Sample records for cognitive environment simulation

  1. The simulated clinical environment: Cognitive and emotional impact among undergraduates.

    PubMed

    Tremblay, Marie-Laurence; Lafleur, Alexandre; Leppink, Jimmie; Dolmans, Diana H J M

    2017-02-01

    Simulated clinical immersion (SCI) is used in undergraduate healthcare programs to expose the learner to real-life situations in authentic simulated clinical environments. For novices, the environment in which the simulation occurs can be distracting and stressful, hence potentially compromising learning. This study aims to determine whether SCI (with environment) imposes greater extraneous cognitive load and stress on undergraduate pharmacy students than simulated patients (SP) (without environment). It also aims to explore how features of the simulated environment influence students' perception of learning. In this mixed-methods study, 143 undergraduate pharmacy students experienced both SCI and SP in a crossover design. After the simulations, participants rated their cognitive load and emotions. Thirty-five students met in focus groups to explore their perception of learning in simulation. Intrinsic and extraneous cognitive load and stress scores in SCI were significantly but modestly higher compared to SP. Qualitative findings reveal that the physical environment in SCI generated more stress and affected students? focus. In SP, students concentrated on clinical reasoning. SCI stimulated a focus on data collection but impeded in-depth problem solving processes. The physical environment in simulation influences what and how students learn. SCI was reported as more cognitively demanding than SP. Our findings emphasize the need for the development of adapted instructional design guidelines in simulation for novices.

  2. Cognitive simulators for medical education and training.

    PubMed

    Kahol, Kanav; Vankipuram, Mithra; Smith, Marshall L

    2009-08-01

    Simulators for honing procedural skills (such as surgical skills and central venous catheter placement) have proven to be valuable tools for medical educators and students. While such simulations represent an effective paradigm in surgical education, there is an opportunity to add a layer of cognitive exercises to these basic simulations that can facilitate robust skill learning in residents. This paper describes a controlled methodology, inspired by neuropsychological assessment tasks and embodied cognition, to develop cognitive simulators for laparoscopic surgery. These simulators provide psychomotor skill training and offer the additional challenge of accomplishing cognitive tasks in realistic environments. A generic framework for design, development and evaluation of such simulators is described. The presented framework is generalizable and can be applied to different task domains. It is independent of the types of sensors, simulation environment and feedback mechanisms that the simulators use. A proof of concept of the framework is provided through developing a simulator that includes cognitive variations to a basic psychomotor task. The results of two pilot studies are presented that show the validity of the methodology in providing an effective evaluation and learning environments for surgeons.

  3. Using cognitive architectures to study issues in team cognition in a complex task environment

    NASA Astrophysics Data System (ADS)

    Smart, Paul R.; Sycara, Katia; Tang, Yuqing

    2014-05-01

    Cognitive social simulation is a computer simulation technique that aims to improve our understanding of the dynamics of socially-situated and socially-distributed cognition. This makes cognitive social simulation techniques particularly appealing as a means to undertake experiments into team cognition. The current paper reports on the results of an ongoing effort to develop a cognitive social simulation capability that can be used to undertake studies into team cognition using the ACT-R cognitive architecture. This capability is intended to support simulation experiments using a team-based problem solving task, which has been used to explore the effect of different organizational environments on collective problem solving performance. The functionality of the ACT-R-based cognitive social simulation capability is presented and a number of areas of future development work are outlined. The paper also describes the motivation for adopting cognitive architectures in the context of social simulation experiments and presents a number of research areas where cognitive social simulation may be useful in developing a better understanding of the dynamics of team cognition. These include the use of cognitive social simulation to study the role of cognitive processes in determining aspects of communicative behavior, as well as the impact of communicative behavior on the shaping of task-relevant cognitive processes (e.g., the social shaping of individual and collective memory as a result of communicative exchanges). We suggest that the ability to perform cognitive social simulation experiments in these areas will help to elucidate some of the complex interactions that exist between cognitive, social, technological and informational factors in the context of team-based problem-solving activities.

  4. The Effects of Cognitive Readiness in a Surface Warfare Simulation

    ERIC Educational Resources Information Center

    Ayala, Donna

    2008-01-01

    This study investigated the effects of cognitive readiness in a Navy simulated environment, the simulation being the Multi-Mission Team Trainer. The research question that drove this study was: will simulations increase cognitive readiness? One of the tasks of Navy sailors is to deal with unpredictable events. Unpredictability in the military is…

  5. Cognitive simulation as a tool for cognitive task analysis.

    PubMed

    Roth, E M; Woods, D D; Pople, H E

    1992-10-01

    Cognitive simulations are runnable computer programs that represent models of human cognitive activities. We show how one cognitive simulation built as a model of some of the cognitive processes involved in dynamic fault management can be used in conjunction with small-scale empirical data on human performance to uncover the cognitive demands of a task, to identify where intention errors are likely to occur, and to point to improvements in the person-machine system. The simulation, called Cognitive Environment Simulation or CES, has been exercised on several nuclear power plant accident scenarios. Here we report one case to illustrate how a cognitive simulation tool such as CES can be used to clarify the cognitive demands of a problem-solving situation as part of a cognitive task analysis.

  6. Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis.

    PubMed

    Lamargue-Hamel, Delphine; Deloire, Mathilde; Saubusse, Aurore; Ruet, Aurélie; Taillard, Jacques; Philip, Pierre; Brochet, Bruno

    2015-12-15

    The assessment of cognitive impairment in multiple sclerosis (MS) requires large neuropsychological batteries that assess numerous domains. The relevance of these assessments to daily cognitive functioning is not well established. Cognitive ecological evaluation has not been frequently studied in MS. The aim of this study was to determine the interest of cognitive evaluation in a virtual reality environment in a sample of persons with MS with cognitive deficits. Thirty persons with MS with at least moderate cognitive impairment were assessed with two ecological evaluations, an in-house developed task in a virtual reality environment (Urban DailyCog®) and a divided attention task in a driving simulator. Classical neuropsychological testing was also used. Fifty-two percent of the persons with MS failed the driving simulator task and 80% failed the Urban DailyCog®. Virtual reality assessments are promising in identifying cognitive impairment in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Spatial Cognition and Map Interpretation

    DTIC Science & Technology

    1987-09-01

    Terrain association Spatial cognition Map reading Videogames aa mldm II naeaaaaiy and Hontlty by block numbor) Spatial memory span Orientation...ability. Finally, field and classroom performance was compared to wayfinding in a simulated ( videogame ) environment in which position coordinates were...a simulated ( videogame ) environment. Findings: MITAC instruction significantly improved the experimental group’s ability to perform terrain

  8. Studying distributed cognition of simulation-based team training with DiCoT.

    PubMed

    Rybing, Jonas; Nilsson, Heléne; Jonson, Carl-Oscar; Bang, Magnus

    2016-03-01

    Health care organizations employ simulation-based team training (SBTT) to improve skill, communication and coordination in a broad range of critical care contexts. Quantitative approaches, such as team performance measurements, are predominantly used to measure SBTTs effectiveness. However, a practical evaluation method that examines how this approach supports cognition and teamwork is missing. We have applied Distributed Cognition for Teamwork (DiCoT), a method for analysing cognition and collaboration aspects of work settings, with the purpose of assessing the methodology's usefulness for evaluating SBTTs. In a case study, we observed and analysed four Emergo Train System® simulation exercises where medical professionals trained emergency response routines. The study suggests that DiCoT is an applicable and learnable tool for determining key distributed cognition attributes of SBTTs that are of importance for the simulation validity of training environments. Moreover, we discuss and exemplify how DiCoT supports design of SBTTs with a focus on transfer and validity characteristics. Practitioner Summary: In this study, we have evaluated a method to assess simulation-based team training environments from a cognitive ergonomics perspective. Using a case study, we analysed Distributed Cognition for Teamwork (DiCoT) by applying it to the Emergo Train System®. We conclude that DiCoT is useful for SBTT evaluation and simulator (re)design.

  9. Cognitive load, emotion, and performance in high-fidelity simulation among beginning nursing students: a pilot study.

    PubMed

    Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois

    2015-03-01

    Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.

  10. The effectiveness of simulation activities on the cognitive abilities of undergraduate third-year nursing students: a randomised control trial.

    PubMed

    Secomb, Jacinta; McKenna, Lisa; Smith, Colleen

    2012-12-01

    To provide evidence on the effectiveness of simulation activities on the clinical decision-making abilities of undergraduate nursing students. Based on previous research, it was hypothesised that the higher the cognitive score, the greater the ability a nursing student would have to make informed valid decisions in their clinical practice. Globally, simulation is being espoused as an education method that increases the competence of health professionals. At present, there is very little evidence to support current investment in time and resources. Following ethical approval, fifty-eight third-year undergraduate nursing students were randomised in a pretest-post-test group-parallel controlled trial. The learning environment preferences (LEP) inventory was used to test cognitive abilities in order to refute the null hypothesis that activities in computer-based simulated learning environments have a negative effect on cognitive abilities when compared with activities in skills laboratory simulated learning environments. There was no significant difference in cognitive development following two cycles of simulation activities. Therefore, it is reasonable to assume that two simulation tasks, either computer-based or laboratory-based, have no effect on an undergraduate student's ability to make clinical decisions in practice. However, there was a significant finding for non-English first-language students, which requires further investigation. More longitudinal studies that quantify the education effects of simulation on the cognitive, affective and psychomotor attributes of health science students and professionals from both English-speaking and non-English-speaking backgrounds are urgently required. It is also recommended that to achieve increased participant numbers and prevent non-participation owing to absenteeism, further studies need to be imbedded directly into curricula. This investigation confirms the effect of simulation activities on real-life clinical practice, and the comparative learning benefits with traditional clinical practice and university education remain unknown. © 2012 Blackwell Publishing Ltd.

  11. Translating cognitive neuroscience to the driver’s operational environment: a neuroergonomics approach

    PubMed Central

    Lees, Monica N.; Cosman, Joshua D.; Lee, John D.; Rizzo, Matthew; Fricke, Nicola

    2012-01-01

    Neuroergonomics provides a multidisciplinary translational approach that merges elements of neuroscience, human factors, cognitive psychology, and ergonomics to study brain structure and function in everyday environments. Driving safety, particularly that of older drivers with cognitive impairments, is a fruitful application domain for neuroergonomics. Driving makes demands on multiple cognitive processes that are often studied in isolation and so presents a useful challenge in generalizing findings from controlled laboratory tasks to predict safety outcomes. Neurology and the cognitive sciences help explain the mechanisms of cognitive breakdowns that undermine driving safety. Ergonomics complements this explanation with the tools for systematically exploring the various layers of complexity that define the activity of driving. A variety of tools, such as part task simulators, driving simulators, and instrumented vehicles provide a window into cognition in the natural settings needed to assess the generalizability of laboratory findings and can provide an array of potential interventions to increase safety. PMID:21291157

  12. Mechanisms for Robust Cognition.

    PubMed

    Walsh, Matthew M; Gluck, Kevin A

    2015-08-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within variable environments. This raises the question, how do cognitive systems achieve similarly high degrees of robustness? The aim of this study was to identify a set of mechanisms that enhance robustness in cognitive systems. We identify three mechanisms that enhance robustness in biological and engineered systems: system control, redundancy, and adaptability. After surveying the psychological literature for evidence of these mechanisms, we provide simulations illustrating how each contributes to robust cognition in a different psychological domain: psychomotor vigilance, semantic memory, and strategy selection. These simulations highlight features of a mathematical approach for quantifying robustness, and they provide concrete examples of mechanisms for robust cognition. © 2014 Cognitive Science Society, Inc.

  13. Factors Contributing to Cognitive Absorption and Grounded Learning Effectiveness in a Competitive Business Marketing Simulation

    ERIC Educational Resources Information Center

    Baker, David Scott; Underwood, James, III; Thakur, Ramendra

    2017-01-01

    This study aimed to establish a pedagogical positioning of a business marketing simulation as a grounded learning teaching tool and empirically assess the dimensions of cognitive absorption related to grounded learning effectiveness in an iterative business simulation environment. The method/design and sample consisted of a field study survey…

  14. The effects of noise on the cognitive performance of physicians in a hospital emergency department

    NASA Astrophysics Data System (ADS)

    Dodds, Peter

    In this research, the acoustic environment of a contemporary urban hospital emergency department has been characterized. Perceptive and cognitive tests relating to the acoustic environment were conducted on both medical professionals and lay people and a methodology for developing augmentable acoustic simulations from field recordings was developed. While research of healthcare environments remains a popular area of investigation for the acoustics community, a lack of communication between medical and acoustics researchers as well as a lack of sophistication in the methods implemented to evaluate hospital environments and their occupants has led to stagnation. This research attempted to replicate traditional methods for the evaluation of hospital acoustic environments including impulse response based room acoustics measurements as well as psychoacoustic evaluations. This thesis also demonstrates some of the issues associated with conducting such research and provides an outline and implementation for alternative advanced methods of re- search. Advancements include the use of the n-Back test to evaluate the effects of the acoustic environment on cognitive function as well as the outline of a new methodology for implementing realistic immersive simulations for cognitive and perceptual testing using field recordings and signal processing techniques. Additionally, this research utilizes feedback from working emergency medicine physicians to determine the subjective degree of distraction subjects felt in response to a simulated acoustic environment. Results of the room acoustics measurements and all experiments will be presented and analyzed and possible directions for future research will be presented.

  15. Simulation experience enhances physical therapist student confidence in managing a patient in the critical care environment.

    PubMed

    Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael

    2013-02-01

    Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high student satisfaction. Using simulation, students were introduced to the critical care environment, which may increase interest in working in this practice area.

  16. Cognitive Tools for Assessment and Learning in a High Information Flow Environment.

    ERIC Educational Resources Information Center

    Lajoie, Susanne P.; Azevedo, Roger; Fleiszer, David M.

    1998-01-01

    Describes the development of a simulation-based intelligent tutoring system for nurses working in a surgical intensive care unit. Highlights include situative learning theories and models of instruction, modeling expertise, complex decision making, linking theories of learning to the design of computer-based learning environments, cognitive task…

  17. Using virtual reality simulation to study navigation in a complex environment as a functional-cognitive task; A pilot study.

    PubMed

    Kizony, R; Zeilig, G; Krasovsky, T; Bondi, M; Weiss, P L; Kodesh, E; Kafri, M

    2017-01-01

    Navigation skills are required for performance of functional complex tasks and may decline due to aging. Investigation of navigation skills should include measurement of cognitive-executive and motor aspects, which are part of complex tasks. to compare young and older healthy adults in navigation within a simulated environment with and without a functional-cognitive task. Ten young adults (25.6±4.3 years) and seven community dwelling older men (69.9±3.8 years) were tested during a single session. After training on a self-paced treadmill to navigate in a non-functional simulation, they performed the Virtual Multiple Errands Test (VMET) in a mall simulation. Outcome measures included cognitive-executive aspects of performance and gait parameters. Younger adults' performance of the VMET was more efficient (1.8±1.0) than older adults (5.3±2.7; p < 0.05) and faster (younger 478.1±141.5 s, older 867.6±393.5 s; p < 0.05). There were no differences between groups in gait parameters. Both groups walked slower in the mall simulation. The shopping simulation provided a paradigm to assess the interplay between motor and cognitive aspects involved in the efficient performance of a complex task. The study emphasized the role of the cognitive-executive aspect of task performance in healthy older adults.

  18. City rats: insight from rat spatial behavior into human cognition in urban environments.

    PubMed

    Yaski, Osnat; Portugali, Juval; Eilam, David

    2011-09-01

    The structure and shape of the urban environment influence our ability to find our way about in the city. Understanding how the physical properties of the environment affect spatial behavior and cognition is therefore a necessity. However, there are inherent difficulties in empirically studying complex and large-scale urban environments. These include the need to isolate the impact of specific urban features and to acquire data on the physical activity of individuals. In the present study, we attempted to overcome the above obstacles and examine the relation between urban environments and spatial cognition by testing the spatial behavior of rats. This idea originated from the resemblance in the operative brain functions and in the mechanisms and strategies employed by humans and other animals when acquiring spatial information and establishing an internal representation, as revealed in past studies. Accordingly, we tested rats in arenas that simulated a grid urban layout (e.g. Manhattan streets) and an irregular urban layout (e.g. Jerusalem streets). We found that in the grid layout, rat movement was more structured and extended over a greater area compared with their restricted movement in the irregular layout. These movement patterns recall those of humans in respective urban environments, illustrating that the structure and shape of the environment affect spatial behavior similarly in humans and rats. Overall, testing rats in environments that simulate facets of urban environments can provide new insights into human spatial cognition in urban environments.

  19. Simulating human behavior for national security human interactions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.

    2007-01-01

    This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humansmore » were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.« less

  20. Potential of Cognitive Computing and Cognitive Systems

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  1. The current status of the simulation theory of cognition.

    PubMed

    Hesslow, Germund

    2012-01-05

    It is proposed that thinking is simulated interaction with the environment. Three assumptions underlie this 'simulation' theory of cognitive function. Firstly, behaviour can be simulated in the sense that we can activate motor structures, as during a normal overt action, but suppress its execution. Secondly, perception can be simulated by internal activation of sensory cortex in a way that resembles its normal activation during perception of external stimuli. The third assumption ('anticipation') is that both overt and simulated actions can elicit perceptual simulation of their most probable consequences. A large body of evidence, mainly from neuroimaging studies, that supports these assumptions, is reviewed briefly. The theory is ontologically parsimonious and does not rely on standard cognitivist constructs such as internal models or representations. It is argued that the simulation approach can explain the relations between motor, sensory and cognitive functions and the appearance of an inner world. It also unifies and explains important features of a wide variety of cognitive phenomena such as memory and cognitive maps. Novel findings from recent developments in memory research on the similarity of imaging and memory and on the role of both prefrontal cortex and sensory cortex in declarative memory and working memory are predicted by the theory and provide striking support for it. This article is part of a Special Issue entitled "The Cognitive Neuroscience". Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Novel Virtual User Models of Mild Cognitive Impairment for Simulating Dementia

    PubMed Central

    Segkouli, Sofia; Tzovaras, Dimitrios; Tsakiris, Thanos; Tsolaki, Magda; Karagiannidis, Charalampos

    2015-01-01

    Virtual user modeling research has attempted to address critical issues of human-computer interaction (HCI) such as usability and utility through a large number of analytic, usability-oriented approaches as cognitive models in order to provide users with experiences fitting to their specific needs. However, there is demand for more specific modules embodied in cognitive architecture that will detect abnormal cognitive decline across new synthetic task environments. Also, accessibility evaluation of graphical user interfaces (GUIs) requires considerable effort for enhancing ICT products accessibility for older adults. The main aim of this study is to develop and test virtual user models (VUM) simulating mild cognitive impairment (MCI) through novel specific modules, embodied at cognitive models and defined by estimations of cognitive parameters. Well-established MCI detection tests assessed users' cognition, elaborated their ability to perform multitasks, and monitored the performance of infotainment related tasks to provide more accurate simulation results on existing conceptual frameworks and enhanced predictive validity in interfaces' design supported by increased tasks' complexity to capture a more detailed profile of users' capabilities and limitations. The final outcome is a more robust cognitive prediction model, accurately fitted to human data to be used for more reliable interfaces' evaluation through simulation on the basis of virtual models of MCI users. PMID:26339282

  3. Cognitive load predicts point-of-care ultrasound simulator performance.

    PubMed

    Aldekhyl, Sara; Cavalcanti, Rodrigo B; Naismith, Laura M

    2018-02-01

    The ability to maintain good performance with low cognitive load is an important marker of expertise. Incorporating cognitive load measurements in the context of simulation training may help to inform judgements of competence. This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and simulator performance in the context of point-of-care ultrasonography. Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to perform targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices, and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were clustered by participants. Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training and cognitive load as fixed effects provided the best overall fit for the observed data. In this proof-of-principle study, the combination of demographic and cognitive load measures provided more sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer to clinical practice.

  4. Outage Analysis of Dual-hop Cognitive Networks with Relay Selection over Nakagami-m Fading Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Zongsheng; Pi, Xurong

    2014-09-01

    In this paper, we investigate the outage performance of decode-and-forward cognitive relay networks for Nakagami-m fading channels, with considering both best relay selection and interference constraints. Focusing on the relay selection and making use of the underlay cognitive approach, an exact closed-form outage probability expression is derived in an independent, non-identical distributed Nakagami-m environment. The closed-form outage probability provides an efficient means to evaluate the effects of the maximum allowable interference power, number of cognitive relays, and channel conditions between the primary user and cognitive users. Finally, we present numerical results to validate the theory analysis. Moreover, from the simulation results, we obtain that the system can obtain the full diversity.

  5. Design of a simulation environment for laboratory management by robot organizations

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.; Cellier, Francois E.; Rozenblit, Jerzy W.

    1988-01-01

    This paper describes the basic concepts needed for a simulation environment capable of supporting the design of robot organizations for managing chemical, or similar, laboratories on the planned U.S. Space Station. The environment should facilitate a thorough study of the problems to be encountered in assigning the responsibility of managing a non-life-critical, but mission valuable, process to an organized group of robots. In the first phase of the work, we seek to employ the simulation environment to develop robot cognitive systems and strategies for effective multi-robot management of chemical experiments. Later phases will explore human-robot interaction and development of robot autonomy.

  6. Social cognitive theory, metacognition, and simulation learning in nursing education.

    PubMed

    Burke, Helen; Mancuso, Lorraine

    2012-10-01

    Simulation learning encompasses simple, introductory scenarios requiring response to patients' needs during basic hygienic care and during situations demanding complex decision making. Simulation integrates principles of social cognitive theory (SCT) into an interactive approach to learning that encompasses the core principles of intentionality, forethought, self-reactiveness, and self-reflectiveness. Effective simulation requires an environment conducive to learning and introduces activities that foster symbolic coding operations and mastery of new skills; debriefing builds self-efficacy and supports self-regulation of behavior. Tailoring the level of difficulty to students' mastery level supports successful outcomes and motivation to set higher standards. Mindful selection of simulation complexity and structure matches course learning objectives and supports progressive development of metacognition. Theory-based facilitation of simulated learning optimizes efficacy of this learning method to foster maturation of cognitive processes of SCT, metacognition, and self-directedness. Examples of metacognition that are supported through mindful, theory-based implementation of simulation learning are provided. Copyright 2012, SLACK Incorporated.

  7. MoCog1: A computer simulation of recognition-primed human decision making, considering emotions

    NASA Technical Reports Server (NTRS)

    Gevarter, William B.

    1992-01-01

    The successful results of the first stage of a research effort to develop a versatile computer model of motivated human cognitive behavior are reported. Most human decision making appears to be an experience-based, relatively straightforward, largely automatic response to situations, utilizing cues and opportunities perceived from the current environment. The development, considering emotions, of the architecture and computer program associated with such 'recognition-primed' decision-making is described. The resultant computer program (MoCog1) was successfully utilized as a vehicle to simulate earlier findings that relate how an individual's implicit theories orient the individual toward particular goals, with resultant cognitions, affects, and behavior in response to their environment.

  8. MoCog1: A computer simulation of recognition-primed human decision making

    NASA Technical Reports Server (NTRS)

    Gevarter, William B.

    1991-01-01

    The results of the first stage of a research effort to develop a 'sophisticated' computer model of human cognitive behavior are described. Most human decision making is an experience-based, relatively straight-forward, largely automatic response to internal goals and drives, utilizing cues and opportunities perceived from the current environment. The development of the architecture and computer program (MoCog1) associated with such 'recognition-primed' decision making is discussed. The resultant computer program was successfully utilized as a vehicle to simulate earlier findings that relate how an individual's implicit theories orient the individual toward particular goals, with resultant cognitions, affects, and behavior in response to their environment.

  9. Temporal pattern of emotions and cognitive load during simulation training and debriefing.

    PubMed

    Fraser, Kristin; McLaughlin, Kevin

    2018-04-24

    In the simulated clinical environment, there is a perceived benefit to the emotional activation experienced by learners; however, potential harm of excessive and/or negative emotions has also been hypothesized. An improved understanding of the emotional experiences of learners during each phase of the simulation session will inform instructional design. In this observational study, we asked 174 first-year medical students about their emotional state upon arrival to the simulation lab (t1). They were then trained on a standard simulation scenario, after which they rated their emotional state and perceived cognitive load (t2). After debriefing, we then asked them to again rate their emotions and cognitive load (t3). Students reported that their experience of tranquility (a positive and low-arousal state) dropped from pre-scenario (t1) to post-scenario (t2), and returned to baseline levels after debriefing (t3), from 0.69 (0.87) to 0.14 (0.78) to 0.62 (0.78). Post scenario cognitive load was rated to be moderately high at 6.62 (1.12) and scores increased after debriefing to 6.90 (1.05) d = 0.26, p < 0.001. Cognitive load was associated with the simultaneous measures of emotions at both t2 and t3. Participant emotions are significantly altered through the experience of medical simulation and emotions are associated with subjective ratings of cognitive load.

  10. Learning English with "The Sims": Exploiting Authentic Computer Simulation Games for L2 Learning

    ERIC Educational Resources Information Center

    Ranalli, Jim

    2008-01-01

    With their realistic animation, complex scenarios and impressive interactivity, computer simulation games might be able to provide context-rich, cognitively engaging virtual environments for language learning. However, simulation games designed for L2 learners are in short supply. As an alternative, could games designed for the mass-market be…

  11. Creating Next Generation Blended Learning Environments Using Mixed Reality, Video Games and Simulations

    ERIC Educational Resources Information Center

    Kirkley, Sonny E.; Kirkley, Jamie R.

    2005-01-01

    In this article, the challenges and issues of designing next generation learning environments using current and emerging technologies are addressed. An overview of the issues is provided as well as design principles that support the design of instruction and the overall learning environment. Specific methods for creating cognitively complex,…

  12. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments.

    PubMed

    Allen, Joseph G; MacNaughton, Piers; Satish, Usha; Santanam, Suresh; Vallarino, Jose; Spengler, John D

    2016-06-01

    The indoor built environment plays a critical role in our overall well-being because of both the amount of time we spend indoors (~90%) and the ability of buildings to positively or negatively influence our health. The advent of sustainable design or green building strategies reinvigorated questions regarding the specific factors in buildings that lead to optimized conditions for health and productivity. We simulated indoor environmental quality (IEQ) conditions in "Green" and "Conventional" buildings and evaluated the impacts on an objective measure of human performance: higher-order cognitive function. Twenty-four participants spent 6 full work days (0900-1700 hours) in an environmentally controlled office space, blinded to test conditions. On different days, they were exposed to IEQ conditions representative of Conventional [high concentrations of volatile organic compounds (VOCs)] and Green (low concentrations of VOCs) office buildings in the United States. Additional conditions simulated a Green building with a high outdoor air ventilation rate (labeled Green+) and artificially elevated carbon dioxide (CO2) levels independent of ventilation. On average, cognitive scores were 61% higher on the Green building day and 101% higher on the two Green+ building days than on the Conventional building day (p < 0.0001). VOCs and CO2 were independently associated with cognitive scores. Cognitive function scores were significantly better under Green+ building conditions than in the Conventional building conditions for all nine functional domains. These findings have wide-ranging implications because this study was designed to reflect conditions that are commonly encountered every day in many indoor environments. Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. 2016. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ Health Perspect 124:805-812; http://dx.doi.org/10.1289/ehp.1510037.

  13. Design of an immersive simulator for assisted power wheelchair driving.

    PubMed

    Devigne, Louise; Babel, Marie; Nouviale, Florian; Narayanan, Vishnu K; Pasteau, Francois; Gallien, Philippe

    2017-07-01

    Driving a power wheelchair is a difficult and complex visual-cognitive task. As a result, some people with visual and/or cognitive disabilities cannot access the benefits of a power wheelchair because their impairments prevent them from driving safely. In order to improve their access to mobility, we have previously designed a semi-autonomous assistive wheelchair system which progressively corrects the trajectory as the user manually drives the wheelchair and smoothly avoids obstacles. Developing and testing such systems for wheelchair driving assistance requires a significant amount of material resources and clinician time. With Virtual Reality technology, prototypes can be developed and tested in a risk-free and highly flexible Virtual Environment before equipping and testing a physical prototype. Additionally, users can "virtually" test and train more easily during the development process. In this paper, we introduce a power wheelchair driving simulator allowing the user to navigate with a standard wheelchair in an immersive 3D Virtual Environment. The simulation framework is designed to be flexible so that we can use different control inputs. In order to validate the framework, we first performed tests on the simulator with able-bodied participants during which the user's Quality of Experience (QoE) was assessed through a set of questionnaires. Results show that the simulator is a promising tool for future works as it generates a good sense of presence and requires rather low cognitive effort from users.

  14. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  15. Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights.

    PubMed

    Huttunen, Kerttu; Keränen, Heikki; Väyrynen, Eero; Pääkkönen, Rauno; Leino, Tuomo

    2011-01-01

    Mental overload directly affects safety in aviation and needs to be alleviated. Speech recordings are obtained non-invasively and as such are feasible for monitoring cognitive load. We recorded speech of 13 military pilots while they were performing a simulator task. Three types of cognitive load (load on situation awareness, information processing and decision making) were rated by a flight instructor separately for each flight phase and participant. As a function of increased cognitive load, the mean utterance-level fundamental frequency (F0) increased, on average, by 7 Hz and the mean vocal intensity increased by 1 dB. In the most intensive simulator flight phases, mean F0 increased by 12 Hz and mean intensity, by 1.5 dB. At the same time, the mean F0 range decreased by 5 Hz, on average. Our results showed that prosodic features of speech can be used to monitor speaker state and support pilot training in a simulator environment. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Comparative Analysis of Nursing Students' Perspectives toward Avatar Learning Modality: Gain Pre-Clinical Experience via Self-Paced Cognitive Tool

    ERIC Educational Resources Information Center

    Commendador, Kathleen; Chi, Robert

    2013-01-01

    This study was undertaken to better understand the nature of nursing students' perspectives toward simulative learning modality for gaining pre-clinical experience via self-paced cognitive tool--Avatar. Findings indicates that participants engaged in synchronous Avatar learning environment had higher levels of appreciation toward Avatar learning…

  17. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight.

    PubMed

    Wu, Xiaorui; Li, Dong; Liu, Junlian; Diao, Lihong; Ling, Shukuan; Li, Yuheng; Gao, Jianyi; Fan, Quanchun; Sun, Weijia; Li, Qi; Zhao, Dingsheng; Zhong, Guohui; Cao, Dengchao; Liu, Min; Wang, Jiaping; Zhao, Shuang; Liu, Yu; Bai, Guie; Shi, Hongzhi; Xu, Zi; Wang, Jing; Xue, Chunmei; Jin, Xiaoyan; Yuan, Xinxin; Li, Hongxing; Liu, Caizhi; Sun, Huiyuan; Li, Jianwei; Li, Yongzhi; Li, Yingxian

    2017-01-01

    Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

  18. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    PubMed Central

    Wu, Xiaorui; Li, Dong; Liu, Junlian; Diao, Lihong; Ling, Shukuan; Li, Yuheng; Gao, Jianyi; Fan, Quanchun; Sun, Weijia; Li, Qi; Zhao, Dingsheng; Zhong, Guohui; Cao, Dengchao; Liu, Min; Wang, Jiaping; Zhao, Shuang; Liu, Yu; Bai, Guie; Shi, Hongzhi; Xu, Zi; Wang, Jing; Xue, Chunmei; Jin, Xiaoyan; Yuan, Xinxin; Li, Hongxing; Liu, Caizhi; Sun, Huiyuan; Li, Jianwei; Li, Yongzhi; Li, Yingxian

    2017-01-01

    Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions. PMID:28611667

  19. Monitoring and predicting cognitive state and performance via physiological correlates of neuronal signals.

    PubMed

    Russo, Michael B; Stetz, Melba C; Thomas, Maria L

    2005-07-01

    Judgment, decision making, and situational awareness are higher-order mental abilities critically important to operational cognitive performance. Higher-order mental abilities rely on intact functioning of multiple brain regions, including the prefrontal, thalamus, and parietal areas. Real-time monitoring of individuals for cognitive performance capacity via an approach based on sampling multiple neurophysiologic signals and integrating those signals with performance prediction models potentially provides a method of supporting warfighters' and commanders' decision making and other operationally relevant mental processes and is consistent with the goals of augmented cognition. Cognitive neurophysiological assessments that directly measure brain function and subsequent cognition include positron emission tomography, functional magnetic resonance imaging, mass spectroscopy, near-infrared spectroscopy, magnetoencephalography, and electroencephalography (EEG); however, most direct measures are not practical to use in operational environments. More practical, albeit indirect measures that are generated by, but removed from the actual neural sources, are movement activity, oculometrics, heart rate, and voice stress signals. The goal of the papers in this section is to describe advances in selected direct and indirect cognitive neurophysiologic monitoring techniques as applied for the ultimate purpose of preventing operational performance failures. These papers present data acquired in a wide variety of environments, including laboratory, simulator, and clinical arenas. The papers discuss cognitive neurophysiologic measures such as digital signal processing wrist-mounted actigraphy; oculometrics including blinks, saccadic eye movements, pupillary movements, the pupil light reflex; and high-frequency EEG. These neurophysiological indices are related to cognitive performance as measured through standard test batteries and simulators with conditions including sleep loss, time on task, and aviation flight-induced fatigue.

  20. MoCog1: A computer simulation of recognition-primed human decision making

    NASA Technical Reports Server (NTRS)

    Gevarter, William B.

    1991-01-01

    This report describes the successful results of the first stage of a research effort to develop a 'sophisticated' computer model of human cognitive behavior. Most human decision-making is of the experience-based, relatively straight-forward, largely automatic, type of response to internal goals and drives, utilizing cues and opportunities perceived from the current environment. This report describes the development of the architecture and computer program associated with such 'recognition-primed' decision-making. The resultant computer program was successfully utilized as a vehicle to simulate findings that relate how an individual's implicit theories orient them toward particular goals, with resultant cognitions, affects, and behavior in response to their environment. The present work is an expanded version and is based on research reported while the author was an employee of NASA ARC.

  1. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions.

    PubMed

    Williams-Bell, F Michael; Aisbett, Brad; Murphy, Bernadette A; Larsen, Brianna

    2017-01-01

    Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT) conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON). Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span) assessed at baseline (cog 1) and during the final 20-min of each hour (cog 2, 3, and 4). Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol. Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01), core temperature declined during the cognitive assessments in both conditions (at a rate of -0.15 ± 0.20°C·hr -1 and -0.63 ± 0.12°C·hr -1 in the HOT and CON trial respectively). Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration. Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study.

  2. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions

    PubMed Central

    Williams-Bell, F. Michael; Aisbett, Brad; Murphy, Bernadette A.; Larsen, Brianna

    2017-01-01

    Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT) conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON). Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span) assessed at baseline (cog 1) and during the final 20-min of each hour (cog 2, 3, and 4). Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol. Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01), core temperature declined during the cognitive assessments in both conditions (at a rate of −0.15 ± 0.20°C·hr−1 and −0.63 ± 0.12°C·hr−1 in the HOT and CON trial respectively). Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration. Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study. PMID:29114230

  3. Cognitive Performance in Operational Environments

    NASA Technical Reports Server (NTRS)

    Russo, Michael; McGhee, James; Friedler, Edna; Thomas, Maria

    2005-01-01

    Optimal cognition during complex and sustained operations is a critical component for success in current and future military operations. "Cognitive Performance, Judgment, and Decision-making" (CPJD) is a newly organized U.S. Army Medical Research and Materiel Command research program focused on sustaining operational effectiveness of Future Force Warriors by developing paradigms through which militarily-relevant, higher-order cognitive performance, judgment, and decision-making can be assessed and sustained in individuals, small teams, and leaders of network-centric fighting units. CPJD evaluates the impact of stressors intrinsic to military operational environments (e.g., sleep deprivation, workload, fatigue, temperature extremes, altitude, environmental/physiological disruption) on military performance, evaluates noninvasive automated methods for monitoring and predicting cognitive performance, and investigates pharmaceutical strategies (e.g., stimulant countermeasures, hypnotics) to mitigate performance decrements. This manuscript describes the CPJD program, discusses the metrics utilized to relate militarily applied research findings to academic research, and discusses how the simulated combat capabilities of a synthetic battle laboratory may facilitate future cognitive performance research.

  4. Technology advancing the study of animal cognition: using virtual reality to present virtually simulated environments to investigate nonhuman primate spatial cognition

    PubMed Central

    Schweller, Kenneth; Milne, Scott

    2017-01-01

    Abstract Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal’s sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species’ daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best practices, and also pitfalls to avoid. PMID:29491967

  5. Technology advancing the study of animal cognition: using virtual reality to present virtually simulated environments to investigate nonhuman primate spatial cognition.

    PubMed

    Dolins, Francine L; Schweller, Kenneth; Milne, Scott

    2017-02-01

    Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal's sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species' daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best practices, and also pitfalls to avoid.

  6. Competence by Simulation: The Expert Nurse Continuing Education Experience Utilizing Simulation

    ERIC Educational Resources Information Center

    Underwood, Douglas W.

    2013-01-01

    Registered nurses practice in an environment that involves complex healthcare issues requiring continuous learning and evaluation of cognitive and technical skills to ensure safe and quality patient care. The purpose of this basic qualitative study was to gain a better understanding of the continuing educational needs of the expert nurse. This…

  7. Assessing Practical Skills in Physics Using Computer Simulations

    ERIC Educational Resources Information Center

    Walsh, Kevin

    2018-01-01

    Computer simulations have been used very effectively for many years in the teaching of science but the focus has been on cognitive development. This study, however, is an investigation into the possibility that a student's experimental skills in the real-world environment can be judged via the undertaking of a suitably chosen computer simulation…

  8. The effects of background noise on cognitive performance during a 70 hour simulation of conditions aboard the International Space Station.

    PubMed

    Smith, D G; Baranski, J V; Thompson, M M; Abel, S M

    2003-01-01

    A total of twenty-five subjects were cloistered for a period of 70 hours, five at a time, in a hyperbaric chamber modified to simulate the conditions aboard the International Space Station (ISS). A recording of 72 dBA background noise from the ISS service module was used to simulate noise conditions on the ISS. Two groups experienced the background noise throughout the experiment, two other groups experienced the noise only during the day, and one control group was cloistered in a quiet environment. All subjects completed a battery of cognitive tests nine times throughout the experiment. The data showed little or no effect of noise on reasoning, perceptual decision-making, memory, vigilance, mood, or subjective indices of fatigue. Our results suggest that the level of noise on the space station should not affect cognitive performance, at least over a period of several days.

  9. Robust spatial memory maps in flickering neuronal networks: a topological model

    NASA Astrophysics Data System (ADS)

    Dabaghian, Yuri; Babichev, Andrey; Memoli, Facundo; Chowdhury, Samir; Rice University Collaboration; Ohio State University Collaboration

    It is widely accepted that the hippocampal place cells provide a substrate of the neuronal representation of the environment--the ``cognitive map''. However, hippocampal network, as any other network in the brain is transient: thousands of hippocampal neurons die every day and the connections formed by these cells constantly change due to various forms of synaptic plasticity. What then explains the remarkable reliability of our spatial memories? We propose a computational approach to answering this question based on a couple of insights. First, we propose that the hippocampal cognitive map is fundamentally topological, and hence it is amenable to analysis by topological methods. We then apply several novel methods from homology theory, to understand how dynamic connections between cells influences the speed and reliability of spatial learning. We simulate the rat's exploratory movements through different environments and study how topological invariants of these environments arise in a network of simulated neurons with ``flickering'' connectivity. We find that despite transient connectivity the network of place cells produces a stable representation of the topology of the environment.

  10. Cognitive Model of Animal Behavior to Comprehend an Aspect of Decision-Making

    NASA Astrophysics Data System (ADS)

    Migita, Masao; Moriyama, Tohru

    2004-08-01

    Most animal behaviors are considered to have been evolved through their own courses of natural selection. Since mechanisms of natural selection depend tightly on environments in which animals of interest inhabit, the environment for an animal appears a priori, and stimulus-response (S-R) relationships are stable as long as it returns constant benefit. We claim, however, no environment for an animal cannot be regarded as a priori and any animal can exhibit more elaborated behavior than S-R. In other words, every animal is more or less cognitive in terms that it may modify a meaning of stimulus. We introduce a minimal model to demonstrate the cognitive aspect of the pill bug's turn alternation (TA) behavior. The simulated pill bug can modify its own response pattern to the stimulus of water, though stable response appears to be prerequisite to TA behavior.

  11. Flight School in the Virtual Environment: Capabilities and Risks of Executing a Simulations-Based Flight Training Program

    DTIC Science & Technology

    2012-05-17

    theories work together to explain learning in aviation—behavioral learning theory , cognitive learning theory , constructivism, experiential ...solve problems, and make decisions. Experiential learning theory incorporates both behavioral and cognitive theories .104 This theory harnesses the...34Evaluation of the Effectiveness of Flight School XXI," 7. 106 David A. Kolb , Experiential Learning : Experience as the Source of

  12. Making Good Instructors Great: USMC Cognitive Readiness and Instructor Professionalization Initiatives

    DTIC Science & Technology

    2012-01-01

    enhance their classes; these approaches are recom- mended in addition to (not in lieu of) other well-known military scenario-based training methods...Interservice/Industry Training , Simulation, and Education Conference (I/ITSEC) 2012 2012 Paper No. 12185 Making Good Instructors Great: USMC...and ambiguous environments. Each of the US Armed Services is addressing cognitive readiness training differently. The Marine Corps, for in- stance

  13. Name that tune: Mitigation of driver fatigue via a song naming game

    DOE PAGES

    Trumbo, Michael C.; Jones, Aaron P.; Robinson, Charles S. H.; ...

    2017-09-18

    Fatigued driving contributes to a substantial number of motor vehicle accidents each year. Music listening is often employed as a countermeasure during driving in order to mitigate the effects of fatigue. And though music listening has been established as a distractor in the sense that it increases cognitive load during driving, it is possible that increased cognitive load is desirable under particular circumstances. For instance, during situations that typically result in cognitive underload, such as driving in a low-traffic monotonous stretch of highway, it may be beneficial for cognitive load to increase, thereby necessitating allocation of greater cognitive resources tomore » the task of driving and attenuating fatigue. Here, we employed a song-naming game as a countermeasure to fatigued driving in a simulated monotonous environment. During the first driving session, we established that driving performance deteriorates in the absence of an intervention following 30 min of simulated driving. During the second session, we found that a song-naming game employed at the point of fatigue onset was an effective countermeasure, as reflected by simulated driving performance that met or exceeded fresh driving behavior and was significantly better relative to fatigued performance during the first driving session.« less

  14. Name that tune: Mitigation of driver fatigue via a song naming game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbo, Michael C.; Jones, Aaron P.; Robinson, Charles S. H.

    Fatigued driving contributes to a substantial number of motor vehicle accidents each year. Music listening is often employed as a countermeasure during driving in order to mitigate the effects of fatigue. And though music listening has been established as a distractor in the sense that it increases cognitive load during driving, it is possible that increased cognitive load is desirable under particular circumstances. For instance, during situations that typically result in cognitive underload, such as driving in a low-traffic monotonous stretch of highway, it may be beneficial for cognitive load to increase, thereby necessitating allocation of greater cognitive resources tomore » the task of driving and attenuating fatigue. Here, we employed a song-naming game as a countermeasure to fatigued driving in a simulated monotonous environment. During the first driving session, we established that driving performance deteriorates in the absence of an intervention following 30 min of simulated driving. During the second session, we found that a song-naming game employed at the point of fatigue onset was an effective countermeasure, as reflected by simulated driving performance that met or exceeded fresh driving behavior and was significantly better relative to fatigued performance during the first driving session.« less

  15. The embodied performance pedagogy of Jacques Lecoq

    NASA Astrophysics Data System (ADS)

    Kemp, Rick

    2017-01-01

    This article proposes that acting is a valuable area of research for the fields of Artificial Intelligence and Simulated Behaviour. This suggestion is supported through applying theories and findings from the field of embodied cognition to the performance pedagogy of French acting teacher Jacques Lecoq (1921-1999). Embodied cognition proposes that thinking and behaviour are properties of the whole human organism, not the brain alone, and that body, brain and cognition are "situated" - engaged with the surrounding environment. This thesis arises from findings that show that sensorial and motor experiences form the neural foundations for mental concepts and that sensorimotor neural networks are partially re-activated by mental and linguistic activity, leading to the concept of "embodied simulation". I give examples of the ways in which Lecoq's conceptualisation of acting technique is implicitly congruent with the principles of embodied cognition, and often explicitly anticipates its precepts.

  16. A Cognitive Task Analysis, with Implications for Designing a Simulation-Based Performance Assessment.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Steinberg, Linda S.; Breyer, F. Jay; Almond, Russell G.; Johnson, Lynn

    To function effectively as a learning environment, a simulation system must present learners with situations in which they use relevant knowledge, skills, and abilities. To function effectively as an assessment, such a system must additionally be able to evoke and interpret observable evidence about targeted knowledge in a manner that is…

  17. An Atom Is Known by the Company It Keeps: A Constructionist Learning Environment for Materials Science Using Agent-Based Modeling

    ERIC Educational Resources Information Center

    Blikstein, Paulo; Wilensky, Uri

    2009-01-01

    This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…

  18. Virtual reality in the assessment of selected cognitive function after brain injury.

    PubMed

    Zhang, L; Abreu, B C; Masel, B; Scheibel, R S; Christiansen, C H; Huddleston, N; Ottenbacher, K J

    2001-08-01

    To assess selected cognitive functions of persons with traumatic brain injury using a computer-simulated virtual reality environment. A computer-simulated virtual kitchen was used to assess the ability of 30 patients with brain injury and 30 volunteers without brain injury to process and sequence information. The overall assessment score was based on the number of correct responses and the time needed to complete daily living tasks. Identical daily living tasks were tested and scored in participants with and without brain injury. Each subject was evaluated twice within 7 to 10 days. A total of 30 tasks were categorized as follows: information processing, problem solving, logical sequencing, and speed of responding. Persons with brain injuries consistently demonstrated a significant decrease in the ability to process information (P = 0.04-0.01), identify logical sequencing (P = 0.04-0.01), and complete the overall assessment (P < 0.01), compared with volunteers without brain injury. The time needed to process tasks, representing speed of cognitive responding, was also significantly different between the two groups (P < 0.01). A computer-generated virtual reality environment represents a reproducible tool to assess selected cognitive functions and can be used as a supplement to traditional rehabilitation assessment in persons with acquired brain injury.

  19. Robotic action acquisition with cognitive biases in coarse-grained state space.

    PubMed

    Uragami, Daisuke; Kohno, Yu; Takahashi, Tatsuji

    2016-07-01

    Some of the authors have previously proposed a cognitively inspired reinforcement learning architecture (LS-Q) that mimics cognitive biases in humans. LS-Q adaptively learns under uniform, coarse-grained state division and performs well without parameter tuning in a giant-swing robot task. However, these results were shown only in simulations. In this study, we test the validity of the LS-Q implemented in a robot in a real environment. In addition, we analyze the learning process to elucidate the mechanism by which the LS-Q adaptively learns under the partially observable environment. We argue that the LS-Q may be a versatile reinforcement learning architecture, which is, despite its simplicity, easily applicable and does not require well-prepared settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Implementation and outcome evaluation of high-fidelity simulation scenarios to integrate cognitive and psychomotor skills for Korean nursing students.

    PubMed

    Ahn, Heejung; Kim, Hyun-Young

    2015-05-01

    This study is involved in designing high-fidelity simulations reflecting the Korean nursing education environment. In addition, it evaluated the simulations by nursing students' learning outcomes and perceptions of the simulation design features. A quantitative design was used in two separate phases. For the first phase, five nursing experts participated in verifying the appropriateness of two simulation scenarios that reflected the intended learning objectives. For the second phase, 69 nursing students in the third year of a bachelor's degree at a nursing school participated in evaluating the simulations and were randomized according to their previous course grades. The first phase verified the two simulation scenarios using a questionnaire. The second phase evaluated students' perceptions of the simulation design, self-confidence, and critical thinking skills using a quasi-experimental post-test design. ANCOVA was used to compare the experimental and control groups, and correlation coefficient analysis was used to determine the correlation among them. We created 2 simulation scenarios to integrate cognitive and psychomotor skills according to the learning objectives and clinical environment in Korea. The experimental group had significantly higher scores on self-confidence in the first scenario. The positive correlations between perceptions of the simulation design features, self-confidence, and critical thinking skill scores were statistically significant. Students with a more positive perception of the design features of the simulations had better learning outcomes. Based on this result, simulations need to be designed and implemented with more differentiation in order to be perceived more appropriately by students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Simulator technology as a tool for education in cardiac care.

    PubMed

    Hravnak, Marilyn; Beach, Michael; Tuite, Patricia

    2007-01-01

    Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.

  2. The effects of individual differences, prior experience and cognitive load on the transfer of dynamic decision-making performance.

    PubMed

    Nicholson, Brad; O'Hare, David

    2014-01-01

    Situational awareness is recognised as an important factor in the performance of individuals and teams in dynamic decision-making (DDM) environments (Salmon et al. 2014 ). The present study was designed to investigate whether the scores on the WOMBAT™ Situational Awareness and Stress Tolerance Test (Roscoe and North 1980 ) would predict the transfer of DDM performance from training under different levels of cognitive load to a novel situation. Participants practised a simulated firefighting task under either low or high conditions of cognitive load and then performed a (transfer) test in an alternative firefighting environment under an intermediate level of cognitive load. WOMBAT™ test scores were a better predictor of DDM performance than scores on the Raven Matrices. Participants with high WOMBAT™ scores performed better regardless of their training condition. Participants with recent gaming experience who practised under low cognitive load showed better practice phase performance but worse transfer performance than those who practised under high cognitive load. The relationship between task experience, situational awareness ability, cognitive load and the transfer of dynamic decision-making (DDM) performance was investigated. Results showed that the WOMBAT™ test predicted transfer of DDM performance regardless of task cognitive load. The effects of cognitive load on performance varied according to previous task-relevant experience.

  3. Taekwondo Fighting in Training Does Not Simulate the Affective and Cognitive Demands of Competition: Implications for Behavior and Transfer.

    PubMed

    Maloney, Michael A; Renshaw, Ian; Headrick, Jonathon; Martin, David T; Farrow, Damian

    2018-01-01

    Enhancing practice design is critical to facilitate transfer of learning. Considerable research has focused on the role of perceptual information in practice simulation, yet has neglected how affect and cognition are shaped by practice environments and whether this influences the fidelity of behavior (Headrick et al., 2015). This study filled this gap by examining the fidelity of individual (cognition, affect, and actions) and interpersonal behavior of 10 highly skilled Australian Taekwondo athletes fighting in training compared to competition. Interpersonal behavior was assessed by tracking location coordinates to analyze distance-time coordination tendencies of the fighter-fighter system. Individual actions were assessed through notational analysis and approximate entropy calculations of coordinate data to quantify the (un)predictability of movement displacement. Affect and cognition were assessed with mixed-methods that included perceptual scales measuring anxiety, arousal, and mental effort, and post-fight video-facilitated confrontational interviews to explore how affect and cognitions might differ. Quantitative differences were assessed with mixed models and dependent t -tests. Results reveal that individual and interpersonal behavior differed between training and competition. In training, individuals attacked less ( d = 0.81, p < 0.05), initiated attacks from further away ( d = -0.20, p < 0.05) and displayed more predictable movement trajectories ( d = 0.84, p < 0.05). In training, fighters had lower anxiety ( d = -1.26, p < 0.05), arousal ( d = -1.07, p < 0.05), and mental effort ( d = -0.77, p < 0.05). These results were accompanied by changes in interpersonal behavior, with larger interpersonal distances generated by the fighter-fighter system in training ( d = 0.80, p < 0.05). Qualitative data revealed the emergence of cognitions and affect specific to the training environment, such as reductions in pressure, arousal, and mental challenge. Findings highlight the specificity of performer-environment interactions. Fighting in training affords reduced affective and cognitive demands and a decrease in action fidelity compared to competition. In addition to sampling information, representative practice needs to consider modeling the cognitions and affect of competition to enhance transfer.

  4. Taekwondo Fighting in Training Does Not Simulate the Affective and Cognitive Demands of Competition: Implications for Behavior and Transfer

    PubMed Central

    Maloney, Michael A.; Renshaw, Ian; Headrick, Jonathon; Martin, David T.; Farrow, Damian

    2018-01-01

    Enhancing practice design is critical to facilitate transfer of learning. Considerable research has focused on the role of perceptual information in practice simulation, yet has neglected how affect and cognition are shaped by practice environments and whether this influences the fidelity of behavior (Headrick et al., 2015). This study filled this gap by examining the fidelity of individual (cognition, affect, and actions) and interpersonal behavior of 10 highly skilled Australian Taekwondo athletes fighting in training compared to competition. Interpersonal behavior was assessed by tracking location coordinates to analyze distance-time coordination tendencies of the fighter–fighter system. Individual actions were assessed through notational analysis and approximate entropy calculations of coordinate data to quantify the (un)predictability of movement displacement. Affect and cognition were assessed with mixed-methods that included perceptual scales measuring anxiety, arousal, and mental effort, and post-fight video-facilitated confrontational interviews to explore how affect and cognitions might differ. Quantitative differences were assessed with mixed models and dependent t-tests. Results reveal that individual and interpersonal behavior differed between training and competition. In training, individuals attacked less (d = 0.81, p < 0.05), initiated attacks from further away (d = -0.20, p < 0.05) and displayed more predictable movement trajectories (d = 0.84, p < 0.05). In training, fighters had lower anxiety (d = -1.26, p < 0.05), arousal (d = -1.07, p < 0.05), and mental effort (d = -0.77, p < 0.05). These results were accompanied by changes in interpersonal behavior, with larger interpersonal distances generated by the fighter–fighter system in training (d = 0.80, p < 0.05). Qualitative data revealed the emergence of cognitions and affect specific to the training environment, such as reductions in pressure, arousal, and mental challenge. Findings highlight the specificity of performer–environment interactions. Fighting in training affords reduced affective and cognitive demands and a decrease in action fidelity compared to competition. In addition to sampling information, representative practice needs to consider modeling the cognitions and affect of competition to enhance transfer. PMID:29445348

  5. Name that tune: Mitigation of driver fatigue via a song naming game.

    PubMed

    Trumbo, Michael C; Jones, Aaron P; Robinson, Charles S H; Cole, Kerstan; Morrow, James D

    2017-11-01

    Fatigued driving contributes to a substantial number of motor vehicle accidents each year. Music listening is often employed as a countermeasure during driving in order to mitigate the effects of fatigue. Though music listening has been established as a distractor in the sense that it increases cognitive load during driving, it is possible that increased cognitive load is desirable under particular circumstances. For instance, during situations that typically result in cognitive underload, such as driving in a low-traffic monotonous stretch of highway, it may be beneficial for cognitive load to increase, thereby necessitating allocation of greater cognitive resources to the task of driving and attenuating fatigue. In the current study, we employed a song-naming game as a countermeasure to fatigued driving in a simulated monotonous environment. During the first driving session, we established that driving performance deteriorates in the absence of an intervention following 30min of simulated driving. During the second session, we found that a song-naming game employed at the point of fatigue onset was an effective countermeasure, as reflected by simulated driving performance that met or exceeded fresh driving behavior and was significantly better relative to fatigued performance during the first driving session. Copyright © 2017. Published by Elsevier Ltd.

  6. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    PubMed Central

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance. PMID:29021747

  7. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    PubMed

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  8. Skill training in multimodal virtual environments.

    PubMed

    Gopher, Daniel

    2012-01-01

    Multimodal, immersive, virtual reality (VR) techniques open new perspectives for perceptual-motor skill trainers. They also introduce new risks and dangers. This paper describes the benefits and pitfalls of multimodal training and the cognitive building blocks of a multimodal, VR training simulators.

  9. Synchronisation effects on the behavioural performance and information dynamics of a simulated minimally cognitive robotic agent.

    PubMed

    Moioli, Renan C; Vargas, Patricia A; Husbands, Phil

    2012-09-01

    Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain-body- environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour.

  10. The Case of the Unhappy Sports Fan: Embracing Student-Centered Learning and Promoting Upper-Level Cognitive Skills through an Online Dispute Resolution Simulation

    ERIC Educational Resources Information Center

    Ponte, Lucille M.

    2006-01-01

    Pedagogical experts contend that students learn best when they are actively involved in and responsible for their own learning. In a student-centered learning environment, the instructor ideally serves primarily as a learning resource or facilitator. With the guidance of the instructor, students in active learning environments strive for…

  11. Spatial Thinking: Precept for Understanding Operational Environments

    DTIC Science & Technology

    2016-06-10

    A Computer Movie Simulating Urban Growth in the Detroit Region,” 236. 29 U.S. National Research Council, Learning to Think Spatially: GIS as a... children and spatial language, the article focuses on the use of geospatial information systems (GIS) as a support mechanism for learning to think...Thinking, Cognition, Learning , Geospatial, Operating Environment, Space Perception 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  12. Passive acquisition of CLIPS rules

    NASA Technical Reports Server (NTRS)

    Kovarik, Vincent J., Jr.

    1991-01-01

    The automated acquisition of knowledge by machine has not lived up to expectations, and knowledge engineering remains a human intensive task. Part of the reason for the lack of success is the difference in the cognitive focus of the expert. The expert must shift his or her focus from the subject domain to that of the representation environment. In doing so this cognitive shift introduces opportunity for errors and omissions. Presented here is work that observes the expert interact with a simulation of the domain. The system logs changes in the simulation objects and the expert's actions in response to those changes. This is followed by the application of inductive reasoning to move the domain specific rules observed to general domain rules.

  13. Cognitive Learning Bias of College Students in an Aviation Program

    DOT National Transportation Integrated Search

    1996-01-01

    Students are attracted to university aviation programs for a number of reasons. How well they learn from instruction in a classroom, an airplane, a simulator or in other environments is impacted by their ability to react to stimuli and to process dif...

  14. Cognitive task load in a naval ship control centre: from identification to prediction.

    PubMed

    Grootjen, M; Neerincx, M A; Veltman, J A

    Deployment of information and communication technology will lead to further automation of control centre tasks and an increasing amount of information to be processed. A method for establishing adequate levels of cognitive task load for the operators in such complex environments has been developed. It is based on a model distinguishing three load factors: time occupied, task-set switching, and level of information processing. Application of the method resulted in eight scenarios for eight extremes of task load (i.e. low and high values for each load factor). These scenarios were performed by 13 teams in a high-fidelity control centre simulator of the Royal Netherlands Navy. The results show that the method provides good prediction of the task load that will actually appear in the simulator. The model allowed identification of under- and overload situations showing negative effects on operator performance corresponding to controlled experiments in a less realistic task environment. Tools proposed to keep the operator at an optimum task load are (adaptive) task allocation and interface support.

  15. Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning.

    PubMed

    Narayan, Pritesh; Meyer, Patrick; Campbell, Duncan

    2013-04-01

    This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

  16. Translational simulation: not 'where?' but 'why?' A functional view of in situ simulation.

    PubMed

    Brazil, Victoria

    2017-01-01

    Healthcare simulation has been widely adopted for health professional education at all stages of training and practice and across cognitive, procedural, communication and teamwork domains. Recent enthusiasm for in situ simulation-delivered in the real clinical environment-cites improved transfer of knowledge and skills into real-world practice, as well as opportunities to identify latent safety threats and other workplace-specific issues. However, describing simulation type according to place may not be helpful. Instead, I propose the term translational simulation as a functional term for how simulation may be connected directly with health service priorities and patient outcomes, through interventional and diagnostic functions, independent of the location of the simulation activity.

  17. Properties of centralized cooperative sensing in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Skokowski, Paweł; Malon, Krzysztof; Łopatka, Jerzy

    2017-04-01

    Spectrum sensing is a functionality that enables network creation in the cognitive radio technology. Spectrum sensing is use for building the situation awareness knowledge for better use of radio resources and to adjust network parameters in case of jamming, interferences from legacy systems, decreasing link quality caused e.g. by nodes positions changes. This paper presents results from performed tests to compare cooperative centralized sensing versus local sensing. All tests were performed in created simulator developed in Matlab/Simulink environment.

  18. Complex clinical reasoning in the critical care unit - difficulties, pitfalls and adaptive strategies.

    PubMed

    Shaw, M; Singh, S

    2015-04-01

    Diagnostic error has implications for both clinical outcome and resource utilisation, and may often be traced to impaired data gathering, processing or synthesis because of the influence of cognitive bias. Factors inherent to the intensive/acute care environment afford multiple additional opportunities for such errors to occur. This article illustrates many of these with reference to a case encountered on our intensive care unit. Strategies to improve completeness of data gathering, processing and synthesis in the acute care environment are critically appraised in the context of early detection and amelioration of cognitive bias. These include reflection, targeted simulation training and the integration of social media and IT based aids in complex diagnostic processes. A framework which can be quickly and easily employed in a variety of clinical environments is then presented. © 2015 John Wiley & Sons Ltd.

  19. Cognitive niches: an ecological model of strategy selection.

    PubMed

    Marewski, Julian N; Schooler, Lael J

    2011-07-01

    How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each strategy a cognitive niche, that is, a limited number of situations in which the strategy can be applied, simplifying strategy selection. To illustrate our proposal, we consider selection in the context of 2 theories: the simple heuristics framework and the ACT-R (adaptive control of thought-rational) architecture of cognition. From the heuristics framework, we adopt the thesis that people make decisions by selecting from a repertoire of simple decision strategies that exploit regularities in the environment and draw on cognitive capacities, such as memory and time perception. ACT-R provides a quantitative theory of how these capacities adapt to the environment. In 14 simulations and 10 experiments, we consider the choice between strategies that operate on the accessibility of memories and those that depend on elaborate knowledge about the world. Based on Internet statistics, our model quantitatively predicts people's familiarity with and knowledge of real-world objects, the distributional characteristics of the associated speed of memory retrieval, and the cognitive niches of classic decision strategies, including those of the fluency, recognition, integration, lexicographic, and sequential-sampling heuristics. In doing so, the model specifies when people will be able to apply different strategies and how accurate, fast, and effortless people's decisions will be.

  20. Driver’s Cognitive Workload and Driving Performance under Traffic Sign Information Exposure in Complex Environments: A Case Study of the Highways in China

    PubMed Central

    Lyu, Nengchao; Xie, Lian; Wu, Chaozhong; Fu, Qiang; Deng, Chao

    2017-01-01

    Complex traffic situations and high driving workload are the leading contributing factors to traffic crashes. There is a strong correlation between driving performance and driving workload, such as visual workload from traffic signs on highway off-ramps. This study aimed to evaluate traffic safety by analyzing drivers’ behavior and performance under the cognitive workload in complex environment areas. First, the driving workload of drivers was tested based on traffic signs with different quantities of information. Forty-four drivers were recruited to conduct a traffic sign cognition experiment under static controlled environment conditions. Different complex traffic signs were used for applying the cognitive workload. The static experiment results reveal that workload is highly related to the amount of information on traffic signs and reaction time increases with the information grade, while driving experience and gender effect are not significant. This shows that the cognitive workload of subsequent driving experiments can be controlled by the amount of information on traffic signs; Second, driving characteristics and driving performance were analyzed under different secondary task driving workload levels using a driving simulator. Drivers were required to drive at the required speed on a designed highway off-ramp scene. The cognitive workload was controlled by reading traffic signs with different information, which were divided into four levels. Drivers had to make choices by pushing buttons after reading traffic signs. Meanwhile, the driving performance information was recorded. Questionnaires on objective workload were collected right after each driving task. The results show that speed maintenance and lane deviations are significantly different under different levels of cognitive workload, and the effects of driving experience and gender groups are significant. The research results can be used to analyze traffic safety in highway environments, while considering more drivers’ cognitive and driving performance. PMID:28218696

  1. Simulating Navigation with Virtual 3d Geovisualizations - a Focus on Memory Related Factors

    NASA Astrophysics Data System (ADS)

    Lokka, I.; Çöltekin, A.

    2016-06-01

    The use of virtual environments (VE) for navigation-related studies, such as spatial cognition and path retrieval has been widely adopted in cognitive psychology and related fields. What motivates the use of VEs for such studies is that, as opposed to real-world, we can control for the confounding variables in simulated VEs. When simulating a geographic environment as a virtual world with the intention to train navigational memory in humans, an effective and efficient visual design is important to facilitate the amount of recall. However, it is not yet clear what amount of information should be included in such visual designs intended to facilitate remembering: there can be too little or too much of it. Besides the amount of information or level of detail, the types of visual features (`elements' in a visual scene) that should be included in the representations to create memorable scenes and paths must be defined. We analyzed the literature in cognitive psychology, geovisualization and information visualization, and identified the key factors for studying and evaluating geovisualization designs for their function to support and strengthen human navigational memory. The key factors we identified are: i) the individual abilities and age of the users, ii) the level of realism (LOR) included in the representations and iii) the context in which the navigation is performed, thus specific tasks within a case scenario. Here we present a concise literature review and our conceptual development for follow-up experiments.

  2. Your Brain Outdoors

    ERIC Educational Resources Information Center

    MacEachren, Zabe

    2012-01-01

    The way technology influences a person's cognition is seldom recognized, but is of increasing interest among brain researchers. Outdoor educators tend to pay attention to the way different activities offer different perceptions of an environment. When natural spaces can no longer be accessed, they adapt and simulate natural activities in available…

  3. A Big Data and Learning Analytics Approach to Process-Level Feedback in Cognitive Simulations.

    PubMed

    Pecaric, Martin; Boutis, Kathy; Beckstead, Jason; Pusic, Martin

    2017-02-01

    Collecting and analyzing large amounts of process data for the purposes of education can be considered a big data/learning analytics (BD/LA) approach to improving learning. However, in the education of health care professionals, the application of BD/LA is limited to date. The authors discuss the potential advantages of the BD/LA approach for the process of learning via cognitive simulations. Using the lens of a cognitive model of radiograph interpretation with four phases (orientation, searching/scanning, feature detection, and decision making), they reanalyzed process data from a cognitive simulation of pediatric ankle radiography where 46 practitioners from three expertise levels classified 234 cases online. To illustrate the big data component, they highlight the data available in a digital environment (time-stamped, click-level process data). Learning analytics were illustrated using algorithmic computer-enabled approaches to process-level feedback.For each phase, the authors were able to identify examples of potentially useful BD/LA measures. For orientation, the trackable behavior of re-reviewing the clinical history was associated with increased diagnostic accuracy. For searching/scanning, evidence of skipping views was associated with an increased false-negative rate. For feature detection, heat maps overlaid on the radiograph can provide a metacognitive visualization of common novice errors. For decision making, the measured influence of sequence effects can reflect susceptibility to bias, whereas computer-generated path maps can provide insights into learners' diagnostic strategies.In conclusion, the augmented collection and dynamic analysis of learning process data within a cognitive simulation can improve feedback and prompt more precise reflection on a novice clinician's skill development.

  4. D Visibility Analysis in Urban Environment - Cognition Research Based on Vge

    NASA Astrophysics Data System (ADS)

    Lin, T. P.; Lin, H.; Hu, M. Y.

    2013-09-01

    The author in this research attempts to illustrate a measurable relationship between the physical environment and human's visual perception, including the distance, visual angle impact and visual field (a 3D isovist conception) against human's cognition way, by using a 3D visibility analysis method based on the platform of Virtual Geographic Environment (VGE). The whole project carries out in the CUHK campus (the Chinese University of Hong Kong), by adopting a virtual 3D model of the whole campus and survey in real world. A possible model for the simulation of human cognition in urban spaces is expected to be the output of this research, such as what the human perceive from the environment, how their feelings and behaviours are and how they affect the surrounding world. Kevin Lynch raised 5 elements of urban design in 1960s, which are "vitality, sense, fit, access and control". As the development of urban design, several problems around the human's cognitive and behaviour have come out. Due to the restriction of sensing knowledge in urban spaces, the research among the "sense" and the "fit" of urban design were not quite concerned in recent decades. The geo-spatial cognition field comes into being in 1997 and developed in recent 15 years, which made great effort in way-finding and urban behaviour simulation based on the platform of GIS (geographic information system) or VGE. The platform of VGE is recognized as a proper tool for the analysis of human's perception in urban places, because of its efficient 3D spatial data management and excellent 3D visualization for output result. This article will generally describe the visibility analysis method based on the 3D VGE platform. According to the uncertainty and variety of human perception existed in this research, the author attempts to arrange a survey of observer investigation and validation for the analysis results. Four figures related with space and human's perception will be mainly concerned in this proposal: openness, permeability, environmental pressure and visibility, and these will also be used as the identification for different type of spaces. Generally, the author is aiming at contributing a possible way to understand the reason of human's cognition in geo-spatial area, and provides efficient mathematical model between spatial information and visual perception to the related research field.

  5. Emerging CAE technologies and their role in Future Ambient Intelligence Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2011-03-01

    Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.

  6. Human Behavior Representation in Constructive Simulation (La representation du comportement humain dans la simulation constructive)

    DTIC Science & Technology

    2009-09-01

    Environmental Medicine USN United States Navy VAE Virtual Air Environment VACP Visual, Auditory, Cognitive, Psychomotor (demand) VR Virtual Reality ...0 .5 m/s. Another useful approach to capturing leg, trunk, whole body, or movement tasks comes from virtual reality - based training research and...referred to as semi-automated forces (SAF). From: http://www.sedris.org/glossary.htm#C_grp. Constructive Models Abstractions from the reality to

  7. Negative affect reduces team awareness: the effects of mood and stress on computer-mediated team communication.

    PubMed

    Pfaff, Mark S

    2012-08-01

    This article presents research on the effects of varying mood and stress states on within-team communication in a simulated crisis management environment, with a focus on the relationship between communication behaviors and team awareness. Communication plays a critical role in team cognition along with cognitive factors such as attention, memory, and decision-making speed. Mood and stress are known to have interrelated effects on cognition at the individual level, but there is relatively little joint exploration of these factors in team communication in technologically complex environments. Dyadic communication behaviors in a distributed six-person crisis management simulation were analyzed in a factorial design for effects of two levels of mood (happy, sad) and the presence or absence of a time pressure stressor. Time pressure and mood showed several specific impacts on communication behaviors. Communication quantity and efficiency increased under time pressure, though frequent requests for information were associated with poor performance. Teams in happy moods showed enhanced team awareness, as revealed by more anticipatory communication patterns and more detailed verbal responses to teammates than those in sad moods. Results show that the attention-narrowing effects of mood and stress associated with individual cognitive functions demonstrate analogous impacts on team awareness and information-sharing behaviors and reveal a richer understanding of how team dynamics change under adverse conditions. Disentangling stress from mood affords the opportunity to target more specific interventions that better support team awareness and task performance.

  8. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  9. Association between unsafe driving performance and cognitive-perceptual dysfunction in older drivers.

    PubMed

    Park, Si-Woon; Choi, Eun Seok; Lim, Mun Hee; Kim, Eun Joo; Hwang, Sung Il; Choi, Kyung-In; Yoo, Hyun-Chul; Lee, Kuem Ju; Jung, Hi-Eun

    2011-03-01

    To find an association between cognitive-perceptual problems of older drivers and unsafe driving performance during simulated automobile driving in a virtual environment. Cross-sectional study. A driver evaluation clinic in a rehabilitation hospital. Fifty-five drivers aged 65 years or older and 48 drivers in their late twenties to early forties. All participants underwent evaluation of cognitive-perceptual function and driving performance, and the results were compared between older and younger drivers. The association between cognitive-perceptual function and driving performance was analyzed. Cognitive-perceptual function was evaluated with the Cognitive Perceptual Assessment for Driving (CPAD), a computer-based assessment tool consisting of depth perception, sustained attention, divided attention, the Stroop test, the digit span test, field dependency, and trail-making test A and B. Driving performance was evaluated with use of a virtual reality-based driving simulator. During simulated driving, car crashes were recorded, and an occupational therapist observed unsafe performances in controlling speed, braking, steering, vehicle positioning, making lane changes, and making turns. Thirty-five older drivers did not pass the CPAD test, whereas all of the younger drivers passed the test. When using the driving simulator, a significantly greater number of older drivers experienced car crashes and demonstrated unsafe performance in controlling speed, steering, and making lane changes. CPAD results were associated with car crashes, steering, vehicle positioning, and making lane changes. Older drivers who did not pass the CPAD test are 4 times more likely to experience a car crash, 3.5 times more likely to make errors in steering, 2.8 times more likely to make errors in vehicle positioning, and 6.5 times more likely to make errors in lane changes than are drivers who passed the CPAD test. Unsafe driving performance and car crashes during simulated driving were more prevalent in older drivers than in younger drivers. Unsafe performance in steering, vehicle positioning, making lane changes, and car crashes were associated with cognitive-perceptual dysfunction. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  10. [Variation in closeness to reality of standardized resuscitation scenarios : Effects on the success of cognitive learning of medical students].

    PubMed

    Schaumberg, A

    2015-04-01

    Simulation often relies on a case-based learning approach and is used as a teaching tool for a variety of audiences. The knowledge transfer goes beyond the mere exchange of soft skills and practical abilities and also includes practical knowledge and decision-making behavior; however, verification of knowledge or practical skills seldom unfolds during simulations. Simulation-based learning seems to affect many learning domains and can, therefore, be considered to be multifactorial in nature. At present, studies examining the effects of learning environments with varying levels of reality on the cognitive long-term retention of students are lacking. The present study focused on the question whether case scenarios with varying levels of reality produce differences in the cognitive long-term retention of students, in particular with regard to the learning dimensions knowledge, understanding and transfer. The study was conducted on 153 students in the first clinical semester at the Justus-Liebig University of Giessen. Students were randomly selected and subsequently assigned, also in a random fashion, to two practice groups, i.e. realistic and unrealistic. In both groups the students were presented with standardized case scenarios consisting of three case studies, which were accurately defined with a case report containing a detailed description of each scenario and all relevant values so as to ensure identical conditions for both groups. The unrealistic group sat in an unfurnished practice room as a learning environment. The realistic group sat in a furnished learning environment with various background pictures and ambient noise. Students received examination questions before, immediately following and 14 days after the practice. Examination questions were identical at each of the three time points, classified into three learning dimensions following Bloom's taxonomy and evaluated. Furthermore, examination questions were supplemented by a questionnaire concerning the individual perception of reality and own learning success, to be filled in by students immediately after the practice. Examination questions and questionnaires were anonymous but associated with each other. Even with less experienced participants, realistic simulation design led to a significant increase of knowledge immediately after the end of the simulation. This effect, however, did not impact the cognitive long-term retention of students. While the realistic group showed a higher initial knowledge after the simulation, this "knowledge delta" was forgotten within 14 days, putting them back on par with the unrealistic comparison group. It could be significantly demonstrated that 2 weeks after the practice, comprehension questions were answered better than those on pure knowledge. Therefore, it can be concluded that even vaguely realistic simulation scenarios affect the learning dimension of understanding. For simulation-based learning the outcome depends not only on knowledge, practical skills and motivational variables but also on the onset of negative emotions, perception of own ability and personality profile. Simulation training alone does not appear to guarantee learning success but it seems to be necessary to establish a simulation setting suitable for the education level, needs and personality characteristics of the students.

  11. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    PubMed

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  12. Normobaric hypoxia overnight impairs cognitive reaction time.

    PubMed

    Pramsohler, Stephan; Wimmer, Stefan; Kopp, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Martin; Netzer, Nikolaus Cristoph

    2017-05-15

    Impaired reaction time in patients suffering from hypoxia during sleep, caused by sleep breathing disorders, is a well-described phenomenon. High altitude sleep is known to induce periodic breathing with central apneas and oxygen desaturations, even in perfectly healthy subjects. However, deficits in reaction time in mountaineers or workers after just some nights of hypoxia exposure are not sufficiently explored. Therefore, we aimed to investigate the impact of sleep in a normobaric hypoxic environment on reaction time divided by its cognitive and motoric components. Eleven healthy non acclimatized students (5f, 6m, 21 ± 2.1 years) slept one night at a simulated altitude of 3500 m in a normobaric hypoxic room, followed by a night with polysomnography at simulated 5500 m. Preexisting sleep disorders were excluded via BERLIN questionnaire. All subjects performed a choice reaction test (SCHUHFRIED RT, S3) at 450 m and directly after the nights at simulated 3500 and 5500 m. We found a significant increase of cognitive reaction time with higher altitude (p = 0.026). No changes were detected in movement time (p = n.s.). Reaction time, the combined parameter of cognitive- and motoric reaction time, didn't change either (p = n.s.). Lower SpO 2 surprisingly correlated significantly with shorter cognitive reaction time (r = 0.78, p = 0.004). Sleep stage distribution and arousals at 5500 m didn't correlate with reaction time, cognitive reaction time or movement time. Sleep in hypoxia does not seem to affect reaction time to simple tasks. The component of cognitive reaction time is increasingly delayed whereas motoric reaction time seems not to be affected. Low SpO 2 and arousals are not related to increased cognitive reaction time therefore the causality remains unclear. The fact of increased cognitive reaction time after sleep in hypoxia, considering high altitude workers and mountaineering operations with overnight stays, should be further investigated.

  13. Critical Care Performance in a Simulated Military Aircraft Cabin Environment.

    PubMed

    McNeill, Margaret M

    2018-04-01

    Critical Care Air Transport Teams care for 5% to 10% of injured patients who are transported on military aircraft to definitive treatment facilities. Little is known about how the aeromedical evacuation environment affects care. To determine the effects of 2 stressors of flight, altitude-induced hypoxia and aircraft noise, and to examine the contributions of fatigue and clinical experience on cognitive and physiological performance of the Critical Care Air Transport Team. This repeated measures 2 × 2 × 4 factorial study included 60 military nurses. The participants completed a simulated patient care scenario under aircraft cabin noise and altitude conditions. Differences in cognitive and physiological performance were analyzed using repeated measures analysis of variance. A multiple regression model was developed to determine the independent contributions of fatigue and clinical experience. Critical care scores ( P = .02) and errors and omissions ( P = .047) were negatively affected by noise. Noise was associated with increased respiratory rate ( P = .02). Critical care scores ( P < .001) and errors and omissions ( P = .002) worsened with altitude-induced hypoxemia. Heart rate and respiratory rate increased with altitude-induced hypoxemia; oxygen saturation decreased ( P < .001 for all 3 variables). In a simulated military aircraft environment, the care of critically ill patients was significantly affected by noise and altitude-induced hypoxemia. The participants did not report much fatigue and experience did not play a role, contrary to most findings in the literature. ©2018 American Association of Critical-Care Nurses.

  14. A QoS Optimization Approach in Cognitive Body Area Networks for Healthcare Applications.

    PubMed

    Ahmed, Tauseef; Le Moullec, Yannick

    2017-04-06

    Wireless body area networks are increasingly featuring cognitive capabilities. This work deals with the emerging concept of cognitive body area networks. In particular, the paper addresses two important issues, namely spectrum sharing and interferences. We propose methods for channel and power allocation. The former builds upon a reinforcement learning mechanism, whereas the latter is based on convex optimization. Furthermore, we also propose a mathematical channel model for off-body communication links in line with the IEEE 802.15.6 standard. Simulation results for a nursing home scenario show that the proposed approach yields the best performance in terms of throughput and QoS for dynamic environments. For example, in a highly demanding scenario our approach can provide throughput up to 7 Mbps, while giving an average of 97.2% of time QoS satisfaction in terms of throughput. Simulation results also show that the power optimization algorithm enables reducing transmission power by approximately 4.5 dBm, thereby sensibly and significantly reducing interference.

  15. Virtual reality training improves students' knowledge structures of medical concepts.

    PubMed

    Stevens, Susan M; Goldsmith, Timothy E; Summers, Kenneth L; Sherstyuk, Andrei; Kihmm, Kathleen; Holten, James R; Davis, Christopher; Speitel, Daniel; Maris, Christina; Stewart, Randall; Wilks, David; Saland, Linda; Wax, Diane; Panaiotis; Saiki, Stanley; Alverson, Dale; Caudell, Thomas P

    2005-01-01

    Virtual environments can provide training that is difficult to achieve under normal circumstances. Medical students can work on high-risk cases in a realistic, time-critical environment, where students practice skills in a cognitively demanding and emotionally compelling situation. Research from cognitive science has shown that as students acquire domain expertise, their semantic organization of core domain concepts become more similar to those of an expert's. In the current study, we hypothesized that students' knowledge structures would become more expert-like as a result of their diagnosing and treating a patient experiencing a hematoma within a virtual environment. Forty-eight medical students diagnosed and treated a hematoma case within a fully immersed virtual environment. Student's semantic organization of 25 case-related concepts was assessed prior to and after training. Students' knowledge structures became more integrated and similar to an expert knowledge structure of the concepts as a result of the learning experience. The methods used here for eliciting, representing, and evaluating knowledge structures offer a sensitive and objective means for evaluating student learning in virtual environments and medical simulations.

  16. Immersive Training Systems: Virtual Reality and Education and Training.

    ERIC Educational Resources Information Center

    Psotka, Joseph

    1995-01-01

    Describes virtual reality (VR) technology and VR research on education and training. Focuses on immersion as the key added value of VR, analyzes cognitive variables connected to immersion, how it is generated in synthetic environments and its benefits. Discusses value of tracked, immersive visual displays over nonimmersive simulations. Contains 78…

  17. Cognitive Neuroscience in Space

    PubMed Central

    De la Torre, Gabriel G.

    2014-01-01

    Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond. PMID:25370373

  18. Simulating Activities: Relating Motives, Deliberation and Attentive Coordination

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Activities are located behaviors, taking time, conceived as socially meaningful, and usually involving interaction with tools and the environment. In modeling human cognition as a form of problem solving (goal-directed search and operator sequencing), cognitive science researchers have not adequately studied "off-task" activities (e.g., waiting), non-intellectual motives (e.g., hunger), sustaining a goal state (e.g., playful interaction), and coupled perceptual-motor dynamics (e.g., following someone). These aspects of human behavior have been considered in bits and pieces in past research, identified as scripts, human factors, behavior settings, ensemble, flow experience, and situated action. More broadly, activity theory provides a comprehensive framework relating motives, goals, and operations. This paper ties these ideas together, using examples from work life in a Canadian High Arctic research station. The emphasis is on simulating human behavior as it naturally occurs, such that "working" is understood as an aspect of living. The result is a synthesis of previously unrelated analytic perspectives and a broader appreciation of the nature of human cognition. Simulating activities in this comprehensive way is useful for understanding work practice, promoting learning, and designing better tools, including human-robot systems.

  19. Program Predicts Time Courses of Human/Computer Interactions

    NASA Technical Reports Server (NTRS)

    Vera, Alonso; Howes, Andrew

    2005-01-01

    CPM X is a computer program that predicts sequences of, and amounts of time taken by, routine actions performed by a skilled person performing a task. Unlike programs that simulate the interaction of the person with the task environment, CPM X predicts the time course of events as consequences of encoded constraints on human behavior. The constraints determine which cognitive and environmental processes can occur simultaneously and which have sequential dependencies. The input to CPM X comprises (1) a description of a task and strategy in a hierarchical description language and (2) a description of architectural constraints in the form of rules governing interactions of fundamental cognitive, perceptual, and motor operations. The output of CPM X is a Program Evaluation Review Technique (PERT) chart that presents a schedule of predicted cognitive, motor, and perceptual operators interacting with a task environment. The CPM X program allows direct, a priori prediction of skilled user performance on complex human-machine systems, providing a way to assess critical interfaces before they are deployed in mission contexts.

  20. Wayfinding in Aging and Alzheimer’s Disease within a Virtual Senior Residence: Study Protocol

    PubMed Central

    DAVIS, Rebecca; OHMAN, Jennifer

    2017-01-01

    Aim To report a study protocol that examines the impact of adding salient cues within a virtual reality simulation of a senior residential building on wayfinding for older adults with and without Alzheimer’s disease. Background An early symptom of Alzheimer’s disease is the inability to find one’s way (wayfinding). Senior residential environments are especially difficult for wayfinding. Salient cues may be able to help persons with Alzheimer’s disease find their way more effectively so they can maintain independence. Design . A repeated measures, within and between subjects design. Methods This study was funded by the National Institutes of Health (August 2012). Older adults (n=40) with normal cognition and older adults with early stage Alzheimer’s disease/mild cognitive impairment (n=40) will try to find their way to a location repeatedly within a virtual reality simulation of senior residence. There are two environments: standard (no cues) and salient (multiple cues). Outcome measures include how often and how quickly participants find the target location in each cue condition. Discussion The results of this study have the potential to provide evidence for ways to make the environment more supportive for wayfinding for older adults with Alzheimer’s disease. This study is registered at Trialmatch.alz.org (Identifier 260425-5). PMID:26915997

  1. Wayfinding in ageing and Alzheimer's disease within a virtual senior residence: study protocol.

    PubMed

    Davis, Rebecca; Ohman, Jennifer

    2016-07-01

    To report a study protocol that examines the impact of adding salient cues in a virtual reality simulation of a senior residential building on wayfinding for older adults with and without Alzheimer's disease. An early symptom of Alzheimer's disease is the inability to find one's way (wayfinding). Senior residential environments are especially difficult for wayfinding. Salient cues may be able to help persons with Alzheimer's disease find their way more effectively so they can maintain independence. A repeated measures, within and between subjects design. This study was funded by the National Institutes of Health (August 2012). Older adults (N = 40) with normal cognition and older adults with early stage Alzheimer's disease/mild cognitive impairment (N = 40) will try to find their way to a location repeatedly in a virtual reality simulation of senior residence. There are two environments: standard (no cues) and salient (multiple cues). Outcome measures include how often and how quickly participants find the target location in each cue condition. The results of this study have the potential to provide evidence for ways to make the environment more supportive for wayfinding for older adults with Alzheimer's disease. This study is registered at Trialmatch.alz.org (Identifier 260425-5). © 2016 John Wiley & Sons Ltd.

  2. An interactive learning environment for health care professionals.

    PubMed Central

    Cobbs, E.; Pincetl, P.; Silverman, B.; Liao, R. L.; Motta, C.

    1994-01-01

    This article summarizes experiences to date with building and deploying a clinical simulator that medical students use as part of a 3rd year primary care rotation. The simulated microworld helps students and health care professionals gain experience with and learn meta-cognitive skills for the care of complex patient populations that require treatment in the biopsychosocial-value dimensions. We explain lessons learned and next steps resulting from use of the program by over 300 users to date. PMID:7949975

  3. Mental models for cognitive control

    NASA Astrophysics Data System (ADS)

    Schilling, Malte; Cruse, Holk; Schmitz, Josef

    2007-05-01

    Even so called "simple" organisms as insects are able to fastly adapt to changing conditions of their environment. Their behaviour is affected by many external influences and only its variability and adaptivity permits their survival. An intensively studied example concerns hexapod walking. 1,2 Complex walking behaviours in stick insects have been analysed and the results were used to construct a reactive model that controls walking in a robot. This model is now extended by higher levels of control: as a bottom-up approach the low-level reactive behaviours are modulated and activated through a medium level. In addition, the system grows up to an upper level for cognitive control of the robot: Cognition - as the ability to plan ahead - and cognitive skills involve internal representations of the subject itself and its environment. These representations are used for mental simulations: In difficult situations, for which neither motor primitives, nor whole sequences of these exist, available behaviours are varied and applied in the internal model while the body itself is decoupled from the controlling modules. The result of the internal simulation is evaluated. Successful actions are learned and applied to the robot. This constitutes a level for planning. Its elements (movements, behaviours) are embodied in the lower levels, whereby their meaning arises directly from these levels. The motor primitives are situation models represented as neural networks. The focus of this work concerns the general architecture of the framework as well as the reactive basic layer of the bottom-up architecture and its connection to higher level functions and its application on an internal model.

  4. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks.

    PubMed

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-10-12

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  5. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    PubMed Central

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-01-01

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316

  6. Adaptive Agent Modeling of Distributed Language: Investigations on the Effects of Cultural Variation and Internal Action Representations

    ERIC Educational Resources Information Center

    Cangelosi, Angelo

    2007-01-01

    In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…

  7. Thematic Synthesis of Post Activity Reviews: Lessons Relating to Management of the Simulation Environment Supporting Activity Vital Fire in May 2014

    DTIC Science & Technology

    2015-03-01

    Supporting Activity Vital Fire in May 2014 Glen Pearce Land Division Defence Science and Technology Organisation DSTO-TN-1408...UNCLASSIFIED Published by Land Division DSTO Defence Science and Technology Organisation 506 Lorimer St Fishermans Bend Victoria 3207 Australia...REQUIREMENTS .............................................................................. 1 2.1 Cognitive and metacognitive performance

  8. A Generic, Agent-Based Framework for Design and Development of UAV/UCAV Control Systems

    DTIC Science & Technology

    2004-02-27

    37 EID Principles .................................................................................................. 38 Experimental Support for EID...Year 2 Interface design and implementation; creation of the simulation environment; Year 3 Demonstration of the concept and experimental evaluation...UAV/UCAV control in which operators can experience high cognitive workloads. There are several ways in which systems can construct user models by

  9. Repeat work bouts increase thermal strain for Australian firefighters working in the heat.

    PubMed

    Walker, Anthony; Argus, Christos; Driller, Matthew; Rattray, Ben

    2015-01-01

    Firefighters regularly re-enter fire scenes during long duration emergency events with limited rest between work bouts. It is unclear whether this practice is impacting on the safety of firefighters. To evaluate the effects of multiple work bouts on firefighter physiology, strength, and cognitive performance when working in the heat. Seventy-seven urban firefighters completed two 20-minute simulated search and rescue tasks in a heat chamber (105 ± 5°C), separated by a 10-minute passive recovery. Core and skin temperature, rate of perceived exertion (RPE), thermal sensation (TS), grip strength, and cognitive changes between simulations were evaluated. Significant increases in core temperature and perceptual responses along with declines in strength were observed following the second simulation. No differences for other measures were observed. A significant increase in thermal strain was observed when firefighters re-entered a hot working environment. We recommend that longer recovery periods or active cooling methods be employed prior to re-entry.

  10. Repeat work bouts increase thermal strain for Australian firefighters working in the heat

    PubMed Central

    Walker, Anthony; Argus, Christos; Driller, Matthew; Rattray, Ben

    2015-01-01

    Background: Firefighters regularly re-enter fire scenes during long duration emergency events with limited rest between work bouts. It is unclear whether this practice is impacting on the safety of firefighters. Objectives:To evaluate the effects of multiple work bouts on firefighter physiology, strength, and cognitive performance when working in the heat. Methods: Seventy-seven urban firefighters completed two 20-minute simulated search and rescue tasks in a heat chamber (105 ± 5°C), separated by a 10-minute passive recovery. Core and skin temperature, rate of perceived exertion (RPE), thermal sensation (TS), grip strength, and cognitive changes between simulations were evaluated. Results: Significant increases in core temperature and perceptual responses along with declines in strength were observed following the second simulation. No differences for other measures were observed. Conclusions: A significant increase in thermal strain was observed when firefighters re-entered a hot working environment. We recommend that longer recovery periods or active cooling methods be employed prior to re-entry. PMID:25849044

  11. Effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat.

    PubMed

    Zhang, Yang; Balilionis, Gytis; Casaru, Catalina; Geary, Colleen; Schumacker, Randall E; Neggers, Yasmin H; Curtner-Smith, Matthew D; Richardson, Mark T; Bishop, Phillip A; Green, James M

    2014-05-01

    This study examined the separate effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat. Participants (N = 10) performed three trials in a counterbalanced order, either with 400 mg caffeine, menthol lozenges, or placebo. The simulated firefighting consisted of 2 bouts of 20-min treadmill exercise and one bout of 20-min stepping exercise in the heat with two brief 15-min rest periods between each exercise phase. Exercise induced significant dehydration (>3%) and elevated rectal temperature (>38.9 °C), for all three conditions. Neither caffeine nor menthol reduced perceived exertion compared to placebo (p > 0.05). Mood ratings (i.e., alertness, hedonic tone, tension) significantly deteriorated over time (p < 0.05), but there was no difference among the three conditions. Simple reaction time, short-term memory, and retrieval memory did not alter with treatments or repeated evaluations. Reaction accuracy from a math test remained unchanged throughout the experimental period; reaction time from the math test was significantly faster after exposure to the heat (p < 0.05). It is concluded that, exhaustive exercise in the heat severely impacted mood, but minimally impacted cognition. These treatments failed to show ergogenic benefits in a simulated firefighting paradigm in a hot environment. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Centrality of Social Interaction in Human Brain Function.

    PubMed

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cognitive Virtualization: Combining Cognitive Models and Virtual Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuan Q. Tran; David I. Gertman; Donald D. Dudenhoeffer

    2007-08-01

    3D manikins are often used in visualizations to model human activity in complex settings. Manikins assist in developing understanding of human actions, movements and routines in a variety of different environments representing new conceptual designs. One such environment is a nuclear power plant control room, here they have the potential to be used to simulate more precise ergonomic assessments of human work stations. Next generation control rooms will pose numerous challenges for system designers. The manikin modeling approach by itself, however, may be insufficient for dealing with the desired technical advancements and challenges of next generation automated systems. Uncertainty regardingmore » effective staffing levels; and the potential for negative human performance consequences in the presence of advanced automated systems (e.g., reduced vigilance, poor situation awareness, mistrust or blind faith in automation, higher information load and increased complexity) call for further research. Baseline assessment of novel control room equipment(s) and configurations needs to be conducted. These design uncertainties can be reduced through complementary analysis that merges ergonomic manikin models with models of higher cognitive functions, such as attention, memory, decision-making, and problem-solving. This paper will discuss recent advancements in merging a theoretical-driven cognitive modeling framework within a 3D visualization modeling tool to evaluate of next generation control room human factors and ergonomic assessment. Though this discussion primary focuses on control room design, the application for such a merger between 3D visualization and cognitive modeling can be extended to various areas of focus such as training and scenario planning.« less

  14. High altitude cognitive performance and COPD interaction

    PubMed Central

    Kourtidou-Papadeli, C; Papadelis, C; Koutsonikolas, D; Boutzioukas, S; Styliadis, C; Guiba-Tziampiri, O

    2008-01-01

    Introduction: Thousands of people work and perform everyday in high altitude environment, either as pilots, or shift workers, or mountaineers. The problem is that most of the accidents in this environment have been attributed to human error. The objective of this study was to assess complex cognitive performance as it interacts with respiratory insufficiency at altitudes of 8000 feet and identify the potential effect of hypoxia on safe performance. Methods: Twenty subjects participated in the study, divided in two groups: Group I with mild asymptomatic chronic obstructive pulmonary disease (COPD), and Group II with normal respiratory function. Altitude was simulated at 8000 ft. using gas mixtures. Results: Individuals with mild COPD experienced notable hypoxemia with significant performance decrements and increased number of errors at cabin altitude, compared to normal subjects, whereas their blood pressure significantly increased. PMID:19048098

  15. Opportunistic Capacity-Based Resource Allocation for Chunk-Based Multi-Carrier Cognitive Radio Sensor Networks

    PubMed Central

    Huang, Jie; Zeng, Xiaoping; Jian, Xin; Tan, Xiaoheng; Zhang, Qi

    2017-01-01

    The spectrum allocation for cognitive radio sensor networks (CRSNs) has received considerable research attention under the assumption that the spectrum environment is static. However, in practice, the spectrum environment varies over time due to primary user/secondary user (PU/SU) activity and mobility, resulting in time-varied spectrum resources. This paper studies resource allocation for chunk-based multi-carrier CRSNs with time-varied spectrum resources. We present a novel opportunistic capacity model through a continuous time semi-Markov chain (CTSMC) to describe the time-varied spectrum resources of chunks and, based on this, a joint power and chunk allocation model by considering the opportunistically available capacity of chunks is proposed. To reduce the computational complexity, we split this model into two sub-problems and solve them via the Lagrangian dual method. Simulation results illustrate that the proposed opportunistic capacity-based resource allocation algorithm can achieve better performance compared with traditional algorithms when the spectrum environment is time-varied. PMID:28106803

  16. Managing Multiplicity: Conceptualizing Physician Cognition in Multipatient Environments.

    PubMed

    Chan, Teresa M; Mercuri, Mathew; Van Dewark, Kenneth; Sherbino, Jonathan; Schwartz, Alan; Norman, Geoff; Lineberry, Matthew

    2018-05-01

    Emergency physicians (EPs) regularly manage multiple patients simultaneously, often making time-sensitive decisions around priorities for multiple patients. Few studies have explored physician cognition in multipatient scenarios. The authors sought to develop a conceptual framework to describe how EPs think in busy, multipatient environments. From July 2014 to May 2015, a qualitative study was conducted at McMaster University, using a think-aloud protocol to examine how 10 attending EPs and 10 junior residents made decisions in multipatient environments. Participants engaged in the think-aloud exercise for five different simulated multipatient scenarios. Transcripts from recorded interviews were analyzed inductively, with an iterative process involving two independent coders, and compared between attendings and residents. The attending EPs and junior residents used similar processes to prioritize patients in these multipatient scenarios. The think-aloud processes demonstrated a similar process used by almost all participants. The cognitive task of patient prioritization consisted of three components: a brief overview of the entire cohort of patients to determine a general strategy; an individual chart review, whereby the participant created a functional patient story from information available in a file (i.e., vitals, brief clinical history); and creation of a relative priority list. Compared with residents, the attendings were better able to construct deeper and more complex patient stories. The authors propose a conceptual framework for how EPs prioritize care for multiple patients in complex environments. This study may be useful to teachers who train physicians to function more efficiently in busy clinical environments.

  17. Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.

    PubMed

    Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A

    2011-01-01

    Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.

  18. Utilizing functional near-infrared spectroscopy for prediction of cognitive workload in noisy work environments.

    PubMed

    Gabbard, Ryan; Fendley, Mary; Dar, Irfaan A; Warren, Rik; Kashou, Nasser H

    2017-10-01

    Occupational noise frequently occurs in the work environment in military intelligence, surveillance, and reconnaissance operations. This impacts cognitive performance by acting as a stressor, potentially interfering with the analysts' decision-making process. We investigated the effects of different noise stimuli on analysts' performance and workload in anomaly detection by simulating a noisy work environment. We utilized functional near-infrared spectroscopy (fNIRS) to quantify oxy-hemoglobin (HbO) and deoxy-hemoglobin concentration changes in the prefrontal cortex (PFC), as well as behavioral measures, which include eye tracking, reaction time, and accuracy rate. We hypothesized that noisy environments would have a negative effect on the participant in terms of anomaly detection performance due to the increase in workload, which would be reflected by an increase in PFC activity. We found that HbO for some of the channels analyzed were significantly different across noise types ([Formula: see text]). Our results also indicated that HbO activation for short-intermittent noise stimuli was greater in the PFC compared to long-intermittent noises. These approaches using fNIRS in conjunction with an understanding of the impact on human analysts in anomaly detection could potentially lead to better performance by optimizing work environments.

  19. Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.

    PubMed

    Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe

    2014-01-01

    Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.

  20. Anticipation by multi-modal association through an artificial mental imagery process

    NASA Astrophysics Data System (ADS)

    Gaona, Wilmer; Escobar, Esaú; Hermosillo, Jorge; Lara, Bruno

    2015-01-01

    Mental imagery has become a central issue in research laboratories seeking to emulate basic cognitive abilities in artificial agents. In this work, we propose a computational model to produce an anticipatory behaviour by means of a multi-modal off-line hebbian association. Unlike the current state of the art, we propose to apply hebbian learning during an internal sensorimotor simulation, emulating a process of mental imagery. We associate visual and tactile stimuli re-enacted by a long-term predictive simulation chain motivated by covert actions. As a result, we obtain a neural network which provides a robot with a mechanism to produce a visually conditioned obstacle avoidance behaviour. We developed our system in a physical Pioneer 3-DX robot and realised two experiments. In the first experiment we test our model on one individual navigating in two different mazes. In the second experiment we assess the robustness of the model by testing in a single environment five individuals trained under different conditions. We believe that our work offers an underpinning mechanism in cognitive robotics for the study of motor control strategies based on internal simulations. These strategies can be seen analogous to the mental imagery process known in humans, opening thus interesting pathways to the construction of upper-level grounded cognitive abilities.

  1. Effect of cognitive load on articulation rate and formant frequencies during simulator flights.

    PubMed

    Huttunen, Kerttu H; Keränen, Heikki I; Pääkkönen, Rauno J; Päivikki Eskelinen-Rönkä, R; Leino, Tuomo K

    2011-03-01

    It was explored how three types of intensive cognitive load typical of military aviation (load on situation awareness, information processing, or decision-making) affect speech. The utterances of 13 male military pilots were recorded during simulated combat flights. Articulation rate was calculated from the speech samples, and the first formant (F1) and second formant (F2) were tracked from first-syllable short vowels in pre-defined phoneme environments. Articulation rate was found to correlate negatively (albeit with low coefficients) with loads on situation awareness and decision-making but not with changes in F1 or F2. Changes were seen in the spectrum of the vowels: mean F1 of front vowels usually increased and their mean F2 decreased as a function of cognitive load, and both F1 and F2 of back vowels increased. The strongest associations were seen between the three types of cognitive load and F1 and F2 changes in back vowels. Because fluent and clear radio speech communication is vital to safety in aviation and temporal and spectral changes may affect speech intelligibility, careful use of standard aviation phraseology and training in the production of clear speech during a high level of cognitive load are important measures that diminish the probability of possible misunderstandings. © 2011 Acoustical Society of America

  2. Anti-Emetic Drug Effects on Pilot Performance, Phase 2: Simulation Test.

    DTIC Science & Technology

    1996-04-01

    The objectives of this study were to evaluate the effects of two anti-emetic drugs, granisetron (2 mg oral dose) and ondansetron (8 mg oral dose), on...and preduce no cognitive, psychomotor or subjective state changes. In this study, there was no evidence of performance degradation caused by either granisetron or ondansetron when tested in a complex military task environment.

  3. Compute-to-Learn: Authentic Learning via Development of Interactive Computer Demonstrations within a Peer-Led Studio Environment

    ERIC Educational Resources Information Center

    Jafari, Mina; Welden, Alicia Rae; Williams, Kyle L.; Winograd, Blair; Mulvihill, Ellen; Hendrickson, Heidi P.; Lenard, Michael; Gottfried, Amy; Geva, Eitan

    2017-01-01

    In this paper, we report on the implementation of a novel compute-to-learn pedagogy, which is based upon the theories of situated cognition and meaningful learning. The "compute-to-learn" pedagogy is designed to simulate an authentic research experience as part of the undergraduate curriculum, including project development, teamwork,…

  4. Improving Social Cognition in People with Schizophrenia with RC2S: Two Single-Case Studies.

    PubMed

    Peyroux, Elodie; Franck, Nicolas

    2016-01-01

    Difficulties in social interactions are a central characteristic of people with schizophrenia, and can be partly explained by impairments of social cognitive processes. New strategies of cognitive remediation have been recently developed to target these deficits. The RC2S therapy is an individualized and partly computerized program through which patients practice social interactions and develop social cognitive abilities with simulation techniques in a realistic environment. Here, we present the results of two case-studies involving two patients with schizophrenia presenting with specific profiles of impaired social cognition. Each patient completed three baseline sessions, 14 treatment sessions, and 3 follow-up sessions at the end of the therapy - and for 1 patient, another 3 sessions 9 months later. We used a multiple baseline design to assess specific components of social cognition according to the patients' profiles. Functioning and symptomatology were also assessed at the end of the treatment and 6 months later. Results highlight significant improvements in the targeted social cognitive processes and positive changes in functioning in the long term. The RC2S program seems, thus, to be a new useful program for social cognitive remediation in schizophrenia.

  5. Improving Social Cognition in People with Schizophrenia with RC2S: Two Single-Case Studies

    PubMed Central

    Peyroux, Elodie; Franck, Nicolas

    2016-01-01

    Difficulties in social interactions are a central characteristic of people with schizophrenia, and can be partly explained by impairments of social cognitive processes. New strategies of cognitive remediation have been recently developed to target these deficits. The RC2S therapy is an individualized and partly computerized program through which patients practice social interactions and develop social cognitive abilities with simulation techniques in a realistic environment. Here, we present the results of two case-studies involving two patients with schizophrenia presenting with specific profiles of impaired social cognition. Each patient completed three baseline sessions, 14 treatment sessions, and 3 follow-up sessions at the end of the therapy – and for 1 patient, another 3 sessions 9 months later. We used a multiple baseline design to assess specific components of social cognition according to the patients’ profiles. Functioning and symptomatology were also assessed at the end of the treatment and 6 months later. Results highlight significant improvements in the targeted social cognitive processes and positive changes in functioning in the long term. The RC2S program seems, thus, to be a new useful program for social cognitive remediation in schizophrenia. PMID:27199776

  6. Non-visual biological effects of light on human cognition, alertness, and mood

    NASA Astrophysics Data System (ADS)

    Li, Huaye; Wang, Huihui; Shen, Junfei; Sun, Peng; Xie, Ting; Zhang, Siman; Zheng, Zhenrong

    2017-09-01

    Light exerts non-visual effects on a wide range of biological functions and behavior apart from the visual effect. Light can regulate human circadian rhythms, like the secretion of melatonin and cortisol. Light also has influence on body's physiological parameters, such as blood pressure, heart rate and body temperature. However, human cognitive performance, alertness and mood under different lighting conditions have not been considered thoroughly especially for the complicated visual task like surgical operating procedure. In this paper, an experiment was conducted to investigate the cognition, alertness and mood of healthy participants in a simulated operating room (OR) in the hospital. A LED surgical lamp was used as the light source, which is mixed by three color LEDs (amber, green and blue). The surgical lamp is flexible on both spectrum and intensity. Exposed to different light settings, which are varied from color temperature and luminance, participants were asked to take psychomotor vigilance task (PVT) for alertness measurement, alphabet test for cognitive performance measurement, positive and negative affect schedule (PANAS) for mood measurement. The result showed the participants' cognitive performance, alertness and mood are related to the color temperature and luminance of the LED light. This research will have a guidance for the surgical lighting environment, which can not only enhance doctors' efficiency during the operations, but also create a positive and peaceful surgical lighting environment.

  7. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks

    PubMed Central

    Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-01-01

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios. PMID:29415452

  8. Staying in the zone: offshore drillers' situation awareness.

    PubMed

    Roberts, Ruby; Flin, Rhona; Cleland, Jennifer

    2015-06-01

    The aim of this study was to identify the cognitive components required for offshore drillers to develop and maintain situation awareness (SA) while controlling subsea hydrocarbon wells. SA issues are often identified as contributing factors to drilling incidents, most recently in the Deepwater Horizon blowout. Yet, there is a limited body of research investigating SA in the offshore drilling environment. In the first study, critical incident interviews were conducted with 18 experienced drilling personnel. Transcripts were subjected to theory-driven thematic analysis, producing a preliminary cognitive framework of how drillers develop and maintain SA during well control. In the second study, 24 hr of observations (in vivo and video) of drillers managing a high fidelity well-control simulator were analyzed to further develop the framework. The cognitive components that enable drillers to build up an understanding of what is happening in the wellbore and surrounding environment, to predict how this understanding may develop, were identified. These components included cue recognition, interpretation of information in conjunction with the current mental model, and projection through mental simulation. Factors such as distracters, expectations, and information sharing between crew members can both positively and negatively influence the drillers' SA. The findings give a preliminary understanding into the components of drillers' SA, highlighting the importance of SA for safe and effective performance and indicating that Endsley's model of SA can be applied to drilling. The results have consequences for training, task management, and work design recommendations. © 2014, Human Factors and Ergonomics Society.

  9. Biological and artificial cognition: what can we learn about mechanisms by modelling physical cognition problems using artificial intelligence planning techniques?

    PubMed Central

    Chappell, Jackie; Hawes, Nick

    2012-01-01

    Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571

  10. Biological and artificial cognition: what can we learn about mechanisms by modelling physical cognition problems using artificial intelligence planning techniques?

    PubMed

    Chappell, Jackie; Hawes, Nick

    2012-10-05

    Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.

  11. Investigating gender differences under conditions of fatigue in a simulated high G aerial combat environment.

    PubMed

    Chelette, T L

    1997-06-01

    Advances in technology have equipped high-performance combat aircraft with the capability of delivering higher and higher sustained acceleration or G-forces on the pilots flying them. While the physiological effects of increased g-forces on the human body continue to be investigated, studies examining the effects of acceleration on the cognitive abilities of high-performance aircraft pilots remain sparse. Additionally, as higher technology is making its way into the cockpit, so are female pilots. With even fewer studies investigating women's physiological and cognitive tolerances to the stressors in the high-performance cockpit and flight environment, Dr. Chelette's study aimed to investigate these issues. Examining pilot workload, flight task abilities, and the effects of sleeplessness on both male and female pilots, Dr. Chelette's results revealed findings that will make their way into the high-performance cockpit of the future.

  12. Spatial signal correlation from an III-nitride synaptic device

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Zhu, Bingcheng; Shi, Zheng; Yuan, Jialei; Jiang, Yuan; Shen, Xiangfei; Cai, Wei; Yang, Yongchao; Wang, Yongjin

    2017-10-01

    The mechanism by which the external environment affects the internal nervous system is investigated via the spatial correlation of an III-nitride synaptic device, which combines in-plane and out-of-plane illumination. The InGaN/GaN multiple-quantum-well collector (MQW-collector) demonstrates a simultaneous light emission and light detection mode due to the unique property of the MQW-diode. The MQW-collector absorbs the internal incoming light and the external illumination at the same time to generate an integration of the excitatory postsynaptic voltages (EPSVs). Signal cognition can be distinctly decoded from the integrated EPSVs because the signal differences are maintained, which is in good agreement with the simulation results. These results suggest that the nervous system can simultaneously amplify the EPSV amplitude and achieve signal cognition by spatial EPSV summation, which can be further optimized to explore the connections between the internal nervous system and the external environment.

  13. Projective simulation for artificial intelligence

    NASA Astrophysics Data System (ADS)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  14. Projective simulation for artificial intelligence

    PubMed Central

    Briegel, Hans J.; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  15. Immersion as an embodied cognition shift: aesthetic experience and spatial situated cognition.

    PubMed

    Trentini, Bruno

    2015-09-01

    The main hypothesis of situated cognition is related to the origin of mental processes: the environment is thought to be the source of all cognitive processes. However, immersion enables a dual perception of space by enabling to perceive both the routine environment and a new way to see the world. We want to provide a further insight into the transition from on-line cognition to off-line cognition: we want to show that aesthetic experience towards immersive art comes from the awareness that one's cognition depends on the environment. Although this specific cognition is not independent from the general environment, it abstracts the individuals from their idiosyncratic environment. Therefore, immersive art may induce cognitive processes that are borderline cases of situated cognition. Aesthetic experience regarding spatial cognition will be described using an approach of embodied aesthetics, that is to say an approach which connects phenomenology of perception and cognitive sciences. No experiments are contemplated as of now. The experience of immersive art makes individuals become aware that their perceptual processes can adapt to the environment. Thus, the self-experience, which is typical of aesthetic experience, may be the cornerstone of off-line cognition.

  16. Goal-Driven Autonomy in a Navy Strategy Simulation

    DTIC Science & Technology

    2010-01-01

    Goldman R . (2007). Hotride: Hierarchical ordered task replanning in dynamic environments. In F. Ingrand, & K. Rajan (Eds.) Planning and Plan...www.mbari.org/autonomy/ICAPS07-workshop] van den Briel, M., Sanchez, R ., Do, M.B., & Kambhampati, S. (2004). Effective approaches for partial satisfaction...Perpetual self-aware cognitive agents. AI Magazine, 28(1), 32-45. Dearden, R ., Meuleau, N., Ramakrishnan, S., Smith, D., & Washington, R . (2003

  17. Mental simulation of routes during navigation involves adaptive temporal compression

    PubMed Central

    Arnold, Aiden E.G.F.; Iaria, Giuseppe; Ekstrom, Arne D.

    2016-01-01

    Mental simulation is a hallmark feature of human cognition, allowing features from memories to be flexibly used during prospection. While past studies demonstrate the preservation of real-world features such as size and distance during mental simulation, their temporal dynamics remains unknown. Here, we compare mental simulations to navigation of routes in a large-scale spatial environment to test the hypothesis that such simulations are temporally compressed in an adaptive manner. Our results show that simulations occurred at 2.39x the speed it took to navigate a route, increasing in compression (3.57x) for slower movement speeds. Participant self-reports of vividness and spatial coherence of simulations also correlated strongly with simulation duration, providing an important link between subjective experiences of simulated events and how spatial representations are combined during prospection. These findings suggest that simulation of spatial events involve adaptive temporal mechanisms, mediated partly by the fidelity of memories used to generate the simulation. PMID:27568586

  18. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.

    PubMed

    Vergnieux, Victor; Macé, Marc J-M; Jouffrais, Christophe

    2017-09-01

    Visual neuroprostheses are still limited and simulated prosthetic vision (SPV) is used to evaluate potential and forthcoming functionality of these implants. SPV has been used to evaluate the minimum requirement on visual neuroprosthetic characteristics to restore various functions such as reading, objects and face recognition, object grasping, etc. Some of these studies focused on obstacle avoidance but only a few investigated orientation or navigation abilities with prosthetic vision. The resolution of current arrays of electrodes is not sufficient to allow navigation tasks without additional processing of the visual input. In this study, we simulated a low resolution array (15 × 18 electrodes, similar to a forthcoming generation of arrays) and evaluated the navigation abilities restored when visual information was processed with various computer vision algorithms to enhance the visual rendering. Three main visual rendering strategies were compared to a control rendering in a wayfinding task within an unknown environment. The control rendering corresponded to a resizing of the original image onto the electrode array size, according to the average brightness of the pixels. In the first rendering strategy, vision distance was limited to 3, 6, or 9 m, respectively. In the second strategy, the rendering was not based on the brightness of the image pixels, but on the distance between the user and the elements in the field of view. In the last rendering strategy, only the edges of the environments were displayed, similar to a wireframe rendering. All the tested renderings, except the 3 m limitation of the viewing distance, improved navigation performance and decreased cognitive load. Interestingly, the distance-based and wireframe renderings also improved the cognitive mapping of the unknown environment. These results show that low resolution implants are usable for wayfinding if specific computer vision algorithms are used to select and display appropriate information regarding the environment. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Developing team cognition: A role for simulation

    PubMed Central

    Fernandez, Rosemarie; Shah, Sachita; Rosenman, Elizabeth D.; Kozlowski, Steve W. J.; Parker, Sarah Henrickson; Grand, James A.

    2016-01-01

    SUMMARY STATEMENT Simulation has had a major impact in the advancement of healthcare team training and assessment. To date, the majority of simulation-based training and assessment focuses on the teamwork behaviors that impact team performance, often ignoring critical cognitive, motivational, and affective team processes. Evidence from team science research demonstrates a strong relationship between team cognition and team performance and suggests a role for simulation in the development of this team-level construct. In this article we synthesize research from the broader team science literature to provide foundational knowledge regarding team cognition and highlight best practices for using simulation to target team cognition. PMID:28704287

  20. Field assessment and enhancement of cognitive performance: development of an ambulatory vigilance monitor.

    PubMed

    Lieberman, Harris R; Kramer, F Matthew; Montain, Scott J; Niro, Philip

    2007-05-01

    Limited opportunities to study human cognitive performance in non-laboratory, ambulatory situations exist. However, advances in technology make it possible to extend behavioral assessments to the field. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device acquires minute-by-minute information on an individual's physical activity and can distinguish sleep from waking, the most basic aspect of behavior. Our laboratory developed a series of wrist-worn devices, not much larger than a watch, which assess reaction time, vigilance and memory. The devices concurrently assess motor activity with greater temporal resolution than standard actigraphs. They also continuously monitor multiple environmental variables including temperature, humidity, sound, and light. These monitors have been employed during training and simulated military operations to collect behavioral and environmental information that would typically be unavailable under such circumstances. Development of the vigilance monitor, and how each successive version extended capabilities of the device are described. Data from several studies are presented, including studies conducted in harsh field environments during a simulated infantry assault, an officer training course. The monitors simultaneously documented environmental conditions, patterns of sleep and activity and effects of nutritional manipulations on cognitive performance. They provide a new method to relate cognitive performance to real world environmental conditions and assess effects of various interventions on human behavior in the field. They can also monitor cognitive performance in real time, and if it is degraded, attempt to intervene to maintain

  1. Effects of the Physical Environment on Cognitive Load and Learning: Towards a New Model of Cognitive Load

    ERIC Educational Resources Information Center

    Choi, Hwan-Hee; van Merriënboer, Jeroen J. G.; Paas, Fred

    2014-01-01

    Although the theoretical framework of cognitive load theory has acknowledged a role for the learning environment, the specific characteristics of the physical learning environment that could affect cognitive load have never been considered, neither theoretically nor empirically. In this article, we argue that the physical learning environment, and…

  2. Toward an Integrated Online Learning Environment

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca E.; Pawl, Andrew; Rayyan, Saif; Barrantes, Analia; Pritchard, David E.

    2010-10-01

    We are building in LON-CAPA an integrated learning environment that will enable the development, dissemination and evaluation of PER-based material. This environment features a collection of multi-level research-based homework sets organized by topic and cognitive complexity. These sets are associated with learning modules that contain very short exposition of the content supplemented by integrated open-access videos, worked examples, simulations, and tutorials (some from ANDES). To assess students' performance accurately with respect to a system-wide standard, we plan to implement Item Response Theory. Together with other PER assessments and purposeful solicitation of student feedback, this will allow us to measure and improve the efficacy of various research-based materials, while getting insights into teaching and learning.

  3. Seldon v.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nina; Ko, Teresa; Shneider, Max

    Seldon is an agent-based social simulation framework that uniquely integrates concepts from a variety of different research areas including psychology, social science, and agent-based modeling. Development has been taking place for a number of years, previously focusing on gang and terrorist recruitment. The toolkit consists of simple agents (individuals) and abstract agents (groups of individuals representing social/institutional concepts) that interact according to exchangeable rule sets (i.e. linear attraction, linear reinforcement). Each agent has a set of customizable attributes that get modified during the interactions. Interactions create relationships between agents, and each agent has a maximum amount of relationship energy thatmore » it can expend. As relationships evolve, they form multiple levels of social networks (i.e. acquaintances, friends, cliques) that in turn drive future interactions. Agents can also interact randomly if they are not connected through a network, mimicking the chance interactions that real people have in everyday life. We are currently integrating Seldon with the cognitive framework (also developed at Sandia). Each individual agent has a lightweight cognitive model that is created automatically from textual sources. Cognitive information is exchanged during interactions, and can also be injected into a running simulation. The entire framework has been parallelized to allow for larger simulations in an HPC environment. We have also added more detail to the agents themselves (a"Big Five" personality model) and their interactions (an enhanced relationship model) for a more realistic representation.« less

  4. Environment as 'Brain Training': A review of geographical and physical environmental influences on cognitive ageing.

    PubMed

    Cassarino, Marica; Setti, Annalisa

    2015-09-01

    Global ageing demographics coupled with increased urbanisation pose major challenges to the provision of optimal living environments for older persons, particularly in relation to cognitive health. Although animal studies emphasize the benefits of enriched environments for cognition, and brain training interventions have shown that maintaining or improving cognitive vitality in older age is possible, our knowledge of the characteristics of our physical environment which are protective for cognitive ageing is lacking. The present review analyses different environmental characteristics (e.g. urban vs. rural settings, presence of green) in relation to cognitive performance in ageing. Studies of direct and indirect associations between physical environment and cognitive performance are reviewed in order to describe the evidence that our living contexts constitute a measurable factor in determining cognitive ageing. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bridging the gap: enhancing interprofessional education using simulation.

    PubMed

    Robertson, James; Bandali, Karim

    2008-10-01

    Simulated learning and interprofessional education (IPE) are increasingly becoming more prevalent in health care curriculum. As the focus shifts to patient-centred care, health professionals will need to learn with, from and about one another in real-life settings in order to facilitate teamwork and collaboration. The provision of simulated learning in an interprofessional environment helps replicate these settings thereby providing the traditional medical education model with opportunities for growth and innovation. Learning in context is an essential psychological and cognitive aspect of education.This paper offers a conceptual analysis of the salient issues related to IPE and medical simulation. In addition, the paper argues for the integration of simulation into IPE in order to develop innovative approaches for the delivery of education and improved clinical practice that may benefit students and all members of the health care team.

  6. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1993-01-01

    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

  7. Modeling driver behavior in a cognitive architecture.

    PubMed

    Salvucci, Dario D

    2006-01-01

    This paper explores the development of a rigorous computational model of driver behavior in a cognitive architecture--a computational framework with underlying psychological theories that incorporate basic properties and limitations of the human system. Computational modeling has emerged as a powerful tool for studying the complex task of driving, allowing researchers to simulate driver behavior and explore the parameters and constraints of this behavior. An integrated driver model developed in the ACT-R (Adaptive Control of Thought-Rational) cognitive architecture is described that focuses on the component processes of control, monitoring, and decision making in a multilane highway environment. This model accounts for the steering profiles, lateral position profiles, and gaze distributions of human drivers during lane keeping, curve negotiation, and lane changing. The model demonstrates how cognitive architectures facilitate understanding of driver behavior in the context of general human abilities and constraints and how the driving domain benefits cognitive architectures by pushing model development toward more complex, realistic tasks. The model can also serve as a core computational engine for practical applications that predict and recognize driver behavior and distraction.

  8. Development of a virtual reality assessment of everyday living skills.

    PubMed

    Ruse, Stacy A; Davis, Vicki G; Atkins, Alexandra S; Krishnan, K Ranga R; Fox, Kolleen H; Harvey, Philip D; Keefe, Richard S E

    2014-04-23

    Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of "functional capacity" index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT's sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.

  9. Design and performance frameworks for constructing problem-solving simulations.

    PubMed

    Stevens, Ron; Palacio-Cayetano, Joycelin

    2003-01-01

    Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement.

  10. Design and Performance Frameworks for Constructing Problem-Solving Simulations

    PubMed Central

    Stevens, Ron; Palacio-Cayetano, Joycelin

    2003-01-01

    Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement. PMID:14506505

  11. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind.

    PubMed

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.

  12. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind

    PubMed Central

    Connors, Erin C.; Chrastil, Elizabeth R.; Sánchez, Jaime; Merabet, Lotfi B.

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments. PMID:24653690

  13. Effect of intermittent hypoxia on neuro-functional recovery post brain ischemia in mice.

    PubMed

    Qiao, Yanxiang; Liu, Zhenfang; Yan, Xianliang; Luo, Chuanming

    2015-04-01

    Intermittent hypoxia was a simulation of a high-altitude environment. Neuro-inflammation post brain ischemia was considered as a vital impact which contributed to cognitive-functional deficit. The isoform of nitric oxide synthase (iNOS) was an inflammation factor secreted by microglias in neuro-inflammation. In this study, we established a high-altitude environment as the hypoxic condition. Twenty mice were selected and randomized into a hypoxia group (n = 10) or a normoxia group (n = 10) post three vessel occlusion-induced brain ischemia. An enhancement of cognitive-functional recovery was presented in the hypoxia group by survival neuron counting and revealed by the Morris water maze test. Meanwhile, a high level of hypoxia-inducable factor 1 (HIF-1) expression associated with a lower expression of iNOS was observed in the border between infarcts and normal tissue of the hippocampus in the hypoxia group. However, these phenomenons were blocked by HIF-1 inhibition. This suggested that the acceleration of cognitive-functional recovery induced by intermittent hypoxia may depend on HIF-1 activating. An imitation of the hypoxic condition with or without HIF-1 inhibition was operated on the BV-2 cell. A high level of HIF-1 expression associated with a lower-level expression of iNOS was performed in the hypoxic condition. These data suggested that intermittent hypoxia can accelerate cognitive function recovery through attenuating neuro-inflammation.

  14. The association between community environment and cognitive function: a systematic review.

    PubMed

    Wu, Yu-Tzu; Prina, A Matthew; Brayne, Carol

    2015-03-01

    The aim of this study is to review the published evidence on the association between community environment and cognitive function in older people, focusing on the findings and a critique of the existing studies. A literature search was conducted to identify studies linking the community environment and cognitive function in older people. The results and methodological factors, including the definition of community, individual level characteristics and the measurements of cognitive function and community environment were extracted from each study. The measurements of community environment were mainly categorized into two types: compositional, generated by aggregating individual and household data (community-level socioeconomic status, deprivation index) and contextual, targeting at the features of built or social environment in local areas (green space, street conditions, crime rate). Fourteen of the fifteen studies used compositional measurements such as community-level socioeconomic status and deprivation index and significant associations were found in eleven studies. Some individual level factors (ethnicity, genotype and socioeconomic status) were found to modify the association between community environment and cognitive function. Few contextual measurements were included in the existing studies. A conceptual framework for the pathway from community environment to cognitive function of older people is provided in this review. To disentangle the additional effect of place from individual risk factors and investigate the casual direction of community environment and cognition in later life, longitudinal studies with measurements targeting built and social environments of community and change of cognitive functions over time need to be included in future studies.

  15. Effect of a Simulated Active Commute to School on Cardiovascular Stress Reactivity

    PubMed Central

    Lambiase, Maya J.; Barry, Heather M.; Roemmich, James. N.

    2010-01-01

    Purpose Stress-induced cardiovascular reactivity is associated with the pathogenesis of cardiovascular disease. This study tested whether a simulated active commute to school dampened cardiovascular reactivity to a cognitive stressor typical to what children might experience during school. Methods Forty children (20 girls and 20 boys) ages 10 to 14 y were randomly assigned to simulated sedentary drive to school or active commute (walking) groups. The walking group completed a self-paced 1.6 km walk on a treadmill while images from a real 1.6 km walk through a pleasant neighborhood that finished at a school were projected in front of them. The drive to school group sat in a chair and watched the same slideshow of images of the neighborhood environment. Standardized residualized gain scores of cardiovascular reactivity during a cognitive stressor, the Stroop task, were calculated and used as dependent variables. Results Children in the walking group self-selected a walking intensity of 60.6 ± 1.6 %HR max and covered the 1.6 km distance in 21.5 ± 0.5 min. Children in the walking group had lower HR (2 ± 1 vs 11 ± 1 beats˙min−1, P < 0.001), systolic BP (4 ± 1 vs 12 ± 1 mmHg, P < 0.001), pulse pressure (−4 ± 1 vs 6 ± 1 mmHg, P < 0.001), and perceived stress (1.4 ± 0.1 vs 3.0 ± 0.1 cm, P < 0.001) reactivities to cognitive stress than the control group. Conclusion Active commuting to school may dampen cardiovascular reactivity and perceived stress when confronted with stressful cognitive challenges during the school day. This may help reduce the risk for cardiovascular disease later in life. PMID:20139790

  16. Limitations of subjective cognitive load measures in simulation-based procedural training.

    PubMed

    Naismith, Laura M; Cheung, Jeffrey J H; Ringsted, Charlotte; Cavalcanti, Rodrigo B

    2015-08-01

    The effective implementation of cognitive load theory (CLT) to optimise the instructional design of simulation-based training requires sensitive and reliable measures of cognitive load. This mixed-methods study assessed relationships between commonly used measures of total cognitive load and the extent to which these measures reflected participants' experiences of cognitive load in simulation-based procedural skills training. Two groups of medical residents (n = 38) completed three questionnaires after participating in simulation-based procedural skills training sessions: the Paas Cognitive Load Scale; the NASA Task Load Index (TLX), and a cognitive load component (CLC) questionnaire we developed to assess total cognitive load as the sum of intrinsic load (how complex the task is), extraneous load (how the task is presented) and germane load (how the learner processes the task for learning). We calculated Pearson's correlation coefficients to assess agreement among these instruments. Group interviews explored residents' perceptions about how the simulation sessions contributed to their total cognitive load. Interviews were audio-recorded, transcribed and subjected to qualitative content analysis. Total cognitive load scores differed significantly according to the instrument used to assess them. In particular, there was poor agreement between the Paas Scale and the TLX. Quantitative and qualitative findings supported intrinsic cognitive load as synonymous with mental effort (Paas Scale), mental demand (TLX) and task difficulty and complexity (CLC questionnaire). Additional qualitative themes relating to extraneous and germane cognitive loads were not reflected in any of the questionnaires. The Paas Scale, TLX and CLC questionnaire appear to be interchangeable as measures of intrinsic cognitive load, but not of total cognitive load. A more complete understanding of the sources of extraneous and germane cognitive loads in simulation-based training contexts is necessary to determine how best to measure and assess their effects on learning and performance outcomes. © 2015 John Wiley & Sons Ltd.

  17. Greater involvement of action simulation mechanisms in emotional vs cognitive empathy

    PubMed Central

    Oliver, Lindsay D; Vieira, Joana B; Neufeld, Richard W J; Dziobek, Isabel; Mitchell, Derek G V

    2018-01-01

    Abstract Empathy is crucial for successful interpersonal interactions, and it is impaired in many psychiatric and neurological disorders. Action-perception matching, or action simulation mechanisms, has been suggested to facilitate empathy by supporting the simulation of perceived experience in others. However, this remains unclear, and the involvement of the action simulation circuit in cognitive empathy (the ability to adopt another’s perspective) vs emotional empathy (the capacity to share and react affectively to another’s emotional experience) has not been quantitatively compared. Presently, healthy adults completed a classic cognitive empathy task (false belief), an emotional empathy task and an action simulation button-pressing task during functional magnetic resonance imaging. Conjunction analyses revealed common recruitment of the inferior frontal gyrus (IFG), thought to be critical for action-perception matching, during both action simulation and emotional, but not cognitive, empathy. Furthermore, activation was significantly greater in action simulation regions in the left IFG during emotional vs cognitive empathy, and activity in this region was positively correlated with mean feeling ratings during the emotional empathy task. These findings provide evidence for greater involvement of action simulation mechanisms in emotional than cognitive empathy. Thus, the action simulation circuit may be an important target for delineating the pathophysiology of disorders featuring emotional empathy impairments. PMID:29462481

  18. Developing a Cognitive Model of Expert Performance for Ship Navigation Maneuvers in an Intelligent Tutoring System

    DTIC Science & Technology

    2010-03-01

    nature of ship navigation and the requirements for the intelligent tutor presented unique challenges for development. This paper describes how the...the context of improving training. 1. Project Overview The Conning Officer Virtual Environment (COVE) is a ship-handling simulation system used...Corporation, 2009), is used to provide students with ship-handling training without the cost or risk to equipment of at-sea exercises. One downside

  19. SHERLOCK: A Coached Practice Environment for an Electronics Troubleshooting Job

    DTIC Science & Technology

    1988-03-01

    context. At the most abstract level, it Is the cognitive version of earlier approaches to errorless learning (Terrace, 1964). With support from a...not yet learned and Is the basis for Interactions with the student . Sherlock does not use simulation techniques to model student pedormnce. Its...annotation of how well the student is expected to do at each point of the abstracted problem space. The object (microprogram) corresponding to each node

  20. Why pilots are least likely to get good decision making precisely when they need it most

    NASA Technical Reports Server (NTRS)

    Maher, John W.

    1991-01-01

    Studies of commercial aircraft incidents and accidents indicate that, in flight conditions not covered by standard operating procedures, as well as when the environment is saturated with information or unmanaged stress, cognitive shortcuts dominate aircrews' decisionmaking processes. Multidisciplinary research on such situations with high-fidelity simulators becomes critically important, as do psychometric tools which examine vigilance, personality resiliency before stressful conditions, and decisional and interpersonal mind-sets.

  1. Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude

    PubMed Central

    Shannon, Oliver M.; Duckworth, Lauren; Barlow, Matthew J.; Deighton, Kevin; Matu, Jamie; Williams, Emily L.; Woods, David; Xie, Long; Stephan, Blossom C. M.; Siervo, Mario; O'Hara, John P.

    2017-01-01

    Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3−) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): V˙O2max: 60.9 (10.1) ml·kg−1·min−1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3−) or NO3−-deplete (PLA; 0.01 mmol NO3−) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake (V˙O2), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary V˙O2 was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude. PMID:28649204

  2. Simulation as a surgical teaching model.

    PubMed

    Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos

    2018-01-01

    Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Enhancing pediatric clinical competency with high-fidelity simulation.

    PubMed

    Birkhoff, Susan D; Donner, Carol

    2010-09-01

    In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. Copyright 2010, SLACK Incorporated.

  4. SeaTouch: A Haptic and Auditory Maritime Environment for Non Visual Cognitive Mapping of Blind Sailors

    NASA Astrophysics Data System (ADS)

    Simonnet, Mathieu; Jacobson, Dan; Vieilledent, Stephane; Tisseau, Jacques

    Navigating consists of coordinating egocentric and allocentric spatial frames of reference. Virtual environments have afforded researchers in the spatial community with tools to investigate the learning of space. The issue of the transfer between virtual and real situations is not trivial. A central question is the role of frames of reference in mediating spatial knowledge transfer to external surroundings, as is the effect of different sensory modalities accessed in simulated and real worlds. This challenges the capacity of blind people to use virtual reality to explore a scene without graphics. The present experiment involves a haptic and auditory maritime virtual environment. In triangulation tasks, we measure systematic errors and preliminary results show an ability to learn configurational knowledge and to navigate through it without vision. Subjects appeared to take advantage of getting lost in an egocentric “haptic” view in the virtual environment to improve performances in the real environment.

  5. Emotion, cognitive load and learning outcomes during simulation training.

    PubMed

    Fraser, Kristin; Ma, Irene; Teteris, Elise; Baxter, Heather; Wright, Bruce; McLaughlin, Kevin

    2012-11-01

    Simulation training has emerged as an effective way to complement clinical training of medical students. Yet outcomes from simulation training must be considered suboptimal when 25-30% of students fail to recognise a cardiac murmur on which they were trained 1 hour previously. There are several possible explanations for failure to improve following simulation training, which include the impact of heightened emotions on learning and cognitive overload caused by interactivity with high-fidelity simulators. This study was conducted to assess emotion during simulation training and to explore the relationships between emotion and cognitive load, and diagnostic performance. We trained 84 Year 1 medical students on a scenario of chest pain caused by symptomatic aortic stenosis. After training, students were asked to rate their emotional state and cognitive load. We then provided training on a dyspnoea scenario before asking participants to diagnose the murmur in which they had been trained (aortic stenosis) and a novel murmur (mitral regurgitation). We used factor analysis to identify the principal components of emotion, and then studied the associations between these components of emotion and cognitive load and diagnostic performance. We identified two principal components of emotion, which we felt represented invigoration and tranquillity. Both of these were associated with cognitive load with adjusted regression coefficients of 0.63 (95% confidence interval [CI] 0.28-0.99; p = 0.001) and - 0.44 (95% CI - 0.77 to - 0.10; p = 0.009), respectively. We found a significant negative association between cognitive load and the odds of subsequently identifying the trained murmur (odds ratio 0.27, 95% CI 0.11-0.67; p = 0.004). We found that increased invigoration and reduced tranquillity during simulation training were associated with increased cognitive load, and that the likelihood of correctly identifying a trained murmur declined with increasing cognitive load. Further studies are needed to evaluate the impact on performance of strategies to alter emotion and cognitive load during simulation training. © Blackwell Publishing Ltd 2012.

  6. Building blocks of social cognition: Mirror, mentalize, share?

    PubMed

    Alcalá-López, Daniel; Vogeley, Kai; Binkofski, Ferdinand; Bzdok, Danilo

    2018-05-14

    During the past decade, novel approaches to study social interaction have expanded and questioned long-standing knowledge about how humans understand each other. We aim to portray and reconcile the key psychological processes and neural mechanisms underlying navigation of the social environment. Theoretical accounts mostly revolved around either abstract inferences or embodied simulations, whereas experimental studies mostly focused on theory of mind or mentalizing, empathy, and action imitation. The tension between theories of and experiments on social cognition is systematically revisited to foster new theoretical and empirical studies in the fields. We finally retrace differential impairments in social capacities as a means to re-conceptualize psychopathological disturbance in psychiatry, including schizophrenia, borderline personality, and autism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The development of the virtual reality system for the treatment of the fears of public speaking.

    PubMed

    Jo, H J; Ku, J H; Jang, D P; Shin, M B; Ahn, H B; Lee, J M; Cho, B H; Kim, S I

    2001-01-01

    The fear of public speaking is a kind of social phobias. The patients having the fear of public speaking show some symptoms like shame and timidity in the daily personal relationship. They are afraid that the other person would be puzzled, feel insulted, and they also fear that they should be underestimated for their mistakes. For the treatment of the fear of public speaking, the cognitive-behavioral therapy has been generally used. The cognitive-behavioral therapy is the method that makes the patients gradually experience some situations inducing the fears and overcome those at last. Recently, the virtual reality technology has been introduced as an alternative method for providing phobic situations. In this study, we developed the public speaking simulator and the virtual environments for the treatment of the fear of public speaking. The head-mounted display, the head-tracker and the 3 dimensional sound system were used for the immersive virtual environment. The imagery of the virtual environment consists of a seminar room and 8 virtual audiences. The patient will speak in front of these virtual audiences and the therapist can control motions, facial expressions, sounds, and voices of each virtual audience.

  8. Interventional radiology virtual simulator for liver biopsy.

    PubMed

    Villard, P F; Vidal, F P; ap Cenydd, L; Holbrey, R; Pisharody, S; Johnson, S; Bulpitt, A; John, N W; Bello, F; Gould, D

    2014-03-01

    Training in Interventional Radiology currently uses the apprenticeship model, where clinical and technical skills of invasive procedures are learnt during practice in patients. This apprenticeship training method is increasingly limited by regulatory restrictions on working hours, concerns over patient risk through trainees' inexperience and the variable exposure to case mix and emergencies during training. To address this, we have developed a computer-based simulation of visceral needle puncture procedures. A real-time framework has been built that includes: segmentation, physically based modelling, haptics rendering, pseudo-ultrasound generation and the concept of a physical mannequin. It is the result of a close collaboration between different universities, involving computer scientists, clinicians, clinical engineers and occupational psychologists. The technical implementation of the framework is a robust and real-time simulation environment combining a physical platform and an immersive computerized virtual environment. The face, content and construct validation have been previously assessed, showing the reliability and effectiveness of this framework, as well as its potential for teaching visceral needle puncture. A simulator for ultrasound-guided liver biopsy has been developed. It includes functionalities and metrics extracted from cognitive task analysis. This framework can be useful during training, particularly given the known difficulties in gaining significant practice of core skills in patients.

  9. Business Simulations and Cognitive Learning: Developments, Desires, and Future Directions

    ERIC Educational Resources Information Center

    Anderson, Philip H.; Lawton, Leigh

    2009-01-01

    This article focuses on the research associated with the assessment of the cognitive learning that occurs through participation in a simulation exercise. It summarizes the "objective" evidence regarding cognitive learning versus the "perceptions" of cognitive learning achieved as reported by participants and instructors. The authors also explain…

  10. Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training.

    PubMed

    Lieberman, Harris R; Farina, Emily K; Caldwell, John; Williams, Kelly W; Thompson, Lauren A; Niro, Philip J; Grohmann, Kyle A; McClung, James P

    2016-10-15

    Stress influences numerous psychological and physiological processes, and its effects have practical implications in a variety of professions and real-world activities. However, few studies have concurrently assessed multiple behavioral, hormonal, nutritional and heart-rate responses of humans to acute, severe stress. This investigation simultaneously assessed cognitive, affective, hormonal, and heart-rate responses induced by an intensely stressful real-world environment designed to simulate wartime captivity. Sixty males were evaluated during and immediately following participation in U.S. Army Survival, Evasion, Resistance, and Escape (SERE) school, three weeks of intense but standardized training for Soldiers at risk of capture. Simulated captivity and intense mock interrogations degraded grammatical reasoning (p<0.005), sustained-attention (p<0.001), working memory (p<0.05) and all aspects of mood assessed by the Profile of Mood States (POMS) questionnaire: Tension/Anxiety, Depression/Dejection, Anger/Hostility, Vigor/Activity, Fatigue/Inertia; Confusion/Bewilderment, and Total Mood Disturbance (p<0.001) It also elevated heart rate (p<0.001); increased serum and salivary cortisol and dehydroepiandrosterone-sulfate (DHEA-s) (p<0.01); elevated serum epinephrine, norepinephrine, and soluble transferrin receptors (sTfR) (p<0.01); increased salivary neuropeptide-Y (NPY) (p<0.001); and decreased serum prolactin and serum and salivary testosterone (p<0.001). Partial recovery was observed immediately after training, but stress-induced changes, particularly in body weight and several of the biomarkers, persisted. This study demonstrates that when individuals were exposed to realistic and controlled simulated captivity, cognition, mood, stress hormones, nutritional status and heart rate are simultaneously altered, and each of these subsequently recovers at different rates. Published by Elsevier Inc.

  11. Acute effects on cognitive performance following bouts of standing and light-intensity physical activity in a simulated workplace environment.

    PubMed

    Mullane, Sarah L; Buman, Matthew P; Zeigler, Zachary S; Crespo, Noe C; Gaesser, Glenn A

    2017-05-01

    To compare acute cognitive effects following bouts of standing (STAND), cycling (CYCLE) and walking (WALK) to a sit-only (SIT) condition. Randomized cross-over full-factorial study. Nine overweight (BMI=29±3kg/m 2 ) adults (30±15years; 7 females, 2 males) completed four conditions (SIT, STAND, WALK and CYCLE) across a 6h period with a 7days washout period between conditions. SIT consisted of uninterrupted sitting. Experimental conditions included intermittent bouts of standing (STAND), cycling (CYCLE) and walking (WALK). A cognitive performance battery (Cogstate) was completed twice in a seated position following bouts of standing and light-intensity physical activity. Mixed-effects models compared between-condition differences in standardized score (z-score), accuracy (%), and speed (log10ms). Cognitive performance z-score and accuracy measures were higher during STAND, CYCLE and WALK (P<0.05) conditions compared to the SIT condition. CYCLE was better than other experimental conditions. Compared to uninterrupted sitting, short bouts of standing or light-intensity cycling and walking may improve acute cognitive performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Virtual reality simulation for construction safety promotion.

    PubMed

    Zhao, Dong; Lucas, Jason

    2015-01-01

    Safety is a critical issue for the construction industry. Literature argues that human error contributes to more than half of occupational incidents and could be directly impacted by effective training programs. This paper reviews the current safety training status in the US construction industry. Results from the review evidence the gap between the status and industry expectation on safety. To narrow this gap, this paper demonstrates the development and utilisation of a training program that is based on virtual reality (VR) simulation. The VR-based safety training program can offer a safe working environment where users can effectively rehearse tasks with electrical hazards and ultimately promote their abilities for electrical hazard cognition and intervention. Its visualisation and simulation can also remove the training barriers caused by electricity's features of invisibility and dangerousness.

  13. A Comparison of Objective and Subjective Stress in Homogeneous Male and Female Teams in a Mars Simulation

    NASA Astrophysics Data System (ADS)

    Bishop, S.; Sundaresan, A.

    Introduction The role of stress and its impact on coping performance motivation behavior cognitive functioning and psychological well-being has become a key focus for long duration missions Since all extreme environments are characterized by significant physical demands e g skiing climbing EVAs as well as inescapable environmental characteristics e g imminent danger noise isolation confinement loss of normal sensory stimuli an examination of the impact of prolong stress in analogue environments should provide insight into developing effective support and countermeasures for long duration space crews The presence of even low levels of chronic stressors if not met with functional adaptation and or countermeasures has been shown to produce subjective symptoms of stress persistent performance incompetence accelerated fatiguability altered mood states increased rate of infections and decrements in attention and cognitive Gender has been shown to cut across both individual factors and group factors including response to stress and ways of coping Generally men and women differ in many arenas such as interaction and communication styles need for affiliation responses to crowding privacy and confined spaces Men and women in homogeneous groups interact in significantly different ways than those in mixed groups Therefore differences between genders on subjective and objective responses to stress are of interest The Mars Society Utah Desert Simulation MDRS facility provides a unique opportunity to examine the interaction of

  14. The AGINAO Self-Programming Engine

    NASA Astrophysics Data System (ADS)

    Skaba, Wojciech

    2013-01-01

    The AGINAO is a project to create a human-level artificial general intelligence system (HL AGI) embodied in the Aldebaran Robotics' NAO humanoid robot. The dynamical and open-ended cognitive engine of the robot is represented by an embedded and multi-threaded control program, that is self-crafted rather than hand-crafted, and is executed on a simulated Universal Turing Machine (UTM). The actual structure of the cognitive engine emerges as a result of placing the robot in a natural preschool-like environment and running a core start-up system that executes self-programming of the cognitive layer on top of the core layer. The data from the robot's sensory devices supplies the training samples for the machine learning methods, while the commands sent to actuators enable testing hypotheses and getting a feedback. The individual self-created subroutines are supposed to reflect the patterns and concepts of the real world, while the overall program structure reflects the spatial and temporal hierarchy of the world dependencies. This paper focuses on the details of the self-programming approach, limiting the discussion of the applied cognitive architecture to a necessary minimum.

  15. Lessons from a pilot project in cognitive task analysis: the potential role of intermediates in preclinical teaching in dental education.

    PubMed

    Walker, Judith; von Bergmann, HsingChi

    2015-03-01

    The purpose of this study was to explore the use of cognitive task analysis to inform the teaching of psychomotor skills and cognitive strategies in clinical tasks in dental education. Methods used were observing and videotaping an expert at one dental school thinking aloud while performing a specific preclinical task (in a simulated environment), interviewing the expert to probe deeper into his thinking processes, and applying the same procedures to analyze the performance of three second-year dental students who had recently learned the analyzed task and who represented a spectrum of their cohort's ability to undertake the procedure. The investigators sought to understand how experts (clinical educators) and intermediates (trained students) overlapped and differed at points in the procedure that represented the highest cognitive load, known as "critical incidents." Findings from this study and previous research identified possible limitations of current clinical teaching as a result of expert blind spots. These findings coupled with the growing evidence of the effectiveness of peer teaching suggest the potential role of intermediates in helping novices learn preclinical dentistry tasks.

  16. Development of a Virtual Reality Assessment of Everyday Living Skills

    PubMed Central

    Ruse, Stacy A.; Davis, Vicki G.; Atkins, Alexandra S.; Krishnan, K. Ranga R.; Fox, Kolleen H.; Harvey, Philip D.; Keefe, Richard S.E.

    2014-01-01

    Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders. PMID:24798174

  17. Safety evaluation of driver cognitive failures and driving errors on right-turn filtering movement at signalized road intersections based on Fuzzy Cellular Automata (FCA) model.

    PubMed

    Chai, Chen; Wong, Yiik Diew; Wang, Xuesong

    2017-07-01

    This paper proposes a simulation-based approach to estimate safety impact of driver cognitive failures and driving errors. Fuzzy Logic, which involves linguistic terms and uncertainty, is incorporated with Cellular Automata model to simulate decision-making process of right-turn filtering movement at signalized intersections. Simulation experiments are conducted to estimate the relationships between cognitive failures and driving errors with safety performance. Simulation results show Different types of cognitive failures are found to have varied relationship with driving errors and safety performance. For right-turn filtering movement, cognitive failures are more likely to result in driving errors with denser conflicting traffic stream. Moreover, different driving errors are found to have different safety impacts. The study serves to provide a novel approach to linguistically assess cognitions and replicate decision-making procedures of the individual driver. Compare to crash analysis, the proposed FCA model allows quantitative estimation of particular cognitive failures, and the impact of cognitions on driving errors and safety performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Foreign language learning in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  19. Cognitive strategies in the mental rotation task revealed by EEG spectral power.

    PubMed

    Gardony, Aaron L; Eddy, Marianna D; Brunyé, Tad T; Taylor, Holly A

    2017-11-01

    The classic mental rotation task (MRT; Shepard & Metzler, 1971) is commonly thought to measure mental rotation, a cognitive process involving covert simulation of motor rotation. Yet much research suggests that the MRT recruits both motor simulation and other analytic cognitive strategies that depend on visuospatial representation and visual working memory (WM). In the present study, we investigated cognitive strategies in the MRT using time-frequency analysis of EEG and independent component analysis. We scrutinized sensorimotor mu (µ) power reduction, associated with motor simulation, parietal alpha (pα) power reduction, associated with visuospatial representation, and frontal midline theta (fmθ) power enhancement, associated with WM maintenance and manipulation. µ power increased concomitant with increasing task difficulty, suggesting reduced use of motor simulation, while pα decreased and fmθ power increased, suggesting heightened use of visuospatial representation processing and WM, respectively. These findings suggest that MRT performance involves flexibly trading off between cognitive strategies, namely a motor simulation-based mental rotation strategy and WM-intensive analytic strategies based on task difficulty. Flexible cognitive strategy use may be a domain-general cognitive principle that underlies aptitude and spatial intelligence in a variety of cognitive domains. We close with discussion of the present study's implications as well as future directions. Published by Elsevier Inc.

  20. Simulation of traumatic brain injury symptoms on the Personality Assessment Inventory: an analogue study.

    PubMed

    Keiski, Michelle A; Shore, Douglas L; Hamilton, Joanna M; Malec, James F

    2015-04-01

    The purpose of this study was to characterize the operating characteristics of the Personality Assessment Inventory (PAI) validity scales in distinguishing simulators feigning symptoms of traumatic brain injury (TBI) while completing the PAI (n = 84) from a clinical sample of patients with TBI who achieved adequate scores on performance validity tests (n = 112). The simulators were divided into two groups: (a) Specific Simulators feigning cognitive and somatic symptoms only or (b) Global Simulators feigning cognitive, somatic, and psychiatric symptoms. The PAI overreporting scales were indeed sensitive to the simulation of TBI symptoms in this analogue design. However, these scales were less sensitive to the feigning of somatic and cognitive TBI symptoms than the feigning of a broad range of cognitive, somatic, and emotional symptoms often associated with TBI. The relationships of TBI simulation to consistency and underreporting scales are also explored. © The Author(s) 2014.

  1. The threat simulation theory of the evolutionary function of dreaming: Evidence from dreams of traumatized children.

    PubMed

    Valli, Katja; Revonsuo, Antti; Pälkäs, Outi; Ismail, Kamaran Hassan; Ali, Karzan Jalal; Punamäki, Raija-Leena

    2005-03-01

    The threat simulation theory of dreaming (TST) () states that dream consciousness is essentially an ancient biological defence mechanism, evolutionarily selected for its capacity to repeatedly simulate threatening events. Threat simulation during dreaming rehearses the cognitive mechanisms required for efficient threat perception and threat avoidance, leading to increased probability of reproductive success during human evolution. One hypothesis drawn from TST is that real threatening events encountered by the individual during wakefulness should lead to an increased activation of the system, a threat simulation response, and therefore, to an increased frequency and severity of threatening events in dreams. Consequently, children who live in an environment in which their physical and psychological well-being is constantly threatened should have a highly activated dream production and threat simulation system, whereas children living in a safe environment that is relatively free of such threat cues should have a weakly activated system. We tested this hypothesis by analysing the content of dream reports from severely traumatized and less traumatized Kurdish children and ordinary, non-traumatized Finnish children. Our results give support for most of the predictions drawn from TST. The severely traumatized children reported a significantly greater number of dreams and their dreams included a higher number of threatening dream events. The dream threats of traumatized children were also more severe in nature than the threats of less traumatized or non-traumatized children.

  2. Assessing Cognitive Ability and Simulator-Based Driving Performance in Poststroke Adults

    PubMed Central

    Falkmer, Torbjörn; Willstrand, Tania Dukic

    2017-01-01

    Driving is an important activity of daily living, which is increasingly relied upon as the population ages. It has been well-established that cognitive processes decline following a stroke and these processes may influence driving performance. There is much debate on the use of off-road neurological assessments and driving simulators as tools to predict driving performance; however, the majority of research uses unlicensed poststroke drivers, making the comparability of poststroke adults to that of a control group difficult. It stands to reason that in order to determine whether simulators and cognitive assessments can accurately assess driving performance, the baseline should be set by licenced drivers. Therefore, the aim of this study was to assess differences in cognitive ability and driving simulator performance in licensed community-dwelling poststroke drivers and controls. Two groups of licensed drivers (37 poststroke and 43 controls) were assessed using several cognitive tasks and using a driving simulator. The poststroke adults exhibited poorer cognitive ability; however, there were no differences in simulator performance between groups except that the poststroke drivers demonstrated less variability in driver headway. The application of these results as a prescreening toolbox for poststroke drivers is discussed. PMID:28559646

  3. Factors Influencing the Use of Cognitive Tools in Web-Based Learning Environments: A Case Study

    ERIC Educational Resources Information Center

    Ozcelik, Erol; Yildirim, Soner

    2005-01-01

    High demands on learners in Web-based learning environments and constraints of the human cognitive system cause disorientation and cognitive overload. These problems could be inhibited if appropriate cognitive tools are provided to support learners' cognitive processes. The purpose of this study was to explore the factors influencing the use of…

  4. Cognitive theories and the design of e-learning environments.

    PubMed

    Gillani, Bijan; O'Guinn, Christina

    2004-01-01

    Cognitive development refers to a mental process by which knowledge is acquired, stored, and retrieved to solve problems. Therefore, cognitive developmental theories attempt to explain cognitive activities that contribute to students' intellectual development and their capacity to learn and solve problems. Cognitive developmental research has had a great impact on the constructivism movement in education and educational technology. In order to appreciate how cognitive developmental theories have contributed to the design, process and development of constructive e-learning environments, we shall first present Piaget's cognitive theory and derive an inquiry training model from it that will support a constructivism approach to teaching and learning. Second, we will discuss an example developed by NASA that used the Web as an appropriate instructional delivery medium to apply Piaget's cognitive theory to create e-learning environments.

  5. Simulating geriatric home safety assessments in a three-dimensional virtual world.

    PubMed

    Andrade, Allen D; Cifuentes, Pedro; Mintzer, Michael J; Roos, Bernard A; Anam, Ramanakumar; Ruiz, Jorge G

    2012-01-01

    Virtual worlds could offer inexpensive and safe three-dimensional environments in which medical trainees can learn to identify home safety hazards. Our aim was to evaluate the feasibility, usability, and acceptability of virtual worlds for geriatric home safety assessments and to correlate performance efficiency in hazard identification with spatial ability, self-efficacy, cognitive load, and presence. In this study, 30 medical trainees found the home safety simulation easy to use, and their self-efficacy was improved. Men performed better than women in hazard identification. Presence and spatial ability were correlated significantly with performance. Educators should consider spatial ability and gender differences when implementing virtual world training for geriatric home safety assessments.

  6. A Delineation of the Cognitive Processes Manifested in a Social Annotation Environment

    ERIC Educational Resources Information Center

    Li, S. C.; Pow, J. W. C.; Cheung, W. C.

    2015-01-01

    This study aims to examine how students' learning trajectories progress in an online social annotation environment, and how their cognitive processes and levels of interaction correlate with their learning outcomes. Three different types of activities (cognitive, metacognitive and social) were identified in the online environment. The time…

  7. Transient Cognitive Dynamics, Metastability, and Decision Making

    PubMed Central

    Rabinovich, Mikhail I.; Huerta, Ramón; Varona, Pablo; Afraimovich, Valentin S.

    2008-01-01

    The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain. PMID:18452000

  8. The role of cognitive training in endourology: a randomised controlled trial.

    PubMed

    Shah, M; Aydin, A; Moran, A; Khan, M S; Dasgupta, P; Ahmed, K

    2018-04-01

    Cognitive training is an important training modality which allows the user to rehearse a procedure without physically carrying it out. This has led to recent interests to incorporate cognitive training within surgical education but research is currently limited. The use of cognitive training in surgery is not clear-cut and so this study aimed to determine whether, relative to a control condition, the use of cognitive training improves technical surgical skills on a ureteroscopy simulator, and if so whether one cognitive training method is superior. This prospective, comparative study recruited 59 medical students and randomised them to one of three groups: control- simulation training only (n=20), flashcards cognitive training group (n=20) or mental imagery cognitive training group (n=19). All participants completed three tasks at baseline on the URO Mentor simulator followed by the cognitive intervention if randomised to receive it. Participants then returned to perform an assessment task on the simulator. Outcome measures from the URO Mentor performance report was used for analysis and a quantitative survey was given to all participants to assess usefulness of training received. This study showed cognitive training to have minimal effects on technical skills of participants. The mental imagery group had fewer laser misfires in the assessment task when compared to both control and flashcards group (P=.017, P=.036, respectively). The flashcards group rated their preparation to be most useful when compared to control (P=.0125). Other parameters analysed between the groups did not reach statistical significance. Cognitive training was found to be feasible and cost effective when carried out in addition to simulation training. This study has shown that the role of cognitive training within acquisition of surgical skills is minimal and that no form of cognitive training was superior to another. Further research needs to be done to evaluate other ways of performing cognitive training. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  9. Neurophysiological analyses in different color environments of cognitive function in patients with traumatic brain injury.

    PubMed

    Kodama, Takayuki; Morita, Kiichiro; Doi, Ryo; Shoji, Yoshihisa; Shigemori, Minoru

    2010-09-01

    Colors are thought to elicit various emotional effects. Red, with its high likelihood of attracting attention, is considered to have an exciting, active effect; whereas green, with its low attention value, is considered to have a relaxing, sedative effect. Colors are also thought to affect human cognition and emotion. However, there have been few studies of the influence of colors in one's surroundings (e.g., the color environment and its effect on cognitive function). In this study, we investigated the influence of differences in color environments (red, green, or darkness) on cognitive function by analyzing the P300 component of event-related potentials (ERPs) elicited by oddball visual paradigms as a measure of cognitive characteristics in patients who had sustained traumatic brain injury (TBI). In 18 patients with TBI and 18 age-matched control subjects, ERPs were recorded in response to photographs of crying babies. We found that P300 amplitudes in the red environment were significantly larger in controls than in TBI patients, while those in both the green environment and darkness showed no difference between controls and patients. P300 latencies in the red environment and in darkness were significantly longer in patients than in controls. P300 latency in the red environment was significantly shorter than that in darkness. However, P300 latency in the green environment showed no difference between controls and patients. In healthy individuals, the emotional effects of the red environment enhanced cognitive function. In patients with TBI, however, cognitive function was reduced in the red environment. Furthermore, P300 amplitude and latency were strongly correlated with the time on the Trail Making Test (TMT), and the value of the intelligence quotient of the Wechsler Adult Intelligence Scale-III (WAIS-III). These findings suggest that P300 amplitude and latency are useful indexes for the evaluation of TBI patients, and that color environments affect cognitive function.

  10. Coalition readiness management system preliminary interoperability experiment (CReaMS PIE)

    NASA Astrophysics Data System (ADS)

    Clark, Peter; Ryan, Peter; Zalcman, Lucien; Robbie, Andrew

    2003-09-01

    The United States Navy (USN) has initiated the Coalition Readiness Management System (CReaMS) Initiative to enhance coalition warfighting readiness through advancing development of a team interoperability training and combined mission rehearsal capability. It integrates evolving cognitive team learning principles and processes with advanced technology innovations to produce an effective and efficient team learning environment. The JOint Air Navy Networking Environment (JOANNE) forms the Australian component of CReaMS. The ultimate goal is to link Australian Defence simulation systems with the USN Battle Force Tactical Training (BFTT) system to demonstrate and achieve coalition level warfare training in a synthetic battlespace. This paper discusses the initial Preliminary Interoperability Experiment (PIE) involving USN and Australian Defence establishments.

  11. Behavioral Health Program Element

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren B.

    2006-01-01

    The project goal is to develop behavioral health prevention and maintenance system for continued crew health, safety, and performance for exploration missions. The basic scope includes a) Operationally-relevant research related to clinical cognitive and behavioral health of crewmembers; b) Ground-based studies using analog environments (Antarctic, NEEMO, simulations, and other testbeds; c) ISS studies (ISSMP) focusing on operational issues related to behavioral health outcomes and standards; d) Technology development activities for monitoring and diagnostic tools; and e) Cross-disciplinary research (e.g., human factors and habitability research, skeletal muscle, radiation).

  12. Dynamic Selective Exposure during Decision-Making.

    PubMed

    Phillips, James G; Hoon, Teressa; Landon, Jason

    2016-01-01

    To understand dynamic changes in the likelihood that people would access and selectively expose themselves to information online, the present study examined the checking of account balances during simulated gambling. Sixteen participants played 120 hands of computer Blackjack for points, at higher or lower levels of risk (different point multipliers), and after each win or loss the computer recorded if participants checked their account balances. There were individual differences in checking rates. Participants who were more likely to check balances exhibited a selectivity of exposure to decision consonant information after a win at low risk. Although it was expected that people would seek to maintain positive mood, data were better explained in terms of Cognitive Dissonance. The effects of Cognitive Dissonance are liable to extend beyond single static decisions into dynamic online environments.

  13. Simplifying the interaction between cognitive models and task environments with the JSON Network Interface.

    PubMed

    Hope, Ryan M; Schoelles, Michael J; Gray, Wayne D

    2014-12-01

    Process models of cognition, written in architectures such as ACT-R and EPIC, should be able to interact with the same software with which human subjects interact. By eliminating the need to simulate the experiment, this approach would simplify the modeler's effort, while ensuring that all steps required of the human are also required by the model. In practice, the difficulties of allowing one software system to interact with another present a significant barrier to any modeler who is not also skilled at this type of programming. The barrier increases if the programming language used by the modeling software differs from that used by the experimental software. The JSON Network Interface simplifies this problem for ACT-R modelers, and potentially, modelers using other systems.

  14. Using Cellular Automata for Parking Recommendations in Smart Environments

    PubMed Central

    Horng, Gwo-Jiun

    2014-01-01

    In this work, we propose an innovative adaptive recommendation mechanism for smart parking. The cognitive RF module will transmit the vehicle location information and the parking space requirements to the parking congestion computing center (PCCC) when the driver must find a parking space. Moreover, for the parking spaces, we use a cellular automata (CA) model mechanism that can adjust to full and not full parking lot situations. Here, the PCCC can compute the nearest parking lot, the parking lot status and the current or opposite driving direction with the vehicle location information. By considering the driving direction, we can determine when the vehicles must turn around and thus reduce road congestion and speed up finding a parking space. The recommendation will be sent to the drivers through a wireless communication cognitive radio (CR) model after the computation and analysis by the PCCC. The current study evaluates the performance of this approach by conducting computer simulations. The simulation results show the strengths of the proposed smart parking mechanism in terms of avoiding increased congestion and decreasing the time to find a parking space. PMID:25153671

  15. Older Adult Multitasking Performance Using a Gaze-Contingent Useful Field of View.

    PubMed

    Ward, Nathan; Gaspar, John G; Neider, Mark B; Crowell, James; Carbonari, Ronald; Kaczmarski, Hank; Ringer, Ryan V; Johnson, Aaron P; Loschky, Lester C; Kramer, Arthur F

    2018-03-01

    Objective We implemented a gaze-contingent useful field of view paradigm to examine older adult multitasking performance in a simulated driving environment. Background Multitasking refers to the ability to manage multiple simultaneous streams of information. Recent work suggests that multitasking declines with age, yet the mechanisms supporting these declines are still debated. One possible framework to better understand this phenomenon is the useful field of view, or the area in the visual field where information can be attended and processed. In particular, the useful field of view allows for the discrimination of two competing theories of real-time multitasking, a general interference account and a tunneling account. Methods Twenty-five older adult subjects completed a useful field of view task that involved discriminating the orientation of lines in gaze-contingent Gabor patches appearing at varying eccentricities (based on distance from the fovea) as they operated a vehicle in a driving simulator. In half of the driving scenarios, subjects also completed an auditory two-back task to manipulate cognitive workload, and during some trials, wind was introduced as a means to alter general driving difficulty. Results Consistent with prior work, indices of driving performance were sensitive to both wind and workload. Interestingly, we also observed a decline in Gabor patch discrimination accuracy under high cognitive workload regardless of eccentricity, which provides support for a general interference account of multitasking. Conclusion The results showed that our gaze-contingent useful field of view paradigm was able to successfully examine older adult multitasking performance in a simulated driving environment. Application This study represents the first attempt to successfully measure dynamic changes in the useful field of view for older adults completing a multitasking scenario involving driving.

  16. The drive-wise project: driving simulator training increases real driving performance in healthy older drivers

    PubMed Central

    Casutt, Gianclaudio; Theill, Nathan; Martin, Mike; Keller, Martin; Jäncke, Lutz

    2014-01-01

    Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training. Methods: Ninety-one healthy active drivers (62–87 years) were randomly assigned to one of three groups: (1) a driving simulator training group, (2) an attention training group (vigilance and selective attention), or (3) a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85%) completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned orthogonal comparisons. Results: The driving simulator-training group showed an improvement in on-road driving performance compared to the attention-training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers' safety on the road. PMID:24860497

  17. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid

    PubMed Central

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-01-01

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid. PMID:27043573

  18. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    PubMed

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-03-31

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.

  19. Creation and Global Deployment of a Mobile, Application-Based Cognitive Simulator for Cardiac Surgical Procedures.

    PubMed

    Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y

    Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.

  20. How does variation in the environment and individual cognition explain the existence of consistent behavioral differences?

    PubMed Central

    Niemelä, Petri T; Vainikka, Anssi; Forsman, Jukka T; Loukola, Olli J; Kortet, Raine

    2013-01-01

    According to recent studies on animal personalities, the level of behavioral plasticity, which can be viewed as the slope of the behavioral reaction norm, varies among individuals, populations, and species. Still, it is conceptually unclear how the interaction between environmental variation and variation in animal cognition affect the evolution of behavioral plasticity and expression of animal personalities. Here, we (1) use literature to review how environmental variation and individual variation in cognition explain population and individual level expression of behavioral plasticity and (2) draw together empirically yet nontested, conceptual framework to clarify how these factors affect the evolution and expression of individually consistent behavior in nature. The framework is based on simple principles: first, information acquisition requires cognition that is inherently costly to build and maintain. Second, individual differences in animal cognition affect the differences in behavioral flexibility, i.e. the variance around the mean of the behavioral reaction norm, which defines plasticity. Third, along the lines of the evolution of cognition, we predict that environments with moderate variation favor behavioral flexibility. This occurs since in those environments costs of cognition are covered by being able to recognize and use information effectively. Similarly, nonflexible, stereotypic behaviors may be favored in environments that are either invariable or highly variable, since in those environments cognition does not give any benefits to cover the costs or cognition is not able to keep up with environmental change, respectively. If behavioral plasticity develops in response to increasing environmental variability, plasticity should dominate in environments that are moderately variable, and expression of animal personalities and behavioral syndromes may differ between environments. We give suggestions how to test our hypothesis and propose improvements to current behavioral testing protocols in the field of animal personality. PMID:23467316

  1. Representing Trust in Cognitive Social Simulations

    NASA Astrophysics Data System (ADS)

    Pollock, Shawn S.; Alt, Jonathan K.; Darken, Christian J.

    Trust plays a critical role in communications, strength of relationships, and information processing at the individual and group level. Cognitive social simulations show promise in providing an experimental platform for the examination of social phenomena such as trust formation. This paper describes the initial attempts at representation of trust in a cognitive social simulation using reinforcement learning algorithms centered around a cooperative Public Commodity game within a dynamic social network.

  2. Understanding the Technology Enhanced Learning Environments from a Cognitive Perspective

    ERIC Educational Resources Information Center

    Kok, Ayse

    2009-01-01

    This conceptual paper discusses some principles for powerful learning environments based on a cognitive perspective. Throughout the paper, it is argued that the accommodation of different individual cognitive preferences is crucial for its alignment with the human cognitive architecture. The paper concludes that in order to be aligned with the…

  3. Early Childhood Cognitive Development and Parental Cognitive Stimulation: Evidence for Reciprocal Gene-Environment Transactions

    ERIC Educational Resources Information Center

    Tucker-Drob, Elliot M.; Harden, K. Paige

    2012-01-01

    Parenting is traditionally conceptualized as an exogenous environment that affects child development. However, children can also influence the quality of parenting that they receive. Using longitudinal data from 650 identical and fraternal twin pairs, we found that, controlling for cognitive ability at age 2 years, cognitive stimulation by parents…

  4. Journey into the Problem-Solving Process: Cognitive Functions in a PBL Environment

    ERIC Educational Resources Information Center

    Chua, B. L.; Tan, O. S.; Liu, W. C.

    2016-01-01

    In a PBL environment, learning results from learners engaging in cognitive processes pivotal in the understanding or resolution of the problem. Using Tan's cognitive function disc, this study examines the learner's perceived cognitive functions at each stage of PBL, as facilitated by the PBL schema. The results suggest that these learners…

  5. Family Environment, Coping, and Mental Health in Adolescents Attending Therapeutic Day Schools

    PubMed Central

    Rodriguez, Erin M.; Donenberg, Geri R.; Emerson, Erin; Wilson, Helen W.; Brown, Larry K.; Houck, Christopher

    2014-01-01

    OBJECTIVE This study examined associations among family environment, coping, and emotional and conduct problems in adolescents attending therapeutic day schools due to mental health problems. METHODS Adolescents (N=417; 30.2% female) ages 13–20 (M=15.25) reported on their family environment (affective involvement and functioning), coping (emotion-focused support-seeking, cognitive restructuring, avoidant actions), and emotional and conduct problems. RESULTS Poorer family environment was associated with less emotion-focused support-seeking and cognitive restructuring, and more emotional and conduct problems. Emotional problems were negatively associated with cognitive restructuring, and conduct problems were negatively associated with all coping strategies. Cognitive restructuring accounted for the relationship between family environment and emotional problems. Cognitive restructuring and emotion-focused support-seeking each partially accounted for the relationship between family functioning and conduct problems, but not the relationship between family affective involvement and conduct problems. CONCLUSIONS Findings implicate the role of coping in the relationship between family environment and adolescent mental health. PMID:25151645

  6. Differential sensitivity to the environment: contribution of cognitive biases and genes to psychological wellbeing.

    PubMed

    Fox, E; Beevers, C G

    2016-12-01

    Negative cognitive biases and genetic variation have been associated with risk of psychopathology in largely independent lines of research. Here, we discuss ways in which these dynamic fields of research might be fruitfully combined. We propose that gene by environment (G × E) interactions may be mediated by selective cognitive biases and that certain forms of genetic 'reactivity' or 'sensitivity' may represent heightened sensitivity to the learning environment in a 'for better and for worse' manner. To progress knowledge in this field, we recommend including assessments of cognitive processing biases; examining G × E interactions in 'both' negative and positive environments; experimentally manipulating the environment when possible; and moving beyond single-gene effects to assess polygenic sensitivity scores. We formulate a new methodological framework encapsulating cognitive and genetic factors in the development of both psychopathology and optimal wellbeing that holds long-term promise for the development of new personalized therapies.

  7. Aviation instruction through flight simulation and related learning

    NASA Astrophysics Data System (ADS)

    Green, Mavis Frankel

    The use of simulation in General Aviation flight training is an emergent practice and promises to increase substantially. Training through simulation is not addressed in the primary publication used to train flight instructors, however. In effect, training devices have been added into the curriculum by those using the technology as a cross between flight and ground instruction. The significance of how one learns in a training device is the potential effect on both in-flight learning and normal practices. A review of the literature, document review, interviews with flight instructors and students, and observations of instructional sessions in training devices, provided data to answer the prime research question: (a) What type(s) of learning best explain how learners are socialized to aviation through the use of simulation technology? One segment of the general aviation population, college and university flight programs, was sampled. Four types of learning provided a conceptual framework: reception; autonomous; guided inquiry; and social cognitive operationalized as cognitive apprenticeship. A central dilemma was identified from the data collected. This dilemma is the extent to which aviation and aviation instruction in training devices is perceived by instructors as being either safe or risky. Two sub-dilemmas of the central dilemma are also identified: (1) whether the perception of aviation on the part of instructors is one of control or autonomy and (2) whether aviators use and should be taught routines or innovation;. Three ways of viewing the aviation environment were identified from the combination of these sub-dilemmas by instructors: (1) aviation as safe; (2) aviation as somewhat safe; and (3) aviation as risky. Resolution of the fundamental dilemma results in an emergent view of aviation as risky and the implications of this view are discussed. Social cognitive learning operationalized as cognitive apprenticeship as an appropriate type of learning for high-risk fields is examined. A second dilemma was also identified from the data. This is a socio-technical dilemma addressing the influence of training device design on the type of learning employed by instructors. Implications of the findings are discussed in terms of task analyses, curriculum development, equipment, and instructional resources and training.

  8. Environment and cognitive aging: A cross-sectional study of place of residence and cognitive performance in the Irish longitudinal study on aging.

    PubMed

    Cassarino, Marica; O'Sullivan, Vincent; Kenny, Rose Anne; Setti, Annalisa

    2016-07-01

    Stimulating environments foster cognitive vitality in older age. However, it is not known whether and how geographical and physical characteristics of lived environments contribute to cognitive aging. Evidence of higher prevalence of dementia in rural rather than urban contexts suggests that urban environments may be more stimulating either cognitively, socially, or in terms of lifestyle. The present study explored urban/rural differences in cognition for healthy community-dwelling older people while controlling for a comprehensive spectrum of confounding factors. Cognitive performance of 3,765 healthy Irish people aged 50+ years participating in Wave 1 of The Irish Longitudinal Study on Aging was analyzed in relation to current location of residence-urban, other settlements, or rural areas-and its interaction with childhood residence. Regression models controlled for sociodemographic, health, and lifestyle factors. Urban residents showed better performance than the other 2 residence groups for global cognition and executive functions after controlling for covariates. Childhood urban residence was associated with a cognitive advantage especially for currently rural participants. Our findings suggest higher cognitive functioning for urban residents, although childhood residence modulates this association. Suggestions for further developments of these results are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    ERIC Educational Resources Information Center

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  10. Embodiment during Reading: Simulating a Story Character's Linguistic Actions

    ERIC Educational Resources Information Center

    Gunraj, Danielle N.; Drumm-Hewitt, April M.; Klin, Celia M.

    2014-01-01

    According to theories of embodied cognition, a critical element in language comprehension is the formation of sensorimotor simulations of the actions and events described in a text. Although much of the embodied cognition research has focused on simulations of motor actions, we ask whether readers form simulations of story characters' linguistic…

  11. Family and school influences on cognitive development.

    PubMed

    Rutter, M

    1985-09-01

    Family and school influences on cognitive development are reviewed in terms of the empirical research findings on (i) variations within the ordinary environment; (ii) family intervention studies; (iii) the effects of abnormal environments; (iv) extreme environmental conditions; (v) variations within the ordinary school environment; and (vi) preschool and school intervention studies. It is concluded that environmental effects on IQ are relatively modest within the normal range of environments, but that the effects of markedly disadvantageous circumstances are very substantial. Cognitive development is influenced both by direct effects on cognition and by indirect effects through alterations in self-concept, aspirations, attitudes to learning and styles of interaction with other people.

  12. Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding

    NASA Astrophysics Data System (ADS)

    Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang

    2009-12-01

    Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.

  13. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.

    PubMed

    Zendehrouh, Sareh

    2015-11-01

    Recent work on decision-making field offers an account of dual-system theory for decision-making process. This theory holds that this process is conducted by two main controllers: a goal-directed system and a habitual system. In the reinforcement learning (RL) domain, the habitual behaviors are connected with model-free methods, in which appropriate actions are learned through trial-and-error experiences. However, goal-directed behaviors are associated with model-based methods of RL, in which actions are selected using a model of the environment. Studies on cognitive control also suggest that during processes like decision-making, some cortical and subcortical structures work in concert to monitor the consequences of decisions and to adjust control according to current task demands. Here a computational model is presented based on dual system theory and cognitive control perspective of decision-making. The proposed model is used to simulate human performance on a variant of probabilistic learning task. The basic proposal is that the brain implements a dual controller, while an accompanying monitoring system detects some kinds of conflict including a hypothetical cost-conflict one. The simulation results address existing theories about two event-related potentials, namely error related negativity (ERN) and feedback related negativity (FRN), and explore the best account of them. Based on the results, some testable predictions are also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Use of Cognitive Task Analysis and Simulators for After Action Review of Medical Events in Iraq

    DTIC Science & Technology

    2007-03-01

    research attempts to improve medical AAR with a novel combination of Cognitive Task Analysis (CTA) conducted while interviewees moulage simulators...combination of medical Cognitive Task Analysis combined with the moulage of instruments and depictions of the femoral artery will more accurately

  15. The Relation between Cognitive and Metacognitive Strategic Processing during a Science Simulation

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.; Zoellner, Brian P.

    2018-01-01

    Background: This investigation was designed to uncover the relations between students' cognitive and metacognitive strategies used during a complex climate simulation. While cognitive strategy use during science inquiry has been studied, the factors related to this strategy use, such as concurrent metacognition, prior knowledge, and prior…

  16. Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum

    ERIC Educational Resources Information Center

    Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan

    2017-01-01

    Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…

  17. Developing Cognitive Models for Social Simulation from Survey Data

    NASA Astrophysics Data System (ADS)

    Alt, Jonathan K.; Lieberman, Stephen

    The representation of human behavior and cognition continues to challenge the modeling and simulation community. The use of survey and polling instruments to inform belief states, issue stances and action choice models provides a compelling means of developing models and simulations with empirical data. Using these types of data to population social simulations can greatly enhance the feasibility of validation efforts, the reusability of social and behavioral modeling frameworks, and the testable reliability of simulations. We provide a case study demonstrating these effects, document the use of survey data to develop cognitive models, and suggest future paths forward for social and behavioral modeling.

  18. Preliminary report of the Hepatic Encephalopathy Assessment Driving Simulator (HEADS) score.

    PubMed

    Baskin-Bey, Edwina S; Stewart, Charmaine A; Mitchell, Mary M; Bida, John P; Rosenthal, Theodore J; Nyberg, Scott L

    2008-01-01

    Audiovisual simulations of real-life driving (ie, driving simulators) have been used to assess neurologic dysfunction in a variety of medical applications. However, the use of simulated driving to assess neurologic impairment in the setting of liver disease (ie, hepatic encephalopathy) is limited. The aim of this analysis was to develop a scoring system based on simulated driving performance to assess mild cognitive impairment in cirrhotic patients with hepatic encephalopathy. This preliminary analysis was conducted as part of the Hepatic Encephalopathy Assessment Driving Simulator (HEADS) pilot study. Cirrhotic volunteers initially underwent a battery of neuropsychological tests to identify those cirrhotic patients with mild cognitive impairment. Performance during an audiovisually simulated course of on-road driving was then compared between mildly impaired cirrhotic patients and healthy volunteers. A scoring system was developed to quantify the likelihood of cognitive impairment on the basis of data from the simulated on-road driving. Mildly impaired cirrhotic patients performed below the level of healthy volunteers on the driving simulator. Univariate logistic regression and correlation models indicated that several driving simulator variables were significant predictors of cognitive impairment. Five variables (run time, total map performance, number of collisions, visual divided attention response, and average lane position) were incorporated into a quantitative model, the HEADS scoring system. The HEADS score (0-9 points) showed a strong correlation with cognitive impairment as measured by area under the receiver-operator curve (.89). The HEADS system appears to be a promising new tool for the assessment of mild hepatic encephalopathy.

  19. Studying social interactions through immersive virtual environment technology: virtues, pitfalls, and future challenges

    PubMed Central

    Bombari, Dario; Schmid Mast, Marianne; Canadas, Elena; Bachmann, Manuel

    2015-01-01

    The goal of the present review is to explain how immersive virtual environment technology (IVET) can be used for the study of social interactions and how the use of virtual humans in immersive virtual environments can advance research and application in many different fields. Researchers studying individual differences in social interactions are typically interested in keeping the behavior and the appearance of the interaction partner constant across participants. With IVET researchers have full control over the interaction partners, can standardize them while still keeping the simulation realistic. Virtual simulations are valid: growing evidence shows that indeed studies conducted with IVET can replicate some well-known findings of social psychology. Moreover, IVET allows researchers to subtly manipulate characteristics of the environment (e.g., visual cues to prime participants) or of the social partner (e.g., his/her race) to investigate their influences on participants’ behavior and cognition. Furthermore, manipulations that would be difficult or impossible in real life (e.g., changing participants’ height) can be easily obtained with IVET. Beside the advantages for theoretical research, we explore the most recent training and clinical applications of IVET, its integration with other technologies (e.g., social sensing) and future challenges for researchers (e.g., making the communication between virtual humans and participants smoother). PMID:26157414

  20. Studying social interactions through immersive virtual environment technology: virtues, pitfalls, and future challenges.

    PubMed

    Bombari, Dario; Schmid Mast, Marianne; Canadas, Elena; Bachmann, Manuel

    2015-01-01

    The goal of the present review is to explain how immersive virtual environment technology (IVET) can be used for the study of social interactions and how the use of virtual humans in immersive virtual environments can advance research and application in many different fields. Researchers studying individual differences in social interactions are typically interested in keeping the behavior and the appearance of the interaction partner constant across participants. With IVET researchers have full control over the interaction partners, can standardize them while still keeping the simulation realistic. Virtual simulations are valid: growing evidence shows that indeed studies conducted with IVET can replicate some well-known findings of social psychology. Moreover, IVET allows researchers to subtly manipulate characteristics of the environment (e.g., visual cues to prime participants) or of the social partner (e.g., his/her race) to investigate their influences on participants' behavior and cognition. Furthermore, manipulations that would be difficult or impossible in real life (e.g., changing participants' height) can be easily obtained with IVET. Beside the advantages for theoretical research, we explore the most recent training and clinical applications of IVET, its integration with other technologies (e.g., social sensing) and future challenges for researchers (e.g., making the communication between virtual humans and participants smoother).

  1. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  2. A Connectionist Approach to Embodied Conceptual Metaphor

    PubMed Central

    Flusberg, Stephen J.; Thibodeau, Paul H.; Sternberg, Daniel A.; Glick, Jeremy J.

    2010-01-01

    A growing body of data has been gathered in support of the view that the mind is embodied and that cognition is grounded in sensory-motor processes. Some researchers have gone so far as to claim that this paradigm poses a serious challenge to central tenets of cognitive science, including the widely held view that the mind can be analyzed in terms of abstract computational principles. On the other hand, computational approaches to the study of mind have led to the development of specific models that help researchers understand complex cognitive processes at a level of detail that theories of embodied cognition (EC) have sometimes lacked. Here we make the case that connectionist architectures in particular can illuminate many surprising results from the EC literature. These models can learn the statistical structure in their environments, providing an ideal framework for understanding how simple sensory-motor mechanisms could give rise to higher-level cognitive behavior over the course of learning. Crucially, they form overlapping, distributed representations, which have exactly the properties required by many embodied accounts of cognition. We illustrate this idea by extending an existing connectionist model of semantic cognition in order to simulate findings from the embodied conceptual metaphor literature. Specifically, we explore how the abstract domain of time may be structured by concrete experience with space (including experience with culturally specific spatial and linguistic cues). We suggest that both EC researchers and connectionist modelers can benefit from an integrated approach to understanding these models and the empirical findings they seek to explain. PMID:21833256

  3. Proposing "the burns suite" as a novel simulation tool for advancing the delivery of burns education.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2014-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.

  4. Spiking Phineas Gage: a neurocomputational theory of cognitive-affective integration in decision making.

    PubMed

    Wagar, Brandon M; Thagard, Paul

    2004-01-01

    The authors present a neurological theory of how cognitive information and emotional information are integrated in the nucleus accumbens during effective decision making. They describe how the nucleus accumbens acts as a gateway to integrate cognitive information from the ventromedial prefrontal cortex and the hippocampus with emotional information from the amygdala. The authors have modeled this integration by a network of spiking artificial neurons organized into separate areas and used this computational model to simulate 2 kinds of cognitive-affective integration. The model simulates successful performance by people with normal cognitive-affective integration. The model also simulates the historical case of Phineas Gage as well as subsequent patients whose ability to make decisions became impeded by damage to the ventromedial prefrontal cortex.

  5. Cognitive deficits are associated with poorer simulated driving in older adults with heart failure

    PubMed Central

    2013-01-01

    Background Cognitive impairment is prevalent in older adults with heart failure (HF) and associated with reduced functional independence. HF patients appear at risk for reduced driving ability, as past work in other medical samples has shown cognitive dysfunction to be an important contributor to driving performance. The current study examined whether cognitive dysfunction was independently associated with reduced driving simulation performance in a sample of HF patients. Methods 18 persons with HF (67.72; SD = 8.56 year) completed echocardiogram and a brief neuropsychological test battery assessing global cognitive function, attention/executive function, memory and motor function. All participants then completed the Kent Multidimensional Assessment Driving Simulation (K-MADS), a driving simulator scenario with good psychometric properties. Results The sample exhibited an average Mini Mental State Examination (MMSE) score of 27.83 (SD = 2.09). Independent sample t-tests showed that HF patients performed worse than healthy adults on the driving simulation scenario. Finally, partial correlations showed worse attention/executive and motor function were independently associated with poorer driving simulation performance across several indices reflective of driving ability (i.e., centerline crossings, number of collisions, % of time over the speed limit, among others). Conclusion The current findings showed that reduced cognitive function was associated with poor simulated driving performance in older adults with HF. If replicated using behind-the-wheel testing, HF patients may be at elevated risk for unsafe driving and routine driving evaluations in this population may be warranted. PMID:24499466

  6. Simulation-Based Assessment Identifies Longitudinal Changes in Cognitive Skills in an Anesthesiology Residency Training Program.

    PubMed

    Sidi, Avner; Gravenstein, Nikolaus; Vasilopoulos, Terrie; Lampotang, Samsun

    2017-06-02

    We describe observed improvements in nontechnical or "higher-order" deficiencies and cognitive performance skills in an anesthesia residency cohort for a 1-year time interval. Our main objectives were to evaluate higher-order, cognitive performance and to demonstrate that simulation can effectively serve as an assessment of cognitive skills and can help detect "higher-order" deficiencies, which are not as well identified through more traditional assessment tools. We hypothesized that simulation can identify longitudinal changes in cognitive skills and that cognitive performance deficiencies can then be remediated over time. We used 50 scenarios evaluating 35 residents during 2 subsequent years, and 18 of those 35 residents were evaluated in both years (post graduate years 3 then 4) in the same or similar scenarios. Individual basic knowledge and cognitive performance during simulation-based scenarios were assessed using a 20- to 27-item scenario-specific checklist. Items were labeled as basic knowledge/technical (lower-order cognition) or advanced cognitive/nontechnical (higher-order cognition). Identical or similar scenarios were repeated annually by a subset of 18 residents during 2 successive academic years. For every scenario and item, we calculated group error scenario rate (frequency) and individual (resident) item success. Grouped individuals' success rates are calculated as mean (SD), and item success grade and group error rates are calculated and presented as proportions. For all analyses, α level is 0.05. Overall PGY4 residents' error rates were lower and success rates higher for the cognitive items compared with technical item performance in the operating room and resuscitation domains. In all 3 clinical domains, the cognitive error rate by PGY4 residents was fairly low (0.00-0.22) and the cognitive success rate by PGY4 residents was high (0.83-1.00) and significantly better compared with previous annual assessments (P < 0.05). Overall, there was an annual decrease in error rates for 2 years, primarily driven by decreases in cognitive errors. The most commonly observed cognitive error types remained anchoring, availability bias, premature closure, and confirmation bias. Simulation-based assessments can highlight cognitive performance areas of relative strength, weakness, and progress in a resident or resident cohort. We believe that they can therefore be used to inform curriculum development including activities that require higher-level cognitive processing.

  7. RC2S: A Cognitive Remediation Program to Improve Social Cognition in Schizophrenia and Related Disorders

    PubMed Central

    Peyroux, Elodie; Franck, Nicolas

    2014-01-01

    In people with psychiatric disorders, particularly those suffering from schizophrenia and related illnesses, pronounced difficulties in social interactions are a key manifestation. These difficulties can be partly explained by impairments in social cognition, defined as the ability to understand oneself and others in the social world, which includes abilities such as emotion recognition, theory of mind (ToM), attributional style, and social perception and knowledge. The impact of several kinds of interventions on social cognition has been studied recently. The best outcomes in the area of social cognition in schizophrenia are those obtained by way of cognitive remediation programs. New strategies and programs in this line are currently being developed, such as RC2S (cognitive remediation of social cognition) in Lyon, France. Considering that the social cognitive deficits experienced by patients with schizophrenia are very diverse, and that the main objective of social cognitive remediation programs is to improve patients’ functioning in their daily social life, RC2S was developed as an individualized and flexible program that allows patients to practice social interaction in a realistic environment through the use of virtual reality techniques. In the RC2S program, the patient’s goal is to assist a character named Tom in various social situations. The underlying idea for the patient is to acquire cognitive strategies for analyzing social context and emotional information in order to understand other characters’ mental states and to help Tom manage his social interactions. In this paper, we begin by presenting some data regarding the social cognitive impairments found in schizophrenia and related disorders, and we describe how these deficits are targeted by social cognitive remediation. Then we present the RC2S program and discuss the advantages of computer-based simulation to improve social cognition and social functioning in people with psychiatric disorders. PMID:24982627

  8. Family Environment and Cognitive Development: Twelve Analytic Models

    ERIC Educational Resources Information Center

    Walberg, Herbert J.; Marjoribanks, Kevin

    1976-01-01

    The review indicates that refined measures of the family environment and the use of complex statistical models increase the understanding of the relationships between socioeconomic status, sibling variables, family environment, and cognitive development. (RC)

  9. Perceptions of 9th and 10th Grade Students on How Their Environment, Cognition, and Behavior Motivate Them in Algebra and Geometry Courses

    ERIC Educational Resources Information Center

    Harootunian, Alen

    2012-01-01

    In this study, relationships were examined between students' perception of their cognition, behavior, environment, and motivation. The purpose of the research study was to explore the extent to which 9th and 10th grade students' perception of environment, cognition, and behavior can predict their motivation in Algebra and Geometry courses. A…

  10. A Spectrum Access Based on Quality of Service (QoS) in Cognitive Radio Networks.

    PubMed

    Zhai, Linbo; Wang, Hua; Gao, Chuangen

    2016-01-01

    The quality of service (QoS) is important issue for cognitive radio networks. In the cognitive radio system, the licensed users, also called primary users (PUs), are authorized to utilize the wireless spectrum, while unlicensed users, also called secondary users (SUs), are not authorized to use the wireless spectrum. SUs access the wireless spectrum opportunistically when the spectrum is idle. While SUs use an idle channel, the instance that PUs come back makes SUs terminate their communications and leave the current channel. Therefore, quality of service (QoS) is difficult to be ensured for SUs. In this paper, we first propose an analysis model to obtain QoS for cognitive radio networks such as blocking probability, completed traffic and termination probability of SUs. When the primary users use the channels frequently, QoS of SUs is difficult to be ensured, especially the termination probability. Then, we propose a channel reservation scheme to improve QoS of SUs. The scheme makes the terminated SUs move to the reserved channels and keep on communications. Simulation results show that our scheme can improve QoS of SUs especially the termination probability with a little cost of blocking probability in dynamic environment.

  11. Dopamine and the Development of Executive Dysfunction in Autism Spectrum Disorders

    PubMed Central

    Kriete, Trenton; Noelle, David C.

    2015-01-01

    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life. PMID:25811610

  12. Dopamine and the development of executive dysfunction in autism spectrum disorders.

    PubMed

    Kriete, Trenton; Noelle, David C

    2015-01-01

    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life.

  13. Development of a Rover Simulation to Assess Operational Proficiency Following Long Duration Spaceflights

    NASA Technical Reports Server (NTRS)

    DeDios, Y. E.; Dean, S. L.; Rpsemtja (. K/); < acdpig (as/ J/ G/); Moore, S. T.; Wood, S. J.

    2011-01-01

    Following long-duration space transits, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely control pressurized rovers designed to explore the new environment. We describe a rover simulation developed to quantify post-flight decrements in operational proficiency following International Space Station expeditions. The rover simulation consists of a serial presentation of discrete tasks to be completed as quickly and accurately as possible. Each task consists of 1) perspective taking using a map that defines a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilizes a Stewart-type motion base (CKAS, Australia), single seat cabin with triple scene projection covering approximately 150 horizontal by 40 vertical, and joystick controller. The software was implemented using Unity3 with next-gen PhysX engine to tightly synchronize simulation and motion platform commands. Separate C# applications allow investigators to customize session sequences with different lighting and gravitational conditions, and then execute tasks to be performed as well as record performance data. Preliminary tests resulted in low incidence of motion sickness (<15% unable to complete first session), with only negligible after effects and symptoms after familiarization sessions. Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to other vehicle designs to provide a platform to safely assess how sensorimotor and cognitive function impact manual control performance.

  14. Cognition and procedure representational requirements for predictive human performance models

    NASA Technical Reports Server (NTRS)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods including procedural backtracking with concurrent search, temporal reasoning, and constraint checking for partial ordering of procedures. Finally, the representation is being linked to models of human decision making processes that include heuristic, propositional and prescriptive judgement models that are sensitive to the procedural content in which the valuative functions are being performed.

  15. The fog of war: decrements in cognitive performance and mood associated with combat-like stress.

    PubMed

    Lieberman, Harris R; Bathalon, Gaston P; Falco, Christina M; Morgan, Charles A; Niro, Philip J; Tharion, William J

    2005-07-01

    Anecdotal reports from military conflicts suggest cognitive performance and mood are severely degraded by the stress of combat. However, little objective information is available to confirm these observations. Our laboratory had several unique opportunities to study cognitive function in warfighters engaged in exercises designed to simulate the stress of combat. These studies were conducted in different environments with two different types of military volunteers. In one study, subjects were officers, with an average 9 yr of military service, who were members of an elite U.S. Army unit, the Rangers. In the other study, participants were younger, mostly enlisted, trainees with only 3 yr of military experience on average, in training to determine if they would qualify for an elite U.S. Navy unit, the SEALS. We administered a variety of identical, computer-based cognitive tests to both groups. In both groups, during stressful combat-like training, every aspect of cognitive function assessed was severely degraded compared with baseline, pre-stress performance. Relatively simple cognitive functions such as reaction time and vigilance were significantly impaired, as were more complex functions, including memory and logical reasoning. The deficits observed were greater than those typically produced by alcohol intoxication, treatment with sedating drugs, or clinical hypoglycemia. Undoubtedly, such decrements would severely degrade operational effectiveness. Furthermore, it is likely such cognitive decrements would be greater during actual combat. War planners, doctrine developers, and warfighters, especially leaders, need to be aware that combat stress will result in extensive and severe deficits in cognitive performance.

  16. Understanding the Effects of Databases as Cognitive Tools in a Problem-Based Multimedia Learning Environment

    ERIC Educational Resources Information Center

    Li, Rui; Liu, Min

    2007-01-01

    The purpose of this study is to examine the potential of using computer databases as cognitive tools to share learners' cognitive load and facilitate learning in a multimedia problem-based learning (PBL) environment designed for sixth graders. Two research questions were: (a) can the computer database tool share sixth-graders' cognitive load? and…

  17. The Use of Cognitive Task Analysis and Simulators for After Action Review of Medical Events in Iraq

    DTIC Science & Technology

    2006-12-01

    research attempts to improve medical AAR with a novel combination of Cognitive Task Analysis conducted while interviewees moulage simulators (Clark and...hypothesized that our protocol which employed a novel combination of medical Cognitive Task Analysis combined with the moulage of instruments and depictions

  18. Evaluating visual and auditory contributions to the cognitive restoration effect.

    PubMed

    Emfield, Adam G; Neider, Mark B

    2014-01-01

    It has been suggested that certain real-world environments can have a restorative effect on an individual, as expressed in changes in cognitive performance and mood. Much of this research builds on Attention Restoration Theory (ART), which suggests that environments that have certain characteristics induce cognitive restoration via variations in attentional demands. Specifically, natural environments that require little top-down processing have a positive effect on cognitive performance, while city-like environments show no effect. We characterized the cognitive restoration effect further by examining (1) whether natural visual stimuli, such as blue spaces, were more likely to provide a restorative effect over urban visual stimuli, (2) if increasing immersion with environment-related sound produces a similar or superior effect, (3) if this effect extends to other cognitive tasks, such as the functional field of view (FFOV), and (4) if we could better understand this effect by providing controls beyond previous works. We had 202 participants complete a cognitive task battery, consisting of a reverse digit span task, the attention network task, and the FFOV task prior to and immediately after a restoration period. In the restoration period, participants were assigned to one of seven conditions in which they listened to natural or urban sounds, watched images of natural or urban environments, or a combination of both. Additionally, some participants were in a control group with exposure to neither picture nor sound. While we found some indication of practice effects, there were no differential effects of restoration observed in any of our cognitive tasks, regardless of condition. We did, however, find evidence that our nature images and sounds were more relaxing than their urban counterparts. Overall, our findings suggest that acute exposure to relaxing pictorial and auditory stimulus is insufficient to induce improvements in cognitive performance.

  19. Evolution of cooperative behavior in simulation agents

    NASA Astrophysics Data System (ADS)

    Stroud, Phillip D.

    1998-03-01

    A simulated automobile factory paint shop is used as a testbed for exploring the emulation of human decision-making behavior. A discrete-events simulation of the paint shop as a collection of interacting Java actors is described. An evolutionary cognitive architecture is under development for building software actors to emulate humans in simulations of human- dominated complex systems. In this paper, the cognitive architecture is extended by implementing a persistent population of trial behaviors with an incremental fitness valuation update strategy, and by allowing a group of cognitive actors to share information. A proof-of-principle demonstration is presented.

  20. Investigating driving behaviour of older drivers with mild cognitive impairment using a portable driving simulator.

    PubMed

    Devlin, Anna; McGillivray, Jane; Charlton, Judith; Lowndes, Georgia; Etienne, Virginie

    2012-11-01

    While there is a large body of research indicating that individuals with moderate to severe dementia are unfit to drive, relatively little is known about the driving performance of older drivers with mild cognitive impairment (MCI). The aim of the current study was to examine the driving performance of older drivers with MCI on approach to intersections, and to investigate how their healthy counterparts perform on the same driving tasks using a portable driving simulator. Fourteen drivers with MCI and 14 age-matched healthy older drivers (aged 65-87 years) completed a 10-min simulator drive in an urban environment. The simulator drive consisted of stop-sign controlled and signal-controlled intersections. Drivers were required to stop at the stop-sign controlled intersections and to decide whether or not to proceed through a critical light change at the signal-controlled intersections. The specific performance measures included; approach speed, number of brake applications on approach to the intersection (either excessive or minimal), failure to comply with stop signs, and slower braking response times on approach to a critical light change. MCI patients in our sample performed more poorly than controls across a number of variables. However, because the trends failed to reach statistical significance it will be important to replicate the study using a larger sample to qualify whether the results can be generalised to the broader population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Family environment, coping, and mental health in adolescents attending therapeutic day schools.

    PubMed

    Rodriguez, Erin M; Donenberg, Geri R; Emerson, Erin; Wilson, Helen W; Brown, Larry K; Houck, Christopher

    2014-10-01

    This study examined associations among family environment, coping, and emotional and conduct problems in adolescents attending therapeutic day schools due to mental health problems. Adolescents (N = 417; 30.2% female) ages 13-20 (M = 15.25) reported on their family environment (affective involvement and functioning), coping (emotion-focused support-seeking, cognitive restructuring, avoidant actions), and emotional and conduct problems. Poorer family environment was associated with less emotion-focused support-seeking and cognitive restructuring, and more emotional and conduct problems. Emotional problems were negatively associated with cognitive restructuring, and conduct problems were negatively associated with all coping strategies. Cognitive restructuring accounted for the relationship between family environment and emotional problems. Cognitive restructuring and emotion-focused support-seeking each partially accounted for the relationship between family functioning and conduct problems, but not the relationship between family affective involvement and conduct problems. Findings implicate the role of coping in the relationship between family environment and adolescent mental health. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  2. Validating Human Behavioral Models for Combat Simulations Using Techniques for the Evaluation of Human Performance

    DTIC Science & Technology

    2004-01-01

    Cognitive Task Analysis Abstract As Department of Defense (DoD) leaders rely more on modeling and simulation to provide information on which to base...capabilities and intent. Cognitive Task Analysis (CTA) Cognitive Task Analysis (CTA) is an extensive/detailed look at tasks and subtasks performed by a...Domain Analysis and Task Analysis: A Difference That Matters. In Cognitive Task Analysis , edited by J. M. Schraagen, S.

  3. Differential sensitivity to the environment: contribution of cognitive biases and genes to psychological wellbeing

    PubMed Central

    Fox, E; Beevers, C G

    2016-01-01

    Negative cognitive biases and genetic variation have been associated with risk of psychopathology in largely independent lines of research. Here, we discuss ways in which these dynamic fields of research might be fruitfully combined. We propose that gene by environment (G × E) interactions may be mediated by selective cognitive biases and that certain forms of genetic ‘reactivity' or ‘sensitivity' may represent heightened sensitivity to the learning environment in a ‘for better and for worse' manner. To progress knowledge in this field, we recommend including assessments of cognitive processing biases; examining G × E interactions in ‘both' negative and positive environments; experimentally manipulating the environment when possible; and moving beyond single-gene effects to assess polygenic sensitivity scores. We formulate a new methodological framework encapsulating cognitive and genetic factors in the development of both psychopathology and optimal wellbeing that holds long-term promise for the development of new personalized therapies. PMID:27431291

  4. Localization and cooperative communication methods for cognitive radio

    NASA Astrophysics Data System (ADS)

    Duval, Olivier

    We study localization of nearby nodes and cooperative communication for cognitive radios. Cognitive radios sensing their environment to estimate the channel gain between nodes can cooperate and adapt their transmission power to maximize the capacity of the communication between two nodes. We study the end-to-end capacity of a cooperative relaying scheme using orthogonal frequency-division modulation (OFDM) modulation, under power constraints for both the base station and the relay station. The relay uses amplify-and-forward and decode-and-forward cooperative relaying techniques to retransmit messages on a subset of the available subcarriers. The power used in the base station and the relay station transmitters is allocated to maximize the overall system capacity. The subcarrier selection and power allocation are obtained based on convex optimization formulations and an iterative algorithm. Additionally, decode-and-forward relaying schemes are allowed to pair source and relayed subcarriers to increase further the capacity of the system. The proposed techniques outperforms non-selective relaying schemes over a range of relay power budgets. Cognitive radios can be used for opportunistic access of the radio spectrum by detecting spectrum holes left unused by licensed primary users. We introduce a spectrum holes detection approach, which combines blind modulation classification, angle of arrival estimation and number of sources detection. We perform eigenspace analysis to determine the number of sources, and estimate their angles of arrival (AOA). In addition, we classify detected sources as primary or secondary users with their distinct second-orde one-conjugate cyclostationarity features. Extensive simulations carried out indicate that the proposed system identifies and locates individual sources correctly, even at -4 dB signal-to-noise ratios (SNR). In environments with a high density of scatterers, several wireless channels experience nonline-of-sight (NLOS) condition, increasing the localization error, even when the AOA estimate is accurate. We present a real-time localization solver (RTLS) for time-of-arrival (TOA) estimates using ray-tracing methods on the map of the geometry of walls and compare its performance with classical TOA trilateration localization methods. Extensive simulations and field trials for indoor environments show that our method increases the coverage area from 1.9% of the floor to 82.3 % and the accuracy by a 10-fold factor when compared with trilateration. We implemented our ray tracing model in C++ using the CGAL computational geometry algorithm library. We illustrate the real-time property of our RTLS that performs most ray tracing tasks in a preprocessing phase with time and space complexity analyses and profiling of our software.

  5. Understanding Physical Activity through Interactions Between the Built Environment and Social Cognition: A Systematic Review.

    PubMed

    Rhodes, Ryan E; Saelens, Brian E; Sauvage-Mar, Claire

    2018-05-16

    Few people in most developed nations engage in regular physical activity (PA), despite its well-established health benefits. Socioecological models highlight the potential interaction of multiple factors from policy and the built environment to individual social cognition in explaining PA. The purpose of this review was to appraise this interaction tenet of the socioecological model between the built environment and social cognition to predict PA. Eligible studies had to have been published in peer-reviewed journals in the English language, and included any tests of interaction between social cognition and the built environment with PA. Literature searches, concluded in October 2017, used five common databases. Findings were grouped by type of PA outcomes (leisure, transportation, total PA and total moderate-vigorous PA [MVPA]), then grouped by the type of interactions between social cognitive and built environment constructs. The initial search yielded 308 hits, which was reduced to 22 independent studies of primarily high- to medium-quality after screening for eligibility criteria. The interaction tenet of the socioecological model was not supported for overall MVPA and total PA. By contrast, while there was heterogeneity of findings for leisure-time PA, environmental accessibility/convenience interacted with intention, and environmental aesthetics interacted with affective judgments, to predict leisure-time PA. Interactions between the built environment and social cognition in PA for transport are limited, with current results failing to support an effect. The results provide some support for interactive aspects of the built environment and social cognition in leisure-time PA, and thus highlight potential areas for integrated intervention of individual and environmental change.

  6. Social activity, cognitive decline and dementia risk: a 20-year prospective cohort study.

    PubMed

    Marioni, Riccardo E; Proust-Lima, Cecile; Amieva, Helene; Brayne, Carol; Matthews, Fiona E; Dartigues, Jean-Francois; Jacqmin-Gadda, Helene

    2015-10-24

    Identifying modifiable lifestyle correlates of cognitive decline and risk of dementia is complex, particularly as few population-based longitudinal studies jointly model these interlinked processes. Recent methodological developments allow us to examine statistically defined sub-populations with separate cognitive trajectories and dementia risks. Engagement in social, physical, or intellectual pursuits, social network size, self-perception of feeling well understood, and degree of satisfaction with social relationships were assessed in 2854 participants from the Paquid cohort (mean baseline age 77 years) and related to incident dementia and cognitive change over 20-years of follow-up. Multivariate repeated cognitive information was exploited by defining the global cognitive functioning as the latent common factor underlying the tests. In addition, three latent homogeneous sub-populations of cognitive change and dementia were identified and contrasted according to social environment variables. In the whole population, we found associations between increased engagement in social, physical, or intellectual pursuits and increased cognitive ability (but not decline) and decreased risk of incident dementia, and between feeling understood and slower cognitive decline. There was evidence for three sub-populations of cognitive aging: fast, medium, and no cognitive decline. The social-environment measures at baseline did not help explain the heterogeneity of cognitive decline and incident dementia diagnosis between these sub-populations. We observed a complex series of relationships between social-environment variables and cognitive decline and dementia. In the whole population, factors such as increased engagement in social, physical, or intellectual pursuits were related to a decreased risk of dementia. However, in a sub-population analysis, the social-environment variables were not linked to the heterogeneous patterns of cognitive decline and dementia risk that defined the sub-groups.

  7. Cognitive architectures: choreographing the dance of mental operations with the task environment.

    PubMed

    Gray, Wayne D

    2008-06-01

    In this article, I present the ideas and trends that have given rise to the use of cognitive architectures in human factors and provide a cognitive engineering-oriented taxonomy of these architectures and a snapshot of their use for cognitive engineering. Architectures of cognition have had a long history in human factors but a brief past. The long history entails a 50-year preamble, whereas the explosion of work in the current decade reflects the brief past. Understanding this history is key to understanding the current and future prospects for applying cognitive science theory to human factors practice. The review defines three formative eras in cognitive engineering research: the 1950s, 1980s, and now. In the first era, the fledging fields of cognitive science and human factors emphasized characteristics of the dancer the limited capacity or bounded rationality view of the mind, and the ballroom, the task environment. The second era emphasized the dance (i.e., the dynamic interaction between mental operations and task environment). The third era has seen the rise of cognitive architectures as tools for choreographing the dance of mental operations within the complex environments posed by human factors practice. Hybrid architectures present the best vector for introducing cognitive science theories into a renewed engineering-based human factors. The taxonomy provided in this article may provide guidance on when and whether to apply a cognitive science or a hybrid architecture to a human factors issue.

  8. Family Environments and Children's Executive Function: The Mediating Role of Children's Affective State and Stress.

    PubMed

    He, Zhong-Hua; Yin, Wen-Gang

    2016-09-01

    There is increasing evidence that inadequate family environments (family material environment and family psychosocial environment) are not only social problems but also factors contributing to adverse neurocognitive outcomes. In the present study, the authors investigated the relationship among family environments, children's naturalistic affective state, self-reported stress, and executive functions in a sample of 157 Chinese families. These findings revealed that in inadequate family material environments, reduced children's cognitive flexibility is associated with increased naturalistic negative affectivity and self-reported stress. In addition, naturalistic negative affectivity mediated the association between family expressiveness and children's cognitive flexibility. The authors used a structural equation model to examine the mediation model hypothesis, and the results confirmed the mediating roles of naturalistic negative affectivity and self-reported stress between family environments and the cognitive flexibility of Chinese children. These findings indicate the importance of reducing stress and negative emotional state for improving cognitive functions in children of low socioeconomic status.

  9. Deficits in Attention and Visual Processing but not Global Cognition Predict Simulated Driving Errors in Drivers Diagnosed With Mild Alzheimer's Disease.

    PubMed

    Yamin, Stephanie; Stinchcombe, Arne; Gagnon, Sylvain

    2016-06-01

    This study sought to predict driving performance of drivers with Alzheimer's disease (AD) using measures of attention, visual processing, and global cognition. Simulated driving performance of individuals with mild AD (n = 20) was contrasted with performance of a group of healthy controls (n = 21). Performance on measures of global cognitive function and specific tests of attention and visual processing were examined in relation to simulated driving performance. Strong associations were observed between measures of attention, notably the Test of Everyday Attention (sustained attention; r = -.651, P = .002) and the Useful Field of View (r = .563, P = .010), and driving performance among drivers with mild AD. The Visual Object and Space Perception Test-object was significantly correlated with the occurrence of crashes (r = .652, P = .002). Tests of global cognition did not correlate with simulated driving outcomes. The results suggest that professionals exercise caution when extrapolating driving performance based on global cognitive indicators. © The Author(s) 2015.

  10. Enhancing Navigation Skills through Audio Gaming.

    PubMed

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.

  11. Enhancing Navigation Skills through Audio Gaming

    PubMed Central

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2014-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Riensche, Roderick M.; Haack, Jereme N.

    “Gamification”, the application of gameplay to real-world problems, enables the development of human computation systems that support decision-making through the integration of social and machine intelligence. One of gamification’s major benefits includes the creation of a problem solving environment where the influence of cognitive and cultural biases on human judgment can be curtailed through collaborative and competitive reasoning. By reducing biases on human judgment, gamification allows human computation systems to exploit human creativity relatively unhindered by human error. Operationally, gamification uses simulation to harvest human behavioral data that provide valuable insights for the solution of real-world problems.

  13. Students' Conceptual Change in Electricity and Magnetism Using Simulations: A Comparison of Cognitive Perturbation and Cognitive Conflict

    ERIC Educational Resources Information Center

    Dega, Bekele Gashe; Kriek, Jeanne; Mogese, Temesgen Fereja

    2013-01-01

    The purpose of this study was to investigate Ethiopian physics undergraduate students' conceptual change in the concepts of electric potential and energy (EPE) and electromagnetic induction (EMI). A quasi-experimental design was used to study the effect of cognitive perturbation using physics interactive simulations (CPS) in relation to cognitive…

  14. Skills training after night shift work enables acquisition of endovascular technical skills on a virtual reality simulator.

    PubMed

    Naughton, Peter A; Aggarwal, Rajesh; Wang, Tim T; Van Herzeele, Isabelle; Keeling, Aoife N; Darzi, Ara W; Cheshire, Nicholas J W

    2011-03-01

    Adoption of residents' working time restrictions potentially undermines surgical training by reduction of operating room exposure. Simulation has been proposed as a way to acquire necessary skills in a laboratory environment but remains difficult to incorporate into training schedules. This study assessed whether residents working successive nights could acquire endovascular skills similar to colleagues working day shifts. This prospective observational cohort study recruited 20 junior residents, divided into day shift and night shift groups by their respective call schedule. After initial cognitive skills training, a validated renal artery stent module on an endovascular simulator was completed over a series of seven sequential shifts during 1 week. The primary outcome measure was serial technical skill assessments. Secondary measures comprised assessments of activity, cognitive performance, introspective fatigue, quality, and quantity of preceding sleep. Both groups demonstrated significant learning curves for total time at the first session median vs seventh session median (181 vs 564 seconds [P < .001]; night, 1399 vs 572 [P < .001]), fluoroscopy time (day, 702 vs 308 seconds, [P < .001]; night, 669 vs 313 [P < .001]), and contrast volume (day, 29 vs 13 mL [P < .001]; night, 40 vs 16 [P < .001]). Residents working day shifts reached plateau 1 day earlier in the above measures vs those on night duty. The night shift group walked more steps (P < .001), reviewed more patients (P < .001), performed worse on all cognitive assessments (P < .05), slept less (P < .05), had poorer quality of sleep (P = .001), and was more fatigued (P < .001) than the day shift group. Acquired skill was retained a week after completion of shifts. Technical skills training after night shift work enables acquisition of endovascular technical skills, although it takes longer than after day shift training. This study provides evidence for program directors to organize simulation-based training schedules for residents on night shift rotations. Copyright © 2011. Published by Mosby, Inc.

  15. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    NASA Technical Reports Server (NTRS)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  16. Automated cognitive testing of monkeys in social groups yields results comparable to individual laboratory-based testing.

    PubMed

    Gazes, Regina Paxton; Brown, Emily Kathryn; Basile, Benjamin M; Hampton, Robert R

    2013-05-01

    Cognitive abilities likely evolved in response to specific environmental and social challenges and are therefore expected to be specialized for the life history of each species. Specialized cognitive abilities may be most readily engaged under conditions that approximate the natural environment of the species being studied. While naturalistic environments might therefore have advantages over laboratory settings for cognitive research, it is difficult to conduct certain types of cognitive tests in these settings. We implemented methods for automated cognitive testing of monkeys (Macaca mulatta) in large social groups (Field station) and compared the performance to that of laboratory-housed monkeys (Laboratory). The Field station animals shared access to four touch-screen computers in a large naturalistic social group. Each Field station subject had an RFID chip implanted in each arm for computerized identification and individualized assignment of cognitive tests. The Laboratory group was housed and tested in a typical laboratory setting, with individual access to testing computers in their home cages. Monkeys in both groups voluntarily participated at their own pace for food rewards. We evaluated performance in two visual psychophysics tests, a perceptual classification test, a transitive inference test, and a delayed matching-to-sample memory test. Despite the differences in housing, social environment, age, and sex, monkeys in the two groups performed similarly in all tests. Semi-free ranging monkeys living in complex social environments are therefore viable subjects for cognitive testing designed to take advantage of the unique affordances of naturalistic testing environments.

  17. Automated cognitive testing of monkeys in social groups yields results comparable to individual laboratory based testing

    PubMed Central

    Gazes, Regina Paxton; Brown, Emily Kathryn; Basile, Benjamin M.; Hampton, Robert R.

    2013-01-01

    Cognitive abilities likely evolved in response to specific environmental and social challenges and are therefore expected to be specialized for the life history of each species. Specialized cognitive abilities may be most readily engaged under conditions that approximate the natural environment of the species being studied. While naturalistic environments might therefore have advantages over laboratory settings for cognitive research, it is difficult to conduct certain types of cognitive tests in these settings. We implemented methods for automated cognitive testing of monkeys (Macaca mulatta) in large social groups (Field station) and compared the performance to that of laboratory housed monkeys (Laboratory). The Field station animals shared access to four touch screen computers in a large naturalistic social group. Each Field station subject had an RFID chip implanted in each arm for computerized identification and individualized assignment of cognitive tests. The Laboratory group was housed and tested in a typical laboratory setting, with individual access to testing computers in their home cages. Monkeys in both groups voluntarily participated at their own pace for food rewards. We evaluated performance in two visual psychophysics tests, a perceptual classification test, a transitive inference test, and a delayed matching to sample memory test. Despite differences in housing, social environment, age, and sex, monkeys in the two groups performed similarly in all tests. Semi-free ranging monkeys living in complex social environments are therefore viable subjects for cognitive testing designed to take advantage of the unique affordances of naturalistic testing environments. PMID:23263675

  18. A representation of place attachment: A study of spatial cognition in Latvia

    NASA Astrophysics Data System (ADS)

    Skilters, Jurgis; Zarina, Liga; Raita, Liva

    2017-04-01

    Perception of geographical space is reflected in place attachment, i.e., a multidimensional cognitive-affective link between humans and their spatial environment. Place attachment balances emotions, conception of proximity. It is both social and spatial cognitive structure. Place attachment has an impact on people's actions, which in turn reversibly affect the environment in which people live. Place attachment provides emotional regulation for humans linking local - neighborhood-scale and country and world-scale environments. In Latvia a large-scale spatial cognition study has been conducted within participatory research project „Telpas pavasaris" ("Spatial Spring") by foundation Viegli. In the study 1523 respondents reported their associations characterizing certain type of places (e.g., safe place, dangerous place, far place, close place, dear place). The answers were analyzed according to several cognitive-affective categories including modes of experience, emotional valence, geographical distance, and perceptual modality. The current results indicate that socio-cognitive and affective information are primary in respect to purely spatial information (referring to spatial objects or regions and their relations). However, different types of geographical places and spatial objects (natural or artefactual) have to be distinguished and are significant to a different degree. Our results are important for environmental and urban planning because they show the ways how socio-cognitive and affective knowledge shapes the spatial cognition of geographic environment.

  19. Designing simulator-based training: an approach integrating cognitive task analysis and four-component instructional design.

    PubMed

    Tjiam, Irene M; Schout, Barbara M A; Hendrikx, Ad J M; Scherpbier, Albert J J M; Witjes, J Alfred; van Merriënboer, Jeroen J G

    2012-01-01

    Most studies of simulator-based surgical skills training have focused on the acquisition of psychomotor skills, but surgical procedures are complex tasks requiring both psychomotor and cognitive skills. As skills training is modelled on expert performance consisting partly of unconscious automatic processes that experts are not always able to explicate, simulator developers should collaborate with educational experts and physicians in developing efficient and effective training programmes. This article presents an approach to designing simulator-based skill training comprising cognitive task analysis integrated with instructional design according to the four-component/instructional design model. This theory-driven approach is illustrated by a description of how it was used in the development of simulator-based training for the nephrostomy procedure.

  20. Neighborhood built environment and cognition in non-demented older adults: The Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Besser, Lilah M; Rodriguez, Daniel A; McDonald, Noreen; Kukull, Walter A; Fitzpatrick, Annette L; Rapp, Stephen R; Seeman, Teresa

    2018-03-01

    Preliminary studies suggest that neighborhood social and built environment (BE) characteristics may affect cognition in older adults. Older adults are particularly vulnerable to the neighborhood environment due to a decreasing range of routine travel with increasing age. We examined if multiple neighborhood BE characteristics are cross-sectionally associated with cognition in a diverse sample of older adults, and if the BE-cognition associations vary by individual-level demographics. The sample included 4539 participants from the Multi-Ethnic Study of Atherosclerosis. Multivariable linear regression was used to examine the associations between five BE measures and four cognitive measures, and effect modification by individual-level education and race/ethnicity. In the overall sample, increasing social destination density, walking destination density, and intersection density were associated with worse overall cognition, whereas increasing proportion of land dedicated to retail was associated with better processing speed. Effect modification results suggest that the association between urban density and worse cognition may be limited to or strongest in those of non-white race/ethnicity. Although an increase in neighborhood retail destinations was associated with better cognition in the overall sample, these results suggest that certain BE characteristics in dense urban environments may have a disproportionately negative association with cognition in vulnerable populations. However, our findings must be replicated in longitudinal studies and other regional samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Energy efficient cooperation in underlay RFID cognitive networks for a water smart home.

    PubMed

    Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid

    2014-09-30

    Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model's (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes.

  2. Energy Efficient Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home

    PubMed Central

    Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid

    2014-01-01

    Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model’s (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes. PMID:25271565

  3. The Functional Role of the Periphery in Emotional Language Comprehension

    PubMed Central

    Havas, David A.; Matheson, James

    2013-01-01

    Language can impact emotion, even when it makes no reference to emotion states. For example, reading sentences with positive meanings (“The water park is refreshing on the hot summer day”) induces patterns of facial feedback congruent with the sentence emotionality (smiling), whereas sentences with negative meanings induce a frown. Moreover, blocking facial afference with botox selectively slows comprehension of emotional sentences. Therefore, theories of cognition should account for emotion-language interactions above the level of explicit emotion words, and the role of peripheral feedback in comprehension. For this special issue exploring frontiers in the role of the body and environment in cognition, we propose a theory in which facial feedback provides a context-sensitive constraint on the simulation of actions described in language. Paralleling the role of emotions in real-world behavior, our account proposes that (1) facial expressions accompany sudden shifts in wellbeing as described in language; (2) facial expressions modulate emotional action systems during reading; and (3) emotional action systems prepare the reader for an effective simulation of the ensuing language content. To inform the theory and guide future research, we outline a framework based on internal models for motor control. To support the theory, we assemble evidence from diverse areas of research. Taking a functional view of emotion, we tie the theory to behavioral and neural evidence for a role of facial feedback in cognition. Our theoretical framework provides a detailed account that can guide future research on the role of emotional feedback in language processing, and on interactions of language and emotion. It also highlights the bodily periphery as relevant to theories of embodied cognition. PMID:23750145

  4. A Spiking Neural Network Based Cortex-Like Mechanism and Application to Facial Expression Recognition

    PubMed Central

    Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai

    2012-01-01

    In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism. PMID:23193391

  5. An architecture and model for cognitive engineering simulation analysis - Application to advanced aviation automation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Smith, Barry R.

    1993-01-01

    The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.

  6. Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it.

    PubMed

    Guo, Dongmin; Li, King C; Peters, Timothy R; Snively, Beverly M; Poehling, Katherine A; Zhou, Xiaobo

    2015-03-11

    Mathematical modeling of influenza epidemic is important for analyzing the main cause of the epidemic and finding effective interventions towards it. The epidemic is a dynamic process. In this process, daily infections are caused by people's contacts, and the frequency of contacts can be mainly influenced by their cognition to the disease. The cognition is in turn influenced by daily illness attack rate, climate, and other environment factors. Few existing methods considered the dynamic process in their models. Therefore, their prediction results can hardly be explained by the mechanisms of epidemic spreading. In this paper, we developed a heterogeneous graph modeling approach (HGM) to describe the dynamic process of influenza virus transmission by taking advantage of our unique clinical data. We built social network of studied region and embedded an Agent-Based Model (ABM) in the HGM to describe the dynamic change of an epidemic. Our simulations have a good agreement with clinical data. Parameter sensitivity analysis showed that temperature influences the dynamic of epidemic significantly and system behavior analysis showed social network degree is a critical factor determining the size of an epidemic. Finally, multiple scenarios for vaccination and school closure strategies were simulated and their performance was analyzed.

  7. Neural Correlates of Aggressive Behavior in Real Time: a Review of fMRI Studies of Laboratory Reactive Aggression

    PubMed Central

    Keedy, Sarah; Berman, Mitchell E.; Lee, Royce; Coccaro, Emil F.

    2017-01-01

    Purpose of review Aggressive behavior has adaptive value in many natural environments; however, it places substantial burden and costs on human society. For this reason, there has long been interest in understanding the neurobiological basis of aggression. This interest, and the flourishing of neuroimaging research in general, has spurred the development of a large and growing scientific literature on the topic. As a result, a neural circuit model of aggressive behavior has emerged that implicates interconnected brain regions that are involved in emotional reactivity, emotion regulation, and cognitive control. Recent findings Recently, behavioral paradigms that simulate provocative interactions have been adapted to neuroimaging protocols, providing an opportunity to directly probe the involvement of neural circuits in an aggressive interaction. Here we review neuroimaging studies of simulated aggressive interactions in research volunteers. We focus on studies that use a well-validated laboratory paradigm for reactive physical aggression and examine the neural correlates of provocation, retaliation, and evaluating punishment of an opponent. Summary Overall, the studies reviewed support the involvement of neural circuits that support emotional reactivity, emotion regulation, and cognitive control in aggressive behavior. Based on a synthesis of this literature, future research directions are discussed. PMID:29607288

  8. A spiking neural network based cortex-like mechanism and application to facial expression recognition.

    PubMed

    Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai

    2012-01-01

    In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.

  9. A computational model of conditioning inspired by Drosophila olfactory system.

    PubMed

    Faghihi, Faramarz; Moustafa, Ahmed A; Heinrich, Ralf; Wörgötter, Florentin

    2017-03-01

    Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Influence of Cognitive and Non-Cognitive Factors on the Development of Rifle Marksmanship Skills. CRESST Report 753

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Nagashima, Sam O.; Espinosa, Paul D.; Berka, Chris; Baker, Eva L.

    2009-01-01

    In this report, researchers examined rifle marksmanship development within a skill development framework outlined by Chung, Delacruz, de Vries, Bewley, and Baker (2006). Thirty-three novice shooters used an M4 rifle training simulator system to learn to shoot an 8-inch target at a simulated distance of 200 yards. Cognitive, psychomotor, and…

  11. Measuring Cognitive Load during Simulation-Based Psychomotor Skills Training: Sensitivity of Secondary-Task Performance and Subjective Ratings

    ERIC Educational Resources Information Center

    Haji, Faizal A.; Khan, Rabia; Regehr, Glenn; Drake, James; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-01-01

    As interest in applying cognitive load theory (CLT) to the study and design of pedagogic and technological approaches in healthcare simulation grows, suitable measures of cognitive load (CL) are needed. Here, we report a two-phased study investigating the sensitivity of subjective ratings of mental effort (SRME) and secondary-task performance…

  12. From surprise to cognition: Some effects of the structure of C.A.L. simulation programs on the cognitive and scientific activities of young adults

    NASA Astrophysics Data System (ADS)

    Dicker, R. J.

    The main objective of this thesis is to describe the effect on cognition of the structure of CAL simulation programs used, in science teaching. Four programs simulating a pond ecosystem were written so as to present a simulation model and to assist in cognition in different ways. Various clinically detailed methods of describing learning were developed and tried including concept maps which were found to be sammative rather than formative descriptions of learning, and to be ambiguous) and hierarchical structures (which were found to be difficult to produce). Fran these concept maps and hierarchical structures I developed my Interaction Model of Learning which can be used to describe the chronological events concerned with cognition. Using the Interaction Model, the nature of cognition and the effect that CAL program structure has on this process is described. Various scenarios are presented as a means of showing the possible effects of program structure on learning. Four forms of concept learning activity and their relationship to learning valid and alternative conceptions are described. The findings from the study are particularly related to the work of Driver (1983), Marton (1976) and Entwistle (1981).

  13. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality

    PubMed Central

    Cushman, Laura A.; Stein, Karen; Duffy, Charles J.

    2008-01-01

    Background: Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Methods: Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). Results: We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Conclusions: Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community. GLOSSARY AD = Alzheimer disease; EAD = early Alzheimer disease; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; ONC = older normal control; std. wt. = standardized weight; THSD = Tukey honestly significant difference; VR = virtual reality; YNC = young normal control. PMID:18794491

  14. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.

  15. Keep it simple - A case study of model development in the context of the Dynamic Stocks and Flows (DSF) task

    NASA Astrophysics Data System (ADS)

    Halbrügge, Marc

    2010-12-01

    This paper describes the creation of a cognitive model submitted to the ‘Dynamic Stocks and Flows’ (DSF) modeling challenge. This challenge aims at comparing computational cognitive models for human behavior during an open ended control task. Participants in the modeling competition were provided with a simulation environment and training data for benchmarking their models while the actual specification of the competition task was withheld. To meet this challenge, the cognitive model described here was designed and optimized for generalizability. Only two simple assumptions about human problem solving were used to explain the empirical findings of the training data. In-depth analysis of the data set prior to the development of the model led to the dismissal of correlations or other parametric statistics as goodness-of-fit indicators. A new statistical measurement based on rank orders and sequence matching techniques is being proposed instead. This measurement, when being applied to the human sample, also identifies clusters of subjects that use different strategies for the task. The acceptability of the fits achieved by the model is verified using permutation tests.

  16. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.

    PubMed

    Foldes, Stephen T; Taylor, Dawn M

    2013-12-21

    Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.

  17. The Role of Teacher Stress, Cognitive Complexity, and Career Maturity in Teacher Socialization.

    ERIC Educational Resources Information Center

    Franz, John B.; Dembo, Myron H.

    A research study investigated the relationship of stress in teachers' work environment to teachers' level of cognitive complexity (level of thinking) and their career maturity, and the relationship of stress, cognitive complexity, and career maturity to teaching experience. Participants were teaching elementary school in an urban environment: 23…

  18. Contributions of a Child’s Built, Natural, and Social Environments to Their General Cognitive Ability: A Systematic Scoping Review

    EPA Science Inventory

    The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negati...

  19. The Built Environment and Cognitive Disorders: Results From the Cognitive Function and Ageing Study II.

    PubMed

    Wu, Yu-Tzu; Prina, A Matthew; Jones, Andy; Matthews, Fiona E; Brayne, Carol

    2017-07-01

    Built environment features have been related to behavior modification and might stimulate cognitive activity with a potential impact on cognitive health in later life. This study investigated cross-sectional associations between features of land use and cognitive impairment and dementia, and also explored urban and rural differences in these associations. Postcodes of the 7,505 community-based participants (aged ≥65 years) in the Cognitive Function and Ageing Study II (collected in 2008-2011) were linked to environmental data from government statistics. Multilevel logistic regression investigated associations between cognitive impairment (defined as Mini-Mental State Examination score ≤25) and dementia (Geriatric Mental Status and Automatic Geriatric Examination for Computer-Assisted Taxonomy organicity level ≥3) and land use features, including natural environment availability and land use mix, fitting interaction terms with three rural/urban categories. Data were analyzed in 2015. Associations between features of land use and cognitive impairment were not linear. After adjusting for individual-level factors and area deprivation, living in areas with high land use mix was associated with a nearly 30% decreased odds of cognitive impairment (OR=0.72, 95% CI=0.58, 0.89). This was similar, yet non-significant, for dementia (OR=0.70, 95% CI=0.46, 1.06). In conurbations, living in areas with high natural environment availability was associated with 30% reduced odds of cognitive impairment (OR=0.70, 95% CI=0.50, 0.97). Non-linear associations between features of land use and cognitive impairment were confirmed in this new cohort of older people in England. Both lack of and overload of environmental stimulation may be detrimental to cognition in later life. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  20. The Lévy flight foraging hypothesis: forgetting about memory may lead to false verification of Brownian motion.

    PubMed

    Gautestad, Arild O; Mysterud, Atle

    2013-01-01

    The Lévy flight foraging hypothesis predicts a transition from scale-free Lévy walk (LW) to scale-specific Brownian motion (BM) as an animal moves from resource-poor towards resource-rich environment. However, the LW-BM continuum implies a premise of memory-less search, which contradicts the cognitive capacity of vertebrates. We describe methods to test if apparent support for LW-BM transitions may rather be a statistical artifact from movement under varying intensity of site fidelity. A higher frequency of returns to previously visited patches (stronger site fidelity) may erroneously be interpreted as a switch from LW towards BM. Simulations of scale-free, memory-enhanced space use illustrate how the ratio between return events and scale-free exploratory movement translates to varying strength of site fidelity. An expanded analysis of GPS data of 18 female red deer, Cervus elaphus, strengthens previous empirical support of memory-enhanced and scale-free space use in a northern forest ecosystem. A statistical mechanical model architecture that describes foraging under environment-dependent variation of site fidelity may allow for higher realism of optimal search models and movement ecology in general, in particular for vertebrates with high cognitive capacity.

  1. Effect of Cognitive Style on Learning and Retrieval of Navigational Environments.

    PubMed

    Boccia, Maddalena; Vecchione, Francesca; Piccardi, Laura; Guariglia, Cecilia

    2017-01-01

    Field independence (FI) has been found to correlate with a wide range of cognitive processes requiring cognitive restructuring. Cognitive restructuring, that is going beyond the information given by the setting, is pivotal in creating stable mental representations of the environment, the so-called "cognitive maps," and it affects visuo-spatial abilities underpinning environmental navigation. Here we evaluated whether FI, by fostering cognitive restructuring of environmental cues on the basis of an internal frame of reference, affects the learning and retrieval of a novel environment. Fifty-four participants were submitted to the Embedded Figure Test (EFT) for assessing their Cognitive Style (CS) and to the Perspective Taking/Spatial Orientation Test (PTSOT) and the Santa Barbara Sense of Direction Scale (SBSOD) for assessing their spatial perspective taking and orientation skills. They were also required to learn a path in a novel, real environment (route learning, RL), to recognize landmarks of this path among distracters (landmark recognition, LR), to order them (landmark ordering, LO) and to draw the learned path on a map (map drawing, MD). Retrieval tasks were performed both immediately after learning (immediate-retrieval) and the day after (24 h-retrieval). Performances on EFT significantly correlated with the time needed to learn the path, with MD (both in the immediate- and in the 24 h- retrievals), results on LR (in 24-retrieval) and performances on PTSOT. Interestingly, we found that gender interacted with CS on RL (time of learning) and MD. Females performed significantly worse than males only if they were classified as FD, but did not differ from males if they were classified as FI. These results suggest that CS affects learning and retrieval of navigational environment, especially when a map-like representation is required. We propose that CS may be pivotal in forming the cognitive map of the environment, likely due to the higher ability of FI individuals in restructuring environmental cues in a global and flexible long-term representation of the environment.

  2. Home and family in cognitive rehabilitation after brain injury: Implementation of social reserves.

    PubMed

    Mogensen, Jesper; Wulf-Andersen, Camilla

    2017-01-01

    The focus of the present article is the home and family environment of patients suffering acquired brain injury. In order to obtain the optimal outcome of posttraumatic cognitive rehabilitation it is important (a) to obtain a sufficient intensity of rehabilitative training, (b) to achieve the maximum degree of generalization from formalized training to the daily environment of the patient, and (c) to obtain the best possible utilization of "cognitive reserves" in the form of cognitive abilities and "strategies" acquired pretraumatically. Supplementing the institution-based cognitive training with (potentially computer-based) home-based training these three goals may more easily be met. Home-based training supports a higher intensity of training. Training in the home environment also allows better utilization of cognitive strategies acquired pretraumatically and more direct transfer of training results from formalized training to activities of daily living of the patient.

  3. Improving Aviation Safety with information Visualization: A Flight Simulation Study

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Hearst, Marti

    2005-01-01

    Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.

  4. Virtual Learning Simulations in High School: Effects on Cognitive and Non-cognitive Outcomes and Implications on the Development of STEM Academic and Career Choice.

    PubMed

    Thisgaard, Malene; Makransky, Guido

    2017-01-01

    The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student's interest in and goals toward STEM related careers.

  5. Virtual Learning Simulations in High School: Effects on Cognitive and Non-cognitive Outcomes and Implications on the Development of STEM Academic and Career Choice

    PubMed Central

    Thisgaard, Malene; Makransky, Guido

    2017-01-01

    The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student’s interest in and goals toward STEM related careers. PMID:28611701

  6. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.

  7. How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars.

    PubMed

    Gemignani, Angelo; Piarulli, Andrea; Menicucci, Danilo; Laurino, Marco; Rota, Giuseppina; Mastorci, Francesca; Gushin, Vadim; Shevchenko, Olga; Garbella, Erika; Pingitore, Alessandro; Sebastiani, Laura; Bergamasco, Massimo; L'Abbate, Antonio; Allegrini, Paolo; Bedini, Remo

    2014-08-01

    Spaceflights "environment" negatively affects sleep and its functions. Among the different causes promoting sleep alterations, such as circadian rhythms disruption and microgravity, stress is of great interest also for earth-based sleep medicine. This study aims to evaluate the relationships between stress related to social/environmental confinement and sleep in six healthy volunteers involved in the simulation of human flight to Mars (MARS500). Volunteers were sealed in a spaceship simulator for 105 days and studied at 5 specific time-points of the simulation period. Sleep EEG, urinary cortisol (24 h preceding sleep EEG recording) and subjectively perceived stress levels were collected. Cognitive abilities and emotional state were evaluated before and after the simulation. Sleep EEG parameters in the time (latency, duration) and frequency (power and hemispheric lateralization) domains were evaluated. Neither cognitive and emotional functions alterations nor abnormal stress levels were found. Higher cortisol levels were associated to: (i) decrease of sleep duration, increase of arousals, and shortening of REM latency; (ii) reduction of delta power and enhancement of sigma and beta in NREM N3; and (iii) left lateralization of delta activity (NREM and REM) and right lateralization of beta activity (NREM). Stressful conditions, even with cortisol fluctuations in the normal range, alter sleep structure and sleep EEG spectral content, mirroring pathological conditions such as primary insomnia or insomnia associated to depression. Correlations between cortisol fluctuations and sleep changes suggest a covert risk for developing allostatic load, and thus the need to develop ad-hoc countermeasures for preventing sleep alterations in long lasting manned space missions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optimization of armored fighting vehicle crew performance in a net-centric battlefield

    NASA Astrophysics Data System (ADS)

    McKeen, William P.; Espenant, Mark

    2002-08-01

    Traditional display, control and situational awareness technologies may not allow the fighting vehicle commander to take full advantage of the rich data environment made available in the net-centric battle field of the future. Indeed, the sheer complexity and volume of available data, if not properly managed, may actually reduce crew performance by overloading or confusing the commander with irrelevant information. New techniques must be explored to understand how to present battlefield information and provide the commander with continuous high quality situational awareness without significant cognitive overhead. Control of the vehicle's many complex systems must also be addressed the entire Soldier Machine Interface must be optimized if we are to realize the potential performance improvements. Defence Research and Development Canada (DRDC) and General Dynamics Canada Ltd. have embarked on a joint program called Future Armoured Fighting Vehicle Systems Technology Demonstrator, to explore these issues. The project is based on man-in-the-loop experimentation using virtual reality technology on a six degree-of-freedom motion platform that simulates the motion, sights and sounds inside a future armoured vehicle. The vehicle commander is provided with a virtual reality vision system to view a simulated 360 degree multi-spectrum representation of the battlespace, thus providing enhanced situational awareness. Graphic overlays with decision aid information will be added to reduce cognitive loading. Experiments will be conducted to evaluate the effectiveness of virtual control systems. The simulations are carried out in a virtual battlefield created by linking our simulation system with other simulation centers to provide a net-centric battlespace where enemy forces can be engaged in fire fights. Survivability and lethality will be measured in successive test sequences using real armoured fighting vehicle crews to optimize overall system effectiveness.

  9. Team Regulation in a Simulated Medical Emergency: An In-Depth Analysis of Cognitive, Metacognitive, and Affective Processes

    ERIC Educational Resources Information Center

    Duffy, Melissa C.; Azevedo, Roger; Sun, Ning-Zi; Griscom, Sophia E.; Stead, Victoria; Crelinsten, Linda; Wiseman, Jeffrey; Maniatis, Thomas; Lachapelle, Kevin

    2015-01-01

    This study examined the nature of cognitive, metacognitive, and affective processes among a medical team experiencing difficulty managing a challenging simulated medical emergency case by conducting in-depth analysis of process data. Medical residents participated in a simulation exercise designed to help trainees to develop medical expertise,…

  10. The Effects of Computer Simulation and Animation (CSA) on Students' Cognitive Processes: A Comparative Case Study in an Undergraduate Engineering Course

    ERIC Educational Resources Information Center

    Fang, N.; Tajvidi, M.

    2018-01-01

    This study focuses on the investigation of the effects of computer simulation and animation (CSA) on students' cognitive processes in an undergraduate engineering course. The revised Bloom's taxonomy, which consists of six categories in the cognitive process domain, was employed in this study. Five of the six categories were investigated,…

  11. Q-Learning and p-persistent CSMA based rendezvous protocol for cognitive radio networks operating with shared spectrum activity

    NASA Astrophysics Data System (ADS)

    Watson, Clifton L.; Biswas, Subir

    2014-06-01

    With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.

  12. Drone-Augmented Human Vision: Exocentric Control for Drones Exploring Hidden Areas.

    PubMed

    Erat, Okan; Isop, Werner Alexander; Kalkofen, Denis; Schmalstieg, Dieter

    2018-04-01

    Drones allow exploring dangerous or impassable areas safely from a distant point of view. However, flight control from an egocentric view in narrow or constrained environments can be challenging. Arguably, an exocentric view would afford a better overview and, thus, more intuitive flight control of the drone. Unfortunately, such an exocentric view is unavailable when exploring indoor environments. This paper investigates the potential of drone-augmented human vision, i.e., of exploring the environment and controlling the drone indirectly from an exocentric viewpoint. If used with a see-through display, this approach can simulate X-ray vision to provide a natural view into an otherwise occluded environment. The user's view is synthesized from a three-dimensional reconstruction of the indoor environment using image-based rendering. This user interface is designed to reduce the cognitive load of the drone's flight control. The user can concentrate on the exploration of the inaccessible space, while flight control is largely delegated to the drone's autopilot system. We assess our system with a first experiment showing how drone-augmented human vision supports spatial understanding and improves natural interaction with the drone.

  13. Self-rotations in simulated microgravity: performance effects of strategy training.

    PubMed

    Stirling, Leia; Newman, Dava; Willcox, Karen

    2009-01-01

    This research studies reorientation methodologies in a simulated microgravity environment using an experimental framework to reduce astronaut adaptation time and provide for a safety countermeasure during extravehicular activity. There were 20 subjects (10 men, 10 women, mean age of 23.6 +/- 3.5) who were divided into 2 groups, fully trained and minimally trained, which determined the amount of motion strategy training received. Subjects performed a total of 48 rotations about their pitch, roll, and yaw axes in a suspension system that simulated microgravity. In each trial subjects either rotated 90 degrees in pitch, 90 degrees in roll, or 180 degrees in yaw. Experimental measures include subject coordination, performance time, cognitive workload assessments, and qualitative motion control strategies. Subjects in the fully trained group had better initial performance with respect to performance time and workload scores for the pitch and yaw rotations. Further, trained subjects reached a steady-state performance time in fewer trials than those with minimal training. The subjects with minimal training tended to use motions that were common in an Earth environment since no technique was provided. For roll rotations they developed motions that would have led to significant off-axis (pitch and yaw) rotations in a true microgravity environment. We have shown that certain body axes are easier to rotate about than others and that fully trained subjects had an easier time performing the body rotations than the minimally trained subjects. This study has provided the groundwork for the development of an astronaut motion-control training program.

  14. Reduced Physical Fitness in Patients With Heart Failure as a Possible Risk Factor for Impaired Driving Performance

    PubMed Central

    Alosco, Michael L.; Penn, Marc S.; Spitznagel, Mary Beth; Cleveland, Mary Jo; Ott, Brian R.

    2015-01-01

    OBJECTIVE. Reduced physical fitness secondary to heart failure (HF) may contribute to poor driving; reduced physical fitness is a known correlate of cognitive impairment and has been associated with decreased independence in driving. No study has examined the associations among physical fitness, cognition, and driving performance in people with HF. METHOD. Eighteen people with HF completed a physical fitness assessment, a cognitive test battery, and a validated driving simulator scenario. RESULTS. Partial correlations showed that poorer physical fitness was correlated with more collisions and stop signs missed and lower scores on a composite score of attention, executive function, and psychomotor speed. Cognitive dysfunction predicted reduced driving simulation performance. CONCLUSION. Reduced physical fitness in participants with HF was associated with worse simulated driving, possibly because of cognitive dysfunction. Larger studies using on-road testing are needed to confirm our findings and identify clinical interventions to maximize safe driving. PMID:26122681

  15. Cyberpsychology: a human-interaction perspective based on cognitive modeling.

    PubMed

    Emond, Bruno; West, Robert L

    2003-10-01

    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  16. The relationship between specific cognitive impairment and behaviour in Prader-Willi syndrome.

    PubMed

    Woodcock, K A; Oliver, C; Humphreys, G W

    2011-02-01

    Individuals with Prader-Willi syndrome (PWS) have been shown to demonstrate a particular cognitive deficit in attention switching and high levels of preference for routine and temper outbursts. This study assesses whether a specific pathway between a cognitive deficit and behaviour via environmental interaction can exist in individuals with PWS. Four individuals with PWS participated in a series of three single-case experiments including laboratory-based and natural environment designs. Cognitive (computer-based) challenges placed varying demands on attention switching or controlled for the cognitive demands of the tasks while placing no demands on switching. Unexpected changes to routines or expectations were presented in controlled games, or imposed on participants' natural environments and compared with control conditions during which no unexpected changes occurred. Behaviour was observed and heart rate was measured. Participants showed significantly increased temper outburst related behaviours during cognitive challenges that placed demands on attention switching, relative to the control cognitive challenges. Participants showed significantly increased temper outburst related behaviours when unexpected changes occurred in an experimental or the natural environment compared with when no changes occurred. Difficult behaviours that could be triggered reliably in an individual by a specific cognitive demand could also be triggered via manipulation of the environment. Results suggest that a directional relationship between a specific cognitive deficit and behaviour, via environmental interaction, can exist in individuals with PWS. © 2011 The Authors. Journal of Intellectual Disability Research © 2011 Blackwell Publishing Ltd.

  17. User-Centered Iterative Design of a Collaborative Virtual Environment

    DTIC Science & Technology

    2001-03-01

    cognitive task analysis methods to study land navigators. This study was intended to validate the use of user-centered design methodologies for the design of...have explored the cognitive aspects of collaborative human way finding and design for collaborative virtual environments. Further investigation of design paradigms should include cognitive task analysis and behavioral task analysis.

  18. Using Social Cognitive Theory to Predict Physical Activity and Fitness in Underserved Middle School Children

    ERIC Educational Resources Information Center

    Martin, Jeffrey J.; McCaughtry, Nate; Flory, Sara; Murphy, Anne; Wisdom, Kimberlydawn

    2011-01-01

    Few researchers have used social cognitive theory and environment-based constructs to predict physical activity (PA) and fitness in underserved middle-school children. Hence, we evaluated social cognitive variables and perceptions of the school environment to predict PA and fitness in middle school children (N = 506, ages 10-14 years). Using…

  19. Schooling Effects on Cognitive Development in a Difficult Environment: The Case of Refugee Camps in the West Bank

    ERIC Educational Resources Information Center

    Jabr, Dua; Cahan, Sorel

    2014-01-01

    Schooling is now considered the major factor underlying the development of cognitive abilities. However, most studies on the effect of schooling on cognitive development have been conducted in free and generally supportive western environments. The possible variability of schooling effects between educational systems differing in the quality of…

  20. Neighborhood Environment and Cognition in Older Adults: A Systematic Review.

    PubMed

    Besser, Lilah M; McDonald, Noreen C; Song, Yan; Kukull, Walter A; Rodriguez, Daniel A

    2017-08-01

    Some evidence suggests that treating vascular risk factors and performing mentally stimulating activities may delay cognitive impairment onset in older adults. Exposure to a complex neighborhood environment may be one mechanism to help delay cognitive decline. PubMed, Web of Science, and ProQuest Dissertation and Theses Global database were systematically reviewed, identifying 25 studies published from February 1, 1989 to March 5, 2016 (data synthesized, May 3, 2015 to October 7, 2016). The review was restricted to quantitative studies focused on: (1) neighborhood social and built environment and cognition; and (2) community-dwelling adults aged ≥45 years. The majority of studies were cross-sectional, U.S.-based, and found at least one significant association. The diversity of measures and neighborhood definitions limited the synthesis of findings in many instances. Evidence was moderately strong for an association between neighborhood SES and cognition, and modest for associations between neighborhood demographics, design, and destination accessibility and cognition. Most studies examining effect modification found significant associations, with some evidence for effect modification of the neighborhood SES-cognition association by individual-level SES. No studies had low risk of bias and many tested multiple associations that increased the chance of a statistically significant finding. Considering the studies to date, the evidence for an association between neighborhood characteristics and cognition is modest. Future studies should include longitudinal measures of neighborhood characteristics and cognition; examine potential effect modifiers, such as sex and disability; and study mediators that may help elucidate the biological mechanisms linking neighborhood environment and cognition. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Fiber, Fabric and Fashion. Environment II.

    ERIC Educational Resources Information Center

    Arizona State Univ., Tempe.

    A competency-based instructional guide for grades 7-14, this volume is one of three parts, each of which focuses on a different environment (psychomotor, cognitive, or affective), and each of which includes competencies and learning activities for each of three instructional levels. The topics for this volume (Environment II--cognitive) are…

  2. Simulating motivated cognition

    NASA Technical Reports Server (NTRS)

    Gevarter, William B.

    1991-01-01

    A research effort to develop a sophisticated computer model of human behavior is described. A computer framework of motivated cognition was developed. Motivated cognition focuses on the motivations or affects that provide the context and drive in human cognition and decision making. A conceptual architecture of the human decision-making approach from the perspective of information processing in the human brain is developed in diagrammatic form. A preliminary version of such a diagram is presented. This architecture is then used as a vehicle for successfully constructing a computer program simulation Dweck and Leggett's findings that relate how an individual's implicit theories orient them toward particular goals, with resultant cognitions, affects, and behavior.

  3. Community environment, cognitive impairment and dementia in later life: results from the Cognitive Function and Ageing Study

    PubMed Central

    Wu, Yu-Tzu; Prina, A. Matthew; Jones, Andrew P.; Barnes, Linda E.; Matthews, Fiona E.; Brayne, Carol

    2015-01-01

    Background: few studies have investigated the impact of the community environment, as distinct from area deprivation, on cognition in later life. This study explores cross-sectional associations between cognitive impairment and dementia and environmental features at the community level in older people. Method: the postcodes of the 2,424 participants in the year-10 interview of the Cognitive Function and Ageing Study in England were mapped into small area level geographical units (Lower-layer Super Output Areas) and linked to environmental data in government statistics. Multilevel logistic regression was conducted to investigate associations between cognitive impairment (defined as MMSE ≤ 25), dementia (organicity level ≥3 in GMS-AGECAT) and community level measurements including area deprivation, natural environment, land use mix and crime. Sensitivity analyses tested the impact of people moving residence within the last two years. Results: higher levels of area deprivation and crime were not significantly associated with cognitive impairment and dementia after accounting for individual level factors. Living in areas with high land use mix was significantly associated with a nearly 60% reduced odds of dementia (OR: 0.4; 95% CI: 0.2, 0.8) after adjusting for individual level factors and area deprivation, but there was no linear trend for cognitive impairment. Increased odds of dementia (OR: 2.2, 95% CI: 1.2, 4.2) and cognitive impairment (OR: 1.4, 95% CI: 1.0, 2.0) were found in the highest quartile of natural environment availability. Findings were robust to exclusion of the recently relocated. Conclusion: features of land use have complex associations with cognitive impairment and dementia. Further investigations should focus on environmental influences on cognition to inform health and social policies. PMID:26464419

  4. Community environment, cognitive impairment and dementia in later life: results from the Cognitive Function and Ageing Study.

    PubMed

    Wu, Yu-Tzu; Prina, A Matthew; Jones, Andrew P; Barnes, Linda E; Matthews, Fiona E; Brayne, Carol

    2015-11-01

    Few studies have investigated the impact of the community environment, as distinct from area deprivation, on cognition in later life. This study explores cross-sectional associations between cognitive impairment and dementia and environmental features at the community level in older people. The postcodes of the 2,424 participants in the year-10 interview of the Cognitive Function and Ageing Study in England were mapped into small area level geographical units (Lower-layer Super Output Areas) and linked to environmental data in government statistics. Multilevel logistic regression was conducted to investigate associations between cognitive impairment (defined as MMSE ≤ 25), dementia (organicity level ≥3 in GMS-AGECAT) and community level measurements including area deprivation, natural environment, land use mix and crime. Sensitivity analyses tested the impact of people moving residence within the last two years. Higher levels of area deprivation and crime were not significantly associated with cognitive impairment and dementia after accounting for individual level factors. Living in areas with high land use mix was significantly associated with a nearly 60% reduced odds of dementia (OR: 0.4; 95% CI: 0.2, 0.8) after adjusting for individual level factors and area deprivation, but there was no linear trend for cognitive impairment. Increased odds of dementia (OR: 2.2, 95% CI: 1.2, 4.2) and cognitive impairment (OR: 1.4, 95% CI: 1.0, 2.0) were found in the highest quartile of natural environment availability. Findings were robust to exclusion of the recently relocated. Features of land use have complex associations with cognitive impairment and dementia. Further investigations should focus on environmental influences on cognition to inform health and social policies. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society.

  5. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Dunleavy, Matt; Dede, Chris; Mitchell, Rebecca

    2009-02-01

    The purpose of this study was to document how teachers and students describe and comprehend the ways in which participating in an augmented reality (AR) simulation aids or hinders teaching and learning. Like the multi-user virtual environment (MUVE) interface that underlies Internet games, AR is a good medium for immersive collaborative simulation, but has different strengths and limitations than MUVEs. Within a design-based research project, the researchers conducted multiple qualitative case studies across two middle schools (6th and 7th grade) and one high school (10th grade) in the northeastern United States to document the affordances and limitations of AR simulations from the student and teacher perspective. The researchers collected data through formal and informal interviews, direct observations, web site posts, and site documents. Teachers and students reported that the technology-mediated narrative and the interactive, situated, collaborative problem solving affordances of the AR simulation were highly engaging, especially among students who had previously presented behavioral and academic challenges for the teachers. However, while the AR simulation provided potentially transformative added value, it simultaneously presented unique technological, managerial, and cognitive challenges to teaching and learning.

  6. Feasibility of utilizing a commercial eye tracker to assess electronic health record use during patient simulation.

    PubMed

    Gold, Jeffrey Allen; Stephenson, Laurel E; Gorsuch, Adriel; Parthasarathy, Keshav; Mohan, Vishnu

    2016-09-01

    Numerous reports describe unintended consequences of electronic health record implementation. Having previously described physicians' failures to recognize patient safety issues within our electronic health record simulation environment, we now report on our use of eye and screen-tracking technology to understand factors associated with poor error recognition during an intensive care unit-based electronic health record simulation. We linked performance on the simulation to standard eye and screen-tracking readouts including number of fixations, saccades, mouse clicks and screens visited. In addition, we developed an overall Composite Eye Tracking score which measured when, where and how often each safety item was viewed. For 39 participants, the Composite Eye Tracking score correlated with performance on the simulation (p = 0.004). Overall, the improved performance was associated with a pattern of rapid scanning of data manifested by increased number of screens visited (p = 0.001), mouse clicks (p = 0.03) and saccades (p = 0.004). Eye tracking can be successfully integrated into electronic health record-based simulation and provides a surrogate measure of cognitive decision making and electronic health record usability. © The Author(s) 2015.

  7. Comprehensive Training Curricula for Minimally Invasive Surgery

    PubMed Central

    Palter, Vanessa N

    2011-01-01

    Background The unique skill set required for minimally invasive surgery has in part contributed to a certain portion of surgical residency training transitioning from the operating room to the surgical skills laboratory. Simulation lends itself well as a method to shorten the learning curve for minimally invasive surgery by allowing trainees to practice the unique motor skills required for this type of surgery in a safe, structured environment. Although a significant amount of important work has been done to validate simulators as viable systems for teaching technical skills outside the operating room, the next step is to integrate simulation training into a comprehensive curriculum. Objectives This narrative review aims to synthesize the evidence and educational theories underlining curricula development for technical skills both in a broad context and specifically as it pertains to minimally invasive surgery. Findings The review highlights the critical aspects of simulation training, such as the effective provision of feedback, deliberate practice, training to proficiency, the opportunity to practice at varying levels of difficulty, and the inclusion of both cognitive teaching and hands-on training. In addition, frameworks for integrating simulation training into a comprehensive curriculum are described. Finally, existing curricula on both laparoscopic box trainers and virtual reality simulators are critically evaluated. PMID:22942951

  8. The Design of Mechatronics Simulator for Improving the Quality of Student Learning Course in Mechatronics

    NASA Astrophysics Data System (ADS)

    Kustija, J.; Hasbullah; Somantri, Y.

    2018-02-01

    Learning course on mechatronics specifically the Department of Electrical Engineering Education FPTK UPI still using simulation-aided instructional materials and software. It is still not maximizing students’ competencies in mechatronics courses required to skilfully manipulate the real will are implemented both in industry and in educational institutions. The purpose of this study is to submit a design of mechatronic simulator to improve student learning outcomes at the course mechatronics viewed aspects of cognitive and psychomotor. Learning innovation products resulting from this study is expected to be a reference and a key pillar for all academic units at UPI in implementing the learning environment. The method used in this research is quantitative method with the approach of Research and Development (R and D). Steps being taken in this study includes a preliminary study, design and testing of the design of mechatronic simulator that will be used in the course of mechatronics in DPTE FPTK UPI. Results of mechatronic design simulator which has been in testing using simulation modules and is expected to motivate students to improve the quality of learning good study results in the course of mechatronic expected to be realized.

  9. Attitude Change and Simulation Games: The Ability of a Simulation Game to Change Attitudes when Structured in Accordance with Either the Cognitive Dissonance or Incentive Models of Attitude Change.

    ERIC Educational Resources Information Center

    Williams, Robert H.

    1980-01-01

    Three groups of 109 undergraduates evidenced attitude shifts from participation to simulation games which were structured in accordance with either the cognitive dissonance or incentive models of attitude change. Identification was suggested as an extra factor influencing attitude change. (CMV)

  10. Computer simulations in the high school: students' cognitive stages, science process skills and academic achievement in microbiology

    NASA Astrophysics Data System (ADS)

    Huppert, J.; Michal Lomask, S.; Lazarowitz, R.

    2002-08-01

    Computer-assisted learning, including simulated experiments, has great potential to address the problem solving process which is a complex activity. It requires a highly structured approach in order to understand the use of simulations as an instructional device. This study is based on a computer simulation program, 'The Growth Curve of Microorganisms', which required tenth grade biology students to use problem solving skills whilst simultaneously manipulating three independent variables in one simulated experiment. The aims were to investigate the computer simulation's impact on students' academic achievement and on their mastery of science process skills in relation to their cognitive stages. The results indicate that the concrete and transition operational students in the experimental group achieved significantly higher academic achievement than their counterparts in the control group. The higher the cognitive operational stage, the higher students' achievement was, except in the control group where students in the concrete and transition operational stages did not differ. Girls achieved equally with the boys in the experimental group. Students' academic achievement may indicate the potential impact a computer simulation program can have, enabling students with low reasoning abilities to cope successfully with learning concepts and principles in science which require high cognitive skills.

  11. Design and Usability Assessment of a Dialogue-Based Cognitive Tutoring System to Model Expert Problem Solving in Research Design

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Smith, Thomas J.; Smith, M. Cecil

    2015-01-01

    Technology provides the means to create useful learning and practice environments for learners. Well-designed cognitive tutor systems, for example, can provide appropriate learning environments that feature cognitive supports (ie, scaffolding) for students to increase their procedural knowledge. The purpose of this study was to conduct a series of…

  12. Re-integrating Influence and Cyber Operations

    DTIC Science & Technology

    2011-06-01

    cognitive processing. This research shows that there is a need focus beyond the data itself, but the actual information that this data represents...Environment picture, which is broken down into three dimensions: Physical, Informational, and Cognitive . (Figure 2 Information Environment) (Joint...the overall infrastructure. The cognitive dimension is the knowledge and wisdom of an individual to make decisions. The informational dimension is

  13. Style Matching or Ability Building? An Empirical Study on FD Learners' Learning in Well-Structured and Ill-Structured Asynchronous Online Learning Environments

    ERIC Educational Resources Information Center

    Zheng, Robert Z.; Flygare, Jill A.; Dahl, Laura B.

    2009-01-01

    The present study investigated (1) the impact of cognitive styles on learner performance in well-structured and ill-structured learning, and (2) scaffolding as a cognitive tool to improve learners' cognitive abilities, especially field dependent (FD) learners' ability to thrive in an ill-structured learning environment. Two experiments were…

  14. A Cognitive Agent for Spectrum Monitoring and Informed Spectrum Access

    DTIC Science & Technology

    2017-06-01

    electromagnetic environments (EMEs) to understand what spectrum bands are accessed, when those bands are accessed, and how much energy is...recall. The cognitive agent in this report uses the second approach. The knowledge domain of the cognitive agent is the electromagnetic spectrum. The...Knowledge DTV digital television EME electromagnetic environments FM frequency modulated RF radio frequency VHF very high frequency

  15. Situated Cognition and Learning Environments: Implications for Teachers On- and Offline in the New Digital Media Age

    ERIC Educational Resources Information Center

    Gomez, Kimberley; Lee, Ung-Sang

    2015-01-01

    John Seely Brown suggested that learning environments should be spaces in which all work is public, is subject to iterative critique by instructors and peers, and in which social interaction is primary. In such spaces, students and teachers engage in a situated cognition approach to teaching and learning where "cognitive accomplishments rely…

  16. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  17. Building simplification algorithms based on user cognition in mobile environment

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Shi, Junfei; Wang, Meizhen; Wu, Chenyan

    2008-10-01

    With the development of LBS, mobile map should adaptively satisfy the cognitive requirement of user. User cognition in mobile environment is much more objective oriented and also seem to be a heavier burden than the user in static environment. The holistic idea and methods of map generalization can not fully suitable for the mobile map. This paper took the building simplification in habitation generalization as example, analyzed the characteristic of user cognition in mobile environment and the basic rules of building simplification, collected and studied the state-of-the-art of algorithms of building simplification in the static and mobile environment, put forward the idea of hierarchical building simplification based on user cognition. This paper took Hunan road business district of Nanjing as test area and took the building data with shapfile format of ESRI as test data and realized the simplification algorithm. The method took user as center, calculated the distance between user and the building which will be simplified and took the distance as the basis for choosing different simplification algorithm for different spaces. This contribution aimed to hierarchically present the building in different level of detail by real-time simplification.

  18. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  19. A design strategy for autonomous systems

    NASA Technical Reports Server (NTRS)

    Forster, Pete

    1989-01-01

    Some solutions to crucial issues regarding the competent performance of an autonomously operating robot are identified; namely, that of handling multiple and variable data sources containing overlapping information and maintaining coherent operation while responding adequately to changes in the environment. Support for the ideas developed for the construction of such behavior are extracted from speculations in the study of cognitive psychology, an understanding of the behavior of controlled mechanisms, and the development of behavior-based robots in a few robot research laboratories. The validity of these ideas is supported by some simple simulation experiments in the field of mobile robot navigation and guidance.

  20. Policy Issues in Computer Education. Assessing the Cognitive Consequences of Computer Environments for Learning (ACCCEL).

    ERIC Educational Resources Information Center

    Linn, Marcia

    This paper analyzes the capabilities of the computer learning environment identified by the Assessing the Cognitive Consequences of Computer Environments for Learning (ACCCEL) Project, augments the analysis with experimental work, and discusses how schools can implement policies which provide for the maximum potential of computers. The ACCCEL…

  1. Environmental and Cognitive Factors in Social Play.

    ERIC Educational Resources Information Center

    Vandenberg, Brian

    1981-01-01

    Results indicated that different types of play environment strongly influence preschool children's types of social play and play group size. Differences in cognitive level and social egocentrism influenced the choice of play environment. (Author/DB)

  2. Model-based metrics of human-automation function allocation in complex work environments

    NASA Astrophysics Data System (ADS)

    Kim, So Young

    Function allocation is the design decision which assigns work functions to all agents in a team, both human and automated. Efforts to guide function allocation systematically has been studied in many fields such as engineering, human factors, team and organization design, management science, and cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary issues with function allocation. Four distinctive perspectives emerged from a review of these fields: technology-centered, human-centered, team-oriented, and work-oriented. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), team structure and processes, and work structure and the work environment. Together, these perspectives identify the following eight issues with function allocation: 1) Workload, 2) Incoherency in function allocations, 3) Mismatches between responsibility and authority, 4) Interruptive automation, 5) Automation boundary conditions, 6) Function allocation preventing human adaptation to context, 7) Function allocation destabilizing the humans' work environment, and 8) Mission Performance. Addressing these issues systematically requires formal models and simulations that include all necessary aspects of human-automation function allocation: the work environment, the dynamics inherent to the work, agents, and relationships among them. Also, addressing these issues requires not only a (static) model, but also a (dynamic) simulation that captures temporal aspects of work such as the timing of actions and their impact on the agent's work. Therefore, with properly modeled work as described by the work environment, the dynamics inherent to the work, agents, and relationships among them, a modeling framework developed by this thesis, which includes static work models and dynamic simulation, can capture the issues with function allocation. Then, based on the eight issues, eight types of metrics are established. The purpose of these metrics is to assess the extent to which each issue exists with a given function allocation. Specifically, the eight types of metrics assess workload, coherency of a function allocation, mismatches between responsibility and authority, interruptive automation, automation boundary conditions, human adaptation to context, stability of the human's work environment, and mission performance. Finally, to validate the modeling framework and the metrics, a case study was conducted modeling four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight. A range of pilot cognitive control modes and maximum human taskload limits were also included in the model. The metrics were assessed for these four function allocations and analyzed to validate capability of the metrics to identify important issues in given function allocations. In addition, the design insights provided by the metrics are highlighted. This thesis concludes with a discussion of mechanisms for further validating the modeling framework and function allocation metrics developed here, and highlights where these developments can be applied in research and in the design of function allocations in complex work environments such as aviation operations.

  3. Extended spider cognition.

    PubMed

    Japyassú, Hilton F; Laland, Kevin N

    2017-05-01

    There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

  4. Could simulated emergency procedures practised in a static environment improve the clinical performance of a Critical Care Air Support Team (CCAST)? A literature review.

    PubMed

    Lamb, Di

    2007-02-01

    The Royal Air Force Critical Care Air Support Teams (CCASTs) have a philosophy to undertake transfers of critically ill patients from anywhere in the world back to a UK medical facility in a stable or improved clinical condition. The training they receive is primarily taught by traditional didactic methods, with no standardisation of education between teams that are expected to deliver care to the same standard. Notwithstanding there being no current compromise to patient care during air transfer, it was important to consider the benefits of an alternative experiential teaching modality. Experiential learning utilised in the static environment could potentially improve the current CCAST training curriculum and, therefore, improve clinical performance during air transfer. In the absence of primary research evidence investigating beneficial teaching modalities for medical flight crews, a review of recent literature was undertaken to observe any potential relevance to the aeromedical specialty. This critical review examined recent quantitative research on various modalities of experiential learning and their influence on the critical thinking, higher cognitive and psychomotor skill acquisition by healthcare professionals in a static hospital environment. The main databases were interrogated using the following inclusion criteria: patient simulation, clinical competence, aeromedical, education, computer simulation, critical thinking and problem-based learning. The number of articles obtained was 13; these were coded on methodological strength to reduce the potential for inclusion bias. Nine studies were finally selected for review. Many small studies have been undertaken, primarily observing benefits of experiential learning to medical students and doctors. No studies show conclusively that simulated learning improves patient outcome, but the body of evidence suggests human patient simulators to be advantageous over other modalities because of their realistic recreation of critical events. They have proven to be at least as effective as traditional teaching by didactic methods. For CCASTs to have a standardised training curriculum, they should undertake real-time missions in a flight simulator, supported by a human patient simulator programmed to respond to the physiological changes associated with altitude. Real scenarios could then be practised, on demand, in a safe environment as an augmentation to the current training programme. Consequently, those acquired skills could then be carried out with improved proficiency during real missions with a concomitant potential for improvement in the standard of patient care.

  5. Cognitive context detection using pupillary measurements

    NASA Astrophysics Data System (ADS)

    Mannaru, Pujitha; Balasingam, Balakumar; Pattipati, Krishna; Sibley, Ciara; Coyne, Joseph

    2016-05-01

    In this paper, we demonstrate the use of pupillary measurements as indices of cognitive workload. We analyze the pupillary data of twenty individuals engaged in a simulated Unmanned Aerial System (UAS) operation in order to understand and characterize the behavior of pupil dilation under varying task load (i.e., workload) levels. We present three metrics that can be employed as real-time indices of cognitive workload. In addition, we develop a predictive system utilizing the pupillary metrics to demonstrate cognitive context detection within simulated supervisory control of UAS. Further, we use pupillary data collected concurrently from the left and right eye and present comparative results of the use of separate vs. combined pupillary data for detecting cognitive context.

  6. The Effect of Computer Simulations on Acquisition of Knowledge and Cognitive Load: A Gender Perspective

    ERIC Educational Resources Information Center

    Kaheru, Sam J.; Kriek, Jeanne

    2016-01-01

    A study on the effect of the use of computer simulations (CS) on the acquisition of knowledge and cognitive load was undertaken with 104 Grade 11 learners in four schools in rural South Africa on the physics topic geometrical optics. Owing to the lack of resources a teacher-centred approach was followed in the use of computer simulations. The…

  7. Effect of simulator training on fitness-to-drive after stroke: a 5-year follow-up of a randomized controlled trial.

    PubMed

    Devos, Hannes; Akinwuntan, Abiodun Emmanuel; Nieuwboer, Alice; Ringoot, Isabelle; Van Berghen, Karen; Tant, Mark; Kiekens, Carlotte; De Weerdt, Willy

    2010-01-01

    No long-term studies have been reported on the effect of training programs on driving after stroke. The authors' primary aim was to determine the effect of simulator versus cognitive rehabilitation therapy on fitness-to-drive at 5 years poststroke. A second aim was to investigate differences in clinical characteristics between stroke survivors who resumed and stopped driving. In a previously reported randomized controlled trial, 83 stroke survivors received 15 hours of simulator training (n = 42) or cognitive therapy (n = 41). In this 5-year follow-up study, 61 participants were reassessed. Fitness-to-drive decisions were obtained from medical, visual, neuropsychological, and on-road tests; 44 participants (simulator group, n = 21; cognitive group, n = 23) completed all assessments. The primary outcome measures were fitness-to-drive decision and current driving status. The authors found that 5 years after stroke, 18 of 30 participants (60%) in the simulator group were considered fit to drive, compared with 15 of 31 (48%) in the cognitive group (P = .36); 34 of 61 (56%) participants were driving. Current drivers were younger (P = .04), had higher Barthel scores (P = .008), had less comorbidity (P = .01), and were less severely depressed (P = .02) than those who gave up driving. The advantage of simulator-based driving training over cognitive rehabilitation therapy, evident at 6 months poststroke, had faded 5 years later. Poststroke drivers were younger and less severely affected and depressed than nondrivers.

  8. Investigating the Use of Vicarious and Mastery Experiences in Influencing Early Childhood Education Majors' Self-Efficacy Beliefs

    NASA Astrophysics Data System (ADS)

    Bautista, Nazan Uludag

    2011-06-01

    This study investigated the effectiveness of an Early Childhood Education science methods course that focused exclusively on providing various mastery (i.e., enactive, cognitive content, and cognitive pedagogical) and vicarious experiences (i.e., cognitive self-modeling, symbolic modeling, and simulated modeling) in increasing preservice elementary teachers' self-efficacy beliefs. Forty-four preservice elementary teachers participated in the study. Analysis of the quantitative (STEBI-b) and qualitative (informal surveys) data revealed that personal science teaching efficacy and science teaching outcome expectancy beliefs increased significantly over the semester. Enactive mastery, cognitive pedagogical mastery, symbolic modeling, and cognitive self-modeling were the major sources of self-efficacy. This list was followed by cognitive content mastery and simulated modeling. This study has implications for science teacher educators.

  9. Driving Competence in Mild Dementia with Lewy Bodies: In Search of Cognitive Predictors Using Driving Simulation

    PubMed Central

    Yamin, Stephanie; Stinchcombe, Arne; Gagnon, Sylvain

    2015-01-01

    Driving is a multifactorial behaviour drawing on multiple cognitive, sensory, and physical systems. Dementia is a progressive and degenerative neurological condition that impacts the cognitive processes necessary for safe driving. While a number of studies have examined driving among individuals with Alzheimer's disease, less is known about the impact of Dementia with Lewy Bodies (DLB) on driving safety. The present study compared simulated driving performance of 15 older drivers with mild DLB with that of 21 neurologically healthy control drivers. DLB drivers showed poorer performance on all indicators of simulated driving including an increased number of collisions in the simulator and poorer composite indicators of overall driving performance. A measure of global cognitive function (i.e., the Mini Mental State Exam) was found to be related to the overall driving performance. In addition, measures of attention (i.e., Useful Field of View, UFOV) and space processing (Visual Object and Space Perception, VOSP, Test) correlated significantly with a rater's assessment of driving performance. PMID:26713169

  10. Assessment of Innovative Emergency Department Information Displays in a Clinical Simulation Center

    PubMed Central

    McGeorge, Nicolette; Hegde, Sudeep; Berg, Rebecca L.; Guarrera-Schick, Theresa K.; LaVergne, David T.; Casucci, Sabrina N.; Hettinger, A. Zachary; Clark, Lindsey N.; Lin, Li; Fairbanks, Rollin J.; Benda, Natalie C.; Sun, Longsheng; Wears, Robert L.; Perry, Shawna; Bisantz, Ann

    2016-01-01

    The objective of this work was to assess the functional utility of new display concepts for an emergency department information system created using cognitive systems engineering methods, by comparing them to similar displays currently in use. The display concepts were compared to standard displays in a clinical simulation study during which nurse-physician teams performed simulated emergency department tasks. Questionnaires were used to assess the cognitive support provided by the displays, participants’ level of situation awareness, and participants’ workload during the simulated tasks. Participants rated the new displays significantly higher than the control displays in terms of cognitive support. There was no significant difference in workload scores between the display conditions. There was no main effect of display type on situation awareness, but there was a significant interaction; participants using the new displays showed improved situation awareness from the middle to the end of the session. This study demonstrates that cognitive systems engineering methods can be used to create innovative displays that better support emergency medicine tasks, without increasing workload, compared to more standard displays. These methods provide a means to develop emergency department information systems—and more broadly, health information technology—that better support the cognitive needs of healthcare providers. PMID:27974881

  11. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  12. Classifying Drivers' Cognitive Load Using EEG Signals.

    PubMed

    Barua, Shaibal; Ahmed, Mobyen Uddin; Begum, Shahina

    2017-01-01

    A growing traffic safety issue is the effect of cognitive loading activities on traffic safety and driving performance. To monitor drivers' mental state, understanding cognitive load is important since while driving, performing cognitively loading secondary tasks, for example talking on the phone, can affect the performance in the primary task, i.e. driving. Electroencephalography (EEG) is one of the reliable measures of cognitive load that can detect the changes in instantaneous load and effect of cognitively loading secondary task. In this driving simulator study, 1-back task is carried out while the driver performs three different simulated driving scenarios. This paper presents an EEG based approach to classify a drivers' level of cognitive load using Case-Based Reasoning (CBR). The results show that for each individual scenario as well as using data combined from the different scenarios, CBR based system achieved approximately over 70% of classification accuracy.

  13. The Relationship of Scaffolding on Cognitive Load in an Online Self-Regulated Learning Environment

    ERIC Educational Resources Information Center

    Danilenko, Eugene Paul

    2010-01-01

    Scaffolding learners in self-regulated learning environments is a topic of increasing importance as implementation of online learning grows. Since cognitive overload in hypermedia environments can be a problem for some learners, instructional design strategies can be used to decrease extraneous load or encourage germane load in order to help…

  14. Managing Cognitive Load in Educational Multi-User Virtual Environments: Reflection on Design Practice

    ERIC Educational Resources Information Center

    Nelson, Brian C.; Erlandson, Benjamin E.

    2008-01-01

    In this paper, we explore how the application of multimedia design principles may inform the development of educational multi-user virtual environments (MUVEs). We look at design principles that have been shown to help learners manage cognitive load within multimedia environments and conduct a conjectural analysis of the extent to which such…

  15. Evaluation of cognitive load and emotional states during multidisciplinary critical care simulation sessions.

    PubMed

    Pawar, Swapnil; Jacques, Theresa; Deshpande, Kush; Pusapati, Raju; Meguerdichian, Michael J

    2018-04-01

    The simulation in critical care setting involves a heterogeneous group of participants with varied background and experience. Measuring the impacts of simulation on emotional state and cognitive load in this setting is not often performed. The feasibility of such measurement in the critical care setting needs further exploration. Medical and nursing staff with varying levels of experience from a tertiary intensive care unit participated in a standardised clinical simulation scenario. The emotional state of each participant was assessed before and after completion of the scenario using a validated eight-item scale containing bipolar oppositional descriptors of emotion. The cognitive load of each participant was assessed after the completion of the scenario using a validated subjective rating tool. A total of 103 medical and nursing staff participated in the study. The participants felt more relaxed (-0.28±1.15 vs 0.14±1, P<0.005; d=0.39), excited (0.25±0.89 vs 0.55±0.92, P<0.005, d=0.35) and alert (0.85±0.87 vs 1.28±0.73, P<0.00001, d=0.54) following simulation. There was no difference in the mean scores for the remaining five items. The mean cognitive load for all participants was 6.67±1.41. There was no significant difference in the cognitive loads among medical staff versus nursing staff (6.61±2.3 vs 6.62±1.7; P>0.05). A well-designed complex high fidelity critical care simulation scenario can be evaluated to identify the relative cognitive load of the participants' experience and their emotional state. The movement of learners emotionally from a more negative state to a positive state suggests that simulation can be an effective tool for improved knowledge transfer and offers more opportunity for dynamic thinking.

  16. Cognitive control level of action for analyzing verbal reports in educative clinical simulation situations.

    PubMed

    Morineau, Thierry; Meineri, Sebastien; Chapelain, Pascal

    2017-03-01

    Several methods and theoretical frameworks have been proposed for efficient debriefing after clinical simulation sessions. In these studies, however, the cognitive processes underlying the debriefing stage are not directly addressed. Cognitive control constitutes a conceptual link between behavior and reflection on behavior to apprehend debriefing cognitively. Our goal was to analyze cognitive control from verbal reports using the Skill-Rule-Knowledge model. This model considers different cognitive control levels from skill-based to rule-based and knowledge-based control. An experiment was conducted with teams of nursing students who were confronted with emergency scenarios during high-fidelity simulation sessions. Participants' descriptions of their actions were asked in the course of the simulation scenarios or during the debriefing stage. 52 nursing students working in 26 pairs participated in this study. Participants were divided into two groups: an "in situ" group in which they had to describe their actions at different moments of a deteriorating patient scenario, and a "debriefing" group, in which, at the same moments, they had to describe their actions displayed on a video recording. In addition to a cognitive analysis, the teams' clinical performance was measured. The cognitive control level in the debriefing group was generally higher than in the in situ group. Good team performance was associated with a high level of cognitive control after a patient's significant state deterioration. These findings are in conformity with the "Skill-Rule-Knowledge" model. The debriefing stage allows a deeper reflection on action compared with the in situ condition. If an abnormal event occurs as an adverse event, then participants' mental processes tend to migrate towards knowledge-based control. This migration particularly concerns students with the best clinical performance. Thus, this cognitive framework can help to strengthen the analysis of verbal reports. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The impact of social context on learning and cognitive demands for interactive virtual human simulations

    PubMed Central

    Lyons, Rebecca; Johnson, Teresa R.; Khalil, Mohammed K.

    2014-01-01

    Interactive virtual human (IVH) simulations offer a novel method for training skills involving person-to-person interactions. This article examines the effectiveness of an IVH simulation for teaching medical students to assess rare cranial nerve abnormalities in both individual and small-group learning contexts. Individual (n = 26) and small-group (n = 30) interaction with the IVH system was manipulated to examine the influence on learning, learner engagement, perceived cognitive demands of the learning task, and instructional efficiency. Results suggested the IVH activity was an equally effective and engaging instructional tool in both learning structures, despite learners in the group learning contexts having to share hands-on access to the simulation interface. Participants in both conditions demonstrated a significant increase in declarative knowledge post-training. Operation of the IVH simulation technology imposed moderate cognitive demand but did not exceed the demands of the task content or appear to impede learning. PMID:24883241

  18. Physiological Based Simulator Fidelity Design Guidance

    NASA Technical Reports Server (NTRS)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  19. Probability theory, not the very guide of life.

    PubMed

    Juslin, Peter; Nilsson, Håkan; Winman, Anders

    2009-10-01

    Probability theory has long been taken as the self-evident norm against which to evaluate inductive reasoning, and classical demonstrations of violations of this norm include the conjunction error and base-rate neglect. Many of these phenomena require multiplicative probability integration, whereas people seem more inclined to linear additive integration, in part, at least, because of well-known capacity constraints on controlled thought. In this article, the authors show with computer simulations that when based on approximate knowledge of probabilities, as is routinely the case in natural environments, linear additive integration can yield as accurate estimates, and as good average decision returns, as estimates based on probability theory. It is proposed that in natural environments people have little opportunity or incentive to induce the normative rules of probability theory and, given their cognitive constraints, linear additive integration may often offer superior bounded rationality.

  20. Grounding Action Words in the Sensorimotor Interaction with the World: Experiments with a Simulated iCub Humanoid Robot

    PubMed Central

    Marocco, Davide; Cangelosi, Angelo; Fischer, Kerstin; Belpaeme, Tony

    2010-01-01

    This paper presents a cognitive robotics model for the study of the embodied representation of action words. The present research will present how an iCub humanoid robot can learn the meaning of action words (i.e. words that represent dynamical events that happen in time) by physically interacting with the environment and linking the effects of its own actions with the behavior observed on the objects before and after the action. The control system of the robot is an artificial neural network trained to manipulate an object through a Back-Propagation-Through-Time algorithm. We will show that in the presented model the grounding of action words relies directly to the way in which an agent interacts with the environment and manipulates it. PMID:20725503

  1. Measuring cognitive load: performance, mental effort and simulation task complexity.

    PubMed

    Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-08-01

    Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95)  = 41.1, p < 0.001 for movements; F(1.04,25.90)  = 49.9, p < 0.001 for time) and reduced cognitive load (F(2.3,58.5)  = 57.7, p < 0.001 for SRME; F(1.8,47.3)  = 10.5, p < 0.001 for SRT) were observed in both groups during training. The simple-task group demonstrated superior knot tying (F(1,24)  = 5.2, p = 0.031 for movements; F(1,24)  = 6.5, p = 0.017 for time) and a faster decline in SRME over the first five trials (F(1,26)  = 6.45, p = 0.017) compared with their peers. Although SRT followed a similar pattern, group differences were not statistically significant. Both secondary task performance and mental effort ratings are sensitive to changes in intrinsic load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.

  2. Crowd Modeling in Military Simulations: Requirements Analysis, Survey, and Design Study

    DTIC Science & Technology

    2003-04-01

    Survey, Crowd Simulation Federate 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES John L...models of crowds and crowd behavior are essentially absent from current production military simulations. The absence of models of crowds in military...understanding of cognitive psychology, including better connection of cognition to behavior, is essential to provide a psychological basis for crowd models

  3. The effectiveness of a simulated scenario to teach nursing students how to perform a bed bath: A randomized clinical trial.

    PubMed

    Miranda, Renata Pinto Ribeiro; de Cássia Lopes Chaves, Érika; Silva Lima, Rogério; Braga, Cristiane Giffoni; Simões, Ivandira Anselmo Ribeiro; Fava, Silvana Maria Coelho Leite; Iunes, Denise Hollanda

    2017-10-01

    Simulation allows students to develop several skills during a bed bath that are difficult to teach only in traditional classroom lectures, such as problem-solving, student interactions with the simulator (patient), reasoning in clinical evaluations, evaluation of responses to interventions, teamwork, communication, security and privacy. This study aimed to evaluate the effectiveness of a simulated bed bath scenario on improving cognitive knowledge, practical performance and satisfaction among nursing students. Randomized controlled clinical trial. Nursing students that were in the fifth period from two educational institutions in Brazil. Nursing students (n=58). The data were collected using the assessments of cognitive knowledge, practical performance and satisfaction were made through a written test about bed baths, an Objective Structured Clinical Examination (OSCE) and a satisfaction questionnaire. We identified that the acquisition and assimilation of cognitive knowledge was significantly higher in the simulation group (p=0.001). The performance was similar in both groups regardless of the teaching strategy (p=0.435). At follow-up, the simulation group had significantly more satisfaction with the teaching method than the control group (p=0.007). The teaching strategy based on a simulated scenario of a bed bath proved to be effective for the acquisition of cognitive knowledge regarding bed baths in clinical practice and improved student satisfaction with the teaching process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Standardizing bimanual vaginal examination using cognitive task analysis.

    PubMed

    Plumptre, Isabella; Mulki, Omar; Granados, Alejandro; Gayle, Claudine; Ahmed, Shahla; Low-Beer, Naomi; Higham, Jenny; Bello, Fernando

    2017-10-01

    To create a standardized universal list of procedural steps for bimanual vaginal examination (BVE) for teaching, assessment, and simulator development. This observational study, conducted from June-July 2012 and July-December 2014, collected video data of 10 expert clinicians performing BVE in a nonclinical environment. Video data were analyzed to produce a cognitive task analysis (CTA) of the examination steps performed. The CTA was further refined through structured interviews to make it suitable for teaching or assessment. It was validated through its use as a procedural examination checklist to rate expert clinician performance. BVE was deconstructed into 88 detailed steps outlining the complete examination process. These initial 88 steps were reduced to 35 by focusing on the unseen internal examination, then further refined through interviews with five experts into 30 essential procedural steps, five of which are additional steps if pathology is suspected. Using the CTA as a procedural checklist, the mean number of steps performed and/or verbalized was 21.6 ± 3.12 (72% ± 10.4%; range, 15.9-27.9, 53%-93%). This approach identified 30 essential steps for performing BVE, producing a new technique and standardized tool for teaching, assessment, and simulator development. © 2017 International Federation of Gynecology and Obstetrics.

  5. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  6. Optimizing Cognitive Development over the Life Course and Preventing Cognitive Decline: Introducing the Cognitive Health Environment Life Course Model (CHELM)

    ERIC Educational Resources Information Center

    Anstey, Kaarin J.

    2014-01-01

    Optimal cognitive development is defined in this article as the highest level of cognitive function reached in each cognitive domain given a person's biological and genetic disposition, and the highest possible maintenance of cognitive function over the adult life course. Theoretical perspectives underpinning the development of a framework…

  7. Does an electronic cognitive aid have an effect on the management of severe gynaecological TURP syndrome? A prospective, randomised simulation study.

    PubMed

    St Pierre, Michael; Breuer, Georg; Strembski, Dieter; Schmitt, Christopher; Luetcke, Bjoern

    2017-05-30

    Lack of familiarity with the content of current guidelines is a major factor associated with non-compliance by clinicians. It is conceivable that cognitive aids with regularly updated medical content can guide clinicians' task performance by evidence-based practices, even if they are unfamiliar with the actual guideline. Acute hyponatraemia as a consequence of TURP syndrome is a rare intraoperative event, and current practice guidelines have changed from slow correction to rapid correction of serum sodium levels. The primary objective of this study was to compare the management of a simulated severe gynaecological transurethral resection of the prostate (TURP) syndrome under spinal anaesthesia with either: an electronic cognitive aid, or with management from memory alone. The secondary objective was to assess the clinical relevance and participant perception of the usefulness of the cognitive aid. Anaesthetic teams were allocated to control (no cognitive aid; n = 10) or intervention (cognitive aid provided; n = 10) groups. We identified eight evidence-based management tasks for severe TURP syndrome from current guidelines and subdivided them into acute heart failure (AHF)/pulmonary oedema tasks (5) and acute hyponatraemia tasks (3). Implementation of the treatment steps was measured by scoring task items in a binary fashion (yes/no). To assess whether or not the cognitive aid had prompted a treatment step, participants from the cognitive aid group were questioned during debriefing on every single treatment step. At the end of the simulation, session participants were asked to complete a survey. Teams in the cognitive aid group considered evidence-based treatment steps significantly more often than teams of the control group (96% vs. 50% for 'AHF/pulmonary oedema' p < 0.001; 79% vs. 12% for 'acute hyponatraemia' p < 0.001). Without the cognitive aid, performance would have been comparable across both groups. Nurses, trainees, and consultants derived equal benefit from the cognitive aid. The cognitive aid improved the implementation of evidence-based practices in a simulated intraoperative scenario. Cognitive aids with current medical content could help to close the translational gap between guideline publication and implementation in acute patient care. It is important that the cognitive aid should be familiar, in a format that has been used in practice and training.

  8. The effect of an electronic cognitive aid on the management of ST-elevation myocardial infarction during caesarean section: a prospective randomised simulation study.

    PubMed

    St Pierre, Michael; Luetcke, Bjoern; Strembski, Dieter; Schmitt, Christopher; Breuer, Georg

    2017-03-20

    Cognitive aids have come to be viewed as promising tools in the management of perioperative critical events. The majority of published simulation studies have focussed on perioperative crises that are characterised by time pressure, rare occurrence, or complex management steps (e.g., cardiac arrest emergencies, management of the difficult airway). At present, there is limited information on the usefulness of cognitive aids in critical situations with moderate time pressure and complexity. Intraoperative myocardial infarction may be an emergency to which these limitations apply. Anaesthetic teams were allocated to control (no cognitive aid; n = 10) or intervention (cognitive aid provided; n = 10) groups. The primary aim of this study was to compare cognitive aid versus memory for intraoperative ST-elevation myocardial infarction (STEMI) management in a simulation of caesarean delivery under spinal anaesthesia. We identified nine evidence-based metrics of essential care from current guidelines and subdivided them into mandatory (high level of evidence; no interference with surgery) and optional (lower class of recommendation; possible impact on surgery) tasks. Six clinically relevant tasks were added by consensus. Implementation of these steps was measured by scoring task items in a binary fashion (yes/no). The interval between the diagnosis of STEMI and the first contact with the cardiac catheterisation lab was measured. To determine whether or not the cognitive aid had prompted an action, participants from the cognitive aid group were interviewed during debriefing on every single treatment step. At the end of the simulation, session participants were asked to complete a survey. The presence of the cognitive aid did not shorten the time interval until the cardiac catheterisation lab was contacted. The availability of the cognitive aid improved task performance in the tasks identified from the guidelines (93% vs. 69%; p < 0.001) as well as overall task performance (87.5% vs. 59%; p < 0.001). The observed difference in performance can be attributed to the use of the cognitive aid, as performance from memory alone would have been comparable across both groups. Trainees appeared to derive greater benefit from the cognitive aid than did consultants and nurses. The management of intraoperative ST-elevation myocardial infarction can be improved if teams use a cognitive aid. Trainees appeared to derive greater benefit from the cognitive aid than did consultants and nurses.

  9. A taxonomy of prospection: introducing an organizational framework for future-oriented cognition.

    PubMed

    Szpunar, Karl K; Spreng, R Nathan; Schacter, Daniel L

    2014-12-30

    Prospection--the ability to represent what might happen in the future--is a broad concept that has been used to characterize a wide variety of future-oriented cognitions, including affective forecasting, prospective memory, temporal discounting, episodic simulation, and autobiographical planning. In this article, we propose a taxonomy of prospection to initiate the important and necessary process of teasing apart the various forms of future thinking that constitute the landscape of prospective cognition. The organizational framework that we propose delineates episodic and semantic forms of four modes of future thinking: simulation, prediction, intention, and planning. We show how this framework can be used to draw attention to the ways in which various modes of future thinking interact with one another, generate new questions about prospective cognition, and illuminate our understanding of disorders of future thinking. We conclude by considering basic cognitive processes that give rise to prospective cognitions, cognitive operations and emotional/motivational states relevant to future-oriented cognition, and the possible role of procedural or motor systems in future-oriented behavior.

  10. Automated ambulatory assessment of cognitive performance, environmental conditions, and motor activity during military operations

    NASA Astrophysics Data System (ADS)

    Lieberman, Harris R.; Kramer, F. Matthew; Montain, Scott J.; Niro, Philip; Young, Andrew J.

    2005-05-01

    Until recently scientists had limited opportunities to study human cognitive performance in non-laboratory, fully ambulatory situations. Recently, advances in technology have made it possible to extend behavioral assessment to the field environment. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device, now widely employed, can acquire minute-by-minute information on an individual"s level of motor activity. Actigraphs can, with reasonable accuracy, distinguish sleep from waking, the most critical and basic aspect of human behavior. However, rapid technologic advances have provided the opportunity to collect much more information from fully ambulatory humans. Our laboratory has developed a series of wrist-worn devices, which are not much larger then a watch, which can assess simple and choice reaction time, vigilance and memory. In addition, the devices can concurrently assess motor activity with much greater temporal resolution then the standard actigraph. Furthermore, they continuously monitor multiple environmental variables including temperature, humidity, sound and light. We have employed these monitors during training and simulated military operations to collect information that would typically be unavailable under such circumstances. In this paper we will describe various versions of the vigilance monitor and how each successive version extended the capabilities of the device. Samples of data from several studies are presented, included studies conducted in harsh field environments during simulated infantry assaults, a Marine Corps Officer training course and mechanized infantry (Stryker) operations. The monitors have been useful for documenting environmental conditions experienced by wearers, studying patterns of sleep and activity and examining the effects of nutritional manipulations on warfighter performance.

  11. Does excessive daytime sleepiness affect children's pedestrian safety?

    PubMed

    Avis, Kristin T; Gamble, Karen L; Schwebel, David C

    2014-02-01

    Many cognitive factors contribute to unintentional pedestrian injury, including reaction time, impulsivity, risk-taking, attention, and decision-making. These same factors are negatively influenced by excessive daytime sleepiness (EDS), which may place children with EDS at greater risk for pedestrian injury. Using a case-control design, 33 children age 8 to 16 y with EDS from an established diagnosis of narcolepsy or idiopathic hypersomnia (IHS) engaged in a virtual reality pedestrian environment while unmedicated. Thirty-three healthy children matched by age, race, sex, and household income served as controls. Children with EDS were riskier pedestrians than healthy children. They were twice as likely to be struck by a virtual vehicle in the virtual pedestrian environment than healthy controls. Attentional skills of looking at oncoming traffic were not impaired among children with EDS, but decision-making for when to cross the street safely was significantly impaired. Results suggest excessive daytime sleepiness (EDS) from the clinical sleep disorders known as the hypersomnias of central origin may have significant consequences on children's daytime functioning in a critical domain of personal safety, pedestrian skills. Cognitive processes involved in safe pedestrian crossings may be impaired in children with EDS. In the pedestrian simulation, children with EDS appeared to show a pattern consistent with inattentional blindness, in that they "looked but did not process" information in their pedestrian environment. Results highlight the need for heightened awareness of potentially irreversible consequences of untreated sleep disorders and identify a possible target for pediatric injury prevention.

  12. Simulation of a Schema Theory-Based Knowledge Delivery System for Scientists.

    ERIC Educational Resources Information Center

    Vaughan, W. S., Jr.; Mavor, Anne S.

    A future, automated, interactive, knowledge delivery system for use by researchers was tested using a manual cognitive model. Conceptualized from schema/frame/script theories in cognitive psychology and artificial intelligence, this hypothetical system was simulated by two psychologists who interacted with four researchers in microbiology to…

  13. Students' Experiences of Learning Manual Clinical Skills through Simulation

    ERIC Educational Resources Information Center

    Johannesson, Eva; Silen, Charlotte; Kvist, Joanna; Hult, Hakan

    2013-01-01

    Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and…

  14. Visualization and Rule Validation in Human-Behavior Representation

    ERIC Educational Resources Information Center

    Moya, Lisa Jean; McKenzie, Frederic D.; Nguyen, Quynh-Anh H.

    2008-01-01

    Human behavior representation (HBR) models simulate human behaviors and responses. The Joint Crowd Federate [TM] cognitive model developed by the Virginia Modeling, Analysis, and Simulation Center (VMASC) and licensed by WernerAnderson, Inc., models the cognitive behavior of crowds to provide credible crowd behavior in support of military…

  15. Cognitive Adaptability: The Role of Metacognition and Feedback in Entrepreneural Decision Policies

    DTIC Science & Technology

    2005-01-01

    their environments in such a way as to facilitate effective and dynamic cognitive functioning. In this dissertation, I present three complementary studies ...the study of metacognition (Jost, Kruglanski, and Nelson, 1998; Mischel, 1998; Schwarz, 1998b). This research has three goals, specifically to...environments in such a way as to facilitate effective and dynamic cognitive functioning. In this dissertation, I present three complementary studies that

  16. Consequences of cognitive impairments following traumatic brain injury: Pilot study on visual exploration while driving.

    PubMed

    Milleville-Pennel, Isabelle; Pothier, Johanna; Hoc, Jean-Michel; Mathé, Jean-François

    2010-01-01

    The aim was to assess the visual exploration of a person suffering from traumatic brain injury (TBI). It was hypothesized that visual exploration could be modified as a result of attentional or executive function deficits that are often observed following brain injury. This study compared an analysis of eyes movements while driving with data from neuropsychological tests. Five participants suffering from TBI and six control participants took part in this study. All had good driving experience. They were invited to drive on a fixed-base driving simulator. Eye fixations were recorded using an eye tracker. Neuropsychological tests were used to assess attention, working memory, rapidity of information processing and executive functions. Participants with TBI showed a reduction in the variety of the visual zones explored and a reduction of the distance of exploration. Moreover, neuropsychological evaluation indicates that there were difficulties in terms of divided attention, anticipation and planning. There is a complementarity of the information obtained. Tests give information about cognitive deficiencies but not about their translation into a dynamic situation. Conversely, visual exploration provides information about the dynamic with which information is picked up in the environment but not about the cognitive processes involved.

  17. Learning in the model space for cognitive fault diagnosis.

    PubMed

    Chen, Huanhuan; Tino, Peter; Rodan, Ali; Yao, Xin

    2014-01-01

    The emergence of large sensor networks has facilitated the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be time-varying or unformulated. In this paper, we develop an innovative cognitive fault diagnosis framework that tackles the above challenges. This framework investigates fault diagnosis in the model space instead of the signal space. Learning in the model space is implemented by fitting a series of models using a series of signal segments selected with a sliding window. By investigating the learning techniques in the fitted model space, faulty models can be discriminated from healthy models using a one-class learning algorithm. The framework enables us to construct a fault library when unknown faults occur, which can be regarded as cognitive fault isolation. This paper also theoretically investigates how to measure the pairwise distance between two models in the model space and incorporates the model distance into the learning algorithm in the model space. The results on three benchmark applications and one simulated model for the Barcelona water distribution network confirm the effectiveness of the proposed framework.

  18. Situated learning theory: adding rate and complexity effects via Kauffman's NK model.

    PubMed

    Yuan, Yu; McKelvey, Bill

    2004-01-01

    For many firms, producing information, knowledge, and enhancing learning capability have become the primary basis of competitive advantage. A review of organizational learning theory identifies two approaches: (1) those that treat symbolic information processing as fundamental to learning, and (2) those that view the situated nature of cognition as fundamental. After noting that the former is inadequate because it focuses primarily on behavioral and cognitive aspects of individual learning, this paper argues the importance of studying learning as interactions among people in the context of their environment. It contributes to organizational learning in three ways. First, it argues that situated learning theory is to be preferred over traditional behavioral and cognitive learning theories, because it treats organizations as complex adaptive systems rather than mere information processors. Second, it adds rate and nonlinear learning effects. Third, following model-centered epistemology, it uses an agent-based computational model, in particular a "humanized" version of Kauffman's NK model, to study the situated nature of learning. Using simulation results, we test eight hypotheses extending situated learning theory in new directions. The paper ends with a discussion of possible extensions of the current study to better address key issues in situated learning.

  19. The impact of brain size on pilot performance varies with aviation training and years of education

    PubMed Central

    Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.

    2010-01-01

    Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103

  20. The roles of COMT val158met status and aviation expertise in flight simulator performance and cognitive ability.

    PubMed

    Kennedy, Q; Taylor, J L; Noda, A; Adamson, M; Murphy, G M; Zeitzer, J M; Yesavage, J A

    2011-09-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41-69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task.

  1. Intraindividual variability in basic reaction time predicts middle-aged and older pilots' flight simulator performance.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome

    2013-07-01

    Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.

  2. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    PubMed Central

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  3. The Roles of COMT val158met Status and Aviation Expertise in Flight Simulator Performance and Cognitive Ability

    PubMed Central

    Taylor, J. L.; Noda, A.; Adamson, M.; Murphy, G. M.; Zeitzer, J. M.; Yesavage, J. A.

    2011-01-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41–69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task. PMID:21193954

  4. Social context modulates cognitive markers in Obsessive-Compulsive Disorder.

    PubMed

    Santamaría-García, Hernando; Soriano-Mas, Carles; Burgaleta, Miguel; Ayneto, Alba; Alonso, Pino; Menchón, José M; Cardoner, Narcis; Sebastián-Gallés, Nuria

    2017-08-03

    Error monitoring, cognitive control and motor inhibition control are proposed as cognitive alterations disrupted in obsessive-compulsive disorder (OCD). OCD has also been associated with an increased sensitivity to social evaluations. The effect of a social simulation over electrophysiological indices of cognitive alterations in OCD was examined. A case-control cross-sectional study measuring event-related potentials (ERP) for error monitoring (Error-Related Negativity), cognitive control (N2) and motor control (LRP) was conducted. We analyzed twenty OCD patients and twenty control participants. ERP were recorded during a social game consisting of a visual discrimination task, which was performed in the presence of a simulated superior or an inferior player. Significant social effects (different ERP amplitudes in Superior vs. Inferior player conditions) were found for OCD patients, but not for controls, in all ERP components. Performing the task against a simulated inferior player reduced abnormal ERP responses in OCD to levels observed in controls. The hierarchy-induced ERP effects were accompanied effects over reaction times in OCD patients. Social context modulates signatures of abnormal cognitive functioning in OCD, therefore experiencing a social superiority position impacts over cognitive processes in OCD such as error monitoring mechanisms. These results open the door for the research of new therapeutic choices.

  5. Development of Web-Based Learning Environment Model to Enhance Cognitive Skills for Undergraduate Students in the Field of Electrical Engineering

    ERIC Educational Resources Information Center

    Lakonpol, Thongmee; Ruangsuwan, Chaiyot; Terdtoon, Pradit

    2015-01-01

    This research aimed to develop a web-based learning environment model for enhancing cognitive skills of undergraduate students in the field of electrical engineering. The research is divided into 4 phases: 1) investigating the current status and requirements of web-based learning environment models. 2) developing a web-based learning environment…

  6. Effects of Web Based Inquiry Science Environment on Cognitive Outcomes in Biological Science in Correlation to Emotional Intelligence

    ERIC Educational Resources Information Center

    Manoj, T. I.; Devanathan, S.

    2010-01-01

    This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…

  7. Where am I? Who am I? The Relation Between Spatial Cognition, Social Cognition and Individual Differences in the Built Environment

    PubMed Central

    Proulx, Michael J.; Todorov, Orlin S.; Taylor Aiken, Amanda; de Sousa, Alexandra A.

    2016-01-01

    Knowing who we are, and where we are, are two fundamental aspects of our physical and mental experience. Although the domains of spatial and social cognition are often studied independently, a few recent areas of scholarship have explored the interactions of place and self. This fits in with increasing evidence for embodied theories of cognition, where mental processes are grounded in action and perception. Who we are might be integrated with where we are, and impact how we move through space. Individuals vary in personality, navigational strategies, and numerous cognitive and social competencies. Here we review the relation between social and spatial spheres of existence in the realms of philosophical considerations, neural and psychological representations, and evolutionary context, and how we might use the built environment to suit who we are, or how it creates who we are. In particular we investigate how two spatial reference frames, egocentric and allocentric, might transcend into the social realm. We then speculate on how environments may interact with spatial cognition. Finally, we suggest how a framework encompassing spatial and social cognition might be taken in consideration by architects and urban planners. PMID:26903893

  8. The effect of the work environment and performance-based self-esteem on cognitive stress symptoms among Danish knowledge workers.

    PubMed

    Albertsen, Karen; Rugulies, Reiner; Garde, Anne Helene; Burr, Hermann

    2010-02-01

    Interpersonal relations at work as well as individual factors seem to play prominent roles in the modern labour market, and arguably also for the change in stress symptoms. The aim was to examine whether exposures in the psychosocial work environment predicted symptoms of cognitive stress in a sample of Danish knowledge workers (i.e. employees working with sign, communication or exchange of knowledge) and whether performance-based self-esteem had a main effect, over and above the work environmental factors. 349 knowledge workers, selected from a national, representative cohort study, were followed up with two data collections, 12 months apart. We used data on psychosocial work environment factors and cognitive stress symptoms measured with the Copenhagen Psychosocial Questionnaire (COPSOQ), and a measurement of performance-based self-esteem. Effects on cognitive stress symptoms were analyzed with a GLM procedure with and without adjustment for baseline level. Measures at baseline of quantitative demands, role conflicts, lack of role clarity, recognition, predictability, influence and social support from management were positively associated with cognitive stress symptoms 12 months later. After adjustment for baseline level of cognitive stress symptoms, follow-up level was only predicted by lack of predictability. Performance-based self-esteem was prospectively associated with cognitive stress symptoms and had an independent effect above the psychosocial work environment factors on the level of and changes in cognitive stress symptoms. The results suggest that both work environmental and individual characteristics should be taken into account in order to capture sources of stress in modern working life.

  9. Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-02-01

    Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Effects of Cognitive Training with and without Aerobic Exercise on Cognitively-Demanding Everyday Activities

    PubMed Central

    McDaniel, Mark A.; Binder, Ellen F.; Bugg, Julie M.; Waldum, Emily R.; Dufault, Carolyn; Meyer, Amanda; Johanning, Jennifer; Zheng, Jie; Schechtman, Kenneth B.; Kudelka, Chris

    2015-01-01

    We investigated the potential benefits of a novel cognitive training protocol and an aerobic exercise intervention, both individually and in concert, on older adults’ performances in laboratory simulations of select real-world tasks. The cognitive training focused on a range of cognitive processes, including attentional coordination, prospective memory, and retrospective-memory retrieval, processes that are likely involved in many everyday tasks, and that decline with age. Primary outcome measures were three laboratory tasks that simulated everyday activities: Cooking Breakfast, Virtual Week, and Memory for Health Information. Two months of cognitive training improved older adults’ performance on prospective memory tasks embedded in Virtual Week. Cognitive training, either alone or in combination with six months of aerobic exercise, did not significantly improve Cooking Breakfast or Memory for Health Information. Although gains in aerobic power were comparable to previous reports, aerobic exercise did not produce improvements for the primary outcome measures. Discussion focuses on the possibility that cognitive training programs that include explicit strategy instruction and varied practice contexts may confer gains to older adults for performance on cognitively challenging everyday tasks. PMID:25244489

  11. Individual Differences in a Spatial-Semantic Virtual Environment.

    ERIC Educational Resources Information Center

    Chen, Chaomei

    2000-01-01

    Presents two empirical case studies concerning the role of individual differences in searching through a spatial-semantic virtual environment. Discusses information visualization in information systems; cognitive factors, including associative memory, spatial ability, and visual memory; user satisfaction; and cognitive abilities and search…

  12. Association of Social Support and Family Environment with Cognitive Function in Peritoneal Dialysis Patients.

    PubMed

    Wang, Qin; Yang, Zhi-Kai; Sun, Xiu-Mei; Du, Yun; Song, Yi-Fan; Ren, Ye-Ping; Dong, Jie

    ♦ BACKGROUND: Cognitive impairment (CI) is a common phenomenon and predictive of high mortality in peritoneal dialysis (PD) patients. This study aimed to analyze the association of social support and family environment with cognitive function in PD patients. ♦ METHODS: This is a cross-sectional study of PD patients from Peking University First Hospital and the Second Affiliated Hospital of Harbin Medical University. Global cognitive function was measured using the Modified Mini-Mental State Examination (3MS), executive function was measured by the A and B trail-making tests, and other cognitive functions were measured by the Repeatable Battery for the Assessment of Neuropsychological Status. Social support was measured with the Social Support Scale developed by Xiaoshuiyuan and family environment was measured with the Chinese Version of the Family Environment Scale (FES-CV). ♦ RESULTS: The prevalence of CI and executive dysfunction among the 173 patients in the study was, respectively, 16.8% and 26.3%. Logistic regression found that higher global social support (odds ratio [OR] = 1.09, 1.01 - 1.17, p = 0.027) and subjective social support predicted higher prevalence of CI (OR = 1.13, 1.02 - 1.25, p = 0.022), adjusting for covariates. Analyses of the FES-CV dimensions found that greater independence was significantly associated with better immediate memory and delayed memory. Moreover, higher scores on achievement orientation were significantly associated with poorer language skills. ♦ CONCLUSIONS: Our findings indicate that social support is negatively associated with the cognitive function of PD patients and that some dimensions of the family environment are significantly associated with several domains of cognitive function. Copyright © 2017 International Society for Peritoneal Dialysis.

  13. Incubation environment impacts the social cognition of adult lizards.

    PubMed

    Siviter, Harry; Deeming, D Charles; van Giezen, M F T; Wilkinson, Anna

    2017-11-01

    Recent work exploring the relationship between early environmental conditions and cognition has shown that incubation environment can influence both brain anatomy and performance in simple operant tasks in young lizards. It is currently unknown how it impacts other, potentially more sophisticated, cognitive processes. Social-cognitive abilities, such as gaze following and social learning, are thought to be highly adaptive as they provide a short-cut to acquiring new information. Here, we investigated whether egg incubation temperature influenced two aspects of social cognition, gaze following and social learning in adult reptiles ( Pogona vitticeps ). Incubation temperature did not influence the gaze following ability of the bearded dragons; however, lizards incubated at colder temperatures were quicker at learning a social task and faster at completing that task. These results are the first to show that egg incubation temperature influences the social cognitive abilities of an oviparous reptile species and that it does so differentially depending on the task. Further, the results show that the effect of incubation environment was not ephemeral but lasted long into adulthood. It could thus have potential long-term effects on fitness.

  14. Incubation environment impacts the social cognition of adult lizards

    PubMed Central

    van Giezen, M. F. T.

    2017-01-01

    Recent work exploring the relationship between early environmental conditions and cognition has shown that incubation environment can influence both brain anatomy and performance in simple operant tasks in young lizards. It is currently unknown how it impacts other, potentially more sophisticated, cognitive processes. Social-cognitive abilities, such as gaze following and social learning, are thought to be highly adaptive as they provide a short-cut to acquiring new information. Here, we investigated whether egg incubation temperature influenced two aspects of social cognition, gaze following and social learning in adult reptiles (Pogona vitticeps). Incubation temperature did not influence the gaze following ability of the bearded dragons; however, lizards incubated at colder temperatures were quicker at learning a social task and faster at completing that task. These results are the first to show that egg incubation temperature influences the social cognitive abilities of an oviparous reptile species and that it does so differentially depending on the task. Further, the results show that the effect of incubation environment was not ephemeral but lasted long into adulthood. It could thus have potential long-term effects on fitness. PMID:29291066

  15. Technology implications of a cognitive task analysis for locomotive engineers

    DOT National Transportation Integrated Search

    2009-01-01

    This report documents the results of a cognitive task analysis (CTA) that examined the cognitive demands and activities of locomotive engineers in todays environment and the changes in cognitive demands and activities that are likely to arise with...

  16. The effect of a secondary cognitive task on landing mechanics and jump performance.

    PubMed

    Dai, Boyi; Cook, Ross F; Meyer, Elizabeth A; Sciascia, Yvonne; Hinshaw, Taylour J; Wang, Chaoyi; Zhu, Qin

    2018-06-01

    Anterior cruciate ligament (ACL) injuries commonly occur during jump-landing tasks when individuals' attention is simultaneously allocated to other objects and tasks. The purpose of the current study was to investigate the effect of allocation of attention imposed by a secondary cognitive task on landing mechanics and jump performance. Thirty-eight recreational athletes performed a jump-landing task in three conditions: no counting, counting backward by 1 s from a randomly given number, and counting backward by 7 s from a randomly given number. Three-dimensional kinematics and ground reaction forces were collected and analysed. Participants demonstrated decreased knee flexion angles at initial contact (p = 0.001) for the counting by 1 s condition compared with the no counting condition. Participants also showed increased peak posterior and vertical ground reaction forces during the first 100 ms of landing (p ≤ 0.023) and decreased jump height (p < 0.001) for the counting by 1 s and counting by 7 s conditions compared with the no counting condition. Imposition of a simultaneous cognitive challenge resulted in landing mechanics associated with increased ACL loading and decreased jump performance. ACL injury risk screening protocols and injury prevention programmes may incorporate cognitive tasks into jump-landing tasks to better simulate sports environments.

  17. Capturing a Commander's decision making style

    NASA Astrophysics Data System (ADS)

    Santos, Eugene; Nguyen, Hien; Russell, Jacob; Kim, Keumjoo; Veenhuis, Luke; Boparai, Ramnjit; Stautland, Thomas Kristoffer

    2017-05-01

    A Commander's decision making style represents how he weighs his choices and evaluates possible solutions with regards to his goals. Specifically, in the naval warfare domain, it relates the way he processes a large amount of information in dynamic, uncertain environments, allocates resources, and chooses appropriate actions to pursue. In this paper, we describe an approach to capture a Commander's decision style by creating a cognitive model that captures his decisionmaking process and evaluate this model using a set of scenarios using an online naval warfare simulation game. In this model, we use the Commander's past behaviors and generalize Commander's actions across multiple problems and multiple decision making sequences in order to recommend actions to a Commander in a manner that he may have taken. Our approach builds upon the Double Transition Model to represent the Commander's focus and beliefs to estimate his cognitive state. Each cognitive state reflects a stage in a Commander's decision making process, each action reflects the tasks that he has taken to move himself closer to a final decision, and the reward reflects how close he is to achieving his goal. We then use inverse reinforcement learning to compute a reward for each of the Commander's actions. These rewards and cognitive states are used to compare between different styles of decision making. We construct a set of scenarios in the game where rational, intuitive and spontaneous decision making styles will be evaluated.

  18. Toward a Nonspeech Test of Auditory Cognition: Semantic Context Effects in Environmental Sound Identification in Adults of Varying Age and Hearing Abilities

    PubMed Central

    Sheft, Stanley; Norris, Molly; Spanos, George; Radasevich, Katherine; Formsma, Paige; Gygi, Brian

    2016-01-01

    Objective Sounds in everyday environments tend to follow one another as events unfold over time. The tacit knowledge of contextual relationships among environmental sounds can influence their perception. We examined the effect of semantic context on the identification of sequences of environmental sounds by adults of varying age and hearing abilities, with an aim to develop a nonspeech test of auditory cognition. Method The familiar environmental sound test (FEST) consisted of 25 individual sounds arranged into ten five-sound sequences: five contextually coherent and five incoherent. After hearing each sequence, listeners identified each sound and arranged them in the presentation order. FEST was administered to young normal-hearing, middle-to-older normal-hearing, and middle-to-older hearing-impaired adults (Experiment 1), and to postlingual cochlear-implant users and young normal-hearing adults tested through vocoder-simulated implants (Experiment 2). Results FEST scores revealed a strong positive effect of semantic context in all listener groups, with young normal-hearing listeners outperforming other groups. FEST scores also correlated with other measures of cognitive ability, and for CI users, with the intelligibility of speech-in-noise. Conclusions Being sensitive to semantic context effects, FEST can serve as a nonspeech test of auditory cognition for diverse listener populations to assess and potentially improve everyday listening skills. PMID:27893791

  19. An exploration of the relationship between knowledge and performance-related variables in high-fidelity simulation: designing instruction that promotes expertise in practice.

    PubMed

    Hauber, Roxanne P; Cormier, Eileen; Whyte, James

    2010-01-01

    Increasingly, high-fidelity patient simulation (HFPS) is becoming essential to nursing education. Much remains unknown about how classroom learning is connected to student decision-making in simulation scenarios and the degree to which transference takes place between the classroom setting and actual practice. The present study was part of a larger pilot study aimed at determining the relationship between nursing students' clinical ability to prioritize their actions and the associated cognitions and physiologic outcomes of care using HFPS. In an effort to better explain the knowledge base being used by nursing students in HFPS, the investigators explored the relationship between common measures of knowledge and performance-related variables. Findings are discussed within the context of the expert performance approach and concepts from cognitive psychology, such as cognitive architecture, cognitive load, memory, and transference.

  20. A Neuroscience Approach to Optimizing Brain Resources for Human Performance in Extreme Environments

    PubMed Central

    Paulus, Martin P.; Potterat, Eric G.; Taylor, Marcus K.; Van Orden, Karl F.; Bauman, James; Momen, Nausheen; Padilla, Genieleah A.; Swain, Judith L.

    2009-01-01

    Extreme environments requiring optimal cognitive and behavioral performance occur in a wide variety of situations ranging from complex combat operations to elite athletic competitions. Although a large literature characterizes psychological and other aspects of individual differences in performances in extreme environments, virtually nothing is known about the underlying neural basis for these differences. This review summarizes the cognitive, emotional, and behavioral consequences of exposure to extreme environments, discusses predictors of performance, and builds a case for the use of neuroscience approaches to quantify and understand optimal cognitive and behavioral performance. Extreme environments are defined as an external context that exposes individuals to demanding psychological and/or physical conditions, and which may have profound effects on cognitive and behavioral performance. Examples of these types of environments include combat situations, Olympic-level competition, and expeditions in extreme cold, at high altitudes, or in space. Optimal performance is defined as the degree to which individuals achieve a desired outcome when completing goal-oriented tasks. It is hypothesized that individual variability with respect to optimal performance in extreme environments depends on a well “contextualized” internal body state that is associated with an appropriate potential to act. This hypothesis can be translated into an experimental approach that may be useful for quantifying the degree to which individuals are particularly suited to performing optimally in demanding environments. PMID:19447132

  1. Conservatism and liberalism predict performance in two nonideological cognitive tasks.

    PubMed

    Bernabel, Rodolpho Talaisys; Oliveira, Amâncio

    2017-01-01

    Intuitive thinking would argue that political or ideological orientation does not correlate with nonpolitical decisions, and certainly not with nonideological cognitive tasks. However, that is what happens in some cases. Previous neuropolitics studies have found that liberals are more adept at dealing with novel information than conservatives. This finding suggests that conservatives and liberals possess different cognitive skills. For the purposes of this article, two studies were executed to test whether this difference remained in alternative environmental settings. To this end, two novel cognitive tasks were designed in which one type of ideology or another was privileged according to the cognitive environment created by the tasks. Experimental findings indicate that liberals committed fewer errors than conservatives in one kind of cognitive environment, while conservatives scored higher in another.

  2. Micro-scale environment and mental health in later life: Results from the Cognitive Function and Ageing Study II (CFAS II).

    PubMed

    Wu, Yu-Tzu; Prina, A Matthew; Jones, Andy; Barnes, Linda E; Matthews, Fiona E; Brayne, Carol

    2017-08-15

    Poor micro-scale environmental features, such as graffiti and broken windows, have been associated with crime and signs of social disorder with a potential impact on mental health. The aim of this study is to investigate the association between micro-scale environment and mental health problems in later life, including cognitive (cognitive impairment and dementia) and common mental disorders (depressive and anxiety symptoms). The method of visual image audits was used to collect micro-scale environmental data for 3590 participants in the Cognitive Function and Ageing Study II, a population-based multicentre cohort of people aged 65 or above in England. Multilevel logistic regression was used to examine the associations between the quality of micro-scale environment and mental health problems taking into account urban/rural difference. Poor quality of micro-scale environment was associated with nearly 20% increased odds of depressive (OR: 1.19; 95% CI: 0.99, 1.44) and anxiety symptoms (OR: 1.17; 95% CI: 0.99, 1.38) while the direction of association for cognitive disorders differed across urban and rural settings. Although higher odds of cognitive disorders were found in rural settings, living in a poor quality environment was associated with nearly twice higher odds of cognitive impairment (OR: 1.88; 95% CI: 1.18, 2.97) in urban conurbations but 20% lower odds in rural areas (OR: 0.80; 95% CI: 0.57, 1.11). The causal direction could not be fully determined due to the cross-sectional nature of the data. The visual nature of the environmental assessment tool means it likely does not fully capture features related to the availability of local support services, or opportunities for social participation and interaction. The quality of micro-scale environment appears to be important to mental health in older people. Interventions may incorporate the environmental aspect to reduce cognitive and common mental disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Team Cognition in Experienced Command-and-Control Teams

    ERIC Educational Resources Information Center

    Cooke, Nancy J.; Gorman, Jamie C.; Duran, Jasmine L.; Taylor, Amanda R.

    2007-01-01

    Team cognition in experienced command-and-control teams is examined in an UAV (Uninhabited Aerial Vehicle) simulation. Five 3-person teams with experience working together in a command-and-control setting were compared to 10 inexperienced teams. Each team participated in five 40-min missions of a simulation in which interdependent team members…

  4. Using Simulations To Improve Cognitive Reasoning.

    ERIC Educational Resources Information Center

    McGee, Steven; Corriss, Darlene; Shia, Regina

    This study investigated changes in students' cognitive reasoning as they analyzed the dynamics of a rainforest ecosystem (El Yunque) in the aftermath of a hurricane in Puerto Rico. Students explore the virtual rainforest to study what happened to a type of frog after the hurricane. The culminating event is a simulation in which students manipulate…

  5. The Influence of Momentary Goal Structures

    ERIC Educational Resources Information Center

    Zaleski, Diana Janet

    2010-01-01

    Adolescents' cognition is influenced by a dynamic educational environment. Studies examining the influence of schools, classrooms, and teachers often overlook the momentary variation found in these environments and the effect this variation has on student cognition. Using an achievement goal theory framework, this study examined the momentary…

  6. Total Environment Assessment of Stressors Associated with Cognitive Development - A Meta Analysis

    EPA Science Inventory

    Cognitive development (COGDEV) is marked by a number of critical periods during early childhood in which brain development is influenced by myriad chemical and non-chemical stressors from the built, natural, and social environments. Inherent factors and behaviors can also directl...

  7. Sibsize, Family Environment, Cognitive Performance, and Affective Characteristics

    ERIC Educational Resources Information Center

    Marjoribanks, Kevin

    1976-01-01

    Incorporates measures of family environment (parent-child interaction) into research methodology to study the effects of sibsize (family size and birth order) on a child's cognitive performance and affective behavior. Provides tentative support for the confluence model of sibsize influences on children's behaviors. (RL)

  8. Effects of WOE Presentation Types Used in Pre-Training on the Cognitive Load and Comprehension of Content in Animation-Based Learning Environments

    ERIC Educational Resources Information Center

    Jung, Jung,; Kim, Dongsik; Na, Chungsoo

    2016-01-01

    This study investigated the effectiveness of various types of worked-out examples used in pre-training to optimize the cognitive load and enhance learners' comprehension of the content in an animation-based learning environment. An animation-based learning environment was developed specifically for this study. The participants were divided into…

  9. Contributions of a Child’s Built, Natural, and Social Environments to Their General Cognitive Ability: A Systematic Scoping Review

    DOE PAGES

    Ruiz, Jazmin Del Carmen; Quackenboss, James J.; Tulve, Nicolle S.; ...

    2016-02-03

    The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negative and positive, over the life course. The aim of this systematic scoping review was to collate evidence associated with children’s cognitive health, including inherent factors as well as chemical and non-chemical stressors from the built, natural, and social environments. Three databases were used to identify recent epidemiological studies (2003–2013) that examined exposure factors associated with general cognitive abilitymore » in children. Over 100 factors were evaluated from 258 eligible studies. We found that recent literature mainly assessed the hypothesized negative effects of either inherent factors or chemical exposures present in the physical environment. Prenatal growth, sleep health, lead and water pollutants showed consistent negative effects. Of the few studies that examined social stressors, results consistently showed cognitive development to be influenced by both positive and negative social interactions at home, in school or the community. Among behavioral factors related to diet and lifestyle choices of the mother, breastfeeding was the most studied, showing consistent positive associations with cognitive ability. There were mostly inconsistent results for both chemical and non-chemical stressors. The majority of studies utilized traditional exposure assessments, evaluating chemical and non-chemical stressors separately. Collective evidence from a limited number of studies revealed that cumulative exposure assessment that incorporates multiple chemical and non-chemical stressors over the life course may unravel the variability in effect on cognitive development and help explain the inconsistencies across studies. Here, future research examining the interactions of multiple stressors within a child’s total environment, depicting a more real-world exposure, will aid in understanding the cumulative effects associated with a child’s ability to learn.« less

  10. Contributions of a Child’s Built, Natural, and Social Environments to Their General Cognitive Ability: A Systematic Scoping Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, Jazmin Del Carmen; Quackenboss, James J.; Tulve, Nicolle S.

    The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negative and positive, over the life course. The aim of this systematic scoping review was to collate evidence associated with children’s cognitive health, including inherent factors as well as chemical and non-chemical stressors from the built, natural, and social environments. Three databases were used to identify recent epidemiological studies (2003–2013) that examined exposure factors associated with general cognitive abilitymore » in children. Over 100 factors were evaluated from 258 eligible studies. We found that recent literature mainly assessed the hypothesized negative effects of either inherent factors or chemical exposures present in the physical environment. Prenatal growth, sleep health, lead and water pollutants showed consistent negative effects. Of the few studies that examined social stressors, results consistently showed cognitive development to be influenced by both positive and negative social interactions at home, in school or the community. Among behavioral factors related to diet and lifestyle choices of the mother, breastfeeding was the most studied, showing consistent positive associations with cognitive ability. There were mostly inconsistent results for both chemical and non-chemical stressors. The majority of studies utilized traditional exposure assessments, evaluating chemical and non-chemical stressors separately. Collective evidence from a limited number of studies revealed that cumulative exposure assessment that incorporates multiple chemical and non-chemical stressors over the life course may unravel the variability in effect on cognitive development and help explain the inconsistencies across studies. Here, future research examining the interactions of multiple stressors within a child’s total environment, depicting a more real-world exposure, will aid in understanding the cumulative effects associated with a child’s ability to learn.« less

  11. Contributions of a Child’s Built, Natural, and Social Environments to Their General Cognitive Ability: A Systematic Scoping Review

    PubMed Central

    Ruiz, Jazmin Del Carmen; Quackenboss, James J.; Tulve, Nicolle S.

    2016-01-01

    The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negative and positive, over the life course. The aim of this systematic scoping review was to collate evidence associated with children’s cognitive health, including inherent factors as well as chemical and non-chemical stressors from the built, natural, and social environments. Three databases were used to identify recent epidemiological studies (2003–2013) that examined exposure factors associated with general cognitive ability in children. Over 100 factors were evaluated from 258 eligible studies. We found that recent literature mainly assessed the hypothesized negative effects of either inherent factors or chemical exposures present in the physical environment. Prenatal growth, sleep health, lead and water pollutants showed consistent negative effects. Of the few studies that examined social stressors, results consistently showed cognitive development to be influenced by both positive and negative social interactions at home, in school or the community. Among behavioral factors related to diet and lifestyle choices of the mother, breastfeeding was the most studied, showing consistent positive associations with cognitive ability. There were mostly inconsistent results for both chemical and non-chemical stressors. The majority of studies utilized traditional exposure assessments, evaluating chemical and non-chemical stressors separately. Collective evidence from a limited number of studies revealed that cumulative exposure assessment that incorporates multiple chemical and non-chemical stressors over the life course may unravel the variability in effect on cognitive development and help explain the inconsistencies across studies. Future research examining the interactions of multiple stressors within a child’s total environment, depicting a more real-world exposure, will aid in understanding the cumulative effects associated with a child’s ability to learn. PMID:26840411

  12. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality.

    PubMed

    Cushman, Laura A; Stein, Karen; Duffy, Charles J

    2008-09-16

    Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community.

  13. Neurocognitive Correlates of Young Drivers' Performance in a Driving Simulator.

    PubMed

    Guinosso, Stephanie A; Johnson, Sara B; Schultheis, Maria T; Graefe, Anna C; Bishai, David M

    2016-04-01

    Differences in neurocognitive functioning may contribute to driving performance among young drivers. However, few studies have examined this relation. This pilot study investigated whether common neurocognitive measures were associated with driving performance among young drivers in a driving simulator. Young drivers (19.8 years (standard deviation [SD] = 1.9; N = 74)) participated in a battery of neurocognitive assessments measuring general intellectual capacity (Full-Scale Intelligence Quotient, FSIQ) and executive functioning, including the Stroop Color-Word Test (cognitive inhibition), Wisconsin Card Sort Test-64 (cognitive flexibility), and Attention Network Task (alerting, orienting, and executive attention). Participants then drove in a simulated vehicle under two conditions-a baseline and driving challenge. During the driving challenge, participants completed a verbal working memory task to increase demand on executive attention. Multiple regression models were used to evaluate the relations between the neurocognitive measures and driving performance under the two conditions. FSIQ, cognitive inhibition, and alerting were associated with better driving performance at baseline. FSIQ and cognitive inhibition were also associated with better driving performance during the verbal challenge. Measures of cognitive flexibility, orienting, and conflict executive control were not associated with driving performance under either condition. FSIQ and, to some extent, measures of executive function are associated with driving performance in a driving simulator. Further research is needed to determine if executive function is associated with more advanced driving performance under conditions that demand greater cognitive load. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  14. Neighbourhood racial/ethnic composition and segregation and trajectories of cognitive decline among US older adults.

    PubMed

    Kovalchik, Stephanie A; Slaughter, Mary E; Miles, Jeremy; Friedman, Esther M; Shih, Regina A

    2015-10-01

    The influence of the sociodemographic context of one's environment on cognitive ageing is not well understood. We examined differences in cognitive trajectories according to the racial/ethnic characteristics of the residential environment. On the basis of 63 996 person-years of data from a nationally representative cohort of 6150 adults over the age of 50 years from the Health and Retirement Study, we used multivariate linear mixed models to determine the effect of neighbourhood racial/ethnic composition and county-level segregation on cognitive function and cognitive decline over a 10-year period. In models adjusting for individual demographic and health characteristics, Hispanic composition had a significant positive association with cognitive function (standardised β=0.136, p<0.05) and moderate evidence of an association with greater cognitive decline (standardised β=-0.014, p=0.09). Greater Hispanic-white segregation was associated with statistically significant higher cognitive function at baseline (standardised β=0.099, p<0.001) and greater cognitive decline (standardised β=-0.011, p<0.01). For a 20 percentage-point increase in Hispanic composition and segregation, the observed associations implied 1 and 1.25 additional years of cognitive ageing over 10 years, respectively. These effects did not differ by individual race/ethnicity and were not explained by neighbourhood socioeconomic status or neighbourhood selection. Black composition and black-white segregation did not have a significant influence on cognitive ageing. This study demonstrates disparities in the progression of cognitive ageing according to racial/ethnic characteristics of the neighbourhood environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Thrive or overload? The effect of task complexity on novices' simulation-based learning.

    PubMed

    Haji, Faizal A; Cheung, Jeffrey J H; Woods, Nicole; Regehr, Glenn; de Ribaupierre, Sandrine; Dubrowski, Adam

    2016-09-01

    Fidelity is widely viewed as an important element of simulation instructional design based on its purported relationship with transfer of learning. However, higher levels of fidelity may increase task complexity to a point at which novices' cognitive resources become overloaded. In this experiment, we investigate the effects of variations in task complexity on novices' cognitive load and learning during simulation-based procedural skills training. Thirty-eight medical students were randomly assigned to simulation training on a simple or complex lumbar puncture (LP) task. Participants completed four practice trials on this task (skill acquisition). After 10 days of rest, all participants completed one additional trial on their assigned task (retention) and one trial on a 'very complex' simulation designed to be similar to the complex task (transfer). We assessed LP performance and cognitive load on each trial using multiple measures. In both groups, LP performance improved significantly during skill acquisition (p ≤ 0.047, f = 0.29-0.96) and was maintained at retention. The simple task group demonstrated superior performance compared with the complex task group throughout these phases (p ≤ 0.002, d = 1.13-2.31). Cognitive load declined significantly in the simple task group (p < 0.009, f = 0.48-0.76), but not in the complex task group during skill acquisition, and remained lower at retention (p ≤ 0.024, d = 0.78-1.39). Between retention and transfer, LP performance declined and cognitive load increased in the simple task group, whereas both remained stable in the complex task group. At transfer, no group differences were observed in LP performance and cognitive load, except that the simple task group made significantly fewer breaches of sterility (p = 0.023, d = 0.80). Reduced task complexity was associated with superior LP performance and lower cognitive load during skill acquisition and retention, but mixed results on transfer to a more complex task. These results indicate that task complexity is an important factor that may mediate (via cognitive overload) the relationship between instructional design elements (e.g. fidelity) and simulation-based learning outcomes. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  16. Towards a model of temporal attention for on-line learning in a mobile robot

    NASA Astrophysics Data System (ADS)

    Marom, Yuval; Hayes, Gillian

    2001-06-01

    We present a simple attention system, capable of bottom-up signal detection adaptive to subjective internal needs. The system is used by a robotic agent, learning to perform phototaxis and obstacle avoidance by following a teacher agent around a simulated environment, and deciding when to form associations between perceived information and imitated actions. We refer to this kind of decision-making as on-line temporal attention. The main role of the attention system is perception of change; the system is regulated through feedback about cognitive effort. We show how different levels of effort affect both the ability to learn a task, and to execute it.

  17. The effects of temporal neck cooling on cognitive function during strenuous exercise in a hot environment: a pilot study.

    PubMed

    Ando, Soichi; Komiyama, Takaaki; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2015-05-30

    Heat stress potentially has detrimental effects on brain function. Hence, cognitive function may be impaired during physical activity in a hot environment. Skin cooling is often applied in a hot environment to counteract heat stress. However, it is unclear to what extent neck cooling is effective for cognitive impairment during exercise in a hot environment. The purpose of this study was to examine the effects of temporal neck cooling on cognitive function during strenuous exercise in a hot environment. Eight male young participants (mean ± SD, age = 26.1 ± 3.2 years; peak oxygen uptake = 45.6 ± 5.2 ml/kg/min) performed Spatial delayed response (DR) task (working memory) and Go/No-Go task (executive function) at rest and during exercise in the Hot and Hot + Cooling conditions. After the participants completed the cognitive tasks at rest, they cycled the ergometer until their heart rate (HR) reached 160 beats/min. Then, they cycled for 10 min while keeping their HR at 160 beats/min. The cognitive tasks were performed 3 min after their HR reached 160 beats/min. The air temperature was maintained at 35°C and the relative humidity was controlled at 70%. Neck cooling was applied to the backside of the neck by a wet towel and fanning. We used accuracy of the Spatial DR and Go/No-Go tasks and reaction time in the Go/No-Go task to assess cognitive function. Neck cooling temporarily decreased the skin temperature during exercise. The accuracy of the cognitive tasks was lower during exercise than that at rest in the Hot and Hot + Cooling condition (p < 0.05). There were no differences in the accuracy between the Hot and Hot + Cooling conditions (p = 0.98). Neither exercise (p = 0.40) nor cooling (p = 0.86) affected reaction time. These results indicate that temporal neck cooling did not alter cognitive function during strenuous exercise in a hot environment. The present study suggests that temporal neck cooling with a wet towel and fanning is not effective for attenuating impairment of working memory and executive function during strenuous exercise with a short duration in a warm and humid environment.

  18. Grounding language in action and perception: From cognitive agents to humanoid robots

    NASA Astrophysics Data System (ADS)

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.

  19. Stress Response and Cognitive Performance Modulation in Classroom versus Natural Environments: A Quasi-Experimental Pilot Study with Children.

    PubMed

    Mygind, Lærke; Stevenson, Matt P; Liebst, Lasse S; Konvalinka, Ivana; Bentsen, Peter

    2018-05-28

    Stress during childhood can have mental and somatic health influences that track throughout life. Previous research attributes stress-reducing effects to natural environments, but has mainly focused on adults and often following leisurely relaxation in natural environments. This pilot study explores the impact of natural environments on stress response during rest and mental load and cognitive performance in 47 children aged 10⁻12 years in a school context. Heart rate variability measures indexing tonic, event, and phasic vagal tone and attention scores were compared across classroom and natural environments. Tonic vagal tone was higher in the natural environment than the classrooms, but no differences were found in event or phasic vagal tone or cognitive performance measures. These findings suggest a situational aspect of the conditions under which natural environments may give rise to stress-buffering influences. Further research is warranted to understand the potential benefits in a real-life context, in particular with respect to the underpinning mechanisms and effects of accumulated exposure over time in settings where children spend large proportions of time in natural environments.

  20. Cognitive neuroscience of human counterfactual reasoning

    PubMed Central

    Van Hoeck, Nicole; Watson, Patrick D.; Barbey, Aron K.

    2015-01-01

    Counterfactual reasoning is a hallmark of human thought, enabling the capacity to shift from perceiving the immediate environment to an alternative, imagined perspective. Mental representations of counterfactual possibilities (e.g., imagined past events or future outcomes not yet at hand) provide the basis for learning from past experience, enable planning and prediction, support creativity and insight, and give rise to emotions and social attributions (e.g., regret and blame). Yet remarkably little is known about the psychological and neural foundations of counterfactual reasoning. In this review, we survey recent findings from psychology and neuroscience indicating that counterfactual thought depends on an integrative network of systems for affective processing, mental simulation, and cognitive control. We review evidence to elucidate how these mechanisms are systematically altered through psychiatric illness and neurological disease. We propose that counterfactual thinking depends on the coordination of multiple information processing systems that together enable adaptive behavior and goal-directed decision making and make recommendations for the study of counterfactual inference in health, aging, and disease. PMID:26257633

  1. Cognitive neuroscience of human counterfactual reasoning.

    PubMed

    Van Hoeck, Nicole; Watson, Patrick D; Barbey, Aron K

    2015-01-01

    Counterfactual reasoning is a hallmark of human thought, enabling the capacity to shift from perceiving the immediate environment to an alternative, imagined perspective. Mental representations of counterfactual possibilities (e.g., imagined past events or future outcomes not yet at hand) provide the basis for learning from past experience, enable planning and prediction, support creativity and insight, and give rise to emotions and social attributions (e.g., regret and blame). Yet remarkably little is known about the psychological and neural foundations of counterfactual reasoning. In this review, we survey recent findings from psychology and neuroscience indicating that counterfactual thought depends on an integrative network of systems for affective processing, mental simulation, and cognitive control. We review evidence to elucidate how these mechanisms are systematically altered through psychiatric illness and neurological disease. We propose that counterfactual thinking depends on the coordination of multiple information processing systems that together enable adaptive behavior and goal-directed decision making and make recommendations for the study of counterfactual inference in health, aging, and disease.

  2. Adaptive waveform optimization design for target detection in cognitive radar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao

    2017-01-01

    The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.

  3. In the white cube: museum context enhances the valuation and memory of art.

    PubMed

    Brieber, David; Nadal, Marcos; Leder, Helmut

    2015-01-01

    Art museum attendance is rising steadily, unchallenged by online alternatives. However, the psychological value of the real museum experience remains unclear because the experience of art in the museum and other contexts has not been compared. Here we examined the appreciation and memory of an art exhibition when viewed in a museum or as a computer simulated version in the laboratory. In line with the postulates of situated cognition, we show that the experience of art relies on organizing resources present in the environment. Specifically, artworks were found more arousing, positive, interesting and liked more in the museum than in the laboratory. Moreover, participants who saw the exhibition in the museum later recalled more artworks and used spatial layout cues for retrieval. Thus, encountering real art in the museum enhances cognitive and affective processes involved in the appreciation of art and enriches information encoded in long-term memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Modeling Simple Driving Tasks with a One-Boundary Diffusion Model

    PubMed Central

    Ratcliff, Roger; Strayer, David

    2014-01-01

    A one-boundary diffusion model was applied to the data from two experiments in which subjects were performing a simple simulated driving task. In the first experiment, the same subjects were tested on two driving tasks using a PC-based driving simulator and the psychomotor vigilance test (PVT). The diffusion model fit the response time (RT) distributions for each task and individual subject well. Model parameters were found to correlate across tasks which suggests common component processes were being tapped in the three tasks. The model was also fit to a distracted driving experiment of Cooper and Strayer (2008). Results showed that distraction altered performance by affecting the rate of evidence accumulation (drift rate) and/or increasing the boundary settings. This provides an interpretation of cognitive distraction whereby conversing on a cell phone diverts attention from the normal accumulation of information in the driving environment. PMID:24297620

  5. Susceptibility of the MMPI-2-RF neurological complaints and cognitive complaints scales to over-reporting in simulated head injury.

    PubMed

    Bolinger, Elizabeth; Reese, Caitlin; Suhr, Julie; Larrabee, Glenn J

    2014-02-01

    We examined the effect of simulated head injury on scores on the Neurological Complaints (NUC) and Cognitive Complaints (COG) scales of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF). Young adults with a history of mild head injury were randomly assigned to simulate head injury or give their best effort on a battery of neuropsychological tests, including the MMPI-2-RF. Simulators who also showed poor effort on performance validity tests (PVTs) were compared with controls who showed valid performance on PVTs. Results showed that both scales, but especially NUC, are elevated in individuals simulating head injury, with medium to large effect sizes. Although both scales were highly correlated with all MMPI-2-RF over-reporting validity scales, the relationship of Response Bias Scale to both NUC and COG was much stronger in the simulators than controls. Even accounting for over-reporting on the MMPI-2-RF, NUC was related to general somatic complaints regardless of group membership, whereas COG was related to both psychological distress and somatic complaints in the control group only. Neither scale was related to actual neuropsychological performance, regardless of group membership. Overall, results provide further evidence that self-reported cognitive symptoms can be due to many causes, not necessarily cognitive impairment, and can be exaggerated in a non-credible manner.

  6. Cognitive costs of decision-making strategies: A resource demand decomposition analysis with a cognitive architecture.

    PubMed

    Fechner, Hanna B; Schooler, Lael J; Pachur, Thorsten

    2018-01-01

    Several theories of cognition distinguish between strategies that differ in the mental effort that their use requires. But how can the effort-or cognitive costs-associated with a strategy be conceptualized and measured? We propose an approach that decomposes the effort a strategy requires into the time costs associated with the demands for using specific cognitive resources. We refer to this approach as resource demand decomposition analysis (RDDA) and instantiate it in the cognitive architecture Adaptive Control of Thought-Rational (ACT-R). ACT-R provides the means to develop computer simulations of the strategies. These simulations take into account how strategies interact with quantitative implementations of cognitive resources and incorporate the possibility of parallel processing. Using this approach, we quantified, decomposed, and compared the time costs of two prominent strategies for decision making, take-the-best and tallying. Because take-the-best often ignores information and foregoes information integration, it has been considered simpler than strategies like tallying. However, in both ACT-R simulations and an empirical study we found that under increasing cognitive demands the response times (i.e., time costs) of take-the-best sometimes exceeded those of tallying. The RDDA suggested that this pattern is driven by greater requirements for working memory updates, memory retrievals, and the coordination of mental actions when using take-the-best compared to tallying. The results illustrate that assessing the relative simplicity of strategies requires consideration of the overall cognitive system in which the strategies are embedded. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The legacy of disadvantage: multigenerational neighborhood effects on cognitive ability.

    PubMed

    Sharkey, Patrick; Elwert, Felix

    2011-05-01

    This study examines how the neighborhood environments experienced over multiple generations of a family influence children's cognitive ability. Building on recent research showing strong continuity in neighborhood environments across generations of family members, the authors argue for a revised perspective on "neighborhood effects" that considers the ways in which the neighborhood environment in one generation may have a lingering impact on the next generation. To analyze multigenerational effects, the authors use newly developed methods designed to estimate unbiased treatment effects when treatments and confounders vary over time. The results confirm a powerful link between neighborhoods and cognitive ability that extends across generations. A family's exposure to neighborhood poverty across two consecutive generations reduces child cognitive ability by more than half a standard deviation. A formal sensitivity analysis suggests that results are robust to unobserved selection bias.

  8. Role of Social Presence and Cognitive Absorption in Online Learning Environments

    ERIC Educational Resources Information Center

    Leong, Peter

    2011-01-01

    This article investigates the relationships between social presence, cognitive absorption, interest, and student satisfaction in online learning. A hypothesized structural equation model was developed to study these critical variables that may influence interaction in online learning environments. Contrary to expectations, the study determined…

  9. The role of imagination in experiencing natural environments

    Treesearch

    Herbert Schroeder

    2010-01-01

    The experience of natural environments and places is multifaceted, involving psychological functions such as perception, cognition, memory, emotion, and imagination. Environmental perception and cognition were key topics in early research in environmental psychology. More recently, attention has also been directed to affective dimensions of environmental experience,...

  10. Quantum Logic: Approach a Child's Environment from "Inside."

    ERIC Educational Resources Information Center

    Rhodes, William C.

    1987-01-01

    With the advent of quantum mechanics, physics has merged with psychology, and cognitive science has been revolutionized. Quantum logic supports the notion of influencing the environment by increasing the child's capacity for cognitive processing. This special educational approach is theoretically more effective than social and political…

  11. When Depressive Cognitions Reflect Negative Realities.

    ERIC Educational Resources Information Center

    Krantz, Susan E.

    The cognitive model of depression postulates that the depressed individual's cognitions are not only negative, but erroneous and impervious to information from the environment. However, the valence of that information ultimately determines whether those cognitions are impervious or merely receptive. The actual life circumstances of the depressed…

  12. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  13. Deliberation's blindsight: how cognitive load can improve judgments.

    PubMed

    Hoffmann, Janina A; von Helversen, Bettina; Rieskamp, Jörg

    2013-06-01

    Multitasking poses a major challenge in modern work environments by putting the worker under cognitive load. Performance decrements often occur when people are under high cognitive load because they switch to less demanding--and often less accurate--cognitive strategies. Although cognitive load disturbs performance over a wide range of tasks, it may also carry benefits. In the experiments reported here, we showed that judgment performance can increase under cognitive load. Participants solved a multiple-cue judgment task in which high performance could be achieved by using a similarity-based judgment strategy but not by using a more demanding rule-based judgment strategy. Accordingly, cognitive load induced a shift to a similarity-based judgment strategy, which consequently led to more accurate judgments. By contrast, shifting to a similarity-based strategy harmed judgments in a task best solved by using a rule-based strategy. These results show how important it is to consider the cognitive strategies people rely on to understand how people perform in demanding work environments.

  14. The relationship of speech intelligibility with hearing sensitivity, cognition, and perceived hearing difficulties varies for different speech perception tests

    PubMed Central

    Heinrich, Antje; Henshaw, Helen; Ferguson, Melanie A.

    2015-01-01

    Listeners vary in their ability to understand speech in noisy environments. Hearing sensitivity, as measured by pure-tone audiometry, can only partly explain these results, and cognition has emerged as another key concept. Although cognition relates to speech perception, the exact nature of the relationship remains to be fully understood. This study investigates how different aspects of cognition, particularly working memory and attention, relate to speech intelligibility for various tests. Perceptual accuracy of speech perception represents just one aspect of functioning in a listening environment. Activity and participation limits imposed by hearing loss, in addition to the demands of a listening environment, are also important and may be better captured by self-report questionnaires. Understanding how speech perception relates to self-reported aspects of listening forms the second focus of the study. Forty-four listeners aged between 50 and 74 years with mild sensorineural hearing loss were tested on speech perception tests differing in complexity from low (phoneme discrimination in quiet), to medium (digit triplet perception in speech-shaped noise) to high (sentence perception in modulated noise); cognitive tests of attention, memory, and non-verbal intelligence quotient; and self-report questionnaires of general health-related and hearing-specific quality of life. Hearing sensitivity and cognition related to intelligibility differently depending on the speech test: neither was important for phoneme discrimination, hearing sensitivity alone was important for digit triplet perception, and hearing and cognition together played a role in sentence perception. Self-reported aspects of auditory functioning were correlated with speech intelligibility to different degrees, with digit triplets in noise showing the richest pattern. The results suggest that intelligibility tests can vary in their auditory and cognitive demands and their sensitivity to the challenges that auditory environments pose on functioning. PMID:26136699

  15. A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition

    PubMed Central

    Szpunar, Karl K.; Spreng, R. Nathan; Schacter, Daniel L.

    2014-01-01

    Prospection—the ability to represent what might happen in the future—is a broad concept that has been used to characterize a wide variety of future-oriented cognitions, including affective forecasting, prospective memory, temporal discounting, episodic simulation, and autobiographical planning. In this article, we propose a taxonomy of prospection to initiate the important and necessary process of teasing apart the various forms of future thinking that constitute the landscape of prospective cognition. The organizational framework that we propose delineates episodic and semantic forms of four modes of future thinking: simulation, prediction, intention, and planning. We show how this framework can be used to draw attention to the ways in which various modes of future thinking interact with one another, generate new questions about prospective cognition, and illuminate our understanding of disorders of future thinking. We conclude by considering basic cognitive processes that give rise to prospective cognitions, cognitive operations and emotional/motivational states relevant to future-oriented cognition, and the possible role of procedural or motor systems in future-oriented behavior. PMID:25416592

  16. Disengagement from tasks as a function of cognitive load and depressive symptom severity.

    PubMed

    Bowie, Christopher R; Milanovic, Melissa; Tran, Tanya; Cassidy, Sarah

    2017-01-01

    Depression is associated with impairment in cognition and everyday functioning. Mechanisms of cognitive dysfunction in depression and the factors that influence strategic deployment of cognitive abilities in complex environments remain elusive. In this study we investigated whether depression symptom severity is associated with disengagement from a working memory task (Paced Auditory Serial Addition Task; PASAT) with parametric adjustment of task difficulty. 235 participants completed the Beck Depression Inventory, low and high cognitive load conditions of the PASAT, and quality of life. Cognitive disengagement was the sum of consecutive items in which participants did not proffer a response to the trial. Individuals with higher depression severity showed more cognitive disengagement on the high but not low cognitive load trial of the PASAT; they did not differ in number of correct responses. Increased disengagement from the low to high cognitive load was associated with more impaired quality of life. Depression severity is associated with increased disengagement from tasks as difficulty increases. These findings suggest the importance of measuring how cognitive skills are avoided in complex environments in addition to considering performance accuracy. Individuals with depressive symptoms might preferentially avoid cognitive tasks that are perceived as more complex in spite of intact ability.

  17. Neurological and Psychiatric Diseases and Their Unique Cognitive Profiles: Implications for Nursing Practice and Research

    PubMed Central

    Vance, David E.; Dodson, Joan E.; Watkins, Jason; Kennedy, Bridgett H.; Keltner, Norman L.

    2013-01-01

    To successfully negotiate and interact with one’s environment, optimal cognitive functioning is needed. Unfortunately, many neurological and psychiatric diseases impede certain cognitive abilities such as executive functioning or speed of processing; this can produce a poor fit between the patient and the cognitive demands of his or her environment. Such non-dementia diseases include bipolar disorder, schizophrenia, post-traumatic stress syndrome, depression, and anxiety disorders, just to name a few. Each of these diseases negatively affects particular areas of the brain, resulting in distinct cognitive profiles (e.g., deficits in executive functioning but normal speed of processing as seen in schizophrenia). In fact, it is from these cognitive deficits in which such behavioral and emotional symptoms may manifest (e.g., delusions, paranoia). This article highlights the distinct cognitive profiles of such common neurological and psychiatric diseases. An understanding of such disease-specific cognitive profiles can assist nurses in providing care to patients by knowing what cognitive deficits are associated with each disease and how these cognitive deficits impact everyday functioning and social interactions. Implications for nursing practice and research are posited within the framework of cognitive reserve and neuroplasticity. PMID:23422693

  18. Comparison between artificial neural network and multilinear regression models in an evaluation of cognitive workload in a flight simulator.

    PubMed

    Hannula, Manne; Huttunen, Kerttu; Koskelo, Jukka; Laitinen, Tomi; Leino, Tuomo

    2008-01-01

    In this study, the performances of artificial neural network (ANN) analysis and multilinear regression (MLR) model-based estimation of heart rate were compared in an evaluation of individual cognitive workload. The data comprised electrocardiography (ECG) measurements and an evaluation of cognitive load that induces psychophysiological stress (PPS), collected from 14 interceptor fighter pilots during complex simulated F/A-18 Hornet air battles. In our data, the mean absolute error of the ANN estimate was 11.4 as a visual analog scale score, being 13-23% better than the mean absolute error of the MLR model in the estimation of cognitive workload.

  19. Little AI: Playing a constructivist robot

    NASA Astrophysics Data System (ADS)

    Georgeon, Olivier L.

    Little AI is a pedagogical game aimed at presenting the founding concepts of constructivist learning and developmental Artificial Intelligence. It primarily targets students in computer science and cognitive science but it can also interest the general public curious about these topics. It requires no particular scientific background; even children can find it entertaining. Professors can use it as a pedagogical resource in class or in online courses. The player presses buttons to control a simulated "baby robot". The player cannot see the robot and its environment, and initially ignores the effects of the commands. The only information received by the player is feedback from the player's commands. The player must learn, at the same time, the functioning of the robot's body and the structure of the environment from patterns in the stream of commands and feedback. We argue that this situation is analogous to how infants engage in early-stage developmental learning (e.g., Piaget (1937), [1]).

  20. Cognitive Architectures and Rational Analysis: Comment

    DTIC Science & Technology

    1989-03-17

    These last three are assumptions- about the structure of the task 12 Architectures and Rationality 17 March 1989 environment , and are empirically... rationality is what cognitive psychology is all about. And the study of bounded rationality is not the study of optimization in relation tc tPok environments ...one must 16 Architectures and Rationality 17 March 1989 consider both the task environment and the limits upon the adaptive Powers of the system. Only

  1. Beyond the Purely Cognitive: Metacognition and Social Cognition as Driving Forces in Intellectual Performance.

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    The dimensions of the broad social-cognitive and metacognitive matrix within which pure cognitions reside are examined. Tangible cognitive actions are the cross products of beliefs held about a task, the social environment within which the task takes place, and the problem solvers' perceptions of self and their relation to the task and…

  2. The Map in Our Head Is Not Oriented North: Evidence from a Real-World Environment.

    PubMed

    Brunyé, Tad T; Burte, Heather; Houck, Lindsay A; Taylor, Holly A

    2015-01-01

    Like most physical maps, recent research has suggested that cognitive maps of familiar environments may have a north-up orientation. We demonstrate that north orientation is not a necessary feature of cognitive maps and instead may arise due to coincidental alignment between cardinal directions and the built and natural environment. Experiment 1 demonstrated that pedestrians have difficulty pointing north while navigating a familiar real-world environment with roads, buildings, and green spaces oriented oblique to cardinal axes. Instead, north estimates tended to be parallel or perpendicular to roads. In Experiment 2, participants did not demonstrate privileged memory access when oriented toward north while making relative direction judgments. Instead, retrieval was fastest and most accurate when orientations were aligned with roads. In sum, cognitive maps are not always oriented north. Rather, in some real-world environments they can be oriented with respect to environment-specific features, serving as convenient reference systems for organizing and using spatial memory.

  3. Toward an Integration of Cognitive and Genetic Models of Risk for Depression

    PubMed Central

    Gibb, Brandon E.; Beevers, Christopher G.; McGeary, John E.

    2012-01-01

    There is growing interest in integrating cognitive and genetic models of depression risk. We review two ways in which these models can be meaningfully integrated. First, information-processing biases may represent intermediate phenotypes for specific genetic influences. These genetic influences may represent main effects on specific cognitive processes or may moderate the impact of environmental influences on information-processing biases. Second, cognitive and genetic influences may combine to increase reactivity to environmental stressors, increasing risk for depression in a gene × cognition × environment model of risk. There is now growing support for both of these ways of integrating cognitive and genetic models of depression risk. Specifically, there is support for genetic influences on information-processing biases, particularly the link between 5-HTTLPR and attentional biases, from both genetic association and gene × environment (G × E) studies. There is also initial support for gene × cognition × environment models of risk in which specific genetic influences contribute to increased reactivity to environmental influences. We review this research and discuss important areas of future research, particularly the need for larger samples that allow for a broader examination of genetic and epigenetic influences as well as the combined influence of variability across a number of genes. PMID:22920216

  4. Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory

    ERIC Educational Resources Information Center

    Westera, Wim

    2018-01-01

    This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…

  5. Teaching Old Dogs New Tricks: Using Cognitive Feedback to Improve Physicians' Diagnostic Judgments on Simulated Cases.

    ERIC Educational Resources Information Center

    Wigton, Robert S.; And Others

    1990-01-01

    An educational intervention was effective in improving the judgment of experienced student-health physicians (N=11) in predicting positive culture in simulated patients with pharyngitis. The intervention was three parts: an initial one-hour lecture; three sessions with computer-based cognitive feedback; and monthly reports of the percentage of…

  6. Autopoiesis with or without cognition: defining life at its edge.

    PubMed Central

    Bitbol, M.; Luisi, P. L.

    2004-01-01

    This paper examines two questions related to autopoiesis as a theory for minimal life: (i) the relation between autopoiesis and cognition; and (ii) the question as to whether autopoiesis is the necessary and sufficient condition for life. First, we consider the concept of cognition in the spirit of Maturana and Varela: in contradistinction to the representationalistic point of view, cognition is construed as interaction between and mutual definition of a living unit and its environment. The most direct form of cognition for a cell is thus metabolism itself, which necessarily implies exchange with the environment and therefore a simultaneous coming to being for the organism and for the environment. A second level of cognition is recognized in the adaptation of the living unit to new foreign molecules, by way of a change in its metabolic pattern. We draw here an analogy with the ideas developed by Piaget, who recognizes in cognition the two distinct steps of assimilation and accommodation. While assimilation is the equivalent of uptake and exchange of usual metabolites, accommodation corresponds to biological adaptation, which in turn is the basis for evolution. By comparing a micro-organism with a vesicle that uptakes a precursor for its own self-reproduction, we arrive at the conclusion that (a) the very lowest level of cognition is the condition for life, and (b) the lowest level of cognition does not reduce to the lowest level of autopoiesis. As a consequence, autopoiesis alone is only a necessary, but not sufficient, condition for life. The broader consequences of this analysis of cognition for minimal living systems are considered. PMID:16849156

  7. The embodied brain: towards a radical embodied cognitive neuroscience

    PubMed Central

    Kiverstein, Julian; Miller, Mark

    2015-01-01

    In this programmatic paper we explain why a radical embodied cognitive neuroscience is needed. We argue for such a claim based on problems that have arisen in cognitive neuroscience for the project of localizing function to specific brain structures. The problems come from research concerned with functional and structural connectivity that strongly suggests that the function a brain region serves is dynamic, and changes over time. We argue that in order to determine the function of a specific brain area, neuroscientists need to zoom out and look at the larger organism-environment system. We therefore argue that instead of looking to cognitive psychology for an analysis of psychological functions, cognitive neuroscience should look to an ecological dynamical psychology. A second aim of our paper is to develop an account of embodied cognition based on the inseparability of cognitive and emotional processing in the brain. We argue that emotions are best understood in terms of action readiness (Frijda, 1986, 2007) in the context of the organism’s ongoing skillful engagement with the environment (Rietveld, 2008; Bruineberg and Rietveld, 2014; Kiverstein and Rietveld, 2015, forthcoming). States of action readiness involve the whole living body of the organism, and are elicited by possibilities for action in the environment that matter to the organism. Since emotion and cognition are inseparable processes in the brain it follows that what is true of emotion is also true of cognition. Cognitive processes are likewise processes taking place in the whole living body of an organism as it engages with relevant possibilities for action. PMID:25999836

  8. The role of cognitive stimulation at home in low-income preschoolers' nutrition, physical activity and body mass index.

    PubMed

    den Bosch, Saskia Op; Duch, Helena

    2017-08-01

    Early childhood obesity disproportionately affects children of low socioeconomic status. Children attending Head Start are reported to have an obesity rate of 17.9%.This longitudinal study aimed to understand the relationship between cognitive stimulation at home and intake of junk food, physical activity and body size, for a nationally representative sample of 3- and 4-year old children entering Head Start. We used The Family and Child Experiences Survey 2006. Cognitive stimulation at home was measured for 1905 children at preschool entry using items from the Home Observation Measurement of the Environment Short Form. Junk food consumption and physical activity were obtained from parent interviews at kindergarten entry. BMI z scores were based on CDC national standards. We analyzed the association between early cognitive stimulation and junk food consumption, physical activity and BMI, using multinomial and binary logistic regression on a weighted sample. Children who received moderate levels of cognitive stimulation at home had a 1.5 increase in the likelihood of consuming low amounts of junk food compared to children from low cognitive stimulation environments. Children who received moderate and high levels of cognitive stimulation were two and three times, respectively, more likely to be physically active than those in low cognitive stimulation homes. No direct relationship was identified between cognitive stimulation and BMI. Prevention and treatment efforts to address early childhood obesity may consider strategies that support parents in providing cognitively stimulating home environments. Existing evidence-based programs can guide intervention in pediatric primary care.

  9. Shared cognitive processes underlying past and future thinking: the impact of imagery and concurrent task demands on event specificity.

    PubMed

    Anderson, Rachel J; Dewhurst, Stephen A; Nash, Robert A

    2012-03-01

    Recent literature has argued that whereas remembering the past and imagining the future make use of shared cognitive substrates, simulating future events places heavier demands on executive resources. These propositions were explored in 3 experiments comparing the impact of imagery and concurrent task demands on speed and accuracy of past event retrieval and future event simulation. Results provide support for the suggestion that both past and future episodes can be constructed through 2 mechanisms: a noneffortful "direct" pathway and a controlled, effortful "generative" pathway. However, limited evidence emerged for the suggestion that simulating of future, compared with retrieving past, episodes places heavier demands on executive resources; only under certain conditions did it emerge as a more error prone and lengthier process. The findings are discussed in terms of how retrieval and simulation make use of the same cognitive substrates in subtly different ways. 2012 APA, all rights reserved

  10. Episodic Future Thinking in Generalized Anxiety Disorder

    PubMed Central

    Wu, Jade Q.; Szpunar, Karl K.; Godovich, Sheina A.; Schacter, Daniel L.; Hofmann, Stefan G.

    2015-01-01

    Research on future-oriented cognition in generalized anxiety disorder (GAD) has primarily focused on worry, while less is known about the role of episodic future thinking (EFT), an imagery-based cognitive process. To characterize EFT in this disorder, we used the experimental recombination procedure, in which 21 GAD and 19 healthy participants simulated positive, neutral and negative novel future events either once or repeatedly, and rated their phenomenological experience of EFT. Results showed that healthy controls spontaneously generated more detailed EFT over repeated simulations. Both groups found EFT easier to generate after repeated simulations, except when GAD participants simulated positive events. They also perceived higher plausibility of negative—not positive or neutral—future events than did controls. These results demonstrate a negativity bias in GAD individuals’ episodic future cognition, and suggest their relative deficit in generating vivid EFT. We discuss implications for the theory and treatment of GAD. PMID:26398003

  11. Person-Environment Congruence as a Predictor of Customer Service Performance.

    ERIC Educational Resources Information Center

    Fritzsche, Barbara A.; Powell, Amy B.; Hoffman, Russell

    1999-01-01

    Customer service representatives (n=90) completed the Position Classification Inventory (PCI), Self-Directed Search, and a cognitive ability test. PCI was similar to the Dictionary of Holland Occupational Codes in predicting performance. Cognitive ability was not significantly correlated with performance. Person/environment fit was supported as a…

  12. Growing Physical, Social and Cognitive Capacity: Engaging with Natural Environments

    ERIC Educational Resources Information Center

    Johnson, Paul

    2007-01-01

    Physical environments are a major contributor to human health, cognitive development, and social wellbeing but, until recently, these roles have largely been ignored. Historically the nature-nurture dichotomy divided understandings of human growth, learning and behaviour but the recent epigenetic research and the emergence of gene-environment…

  13. Can Functional Brain Imaging Be Used to Explore Interactivity and Cognition in Multimedia Learning Environments?

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Kennedy, Gregor; Bennett, Sue

    2010-01-01

    This paper reviews existing methods used to address questions about interactivity, cognition and learning in multimedia learning environments. Existing behavioural and self-report methods identified include observations, audit trails, questionnaires, interviews, video-stimulated recall, and think-aloud protocols. The limitations of these methods…

  14. Family Structure and Children's Cognitive Development.

    ERIC Educational Resources Information Center

    Dumitrashku, T. A.

    1997-01-01

    Investigates the characteristics of the intrafamily environment that change the intellectual environment of the children and interact with the factor of birth order. Concludes that the effect of birth order is linked: (1) with the gender configuration of sibling relationships; and (2) with various cognitive and personal characteristics of the…

  15. A Social-Cognitive Analysis of How Young Men Become Involved in Male Escorting

    PubMed Central

    Smith, Michael D.; Grov, Christian; Seal, David W.; McCall, Peter

    2017-01-01

    This study employed a social-cognitive theoretical perspective to assess the interactions of behavioral, cognitive, and situational factors to understand better how young male sex workers (MSWs) entered the sex trade industry. As part of a larger project examining male escorts working for a single agency, MSWs (n = 38) were interviewed about their work and personal lives. Interviews were transcribed and analyzed thematically. As predicted by a social-cognitive perspective, results supported reciprocal influences of behavior and environment, environment and cognition, and behavior and cognition. MSWs developed more self-efficacy around sex work behaviors and more positive outcome expectations with experience; moral conflict and lack of attraction to clients limited MSWs’ self-efficacy. Key variables for sex work appeared to be cognitive in nature—mostly represented by a decreased commitment to normative social-sexual values, the specific nature of which may have varied by sexual orientation. Findings support the contention that social-cognitive theory can effectively model entry of young men into sex work. Social-cognitive theory provides a broad umbrella underneath which various explanations for male sex work can be gathered. PMID:22880726

  16. The functional-cognitive framework as a tool for accelerating progress in cognitive neuroscience: On the benefits of bridging rather than reducing levels of analyses.

    PubMed

    Vahey, Nigel; Whelan, Robert

    2016-02-01

    The subject matter of neuroscience research is complex, and synthesising the wealth of data from this research to better understand mental processes is challenging. A useful strategy, therefore, may be to distinguish explicitly between the causal effects of the environment on behaviour (i.e. functional analyses) and the mental processes that mediate these effects (i.e. cognitive analyses). In this article, we describe how the functional-cognitive (F-C) framework can accelerate cognitive neuroscience and also advance a functional treatment of brain activity. We first highlight that cognitive neuroscience can particularly benefit from the F-C approach by providing an alternative to the problematic practice of reducing cognitive constructs to behavioural and/or neural proxies. Next, we outline how functional (behaviour-environment) relations can serve as a bridge between cognitive and neural processes by restoring mental constructs to their original role as heuristic tools. Finally, we give some examples of how both cognitive neuroscience and traditional functional approaches can mutually benefit from the F-C framework. © 2015 International Union of Psychological Science.

  17. Sensory Load Incurs Conceptual Processing Costs

    ERIC Educational Resources Information Center

    Vermeulen, Nicolas; Corneille, Olivier; Niedenthal, Paula M.

    2008-01-01

    Theories of grounded cognition propose that modal simulations underlie cognitive representation of concepts [Barsalou, L. W. (1999). "Perceptual symbol systems." "Behavioral and Brain Sciences, 22"(4), 577-660; Barsalou, L. W. (2008). "Grounded cognition." "Annual Review of Psychology, 59", 617-645]. Based…

  18. A pilot study of parent education intervention improves early childhood development among toddlers with sickle cell disease.

    PubMed

    Fields, Melanie E; Hoyt-Drazen, Catherine; Abel, Regina; Rodeghier, Mark J; Yarboi, Janet M; Compas, Bruce E; King, Allison A

    2016-12-01

    Young children with sickle cell disease (SCD) are at risk for cognitive delay. In addition to biologic risk factors associated with SCD, environmental factors contribute to cognitive dysfunction within this cohort. We completed a single-arm, prospective cohort study. Children with SCD between the ages of 3 and 36 months and their caregivers were followed between October 2010 and December 2013. The aim was to describe the role of a home visitation model, the home environment, and socioeconomic status in the development of young children with SCD. Primary outcome measures were the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) and the Home Observation for Measurement of the Environment (HOME). We hypothesized that the home visitation model, Parents as Teachers ® (PAT), would encourage positive parent-child interactions and improve cognitive outcomes. Thirty-five participants had at least two PAT visits and BSID-III assessments. Mean scores within all five subtests of the BSID-III improved between enrollment and exit, with significant changes within cognitive (P = 0.016) and expressive language (EL) domains (P = 0.002). Multivariate modeling found the HOME score associated with the exit results of the cognitive domain. We report longitudinal results of the first home visitation program within the early childhood SCD population and show significant improvement in cognitive and EL development. Additionally, home environment was a significant predictor of cognitive development. Randomized controlled trials to test the impact of interventions targeting the home environment are warranted for this vulnerable population. © 2016 Wiley Periodicals, Inc.

  19. The impact of secondary-task type on the sensitivity of reaction-time based measurement of cognitive load for novices learning surgical skills using simulation.

    PubMed

    Rojas, David; Haji, Faizal; Shewaga, Rob; Kapralos, Bill; Dubrowski, Adam

    2014-01-01

    Interest in the measurement of cognitive load (CL) in simulation-based education has grown in recent years. In this paper we present two pilot experiments comparing the sensitivity of two reaction time based secondary task measures of CL. The results suggest that simple reaction time measures are sensitive enough to detect changes in CL experienced by novice learners in the initial stages of simulation-based surgical skills training.

  20. Initial Cognitive Performance Predicts Longitudinal Aviator Performance

    PubMed Central

    Jo, Booil; Adamson, Maheen M.; Kennedy, Quinn; Noda, Art; Hernandez, Beatriz; Zeitzer, Jamie M.; Friedman, Leah F.; Fairchild, Kaci; Scanlon, Blake K.; Murphy, Greer M.; Taylor, Joy L.

    2011-01-01

    Objectives. The goal of the study was to improve prediction of longitudinal flight simulator performance by studying cognitive factors that may moderate the influence of chronological age. Method. We examined age-related change in aviation performance in aircraft pilots in relation to baseline cognitive ability measures and aviation expertise. Participants were aircraft pilots (N = 276) aged 40–77.9. Flight simulator performance and cognition were tested yearly; there were an average of 4.3 (± 2.7; range 1–13) data points per participant. Each participant was classified into one of the three levels of aviation expertise based on Federal Aviation Administration pilot proficiency ratings: least, moderate, or high expertise. Results. Addition of measures of cognitive processing speed and executive function to a model of age-related change in aviation performance significantly improved the model. Processing speed and executive function performance interacted such that the slowest rate of decline in flight simulator performance was found in aviators with the highest scores on tests of these abilities. Expertise was beneficial to pilots across the age range studied; however, expertise did not show evidence of reducing the effect of age. Discussion. These data suggest that longitudinal performance on an important real-world activity can be predicted by initial assessment of relevant cognitive abilities. PMID:21586627

  1. Cognitive development after traumatic brain injury in young children

    PubMed Central

    GERRARD-MORRIS, AIMEE; TAYLOR, H. GERRY; YEATES, KEITH OWEN; WALZ, NICOLAY CHERTKOFF; STANCIN, TERRY; MINICH, NORI; WADE, SHARI L.

    2014-01-01

    The primary aims of this study were to examine post-injury cognitive development in young children with traumatic brain injury (TBI) and to investigate the role of the proximal family environment in predicting cognitive outcomes. Age at injury was 3–6 years, and TBI was classified as severe (n = 23), moderate (n = 21), and complicated mild (n = 43). A comparison group of children who sustained orthopedic injuries (OI, n = 117) was also recruited. Child cognitive assessments were administered at a post-acute baseline evaluation and repeated at 6, 12, and 18 months post-injury. Assessment of the family environment consisted of baseline measures of learning support and stimulation in the home and of parenting characteristics observed during videotaped parent–child interactions. Relative to the OI group, children with severe TBI group had generalized cognitive deficiencies and those with less severe TBI had weaknesses in visual memory and executive function. Although deficits persisted or emerged across follow-up, more optimal family environments were associated with higher scores for all injury groups. The findings confirm other reports of poor recovery of cognitive skills following early childhood TBI and suggest environmental influences on outcomes. PMID:19849883

  2. Using "The Burns Suite" as a Novel High Fidelity Simulation Tool for Interprofessional and Teamwork Training.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2016-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. The authors recently published the concept of "The Burns Suite" (TBS) as a novel tool to advance the delivery of burns education for residents/clinicians. Effectively, TBS represents a low-cost, high-fidelity, portable, immersive simulation environment. Recently, simulation-based team training (SBTT) has been advocated as a means to improve interprofessional practice. The authors aimed to explore the role of TBS in SBTT. A realistic pediatric burn resuscitation scenario was designed based on "advanced trauma and life support" and "emergency management of severe burns" principles, refined utilizing expert opinion through cognitive task analysis. The focus of this analysis was on nontechnical and interpersonal skills of clinicians and nurses within the scenario, mirroring what happens in real life. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's alpha was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twenty-two participants completed TBS resuscitation scenario. Mean face and content validity ratings were high (4.4 and 4.7 respectively; range 4-5). The internal consistency of questions was high. Qualitative data analysis revealed two new themes. Participants reported that the experience felt particularly authentic because the simulation had high psychological and social fidelity, and there was a demand for such a facility to be made available to improve nontechnical skills and interprofessional relations. TBS provides a realistic, novel tool for SBTT, addressing both nontechnical and interprofessional team skills. Recreating clinical challenge is crucial to optimize SBTT. With a better understanding of the theories underpinning simulation and interprofessional education, future simulation scenarios can be designed to provide unique educational experiences whereby team members will learn with and from other specialties and professions in a safe, controlled environment.

  3. Handbook of Spatial Cognition

    ERIC Educational Resources Information Center

    Waller, David, Ed.; Nadel, Lynn, Ed.

    2012-01-01

    Spatial cognition is a branch of cognitive psychology that studies how people acquire and use knowledge about their environment to determine where they are, how to obtain resources, and how to find their way home. Researchers from a wide range of disciplines, including neuroscience, cognition, and sociology, have discovered a great deal about how…

  4. Complex Mobile Learning That Adapts to Learners' Cognitive Load

    ERIC Educational Resources Information Center

    Deegan, Robin

    2015-01-01

    Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…

  5. Determination of the Proper Rest Time for a Cyclic Mental Task Using ACT-R Architecture.

    PubMed

    Atashfeshan, Nooshin; Razavi, Hamideh

    2017-03-01

    Objective Analysis of the effect of mental fatigue on a cognitive task and determination of the right start time for rest breaks in work environments. Background Mental fatigue has been recognized as one of the most important factors influencing individual performance. Subjective and physiological measures are popular methods for analyzing fatigue, but they are restricted to physical experiments. Computational cognitive models are useful for predicting operator performance and can be used for analyzing fatigue in the design phase, particularly in industrial operations and inspections where cognitive tasks are frequent and the effects of mental fatigue are crucial. Method A cyclic mental task is modeled by the ACT-R architecture, and the effect of mental fatigue on response time and error rate is studied. The task includes visual inspections in a production line or control workstation where an operator has to check products' conformity to specifications. Initially, simulated and experimental results are compared using correlation coefficients and paired t test statistics. After validation of the model, the effects are studied by human and simulated results, which are obtained by running 50-minute tests. Results It is revealed that during the last 20 minutes of the tests, the response time increased by 20%, and during the last 12.5 minutes, the error rate increased by 7% on average. Conclusion The proper start time for the rest period can be identified by setting a limit on the error rate or response time. Application The proposed model can be applied early in production planning to decrease the negative effects of mental fatigue by predicting the operator performance. It can also be used for determining the rest breaks in the design phase without an operator in the loop.

  6. Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG

    PubMed Central

    Mullen, Tim R.; Kothe, Christian A.E.; Chi, Mike; Ojeda, Alejandro; Kerth, Trevor; Makeig, Scott; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2015-01-01

    Goal We present and evaluate a wearable high-density dry electrode EEG system and an open-source software framework for online neuroimaging and state classification. Methods The system integrates a 64-channel dry EEG form-factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in 9 subjects using the dry EEG system. Results Simulations yielded high accuracy (AUC=0.97±0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity (sdDTF) was significantly above chance with similar performance (AUC) for cLORETA (0.74±0.09) and LCMV (0.72±0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74±0.16) but significantly better for LCMV (0.82±0.12). Conclusion We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. Significance This paper is the first validated application of these methods to 64-channel dry EEG. The work addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes. PMID:26415149

  7. The Development and Implementation of Cognitive Aids for Critical Events in Pediatric Anesthesia: The Society for Pediatric Anesthesia Critical Events Checklists.

    PubMed

    Clebone, Anna; Burian, Barbara K; Watkins, Scott C; Gálvez, Jorge A; Lockman, Justin L; Heitmiller, Eugenie S

    2017-03-01

    Cognitive aids such as checklists are commonly used in modern operating rooms for routine processes, and the use of such aids may be even more important during critical events. The Quality and Safety Committee of the Society for Pediatric Anesthesia (SPA) has developed a set of critical-event checklists and cognitive aids designed for 3 purposes: (1) as a repository of the latest evidence-based and expert opinion-based information to guide response and management of critical events, (2) as a source of just-in-time information during critical events, and (3) as a method to facilitate a shared understanding of required actions among team members during a critical event. Committee members, who represented children's hospitals from across the nation, used the recent literature and established guidelines (where available) and incorporated the expertise of colleagues at their institutions to develop these checklists, which included relevant factors to consider and steps to take in response to critical events. Human factors principles were incorporated to enhance checklist usability, facilitate error-free accomplishment, and ensure a common approach to checklist layout, formatting, structure, and design.The checklists were made available in multiple formats: a PDF version for easy printing, a mobile application, and at some institutions, a Web-based application using the anesthesia information management system. After the checklists were created, training commenced, and plans for validation were begun. User training is essential for successful implementation and should ideally include explanation of the organization of the checklists; familiarization of users with the layout, structure, and formatting of the checklists; coaching in how to use the checklists in a team environment; reviewing of the items; and simulation of checklist use. Because of the rare and unpredictable nature of critical events, clinical trials that use crisis checklists are difficult to conduct; however, recent and future simulation studies with adult checklists provide a promising avenue for future validation of the SPA checklists. This article will review the developmental steps in producing the SPA crisis checklists, including creation of content, incorporation of human factors elements, and validation in simulation. Critical-events checklists have the potential to improve patient care during emergency events, and it is hoped that incorporating the elements presented in this article will aid in successful implementation of these essential cognitive aids.

  8. How we remember what we can do

    PubMed Central

    Declerck, Gunnar

    2015-01-01

    According to the motor simulation theory, the knowledge we possess of what we can do is based on simulation mechanisms triggered by an off-line activation of the brain areas involved in motor control. Action capabilities memory does not work by storing some content, but consists in the capacity, rooted in sensory-motor systems, to reenact off-line action sequences exhibiting the range of our powers. In this paper, I present several arguments from cognitive neuropsychology, but also first-person analysis of experience, against this hypothesis. The claim that perceptual access to affordances is mediated by motor simulation processes rests on a misunderstanding of what affordances are, and comes up against a computational reality principle. Motor simulation cannot provide access to affordances because (i) the affordances we are aware of at each moment are too many for their realization to be simulated by the brain and (ii) affordances are not equivalent to currently or personally feasible actions. The explanatory significance of the simulation theory must then be revised downwards compared to what is claimed by most of its advocates. One additional challenge is to determine the prerequisite, in terms of cognitive processing, for the motor simulation mechanisms to work. To overcome the limitations of the simulation theory, I propose a new approach: the direct content specification hypothesis. This hypothesis states that, at least for the most basic actions of our behavioral repertoire, the action possibilities we are aware of through perception are directly specified by perceptual variables characterizing the content of our experience. The cognitive system responsible for the perception of action possibilities is consequently far more direct, in terms of cognitive processing, than what is stated by the simulation theory. To support this hypothesis I review evidence from current neuropsychological research, in particular data suggesting a phenomenon of ‘fossilization’ of affordances. Fossilization can be defined as a gap between the capacities that are treated as available by the cognitive system and the capacities this system really has at its disposal. These considerations do not mean that motor simulation cannot contribute to explain how we gain perceptual knowledge of what we can do based on the memory of our past performances. However, when precisely motor simulation plays a role and what it is for exactly currently remain largely unknown. PMID:26507953

  9. The Five Families of Cognitive Learning: A Context in Which To Conduct Cognitive Demands Analyses of Innovative Technologies.

    ERIC Educational Resources Information Center

    Klein, Davina C. D.; O'Neil, Harold F., Jr.; Dennis, Robert A.; Baker, Eva L.

    A cognitive demands analysis of a learning technology, a term that includes the hardware and the computer software products that form learning environments, attempts to describe the types of cognitive learning expected of the individual by the technology. This paper explores the context of cognitive learning, suggesting five families of cognitive…

  10. Exploration as a Mediator of the Relation between the Attainment of Motor Milestones and the Development of Spatial Cognition and Spatial Language

    ERIC Educational Resources Information Center

    Oudgenoeg-Paz, Ora; Leseman, Paul P. M.; Volman, M. J. M.

    2015-01-01

    The embodied-cognition approach views cognition and language as grounded in daily sensorimotor child-environment interactions. Therefore, the attainment of motor milestones is expected to play a role in cognitive-linguistic development. Early attainment of unsupported sitting and independent walking indeed predict better spatial cognition and…

  11. Effects of Low- Versus High-Fidelity Simulations on the Cognitive Burden and Performance of Entry-Level Paramedicine Students: A Mixed-Methods Comparison Trial Using Eye-Tracking, Continuous Heart Rate, Difficulty Rating Scales, Video Observation and Interviews.

    PubMed

    Mills, Brennen W; Carter, Owen B-J; Rudd, Cobie J; Claxton, Louise A; Ross, Nathan P; Strobel, Natalie A

    2016-02-01

    High-fidelity simulation-based training is often avoided for early-stage students because of the assumption that while practicing newly learned skills, they are ill suited to processing multiple demands, which can lead to "cognitive overload" and poorer learning outcomes. We tested this assumption using a mixed-methods experimental design manipulating psychological immersion. Thirty-nine randomly assigned first-year paramedicine students completed low- or high-environmental fidelity simulations [low-environmental fidelity simulations (LF(en)S) vs. high-environmental fidelity simulation (HF(en)S)] involving a manikin with obstructed airway (SimMan3G). Psychological immersion and cognitive burden were determined via continuous heart rate, eye tracking, self-report questionnaire (National Aeronautics and Space Administration Task Load Index), independent observation, and postsimulation interviews. Performance was assessed by successful location of obstruction and time-to-termination. Eye tracking confirmed that students attended to multiple, concurrent stimuli in HF(en)S and interviews consistently suggested that they experienced greater psychological immersion and cognitive burden than their LF(en)S counterparts. This was confirmed by significantly higher mean heart rate (P < 0.001) and National Aeronautics and Space Administration Task Load Index mental demand (P < 0.05). Although group allocation did not influence the proportion of students who ultimately revived the patient (58% vs. 30%, P < 0.10), the HF(en)S students did so significantly more quickly (P < 0.01). The LF(en)S students had low immersion resulting in greater assessment anxiety. High-environmental fidelity simulation engendered immersion and a sense of urgency in students, whereas LF(en)S created assessment anxiety and slower performance. We conclude that once early-stage students have learned the basics of a clinical skill, throwing them in the "deep end" of high-fidelity simulation creates significant additional cognitive burden but this has considerable educational merit.

  12. The cognitive apprenticeship theory for the teaching of mathematics in an online 3D virtual environment

    NASA Astrophysics Data System (ADS)

    Bouta, Hara; Paraskeva, Fotini

    2013-03-01

    Research spanning two decades shows that there is a continuing development of 3D virtual worlds and investment in such environments for educational purposes. Research stresses the need for these environments to be well-designed and for suitable pedagogies to be implemented in the teaching practice in order for these worlds to be fully effective. To this end, we propose a pedagogical framework based on the cognitive apprenticeship for deriving principles and guidelines to inform the design, development and use of a 3D virtual environment. This study examines how the use of a 3D virtual world facilitates the teaching of mathematics in primary education by combining design principles and guidelines based on the Cognitive Apprenticeship Theory and the teaching methods that this theory introduces. We focus specifically on 5th and 6th grade students' engagement (behavioral, affective and cognitive) while learning fractional concepts over a period of two class sessions. Quantitative and qualitative analyses indicate considerable improvement in the engagement of the students who participated in the experiment. This paper presents the findings regarding students' cognitive engagement in the process of comprehending basic fractional concepts - notoriously hard for students to master. The findings are encouraging and suggestions are made for further research.

  13. Twins and non-twin siblings: different estimates of shared environmental influence in early childhood.

    PubMed

    Koeppen-Schomerus, Gesina; Spinath, Frank M; Plomin, Robert

    2003-04-01

    Twin studies typically indicate shared environmental influence for cognitive abilities, especially in early childhood. However, across studies, DZ twin correlations tend to be greater than non-twin sibling correlations, suggesting that twin estimates of shared environment are to some extent specific to twins. We tested this hypothesis in a sample of more than 1800 MZ and 1800 same-sex DZ pairs from the Twins Early Development Study (TEDS), a study of twins born in England and Wales in 1994 and 1995. For this analysis, we obtained comparable data from more than 130 same-sex younger siblings of the twins. Twins and their younger siblings were assessed for language, cognitive abilities and behavior problems by their parents at 2 and 3 years of age. For language and cognitive measures at both 2 and 3 years, but not for behavior problems, estimates of shared environment were more than twice as large for twins as compared to non-twin siblings. We conclude that about half of twin study estimates of shared environment for cognitive abilities in early childhood are specific to twins. Although many possibilities exist for explaining the special shared environment effect for twins, we suggest that cognitive-relevant experiences that are not shared by siblings are shared by twins because they are exactly the same age.

  14. The Effects of Acute Sleep Restriction on Adolescents' Pedestrian Safety in a Virtual Environment

    PubMed Central

    Davis, Aaron L.; Avis, Kristin T.; Schwebel, David C.

    2013-01-01

    Purpose Over 8,000 American adolescents ages 14-15 require medical attention due to pedestrian injury annually. Cognitive factors contributing to pedestrian safety include reaction time, impulsivity, risk-taking, attention, and decision-making. These characteristics are also influenced by sleep restriction. Experts recommend adolescents obtain 8.5 hours of uninterrupted sleep each night, but most American adolescents do not. Inadequate sleep may place adolescents at risk for pedestrian injury. Method Using a within-subjects design, fifty-five 14- and 15-year-olds engaged in a virtual reality pedestrian environment in two conditions, scheduled a week apart: sleep-restricted (4 hours sleep previous night) and adequate sleep (8.5 hours). Sleep was assessed using actigraphy and pedestrian behavior via four outcome measures: time to initiate crossing, time before contact with vehicle while crossing, virtual hits/close calls and attention to traffic (looks left and right). Results While acutely sleep restricted, adolescents took more time to initiate pedestrian crossings, crossed with less time before contact with vehicles, experienced more virtual hits/close calls and looked left and right more often compared to when adequately rested. Results were maintained after controlling for age, gender, ethnicity and average total sleep duration prior to each condition. Discussion Adolescent pedestrian behavior in the simulated virtual environment was markedly different, and generally more risky, when acutely sleep restricted compared to adequately rested. Inadequate sleep may influence cognitive functioning to the extent that pedestrian safety is jeopardized among adolescents capable of crossing streets safely when rested. Policy decisions might be educated by these results. PMID:24012066

  15. Fluid Intelligence and Cognitive Reflection in a Strategic Environment: Evidence from Dominance-Solvable Games

    PubMed Central

    Hanaki, Nobuyuki; Jacquemet, Nicolas; Luchini, Stéphane; Zylbersztejn, Adam

    2016-01-01

    Dominance solvability is one of the most straightforward solution concepts in game theory. It is based on two principles: dominance (according to which players always use their dominant strategy) and iterated dominance (according to which players always act as if others apply the principle of dominance). However, existing experimental evidence questions the empirical accuracy of dominance solvability. In this study, we study the relationships between the key facets of dominance solvability and two cognitive skills, cognitive reflection, and fluid intelligence. We provide evidence that the behaviors in accordance with dominance and one-step iterated dominance are both predicted by one's fluid intelligence rather than cognitive reflection. Individual cognitive skills, however, only explain a small fraction of the observed failure of dominance solvability. The accuracy of theoretical predictions on strategic decision making thus not only depends on individual cognitive characteristics, but also, perhaps more importantly, on the decision making environment itself. PMID:27559324

  16. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments.

    PubMed

    Vecchiato, Giovanni; Jelic, Andrea; Tieri, Gaetano; Maglione, Anton Giulio; De Matteis, Federico; Babiloni, Fabio

    2015-09-01

    The recent efforts aimed at providing neuroscientific explanations of how people perceive and experience architectural environments have largely justified the initial belief in the value of neuroscience for architecture. However, a systematic development of a coherent theoretical and experimental framework is missing. To investigate the neurophysiological reactions related to the appreciation of ambiances, we recorded the electroencephalographic (EEG) signals in an immersive virtual reality during the appreciation of interior designs. Such data have been analyzed according to the working hypothesis that appreciated environments involve embodied simulation mechanisms and circuits mediating approaching stimuli. EEG recordings of 12 healthy subjects have been performed during the perception of three-dimensional interiors that have been simulated in a CAVE system and judged according to dimensions of familiarity, novelty, comfort, pleasantness, arousal and presence. A correlation analysis on personal judgments returned that scores of novelty, pleasantness and comfort are positively correlated, while familiarity and novelty are in negative way. Statistical spectral maps reveal that pleasant, novel and comfortable interiors produce a de-synchronization of the mu rhythm over left sensorimotor areas. Interiors judged more pleasant and less familiar generate an activation of left frontal areas (theta and alpha bands), along an involvement of areas devoted to spatial navigation. An increase in comfort returns an enhancement of the theta frontal midline activity. Cerebral activations underlying appreciation of architecture could involve different mechanisms regulating corporeal, emotional and cognitive reactions. Therefore, it might be suggested that people's experience of architectural environments is intrinsically structured by the possibilities for action.

  17. Enhancing Tele-robotics with Immersive Virtual Reality

    DTIC Science & Technology

    2017-11-03

    graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive

  18. A Computer Based Cognitive Simulation of Cataract Surgery

    DTIC Science & Technology

    2011-12-01

    for zonular absence, assess for notable lenticular astigmatism ** How and when do you decide to use a capsular tension ring? (Expert) Zonular...INTRODUCTION The Virtual Mentor Cataract Surgery Trainer is a computer based, cognitive simulation of phacoemulsification cataract surgery. It is...the Cataract Trainer. BODY Phacoemulsification cataract surgery (phaco) is a difficult procedure to learn, with little margin for error. As in other

  19. An Experimental Study on the Effects of a Simulation Game on Students' Clinical Cognitive Skills and Motivation

    ERIC Educational Resources Information Center

    Dankbaar, Mary E. W.; Alsma, Jelmer; Jansen, Els E. H.; van Merrienboer, Jeroen J. G.; van Saase, Jan L. C. M.; Schuit, Stephanie C. E.

    2016-01-01

    Simulation games are becoming increasingly popular in education, but more insight in their critical design features is needed. This study investigated the effects of fidelity of open patient cases in adjunct to an instructional e-module on students' cognitive skills and motivation. We set up a three-group randomized post-test-only design: a…

  20. A spatial reference frame model of Beijing based on spatial cognitive experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Jing; Liu, Yu

    2006-10-01

    Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.

  1. Modelling and simulation of complex sociotechnical systems: envisioning and analysing work environments

    PubMed Central

    Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter

    2015-01-01

    Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227

  2. Balancing Cognitive Demands: Control Adjustments in the Stop-Signal Paradigm

    ERIC Educational Resources Information Center

    Bissett, Patrick G.; Logan, Gordon D.

    2011-01-01

    Cognitive control enables flexible interaction with a dynamic environment. In 2 experiments, the authors investigated control adjustments in the stop-signal paradigm, a procedure that requires balancing speed (going) and caution (stopping) in a dual-task environment. Focusing on the slowing of go reaction times after stop signals, the authors…

  3. Guiding Exploration through Three-Dimensional Virtual Environments: A Cognitive Load Reduction Approach

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Fauzy Wan Ismail, Wan Mohd

    2008-01-01

    The real-time interactive nature of three-dimensional virtual environments (VEs) makes this technology very appropriate for exploratory learning purposes. However, many studies have shown that the exploration process may cause cognitive overload that affects the learning of domain knowledge. This article reports a quasi-experimental study that…

  4. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  5. Children Reared in a Reverse Isolation Environment: Effects on Cognitive and Emotional Development.

    ERIC Educational Resources Information Center

    Tamaroff, Michael H.; And Others

    1986-01-01

    The study examined cognitive and emotional aspects of development in four infants treated from 10 to 52 months in a reverse isolation environment because of congenital severe combined immunodeficiency disease. Case material is discussed with reference to severe disruption of oral feeding experience, quality of parental involvement, and sensory…

  6. Cross Relationships between Cognitive Styles and Learner Variables in Online Learning Environment

    ERIC Educational Resources Information Center

    Oh, Eunjoo; Lim, Doohun

    2005-01-01

    This study examines how students' cognitive styles are correlated with their attitudes toward online education and learning behaviors in online learning environments. The Group Embedded Figures Test (GEFT) and the attitude survey toward online instruction were administered to 104 students enrolled in various online courses at the University of…

  7. Relations among Aspects of Children's Social Environments, Gender Schematization, Gender Role Knowledge, and Flexibility.

    ERIC Educational Resources Information Center

    Levy, Gary D.

    1989-01-01

    Provides a theory-based examination of relations among aspects of preschool children's social environments and cognitive indices of their gender role development. Examines differences in the relations among social agents on cognitive indices of girls' and boys' gender role development. Significant sex differences are discussed. (JS)

  8. Roles of Working Memory Performance and Instructional Strategy in Complex Cognitive Task Performance

    ERIC Educational Resources Information Center

    Cevik, V.; Altun, A.

    2016-01-01

    This study aims to investigate how working memory (WM) performances and instructional strategy choices affect learners' complex cognitive task performance in online environments. Three different e-learning environments were designed based on Merrill's (2006a) model of instructional strategies. The lack of experimental research on his framework is…

  9. Schooling, Environment and Cognitive Development: A Cross-Cultural Study.

    ERIC Educational Resources Information Center

    Stevenson, Harold W.; And Others

    1978-01-01

    Investigated the influence of schooling and environment on young children's memory and cognitive skills. Subjects were five- and six-year-old Mestizo and Quechua Indian children living in jungle villages or city slums in Peru. Samples of upper-middle-class children in Lima and poor children in Detroit were also tested. (JMB)

  10. Fostering Self-Regulation in Training Complex Cognitive Tasks

    ERIC Educational Resources Information Center

    van Meeuwen, Ludo W.; Brand-Gruwel, Saskia; Kirschner, Paul A.; de Bock, Jeano J. P. R.; van Merriënboer, Jeroen J. G.

    2018-01-01

    In complex cognitive domains such as air traffic control, professionals must be able to adapt to and act upon continuing changes in a highly advanced technological work environment. To function optimally in such an environment, the controllers must be able to regulate their learning. Although these regulation skills should be part of their…

  11. Some Technical Implications of Distributed Cognition on the Design on Interactive Learning Environments.

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre

    1996-01-01

    Maintains that diagnosis, explanation, and tutoring, the functions of an interactive learning environment, are collaborative processes. Examines how human-computer interaction can be improved using a distributed cognition framework. Discusses situational and distributed knowledge theories and provides a model on how they can be used to redesign…

  12. Young Children's Preferences: What Stimulates Children's Cognitive Play in Outdoor Preschools?

    ERIC Educational Resources Information Center

    Zamani, Zahra

    2017-01-01

    A number of studies have identified childcare environments as significant resources for children's development, learning through play, and contact with nature. However, there is a lack of knowledge about how, from a child's perspective, specific outdoor physical environments in preschools stimulate children's cognitive play. Emphasizing on the…

  13. [Interventions based on exercise and physical environment for preventing falls in cognitively impaired older people living in long-term care facilities: A systematic review and meta-analysis].

    PubMed

    González-Román, Loreto; Bagur-Calafat, Caritat; Urrútia-Cuchí, Gerard; Garrido-Pedrosa, Jèssica

    2016-01-01

    This systematic review aims to report the effectiveness of interventions based on exercise and/or physical environment for reducing falls in cognitively impaired older adults living in long-term care facilities. In July 2014, a literature search was conducted using main databases and specialised sources. Randomised controlled trials assessing the effectiveness of fall prevention interventions, which used exercise or physical environment among elderly people with cognitive impairment living in long-term care facilities, were selected. Two independent reviewers checked the eligibility of the studies, and evaluated their methodological quality. If it was adequate, data were gathered. Fourteen studies with 3,539 participants using exercise and/or physical environment by a single or combined approach were included. The data gathered from studies that used both interventions showed a significant reduction in fall rate. Further research is needed to demonstrate the effectiveness of those interventions for preventing falls in the elderly with cognitive impairment living in long-term care establishments. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  14. Cognitive Offloading Does Not Prevent but Rather Promotes Cognitive Development

    PubMed Central

    Nolfi, Stefano

    2016-01-01

    We investigate the relation between the development of reactive and cognitive capabilities. In particular we investigate whether the development of reactive capabilities prevents or promotes the development of cognitive capabilities in a population of evolving robots that have to solve a time-delay navigation task in a double T-Maze environment. Analysis of the experiments reveals that the evolving robots always select reactive strategies that rely on cognitive offloading, i.e., the possibility of acting so as to encode onto the relation between the agent and the environment the states that can be used later to regulate the agent’s behavior. The discovery of these strategies does not prevent, but rather facilitates, the development of cognitive strategies that also rely on the extraction and use of internal states. Detailed analysis of the results obtained in the different experimental conditions provides evidence that helps clarify why, contrary to expectations, reactive and cognitive strategies tend to have synergetic relationships. PMID:27505162

  15. Multiagent Work Practice Simulation: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Shaffe, Michael G. (Technical Monitor)

    2001-01-01

    Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and a computer system. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3D space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).

  16. Multiagent Work Practice Simulation: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten

    2002-01-01

    Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and computer systems. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3d space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).

  17. Comparison of RF spectrum prediction methods for dynamic spectrum access

    NASA Astrophysics Data System (ADS)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  18. Neurofunctional Correlates of Environmental Cognition: An fMRI Study with Images from Episodic Memory

    PubMed Central

    Gutyrchik, Evgeny; Bao, Yan; Blautzik, Janusch; Pöppel, Ernst; Zaytseva, Yuliya; Russell, Edmund

    2015-01-01

    This study capitalizes on individual episodic memories to investigate the question, how dif-ferent environments affect us on a neural level. Instead of using predefined environmental stimuli, this study relied on individual representations of beauty and pleasure. Drawing upon episodic memories we conducted two experiments. Healthy subjects imagined pleasant and non-pleasant environments, as well as beautiful and non-beautiful environments while neural activity was measured by using functional Magnetic Resonance Imaging. Although subjects found the different conditions equally simple to visualize, our results revealed more distribut-ed brain activations for non-pleasant and non-beautiful environments than for pleasant and beautiful environments. The additional regions activated in non-pleasant (left lateral prefrontal cortex) and non-beautiful environments (supplementary motor area, anterior cortical midline structures) are involved in self-regulation and top-down cognitive control. Taken together, the results show that perceptual experiences and emotional evaluations of environments within a positive and a negative frame of reference are based on distinct patterns of neural activity. We interpret the data in terms of a different cognitive and processing load placed by exposure to different environments. The results hint at the efficiency of subject-generated representations as stimulus material. PMID:25875000

  19. Neurofunctional correlates of environmental cognition: an FMRI study with images from episodic memory.

    PubMed

    Vedder, Aline; Smigielski, Lukasz; Gutyrchik, Evgeny; Bao, Yan; Blautzik, Janusch; Pöppel, Ernst; Zaytseva, Yuliya; Russell, Edmund

    2015-01-01

    This study capitalizes on individual episodic memories to investigate the question, how dif-ferent environments affect us on a neural level. Instead of using predefined environmental stimuli, this study relied on individual representations of beauty and pleasure. Drawing upon episodic memories we conducted two experiments. Healthy subjects imagined pleasant and non-pleasant environments, as well as beautiful and non-beautiful environments while neural activity was measured by using functional Magnetic Resonance Imaging. Although subjects found the different conditions equally simple to visualize, our results revealed more distribut-ed brain activations for non-pleasant and non-beautiful environments than for pleasant and beautiful environments. The additional regions activated in non-pleasant (left lateral prefrontal cortex) and non-beautiful environments (supplementary motor area, anterior cortical midline structures) are involved in self-regulation and top-down cognitive control. Taken together, the results show that perceptual experiences and emotional evaluations of environments within a positive and a negative frame of reference are based on distinct patterns of neural activity. We interpret the data in terms of a different cognitive and processing load placed by exposure to different environments. The results hint at the efficiency of subject-generated representations as stimulus material.

  20. Mechanisms underlying cognitive conspicuity in the detection of cyclists by car drivers.

    PubMed

    Rogé, Joceline; Ndiaye, Daniel; Aillerie, Isabelle; Aillerie, Stéphane; Navarro, Jordan; Vienne, Fabrice

    2017-07-01

    The aim of this study was to evaluate the visibility of cyclists for motorists in a simulated car driving task. In several cases involving collisions between cars and cyclists, car drivers failed to detect the latter in time to avoid collision because of their low conspicuity. 2 groups of motorists (29.2 years old), including 12 cyclist-motorists and 13 non-cyclist-motorists, performed a vulnerable road user detection task in a car-driving simulator. They had to detect cyclists and pedestrians in an urban setting and evaluate the realism of the cyclists, the traffic, the city, the infrastructure, the car driven and the situations. Cyclists appeared in critical situations derived from previous accounts given by injured cyclists and from cyclists' observations in real-life situations. Cyclist's levels of visibility for car drivers were either high or low in these situations according to the cyclists. Realism scores were similar and high in both groups. Cyclist-motorists had fewer collisions with cyclists and detected cyclists at a greater distance in all situations, irrespective of cyclist visibility. Several mechanisms underlying the cognitive conspicuity of cyclists for car drivers were considered. The attentional selection of a cyclist in the road environment during car driving depends on top-down processing. We consider the practical implications of these results for the safety of vulnerable road users and future directions of research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cognitive function is associated with prison behaviour among women in prison but not with subjective perception of adjustment to prison.

    PubMed

    Rocha, Nuno B F; Fonseca, Duarte A; Marques, Alina B; Rocha, Susana A; Hoaken, Peter N S

    2015-12-01

    There is considerable evidence that aspects of cognitive function, especially executive function, are associated with antisocial behaviour and violence, but most research to date has measured current cognition and previous criminal behaviour. Furthermore, this research has been conducted almost exclusively with male offenders. The aim of this study is to examine relationships between a wide range of cognitive functions and behaviours among women in prison. Our hypotheses were that cognitive functioning would be associated with both more-or-less contemporaneously observed behaviour problems and self-rated adjustment to the environment. Forty-five drug-free imprisoned female offenders were individually assessed on a battery of cognitive measures. Prison staff rated their behaviour on the Prison Behaviour Rating Scale and the women rated their own sense of adjustment to the environment on the Prison Adjustment Questionnaire. Stepwise hierarchical regressions indicated that attention was independently associated with behaviours reflecting tension, depression, isolation, fear, victimisation and worry, whereas processing speed was independently associated with behaviours reflecting lack of energy, mental slowness and lack of awareness of the surrounding environment and total Prison Adjustment Questionnaire score. There was no relationship between cognitive functioning and subjective perception of adjustment to prison. Results indicate that cognition contributes to some of the behavioural problems displayed by inmates in the prison context. Future studies should evaluate the role of programmes to improve cognitive processes in also improving prison behaviour and also test for continuities and discontinuities with post-release integrative success. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Translational Cognition for Decision Support in Critical Care Environments: A Review

    PubMed Central

    Patel, Vimla L.; Zhang, Jiajie; Yoskowitz, Nicole A.; Green, Robert; Sayan, Osman R.

    2008-01-01

    The dynamic and distributed work environment in critical care requires a high level of collaboration among clinical team members and a sophisticated task coordination system to deliver safe, timely and effective care. A complex cognitive system underlies the decision-making process in such cooperative workplaces. This methodological review paper addresses the issues of translating cognitive research to clinical practice with a specific focus on decision-making in critical care, and the role of information and communication technology to aid in such decisions. Examples are drawn from studies of critical care in our own research laboratories. Critical care, in this paper, includes both intensive (inpatient) and emergency (outpatient) care. We define translational cognition as the research on basic and applied cognitive issues that contribute to our understanding of how information is stored, retrieved and used for problem-solving and decision-making. The methods and findings are discussed in the context of constraints on decision-making in real world complex environments and implications for supporting the design and evaluation of decision support tools for critical care health providers. PMID:18343731

  3. Translational cognition for decision support in critical care environments: a review.

    PubMed

    Patel, Vimla L; Zhang, Jiajie; Yoskowitz, Nicole A; Green, Robert; Sayan, Osman R

    2008-06-01

    The dynamic and distributed work environment in critical care requires a high level of collaboration among clinical team members and a sophisticated task coordination system to deliver safe, timely and effective care. A complex cognitive system underlies the decision-making process in such cooperative workplaces. This methodological review paper addresses the issues of translating cognitive research to clinical practice with a specific focus on decision-making in critical care, and the role of information and communication technology to aid in such decisions. Examples are drawn from studies of critical care in our own research laboratories. Critical care, in this paper, includes both intensive (inpatient) and emergency (outpatient) care. We define translational cognition as the research on basic and applied cognitive issues that contribute to our understanding of how information is stored, retrieved and used for problem-solving and decision-making. The methods and findings are discussed in the context of constraints on decision-making in real-world complex environments and implications for supporting the design and evaluation of decision support tools for critical care health providers.

  4. THE LEGACY OF DISADVANTAGE: MULTIGENERATIONAL NEIGHBORHOOD EFFECTS ON COGNITIVE ABILITY1

    PubMed Central

    Sharkey, Patrick; Elwert, Felix

    2012-01-01

    This study examines how the neighborhood environments experienced over multiple generations of a family influence children’s cognitive ability. Building on recent research showing strong continuity in neighborhood environments across generations of family members, we argue for a revised perspective on “neighborhood effects” that considers the ways in which the neighborhood environment in one generation may have a lingering impact on the next generation. To specify such multigenerational effects is not simply a theoretical problem, but poses considerable methodological challenges. Instead of traditional regression techniques that may obscure multigenerational effects of neighborhood disadvantage, we utilize newly developed methods designed to generate unbiased treatment effects when treatments and confounders vary over time. The results confirm a powerful link between neighborhoods and cognitive ability that extends across generations. Being raised in a high-poverty neighborhood in one generation has a substantial negative effect on child cognitive ability in the next generation. A family’s exposure to neighborhood poverty across two consecutive generations reduces child cognitive ability by more than half a standard deviation. A formal sensitivity analysis suggests that results are robust to unobserved selection bias. PMID:21932471

  5. Beyond Perceptual Symbols: A Call for Representational Pluralism

    ERIC Educational Resources Information Center

    Dove, Guy

    2009-01-01

    Recent evidence from cognitive neuroscience suggests that certain cognitive processes employ perceptual representations. Inspired by this evidence, a few researchers have proposed that cognition is inherently perceptual. They have developed an innovative theoretical approach that rests on the notion of perceptual simulation and marshaled several…

  6. Reading fiction and reading minds: the role of simulation in the default network

    PubMed Central

    Bricker, Andrew B.; Dodell-Feder, David; Mitchell, Jason P.

    2016-01-01

    Research in psychology has suggested that reading fiction can improve individuals’ social-cognitive abilities. Findings from neuroscience show that reading and social cognition both recruit the default network, a network which is known to support our capacity to simulate hypothetical scenes, spaces and mental states. The current research tests the hypothesis that fiction reading enhances social cognition because it serves to exercise the default subnetwork involved in theory of mind. While undergoing functional neuroimaging, participants read literary passages that differed along two dimensions: (i) vivid vs abstract and (ii) social vs non-social. Analyses revealed distinct subnetworks of the default network respond to the two dimensions of interest: the medial temporal lobe subnetwork responded preferentially to vivid passages, with or without social content; the dorsomedial prefrontal cortex (dmPFC) subnetwork responded preferentially to passages with social and abstract content. Analyses also demonstrated that participants who read fiction most often also showed the strongest social cognition performance. Finally, mediation analysis showed that activity in the dmPFC subnetwork in response to the social content mediated this relation, suggesting that the simulation of social content in fiction plays a role in fiction’s ability to enhance readers’ social cognition. PMID:26342221

  7. Simulations in Cyber-Security: A Review of Cognitive Modeling of Network Attackers, Defenders, and Users.

    PubMed

    Veksler, Vladislav D; Buchler, Norbou; Hoffman, Blaine E; Cassenti, Daniel N; Sample, Char; Sugrim, Shridat

    2018-01-01

    Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.

  8. Semivolatile compounds in schools and their influence on cognitive performance of children.

    PubMed

    Hutter, Hans-Peter; Haluza, Daniela; Piegler, Kathrin; Hohenblum, Philipp; Fröhlich, Marina; Scharf, Sigrid; Uhl, Maria; Damberger, Bernhard; Tappler, Peter; Kundi, Michael; Wallner, Peter; Moshammer, Hanns

    2013-08-01

    WHO's Children's Environment and Health Action Plan for Europe (CEHAPE) focuses on improvements of indoor environments where children spend most of their time. To investigate the relationship between school indoor air pollutants and cognitive performance in elementary school children, a multidisciplinary study was planned in all-day schools in Austria. In a cross-sectional study (LuKi study: Air and Children) indoor air pollutants were monitored in nine elementary all-day schools in urban and rural regions of Austria. In addition, school dust and suspended particulates (PM10, PM2.5) were measured, focusing on semivolatile compounds (e.g. phthalates, phosphororganic compounds [POC]). Health status and environmental conditions were determined by parents' questionnaire, cognitive function was measured by Standard Progressive Matrices (SPM). Overall, 596 children (6-8 years of age) were eligible for the study. Cognitive tests were performed in 436 children. Analysis showed significant correlations of tris(2-chlorethyl)-phosphate (TCEP) in PM10 and PM2.5 and school dust samples with cognitive performance. Cognitive performance decreased with increasing concentrations of TCEP. Furthermore, cognitive function decreased significantly with increasing CO2 levels. POC are widely used as plasticizers, flame retardants and floor sealing. This is the first report of a correlation between TCEP in indoor air samples and impairment of cognitive performance in school children. As a precautionary measure, it is recommended to prohibit the use of toxic chemicals and those suspected of a toxic potential in children's environments such as schools.

  9. Grounding language in action and perception: from cognitive agents to humanoid robots.

    PubMed

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Cognitive Load and Self-Determination Theories Applied to E-Learning: Impact on Students' Participation and Academic Performance.

    PubMed

    de Araujo Guerra Grangeia, Tiago; de Jorge, Bruno; Franci, Daniel; Martins Santos, Thiago; Vellutini Setubal, Maria Silvia; Schweller, Marcelo; de Carvalho-Filho, Marco Antonio

    2016-01-01

    Emergency clerkships expose students to a stressful environment that require multiple tasks, which may have a direct impact on cognitive load and motivation for learning. To address this challenge, Cognitive Load Theory and Self Determination Theory provided the conceptual frameworks to the development of a Moodle-based online Emergency Medicine course, inspired by real clinical cases. Three consecutive classes (2013-2015) of sixth-year medical students (n = 304) participated in the course, during a curricular and essentially practical emergency rotation. "Virtual Rounds" provided weekly virtual patients in narrative format and meaningful schemata to chief complaints, in order to simulate real rounds at Emergency Unit. Additional activities such as Extreme Decisions, Emergency Quiz and Electrocardiographic challenge offered different views of emergency care. Authors assessed student´s participation and its correlation with their academic performance. A survey evaluated students´ opinions. Students graduating in 2015 answered an online questionnaire to investigate cognitive load and motivation. Each student produced 1965 pageviews and spent 72 hours logged on. Although Clinical Emergency rotation has two months long, students accessed the online course during an average of 5.3 months. Virtual Rounds was the most accessed activity, and there was positive correlations between the number of hours logged on the platform and final grades on Emergency Medicine. Over 90% of students felt an improvement in their clinical reasoning and considered themselves better prepared for rendering Emergency care. Considering a Likert scale from 1 (minimum load) to 7 (maximum load), the scores for total cognitive load were 4.79±2.2 for Virtual Rounds and 5.56±1.96 for real medical rounds(p<0,01). A real-world inspired online course, based on cognitive and motivational conceptual frameworks, seems to be a strong tool to engage students in learning. It may support them to manage the cognitive challenges involved in clinical care and increase their motivation for learning.

  11. Cognitive Load and Self-Determination Theories Applied to E-Learning: Impact on Students' Participation and Academic Performance

    PubMed Central

    de Araujo Guerra Grangeia, Tiago; de Jorge, Bruno; Franci, Daniel; Martins Santos, Thiago; Vellutini Setubal, Maria Silvia; Schweller, Marcelo; de Carvalho-Filho, Marco Antonio

    2016-01-01

    Background Emergency clerkships expose students to a stressful environment that require multiple tasks, which may have a direct impact on cognitive load and motivation for learning. To address this challenge, Cognitive Load Theory and Self Determination Theory provided the conceptual frameworks to the development of a Moodle-based online Emergency Medicine course, inspired by real clinical cases. Methods Three consecutive classes (2013–2015) of sixth-year medical students (n = 304) participated in the course, during a curricular and essentially practical emergency rotation. “Virtual Rounds” provided weekly virtual patients in narrative format and meaningful schemata to chief complaints, in order to simulate real rounds at Emergency Unit. Additional activities such as Extreme Decisions, Emergency Quiz and Electrocardiographic challenge offered different views of emergency care. Authors assessed student´s participation and its correlation with their academic performance. A survey evaluated students´ opinions. Students graduating in 2015 answered an online questionnaire to investigate cognitive load and motivation. Results Each student produced 1965 pageviews and spent 72 hours logged on. Although Clinical Emergency rotation has two months long, students accessed the online course during an average of 5.3 months. Virtual Rounds was the most accessed activity, and there was positive correlations between the number of hours logged on the platform and final grades on Emergency Medicine. Over 90% of students felt an improvement in their clinical reasoning and considered themselves better prepared for rendering Emergency care. Considering a Likert scale from 1 (minimum load) to 7 (maximum load), the scores for total cognitive load were 4.79±2.2 for Virtual Rounds and 5.56±1.96 for real medical rounds(p<0,01). Conclusions A real-world inspired online course, based on cognitive and motivational conceptual frameworks, seems to be a strong tool to engage students in learning. It may support them to manage the cognitive challenges involved in clinical care and increase their motivation for learning. PMID:27031859

  12. Rational Adaptation under Task and Processing Constraints: Implications for Testing Theories of Cognition and Action

    ERIC Educational Resources Information Center

    Howes, Andrew; Lewis, Richard L.; Vera, Alonso

    2009-01-01

    The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition--cognitively bounded rational analysis--that sharpens the predictive acuity of general, integrated…

  13. Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System

    ERIC Educational Resources Information Center

    Deegan, Robin

    2013-01-01

    Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…

  14. The identification of knowledge content and function in manual labour.

    PubMed

    Shalin, Valerie; Verdile, Charles

    2003-06-10

    Calls for an alternative conceptualization of cognition for applied concerns retain the core commitment of the basic research community to abstract cognition detached from a physical environment. The present paper attempts to break out of the dominant, narrow view of cognition and cognitive domains, with a cognitive analysis of digging ditches for the utility industry. To illustrate knowledge-based cognition in manual labour excerpts are presented from the journal entries of a moderately experienced student working a summer job, organized with a representation that distinguishes between the goals and methods of work. The journal entries illustrate the functions of knowledge for interacting with a physical environment; knowledge enables the selection, execution and monitoring of work methods, the interpretation of perceptual information, the application of task completion criteria and the ability for explanation and generalization. To emphasize the generality of the functions of cognition in ditch digging, comparable functions are indicated in a domain rarely regarded as a form of manual labour: the practice of internal medicine. Discussion of the results includes the implications for cognitive theory as well as practical implications for productivity, training and task analysis.

  15. Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine.

    PubMed

    Pourmand, Ali; Davis, Steven; Lee, Danny; Barber, Scott; Sikka, Neal

    2017-10-01

    Among the more recent products borne of the evolution of digital technology, virtual reality (VR) is gaining a foothold in clinical medicine as an adjunct to traditional therapies. Early studies suggest a growing role for VR applications in pain management, clinical skills training, cognitive assessment and cognitive therapy, and physical rehabilitation. To complete a review of the literature, we searched PubMed and MEDLINE databases with the following search terms: "virtual reality," "procedural medicine," "oncology," "physical therapy," and "burn." We further limited our search to publications in the English language. Boolean operators were used to combine search terms. The included search terms yielded 97 potential articles, of which 45 were identified as meeting study criteria, and are included in this review. These articles provide data, which strongly support the hypothesis that VR simulations can enhance pain management (by reducing patient perception of pain and anxiety), can augment clinical training curricula and physical rehabilitation protocols (through immersive audiovisual environments), and can improve clinical assessment of cognitive function (through improved ecological validity). Through computer-generated, life-like digital landscapes, VR stands to change the current approach to pain management, medical training, neurocognitive diagnosis, and physical rehabilitation. Additional studies are needed to help define best practices in VR utilization, and to explore new therapeutic uses for VR in clinical practice.

  16. The effects of mother-child mediated learning strategies on psychological resilience and cognitive modifiability of boys with learning disability.

    PubMed

    Tzuriel, David; Shomron, Vered

    2018-06-01

    The theoretical framework of the current study is based on mediated learning experience (MLE) theory, which is similar to the scaffolding concept. The main question of the current study was to what extent mother-child MLE strategies affect psychological resilience and cognitive modifiability of boys with learning disability (LD). Secondary questions were to what extent the home environment, severity of boy's LD, and mother's attitude towards her child's LD affect her MLE strategies and consequently the child's psychological resilience and cognitive modifiability. The main objectives of this study were the following: (a) to investigate the effects of mother-child MLE strategies on psychological resilience and cognitive modifiability among 7- to 10-year-old boys with LD, (b) to study the causal effects of distal factors (i.e., socio-economic status [SES], home environment, severity of child's LD, mother's attitude towards LD) and proximal factors (i.e., MLE strategies) on psychological resilience and cognitive modifiability. A sample of mother-child dyads (n = 100) were videotaped during a short teaching interaction. All children were boys diagnosed as children with LD. The interaction was analysed for MLE strategies by the Observation of Mediation Interaction scale. Children were administered psychological resilience tests and their cognitive modifiability was measured by dynamic assessment using the Analogies subtest from the Cognitive Modifiability Battery. Home environment was rated by the Home Observation for Measurement of the Environment (HOME), and mothers answered a questionnaire of attitudes towards child's LD. The findings showed that mother-child MLE strategies, HOME, and socio-economic level contributed significantly to prediction of psychological resilience (78%) and cognitive modifiability (51%). Psychological resilience was positively correlated with cognitive modifiability (Rc = 0.67). Structural equation modelling analysis supported, in general, the hypotheses about the causal effects of distal and proximal factors of psychological resilience and cognitive modifiability. The findings validate and extend the MLE theory by showing that mother-child MLE strategies significantly predict psychological resilience and cognitive modifiability among boys with LD. Significant correlation between psychological resilience and cognitive modifiability calls for further research exploring the role of MLE strategies in development of both. © 2018 The British Psychological Society.

  17. Development of an audio-based virtual gaming environment to assist with navigation skills in the blind.

    PubMed

    Connors, Erin C; Yazzolino, Lindsay A; Sánchez, Jaime; Merabet, Lotfi B

    2013-03-27

    Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.

  18. Cognitive Agility Measurement in a Complex Environment

    DTIC Science & Technology

    2017-04-01

    correlate with their corresponding historical psychology tests? EEA3.1: Does the variable for Make Goal cognitive flexibility correlate with the...Stroop Test cognitive flexibility variable? EEA3.2: Does the variable for Make Goal cognitive openness correlate with the AUT cognitive openness...variable? EEA3.3: Does the variable for Make Goal focused attention correlate with the Go, No Go Paradigm focused attention variable? 1.6

  19. Augmented Reality Cues and Elderly Driver Hazard Perception

    PubMed Central

    Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew

    2013-01-01

    Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037

  20. The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons.

    PubMed

    Migliore, Rosanna; De Simone, Giada; Leinekugel, Xavier; Migliore, Michele

    2017-04-01

    The possible effects on cognitive processes of external electric fields, such as those generated by power line pillars and household appliances are of increasing public concern. They are difficult to study experimentally, and the relatively scarce and contradictory evidence make it difficult to clearly assess these effects. In this study, we investigate how, why and to what extent external perturbations of the intrinsic neuronal activity, such as those that can be caused by generation, transmission and use of electrical energy can affect neuronal activity during cognitive processes. For this purpose, we used a morphologically and biophysically realistic three-dimensional model of CA1 pyramidal neurons. The simulation findings suggest that an electric field oscillating at power lines frequency, and environmentally measured strength, can significantly alter both the average firing rate and temporal spike distribution properties of a hippocampal CA1 pyramidal neuron. This effect strongly depends on the specific and instantaneous relative spatial location of the neuron with respect to the field, and on the synaptic input properties. The model makes experimentally testable predictions on the possible functional consequences for normal hippocampal functions such as object recognition and spatial navigation. The results suggest that, although EF effects on cognitive processes may be difficult to occur in everyday life, their functional consequences deserve some consideration, especially when they constitute a systematic presence in living environments. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Top