanatomical correlates of poor performance on this task.

  12. Infant Cries Rattle Adult Cognition.

    PubMed

    Dudek, Joanna; Faress, Ahmed; Bornstein, Marc H; Haley, David W

    2016-01-01

    The attention-grabbing quality of the infant cry is well recognized, but how the emotional valence of infant vocal signals affects adult cognition and cortical activity has heretofore been unknown. We examined the effects of two contrasting infant vocalizations (cries vs. laughs) on adult performance on a Stroop task using a cross-modal distraction paradigm in which infant distractors were vocal and targets were visual. Infant vocalizations were presented before (Experiment 1) or during each Stroop trial (Experiment 2). To evaluate the influence of infant vocalizations on cognitive control, neural responses to the Stroop task were obtained by measuring electroencephalography (EEG) and event-related potentials (ERPs) in Experiment 1. Based on the previously demonstrated existence of negative arousal bias, we hypothesized that cry vocalizations would be more distracting and invoke greater conflict processing than laugh vocalizations. Similarly, we expected participants to have greater difficulty shifting attention from the vocal distractors to the target task after hearing cries vs. after hearing laughs. Behavioral results from both experiments showed a cry interference effect, in which task performance was slower with cry than with laugh distractors. Electrophysiology data further revealed that cries more than laughs reduced attention to the task (smaller P200) and increased conflict processing (larger N450), albeit differently for incongruent and congruent trials. Results from a correlation analysis showed that the amplitudes of P200 and N450 were inversely related, suggesting a reciprocal relationship between attention and conflict processing. The findings suggest that cognitive control processes contribute to an attention bias to infant signals, which is modulated in part by the valence of the infant vocalization and the demands of the cognitive task. The findings thus support the notion that infant cries elicit a negative arousal bias that is distracting; they also identify, for the first time, the neural dynamics underlying the unique influence that infant cries and laughs have on cognitive control.

  13. Contextual analysis of fluid intelligence.

    PubMed

    Salthouse, Timothy A; Pink, Jeffrey E; Tucker-Drob, Elliot M

    2008-01-01

    The nature of fluid intelligence was investigated by identifying variables that were, and were not, significantly related to this construct. Relevant information was obtained from three sources: re-analyses of data from previous studies, a study in which 791 adults performed storage-plus-processing working memory tasks, and a study in which 236 adults performed a variety of working memory, updating, and cognitive control tasks. The results suggest that fluid intelligence represents a broad individual difference dimension contributing to diverse types of controlled or effortful processing. The analyses also revealed that very few of the age-related effects on the target variables were statistically independent of effects on established cognitive abilities, which suggests most of the age-related influences on a wide variety of cognitive control variables overlap with age-related influences on cognitive abilities such as fluid intelligence, episodic memory, and perceptual speed.

  14. Emotional modulation of cognitive control: approach-withdrawal states double-dissociate spatial from verbal two-back task performance.

    PubMed

    Gray, J R

    2001-09-01

    Emotional states might selectively modulate components of cognitive control. To test this hypothesis, the author randomly assigned 152 undergraduates (equal numbers of men and women) to watch short videos intended to induce emotional states (approach, neutral, or withdrawal). Each video was followed by a computerized 2-back working memory task (spatial or verbal, equated for difficulty and appearance). Spatial 2-back performance was enhanced by a withdrawal state and impaired by an approach state; the opposite pattern held for verbal performance. The double dissociation held more strongly for participants who made more errors than average across conditions. The results suggest that approach-withdrawal states can have selective influences on components of cognitive control, possibly on a hemispheric basis. They support and extend several frameworks for conceptualizing emotion-cognition interactions.

  15. The neurotic wandering mind: An individual differences investigation of neuroticism, mind-wandering, and executive control.

    PubMed

    Robison, Matthew K; Gath, Katherine I; Unsworth, Nash

    2017-04-01

    Cognitive psychology and cognitive neuroscience have recently developed a keen interest in the phenomenon of mind-wandering. People mind-wander frequently, and mind-wandering is associated with decreased cognitive performance. But why do people mind-wander so much? Previous investigations have focused on cognitive abilities like working memory capacity and attention control. But an individual's tendency to worry, feel anxious, and entertain personal concerns also influences mind-wandering. The Control Failure × Concerns model of mind-wandering. Psychological Bulletin, 136, 188-197] argues that individual differences in the propensity to mind-wander are jointly determined by cognitive abilities and by the presence of personally salient concerns that intrude on task focus. In order to test this model, we investigated individual differences in mind-wandering, executive attention, and personality with a focus on neuroticism. The results showed that neurotic individuals tended to report more mind-wandering during cognitive tasks, lower working memory capacity, and poorer attention control. Thus the trait of neuroticism adds an additional source of variance in the tendency to mind-wander, which offers support for the Control Failure × Concerns model. The results help bridge the fields of clinical psychology, cognitive psychology, affective neuroscience, and cognitive neuroscience as a means of developing a more complete understanding of the complex relationship between cognition, personality, and emotion.

  16. Dual task cost of walking is related to fall risk in persons with multiple sclerosis.

    PubMed

    Wajda, Douglas A; Motl, Robert W; Sosnoff, Jacob J

    2013-12-15

    Persons with multiple sclerosis (MS) commonly have walking and cognitive impairments. While walking with a simultaneous cognitive task, persons with MS experience a greater decline in walking performance than healthy controls. This change in performance is termed dual task cost or dual task interference and has been associated with fall risk in older adults. We examined whether dual task cost during walking was related to fall risk in persons with MS. Thirty-three ambulatory persons with MS performed walking tasks with and without a concurrent cognitive task (dual task condition) as well as underwent a fall risk assessment. Dual task cost was operationalized as the percent change in velocity from normal walking conditions to dual task walking conditions. Fall risk was quantified using the Physiological Profile Assessment. A Spearman correlation analysis revealed a significant positive correlation between dual task cost of walking velocity and fall risk as well as dual task cost of stride length and fall risk. Overall, the findings indicate that dual task cost is associated with fall risk and may be an important target for falls prevention strategies. © 2013.

  17. Anticipatory control through associative learning of subliminal relations: invisible may be better than visible.

    PubMed

    Farooqui, Ausaf A; Manly, Tom

    2015-03-01

    We showed that anticipatory cognitive control could be unconsciously instantiated through subliminal cues that predicted enhanced future control needs. In task-switching experiments, one of three subliminal cues preceded each trial. Participants had no conscious experience or knowledge of these cues, but their performance was significantly improved on switch trials after cues that predicted task switches (but not particular tasks). This utilization of subliminal information was flexible and adapted to a change in cues predicting task switches and occurred only when switch trials were difficult and effortful. When cues were consciously visible, participants were unable to discern their relevance and could not use them to enhance switch performance. Our results show that unconscious cognition can implicitly use subliminal information in a goal-directed manner for anticipatory control, and they also suggest that subliminal representations may be more conducive to certain forms of associative learning. © The Author(s) 2015.

  18. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.

    PubMed

    Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li

    2012-01-01

    Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.

  19. Verbal Fluency Performance in Amnestic MCI and Older Adults with Cognitive Complaints

    PubMed Central

    Nutter-Upham, Katherine E.; Saykin, Andrew J.; Rabin, Laura A.; Roth, Robert M.; Wishart, Heather A.; Pare, Nadia; Flashman, Laura A.

    2009-01-01

    Verbal fluency tests are employed regularly during neuropsychological assessments of older adults, and deficits are a common finding in patients with Alzheimer’s disease (AD). Little extant research, however, has investigated verbal fluency ability and subtypes in preclinical stages of neurodegenerative disease. We examined verbal fluency performance in 107 older adults with amnestic mild cognitive impairment (MCI, n = 37), cognitive complaints (CC, n = 37) despite intact neuropsychological functioning, and demographically-matched healthy controls (HC, n = 33). Participants completed fluency tasks with letter, semantic category, and semantic switching constraints. Both phonemic and semantic fluency were statistically (but not clinically) reduced in amnestic MCI relative to cognitively intact older adults, indicating subtle changes in both the quality of the semantic store and retrieval slowing. Investigation of the underlying constructs of verbal fluency yielded two factors: Switching (including switching and shifting tasks) and Production (including letter, category, and action naming tasks), and both factors discriminated MCI from HC albeit to different degrees. Correlational findings further suggested that all fluency tasks involved executive control to some degree, while those with an added executive component (i.e., switching and shifting) were less dependent on semantic knowledge. Overall, our findings highlight the importance of including multiple verbal fluency tests in assessment batteries targeting preclinical dementia populations and suggest that individual fluency tasks may tap specific cognitive processes. PMID:18339515

  20. Cognitive Fatigue Facilitates Procedural Sequence Learning.

    PubMed

    Borragán, Guillermo; Slama, Hichem; Destrebecqz, Arnaud; Peigneux, Philippe

    2016-01-01

    Enhanced procedural learning has been evidenced in conditions where cognitive control is diminished, including hypnosis, disruption of prefrontal activity and non-optimal time of the day. Another condition depleting the availability of controlled resources is cognitive fatigue (CF). We tested the hypothesis that CF, eventually leading to diminished cognitive control, facilitates procedural sequence learning. In a two-day experiment, 23 young healthy adults were administered a serial reaction time task (SRTT) following the induction of high or low levels of CF, in a counterbalanced order. CF was induced using the Time load Dual-back (TloadDback) paradigm, a dual working memory task that allows tailoring cognitive load levels to the individual's optimal performance capacity. In line with our hypothesis, reaction times (RT) in the SRTT were faster in the high- than in the low-level fatigue condition, and performance improvement was higher for the sequential than the motor components. Altogether, our results suggest a paradoxical, facilitating impact of CF on procedural motor sequence learning. We propose that facilitated learning in the high-level fatigue condition stems from a reduction in the cognitive resources devoted to cognitive control processes that normally oppose automatic procedural acquisition mechanisms.

  1. Validation of a Behavioral Approach for Measuring Saccades in Parkinson's Disease.

    PubMed

    Turner, Travis H; Renfroe, Jenna B; Duppstadt-Delambo, Amy; Hinson, Vanessa K

    2017-01-01

    Speed and control of saccades are related to disease progression and cognitive functioning in Parkinson's disease (PD). Traditional eye-tracking complexities encumber application for individual evaluations and clinical trials. The authors examined psychometric properties of standalone tasks for reflexive prosaccade latency, volitional saccade initiation, and saccade inhibition (antisaccade) in a heterogeneous sample of 65 PD patients. Demographics had minimal impact on task performance. Thirty-day test-retest reliability estimates for behavioral tasks were acceptable and similar to traditional eye tracking. Behavioral tasks demonstrated concurrent validity with traditional eye-tracking measures; discriminant validity was less clear. Saccade initiation and inhibition discriminated PD patients with cognitive impairment. The present findings support further development and use of the behavioral tasks for assessing latency and control of saccades in PD.

  2. Home-based interventions improve trained, but not novel, dual-task balance performance in older adults: A randomized controlled trial.

    PubMed

    Wongcharoen, Suleeporn; Sungkarat, Somporn; Munkhetvit, Peeraya; Lugade, Vipul; Silsupadol, Patima

    2017-02-01

    The purpose of this study was to compare the efficacy of four different home-based interventions on dual-task balance performance and to determine the generalizability of the four trainings to untrained tasks. Sixty older adults, aged 65 and older, were randomly assigned to one of four home-based interventions: single-task motor training, single-task cognitive training, dual-task motor-cognitive training, and dual-task cognitive-cognitive training. Participants received 60-min individualized training sessions, 3 times a week for 4 weeks. Prior to and following the training program, participants were asked to walk under two single-task conditions (i.e. narrow walking and obstacle crossing) and two dual-task conditions (i.e. a trained narrow walking while performing verbal fluency task and an untrained obstacle crossing while counting backward by 3s task). A nine-camera motion capture system was used to collect the trajectories of 32 reflective markers placed on bony landmarks of participants. Three-dimensional kinematics of the whole body center of mass and base of support were computed. Results from the extrapolated center of mass displacement indicated that motor-cognitive training was more effective than the single-task motor training to improve dual-task balance performance (p=0.04, ES=0.11). Interestingly, balance performance under both single-task and dual-task conditions can also be improved through a non-motor, single-task cognitive training program (p=0.01, ES=0.13, and p=0.01, ES=0.11, respectively). However, improved dual-task processing skills during training were not transferred to the novel dual task (p=0.15, ES=0.09). This is the first study demonstrating that home-based dual-task training can be effectively implemented to improve balance performance during gait in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Complex Pre-Execution Stage of Auditory Cognitive Control: ERPs Evidence from Stroop Tasks

    PubMed Central

    Yu, Bo; Wang, Xunda; Ma, Lin; Li, Liang; Li, Haifeng

    2015-01-01

    Cognitive control has been extensively studied from Event-Related Potential (ERP) point of view in visual modality using Stroop paradigms. Little work has been done in auditory Stroop paradigms, and inconsistent conclusions have been reported, especially on the conflict detection stage of cognitive control. This study investigated the early ERP components in an auditory Stroop paradigm, during which participants were asked to identify the volume of spoken words and ignore the word meanings. A series of significant ERP components were revealed that distinguished incongruent and congruent trials: two declined negative polarity waves (the N1 and the N2) and three declined positive polarity wave (the P1, the P2 and the P3) over the fronto-central area for the incongruent trials. These early ERP components imply that both a perceptual stage and an identification stage exist in the auditory Stroop effect. A 3-stage cognitive control model was thus proposed for a more detailed description of the human cognitive control mechanism in the auditory Stroop tasks. PMID:26368570

  4. Conflicts as Aversive Signals

    ERIC Educational Resources Information Center

    Dreisbach, Gesine; Fischer, Rico

    2012-01-01

    Theories of human action control deal with the question of how cognitive control is dynamically adjusted to task demands. The conflict monitoring theory of anterior cingulate (ACC) function suggests that the ACC monitors for response conflicts in the ongoing processing stream thereby triggering the mobilization of cognitive control. Alternatively,…

  5. Self-referential processing influences functional activation during cognitive control: an fMRI study

    PubMed Central

    Koch, Kathrin; Schachtzabel, Claudia; Peikert, Gregor; Schultz, Carl Christoph; Reichenbach, Jürgen R.; Sauer, Heinrich; Schlösser, Ralf G.

    2013-01-01

    Rostral anterior cingulate cortex (rACC) plays a central role in the pathophysiology of major depressive disorder (MDD). As we reported in our previous study (Wagner et al., 2006), patients with MDD were characterized by an inability to deactivate this region during cognitive processing leading to a compensatory prefrontal hyperactivation. This hyperactivation in rACC may be related to a deficient inhibitory control of negative self-referential processes, which in turn may interfere with cognitive control task execution and the underlying fronto-cingulate network activation. To test this assumption, a functional magnetic resonance imaging study was conducted in 34 healthy subjects. Univariate and functional connectivity analyses in statistical parametric mapping software 8 were used. Self-referential stimuli and the Stroop task were presented in an event-related design. As hypothesized, rACC was specifically engaged during negative self-referential processing (SRP) and was significantly related to the degree of depressive symptoms in participants. BOLD signal in rACC showed increased valence-dependent (negative vs neutral SRP) interaction with BOLD signal in prefrontal and dorsal anterior cingulate regions during Stroop task performance. This result provides strong support for the notion that enhanced rACC interacts with brain regions involved in cognitive control processes and substantiates our previous interpretation of increased rACC and prefrontal activation in patients during Stroop task. PMID:22798398

  6. Oculomotor Cognitive Control Abnormalities in Australian Rules Football Players with a History of Concussion.

    PubMed

    Clough, Meaghan; Mutimer, Steven; Wright, David K; Tsang, Adrian; Costello, Daniel M; Gardner, Andrew J; Stanwell, Peter; Mychasiuk, Richelle; Sun, Mujun; Brady, Rhys D; McDonald, Stuart J; Webster, Kyria M; Johnstone, Maddison R; Semple, Bridgette D; Agoston, Denes V; White, Owen B; Frayne, Richard; Fielding, Joanne; O'Brien, Terence J; Shultz, Sandy R

    2018-03-01

    This study used oculomotor, cognitive, and multi-modal magnetic resonance imaging (MRI) measures to assess for neurological abnormalities in current asymptomatic amateur Australian rules footballers (i.e., Australia's most participated collision sport) with a history of sports-related concussion (SRC). Participants were 15 male amateur Australian rules football players with a history of SRC greater than 6 months previously, and 15 sex-, age-, and education-matched athlete control subjects that had no history of neurotrauma or participation in collision sports. Participants completed a clinical interview, neuropsychological measures, and oculomotor measures of cognitive control. MRI investigation involved structural imaging, as well as diffusion tensor imaging and resting-state functional MRI sequences. Despite no group differences on conventional neuropsychological tests and multi-modal MRI measures, Australian rules football players with a history of SRC performed significantly worse on an oculomotor switch task: a measure of cognitive control that interleaves the response of looking towards a target (i.e., a prosaccade) with the response of looking away from a target (i.e., an antisaccade). Specifically, Australian footballers performed significantly shorter latency prosaccades and found changing from an antisaccade trial to a prosaccade trial (switch cost) significantly more difficult than control subjects. Poorer switch cost was related to poorer performance on a number of neuropsychological measures of inhibitory control. Further, when comparing performance on the cognitively more demanding switch task with performance on simpler, antisaccade/prosaccades tasks which require a single response, Australian footballers demonstrated a susceptibility to increased cognitive load, compared to the control group who were unaffected. These initial results suggest that current asymptomatic amateur Australian rules football players with a history of SRC may have persisting, subtle, cognitive changes, which are demonstrable on oculomotor cognitive measures. Future studies are required in order to further elucidate the full nature and clinical relevance of these findings.

  7. Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control.

    PubMed

    Crawford, Trevor J; Smith, Eleanor S; Berry, Donna M

    2017-01-01

    Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC) and working memory (WM). The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a 'standard' antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with changes in both IC and WM.

  8. Flexible conflict management: conflict avoidance and conflict adjustment in reactive cognitive control.

    PubMed

    Dignath, David; Kiesel, Andrea; Eder, Andreas B

    2015-07-01

    Conflict processing is assumed to serve two crucial, yet distinct functions: Regarding task performance, control is adjusted to overcome the conflict. Regarding task choice, control is harnessed to bias decision making away from the source of conflict. Despite recent theoretical progress, until now two lines of research addressed these conflict-management strategies independently of each other. In this research, we used a voluntary task-switching paradigm in combination with response interference tasks to study both strategies in concert. In Experiment 1, participants chose between two univalent tasks on each trial. Switch rates increased following conflict trials, indicating avoidance of conflict. Furthermore, congruency effects in reaction times and error rates were reduced following conflict trials, demonstrating conflict adjustment. In Experiment 2, we used bivalent instead of univalent stimuli. Conflict adjustment in task performance was unaffected by this manipulation, but conflict avoidance was not observed. Instead, task switches were reduced after conflict trials. In Experiment 3, we used tasks comprising univalent or bivalent stimuli. Only tasks with univalent revealed conflict avoidance, whereas conflict adjustment was found for all tasks. On the basis of established theories of cognitive control, an integrative process model is described that can account for flexible conflict management. (c) 2015 APA, all rights reserved.

  9. Adapting to an initial self-regulatory task cancels the ego depletion effect.

    PubMed

    Dang, Junhua; Dewitte, Siegfried; Mao, Lihua; Xiao, Shanshan; Shi, Yucai

    2013-09-01

    The resource-based model of self-regulation provides a pessimistic view of self-regulation that people are destined to lose their self-control after having engaged in any act of self-regulation because these acts deplete the limited resource that people need for successful self-regulation. The cognitive control theory, however, offers an alternative explanation and suggests that the depletion effect reflects switch costs between different cognitive control processes recruited to deal with demanding tasks. This account implies that the depletion effect will not occur once people have had the opportunity to adapt to the self-regulatory task initially engaged in. Consistent with this idea, the present study showed that engaging in a demanding task led to performance deficits on a subsequent self-regulatory task (i.e. the depletion effect) only when the initial demanding task was relatively short but not when it was long enough for participants to adapt. Our results were unrelated to self-efficacy, mood, and motivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy: A longitudinal cohort study.

    PubMed

    Libert, Yves; Borghgraef, Cindy; Beguin, Yves; Delvaux, Nicole; Devos, Martine; Doyen, Chantal; Dubruille, Stéphanie; Etienne, Anne-Marie; Liénard, Aurore; Merckaert, Isabelle; Reynaert, Christine; Slachmuylder, Jean-Louis; Straetmans, Nicole; Van Den Neste, Eric; Bron, Dominique; Razavi, Darius

    2017-12-01

    Despite the well-known negative impacts of cancer and anticancer therapies on cognitive performance, little is known about the cognitive compensatory processes of older patients with cancer. This study was designed to investigate the cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy. We assessed 89 consecutive patients (age ≥ 65 y) without severe cognitive impairment and 89 age-, sex-, and education level-matched healthy controls. Cognitive compensatory processes were investigated by (1) comparing cognitive performance of patients and healthy controls in novel (first exposure to cognitive tasks) and non-novel (second exposure to the same cognitive tasks) contexts, and (2) assessing psychological factors that may facilitate or inhibit cognitive performance, such as motivation, psychological distress, and perceived cognitive performance. We assessed cognitive performance with the Trail-Making, Digit Span and FCSR-IR tests, psychological distress with the Hospital Anxiety and Depression Scale, and perceived cognitive performance with the FACT-Cog questionnaire. In novel and non-novel contexts, average cognitive performances of healthy controls were higher than those of patients and were associated with motivation. Cognitive performance of patients was not associated with investigated psychological factors in the novel context but was associated with motivation and psychological distress in the non-novel context. Older, clinically fit patients with hematologic malignancies undergoing chemotherapy demonstrated lower cognitive compensatory processes compared to healthy controls. Reducing distress and increasing motivation may improve cognitive compensatory processes of patients in non-novel contexts. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Mechanisms underlying flexible adaptation of cognitive control: behavioral and neuroimaging evidence in a flanker task.

    PubMed

    Zurawska Vel Grajewska, Blandyna; Sim, Eun-Jin; Hoenig, Klaus; Herrnberger, Bärbel; Kiefer, Markus

    2011-11-03

    Cognitive control can be adapted flexibly according to the conflict level in a given situation. In the Eriksen flanker task, interference evoked by flankers is larger in conditions with a higher, rather than a lower proportion of compatible trials. Such compatibility ratio effects also occur for stimuli presented at two spatial locations suggesting that different cognitive control settings can be simultaneously maintained. However, the conditions and the neural correlates of this flexible adaptation of cognitive control are only poorly understood. In the present study, we further elucidated the mechanisms underlying the simultaneous maintenance of two cognitive control settings. In behavioral experiments, stimuli were presented centrally above and below fixation and hence processed by both hemispheres or lateralized to stimulate hemispheres differentially. The different compatibility ratio at two stimulus locations had a differential influence on the flanker effect in both experiments. In an fMRI experiment, blocks with an identical compatibility ratio at two central spatial locations elicited stronger activity in a network of prefrontal and parietal brain areas, which are known to be involved in conflict resolution and cognitive control, as compared with blocks with a different compatibility ratio at the same spatial locations. This demonstrates that the simultaneous maintenance of two conflicting control settings vs. one single setting does not recruit additional neural circuits suggesting the involvement of one single cognitive control system. Instead a crosstalk between multiple control settings renders adaptation of cognitive control more efficient when only one uniform rather than two different control settings has to be simultaneously maintained. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations

    PubMed Central

    Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E

    2004-01-01

    Background Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Conclusion Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control. PMID:15147586

  13. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations.

    PubMed

    Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E

    2004-05-17

    Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control.

  14. Cognitive programs: software for attention's executive

    PubMed Central

    Tsotsos, John K.; Kruijne, Wouter

    2014-01-01

    What are the computational tasks that an executive controller for visual attention must solve? This question is posed in the context of the Selective Tuning model of attention. The range of required computations go beyond top-down bias signals or region-of-interest determinations, and must deal with overt and covert fixations, process timing and synchronization, information routing, memory, matching control to task, spatial localization, priming, and coordination of bottom-up with top-down information. During task execution, results must be monitored to ensure the expected results. This description includes the kinds of elements that are common in the control of any kind of complex machine or system. We seek a mechanistic integration of the above, in other words, algorithms that accomplish control. Such algorithms operate on representations, transforming a representation of one kind into another, which then forms the input to yet another algorithm. Cognitive Programs (CPs) are hypothesized to capture exactly such representational transformations via stepwise sequences of operations. CPs, an updated and modernized offspring of Ullman's Visual Routines, impose an algorithmic structure to the set of attentional functions and play a role in the overall shaping of attentional modulation of the visual system so that it provides its best performance. This requires that we consider the visual system as a dynamic, yet general-purpose processor tuned to the task and input of the moment. This differs dramatically from the almost universal cognitive and computational views, which regard vision as a passively observing module to which simple questions about percepts can be posed, regardless of task. Differing from Visual Routines, CPs explicitly involve the critical elements of Visual Task Executive (vTE), Visual Attention Executive (vAE), and Visual Working Memory (vWM). Cognitive Programs provide the software that directs the actions of the Selective Tuning model of visual attention. PMID:25505430

  15. Effects of age on cognitive control during semantic categorization.

    PubMed

    Mudar, Raksha A; Chiang, Hsueh-Sheng; Maguire, Mandy J; Spence, Jeffrey S; Eroh, Justin; Kraut, Michael A; Hart, John

    2015-01-01

    We used event-related potentials (ERPs) to study age effects of perceptual (basic-level) vs. perceptual-semantic (superordinate-level) categorization on cognitive control using the go/nogo paradigm. Twenty-two younger (11 M; 21 ± 2.2 years) and 22 older adults (9 M; 63 ± 5.8 years) completed two visual go/nogo tasks. In the single-car task (SiC) (basic), go/nogo responses were made based on single exemplars of a car (go) and a dog (nogo). In the object animal task (ObA) (superordinate), responses were based on multiple exemplars of objects (go) and animals (nogo). Each task consisted of 200 trials: 160 (80%) 'go' trials that required a response through button pressing and 40 (20%) 'nogo' trials that required inhibition/withholding of a response. ERP data revealed significantly reduced nogo-N2 and nogo-P3 amplitudes in older compared to younger adults, whereas go-N2 and go-P3 amplitudes were comparable in both groups during both categorization tasks. Although the effects of categorization levels on behavioral data and P3 measures were similar in both groups with longer response times, lower accuracy scores, longer P3 latencies, and lower P3 amplitudes in ObA compared to SiC, N2 latency revealed age group differences moderated by the task. Older adults had longer N2 latency for ObA compared to SiC, in contrast, younger adults showed no N2 latency difference between SiC and ObA. Overall, these findings suggest that age differentially affects neural processing related to cognitive control during semantic categorization. Furthermore, in older adults, unlike in younger adults, levels of categorization modulate neural processing related to cognitive control even at the early stages (N2). Published by Elsevier B.V.

  16. Cognitive control over learning: Creating, clustering and generalizing task-set structure

    PubMed Central

    Collins, Anne G.E.; Frank, Michael J.

    2013-01-01

    Executive functions and learning share common neural substrates essential for their expression, notably in prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning, but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for cognitive control. We investigate this question from three complementary angles. First, we develop a new computational “C-TS” (context-task-set) model inspired by non-parametric Bayesian methods, specifying how the learner might infer hidden structure and decide whether to re-use that structure in new situations, or to create new structure. Second, we develop a neurobiologically explicit model to assess potential mechanisms of such interactive structured learning in multiple circuits linking frontal cortex and basal ganglia. We systematically explore the link betweens these levels of modeling across multiple task demands. We find that the network provides an approximate implementation of high level C-TS computations, where manipulations of specific neural mechanisms are well captured by variations in distinct C-TS parameters. Third, this synergism across models yields strong predictions about the nature of human optimal and suboptimal choices and response times during learning. In particular, the models suggest that participants spontaneously build task-set structure into a learning problem when not cued to do so, which predicts positive and negative transfer in subsequent generalization tests. We provide evidence for these predictions in two experiments and show that the C-TS model provides a good quantitative fit to human sequences of choices in this task. These findings implicate a strong tendency to interactively engage cognitive control and learning, resulting in structured abstract representations that afford generalization opportunities, and thus potentially long-term rather than short-term optimality. PMID:23356780

  17. Dual-task performance involving hand dexterity and cognitive tasks and daily functioning in people with schizophrenia: a pilot study.

    PubMed

    Lin, Keh-chung; Wu, Yi-fang; Chen, I-chen; Tsai, Pei-luen; Wu, Ching-yi; Chen, Chia-ling

    2015-01-01

    This study investigated separate and concurrent performance on cognitive and hand dexterity tasks and the relationship to daily functioning in 16 people with schizophrenia and 16 healthy control participants. Participants performed the Purdue Pegboard Test and the Serial Seven Subtraction Test under single- and dual-task conditions and completed two daily functioning evaluations. The hand dexterity of all participants declined in the dual-task condition, but the discrepancy between single-task and dual-task hand dexterity was greater in the schizophrenia group than in the control group (p<.03, d>.70, for all). The extent of discrepancy in hand dexterity was negatively correlated with daily functioning in the schizophrenia group (rs=-.3 to -.5, ps=.04-.26). Ability to perform dual tasks may be an indicator of daily functioning in people with schizophrenia. Use of dual-task training may be considered as a therapeutic activity with these clients. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  18. Supporting cognitive control through competition and cooperation in childhood.

    PubMed

    Fischer, Paula; Camba, Letizia; Ooi, Seok Hui; Chevalier, Nicolas

    2018-04-12

    Cognitive control is often engaged in social contexts where actions are socially relevant. Yet, little is known about the immediate influence of the social context on childhood cognitive control. To examine whether competition or cooperation can enhance cognitive control, preschool and school-age children completed the AX Continuous Performance Task (AX-CPT) in competitive, cooperative, and neutral contexts. Children made fewer errors, responded faster, and engaged more cognitive effort, as shown by greater pupil dilation, in the competitive and cooperative social contexts relative to the neutral context. Competition and cooperation yielded greater cognitive control engagement but did not change how control was engaged (reactively or proactively). Manipulating the social context can be a powerful tool to support cognitive control in childhood. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Differences in Visuo-Motor Control in Skilled vs. Novice Martial Arts Athletes during Sustained and Transient Attention Tasks: A Motor-Related Cortical Potential Study

    PubMed Central

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A.; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and “automatic” or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task. PMID:24621480

  20. Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study.

    PubMed

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and "automatic" or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task.

  1. Training and transfer effects of interference control training in children and young adults.

    PubMed

    Zhao, Xin; Jia, Lina

    2018-04-24

    Many studies have examined transfer of working memory (WM) training improvements to non-trained cognitive tasks, with largely disappointing results. Interference control has been suggested to be a central feature of WM. However, studies examining transfer effects of a training program exclusively and directly targeting interference control are lacking. Forty-one 10‒12 year-old children and 47 19‒24 year-old adults were assigned to an adaptive interference control training or active control condition. Transfer of training effects to tasks measuring interference control, response inhibition, WM updating, task-switching, and non-verbal fluid intelligence were assessed during a 3-month follow-up session and/or an immediate post-training session. Substantial evidence of training improvements and a positive transfer effect to a non-trained interference control task were observed for both age groups. Marginal evidence for beneficial transfer of training effects for the trained compared to non-trained participants was found for a WM task for both age groups, and for the children for another interference control task and a response inhibition task. However, these transfer effects were absent during the 3-month follow-up measurement. These results suggest some potential for interference control training programs to enhance aspects of cognitive functioning, with some evidence for a more wide-spread, but short-lived, transfer for children compared to adults.

  2. Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study

    PubMed Central

    Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk

    2017-01-01

    The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714

  3. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers.

    PubMed

    London, Edythe D; Berman, Steven M; Voytek, Bradley; Simon, Sara L; Mandelkern, Mark A; Monterosso, John; Thompson, Paul M; Brody, Arthur L; Geaga, Jennifer A; Hong, Michael S; Hayashi, Kiralee M; Rawson, Richard A; Ling, Walter

    2005-11-15

    Methamphetamine (MA) abusers have cognitive deficits, abnormal metabolic activity and structural deficits in limbic and paralimbic cortices, and reduced hippocampal volume. The links between cognitive impairment and these cerebral abnormalities are not established. We assessed cerebral glucose metabolism with [F-18]fluorodeoxyglucose positron emission tomography in 17 abstinent (4 to 7 days) methamphetamine users and 16 control subjects performing an auditory vigilance task and obtained structural magnetic resonance brain scans. Regional brain radioactivity served as a marker for relative glucose metabolism. Error rates on the task were related to regional radioactivity and hippocampal morphology. Methamphetamine users had higher error rates than control subjects on the vigilance task. The groups showed different relationships between error rates and relative activity in the anterior and middle cingulate gyrus and the insula. Whereas the MA user group showed negative correlations involving these regions, the control group showed positive correlations involving the cingulate cortex. Across groups, hippocampal metabolic and structural measures were negatively correlated with error rates. Dysfunction in the cingulate and insular cortices of recently abstinent MA abusers contribute to impaired vigilance and other cognitive functions requiring sustained attention. Hippocampal integrity predicts task performance in methamphetamine users as well as control subjects.

  4. Parietal control network activation during memory tasks may be associated with the co-occurrence of externally and internally directed cognition: A cross-function meta-analysis.

    PubMed

    Kim, Hongkeun

    2018-03-15

    Functional neuroimaging studies on episodic memory retrieval consistently indicated the activation of the precuneus (PCU), mid-cingulate cortex (MCC), and lateral intraparietal sulcus (latIPS) regions. Although studies typically interpreted these activations in terms of memory retrieval processes, resting-state functional connectivity data indicate that these regions are part of the frontoparietal control network, suggesting a more general, cross-functional role. In this regard, this study proposes a novel hypothesis which suggests that the parietal control network plays a strong role in accommodating the co-occurrence of externally directed cognition (EDC) and internally directed cognition (IDC), which are typically antagonistic to each other. To evaluate how well this dual cognitive processes hypothesis can account for parietal activation patterns during memory tasks, this study provides a cross-function meta-analysis involving 3 different memory paradigms, namely, retrieval success (hit > correct rejection), repetition enhancement (repeated > novel), and subsequent forgetting (forgotten > remembered). Common to these paradigms is that the target condition may involve both EDC (stimulus processing and motor responding) and IDC (intentional remembering, involuntary awareness of previous encounter, or task-unrelated thoughts) strongly, whereas the reference condition may involve EDC to a greater extent, but IDC to a lesser extent. Thus, the dual cognitive processes hypothesis predicts that each of these paradigms will activate similar, overlapping PCU, MCC, and latIPS regions. The results were fully consistent with the prediction, supporting the dual cognitive processes hypothesis. Evidence from relevant prior studies suggests that the dual cognitive processes hypothesis may also apply to non-memory domain tasks. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Components of Executive Control with Advantages for Bilingual Children in Two Cultures

    ERIC Educational Resources Information Center

    Bialystok, Ellen; Viswanathan, Mythili

    2009-01-01

    The present study used a behavioral version of an anti-saccade task, called the "faces task", developed by [Bialystok, E., Craik, F. I. M., & Ryan, J. (2006). Executive control in a modified anti-saccade task: Effects of aging and bilingualism. "Journal of Experimental Psychology: Learning, Memory, and Cognition," 32,…

  6. Contextual Social Cognition Impairments in Schizophrenia and Bipolar Disorder

    PubMed Central

    Villarin, Lilian; Theil, Donna; Gonzalez-Gadea, María Luz; Gomez, Pedro; Mosquera, Marcela; Huepe, David; Strejilevich, Sergio; Vigliecca, Nora Silvana; Matthäus, Franziska; Decety, Jean; Manes, Facundo; Ibañez, Agustín M.

    2013-01-01

    Background The ability to integrate contextual information with social cues to generate social meaning is a key aspect of social cognition. It is widely accepted that patients with schizophrenia and bipolar disorders have deficits in social cognition; however, previous studies on these disorders did not use tasks that replicate everyday situations. Methodology/Principal Findings This study evaluates the performance of patients with schizophrenia and bipolar disorders on social cognition tasks (emotional processing, empathy, and social norms knowledge) that incorporate different levels of contextual dependence and involvement of real-life scenarios. Furthermore, we explored the association between social cognition measures, clinical symptoms and executive functions. Using a logistic regression analysis, we explored whether the involvement of more basic skills in emotional processing predicted performance on empathy tasks. The results showed that both patient groups exhibited deficits in social cognition tasks with greater context sensitivity and involvement of real-life scenarios. These deficits were more severe in schizophrenic than in bipolar patients. Patients did not differ from controls in tasks involving explicit knowledge. Moreover, schizophrenic patients’ depression levels were negatively correlated with performance on empathy tasks. Conclusions/Significance Overall performance on emotion recognition predicted performance on intentionality attribution during the more ambiguous situations of the empathy task. These results suggest that social cognition deficits could be related to a general impairment in the capacity to implicitly integrate contextual cues. Important implications for the assessment and treatment of individuals with schizophrenia and bipolar disorders, as well as for neurocognitive models of these pathologies are discussed. PMID:23520477

  7. Balance among Cognitive Control Processes: A Case Study of A Gifted Youth

    ERIC Educational Resources Information Center

    Urben, Sébastien; Camos, Valérie; Habersaat, Stéphanie; Constanty, Lauriane; Stéphan, Philippe

    2018-01-01

    This case study analyzed the cognitive strategies of Ethan, a gifted youth, when performing a Stop Signal Task assessing cognitive control processes including response inhibition as well as proactive and reactive adjustments of response. In the case of Ethan, the response inhibition score was biased, revealing that Ethan did not follow the…

  8. Cognitive Control of Intentions for Voluntary Actions in Individuals with a High Level of Autistic Traits

    ERIC Educational Resources Information Center

    Poljac, Edita; Poljac, Ervin; Yeung, Nick

    2012-01-01

    Impairments in cognitive control generating deviant adaptive cognition have been proposed to account for the strong preference for repetitive behavior in autism. We examined if this preference reflects intentional deficits rather than problems in task execution in the broader autism phenotype using the Autism-Spectrum Quotient (AQ). Participants…

  9. Executive function is necessary for the regulation of the stepping activity when stepping in place in older adults.

    PubMed

    Dalton, Christopher; Sciadas, Ria; Nantel, Julie

    2016-10-01

    To determine the effect of age on stepping performance and to compare the cognitive demand required to regulate repetitive stepping between older and younger adults while performing a stepping in place task (SIP). Fourteen younger (25.4 ± 6.5) and 15 older adults (71.0 ± 9.0) participated in this study. They performed a seated category fluency task and Stroop test, followed by a 60 s SIP task. Following this, both the cognitive and motor tasks were performed simultaneously. We assessed cognitive performance, SIP cycle duration, asymmetry, and arrhythmicity. Compared to younger adults, older adults had larger SIP arrhythmicity both as a single task and when combined with the Category (p < 0.001) and Stroop (p < 0.01) tasks. Older adults also had larger arrhythmicity when dual tasking compared to SIP alone (p < 0.001). Older adults showed greater SIP asymmetry when combined with Category (p = 0.006) and Stroop (p = 0.06) tasks. Finally, they had lower cognitive performance than younger adults in both single and dual tasks (p < 0.01). Age and type of cognitive task performed with the motor task affected different components of stepping. While SIP arrhythmicity was larger for all conditions in older compared to younger adults, cycle duration was not different, and asymmetry tended to be larger during SIP when paired with a verbal fluency task. SIP does not require a high level of control for dynamic stability, therefore demonstrating that higher-level executive function is necessary for the regulation of stepping activity independently of the regulation of postural balance. Furthermore, older adults may lack the cognitive resources needed to adequately regulate stepping activity while performing a cognitive task relying on the executive function.

  10. Deficits in visual working-memory capacity and general cognition in African Americans with psychosis.

    PubMed

    Mathias, Samuel R; Knowles, Emma E M; Barrett, Jennifer; Beetham, Tamara; Leach, Olivia; Buccheri, Sebastiano; Aberizk, Katrina; Blangero, John; Poldrack, Russell A; Glahn, David C

    2018-03-01

    On average, patients with psychosis perform worse than controls on visual change-detection tasks, implying that psychosis is associated with reduced capacity of visual working memory (WM). In the present study, 79 patients diagnosed with various psychotic disorders and 166 controls, all African Americans, completed a change-detection task and several other neurocognitive measures. The aims of the study were to (1) determine whether we could observe a between-group difference in performance on the change-detection task in this sample; (2) establish whether such a difference could be specifically attributed to reduced WM capacity (k); and (3) estimate k in the context of the general cognitive deficit in psychosis. Consistent with previous studies, patients performed worse than controls on the change-detection task, on average. Bayesian hierarchical cognitive modeling of the data suggested that this between-group difference was driven by reduced k in patients, rather than differences in other psychologically meaningful model parameters (guessing behavior and lapse rate). Using the same modeling framework, we estimated the effect of psychosis on k while controlling for general intellectual ability (g, obtained from the other neurocognitive measures). The results suggested that reduced k in patients was stronger than predicted by the between-group difference in g. Moreover, a mediation analysis suggested that the relationship between psychosis and g (i.e., the general cognitive deficit) was mediated by k. The results were consistent with the idea that reduced k is a specific deficit in psychosis, which contributes to the general cognitive deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Range of Memory and Behavioural Tasks

    PubMed Central

    Noreen, Saima; MacLeod, Malcolm D.

    2015-01-01

    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks. PMID:26270470

  12. What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Range of Memory and Behavioural Tasks.

    PubMed

    Noreen, Saima; MacLeod, Malcolm D

    2015-01-01

    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks.

  13. No evidence for bilingual cognitive advantages: A test of four hypotheses.

    PubMed

    von Bastian, Claudia C; Souza, Alessandra S; Gade, Miriam

    2016-02-01

    The question whether being bilingual yields cognitive benefits is highly controversial with prior studies providing inconsistent results. Failures to replicate the bilingual advantage have been attributed to methodological factors such as comparing dichotomous groups and measuring cognitive abilities separately with single tasks. Therefore, the authors evaluated the 4 most prominent hypotheses of bilingual advantages for inhibitory control, conflict monitoring, shifting, and general cognitive performance by assessing bilingualism on 3 continuous dimensions (age of acquisition, proficiency, and usage) in a sample of 118 young adults and relating it to 9 cognitive abilities each measured by multiple tasks. Linear mixed-effects models accounting for multiple sources of variance simultaneously and controlling for parents' education as an index of socioeconomic status revealed no evidence for any of the 4 hypotheses. Hence, the authors' results suggest that bilingual benefits are not as broad and as robust as has been previously claimed. Instead, earlier effects were possibly due to task-specific effects in selective and often small samples. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  14. Dietary fiber is positively associated with cognitive control among prepubertal children.

    PubMed

    Khan, Naiman A; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Kramer, Arthur F; Hillman, Charles H

    2015-01-01

    Converging evidence now indicates that aerobic fitness and adiposity are key correlates of childhood cognitive function and brain health. However, the evidence relating dietary intake to executive function/cognitive control remains limited. The current study assessed cross-sectional associations between performance on an attentional inhibition task and dietary fatty acids (FAs), fiber, and overall diet quality among children aged 7-9 y (n = 65). Attentional inhibition was assessed by using a modified flanker task. Three-day food records were used to conduct nutrient-level analyses and to calculate diet quality (Healthy Eating Index-2005) scores. Bivariate correlations revealed that socioeconomic status and sex were not related to task performance or diet measures. However, age, intelligence quotient (IQ), pubertal staging, maximal oxygen uptake (V̇O2max), and percentage of fat mass (%fat mass) correlated with task accuracy. Hierarchical regression models were used to determine the relation between diet variables and task accuracy and reaction time across both congruent and incongruent trials of the flanker task. After adjustment of confounding variables (age, IQ, pubertal staging, V̇O2max, and %fat mass), congruent accuracy was positively associated with insoluble fiber (β = 0.26, P = 0.03) and total dietary fiber (β = 0.23, P = 0.05). Incongruent response accuracy was positively associated with insoluble fiber (β = 0.35, P < 0.01), pectins (β = 0.25, P = 0.04), and total dietary fiber (β = 0.32, P < 0.01). Higher diet quality was related to lower accuracy interference (β = -0.26, P = 0.03), whereas higher total FA intake was related to greater accuracy interference (β = 0.24, P = 0.04). No statistically significant associations were observed between diet variables and reaction time measures. These results demonstrate that children's diet quality, specifically dietary fiber, is an important correlate of performance on a cognitive task requiring variable amounts of cognitive control. © 2015 American Society for Nutrition.

  15. Dietary Fiber Is Positively Associated with Cognitive Control among Prepubertal Children12

    PubMed Central

    Khan, Naiman A; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Kramer, Arthur F; Hillman, Charles H

    2015-01-01

    Background: Converging evidence now indicates that aerobic fitness and adiposity are key correlates of childhood cognitive function and brain health. However, the evidence relating dietary intake to executive function/cognitive control remains limited. Objective: The current study assessed cross-sectional associations between performance on an attentional inhibition task and dietary fatty acids (FAs), fiber, and overall diet quality among children aged 7–9 y (n = 65). Methods: Attentional inhibition was assessed by using a modified flanker task. Three-day food records were used to conduct nutrient-level analyses and to calculate diet quality (Healthy Eating Index–2005) scores. Results: Bivariate correlations revealed that socioeconomic status and sex were not related to task performance or diet measures. However, age, intelligence quotient (IQ), pubertal staging, maximal oxygen uptake (V̇O2max), and percentage of fat mass (%fat mass) correlated with task accuracy. Hierarchical regression models were used to determine the relation between diet variables and task accuracy and reaction time across both congruent and incongruent trials of the flanker task. After adjustment of confounding variables (age, IQ, pubertal staging, V̇O2max, and %fat mass), congruent accuracy was positively associated with insoluble fiber (β = 0.26, P = 0.03) and total dietary fiber (β = 0.23, P = 0.05). Incongruent response accuracy was positively associated with insoluble fiber (β = 0.35, P < 0.01), pectins (β = 0.25, P = 0.04), and total dietary fiber (β = 0.32, P < 0.01). Higher diet quality was related to lower accuracy interference (β = −0.26, P = 0.03), whereas higher total FA intake was related to greater accuracy interference (β = 0.24, P = 0.04). No statistically significant associations were observed between diet variables and reaction time measures. Conclusion: These results demonstrate that children’s diet quality, specifically dietary fiber, is an important correlate of performance on a cognitive task requiring variable amounts of cognitive control. PMID:25527669

  16. RACE/A: An Architectural Account of the Interactions between Learning, Task Control, and Retrieval Dynamics

    ERIC Educational Resources Information Center

    van Maanen, Leendert; van Rijn, Hedderik; Taatgen, Niels

    2012-01-01

    This article discusses how sequential sampling models can be integrated in a cognitive architecture. The new theory Retrieval by Accumulating Evidence in an Architecture (RACE/A) combines the level of detail typically provided by sequential sampling models with the level of task complexity typically provided by cognitive architectures. We will use…

  17. A Novel Role for the Rat Retrosplenial Cortex in Cognitive Control

    ERIC Educational Resources Information Center

    Nelson, Andrew J. D.; Hindley, Emma L.; Haddon, Josephine E.; Vann, Seralynne D.; Aggleton, John P.

    2014-01-01

    By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first…

  18. Reversing the Speed-IQ Correlation: Intra-Individual Variability and Attentional Control in the Inspection Time Paradigm

    ERIC Educational Resources Information Center

    Fox, Mark C.; Roring, Roy W.; Mitchum, Ainsley L.

    2009-01-01

    Elementary cognitive tasks (ECTs) are simple tasks involving basic cognitive processes for which speed of performance typically correlates with IQ. Inspection time (IT) has the strongest IQ correlations and is considered critical evidence for neural speed underlying individual differences in intelligence. However, results from Bors et al. [Bors,…

  19. Identification of cognitive factors related to remote work performance using closed circuit TV displays

    NASA Technical Reports Server (NTRS)

    Clarke, M. M.; Garin, J.

    1981-01-01

    Operator perceptual cognitive styles as predictors of remote task performance were identified. Remote tasks which require the use of servo controlled master/slave manipulators and closed circuit television for teleoperator repair and maintenance of nuclear fuel recycling systems are examined. A useful procedure for identifying such perceptual styles is described.

  20. Motivation and Cognition: The Impact of Ego and Task-Involvement on Levels of Processing.

    ERIC Educational Resources Information Center

    Golan, Shari; Graham, Sandra

    To study the effects of motivation on cognition, 55 fifth- and sixth-grade students were randomly assigned to 3 motivational treatment groups: (1) ego-involved (ability oriented); (2) task-involved (mastery oriented); and (3) control (no orientation). The ego-involvement treatment attempted to make subjects feel that their abilities on the tasks…

Top