Performance Evaluation of Cognitive Interference Channels Using a Spectrum Overlay Strategy
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.
2018-01-01
The use of cognitive radios (CR) and cooperative communications techniques may assist in interference mitigation via sensing of the environment and dynamically altering communications parameters through the use of various mechanisms - one of which is the overlay technique. This report provides a performance analysis of an interference channel with a cognitive transceiver operating in an overlay configuration to evaluate the gains from using cognition. As shown in this report, a cognitive transceiver can simultaneously share spectrum while enhancing performance of non-cognitive nodes via knowledge of the communications channel as well as knowledge of neighboring users' modulation and coding schemes.
NASA Astrophysics Data System (ADS)
Zhang, Zongsheng; Pi, Xurong
2014-09-01
In this paper, we investigate the outage performance of decode-and-forward cognitive relay networks for Nakagami-m fading channels, with considering both best relay selection and interference constraints. Focusing on the relay selection and making use of the underlay cognitive approach, an exact closed-form outage probability expression is derived in an independent, non-identical distributed Nakagami-m environment. The closed-form outage probability provides an efficient means to evaluate the effects of the maximum allowable interference power, number of cognitive relays, and channel conditions between the primary user and cognitive users. Finally, we present numerical results to validate the theory analysis. Moreover, from the simulation results, we obtain that the system can obtain the full diversity.
A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes
NASA Astrophysics Data System (ADS)
Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan
This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.
A Study on Cognitive Radio Coexisting with Cellular Systems
NASA Astrophysics Data System (ADS)
Tandai, Tomoya; Horiguchi, Tomoya; Deguchi, Noritaka; Tomizawa, Takeshi; Tomioka, Tazuko
Cognitive Radios (CRs) are expected to perform more significant role in the view of efficient utilization of the spectrum resources in the future wireless communication networks. In this paper, a cognitive radio coexisting with cellular systems is proposed. In the case that a cellular system adopts Frequency Division Duplex (FDD) as a multiplexing scheme, the proposed CR terminals communicate in local area on uplink channels of the cellular system with transmission powers that don't interfere with base stations of the cellular system. Alternatively, in the case that a cellular system adopts Time Division Duplex (TDD), the CR terminals communicate on uplink slots of the cellular system. However if mobile terminals in the cellular system are near the CR network, uplink signals from the mobile terminals may interfere with the CR communications. In order to avoid interference from the mobile terminals, the CR terminal performs carrier sense during a beginning part of uplink slot, and only when the level of detected signal is below a threshold, then the CR terminal transmits a signal during the remained period of the uplink slot. In this paper, both the single carrier CR network that uses one frequency channel of the cellular system and the multicarrier CR network that uses multiple frequency channels of the cellular system are considered. The probabilities of successful CR communications, the average throughputs of the CR communications according to the positions of the CR network, and the interference levels from cognitive radio network to base stations of the cellular system are evaluated in the computer simulation then the effectiveness of the proposed network is clarified.
Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks
NASA Astrophysics Data System (ADS)
Tsakmalis, Anestis; Chatzinotas, Symeon; Ottersten, Bjorn
2018-02-01
In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.
A QoS Optimization Approach in Cognitive Body Area Networks for Healthcare Applications.
Ahmed, Tauseef; Le Moullec, Yannick
2017-04-06
Wireless body area networks are increasingly featuring cognitive capabilities. This work deals with the emerging concept of cognitive body area networks. In particular, the paper addresses two important issues, namely spectrum sharing and interferences. We propose methods for channel and power allocation. The former builds upon a reinforcement learning mechanism, whereas the latter is based on convex optimization. Furthermore, we also propose a mathematical channel model for off-body communication links in line with the IEEE 802.15.6 standard. Simulation results for a nursing home scenario show that the proposed approach yields the best performance in terms of throughput and QoS for dynamic environments. For example, in a highly demanding scenario our approach can provide throughput up to 7 Mbps, while giving an average of 97.2% of time QoS satisfaction in terms of throughput. Simulation results also show that the power optimization algorithm enables reducing transmission power by approximately 4.5 dBm, thereby sensibly and significantly reducing interference.
NASA Astrophysics Data System (ADS)
Xu, Ding; Li, Qun
2017-01-01
This paper addresses the power allocation problem for cognitive radio (CR) based on hybrid-automatic-repeat-request (HARQ) with chase combining (CC) in Nakagamimslow fading channels. We assume that, instead of the perfect instantaneous channel state information (CSI), only the statistical CSI is available at the secondary user (SU) transmitter. The aim is to minimize the SU outage probability under the primary user (PU) interference outage constraint. Using the Lagrange multiplier method, an iterative and recursive algorithm is derived to obtain the optimal power allocation for each transmission round. Extensive numerical results are presented to illustrate the performance of the proposed algorithm.
Optimal Periodic Cooperative Spectrum Sensing Based on Weight Fusion in Cognitive Radio Networks
Liu, Xin; Jia, Min; Gu, Xuemai; Tan, Xuezhi
2013-01-01
The performance of cooperative spectrum sensing in cognitive radio (CR) networks depends on the sensing mode, the sensing time and the number of cooperative users. In order to improve the sensing performance and reduce the interference to the primary user (PU), a periodic cooperative spectrum sensing model based on weight fusion is proposed in this paper. Moreover, the sensing period, the sensing time and the searching time are optimized, respectively. Firstly the sensing period is optimized to improve the spectrum utilization and reduce the interference, then the joint optimization algorithm of the local sensing time and the number of cooperative users, is proposed to obtain the optimal sensing time for improving the throughput of the cognitive radio user (CRU) during each period, and finally the water-filling principle is applied to optimize the searching time in order to make the CRU find an idle channel within the shortest time. The simulation results show that compared with the previous algorithms, the optimal sensing period can improve the spectrum utilization of the CRU and decrease the interference to the PU significantly, the optimal sensing time can make the CRU achieve the largest throughput, and the optimal searching time can make the CRU find an idle channel with the least time. PMID:23604027
Ma, Yongtao; Zhou, Liuji; Liu, Kaihua
2013-01-01
The paper presents a joint subcarrier-pair based resource allocation algorithm in order to improve the efficiency and fairness of cooperative multiuser orthogonal frequency division multiplexing (MU-OFDM) cognitive radio (CR) systems. A communication model where one source node communicates with one destination node assisted by one half-duplex decode-and-forward (DF) relay is considered in the paper. An interference-limited environment is considered, with the constraint of transmitted sum-power over all channels and aggregate average interference towards multiple primary users (PUs). The proposed resource allocation algorithm is capable of maximizing both the system transmission efficiency and fairness among secondary users (SUs). Besides, the proposed algorithm can also keep the interference introduced to the PU bands below a threshold. A proportional fairness constraint is used to assure that each SU can achieve a required data rate, with quality of service guarantees. Moreover, we extend the analysis to the scenario where each cooperative SU has no channel state information (CSI) about non-adjacent links. We analyzed the throughput and fairness tradeoff in CR system. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results. PMID:23939586
Spectrum Access In Cognitive Radio Using a Two-Stage Reinforcement Learning Approach
NASA Astrophysics Data System (ADS)
Raj, Vishnu; Dias, Irene; Tholeti, Thulasi; Kalyani, Sheetal
2018-02-01
With the advent of the 5th generation of wireless standards and an increasing demand for higher throughput, methods to improve the spectral efficiency of wireless systems have become very important. In the context of cognitive radio, a substantial increase in throughput is possible if the secondary user can make smart decisions regarding which channel to sense and when or how often to sense. Here, we propose an algorithm to not only select a channel for data transmission but also to predict how long the channel will remain unoccupied so that the time spent on channel sensing can be minimized. Our algorithm learns in two stages - a reinforcement learning approach for channel selection and a Bayesian approach to determine the optimal duration for which sensing can be skipped. Comparisons with other learning methods are provided through extensive simulations. We show that the number of sensing is minimized with negligible increase in primary interference; this implies that lesser energy is spent by the secondary user in sensing and also higher throughput is achieved by saving on sensing.
Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments
NASA Astrophysics Data System (ADS)
Sklivanitis, Georgios
The objective of this dissertation is the design, development, and experimental evaluation of novel algorithms and reconfigurable radio architectures for spectrally efficient cognitive networking in terrestrial, airborne, and underwater environments. Next-generation wireless communication architectures and networking protocols that maximize spectrum utilization efficiency in congested/contested or low-spectral availability (extreme) communication environments can enable a rich body of applications with unprecedented societal impact. In recent years, underwater wireless networks have attracted significant attention for military and commercial applications including oceanographic data collection, disaster prevention, tactical surveillance, offshore exploration, and pollution monitoring. Unmanned aerial systems that are autonomously networked and fully mobile can assist humans in extreme or difficult-to-reach environments and provide cost-effective wireless connectivity for devices without infrastructure coverage. Cognitive radio (CR) has emerged as a promising technology to maximize spectral efficiency in dynamically changing communication environments by adaptively reconfiguring radio communication parameters. At the same time, the fast developing technology of software-defined radio (SDR) platforms has enabled hardware realization of cognitive radio algorithms for opportunistic spectrum access. However, existing algorithmic designs and protocols for shared spectrum access do not effectively capture the interdependencies between radio parameters at the physical (PHY), medium-access control (MAC), and network (NET) layers of the network protocol stack. In addition, existing off-the-shelf radio platforms and SDR programmable architectures are far from fulfilling runtime adaptation and reconfiguration across PHY, MAC, and NET layers. Spectrum allocation in cognitive networks with multi-hop communication requirements depends on the location, network traffic load, and interference profile at each network node. As a result, the development and implementation of algorithms and cross-layer reconfigurable radio platforms that can jointly treat space, time, and frequency as a unified resource to be dynamically optimized according to inter- and intra-network interference constraints is of fundamental importance. In the next chapters, we present novel algorithmic and software/hardware implementation developments toward the deployment of spectrally efficient terrestrial, airborne, and underwater wireless networks. In Chapter 1 we review the state-of-art in commercially available SDR platforms, describe their software and hardware capabilities, and classify them based on their ability to enable rapid prototyping and advance experimental research in wireless networks. Chapter 2 discusses system design and implementation details toward real-time evaluation of a software-radio platform for all-spectrum cognitive channelization in the presence of narrowband or wideband primary stations. All-spectrum channelization is achieved by designing maximum signal-to-interference-plus-noise ratio (SINR) waveforms that span the whole continuum of the device-accessible spectrum, while satisfying peak power and interference temperature (IT) constraints for the secondary and primary users, respectively. In Chapter 3, we introduce the concept of all-spectrum channelization based on max-SINR optimized sparse-binary waveforms, we propose optimal and suboptimal waveform design algorithms, and evaluate their SINR and bit-error-rate (BER) performance in an SDR testbed. Chapter 4 considers the problem of channel estimation with minimal pilot signaling in multi-cell multi-user multi-input multi-output (MIMO) systems with very large antenna arrays at the base station, and proposes a least-squares (LS)-type algorithm that iteratively extracts channel and data estimates from a short record of data measurements. Our algorithmic developments toward spectrally-efficient cognitive networking through joint optimization of channel access code-waveforms and routes in a multi-hop network are described in Chapter 5. Algorithmic designs are software optimized on heterogeneous multi-core general-purpose processor (GPP)-based SDR architectures by leveraging a novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the PHY, MAC, and NET layers of the network protocol stack. Our system design approach is experimentally validated under realistic conditions in a large-scale hybrid ground-air testbed deployment. Chapter 6 reviews the state-of-art in software and hardware platforms for underwater wireless networking and proposes a software-defined acoustic modem prototype that enables (i) cognitive reconfiguration of PHY/MAC parameters, and (ii) cross-technology communication adaptation. The proposed modem design is evaluated in terms of effective communication data rate in both water tank and lake testbed setups. In Chapter 7, we present a novel receiver configuration for code-waveform-based multiple-access underwater communications. The proposed receiver is fully reconfigurable and executes (i) all-spectrum cognitive channelization, and (ii) combined synchronization, channel estimation, and demodulation. Experimental evaluation in terms of SINR and BER show that all-spectrum channelization is a powerful proposition for underwater communications. At the same time, the proposed receiver design can significantly enhance bandwidth utilization. Finally, in Chapter 8, we focus on challenging practical issues that arise in underwater acoustic sensor network setups where co-located multi-antenna sensor deployment is not feasible due to power, computation, and hardware limitations, and design, implement, and evaluate an underwater receiver structure that accounts for multiple carrier frequency and timing offsets in virtual (distributed) MIMO underwater systems.
Tuan, Pham Viet; Koo, Insoo
2017-10-06
In this paper, we consider multiuser simultaneous wireless information and power transfer (SWIPT) for cognitive radio systems where a secondary transmitter (ST) with an antenna array provides information and energy to multiple single-antenna secondary receivers (SRs) equipped with a power splitting (PS) receiving scheme when multiple primary users (PUs) exist. The main objective of the paper is to maximize weighted sum harvested energy for SRs while satisfying their minimum required signal-to-interference-plus-noise ratio (SINR), the limited transmission power at the ST, and the interference threshold of each PU. For the perfect channel state information (CSI), the optimal beamforming vectors and PS ratios are achieved by the proposed PSO-SDR in which semidefinite relaxation (SDR) and particle swarm optimization (PSO) methods are jointly combined. We prove that SDR always has a rank-1 solution, and is indeed tight. For the imperfect CSI with bounded channel vector errors, the upper bound of weighted sum harvested energy (WSHE) is also obtained through the S-Procedure. Finally, simulation results demonstrate that the proposed PSO-SDR has fast convergence and better performance as compared to the other baseline schemes.
Cognitive software defined radar: waveform design for clutter and interference suppression
NASA Astrophysics Data System (ADS)
Kirk, Benjamin H.; Owen, Jonathan W.; Narayanan, Ram M.; Blunt, Shannon D.; Martone, Anthony F.; Sherbondy, Kelly D.
2017-05-01
Clutter and radio frequency interference (RFI) are prevalent issues in the field of radar and are specifically of interest to of cognitive radar. Here, methods for applying and testing the utility of cognitive radar for clutter and RFI mitigation are explored. Using the adaptable transmit capability, environmental database, and general "awareness" of a cognitive radar system (i.e. spectrum sensing, geographical location, etc.), a matched waveform is synthesized that improves the signal-to-clutter ratio (SCR), assuming at least an estimate of the target response and the environmental clutter response are known a prior i. RFI may also be mitigated by sensing the RF spectrum and adapting the transmit center frequency and bandwidth using methods that optimize bandwidth and signal-to-interference plus noise ratio (SINR) (i.e. the spectrum sensing, multi-objective (SS-MO) algorithm). The improvement is shown by a decrease in the noise floor. The above methods' effectiveness are examined via a test-bed developed around a software defined radio (SDR). Testing and the general use of commercial off the shelf (COTS) devices are desirable for their cost effectiveness, general ease of use, as well as technical and community support, but these devices provide design challenges in order to be effective. The universal software radio peripheral (USRP) X310 SDR is a relatively cheap and portable device that has all the system components of a basic cognitive radar. Design challenges of the SDR include phase coherency between channels, bandwidth limitations, dynamic range, and speed of computation and data communication / recording.
CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.
1996-01-01
Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.
Intraindividual Coupling of Daily Stressors and Cognitive Interference in Old Age
Mogle, Jacqueline; Sliwinski, Martin J.
2011-01-01
Objectives. The current study examined emotional and cognitive reactions to daily stress. We examined the psychometric properties of a short cognitive interference measure and how cognitive interference was associated with measures of daily stress and negative affect (NA) between persons and within persons over time. Methods. A sample of 87 older adults (Mage = 83, range = 70–97, 28% male) completed measures of daily stress, cognitive interference, and NA on 6 days within a 14-day period. Results. The measure yielded a single-factor solution with good reliability both between and within persons. At the between-person level, NA accounted for the effects of daily stress on individual differences in cognitive interference. At the within-person level, NA and daily stress were unique predictors of cognitive interference. Furthermore, the within-person effect of daily stress on cognitive interference decreased significantly with age. Discussion. These results support theoretical work regarding associations among stress, NA, and cognitive interference, both across persons and within persons over time. PMID:21743045
Co-Channel Interference Mitigation Using Satellite Based Receivers
2014-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS by John E. Patterson...07-02-2012 to 12-19-2014 4. TITLE AND SUBTITLE CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RE- CEIVERS 5. FUNDING NUMBERS 6. AUTHOR(S...Approved for public release; distribution is unlimited CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS John E. Patterson Commander
Modeling channel interference in an orbital angular momentum-multiplexed laser link
NASA Astrophysics Data System (ADS)
Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.
2009-08-01
We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.
2015-03-26
THE COGNITION OF MULTIAIRCRAFT CONTROL (MAC): COGNITIVE ABILITY PREDICTORS, WORKING MEMORY ...COGNITIVE ABILITY PREDICTORS, WORKING MEMORY , INTERFERENCE, AND ATTENTION CONTROL IN RADIO COMMUNICATION THESIS Presented to the Faculty...UNLIMITED. AFIT-ENV-MS-15-M-205 THE COGNITION OF MULTIAIRCRAFT CONTROL (MAC): COGNITIVE ABILITY PREDICTORS, WORKING MEMORY , INTERFERENCE
Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek
2017-07-07
Canada's third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data.
Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek
2017-01-01
Canada’s third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data. PMID:28686198
NASA Astrophysics Data System (ADS)
Watson, Clifton L.; Biswas, Subir
2014-06-01
With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.
Choi, Sangil; Park, Jong Hyuk
2016-12-02
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network
Choi, Sangil; Park, Jong Hyuk
2016-01-01
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel.
Selvaprabhu, Poongundran; Chinnadurai, Sunil; Li, Jun; Lee, Moon Ho
2017-08-17
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K -user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes.
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel
Li, Jun; Lee, Moon Ho
2017-01-01
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K-user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes. PMID:28817071
Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie
2013-04-01
Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid
This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellularmore » and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in
We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).
Adaptive limited feedback for interference alignment in MIMO interference channels.
Zhang, Yang; Zhao, Chenglin; Meng, Juan; Li, Shibao; Li, Li
2016-01-01
It is very important that the radar sensor network has autonomous capabilities such as self-managing, etc. Quite often, MIMO interference channels are applied to radar sensor networks, and for self-managing purpose, interference management in MIMO interference channels is critical. Interference alignment (IA) has the potential to dramatically improve system throughput by effectively mitigating interference in multi-user networks at high signal-to-noise (SNR). However, the implementation of IA predominantly relays on perfect and global channel state information (CSI) at all transceivers. A large amount of CSI has to be fed back to all transmitters, resulting in a proliferation of feedback bits. Thus, IA with limited feedback has been introduced to reduce the sum feedback overhead. In this paper, by exploiting the advantage of heterogeneous path loss, we first investigate the throughput of IA with limited feedback in interference channels while each user transmits multi-streams simultaneously, then we get the upper bound of sum rate in terms of the transmit power and feedback bits. Moreover, we propose a dynamic feedback scheme via bit allocation to reduce the throughput loss due to limited feedback. Simulation results demonstrate that the dynamic feedback scheme achieves better performance in terms of sum rate.
NASA Astrophysics Data System (ADS)
Fan, Tong-liang; Wen, Yu-cang; Kadri, Chaibou
Orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading because of the increase of the symbol duration. However, the time-varying nature of the channel causes inter-carrier interference (ICI) which destroys the orthogonal of sub-carriers and degrades the system performance severely. To alleviate the detrimental effect of ICI, there is a need for ICI mitigation within one OFDM symbol. We propose an iterative Inter-Carrier Interference (ICI) estimation and cancellation technique for OFDM systems based on regularized constrained total least squares. In the proposed scheme, ICI aren't treated as additional additive white Gaussian noise (AWGN). The effect of Inter-Carrier Interference (ICI) and inter-symbol interference (ISI) on channel estimation is regarded as perturbation of channel. We propose a novel algorithm for channel estimation o based on regularized constrained total least squares. Computer simulations show that significant improvement can be obtained by the proposed scheme in fast fading channels.
Selvaprabhu, Poongundran; Chinnadurai, Sunil; Sarker, Md Abdul Latif; Lee, Moon Ho
2018-01-28
In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K -user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K -user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K -user multicell MIMO scheduling and K -user L -cell CEUs partial cooperation algorithms elaborate the generalisation of K -user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes.
2018-01-01
In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K-user multicell MIMO scheduling and K-user L-cell CEUs partial cooperation algorithms elaborate the generalisation of K-user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes. PMID:29382100
A New Hybrid Scheme for Preventing Channel Interference and Collision in Mobile Networks
NASA Astrophysics Data System (ADS)
Kim, Kyungjun; Han, Kijun
This paper proposes a new hybrid scheme based on a given set of channels for preventing channel interference and collision in mobile networks. The proposed scheme is designed for improving system performance, focusing on enhancement of performance related to path breakage and channel interference. The objective of this scheme is to improve the performance of inter-node communication. Simulation results from this paper show that the new hybrid scheme can reduce a more control message overhead than a conventional random scheme.
Minamoto, Takehiro; Shipstead, Zach; Osaka, Naoyuki; Engle, Randall W
2015-07-01
Studies on visual cognitive load have reported inconsistent effects of distractor interference when distractors have visual characteristic that are similar to the cognitive load. Some studies have shown that the cognitive load enhances distractor interference, while others reported an attenuating effect. We attribute these inconsistencies to the amount of cognitive load that a person is required to maintain. Lower amounts of cognitive load increase distractor interference by orienting attention toward visually similar distractors. Higher amounts of cognitive load attenuate distractor interference by depleting attentional resources needed to process distractors. In the present study, cognitive load consisted of faces (Experiments 1-3) or scenes (Experiment 2). Participants performed a selective attention task in which they ignored face distractors while judging a color of a target dot presented nearby, under differing amounts of load. Across these experiments distractor interference was greater in the low-load condition and smaller in the high-load condition when the content of the cognitive load had similar visual characteristic to the distractors. We also found that when a series of judgments needed to be made, the effect was apparent for the first trial but not for the second. We further tested an involvement of working memory capacity (WMC) in the load effect (Experiment 3). Interestingly, both high and low WMC groups received an equivalent effect of the cognitive load in the first distractor, suggesting these effects are fairly automatic.
76 FR 5521 - Innovation in the Broadcast Television Bands
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... raise the possibility of interference to radio astronomy operations on channel 37 or to services... interference to radio astronomy operations on channel 37 or to operations of other services above channel 51... astronomy that are at 608-614 MHz (at channel 37). The Commission requests comments on this proposed plan...
Conditions for quantum interference in cognitive sciences.
Yukalov, Vyacheslav I; Sornette, Didier
2014-01-01
We present a general classification of the conditions under which cognitive science, concerned, e.g. with decision making, requires the use of quantum theoretical notions. The analysis is done in the frame of the mathematical approach based on the theory of quantum measurements. We stress that quantum effects in cognition can arise only when decisions are made under uncertainty. Conditions for the appearance of quantum interference in cognitive sciences and the conditions when interference cannot arise are formulated. Copyright © 2013 Cognitive Science Society, Inc.
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
NASA Technical Reports Server (NTRS)
Boutin, Karl; Lecours, Michel; Pelletier, Marcel; Delisle, Gilles Y.
1990-01-01
In a mobile satellite system with a frequency reuse cellular configuration, significant co-channel interference can be experienced due to the antenna sidelobe level. The signal will be subjected not only to its own fading, but also to the effect of the varying degree of fading on co-channel interferer, and this interference will behave differently in the up and in the down link. This paper presents a quantitative evaluation of the combined effects of fades and co-channel interference on a mobile satellite link.
Evaluate interference in digital channels
NASA Technical Reports Server (NTRS)
Davarian, F.; Sumida, J.
1985-01-01
Any future mobile satellite service (MSS) which is to provide simultaneous mobile communications for a large number of users will have to make very efficient use of the spectrum. As the spectrum available for an MSS is limited, the system's channels should be packed as closely together as possible, with minimum-width guard bands. In addition the employment of frequency reuse schemes is an important factor. Difficulties regarding these solutions are related to the introduction of interference in the link. A balance must be achieved between the competing aims of spectrum conservation and low interference. While the interference phenomenon in narrowband FM voice channels is reasonably well understood, very little effort, however, has been devoted to the problem in digital radios. Attention is given to work, which illuminates the effects of cochannel and adjacent channel interference on digital FM (FSK) radios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djalali, Chaden; Paolone, Michael; Weygand, Dennis
2014-09-01
Although the phenomena of r – w interference has been studied at great length in pionic decay channel over the past 50 years, a study of the interference in a purely electromagnetic production and decay channel has never been performed on an elementary proton target until now. The only published photo-production data of the r - w leptonic decay channel was obtained in the early seventies on C and Be. An investigation of the r - w interference on a Hydrogen was recently completed at Jefferson Lab with the CLAS detector. The di-lepton spectra was fit with two inter- feringmore » relativistic Breit-Wigner functions, and the interference phase was extracted. Preliminary results will be compared to the previous experimental studies in nuclei.« less
Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms
Yau, Kok-Lim Alvin; Poh, Geong-Sen; Chien, Su Fong; Al-Rawi, Hasan A. A.
2014-01-01
Cognitive radio (CR) enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL), which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry out optimal actions for performance enhancement in a wide range of schemes in CR, such as dynamic channel selection and channel sensing. This paper presents new discussions of RL in the context of CR networks. It provides an extensive review on how most schemes have been approached using the traditional and enhanced RL algorithms through state, action, and reward representations. Examples of the enhancements on RL, which do not appear in the traditional RL approach, are rules and cooperative learning. This paper also reviews performance enhancements brought about by the RL algorithms and open issues. This paper aims to establish a foundation in order to spark new research interests in this area. Our discussion has been presented in a tutorial manner so that it is comprehensive to readers outside the specialty of RL and CR. PMID:24995352
Theory and simulation of multi-channel interference (MCI) widely tunable lasers.
Chen, Quanan; Lu, Qiaoyin; Guo, Weihua
2015-07-13
A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented.
A Cognitive Framework for Understanding and Improving Interference Resolution in the Brain
Mishra, Jyoti; Anguera, Joaquin A.; Ziegler, David A.; Gazzaley, Adam
2014-01-01
All of us are familiar with the negative impact of interference on achieving our task goals. We are referring to interference by information, which either impinges on our senses from an external environmental source or is internally generated by our thoughts. Informed by more than a decade of research on the cognitive and neural processing of interference, we have developed a framework for understanding how interference impacts our neural systems and especially how it is regulated and suppressed during efficient on-task performance. Importantly, externally and internally generated interferences have distinct neural signatures, and further, distinct neural processing emerges depending on whether individuals must ignore and suppress the interference, as for distractions, or engage with them in a secondary task, as during multitasking. Here, we elaborate on this cognitive framework and how it changes throughout the human lifespan, focusing mostly on research evidence from younger adults and comparing these findings to data from older adults, children, and cognitively impaired populations. With insights gleaned from our growing understanding, we then describe three novel translational efforts in our lab directed at improving distinct aspects of interference resolution using cognitive training. Critically, these training approaches were specifically developed to target improved interference resolution based on neuroplasticity principles and have shown much success in randomized controlled first version evaluations in healthy aging. Our results show not only on-task training improvements but also robust generalization of benefit to other cognitive control abilities. This research showcases how an in-depth understanding of neural mechanisms can then inform the development of effective deficit-targeted interventions, which can in turn benefit both healthy and cognitively impaired populations. PMID:24309262
Joint channel estimation and multi-user detection for multipath fading channels in DS-CDMA systems
NASA Astrophysics Data System (ADS)
Wu, Sau-Hsuan; Kuo, C.-C. Jay
2002-11-01
The technique of joint blind channel estimation and multiple access interference (MAI) suppression for an asynchronous code-division multiple-access (CDMA) system is investigated in this research. To identify and track dispersive time-varying fading channels and to avoid the phase ambiguity that come with the second-order statistic approaches, a sliding-window scheme using the expectation maximization (EM) algorithm is proposed. The complexity of joint channel equalization and symbol detection for all users increases exponentially with system loading and the channel memory. The situation is exacerbated if strong inter-symbol interference (ISI) exists. To reduce the complexity and the number of samples required for channel estimation, a blind multiuser detector is developed. Together with multi-stage interference cancellation using soft outputs provided by this detector, our algorithm can track fading channels with no phase ambiguity even when channel gains attenuate close to zero.
FastICA peel-off for ECG interference removal from surface EMG.
Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping
2016-06-13
Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.
Interference effects for Higgs boson mediated Z -pair plus jet production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John M.; Ellis, R. Keith; Furlan, Elisabetta
2014-11-25
Here, we study interference effects in the production channel ZZ + jet, in particular focusing on the role of the Higgs boson. This production channel receives contributions both from Higgs boson mediated diagrams via the decay H → ZZ (signal diagrams), as well as from diagrams where the Z bosons couple directly to a quark loop (background diagrams). We consider the partonic processes gggZZ and gqmore » $$\\bar{q}$$ZZ in which interference between signal and background diagrams first occurs. Since interference is primarily an off-resonant effect for the Higgs boson, we treat the Z bosons as on shell. Thus our analysis is limited to the region above threshold, where the invariant mass of the Z-pair mZZ satisfies the condition m ZZ>2m Z. In the region m ZZ > 300 GeV we find that the interference in the ZZ + jet channel is qualitatively similar to interference in the inclusive ZZ channel. Moreover, the rates are sufficient to study these effects at the LHC once jet-binned data become available.« less
RAC-multi: reader anti-collision algorithm for multichannel mobile RFID networks.
Shin, Kwangcheol; Song, Wonil
2010-01-01
At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.
RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks
Shin, Kwangcheol; Song, Wonil
2010-01-01
At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks. PMID:22315528
A cognitive mobile BTS solution with software-defined radioelectric sensing.
Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Sergio; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel García; Valcarce, Roberto López; Bravo, Cristina López
2013-02-05
Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals.
A Cognitive Mobile BTS Solution with Software-Defined Radioelectric Sensing
Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Secundino; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel Garćia; Valcarce, Roberto López; Bravo, Cristina López
2013-01-01
Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals. PMID:23385417
Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D
2018-02-22
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).
Pooler, Richard K.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.
2018-01-01
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE). PMID:29470448
Song, Sensen; Zilverstand, Anna; Song, Hongwen; d'Oleire Uquillas, Federico; Wang, Yongming; Xie, Chao; Cheng, Li; Zou, Zhiling
2017-05-18
The neural correlates underlying the influence of emotional interference on cognitive control remain a topic of discussion. Here, we assessed 16 neuroimaging studies that used an emotional Stroop task and that reported a significant interaction effect between emotion (stimulus type) and cognitive conflict. There were a total of 330 participants, equaling 132 foci for an activation likelihood estimation (ALE) analysis. Results revealed consistent brain activation patterns related to emotionally-salient stimuli (as compared to emotionally-neutral trials) during cognitive conflict trials [incongruent trials (with task-irrelevant information interfering), versus congruent/baseline trials (less disturbance from task-irrelevant information)], that span the lateral prefrontal cortex (dorsolateral prefrontal cortex and inferior frontal gyrus), the medial prefrontal cortex, and the dorsal anterior cingulate cortex. Comparing mild emotional interference trials (without semantic conflict) versus intense emotional interference trials (with semantic conflict), revealed that while concurrent activation in similar brain regions as mentioned above was found for intense emotional interference trials, activation for mild emotional interference trials was only found in the precentral/postcentral gyrus. These data provide evidence for the potential neural mechanisms underlying emotional interference on cognitive control, and further elucidate an important distinction in brain activation patterns for different levels of emotional conflict across emotional Stroop tasks.
Aharanov-Bohm quantum interference in a reconfigurable electron system
NASA Astrophysics Data System (ADS)
Irvin, P.; Lu, S.; Annadi, A.; Cheng, G.; Tomczyk, M.; Huang, M.; Levy, J.; Lee, J.-W.; Lee, H.; Eom, C.-B.
Aharanov-Bohm (AB) interference can arise in transport experiments when magnetic flux threads through two or more transport channels. The existence of this behavior requires long-range ballistic transport and is typically observed only in exceptionally clean materials. We observe AB interference in wide (w 100 nm) channels created at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Interference occurs above a critical field B 4 T and increases in magnitude with increasing magnetic field. The period of oscillation implies a ballistic length that greatly exceeds the micron-scale length of the channel, consistent with Fabry-Perot interference in 1D channels. The conditions under which AB oscillations are observed will be discussed in the context of the electron pairing mechanism in LaAlO3/SrTiO3. We gratefully acknowledge financial support from AFOSR FA9550-12-1-0342 (CBE), NSF DMR-1234096 (CBE), and ONR N00014-15-1-2847 (JL).
Interference susceptibility measurements for an MSK satellite communication link
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Fujikawa, Gene
1992-01-01
The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).
NASA Astrophysics Data System (ADS)
Metelev, S. A.; Lvov, A. V.
2017-12-01
We propose a model of forming the signals and interference in the very low frequency wave range. Using this model, we determine the potentials of the space-polarization interference compensators in a communication channel with natural interference and jamming.
Cognitive Load Selectively Interferes with Utilitarian Moral Judgment
Greene, Joshua D.; Morelli, Sylvia A.; Lowenberg, Kelly; Nystrom, Leigh E.; Cohen, Jonathan D.
2008-01-01
Traditional theories of moral development emphasize the role of controlled cognition in mature moral judgment, while a more recent trend emphasizes intuitive and emotional processes. Here we test a dual-process theory synthesizing these perspectives. More specifically, our theory associates utilitarian moral judgment (approving of harmful actions that maximize good consequences) with controlled cognitive processes and associates non-utilitarian moral judgment with automatic emotional responses. Consistent with this theory, we find that a cognitive load manipulation selectively interferes with utilitarian judgment. This interference effect provides direct evidence for the influence of controlled cognitive processes in moral judgment, and utilitarian moral judgment more specifically. PMID:18158145
Pain and Cognitive Function Among Older Adults Living in the Community
van der Leeuw, Guusje; Eggermont, Laura H. P.; Shi, Ling; Milberg, William P.; Gross, Alden L.; Hausdorff, Jeffrey M.; Bean, Jonathan F.
2016-01-01
Background. Pain related to many age-related chronic conditions is a burdensome problem in elderly adults and may also interfere with cognitive functioning. The purpose of this study was to examine the cross-sectional relationship between measures of pain severity and pain interference and cognitive performance in community-living older adults. Methods. We studied 765 participants in the Maintenance of Balance Independent Living Intellect and Zest (MOBILIZE) Boston Study, a population-based study of persons aged 70 and older. Global pain severity and interference were measured using the Brief Pain Inventory subscales. The neuropsychological battery included measures of attentional capacity (Trail Making Test A, WORLD Test), executive function (Trail Making Test B and Delta, Clock-in-a-Box, Letter Fluency), memory (Hopkins Verbal Learning Test), and a global composite measure of cognitive function. Multivariable linear regression models were used to analyze the relationship between pain and cognitive functioning. Results. Elderly adults with more severe pain or more pain interference had poorer performance on memory tests and executive functioning compared to elders with none or less pain. Pain interference was also associated with impaired attentional capacity. Additional adjustment for chronic conditions, behaviors, and psychiatric medication resulted in attenuation of many of the observed associations. However, the association between pain interference and general cognitive function persisted. Conclusions. Our findings point to the need for further research to understand how chronic pain may contribute to decline in cognitive function and to determine strategies that may help in preventing or managing these potential consequences of pain on cognitive function in older adults. PMID:26433218
Influence of Threat and Serotonin Transporter Genotype on Interference Effects
Jasinska, Agnes J.; Ho, S. Shaun; Taylor, Stephan F.; Burmeister, Margit; Villafuerte, Sandra; Polk, Thad A.
2012-01-01
Emotion-cognition interactions are critical in goal-directed behavior and may be disrupted in psychopathology. Growing evidence also suggests that emotion-cognition interactions are modulated by genetic variation, including genetic variation in the serotonin system. The goal of the current study was to examine the impact of threat-related distracters and serotonin transporter promoter polymorphism (5-HTTLPR/rs25531) on cognitive task performance in healthy females. Using a novel threat-distracter version of the Multi-Source Interference Task specifically designed to probe emotion-cognition interactions, we demonstrate a robust and temporally dynamic modulation of cognitive interference effects by threat-related distracters relative to other distracter types and relative to no-distracter condition. We further show that threat-related distracters have dissociable and opposite effects on cognitive task performance in easy and difficult task conditions, operationalized as the level of response interference that has to be surmounted to produce a correct response. Finally, we present evidence that the 5-HTTLPR/rs25531 genotype in females modulates susceptibility to cognitive interference in a global fashion, across all distracter conditions, and irrespective of the emotional salience of distracters, rather than specifically in the presence of threat-related distracters. Taken together, these results add to our understanding of the processes through which threat-related distracters affect cognitive processing, and have implications for our understanding of disorders in which threat signals have a detrimental effect on cognition, including depression and anxiety disorders. PMID:22590463
Fernández de Gorostiza, Erlantz; Mabe, Jon
2018-01-01
Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method. PMID:29473910
Fernández de Gorostiza, Erlantz; Berzosa, Jorge; Mabe, Jon; Cortiñas, Roberto
2018-02-23
Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.
Interference Impacts Working Memory in Mild Cognitive Impairment
Aurtenetxe, Sara; García-Pacios, Javier; del Río, David; López, María E.; Pineda-Pardo, José A.; Marcos, Alberto; Delgado Losada, Maria L.; López-Frutos, José M.; Maestú, Fernando
2016-01-01
Mild cognitive impairment (MCI) is considered a transitional stage between healthy aging and dementia, specifically Alzheimer's disease (AD). The most common cognitive impairment of MCI includes episodic memory loss and difficulties in working memory (WM). Interference can deplete WM, and an optimal WM performance requires an effective control of attentional resources between the memoranda and the incoming stimuli. Difficulties in handling interference lead to forgetting. However, the interplay between interference and WM in MCI is not well-understood and needs further investigation. The current study investigated the effect of interference during a WM task in 20 MCIs and 20 healthy elder volunteers. Participants performed a delayed match-to-sample paradigm which consisted in two interference conditions, distraction and interruption, and one control condition without any interference. Results evidenced a disproportionate impact of interference on the WM performance of MCIs, mainly in the presence of interruption. These findings demonstrate that interference, and more precisely interruption, is an important proxy for memory-related deficits in MCI. Thus, the current findings reveal novel evidence regarding the causes of WM forgetting in MCI patients, associated with difficulties in the mechanisms of attentional control. PMID:27790082
NASA Astrophysics Data System (ADS)
Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku
2014-12-01
Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.
The Problem State: A Cognitive Bottleneck in Multitasking
ERIC Educational Resources Information Center
Borst, Jelmer P.; Taatgen, Niels A.; van Rijn, Hedderik
2010-01-01
The main challenge for theories of multitasking is to predict when and how tasks interfere. Here, we focus on interference related to the problem state, a directly accessible intermediate representation of the current state of a task. On the basis of Salvucci and Taatgen's (2008) threaded cognition theory, we predict interference if 2 or more…
Cognitive interference can be mitigated by consonant music and facilitated by dissonant music.
Masataka, Nobuo; Perlovsky, Leonid
2013-01-01
Debates on the origins of consonance and dissonance in music have a long history. While some scientists argue that consonance judgments are an acquired competence based on exposure to the musical-system-specific knowledge of a particular culture, others favor a biological explanation for the observed preference for consonance. Here we provide experimental confirmation that this preference plays an adaptive role in human cognition: it reduces cognitive interference. The results of our experiment reveal that exposure to a Mozart minuet mitigates interference, whereas, conversely, when the music is modified to consist of mostly dissonant intervals the interference effect is intensified.
Cognitive interference can be mitigated by consonant music and facilitated by dissonant music
Masataka, Nobuo; Perlovsky, Leonid
2013-01-01
Debates on the origins of consonance and dissonance in music have a long history. While some scientists argue that consonance judgments are an acquired competence based on exposure to the musical-system-specific knowledge of a particular culture, others favor a biological explanation for the observed preference for consonance. Here we provide experimental confirmation that this preference plays an adaptive role in human cognition: it reduces cognitive interference. The results of our experiment reveal that exposure to a Mozart minuet mitigates interference, whereas, conversely, when the music is modified to consist of mostly dissonant intervals the interference effect is intensified. PMID:23778307
NASA Astrophysics Data System (ADS)
Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.
2011-04-01
In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.
Pain and Cognitive Function Among Older Adults Living in the Community.
van der Leeuw, Guusje; Eggermont, Laura H P; Shi, Ling; Milberg, William P; Gross, Alden L; Hausdorff, Jeffrey M; Bean, Jonathan F; Leveille, Suzanne G
2016-03-01
Pain related to many age-related chronic conditions is a burdensome problem in elderly adults and may also interfere with cognitive functioning. The purpose of this study was to examine the cross-sectional relationship between measures of pain severity and pain interference and cognitive performance in community-living older adults. We studied 765 participants in the Maintenance of Balance Independent Living Intellect and Zest (MOBILIZE) Boston Study, a population-based study of persons aged 70 and older. Global pain severity and interference were measured using the Brief Pain Inventory subscales. The neuropsychological battery included measures of attentional capacity (Trail Making Test A, WORLD Test), executive function (Trail Making Test B and Delta, Clock-in-a-Box, Letter Fluency), memory (Hopkins Verbal Learning Test), and a global composite measure of cognitive function. Multivariable linear regression models were used to analyze the relationship between pain and cognitive functioning. Elderly adults with more severe pain or more pain interference had poorer performance on memory tests and executive functioning compared to elders with none or less pain. Pain interference was also associated with impaired attentional capacity. Additional adjustment for chronic conditions, behaviors, and psychiatric medication resulted in attenuation of many of the observed associations. However, the association between pain interference and general cognitive function persisted. Our findings point to the need for further research to understand how chronic pain may contribute to decline in cognitive function and to determine strategies that may help in preventing or managing these potential consequences of pain on cognitive function in older adults. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation
NASA Astrophysics Data System (ADS)
Kim, Sunwoo
This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.
Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.
van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A
2013-09-01
Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.
A novel approach for cognitive radio application in 2.4-GHz ISM band
NASA Astrophysics Data System (ADS)
Das, Deepa; Das, Susmita
2017-05-01
This paper reveals the issues of incorporating the cognitive radio (CR) technology in the 2.4-GHz industrial, scientific and medical band. The objective of allowing the coexisting systems in this unlicensed band is to opportunistically share the underutilised spectrum so as to improve the spectral usages efficiency. Hence, proper evaluation of the spectrum occupancy is one of the important tasks. Therefore, we adopt a double threshold-based detection scheme to differentiate the sub-bands with respect to their occupancy statistics satisfying the target miss detection probability. Further, an adaptive power allocation to the CR user (CRU) is proposed for maximising the system throughput under the constraints of interference to the co-existing systems and maximum transmission power. We consider path loss in the channel modelling between the CRUs. Our proposed approach is investigated over the real measurement data collected in the Swearingen Engineering Center, University of South Carolina, Columbia, SC, USA.
NASA Astrophysics Data System (ADS)
Bratchikov, A. N.; Glukhov, I. P.
1992-02-01
An analysis is made of a theoretical model of an interference fiber channel for transmission of microwave signals. It is assumed that the channel consists of a multimode fiber waveguide with a step or graded refractive-index profile. A typical statistic of a longitudinal distribution of inhomogeneities is also assumed. Calculations are reported of the interference losses, the spectral profile of the output radio signal, the signal/noise ratio in the channel, and of the dependences of these parameters on: the type, diameter, and the length of the multimode fiber waveguide; the spectral width of the radiation source; the frequency offset between the interfering optical signals.
IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook
2016-12-01
Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.
Interference Control, Working Memory Capacity, and Cognitive Abilities: A Latent Variable Analysis
ERIC Educational Resources Information Center
Unsworth, Nash
2010-01-01
The present study examined whether various indices of interference control were related to one another and to other cognitive abilities. It was found that the interference control measures were weakly correlated and could form a single factor that was related to overall memory performance on the tasks as well as to measures of working memory…
Relationship between fruit and vegetable intake and interference control in breast cancer survivors.
Zuniga, Krystle E; Mackenzie, Michael J; Roberts, Sarah A; Raine, Lauren B; Hillman, Charles H; Kramer, Arthur F; McAuley, Edward
2016-06-01
Nutrition plays an important role in brain structure and function, and the effects of diet may even be greater in those at greater risk of cognitive decline, such as individuals with cancer-related cognitive impairment. However, the relation of dietary components to cognitive function in cancer survivors is unknown. The objective of this study was to determine whether breast cancer survivors (BCS) evidenced impairments in interference control, a component of cognitive control, compared to age-matched women with no prior history of cancer, and to examine the moderating role of diet on cognitive function. In this cross-sectional study, a modified flanker task was used to assess interference control in BCS (n = 31) and age-matched women with no prior history of cancer (n = 30). Diet was assessed with 3-day food records. Differences between BCS and age-matched controls were assessed using linear mixed models, and multilevel regression analyses were conducted to assess the moderating role of diet on cognitive performance. Cognitive performance was not different between groups. Fruit intake and vegetable intake were significantly associated with better performance on the incompatible condition of the flanker task (i.e., shorter reaction time and increased accuracy), independent of disease status. The association between dietary components and cognition was stronger for the incompatible incongruent condition, suggesting that fruit and vegetables may be important for the up-regulation of cognitive control when faced with higher cognitive demands. There was no difference in performance on an interference control task between BCS and age-matched controls. The data suggest that greater fruit intake and vegetable intake were positively associated with interference control in both BCS and age-matched controls.
Response conflict and frontocingulate dysfunction in unmedicated participants with major depression.
Holmes, Avram J; Pizzagalli, Diego A
2008-10-01
Individuals with major depressive disorder (MDD) often exhibit impaired executive function, particularly in experimental tasks that involve response conflict and require adaptive behavioral adjustments. Prior research suggests that these deficits might be due to dysfunction within frontocingulate pathways implicated in response conflict monitoring and the recruitment of cognitive control. However, the temporal unfolding of conflict monitoring impairments in MDD remains poorly understood. To address this issue, we recorded 128-channel event-related potentials while 20 unmedicated participants with MDD and 20 demographically matched, healthy controls performed a Stroop task. Compared to healthy controls, MDD subjects showed larger Stroop interference effects and reduced N2 and N450 amplitudes. Source localization analyses at the time of maximal N450 activity revealed that MDD subjects had significantly reduced dorsal anterior cingulate cortex (dACC; Brodmann area 24/32) and left dorsolateral prefrontal cortex (Brodmann area 10/46) activation to incongruent relative to congruent trials. Consistent with the heterogeneous nature of depression, follow-up analyses revealed that depressed participants with the lowest level of conflict-related dACC activation 620 ms post-stimulus were characterized by the largest Stroop interference effects (relatively increased slowing and reduced accuracy for incongruent trials). Conversely, MDD participants with relatively stronger dACC recruitment did not differ from controls in terms of interference effects. These findings suggest that for some, but not all individuals, MDD is associated with impaired performance in trials involving competition among different response options, and reduced recruitment of frontocingulate pathways implicated in conflict monitoring and cognitive control.
Response conflict and frontocingulate dysfunction in unmedicated participants with Major Depression
Holmes, Avram J.; Pizzagalli, Diego A.
2008-01-01
Individuals with major depressive disorder (MDD) often exhibit impaired executive function, particularly in experimental tasks that involve response conflict and require adaptive behavioral adjustments. Prior research suggests that these deficits might be due to dysfunction within frontocingulate pathways implicated in response conflict monitoring and the recruitment of cognitive control. However, the temporal unfolding of conflict monitoring impairments in MDD remains poorly understood. To address this issue, we recorded 128-channel event-related potentials while 20 unmedicated participants with MDD and 20 demographically matched, healthy controls performed a Stroop task. Compared to healthy controls, MDD subjects showed larger Stroop interference effects and reduced N2 and N450 amplitudes. Source localization analyses at the time of maximal N450 activity revealed that MDD subjects had significantly reduced dorsal anterior cingulate cortex (dACC; Brodmann area 24/32) and left dorsolateral prefrontal cortex (Brodmann area 10/46) activation to incongruent relative to congruent trials. Consistent with the heterogeneous nature of depression, follow-up analyses revealed that depressed participants with the lowest level of conflict-related dACC activation 620 ms post-stimulus were characterized by the largest Stroop interference effects (relatively increased slowing and reduced accuracy for incongruent trials). Conversely, MDD participants with relatively stronger dACC recruitment did not differ from controls in terms of interference effects. These findings suggest that for some, but not all individuals, MDD is associated with impaired performance in trials involving competition among different response options, and reduced recruitment of frontocingulate pathways implicated in conflict monitoring and cognitive control. PMID:18577391
Mueller, Shane T.; Esposito, Alena G.
2015-01-01
We describe the Bivalent Shape Task (BST), software using the Psychology Experiment Building Language (PEBL), for testing of cognitive interference and the ability to suppress interference. The test is available via the GNU Public License, Version 3 (GPLv3), is freely modifiable, and has been tested on both children and adults and found to provide a simple and fast non-verbal measure of cognitive interference and suppression that requires no reading. PMID:26702358
Load theory of selective attention and cognitive control.
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W; Viding, Essi
2004-09-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention. ((c) 2004 APA, all rights reserved)
A Comparative Study of Co-Channel Interference Suppression Techniques
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas
1997-01-01
We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.
Uher, Rudolf; Brooks, Samantha J.; Bartholdy, Savani; Tchanturia, Kate; Campbell, Iain C.
2014-01-01
Interactions between cognition and emotion are important for survival, often occurring in the absence of awareness. These interactions have been proposed to involve competition between cognition and emotion for attentional resources. Emotional stimuli have been reported to impair performance on cognitive tasks of low, but not high, load if stimuli are consciously perceived. This study explored whether this load-dependent interference effect occurred in response to subliminal emotional stimuli. Masked emotional (appetitive and aversive), but not neutral, stimuli interfered with performance accuracy but not response time on a cognitive task (n-back) at low (1-back), but not high (2-back) load. These results show that a load-dependent interference effect applies to masked emotional stimuli and that the effect generalises across stimulus categories with high motivational value. This supports models of selective attention that propose that cognition and emotion compete for attentional resources. More specifically, interference from masked emotional stimuli at low load suggests that attention is biased towards salient stimuli, while dissipation of interference under high load involves top-down regulation of attention. Our data also indicate that top-down goal-directed regulation of attention occurs in the absence of awareness and does not require metacognitive monitoring or evaluation of bias over behaviour, i.e., some degree of self-regulation occurs at a non-conscious level. PMID:24709953
Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios
NASA Astrophysics Data System (ADS)
Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.
2014-12-01
The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.
Domain-Specific Interference Tests on Navigational Working Memory in Military Pilots.
Verde, Paola; Boccia, Maddalena; Colangeli, Stefano; Barbetti, Sonia; Nori, Raffaella; Ferlazzo, Fabio; Piccolo, Francesco; Vitalone, Roberto; Lucertini, Elena; Piccardi, Laura
2016-06-01
Human navigation is a very complex ability that encompasses all four stages of human information processing (sensory input, perception/cognition, selection, and execution of an action), involving both cognitive and physical requirements. During flight, the pilot uses all of these stages and one of the most critical aspect is interference. In fact, spatial tasks competing for the same cognitive resource cause greater distraction from a concurrent task than another task that uses different resource modalities. Here we compared and contrasted the performance of pilots and nonpilots of both genders performing increasingly complex navigational memory tasks while exposed to various forms of interference. We investigated the effects of four different sources of interference: motor, spatial motor, verbal, and spatial environment, focusing on gender differences. We found that flight experts perform better than controls (Pilots: 6.50 ± 1.29; Nonpilots: 5.45 ± 1.41). Furthermore, in the general population, navigational working memory is compromised only by spatial environmental interference (Nonpilots: 4.52 ± 1.50); female nonpilots were less able than male nonpilots. Also, the flight expert group showed the same interference, even if reduced (Pilots: 5.24 ± 0.92); moreover, we highlighted a complete absence of gender-related effects. Spatial environmental interference is the only interference producing a decrease in performance. Nevertheless, pilots are less affected than the general population. This is probably a consequence of the need to commit substantial cognitive resources to process spatial information during flight.
Distinctive amygdala subregions involved in emotion-modulated Stroop interference
Han, Hyun Jung; Lee, Kanghee; Kim, Hyun Taek; Kim, Hackjin
2014-01-01
Despite the well-known role of the amygdala in mediating emotional interference during tasks requiring cognitive resources, no definite conclusion has yet been reached regarding the differential roles of functionally and anatomically distinctive subcomponents of the amygdala in such processes. In this study, we examined female participants and attempted to separate the neural processes for the detection of emotional information from those for the regulation of cognitive interference from emotional distractors by adding a temporal gap between emotional stimuli and a subsequent cognitive Stroop task. Reaction time data showed a significantly increased Stroop interference effect following emotionally negative stimuli compared with neutral stimuli, and functional magnetic resonance imaging data revealed that the anterior ventral amygdala (avAMYG) showed greater responses to negative stimuli compared with neutral stimuli. In addition, individuals who scored high in neuroticism showed greater posterior dorsal amygdala (pdAMYG) responses to incongruent compared with congruent Stroop trials following negative stimuli, but not following neutral stimuli. Taken together, the findings of this study demonstrated functionally distinctive contributions of the avAMYG and pdAMYG to the emotion-modulated Stroop interference effect and suggested that the avAMYG encodes associative values of emotional stimuli whereas the pdAMYG resolves cognitive interference from emotional distractors. PMID:23543193
Bargaining and the MISO Interference Channel
NASA Astrophysics Data System (ADS)
Nokleby, Matthew; Swindlehurst, A. Lee
2009-12-01
We examine the MISO interference channel under cooperative bargaining theory. Bargaining approaches such as the Nash and Kalai-Smorodinsky solutions have previously been used in wireless networks to strike a balance between max-sum efficiency and max-min equity in users' rates. However, cooperative bargaining for the MISO interference channel has only been studied extensively for the two-user case. We present an algorithm that finds the optimal Kalai-Smorodinsky beamformers for an arbitrary number of users. We also consider joint scheduling and beamformer selection, using gradient ascent to find a stationary point of the Kalai-Smorodinsky objective function. When interference is strong, the flexibility allowed by scheduling compensates for the performance loss due to local optimization. Finally, we explore the benefits of power control, showing that power control provides nontrivial throughput gains when the number of transmitter/receiver pairs is greater than the number of transmit antennas.
NASA Astrophysics Data System (ADS)
Nikitin, Alexei V.; Epard, Marc; Lancaster, John B.; Lutes, Robert L.; Shumaker, Eric A.
2012-12-01
A strong digital communication transmitter in close physical proximity to a receiver of a weak signal can noticeably interfere with the latter even when the respective channels are tens or hundreds of megahertz apart. When time domain observations are made in the signal chain of the receiver between the first mixer and the baseband, this interference is likely to appear impulsive. The impulsive nature of this interference provides an opportunity to reduce its power by nonlinear filtering, improving the quality of the receiver channel. This article describes the mitigation, by a particular nonlinear filter, of the impulsive out-of-band (OOB) interference induced in High Speed Downlink Packet Access (HSDPA) by WiFi transmissions, protocols which coexist in many 3G smartphones and mobile hotspots. Our measurements show a decrease in the maximum error-free bit rate of a 1.95 GHz HSDPA receiver caused by the impulsive interference from an OOB 2.4 GHz WiFi transmission, sometimes down to a small fraction of the rate observed in the absence of the interference. We apply a nonlinear SPART filter to recover a noticeable portion of the lost rate and maintain an error-free connection under much higher levels of the WiFi interference than a receiver that does not contain such a filter. These measurements support our wider investigation of OOB interference resulting from digital modulation, which appears impulsive in a receiver, and its mitigation by nonlinear filters.
Crowther, Jason E.; Martin, Randi C.
2014-01-01
Studies of semantic interference in language production have provided evidence for a role of cognitive control mechanisms in regulating the activation of semantic competitors during naming. The present study investigated the relationship between individual differences in cognitive control abilities, for both younger and older adults, and the degree of semantic interference in a blocked cyclic naming task. We predicted that individuals with lower working memory capacity (as measured by word span), lesser ability to inhibit distracting responses (as measured by Stroop interference), and a lesser ability to resolve proactive interference (as measured by a recent negatives task) would show a greater increase in semantic interference in naming, with effects being larger for older adults. Instead, measures of cognitive control were found to relate to specific indices of semantic interference in the naming task, rather than overall degree of semantic interference, and few interactions with age were found, with younger and older adults performing similarly. The increase in naming latencies across naming trials within a cycle was negatively correlated with word span for both related and unrelated conditions, suggesting a strategy of narrowing response alternatives based upon memory for the set of item names. Evidence for a role of inhibition in response selection was obtained, as Stroop interference correlated positively with the change in naming latencies across cycles for the related, but not unrelated, condition. In contrast, recent negatives interference correlated negatively with the change in naming latencies across unrelated cycles, suggesting that individual differences in this tap the degree of strengthening of links in a lexical network based upon prior exposure. Results are discussed in terms of current models of lexical selection and consequences for word retrieval in more naturalistic production. PMID:24478675
Girard, Todd A; Wilkins, Leanne K; Lyons, Kathleen M; Yang, Lixia; Christensen, Bruce K
2018-05-31
Introduction Working-memory (WM) is a core cognitive deficit among individuals with Schizophrenia Spectrum Disorders (SSD). However, the underlying cognitive mechanisms of this deficit are less known. This study applies a modified version of the Corsi Block Test to investigate the role of proactive interference in visuospatial WM (VSWM) impairment in SSD. Methods Healthy and SSD participants completed a modified version of the Corsi Block Test involving both high (typical ascending set size from 4 to 7 items) and low (descending set size from 7 to 4 items) proactive interference conditions. Results The results confirmed that the SSD group performed worse overall relative to a healthy comparison group. More importantly, the SSD group demonstrated greater VSWM scores under low (Descending) versus high (Ascending) proactive interference; this pattern is opposite to that of healthy participants. Conclusions This differential pattern of performance supports that proactive interference associated with the traditional administration format contributes to VSWM impairment in SSD. Further research investigating associated neurocognitive mechanisms and the contribution of proactive interference across other domains of cognition in SSD is warranted.
Voluntary eyeblinks disrupt iconic memory.
Thomas, Laura E; Irwin, David E
2006-04-01
In the present research, we investigated whether eyeblinks interfere with cognitive processing. In Experiment 1, the participants performed a partial-report iconic memory task in which a letter array was presented for 106 msec, followed 50, 150, or 750 msec later by a tone that cued recall of onerow of the array. At a cue delay of 50 msec between array offset and cue onset, letter report accuracy was lower when the participants blinked following array presentation than under no-blink conditions; the participants made more mislocation errors under blink conditions. This result suggests that blinking interferes with the binding of object identity and object position in iconic memory. Experiment 2 demonstrated that interference due to blinks was not due merely to changes in light intensity. Experiments 3 and 4 demonstrated that other motor responses did not interfere with iconic memory. We propose a new phenomenon, cognitive blink suppression, in which blinking inhibits cognitive processing. This phenomenon may be due to neural interference. Blinks reduce activation in area V1, which may interfere with the representation of information in iconic memory.
Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols
2010-08-01
ar X iv :1 00 8. 31 96 v1 [ cs .I T ] 1 9 A ug 2 01 0 1 Coded DS - CDMA Systems with Iterative Channel Estimation and no Pilot Symbols Don...sequence code-division multiple-access ( DS - CDMA ) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding...amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS - CDMA systems
Channel simulation to facilitate mobile-satellite communications research
NASA Technical Reports Server (NTRS)
Davarian, Faramaz
1987-01-01
The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.
Adaptive waveform optimization design for target detection in cognitive radar
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao
2017-01-01
The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.
Hieu, Tran Dinh; Duy, Tran Trung; Dung, Le The; Choi, Seong Gon
2018-06-05
To solve the problem of energy constraints and spectrum scarcity for cognitive radio wireless sensor networks (CR-WSNs), an underlay decode-and-forward relaying scheme is considered, where the energy constrained secondary source and relay nodes are capable of harvesting energy from a multi-antenna power beacon (PB) and using that harvested energy to forward the source information to the destination. Based on the time switching receiver architecture, three relaying protocols, namely, hybrid partial relay selection (H-PRS), conventional opportunistic relay selection (C-ORS), and best opportunistic relay selection (B-ORS) protocols are considered to enhance the end-to-end performance under the joint impact of maximal interference constraint and transceiver hardware impairments. For performance evaluation and comparison, we derive the exact and asymptotic closed-form expressions of outage probability (OP) and throughput (TP) to provide significant insights into the impact of our proposed protocols on the system performance over Rayleigh fading channel. Finally, simulation results validate the theoretical results.
Metabolic Free Energy and Biological Codes: A 'Data Rate Theorem' Aging Model.
Wallace, Rodrick
2015-06-01
A famous argument by Maturana and Varela (Autopoiesis and cognition. Reidel, Dordrecht, 1980) holds that the living state is cognitive at every scale and level of organization. Since it is possible to associate many cognitive processes with 'dual' information sources, pathologies can sometimes be addressed using statistical models based on the Shannon Coding, the Shannon-McMillan Source Coding, the Rate Distortion, and the Data Rate Theorems, which impose necessary conditions on information transmission and system control. Deterministic-but-for-error biological codes do not directly invoke cognition, but may be essential subcomponents within larger cognitive processes. A formal argument, however, places such codes within a similar framework, with metabolic free energy serving as a 'control signal' stabilizing biochemical code-and-translator dynamics in the presence of noise. Demand beyond available energy supply triggers punctuated destabilization of the coding channel, affecting essential biological functions. Aging, normal or prematurely driven by psychosocial or environmental stressors, must interfere with the routine operation of such mechanisms, initiating the chronic diseases associated with senescence. Amyloid fibril formation, intrinsically disordered protein logic gates, and cell surface glycan/lectin 'kelp bed' logic gates are reviewed from this perspective. The results generalize beyond coding machineries having easily recognizable symmetry modes, and strip a layer of mathematical complication from the study of phase transitions in nonequilibrium biological systems.
Out-of-band and adjacent-channel interference reduction by analog nonlinear filters
NASA Astrophysics Data System (ADS)
Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.
2015-12-01
In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components compared to the respective linear filter. Adaptive configurations of NDLs are similarly controlled by a single parameter and are suitable for improving quality of nonstationary signals under time-varying noise conditions. NDLs are designed to be fully compatible with existing linear devices and systems and to be used as an enhancement, or as a low-cost alternative, to the state-of-art interference mitigation methods.
Cooperative Interference Alignment for the Multiple Access Channel
2015-11-01
Communications. I. INTRODUCTION Conventional wireless networks were previously thought to be interference-limited, where interference is mainly caused by...interference-free capacity for any number of users K at high SNR. This fundamental result showed that wireless networks are not interference-limited as...decoding of the K users’ messages. This is applicable in uplink transmissions in cellular communications, where mobiles transmit independent messages
Distracted and down: neural mechanisms of affective interference in subclinical depression
Andrews-Hanna, Jessica R.; Spielberg, Jeffrey M.; Warren, Stacie L.; Sutton, Bradley P.; Miller, Gregory A.; Heller, Wendy; Banich, Marie T.
2015-01-01
Previous studies have shown that depressed individuals have difficulty directing attention away from negative distractors, a phenomenon known as affective interference. However, findings are mixed regarding the neural mechanisms and network dynamics of affective interference. The present study addressed these issues by comparing neural activation during emotion-word and color-word Stroop tasks in participants with varying levels of (primarily subclinical) depression. Depressive symptoms predicted increased activation to negative distractors in areas of dorsal anterior cingulate cortex (dACC) and posterior cingulate cortex (PCC), regions implicated in cognitive control and internally directed attention, respectively. Increased dACC activity was also observed in the group-average response to incongruent distractors, suggesting that dACC activity during affective interference is related to overtaxed cognitive control. In contrast, regions of PCC were deactivated across the group in response to incongruent distractors, suggesting that PCC activity during affective interference represents task-independent processing. A psychophysiological interaction emerged in which higher depression predicted more positively correlated activity between dACC and PCC during affective interference, i.e. greater connectivity between cognitive control and internal-attention systems. These findings suggest that, when individuals high in depression are confronted by negative material, increased attention to internal thoughts and difficulty shifting resources to the external world interfere with goal-directed behavior. PMID:25062838
Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference.
Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing
2016-01-01
In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications.
Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference
Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing
2016-01-01
In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications. PMID:27851817
Adaptive detection of noise signal according to Neumann-Pearson criterion
NASA Astrophysics Data System (ADS)
Padiryakov, Y. A.
1985-03-01
Optimum detection according to the Neumann-Pearson criterion is considered in the case of a random Gaussian noise signal, stationary during measurement, and a stationary random Gaussian background interference. Detection is based on two samples, their statistics characterized by estimates of their spectral densities, it being a priori known that sample A from the signal channel is either the sum of signal and interference or interference alone and sample B from the reference interference channel is an interference with the same spectral density as that of the interference in sample A for both hypotheses. The probability of correct detection is maximized on the average, first in the 2N-dimensional space of signal spectral density and interference spectral density readings, by fixing the probability of false alarm at each point so as to stabilize it at a constant level against variation of the interference spectral density. Deterministic decision rules are established. The algorithm is then reduced to equivalent detection in the N-dimensional space of the ratio of sample A readings to sample B readings.
NASA Technical Reports Server (NTRS)
Springett, J. C.
1982-01-01
The technique outlined in this paper is intended to eliminate the problems of cochannel interference and uniform geographic distribution of user channels which arise in conventional designs for a multiple spot beam communication satellite to serve mobile telephony users across the CONUS. By time multiplexing FM/FDMA signal ensembles so that only those beams operating on distinct frequency subbands are allowed to transmit concurrently, cochannel interference arising from simultaneous frequency subband reuse is precluded. Thus, time disjoint frequency reuse is accomplished over a repetitive sequence of fixed time slots. By assigning different size subbands to each time slot, a market of nonuniform users can be accommodated. The technique results in a greatly simplified antenna feed system design for the satellite, at a cost of imposing the need for time slot synchronization on the mobile FM receivers whose ability for rejecting adjacent channel interference is somewhat diminished.
NASA Astrophysics Data System (ADS)
Springett, J. C.
The technique outlined in this paper is intended to eliminate the problems of cochannel interference and uniform geographic distribution of user channels which arise in conventional designs for a multiple spot beam communication satellite to serve mobile telephony users across the CONUS. By time multiplexing FM/FDMA signal ensembles so that only those beams operating on distinct frequency subbands are allowed to transmit concurrently, cochannel interference arising from simultaneous frequency subband reuse is precluded. Thus, time disjoint frequency reuse is accomplished over a repetitive sequence of fixed time slots. By assigning different size subbands to each time slot, a market of nonuniform users can be accommodated. The technique results in a greatly simplified antenna feed system design for the satellite, at a cost of imposing the need for time slot synchronization on the mobile FM receivers whose ability for rejecting adjacent channel interference is somewhat diminished.
NASA Astrophysics Data System (ADS)
Bratchikov, A. N.; Glukhov, I. P.
1991-03-01
The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.
ERIC Educational Resources Information Center
Whitall, Jill
1991-01-01
Presents research on the effects of concurrent verbal cognition on locomotor skills. Results revealed no interference with coordination variables across age, but some interference with control variables, particularly in younger subjects. Coordination of gait required less attention than setting of control parameters. This coordination was in place…
Achievable degrees of freedom of MIMO two-way relay interference channel with delayed CSIT
NASA Astrophysics Data System (ADS)
Li, Qingyun; Wu, Gang; Li, Shaoqian
2016-10-01
In this paper, assuming each node has delayed channel state information at the transmitter (CSIT), we investigate the achievable degrees of freedom (DOF) of MIMO two-way relay interference channel in frequency division duplex (FDD) systems, where there are K user pairs (i.e., 2K users) and each user in a user pair exchanges messages with the other user in the same user pair simultaneously via an intermediate relay. We propose a two-stage transmission scheme and derive the closed-form expressions for its achievable DOF.
AeroMACS Interference Simulations for Global Airports
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Apaza, Rafael D.
2012-01-01
Ran 18 scenarios with Visualyse Professional interference software (presented 2 most realistic scenarios). Scenario A: 85 large airports can transmit 1650 mW on each of 11 channels. 173 medium airports can transmit 825 mW on each of 6 channels. 5951 small airports can transmit 275 mW on one channel. Reducing power allowed for small airports in Scenario B increases allowable power for large and medium airports, but should not be necessary as Scenario A levels are more than adequate. These power limitations are conservative because we are assuming worst case with 100% duty.
NASA Astrophysics Data System (ADS)
Mazoochi, M.; Pourmina, M. A.; Bakhshi, H.
2015-03-01
The core aim of this work is the maximization of the achievable data rate of the secondary user pairs (SU pairs), while ensuring the QoS of primary users (PUs). All users are assumed to be equipped with multiple antennas. It is assumed that when PUs are present, the direct communications between SU pairs introduces intolerable interference to PUs and thereby SUs transmit signal using the cooperation of other SUs and avoid transmitting in the direct channel. In brief, an adaptive cooperative strategy for multiple-input/multiple-output (MIMO) cognitive radio networks is proposed. At the presence of PUs, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The optimal approach for determining the power allocation and the cooperating SU is proposed. Besides, the outage probability of the proposed communication protocol is further derived. Due to high complexity of the optimal approach, a low-complexity approach is further proposed and its performance is evaluated using simulations. The simulation results reveal that the performance loss due to the low-complexity approach is only about 14%, while the complexity is greatly reduced.
Dissociating Interference-Control Processes between Memory and Response
ERIC Educational Resources Information Center
Bissett, Patrick G.; Nee, Derek Evan; Jonides, John
2009-01-01
The ability to mitigate interference is of central importance to cognition. Previous research has provided conflicting accounts about whether operations that resolve interference are singular in character or form a family of functions. Here, the authors examined the relationship between interference-resolution processes acting on working memory…
NASA Astrophysics Data System (ADS)
Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.
2017-03-01
Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.
Channel Measurements for Automatic Vehicle Monitoring Systems
DOT National Transportation Integrated Search
1974-03-01
Co-channel and adjacent channel electromagnetic interference measurements were conducted on the Sierra Research Corp. and the Chicago Transit Authority automatic vehicle monitoring systems. These measurements were made to determine if the automatic v...
NASA Astrophysics Data System (ADS)
Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-01-01
We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.
Frequency Hopping, Multiple Frequency-Shift Keying, Coding, and Optimal Partial-Band Jamming.
1982-08-01
receivers appropriate for these two strategies. Each receiver is noncoherent (a coherent receiver is generally impractical) and implements hard...Advances in Coding and Modulation for Noncoherent Channels Affected by Fading, Partial Band, and Multiple- . Access Interference, in A. J. Viterbi...Modulation for Noncoherent Channels Affected by Fading, Partial Band, and Multiple-Access interference, in A. J. Viterbi, ed., Advances in Coumunication
Engin, Elif; Zarnowska, Ewa D; Benke, Dietmar; Tsvetkov, Evgeny; Sigal, Maksim; Keist, Ruth; Bolshakov, Vadim Y; Pearce, Robert A; Rudolph, Uwe
2015-10-07
Interference between similar or overlapping memories formed at different times poses an important challenge on the hippocampal declarative memory system. Difficulties in managing interference are at the core of disabling cognitive deficits in neuropsychiatric disorders. Computational models have suggested that, in the normal brain, the sparse activation of the dentate gyrus granule cells maintained by tonic inhibitory control enables pattern separation, an orthogonalization process that allows distinct representations of memories despite interference. To test this mechanistic hypothesis, we generated mice with significantly reduced expression of the α5-containing GABAA (α5-GABAARs) receptors selectively in the granule cells of the dentate gyrus (α5DGKO mice). α5DGKO mice had reduced tonic inhibition of the granule cells without any change in fast phasic inhibition and showed increased activation in the dentate gyrus when presented with novel stimuli. α5DGKO mice showed impairments in cognitive tasks characterized by high interference, without any deficiencies in low-interference tasks, suggesting specific impairment of pattern separation. Reduction of fast phasic inhibition in the dentate gyrus through granule cell-selective knock-out of α2-GABAARs or the knock-out of the α5-GABAARs in the downstream CA3 area did not detract from pattern separation abilities, which confirms the anatomical and molecular specificity of the findings. In addition to lending empirical support to computational hypotheses, our findings have implications for the treatment of interference-related cognitive symptoms in neuropsychiatric disorders, particularly considering the availability of pharmacological agents selectively targeting α5-GABAARs. Interference between similar memories poses a significant limitation on the hippocampal declarative memory system, and impaired interference management is a cognitive symptom in many disorders. Thus, understanding mechanisms of successful interference management or processes that can lead to interference-related memory problems has high theoretical and translational importance. This study provides empirical evidence that tonic inhibition in the dentate gyrus (DG), which maintains sparseness of neuronal activation in the DG, is essential for management of interference. The specificity of findings to tonic, but not faster, more transient types of neuronal inhibition and to the DG, but not the neighboring brain areas, is presented through control experiments. Thus, the findings link interference management to a specific mechanism, proposed previously by computational models. Copyright © 2015 the authors 0270-6474/15/3513699-15$15.00/0.
Sequential ranging integration times in the presence of CW interference in the ranging channel
NASA Technical Reports Server (NTRS)
Mathur, Ashok; Nguyen, Tien
1986-01-01
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, is used primarily for communication with interplanetary spacecraft. The high sensitivity required to achieve planetary communications makes the DSN very susceptible to radio-frequency interference (RFI). In this paper, an analytical model is presented of the performance degradation of the DSN sequential ranging subsystem in the presence of downlink CW interference in the ranging channel. A trade-off between the ranging component integration times and the ranging signal-to-noise ratio to achieve a desired level of range measurement accuracy and the probability of error in the code components is also presented. Numerical results presented illustrate the required trade-offs under various interference conditions.
Chun, Ji-Won; Park, Hae-Jeong; Kim, Dai Jin; Kim, Eosu; Kim, Jae-Jin
2017-07-01
Conflict processing mediated by fronto-striatal regions may be influenced by emotional properties of stimuli. This study aimed to examine the effects of emotion repetition on cognitive control in a conflict-provoking situation. Twenty-one healthy subjects were scanned using functional magnetic resonance imaging while performing a sequential cognitive conflict task composed of emotional stimuli. The regional effects were analyzed according to the repetition or non-repetition of cognitive congruency and emotional valence between the preceding and current trials. Post-incongruence interference in error rate and reaction time was significantly smaller than post-congruence interference, particularly under repeated positive and non-repeated positive, respectively, and post-incongruence interference, compared to post-congruence interference, increased activity in the ACC, DLPFC, and striatum. ACC and DLPFC activities were significantly correlated with error rate or reaction time in some conditions, and fronto-striatal connections were related to the conflict processing heightened by negative emotion. These findings suggest that the repetition of emotional stimuli adaptively regulates cognitive control and the fronto-striatal circuit may engage in the conflict adaptation process induced by emotion repetition. Both repetition enhancement and repetition suppression of prefrontal activity may underlie the relationship between emotion and conflict adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.
Yen, Hong-Hsu
2009-01-01
In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers as the link arc weight, the optimization-based heuristics are proposed to get energy-efficient data aggregation tree with better resource (channel and radio) utilization. From the computational experiments, the proposed optimization-based approach is superior to existing heuristics under all tested cases.
Developmental change in cognitive organization underlying stroop tasks of Japanese orthographies.
Toma, C; Toshima, T
1989-01-01
Cognitive processes underlying Stroop interference tasks of two Japanese orthographies, hiragana (a phonetic orthography) and kanji (a logographic orthography) were studied from the developmental point of view. Four age groups (first, second, third graders, and university students) were employed as subjects. Significant interference was yielded both in the hiragana and in the kanji version. Performance time on interference task decreased with age. For elementary school children, the error frequency on the interference task was higher than that on the task of naming patch colors or on the task of reading words printed in black ink, but the error frequencies did not differ among tasks for university students. In the interference task more word reading errors were yielded in the kanji version than in the hiragana version during and after third grade. The findings suggested that (1) the recognition system of hiragana and of kanji becomes qualitatively different during and after third grade, (2) the integrative system, which organizes cognitive processes underlying Stroop task, develops with age, and (3) efficiency of the organization increases with age.
An Integrated Model of Cognitive Control in Task Switching
ERIC Educational Resources Information Center
Altmann, Erik M.; Gray, Wayne D.
2008-01-01
A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…
Interference-Robust Transmission in Wireless Sensor Networks
Han, Jin-Seok; Lee, Yong-Hwan
2016-01-01
Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference. PMID:27854249
Interference-Robust Transmission in Wireless Sensor Networks.
Han, Jin-Seok; Lee, Yong-Hwan
2016-11-14
Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference.
Distracted and down: neural mechanisms of affective interference in subclinical depression.
Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Spielberg, Jeffrey M; Warren, Stacie L; Sutton, Bradley P; Miller, Gregory A; Heller, Wendy; Banich, Marie T
2015-05-01
Previous studies have shown that depressed individuals have difficulty directing attention away from negative distractors, a phenomenon known as affective interference. However, findings are mixed regarding the neural mechanisms and network dynamics of affective interference. The present study addressed these issues by comparing neural activation during emotion-word and color-word Stroop tasks in participants with varying levels of (primarily subclinical) depression. Depressive symptoms predicted increased activation to negative distractors in areas of dorsal anterior cingulate cortex (dACC) and posterior cingulate cortex (PCC), regions implicated in cognitive control and internally directed attention, respectively. Increased dACC activity was also observed in the group-average response to incongruent distractors, suggesting that dACC activity during affective interference is related to overtaxed cognitive control. In contrast, regions of PCC were deactivated across the group in response to incongruent distractors, suggesting that PCC activity during affective interference represents task-independent processing. A psychophysiological interaction emerged in which higher depression predicted more positively correlated activity between dACC and PCC during affective interference, i.e. greater connectivity between cognitive control and internal-attention systems. These findings suggest that, when individuals high in depression are confronted by negative material, increased attention to internal thoughts and difficulty shifting resources to the external world interfere with goal-directed behavior. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Educational Attainment is not a Good Proxy for Cognitive Function in Methamphetamine Dependence
Dean, Andy C.; Hellemann, Gerhard; Sugar, Catherine A.; London, Edythe D.
2014-01-01
We sought to test the hypothesis that methamphetamine use interferes with both the quantity and quality of one's education, such that the years of education obtained by methamphetamine dependent individuals serves to underestimate general cognitive functioning and overestimate the quality of academic learning. Thirty-six methamphetamine-dependent participants and 42 healthy comparison subjects completed cognitive tests and self-report measures in Los Angeles, California. An overall cognitive battery score was used to assess general cognition, and vocabulary knowledge was used as a proxy for the quality of academic learning. Linear regression procedures were used for analyses. Supporting the hypothesis that methamphetamine use interferes with the quantity of education, we found that a) earlier onset of methamphetamine use was associated with fewer years of education (p < .01); b) using a normative model developed in healthy participants, methamphetamine-dependent participants had lower educational attainment than predicted from their demographics and performance on the cognitive battery score (p < .01); and c) greater differences between methamphetamine-dependent participants' predicted and actual educational attainment were associated with an earlier onset of MA use (p ≤ .01). Supporting the hypothesis that methamphetamine use interferes with the quality of education, years of education received prior to the onset of methamphetamine use was a better predictor of a proxy for academic learning, vocabulary knowledge, than was the total years of education obtained. Results support the hypothesis that methamphetamine use interferes with the quantity and quality of educational exposure, leading to under- and overestimation of cognitive function and academic learning, respectively. PMID:22206606
Educational attainment is not a good proxy for cognitive function in methamphetamine dependence.
Dean, Andy C; Hellemann, Gerhard; Sugar, Catherine A; London, Edythe D
2012-06-01
We sought to test the hypothesis that methamphetamine use interferes with both the quantity and quality of one's education, such that the years of education obtained by methamphetamine dependent individuals serves to underestimate general cognitive functioning and overestimate the quality of academic learning. Thirty-six methamphetamine-dependent participants and 42 healthy comparison subjects completed cognitive tests and self-report measures in Los Angeles, California. An overall cognitive battery score was used to assess general cognition, and vocabulary knowledge was used as a proxy for the quality of academic learning. Linear regression procedures were used for analyses. Supporting the hypothesis that methamphetamine use interferes with the quantity of education, we found that (a) earlier onset of methamphetamine use was associated with fewer years of education (p<.01); (b) using a normative model developed in healthy participants, methamphetamine-dependent participants had lower educational attainment than predicted from their demographics and performance on the cognitive battery score (p<.01); and (c) greater differences between methamphetamine-dependent participants' predicted and actual educational attainment were associated with an earlier onset of MA use (p≤.01). Supporting the hypothesis that methamphetamine use interferes with the quality of education, years of education received prior to the onset of methamphetamine use was a better predictor of a proxy for academic learning, vocabulary knowledge, than was the total years of education obtained. Results support the hypothesis that methamphetamine use interferes with the quantity and quality of educational exposure, leading to under- and overestimation of cognitive function and academic learning, respectively. Copyright © 2011. Published by Elsevier Ireland Ltd.
2011-09-30
channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1
Selective impairment of auditory selective attention under concurrent cognitive load.
Dittrich, Kerstin; Stahl, Christoph
2012-06-01
Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.
Neural correlates of impaired cognitive control over working memory in schizophrenia.
Eich, Teal S; Nee, Derek Evan; Insel, Catherine; Malapani, Chara; Smith, Edward E
2014-07-15
One of the most common deficits in patients with schizophrenia (SZ) is in working memory (WM), which has wide-reaching impacts across cognition. However, previous approaches to studying WM in SZ have used tasks that require multiple cognitive-control processes, making it difficult to determine which specific cognitive and neural processes underlie the WM impairment. We used functional magnetic resonance imaging to investigate component processes of WM in SZ. Eighteen healthy controls (HCs) and 18 patients with SZ performed an item-recognition task that permitted separate neural assessments of 1) WM maintenance, 2) inhibition, and 3) interference control in response to recognition probes. Before inhibitory demands, posterior ventrolateral prefrontal cortex (VLPFC), an area involved in WM maintenance, was activated to a similar degree in both HCs and patients, indicating preserved maintenance operations in SZ. When cued to inhibit items from WM, HCs showed reduced activation in posterior VLPFC, commensurate with appropriately inhibiting items from WM. However, these inhibition-related reductions were absent in patients. When later probed with items that should have been inhibited, patients showed reduced behavioral performance and increased activation in mid-VLPFC, an area implicated in interference control. A mediation analysis indicated that impaired inhibition led to increased reliance on interference control and reduced behavioral performance. In SZ, impaired control over memory, manifested through proactive inhibitory deficits, leads to increased reliance on reactive interference-control processes. The strain on interference-control processes results in reduced behavioral performance. Thus, inhibitory deficits in SZ may underlie widespread impairments in WM and cognition. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming
2018-01-01
Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.
Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d
NASA Astrophysics Data System (ADS)
Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.
This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.
Wylie, Scott A.; Bashore, Theodore R.; Van Wouwe, Nelleke C.; Mason, Emily J.; John, Kevin D.; Neimat, Joseph S.; Ally, Brandon A.
2018-01-01
American football is played in a chaotic visual environment filled with relevant and distracting information. We investigated the hypothesis that collegiate football players show exceptional skill at shielding their response execution from the interfering effects of distraction (interference control). The performances of 280 football players from National Collegiate Athletic Association Division I football programs were compared to age-matched controls in a variant of the Eriksen flanker task (Eriksen and Eriksen, 1974). This task quantifies the magnitude of interference produced by visual distraction on split-second response execution. Overall, football athletes and age controls showed similar mean reaction times (RTs) and accuracy rates. However, football athletes were more proficient at shielding their response execution speed from the interfering effects of distraction (i.e., smaller flanker effect costs on RT). Offensive and defensive players showed smaller interference costs compared to controls, but defensive players showed the smallest costs. All defensive positions and one offensive position showed statistically smaller interference effects when compared directly to age controls. These data reveal a clear cognitive advantage among football athletes at executing motor responses in the face of distraction, the existence and magnitude of which vary by position. Individual differences in cognitive control may have important implications for both player selection and development to improve interference control capabilities during play. PMID:29479325
ERIC Educational Resources Information Center
Hanseeuw, Bernard J.; Seron, Xavier; Ivanoiu, Adrian
2012-01-01
Background: Increased sensitivity to proactive (PI) and retroactive (RI) interference has been observed in amnestic mild cognitive impairment (aMCI). PI and RI are often explained as being the result of a response competition mechanism. However, patients with aMCI are supposed to suffer mostly from encoding deficits. We hypothesized that in aMCI…
Wagner, Valentin; Jescheniak, Jörg D; Schriefers, Herbert
2010-03-01
Three picture-word interference experiments addressed the question of whether the scope of grammatical advance planning in sentence production corresponds to some fixed unit or rather is flexible. Subjects produced sentences of different formats under varying amounts of cognitive load. When speakers described 2-object displays with simple sentences of the form "the frog is next to the mug," the 2 nouns were found to be lexically-semantically activated to similar degrees at speech onset, as indexed by similarly sized interference effects from semantic distractors related to either the first or the second noun. When speakers used more complex sentences (including prenominal color adjectives; e.g., "the blue frog is next to the blue mug") much larger interference effects were observed for the first than the second noun, suggesting that the second noun was lexically-semantically activated before speech onset on only a subset of trials. With increased cognitive load, introduced by an additional conceptual decision task and variable utterance formats, the interference effect for the first noun was increased and the interference effect for second noun disappeared, suggesting that the scope of advance planning had been narrowed. By contrast, if cognitive load was induced by a secondary working memory task to be performed during speech planning, the interference effect for both nouns was increased, suggesting that the scope of advance planning had not been affected. In all, the data suggest that the scope of advance planning during grammatical encoding in sentence production is flexible, rather than structurally fixed.
Shin, Joon-Ho; Park, Gyulee; Cho, Duk Youn
2017-04-01
To explore motor performance on 2 different cognitive tasks during robotic rehabilitation in which motor performance was longitudinally assessed. Prospective study. Rehabilitation hospital. Patients (N=22) with chronic stroke and upper extremity impairment. A total of 640 repetitions of robot-assisted planar reaching, 5 times a week for 4 weeks. Longitudinal robotic evaluations regarding motor performance included smoothness, mean velocity, path error, and reach error by the type of cognitive task. Dual-task effects (DTEs) of motor performance were computed to analyze the effect of the cognitive task on dual-task interference. Cognitive task type influenced smoothness (P=.006), the DTEs of smoothness (P=.002), and the DTEs of reach error (P=.052). Robotic rehabilitation improved smoothness (P=.007) and reach error (P=.078), while stroke severity affected smoothness (P=.01), reach error (P<.001), and path error (P=.01). Robotic rehabilitation or severity did not affect the DTEs of motor performance. The results provide evidence for the effect of cognitive-motor interference on upper extremity performance among participants with stroke using a robotic-guided rehabilitation system. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
47 CFR 15.707 - Permissible channels of operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of each such area as set forth in § 15.712(d). These channels will be listed in the TV bands database... on available channels as determined by the TV bands database and in accordance with the interference...
Bonin, Tanor; Smilek, Daniel
2016-04-01
We evaluated whether task-irrelevant inharmonic music produces greater interference with cognitive performance than task-irrelevant harmonic music. Participants completed either an auditory (Experiment 1) or a visual (Experiment 2) version of the cognitively demanding 2-back task in which they were required to categorize each digit in a sequence of digits as either being a target (a digit also presented two positions earlier in the sequence) or a distractor (all other items). They were concurrently exposed to either task-irrelevant harmonic music (judged to be consonant), task-irrelevant inharmonic music (judged to be dissonant), or no music at all as a distraction. The main finding across both experiments was that performance on the 2-back task was worse when participants were exposed to inharmonic music than when they were exposed to harmonic music. Interestingly, performance on the 2-back task was generally the same regardless of whether harmonic music or no music was played. We suggest that inharmonic, dissonant music interferes with cognitive performance by requiring greater cognitive processing than harmonic, consonant music, and speculate about why this might be.
Cognitive-motor dual-task interference: A systematic review of neural correlates.
Leone, Carmela; Feys, Peter; Moumdjian, Lousin; D'Amico, Emanuele; Zappia, Mario; Patti, Francesco
2017-04-01
Cognitive-motor interference refers to dual-tasking (DT) interference (DTi) occurring when the simultaneous performance of a cognitive and a motor task leads to a percentage change in one or both tasks. Several theories exist to explain DTi in humans: the capacity-sharing, the bottleneck and the cross-talk theories. Numerous studies investigating whether a specific brain locus is associated with cognitive-motor DTi have been conducted, but not systematically reviewed. We aimed to review the evidences on brain activity associated with the cognitive-motor DT, in order to better understand the neurological basis of the CMi. Results were reported according to the technique used to assess brain activity. Twenty-three articles met the inclusion criteria. Out of them, nine studies used functional magnetic resonance imaging to show an additive, under-additive, over- additive, or a mixed activation pattern of the brain. Seven studies used near-infrared spectroscopy, and seven neurophysiological instruments. Yet a specific DT locus in the brain cannot be concluded from the overall current literature. Future studies are warranted to overcome the shortcomings identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Breunig, Esther; Kludt, Eugen; Czesnik, Dirk; Schild, Detlev
2011-08-12
Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.
Resolving semantic and proactive interference in memory over the short-term.
Atkins, Alexandra S; Berman, Marc G; Reuter-Lorenz, Patricia A; Lewis, Richard L; Jonides, John
2011-07-01
Interference is a major source of short-term errors of memory. The present investigation explores the relationship between two important forms of interference: proactive interference (PI), induced by the need to reject recently studied items no longer relevant to task performance, and semantic interference (SI), induced by the need to reject lures sharing a meaningful relationship with current memoranda. We explore the possibility that shared cognitive control processes are recruited to resolve both forms of interference. In Experiment 1, we find that the requirement to engage in articulatory suppression during the retention interval of tasks that induce either PI or SI increases both forms of interference similarly and selectively. In Experiment 2, we develop a task to examine PI and SI within the same experimental context. The results show interactive effects between factors that lead to the two forms of interference. Taken together, these findings support contextual-cuing models of short-term remembering (Nairne, Annual Review of Psychology, 53, 53-81 2002), where the context in which retrieval occurs can influence susceptibility to interference. Lastly, we discuss several theoretical hypotheses concerning the cognitive control processes that are recruited to resolve SI and PI in short-term remembering.
Resolving semantic and proactive interference in memory over the short-term
Reuter-Lorenz, Patricia A.; Lewis, Richard L.; Jonides, John
2011-01-01
Interference is a major source of short-term errors of memory. The present investigation explores the relationship between two important forms of interference: proactive interference (PI), induced by the need to reject recently studied items no longer relevant to task performance, and semantic interference (SI), induced by the need to reject lures sharing a meaningful relationship with current memoranda. We explore the possibility that shared cognitive control processes are recruited to resolve both forms of interference. In Experiment 1, we find that the requirement to engage in articulatory suppression during the retention interval of tasks that induce either PI or SI increases both forms of interference similarly and selectively. In Experiment 2, we develop a task to examine PI and SI within the same experimental context. The results show interactive effects between factors that lead to the two forms of interference. Taken together, these findings support contextual-cuing models of short-term remembering (Nairne, Annual Review of Psychology, 53, 53–81 2002), where the context in which retrieval occurs can influence susceptibility to interference. Lastly, we discuss several theoretical hypotheses concerning the cognitive control processes that are recruited to resolve SI and PI in short-term remembering. PMID:21327614
Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues
NASA Astrophysics Data System (ADS)
Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.
Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.
Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.
Li, Yun; Ho, K C; Popescu, Mihail
2014-03-01
Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.
Riffe, Matthew J.; Twieg, Michael D.; Gudino, Natalia; Blumenthal, Colin J.; Heilman, Jeremy A.; Griswold, Mark A.
2013-01-01
Purpose Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. Methods Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal’s dynamic range (DRsig) and image signal-to-noise ratio (SNR) through simulation, bench measurements, and phantom imaging experiments. Results When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and SNR. On the other hand, when all eight channels were operating simultaneously, an average SNR loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in SNR. Conclusion Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation. PMID:23413242
NASA Astrophysics Data System (ADS)
Sun, Y. W.; Liu, C.; Xie, P. H.; Hartl, A.; Chan, K. L.; Tian, Y.; Wang, W.; Qin, M.; Liu, J. G.; Liu, W. Q.
2015-12-01
In this paper, we demonstrate achieving accurate industrial SO2 emissions monitoring using a portable multi-channel gas analyzer with an optimized retrieval algorithm. The introduced analyzer features with large dynamic measurement range and correction of interferences from other co-existing infrared absorbers, e.g., NO, CO, CO2, NO2, CH4, HC, N2O and H2O. Both effects have been the major limitations of industrial SO2 emissions monitoring. The multi-channel gas analyzer measures 11 different wavelength channels simultaneously in order to achieve correction of several major problems of an infrared gas analyzer, including system drift, conflict of sensitivity, interferences among different infrared absorbers and limitation of measurement range. The optimized algorithm makes use of a 3rd polynomial rather than a constant factor to quantify gas-to-gas interference. The measurement results show good performance in both linear and nonlinear range, thereby solving the problem that the conventional interference correction is restricted by the linearity of both intended and interfering channels. The result implies that the measurement range of the developed multi-channel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated by experimental laboratory calibration. An excellent agreement was achieved with a Pearson correlation coefficient (r2) of 0.99977 with measurement range from ~5 ppmv to 10 000 ppmv and measurement error <2 %. The instrument was also deployed for field measurement. Emissions from 3 different factories were measured. The emissions of these factories have been characterized with different co-existing infrared absorbers, covering a wide range of concentration levels. We compared our measurements with the commercial SO2 analyzers. The overall good agreements are achieved.
Zmyj, Norbert; Prinz, Wolfgang; Daum, Moritz M
2015-01-01
Infants' performance in non-verbal false-belief tasks is often interpreted as if they have understood false beliefs. This view has been questioned by a recent account that explains infants' performance in non-verbal false-belief tasks as the result of susceptibility to memory interference and distraction. We tested this alternative account by investigating the relationship between infants' false-belief understanding, susceptibility to memory interference and distraction, and general cognitive development in 18-month-old infants (N = 22). False-belief understanding was tested in an anticipatory looking paradigm of a standard false-belief task. Susceptibility to memory interference and distraction was tested in a modified A-not-B task. Cognitive development was measured via the Mental Scale of the Bayley Scales of Infant Development. We did not find any relationship between infants' performance in the false-belief task and the A-not-B task, even after controlling for cognitive development. This study shows that there is no ubiquitous relation between susceptibility to memory interference and distraction and performance in a false-belief task in infancy.
Zmyj, Norbert; Prinz, Wolfgang; Daum, Moritz M.
2015-01-01
Infants’ performance in non-verbal false-belief tasks is often interpreted as if they have understood false beliefs. This view has been questioned by a recent account that explains infants’ performance in non-verbal false-belief tasks as the result of susceptibility to memory interference and distraction. We tested this alternative account by investigating the relationship between infants’ false-belief understanding, susceptibility to memory interference and distraction, and general cognitive development in 18-month-old infants (N = 22). False-belief understanding was tested in an anticipatory looking paradigm of a standard false-belief task. Susceptibility to memory interference and distraction was tested in a modified A-not-B task. Cognitive development was measured via the Mental Scale of the Bayley Scales of Infant Development. We did not find any relationship between infants’ performance in the false-belief task and the A-not-B task, even after controlling for cognitive development. This study shows that there is no ubiquitous relation between susceptibility to memory interference and distraction and performance in a false-belief task in infancy. PMID:26157409
The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice
ERIC Educational Resources Information Center
Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert
2015-01-01
"Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook
2013-12-01
A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.
ERIC Educational Resources Information Center
Sung, Jee Eun; Kim, Jin Hee; Jeong, Jee Hyang; Kang, Heejin
2012-01-01
Purpose: The purposes of the study were to investigate (a) the task-specific differences in short-term memory (STM) and working memory capacity (WMC) in individuals with mild cognitive impairment (MCI) and normal elderly adults (NEAs), (b) the Stroop interference and facilitation effects, and (c) the relationship of STM and WMC to the Stroop…
ERIC Educational Resources Information Center
Lapierre, Laurent M.; Hammer, Leslie B.; Truxillo, Donald M.; Murphy, Lauren A.
2012-01-01
The first goal of this study was to test whether family interference with work (FIW) is positively related to increased workplace cognitive failure (WCF), which is defined as errors made at work that indicate lapses in memory (e.g., failing to recall work procedures), attention (e.g., not fully listening to instruction), and motor function (e.g.,…
Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T
2017-01-01
We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.
Berman, Gennady P.; Nesterov, Alexander I.; Gurvitz, Shmuel; ...
2016-04-30
Here, we analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the “damaging” and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In this model, both damaging and “dissipative” charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimicmore » the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. Moreover, these equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Finally, our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.« less
Prefrontal inhibition of threat processing reduces working memory interference
Clarke, Robert; Johnstone, Tom
2013-01-01
Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference. PMID:23750133
Plummer, Prudence; Eskes, Gail; Wallace, Sarah; Giuffrida, Clare; Fraas, Michael; Campbell, Grace; Clifton, Kerrylee; Skidmore, Elizabeth R
2013-12-01
Cognitive-motor interference (CMI) is evident when simultaneous performance of a cognitive task and a motor task results in deterioration in performance in one or both of the tasks, relative to performance of each task separately. The purpose of this review is to present a framework for categorizing patterns of CMI and to examine the specific patterns of CMI evident in published studies comparing single-task and dual-task performance of cognitive and motor tasks during gait and balance activities after stroke. We also examine the literature for associations between patterns of CMI and a history of falls, as well as evidence for the effects of rehabilitation on CMI after stroke. Overall, this review suggests that during gait activities with an added cognitive task, people with stroke are likely to demonstrate significant decrements in motor performance only (cognitive-related motor interference), or decrements in both motor and cognitive performance (mutual interference). In contrast, patterns of CMI were variable among studies examining balance activities. Comparing people poststroke with and without a history of falls, patterns and magnitude of CMI were similar for fallers and nonfallers. Longitudinal studies suggest that conventional rehabilitation has minimal effects on CMI during gait or balance activities. However, early-phase pilot studies suggest that dual-task interventions may reduce CMI during gait performance in community-dwelling stroke survivors. It is our hope that this innovative and critical examination of the existing literature will highlight the limitations in current experimental designs and inform improvements in the design and reporting of dual-task studies in stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Harvey, Denise Y; Schnur, Tatiana T
2015-06-01
Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
47 CFR 74.604 - Interference avoidance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... common channel for TV pickup, TV STL, or TV relay purposes in the same area and simultaneous operation is... will have the following priority for purposes of interference protection: (1) All fixed links for full...
47 CFR 74.604 - Interference avoidance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... common channel for TV pickup, TV STL, or TV relay purposes in the same area and simultaneous operation is... will have the following priority for purposes of interference protection: (1) All fixed links for full...
NASA Astrophysics Data System (ADS)
Miyatake, Teruhiko; Chiba, Kazuki; Hamamura, Masanori; Tachikawa, Shin'ichi
We propose a novel asynchronous direct-sequence codedivision multiple access (DS-CDMA) using feedback-controlled spreading sequences (FCSSs) (FCSS/DS-CDMA). At the receiver of FCSS/DS-CDMA, the code-orthogonalizing filter (COF) produces a spreading sequence, and the receiver returns the spreading sequence to the transmitter. Then the transmitter uses the spreading sequence as its updated version. The performance of FCSS/DS-CDMA is evaluated over time-dispersive channels. The results indicate that FCSS/DS-CDMA greatly suppresses both the intersymbol interference (ISI) and multiple access interference (MAI) over time-invariant channels. FCSS/DS-CDMA is applicable to the decentralized multiple access.
Analysis of a Near Field MIMO Wireless Channel Using 5.6 GHz Dipole Antennas
NASA Astrophysics Data System (ADS)
Maricar, Mohamed Ismaeel; Gradoni, Gabriele; Greedy, Steve; Ivrlac, Michel T.; Nossek, Josef A.; Phang, Sendy; Creagh, Stephen C.; Tanner, Gregor; Thomas, David W. P.
2016-05-01
Understanding the impact of interference upon the performance of a multiple input multiple output (MIMO) based device is of paramount importance in ensuring a design is both resilient and robust. In this work the effect of element-element interference in the creation of multiple channels of a wireless link approaching the near-field regime is studied. The elements of the 2-antenna transmit- and receive-arrays are chosen to be identical folded dipole antennas operating at 5.6 GHz. We find that two equally strong channels can be created even if the antennas interact at sub-wavelength distances, thus confirming previous theoretical predictions.
NASA Astrophysics Data System (ADS)
Yue, Yang; Wang, Qiang; Zhang, Bo; Vovan, Andre; Anderson, Jon
2017-01-01
DP-QAM is one of the most promising paths towards 400-Gb/s and 1-Tb/s commercial optical communications systems. For DP-QAM transmitter, different tributary channel powers lead to IQ or XY power imbalance. Large uncompensated IQ or XY power imbalance can significantly degrade the performance in the coherent optical communications system. In this work, we propose and experimentally demonstrate a technique to detect and compensate DP-QAM transmitter power imbalances for tributary channels. By reconfigurably interfering de-skewed identical BPSK channels, the optical powers of any two tributaries can be balanced by minimizing the output power from their optical interference.
Worden, Timothy A; Mendes, Matthew; Singh, Pratham; Vallis, Lori Ann
2016-10-01
Successful planning and execution of motor strategies while concurrently performing a cognitive task has been previously examined, but unfortunately the varied and numerous cognitive tasks studied has limited our fundamental understanding of how the central nervous system successfully integrates and executes these tasks simultaneously. To gain a better understanding of these mechanisms we used a set of cognitive tasks requiring similar central executive function processes and response outputs but requiring different perceptual mechanisms to perform the motor task. Thirteen healthy young adults (20.6±1.6years old) were instrumented with kinematic markers (60Hz) and completed 5 practice, 10 single-task obstacle walking trials and two 40 trial experimental blocks. Each block contained 20 trials of seated (single-task) trials followed by 20 cognitive and obstacle (30% lower leg length) crossing trials (dual-task). Blocks were randomly presented and included either an auditory Stroop task (AST; central interference only) or a visual Stroop task (VST; combined central and structural interference). Higher accuracy rates and shorter response times were observed for the VST versus AST single-task trials (p<0.05). Conversely, for the obstacle stepping performance, larger dual task costs were observed for the VST as compared to the AST for clearance measures (the VST induced larger clearance values for both the leading and trailing feet), indicating VST tasks caused greater interference for obstacle crossing (p<0.05). These results supported the hypothesis that structural interference has a larger effect on motor performance in a dual-task situation compared to cognitive tasks that pose interference at only the central processing stage. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man
2011-10-01
A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.
NASA Astrophysics Data System (ADS)
Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro
When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.
Liu, Baolin; Wang, Zhongning; Jin, Zhixing
2009-09-11
In real life, the human brain usually receives information through visual and auditory channels and processes the multisensory information, but studies on the integration processing of the dynamic visual and auditory information are relatively few. In this paper, we have designed an experiment, where through the presentation of common scenario, real-world videos, with matched and mismatched actions (images) and sounds as stimuli, we aimed to study the integration processing of synchronized visual and auditory information in videos of real-world events in the human brain, through the use event-related potentials (ERPs) methods. Experimental results showed that videos of mismatched actions (images) and sounds would elicit a larger P400 as compared to videos of matched actions (images) and sounds. We believe that the P400 waveform might be related to the cognitive integration processing of mismatched multisensory information in the human brain. The results also indicated that synchronized multisensory information would interfere with each other, which would influence the results of the cognitive integration processing.
Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms
2010-01-01
Algorithm The cyclic coordinate descent algorithm is also known as the nonlinear Gauss - Seidel iteration [32]. There are several studies of this type of...vkρ(vi−1). It can be shown that the above BB gradient projection direction is always a descent direction. The R-linear convergence of the BB method has...KKT solution ) of the inexact pricing algorithm for MISO interference channel. The latter is interesting since the convergence of the original pricing
2010-03-01
proposed scheme for power and code allocation for the secondary user is outlined in Fig. 2. V. SIMULATION STUDIES We consider a primary DS - CDMA system...DATES COVERED (From - To) January 2008 – June 2009 4. TITLE AND SUBTITLE COGNITIVE CDMA CHANNELIZATION 5a. CONTRACT NUMBER In-House 5b. GRANT...TELEPHONE NUMBER (Include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Cognitive CDMA Channelization Kanke
Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming
2018-01-01
Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical transmission modules for multi-channel superconducting quantum interference device readouts.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
Performance Analysis of Relay Subset Selection for Amplify-and-Forward Cognitive Relay Networks
Qureshi, Ijaz Mansoor; Malik, Aqdas Naveed; Zubair, Muhammad
2014-01-01
Cooperative communication is regarded as a key technology in wireless networks, including cognitive radio networks (CRNs), which increases the diversity order of the signal to combat the unfavorable effects of the fading channels, by allowing distributed terminals to collaborate through sophisticated signal processing. Underlay CRNs have strict interference constraints towards the secondary users (SUs) active in the frequency band of the primary users (PUs), which limits their transmit power and their coverage area. Relay selection offers a potential solution to the challenges faced by underlay networks, by selecting either single best relay or a subset of potential relay set under different design requirements and assumptions. The best relay selection schemes proposed in the literature for amplify-and-forward (AF) based underlay cognitive relay networks have been very well studied in terms of outage probability (OP) and bit error rate (BER), which is deficient in multiple relay selection schemes. The novelty of this work is to study the outage behavior of multiple relay selection in the underlay CRN and derive the closed-form expressions for the OP and BER through cumulative distribution function (CDF) of the SNR received at the destination. The effectiveness of relay subset selection is shown through simulation results. PMID:24737980
Soeiro-de-Souza, Márcio Gerhardt; Otaduy, Maria Concepción Garcia; Dias, Carolina Zadres; Bio, Danielle S; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto
2012-12-01
Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the α1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a FER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. Sample size. The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology. Copyright © 2012 Elsevier B.V. All rights reserved.
Photonic channels for quantum communication
van Enk SJ; Cirac; Zoller
1998-01-09
A general photonic channel for quantum communication is defined. By means of local quantum computing with a few auxiliary atoms, this channel can be reduced to one with effectively less noise. A scheme based on quantum interference is proposed that iteratively improves the fidelity of distant entangled particles.
Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F; Buss, Eric W; Richter, Hannah; Oh, M Matthew; Nicholson, Daniel A; Disterhoft, John F
2015-09-23
Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29-32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K(+) channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. Significance statement: Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with faster action potential repolarization through enhanced expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the cell bodies of CA3 pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/3513206-13$15.00/0.
Zhang, Hongmei; Li, Wenjun; Xue, Yong; Zou, Fei
2014-08-17
Lead (Pb(2+)) is a divalent heavy metal ion which causes severe damage to almost all life forms and is therefore considered a notorious toxicant. Exposure to Pb(2+) is associated with poor cognitive development in children at relatively low levels that previously were thought to be safe. The mechanism through which Pb(2+) enters cells, however, is unclear. Previous studies have showed that Ca(2+) release-activated Ca(2+) protein 1 (Orai1), a component of store-operated Ca(2+) channels (SOCs), contributes to Pb(2+) cellular entry. Canonical transient receptor potential (TRPC1) channel 1 is a transient receptor potential (TRP) channel which is sometimes referred to as a SOC. The present study was designed to investigate the role of TRPC1 in Pb(2+) entry and toxicity in human embryonic kidney cells (HEK293). Additionally, changes in intracellular Ca(2+) concentration were determined through Fluo-4 and Mag-fluo-4 fluorescent Ca(2+) imaging. Following Pb(2+) exposure, there was a dose-dependent decrease in cell viability. Overexpression of TRPC1 increased Pb(2+)-induced cell death, while knockdown of this channel attenuated cell death. There was increased entry of Pb(2+), as measured by inductively coupled plasma mass spectrometry (ICP-MS), following overexpression of TRPC1. Conversely, knockdown of TRPC1 led to a decrease in Pb(2+) influx. Down-regulation of STIM1 by RNA interference attenuated the Pb(2+) influx, and transfection with a mutant STIM1, which could not gate TRPC1, had a similar effect. Co-transfection of mutant STIM1 and mutant TRPC1, which restore the electrostatic interaction between STIM1 and TRPC1, resumed Pb(2+) entry in HEK293 cells. Down-regulation of TRPC1 by RNA interference decreased Ca(2+) influx whilst its overexpression increased Ca(2+) entry in HEK293 cells. These results suggest that TRPC1 is involved in the cytotoxicity and entry of Pb(2+) through molecular interactions with STIM1 and subsequent Ca(2+) influx in HEK293 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew
2015-01-01
Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with faster action potential repolarization through enhanced expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the cell bodies of CA3 pyramidal neurons. PMID:26400949
Ventral striatal hyperconnectivity during rewarded interference control in adolescents with ADHD.
Ma, Ili; van Holstein, Mieke; Mies, Gabry W; Mennes, Maarten; Buitelaar, Jan; Cools, Roshan; Cillessen, Antonius H N; Krebs, Ruth M; Scheres, Anouk
2016-09-01
Attention-deficit/hyperactivity disorder (ADHD) is characterized by cognitive deficits (e.g., interference control) and altered reward processing. Cognitive control is influenced by incentive motivation and according to current theoretical models, ADHD is associated with abnormal interactions between incentive motivation and cognitive control. However, the neural mechanisms by which reward modulates cognitive control in individuals with ADHD are unknown. We used event-related functional resonance imaging (fMRI) to study neural responses during a rewarded Stroop color-word task in adolescents (14-17 years) with ADHD (n = 25; 19 boys) and healthy controls (n = 33; 22 boys). Adolescents with ADHD showed increased reward signaling within the superior frontal gyrus and ventral striatum (VS) relative to controls. Importantly, functional connectivity analyses revealed a hyperconnectivity between VS and motor control regions in the ADHD group, as a function of reward-cognitive control integration. Connectivity was associated with performance improvement in controls but not in the ADHD group, suggesting inefficient connectivity. Adolescents with ADHD show increased neural sensitivity to rewards and its interactions with interference control in VS and motor regions, respectively. The findings support theoretical models of altered reward-cognitive control integration in individuals with ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hyodo, Kazuki; Dan, Ippeita; Kyutoku, Yasushi; Suwabe, Kazuya; Byun, Kyeongho; Ochi, Genta; Kato, Morimasa; Soya, Hideaki
2016-01-15
Previous studies have shown that higher aerobic fitness is related to higher cognitive function and higher task-related prefrontal activation in older adults. However, a holistic picture of these factors has yet to be presented. As a typical age-related change of brain activation, less lateralized activity in the prefrontal cortex during cognitive tasks has been observed in various neuroimaging studies. Thus, this study aimed to reveal the relationship between aerobic fitness, cognitive function, and frontal lateralization. Sixty male older adults each performed a submaximal incremental exercise test to determine their oxygen intake (V·O2) at ventilatory threshold (VT) in order to index their aerobic fitness. They performed a color-word Stroop task while prefrontal activation was monitored using functional near infrared spectroscopy. As an index of cognitive function, Stroop interference time was analyzed. Partial correlation analyses revealed significant correlations among higher VT, shorter Stroop interference time and greater left-lateralized dorsolateral prefrontal cortex (DLPFC) activation when adjusting for education. Moreover, mediation analyses showed that left-lateralized DLPFC activation significantly mediated the association between VT and Stroop interference time. These results suggest that higher aerobic fitness is associated with cognitive function via lateralized frontal activation in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.
Phillips, Laura K; Giuliano, Anthony J; Lee, Erica H; Faraone, Stephen V; Tsuang, Ming T; Seidman, Larry J
2011-11-01
Cognitive deficits are fundamental to schizophrenia, and research suggests that negative emotion abnormally interferes with certain cognitive processes in those with the illness. To a lesser extent, cognitive impairment is found in persons at risk for schizophrenia, but there is limited research on the impact of emotion on cognitive processing in at-risk groups. It is unknown whether interference of negative emotion precedes illness and contributes to vulnerability for the disorder. We studied the extent to which negative emotional information interferes with working memory in 21 adolescent and young adult first-degree relatives of people with schizophrenia and 22 community controls. Groups were comparable in age, sex, education, ethnicity, and socioeconomic status. Primary measures were n-back tasks varying in cognitive load (1-back, 2-back, 3-back) with emotional faces (neutral, happy, fearful) as stimuli. The control group's response times (RTs) and the women's RTs, regardless of group, differed depending on the emotion condition. In contrast, the RTs of the relatives and of the men, regardless of group, did not differ by emotion. This study is the first to examine emotion-cognition interactions in relatives of individuals with schizophrenia. Reduced efficiency in processing emotional information may contribute to a greater vulnerability for schizophrenia that may be heightened in men. Additional research with larger samples of men and women is needed to test these preliminary findings.
Interference Effects in Bimanual Coordination Are Independent of Movement Type
ERIC Educational Resources Information Center
Calvin, Sarah; Huys, Raoul; Jirsa, Viktor K.
2010-01-01
Simultaneously executed limb movements interfere with each other. Whereas the interference between discrete movements is examined mostly from a cognitive perspective, that between rhythmic movements is studied mainly from a dynamical systems perspective. As the tools and concepts developed by both communities are limited in their applicability to…
NASA Technical Reports Server (NTRS)
Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.
1991-01-01
Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.
Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A
2014-10-01
Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Loewenstein, David A; Greig, Maria T; Curiel, Rosie; Rodriguez, Rosemarie; Wicklund, Meredith; Barker, Warren W; Hidalgo, Jacqueline; Rosado, Marian; Duara, Ranjan
2015-12-01
To evaluate the relationship between susceptibility to proactive semantic interference (PSI) and retroactive semantic interference (RSI) and brain amyloid load in non-demented elders. 27 participants (11 cognitively normal [CN] with subjective memory complaints, 8 CN without memory complaints, and 8 with mild cognitive impairment [MCI]) underwent complete neurological and neuropsychological evaluations. Participants also received the Semantic Interference Test (SIT) and AV-45 amyloid PET imaging. High levels of association were present between total amyloid load, regional amyloid levels, and the PSI measure (in the entire sample and a subsample excluding MCI subjects). RSI and other memory measures showed much weaker associations or no associations with total and regional amyloid load. No associations between amyloid levels and non-memory performance were observed. In non-demented individuals, vulnerability to PSI was highly associated with total and regional beta-amyloid load and may be an early cognitive marker of brain pathology. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Strekalov, D. V.; Shih, Y. H.
1997-10-01
An advanced wave model is applied to a two-photon interference experiment to show that the observed interference effect is due to the geometrical phase of a two-photon state produced in spontaneous parametric down-conversion. The polarization state of the signal-idler pair is changed adiabatically so that the ``loop'' on the Poincaré sphere is opened in the signal channel and closed in the idler channel. Therefore, we observed an essentially nonlocal geometrical phase, shared by the entangled photon pair, or a biphoton.
Design and Implementation of an Underlay Control Channel for Cognitive Radios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny
Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA modulemore » from National Instruments.« less
Free recall and outdoor running: cognitive and physical demand interference.
Epling, Samantha L; Blakely, Megan J; Russell, Paul N; Helton, William S
2016-10-01
Cognitive resource theory is a proposed explanation for people's limited ability to perform multiple tasks simultaneously. Reallocation of a restricted supply of cognitive resources to two or more tasks may be detrimental to performance on one or both tasks. Many professionals in high-risk fields, such as those engaged in firefighting, military, and search and rescue missions, face simultaneous mental and physical demands, yet little is known about the resources required to move over the natural terrain these operators may encounter. In the present research, we investigated whether interference was found between outdoor running and a word recall task. As hypothesized, a reduction in word recall was observed in the dual task compared to a recall-alone task; however, the distance run was not significantly different between the dual task and the run-alone task. Subjective reports of workload, task focus, and being "spent" (measures calculated from responses on a questionnaire) were greatest in the dual task. These results support the cognitive resource theory and have important theoretical and practical implications. Further research is required to better understand the type and extent of cognitive resources required by such physical tasks and the potential interference with simultaneous mental tasks.
Lin, Huifa; Shin, Won-Yong
2017-01-01
We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice. PMID:28076402
Lin, Huifa; Shin, Won-Yong
2017-01-01
We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.
Extending the impulse response in order to reduce errors due to impulse noise and signal fading
NASA Technical Reports Server (NTRS)
Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.
1988-01-01
A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.
NASA Astrophysics Data System (ADS)
Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad
2017-12-01
This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.
Nuclear interference in the Coulomb explosion of H2+ in short vuv laser fields.
Førre, Morten; Barmaki, Samira; Bachau, Henri
2009-03-27
We report ab initio calculations of H2+ three-photon ionization by vuv/fs 10(12) W/cm(2) laser pulses including electronic and vibrational degrees of freedom in the Born-Oppenheimer approximation. The initial nuclear wave packet of H2+(1ssigma(g)) is assumed to be equal to the H2 vibrational ground state. For pulse durations longer than 10 fs, we find an unexpected modulation in the kinetic energy spectra of the correlated fragments (H++H+). It is shown that the structures in the spectra originate from the interference between a direct and a sequential dissociation channel. While the first channel is open even for relatively short pulses, the sequential one only opens for pulse durations longer than 10 fs. In the latter case we show that interference between the two components results in a modulated kinetic energy release spectrum in the dissociation channel 3dsigma(g), which is reflected in the ionization spectrum.
Interference-free SDMA for FBMC-OQAM
NASA Astrophysics Data System (ADS)
Horlin, François; Fickers, Jessica; Deleu, Thibault; Louveaux, Jérome
2013-12-01
Filter-bank multi-carrier (FBMC) modulations have recently been considered for the emerging wireless communication systems as a means to improve the utilization of the physical resources and the robustness to channel time variations. FBMC divides the overall frequency channel in a set of subchannels of bandwidth proportionally decreasing with the number of subchannels. If the number of subchannels is high enough, the bandwidth of each subchannel is small enough to assume that it is approximately flat. On the other hand, space-division multiple access (SDMA) is a recognized technique to support multiple access in the downlink of a multi-user system. The user signals are precoded at the base station equipped with multiple antennas to separate the users in the spatial domain. The application of SDMA to FBMC is unfortunately difficult when the channel is too frequency selective (or when the number of subchannels to too small) to assume flat subchannels. In that case, the system suffers from inter-symbol and inter-subchannel interference, besides the multi-user interference inherent to SDMA. State-of-the art solutions simply neglect the inter-symbol/subchannel interference. This article proposes a new SDMA precoder for FBMC capable of mitigating the three sources of interference. It is constructed per subchannel in order to keep an acceptable complexity and has the structure of a filter applied on each subchannel and its neighbors at twice the symbol rate. Numerical results demonstrate that the precoder can get rid of all the interference present in the system and benefit therefore from the diversity and power gains achievable with multiple antenna systems.
Carpenter, Kristen M; Eisenberg, Stacy; Weltfreid, Sharone; Low, Carissa A; Beran, Tammy; Stanton, Annette L
2014-09-01
This study evaluated associations of cancer-related cognitive processing with BRCA1/2 mutation carrier status, personal cancer history, age, and election of prophylactic surgery in women at high risk for breast cancer. In a 2 (BRCA1/2 mutation carrier status) × 2 (personal cancer history) matched-control design, with age as an additional predictor, participants (N = 115) completed a computerized cancer Stroop task. Dependent variables were response latency to cancer-related stimuli (reaction time [RT]) and cancer-related cognitive interference (cancer RT minus neutral RT). RT and interference were tested as predictors of prophylactic surgery in the subsequent four years. RT for cancer-related words was significantly slower than other word groups, indicating biased processing specific to cancer-related stimuli. Participants with a cancer history evidenced longer RT to cancer-related words than those without a history; moreover, a significant Cancer History × Age interaction indicated that, among participants with a cancer history, the typical advantage associated with younger age on Stroop tasks was absent. BRCA mutation carriers demonstrated more cancer-related cognitive interference than noncarriers. Again, the typical Stroop age advantage was absent among carriers. Exploratory analyses indicated that BRCA+ status and greater cognitive interference predicted greater likelihood of undergoing prophylactic surgery. Post hoc tests suggest that cancer-related distress does not account for these relationships. In the genetic testing context, younger women with a personal cancer history or who are BRCA1/2 mutation carriers might be particularly vulnerable to biases in cancer-related cognitive processing. Biased processing was associated marginally with greater likelihood of prophylactic surgery. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
47 CFR 22.599 - Assignment of 72-76 MHz channels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 22.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service Point-To-Point Operation § 22.599 Assignment of 72-76 MHz channels. Because of the potential for interference to the reception of TV Channels 4 and 5...
47 CFR 15.707 - Permissible channels of operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... These channels will be identified and protected in the TV bands database(s). (b) Operation on available...) of this section and as determined by a TV bands database in accordance with the interference...
ERIC Educational Resources Information Center
Lever, Anne G.; Ridderinkhof, K. Richard; Marsman, Maarten; Geurts, Hilde M.
2017-01-01
As a large heterogeneity is observed across studies on interference control in autism spectrum disorder (ASD), research may benefit from the use of a cognitive framework that models specific processes underlying reactive and proactive control of interference. Reactive control refers to the expression and suppression of responses and proactive…
The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors.
Heisz, Jennifer J; Clark, Ilana B; Bonin, Katija; Paolucci, Emily M; Michalski, Bernadeta; Becker, Suzanna; Fahnestock, Margaret
2017-11-01
This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.
Hanseeuw, Bernard J; Seron, Xavier; Ivanoiu, Adrian
2012-10-01
Increased sensitivity to proactive (PI) and retroactive (RI) interference has been observed in amnestic mild cognitive impairment (aMCI). PI and RI are often explained as being the result of a response competition mechanism. However, patients with aMCI are supposed to suffer mostly from encoding deficits. We hypothesized that in aMCI interference may occur at encoding and not only at the retrieval stage. We developed an original paradigm enabling PI and RI to be tested with and without response competitors. Eighteen young controls (YC), 16 elderly controls (EC) and 15 aMCI participated in the study. The YC and EC groups presented interference effects only in conditions that included a direct response competitor. In contrast, aMCI had interference effects in all conditions including the one without response competitor. Increased sensitivity to interference in aMCI appears to occur at the encoding/consolidation stage and not only at the retrieval stage, as is the case in healthy subjects. This result is discussed in the context of the associative encoding deficits characterizing aMCI. Copyright © 2012 Elsevier Inc. All rights reserved.
2013-01-01
Cross-conjugated molecules are known to exhibit destructive quantum interference, a property that has recently received considerable attention in single-molecule electronics. Destructive quantum interference can be understood as an antiresonance in the elastic transmission near the Fermi energy and leading to suppressed levels of elastic current. In most theoretical studies, only the elastic contributions to the current are taken into account. In this paper, we study the inelastic contributions to the current in cross-conjugated molecules and find that while the inelastic contribution to the current is larger than for molecules without interference, the overall behavior of the molecule is still dominated by the quantum interference feature. Second, an ongoing challenge for single molecule electronics is understanding and controlling the local geometry at the molecule-surface interface. With this in mind, we investigate a spectroscopic method capable of providing insight into these junctions for cross-conjugated molecules: inelastic electron tunneling spectroscopy (IETS). IETS has the advantage that the molecule interface is probed directly by the tunneling current. Previously, it has been thought that overtones are not observable in IETS. Here, overtones are predicted to be strong and, in some cases, the dominant spectroscopic features. We study the origin of the overtones and find that the interference features in these molecules are the key ingredient. The interference feature is a property of the transmission channels of the π system only, and consequently, in the vicinity of the interference feature, the transmission channels of the σ system and the π system become equally transmissive. This allows for scattering between the different transmission channels, which serves as a pathway to bypass the interference feature. A simple model calculation is able to reproduce the results obtained from atomistic calculations, and we use this to interpret these findings. PMID:24067128
Interference Control In Elderly Bilinguals: Appearances Can Be Misleading.
Ansaldo, Ana Inés; Ghazi-Saidi, Ladan; Adrover-Roig, Daniel
2015-01-01
Bilingualism has been associated with successful aging. In particular, research on the cognitive advantages of bilingualism suggests that it can enhance control over interference and help delay the onset of dementia signs. However, the evidence on the so-called cognitive advantage is not unanimous; furthermore, little is known about the neural basis of this supposed cognitive advantage in bilingual as opposed to monolingual elderly populations. In this study, elderly bilingual and monolingual participants performed a visuospatial interference control task during functional magnetic resonance imaging (fMRI) scanning. Response times and accuracy rates were calculated for congruent and incongruent conditions of the Simon task, and the neurofunctional correlates of performance on the Simon task were examined. The results showed equivalent performance on the Simon task across groups but different underlying neural substrates in the two groups. With incongruent trials, monolinguals activated the right middle frontal gyrus, whereas bilinguals relied upon the left inferior parietal lobule. These results show that elderly bilinguals and monolinguals have equivalent interference control abilities, but relay on different neural substrates. Thus, while monolinguals show a classical PASA (posterior-anterior shift in aging) effect, recruiting frontal areas, bilinguals activate visuospatial processing alone and thus do not show this posterior-anterior shift. Moreover, a modulation of frontal activity with task-dynamic control of interference, observed in the elderly bilingual group alone, suggests that elderly bilinguals deal with interference control without recruiting a circuit that is particularly vulnerable to aging.
Face-to-face interference in typical and atypical development
Riby, Deborah M; Doherty-Sneddon, Gwyneth; Whittle, Lisa
2012-01-01
Visual communication cues facilitate interpersonal communication. It is important that we look at faces to retrieve and subsequently process such cues. It is also important that we sometimes look away from faces as they increase cognitive load that may interfere with online processing. Indeed, when typically developing individuals hold face gaze it interferes with task completion. In this novel study we quantify face interference for the first time in Williams syndrome (WS) and Autism Spectrum Disorder (ASD). These disorders of development impact on cognition and social attention, but how do faces interfere with cognitive processing? Individuals developing typically as well as those with ASD (n = 19) and WS (n = 16) were recorded during a question and answer session that involved mathematics questions. In phase 1 gaze behaviour was not manipulated, but in phase 2 participants were required to maintain eye contact with the experimenter at all times. Looking at faces decreased task accuracy for individuals who were developing typically. Critically, the same pattern was seen in WS and ASD, whereby task performance decreased when participants were required to hold face gaze. The results show that looking at faces interferes with task performance in all groups. This finding requires the caveat that individuals with WS and ASD found it harder than individuals who were developing typically to maintain eye contact throughout the interaction. Individuals with ASD struggled to hold eye contact at all points of the interaction while those with WS found it especially difficult when thinking. PMID:22356183
A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation
NASA Astrophysics Data System (ADS)
Barnbaum, Cecilia; Bradley, Richard F.
1998-11-01
Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.
NASA Astrophysics Data System (ADS)
Medjahdi, Yahia; Terré, Michel; Ruyet, Didier Le; Roviras, Daniel
2014-12-01
In this paper, we investigate the impact of timing asynchronism on the performance of multicarrier techniques in a spectrum coexistence context. Two multicarrier schemes are considered: cyclic prefix-based orthogonal frequency division multiplexing (CP-OFDM) with a rectangular pulse shape and filter bank-based multicarrier (FBMC) with physical layer for dynamic spectrum access and cognitive radio (PHYDYAS) and isotropic orthogonal transform algorithm (IOTA) waveforms. First, we present the general concept of the so-called power spectral density (PSD)-based interference tables which are commonly used for multicarrier interference characterization in spectrum sharing context. After highlighting the limits of this approach, we propose a new family of interference tables called `instantaneous interference tables'. The proposed tables give the interference power caused by a given interfering subcarrier on a victim one, not only as a function of the spectral distance separating both subcarriers but also with respect to the timing misalignment between the subcarrier holders. In contrast to the PSD-based interference tables, the accuracy of the proposed tables has been validated through different simulation results. Furthermore, due to the better frequency localization of both PHYDYAS and IOTA waveforms, FBMC technique is demonstrated to be more robust to timing asynchronism compared to OFDM one. Such a result makes FBMC a potential candidate for the physical layer of future cognitive radio systems.
Kertzman, Semion; Avital, Avi; Weizman, Abraham; Segal, Michael
2014-10-01
Intrusive cognitions that enter consciousness involuntarily are prominent symptoms of posttraumatic stress disorder (PTSD). The present study aimed to identify neuropsychological mechanisms involved. Fifty PTSD outpatients and 50 healthy controls were tested using Finger Tapping, Simple and Choice Reaction Times and Stroop Tasks, to measure motor, psychomotor speed, response selection, and interference inhibition ability respectively. PTSD patients performed poorly in all tests, presumably owing to their generalized slowness of information processing and motor reaction. Psychomotor speed was a predictor of slowness and high error rate during the Stroop. Impaired inhibition, as measured by the interference index of the Stroop task, explained 9.7% of the predicated variance in frequency of re-experiencing PTSD symptoms and 23.5% of the predicated variance in augmentation of the interference response time. Impaired interference control may be related to internal (re-experiencing) and external (sensory) stimuli that leads to cognitive deficits in PTSD patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Zhishun; Jacobs, Rachel H; Marsh, Rachel; Horga, Guillermo; Qiao, Jianping; Warner, Virginia; Weissman, Myrna M; Peterson, Bradley S
2016-03-30
The processing of cognitive interference is a self-regulatory capacity that is impaired in persons with internalizing disorders. This investigation was to assess sex differences in the neural correlates of cognitive interference in individuals with and without an illness history of an internalizing disorder. We compared functional magnetic resonance imaging blood-oxygenation-level-dependent responses in both males (n=63) and females (n=80) with and without this illness history during performance of the Simon task. Females deactivated superior frontal gyrus, inferior parietal lobe, and posterior cingulate cortex to a greater extent than males. Females with a prior history of internalizing disorder also deactivated these regions more compared to males with that history, and they additionally demonstrated greater activation of right inferior frontal gyrus. These group differences were represented in a significant sex-by-illness interaction in these regions. These deactivated regions compose a task-negative or default mode network, whereas the inferior frontal gyrus usually activates when performing an attention-demanding task and is a key component of a task-positive network. Our findings suggest that a prior history of internalizing disorders disproportionately influences functioning of the default mode network and is associated with an accompanying activation of the task-positive network in females during the resolution of cognitive interference. Copyright © 2016. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Li, Husheng; Betz, Sharon M.; Poor, H. Vincent
2007-05-01
This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.
Kober, Silvia Erika; Witte, Matthias; Stangl, Matthias; Väljamäe, Aleksander; Neuper, Christa; Wood, Guilherme
2015-01-01
In the present study, we investigated how the electrical activity in the sensorimotor cortex contributes to improved cognitive processing capabilities and how SMR (sensorimotor rhythm, 12-15Hz) neurofeedback training modulates it. Previous evidence indicates that higher levels of SMR activity reduce sensorimotor interference and thereby promote cognitive processing. Participants were randomly assigned to two groups, one experimental (N=10) group receiving SMR neurofeedback training, in which they learned to voluntarily increase SMR, and one control group (N=10) receiving sham feedback. Multiple cognitive functions and electrophysiological correlates of cognitive processing were assessed before and after 10 neurofeedback training sessions. The experimental group but not the control group showed linear increases in SMR power over training runs, which was associated with behavioural improvements in memory and attentional performance. Additionally, increasing SMR led to a more salient stimulus processing as indicated by increased N1 and P3 event-related potential amplitudes after the training as compared to the pre-test. Finally, functional brain connectivity between motor areas and visual processing areas was reduced after SMR training indicating reduced sensorimotor interference. These results indicate that SMR neurofeedback improves stimulus processing capabilities and consequently leads to improvements in cognitive performance. The present findings contribute to a better understanding of the mechanisms underlying SMR neurofeedback training and cognitive processing and implicate that SMR neurofeedback might be an effective cognitive training tool. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Electroencephalographic monitoring of complex mental tasks
NASA Technical Reports Server (NTRS)
Guisado, Raul; Montgomery, Richard; Montgomery, Leslie; Hickey, Chris
1992-01-01
Outlined here is the development of neurophysiological procedures to monitor operators during the performance of cognitive tasks. Our approach included the use of electroencepalographic (EEG) and rheoencephalographic (REG) techniques to determine changes in cortical function associated with cognition in the operator's state. A two channel tetrapolar REG, a single channel forearm impedance plethysmograph, a Lead I electrocardiogram (ECG) and a 21 channel EEG were used to measure subject responses to various visual-motor cognitive tasks. Testing, analytical, and display procedures for EEG and REG monitoring were developed that extend the state of the art and provide a valuable tool for the study of cerebral circulatory and neural activity during cognition.
NASA Astrophysics Data System (ADS)
Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak
2016-07-01
The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.
Thought control strategies in adolescents: links with OCD symptoms and meta-cognitive beliefs.
Wilson, Charlotte; Hall, Martin
2012-07-01
The perceived control of intrusive thoughts is important in our understanding of a variety of psychological disorders, but particularly in Obsessive Compulsive Disorder (OCD). Little research has explored thought control strategies in younger populations, despite the frequent onset of OCD in childhood. This study examined thought control strategies and meta-cognitive beliefs in relation to Obsessive Compulsive (OC) interference scores in an adolescent sample. A non-referred sample of 151 adolescents aged 13-16 completed the Thought Control Questionnaire, the Meta-Cognitions Questionnaire - Adolescent version, and the Leyton Obsessional Inventory - Child Version. Adolescents reported using distraction and worry as thought control strategies as much as adults, but social control and reappraisal less frequently, with adolescent males also reporting less use of punishment as a strategy. The strategies of worry and punishment, and positive beliefs about worry, uncontrollability and danger beliefs (UCD) and superstition punishment and responsibility beliefs (SPR) predicted OC interference scores. Furthermore, these meta-cognitive beliefs mediated the relationships between punishment and worry and OC interference scores. Given the similarities between our results and those from research exploring these variables in adults, it is proposed that cognitive behavioural models of OCD that have been developed in adult populations may be relevant to adolescents, but that meta-cognitive beliefs about superstition, punishment and responsibility may be important in adolescence.
Tan, Patricia Z; Silk, Jennifer S; Dahl, Ronald E; Kronhaus, Dina; Ladouceur, Cecile D
2018-01-01
This study sought to examine age-related differences in the influences of social (neutral, emotional faces) and non-social/non-emotional (shapes) distractor stimuli in children, adolescents, and adults. To assess the degree to which distractor, or task-irrelevant, stimuli of varying social and emotional salience interfere with cognitive performance, children ( N = 12; 8-12y), adolescents ( N = 17; 13-17y), and adults ( N = 17; 18-52y) completed the Emotional Identification and Dynamic Faces (EIDF) task. This task included three types of dynamically-changing distractors: (1) neutral-social (neutral face changing into another face); (2) emotional-social (face changing from 0% emotional to 100% emotional); and (3) non-social/non-emotional (shapes changing from small to large) to index the influence of task-irrelevant social and emotional information on cognition. Results yielded no age-related differences in accuracy but showed an age-related linear reduction in correct reaction times across distractor conditions. An age-related effect in interference was observed, such that children and adults showed slower response times on correct trials with socially-salient distractors; whereas adolescents exhibited faster responses on trials with distractors that included faces rather than shapes. A secondary study goal was to explore individual differences in cognitive interference. Results suggested that regardless of age, low trait anxiety and high effortful control were associated with interference to angry faces. Implications for developmental differences in affective processing, notably the importance of considering the contexts in which purportedly irrelevant social and emotional information might impair, vs. improve cognitive control, are discussed.
Ding, Shuai
2017-01-01
The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems. PMID:29301195
Yang, Yu; Wang, Bing-Zhong; Ding, Shuai
2017-12-30
The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems.
NASA Astrophysics Data System (ADS)
Gardiner, B. L.; Thomson, D. J.
2006-12-01
Starting with the designs of earlier solar radio telescopes, particularly the one at Bell Labs, Murray Hill, we have built a new instrument. The major differences between this telescope and its predecessors are that it has: 1) parallel low and high gain channels for both polarizations; 2) four additional channels for active interference cancellation; and 3) all eight IF strips terminating in 100 MHz, 14--bit analog--to--digital converters with synchronized sampling. The advantages of such a configuration are: a) The parallel low and high gain channels allow a higher dynamic range without saturating than a single channel. b) Estimating bispectra between the channels gives a sensitive test for saturation in the higher gain channel. c) In the usual case, when both channels are in their linear region, one can use them with a noise injection diode to track the amplifier noise figures. d) With the noise diode off, the two channels can be used in a mode similar to remote reference. As the telescope is operating in a small city we anticipate that more than 90% of the measurements will be contaminated by various communications signals and impulsive noise. Thus all the signal processing will build on various robust statistical procedures that have proven effective in other applications. The best mode of operating the four active interference cancelling channels is still under study
Beamforming design with proactive interference cancelation in MISO interference channels
NASA Astrophysics Data System (ADS)
Li, Yang; Tian, Yafei; Yang, Chenyang
2015-12-01
In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.
2016-07-04
required analysis, and further testing. 15. SUBJECT TERMS Adjacent Channel Interference, ACI, LTE -A, LTE , PCM/FM, SOQPSK-TG, ARTM CPM, AWS-3, User...Interference, ACI, LTE -A, LTE , PCM/FM, SOQPSK-TG, ARTM CPM, AWS-3, User Equipment, UE, Evolved Node B, eNodeB, Resource Blocks INTRODUCTION “On...these questions make necessary an improved understanding of the interferers that can be obtained only by hands-on measurements . This work will
Long-Term Interference at the Semantic Level: Evidence from Blocked-Cyclic Picture Matching
ERIC Educational Resources Information Center
Wei, Tao; Schnur, Tatiana T.
2016-01-01
Processing semantically related stimuli creates interference across various domains of cognition, including language and memory. In this study, we identify the locus and mechanism of interference when retrieving meanings associated with words and pictures. Subjects matched a probe stimulus (e.g., cat) to its associated target picture (e.g., yarn)…
Cognitive declines in healthy aging: evidence from multiple aspects of interference resolution.
Pettigrew, Corinne; Martin, Randi C
2014-06-01
The present study tested the hypothesis that older adults show age-related deficits in interference resolution, also referred to as inhibitory control. Although oftentimes considered as a unitary aspect of executive function, various lines of work support the notion that interference resolution may be better understood as multiple constructs, including resistance to proactive interference (PI) and response-distractor inhibition (e.g., Friedman & Miyake, 2004). Using this dichotomy, the present study assessed whether older adults (relative to younger adults) show impaired performance across both, 1, or neither of these interference resolution constructs. To do so, we used multiple tasks to tap each construct and examined age effects at both the single task and latent variable levels. Older adults consistently demonstrated exaggerated interference effects across resistance to PI tasks. Although the results for the response-distractor inhibition tasks were less consistent at the individual task level analyses, age effects were evident on multiple tasks, as well as at the latent variable level. However, results of the latent variable modeling suggested declines in interference resolution are best explained by variance that is common to the 2 interference resolution constructs measured herein. Furthermore, the effect of age on interference resolution was found to be both distinct from declines in working memory, and independent of processing speed. These findings suggest multiple cognitive domains are independently sensitive to age, but that declines in the interference resolution constructs measured herein may originate from a common cause. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Dual-Task Interference When A Response is Not Required
NASA Technical Reports Server (NTRS)
VanSelst, Mark; Johnston, James C.; Shafto, Michael (Technical Monitor)
2002-01-01
When subjects are required to respond to two stimuli presented in rapid succession, responses to the second stimulus are delayed. Such dual-task interference has been attributed to a fundamental processing bottleneck preventing simultaneous processing on both tasks. Two experiments show dual-task interference even when the first task does not require a response. The observed interference is caused by a bottleneck in central cognitive processing, rather than in response initiation or execution.
Complexity Analysis and Algorithms for Optimal Resource Allocation in Wireless Networks
2012-09-01
independent orthogonal signaling such as OFDM . The general formulation will exploit the concept of ‘interference alignment’ which is known to provide...substantial rate gain over OFDM signalling for general interference channels. We have successfully analyzed the complexity to characterize the optimal...categories: PaperReceived Gennady Lyubeznik, Zhi-Quan Luo, Meisam Razaviyayn. On the degrees of freedom achievable through interference alignment in a MIMO
Festini, Sara B; Reuter-Lorenz, Patricia A
2014-03-01
Proactive interference (PI) occurs when previously learned information interferes with new learning. In a working memory task, PI induces longer response times and more errors to recent negative probes than to new probes, presumably because the recent probe's familiarity invites a "yes" response. Warnings, longer intertrial intervals, and the increased contextual salience of the probes can reduce but not eliminate PI, suggesting that cognitive control over PI is limited. Here we tested whether control exerted in the form of intentional forgetting performed during working memory can reduce the magnitude of PI. In two experiments, participants performed a working memory task with directed-forgetting instructions and the occasional presentation of recent probes. Surprise long-term memory testing indicated better memory for to-be-remembered than for to-be-forgotten items, documenting the classic directed-forgetting effect. Critically, in working memory, PI was virtually eliminated for recent probes from prior to-be-forgotten lists, as compared to recent probes from prior to-be-remembered lists. Thus cognitive control, when executed via directed forgetting, can reduce the adverse and otherwise persistent interference from familiarity, an effect that we attribute to attenuated memory representations of the to-be-forgotten items.
On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes
NASA Technical Reports Server (NTRS)
Bachmann, Brian O. (Inventor); Bornhop, Darryl J. (Inventor); Dotson, Stephen (Inventor)
2012-01-01
A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization of the laser beam as it passes multiple times through the sample. Interference fringe patterns (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.
NASA Astrophysics Data System (ADS)
He, Jing; Shi, Jin; Deng, Rui; Chen, Lin
2017-08-01
Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.
Gorlick, Marissa A.; Mather, Mara
2012-01-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigated whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural/man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, and size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic/perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. PMID:22142207
Sakaki, Michiko; Gorlick, Marissa A; Mather, Mara
2011-12-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. (c) 2011 APA, all rights reserved.
Cognitive interference and a food-related memory bias in binge eating disorder.
Svaldi, Jennifer; Schmitz, Florian; Trentowska, Monika; Tuschen-Caffier, Brunna; Berking, Matthias; Naumann, Eva
2014-01-01
The present study was concerned with cognitive interference and a specific memory bias for eating-related stimuli in binge eating disorder (BED). Further objectives were to find out under which circumstances such effects would occur, and whether they are related with each other and with reported severity of BED symptoms. A group of women diagnosed with BED and a matched sample of overweight controls completed two paradigms, an n-back task with lures and a recent-probes task. The BED group generally experienced more interference in the n-back task. Additionally, they revealed selectively increased interference for food items in the recent-probes task. Findings can be reconciled with the view that control functions are generally impaired in BED, and that there is an additional bias for eating-related stimuli, both of which were related with reported severity of BED symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pre-stressor cognitive control is related to intrusive cognition of a stressful film.
Wessel, Ineke; Overwijk, Sippie; Verwoerd, Johan; de Vrieze, Nienke
2008-04-01
It has been suggested that relatively weak cognitive control existing prior to a stressful event may be associated with intrusive memories of that stressor afterwards. We explored this in two analog studies employing unselected participants who saw an emotional film fragment and completed behavioral (i.e., color-naming interference [CNI]) and self-report indices of intrusions. Prior to film presentation, several cognitive control tests were administered. Study 1 showed that better updating/monitoring was linked to less CNI from negative film-related words. However, better updating/monitoring was associated with more diary reports of intrusive memories. Study 2 showed that a better resistance to pro-active interference (PI) predicted less self-reported film-related intrusive cognition after 24h. However, after this delay, both self-reported intrusions and CNI were not related to updating/monitoring. Taken together, the results suggest that a specific pre-existing cognitive control function (i.e., resistance to PI) may be involved in the regulation of post-stressor intrusive memory phenomena.
Using recurrent neural networks for adaptive communication channel equalization.
Kechriotis, G; Zervas, E; Manolakos, E S
1994-01-01
Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.
Design and analysis of a multi-passband complex filter for the multiband cognitive radar system
NASA Astrophysics Data System (ADS)
Lee, Hua-Chin; Ting, Der-Hong; Tsao, Ya-Lan
2017-05-01
Multiband cognitive radar systems, operating in a variety of frequency bands and combining the different channels into a joint system, can provide significant flexibility and capability to detect and track hostile targets. This paper proposes a multi-passband complex filter (MPCF) architecture and the related circuit design for a multiband cognitive radar system. By operating under the 5.8GHz UNII band, the sensing part detects the current usage of frequency bands from 5.15GHz to 5.825GHz and provides the information of unused channels. The multiband cognitive radar system uses the whole unused channels and eliminates the used channels by using an on-chip MPCF in order to be coexistent with the Wi-Fi standard. The MPCF filters out the unwanted channels and leave the wanted channels. It dynamically changes the bandwidth of frequency from 20MHz to 80MHz using the 0.18μm CMOS technology. The MPCF is composed of the combination of 5th-order Chebyshev low-pass filters and high-pass filters, and the overall inband ripple of the MPCF is 1.2dB. The consuming current is 21.7mA at 1.8V power supply and the 20MHz bandwidth noise is 55.5nV. The total harmonic distortion (THD) is 45dB at 25MHz and the adjacent channel rejection is 24dB. The result of the MPCF guarantees the performance requirements of the multiband cognitive radar system.
Xu, Min; Xu, Guiping; Yang, Yang
2016-01-01
Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and examined common and distinct neural systems for emotional and non-emotional interference processing. We examined brain activation in three domains of interference processing: emotional verbal interference in the face-word conflict task, non-emotional verbal interference in the color-word Stroop task, and non-emotional spatial interference in the Simon, SRC and Flanker tasks. Our results show that the dorsal anterior cingulate cortex (ACC) was recruited for both emotional and non-emotional interference. In addition, the right anterior insula, presupplementary motor area (pre-SMA), and right inferior frontal gyrus (IFG) were activated by interference processing across both emotional and non-emotional domains. In light of these results, we propose that the anterior insular cortex may serve to integrate information from different dimensions and work together with the dorsal ACC to detect and monitor conflicts, whereas pre-SMA and right IFG may be recruited to inhibit inappropriate responses. In contrast, the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) showed different degrees of activation and distinct lateralization patterns for different processing domains, which suggests that these regions may implement cognitive control based on the specific task requirements. PMID:27895564
Molecular origins of conduction channels observed in shot-noise measurements.
Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S
2006-11-01
Measurements of shot noise from single molecules have indicated the presence of various conduction channels. We present three descriptions of these channels in molecular terms showing that the number of conduction channels is limited by bottlenecks in the molecule and that the channels can be linked to transmission through different junction states. We introduce molecular-conductance orbitals, which allow the transmission to be separated into contributions from individual orbitals and contributions from interference between pairs of orbitals.
Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding
NASA Astrophysics Data System (ADS)
Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang
2009-12-01
Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.
Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo
2016-08-01
Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.
Training and transfer effects of interference control training in children and young adults.
Zhao, Xin; Jia, Lina
2018-04-24
Many studies have examined transfer of working memory (WM) training improvements to non-trained cognitive tasks, with largely disappointing results. Interference control has been suggested to be a central feature of WM. However, studies examining transfer effects of a training program exclusively and directly targeting interference control are lacking. Forty-one 10‒12 year-old children and 47 19‒24 year-old adults were assigned to an adaptive interference control training or active control condition. Transfer of training effects to tasks measuring interference control, response inhibition, WM updating, task-switching, and non-verbal fluid intelligence were assessed during a 3-month follow-up session and/or an immediate post-training session. Substantial evidence of training improvements and a positive transfer effect to a non-trained interference control task were observed for both age groups. Marginal evidence for beneficial transfer of training effects for the trained compared to non-trained participants was found for a WM task for both age groups, and for the children for another interference control task and a response inhibition task. However, these transfer effects were absent during the 3-month follow-up measurement. These results suggest some potential for interference control training programs to enhance aspects of cognitive functioning, with some evidence for a more wide-spread, but short-lived, transfer for children compared to adults.
Acoustic MIMO communications in a very shallow water channel
NASA Astrophysics Data System (ADS)
Zhou, Yuehai; Cao, Xiuling; Tong, Feng
2015-12-01
Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.
The Role of Intelligence Quotient and Emotional Intelligence in Cognitive Control Processes
Checa, Purificación; Fernández-Berrocal, Pablo
2015-01-01
The relationship between intelligence quotient (IQ) and cognitive control processes has been extensively established. Several studies have shown that IQ correlates with cognitive control abilities, such as interference suppression, as measured with experimental tasks like the Stroop and Flanker tasks. By contrast, there is a debate about the role of Emotional Intelligence (EI) in individuals' cognitive control abilities. The aim of this study is to examine the relation between IQ and EI, and cognitive control abilities evaluated by a typical laboratory control cognitive task, the Stroop task. Results show a negative correlation between IQ and the interference suppression index, the ability to inhibit processing of irrelevant information. However, the Managing Emotions dimension of EI measured by the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), but not self-reported of EI, negatively correlates with the impulsivity index, the premature execution of the response. These results suggest that not only is IQ crucial, but also competences related to EI are essential to human cognitive control processes. Limitations and implications of these results are also discussed. PMID:26648901
The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference
NASA Astrophysics Data System (ADS)
Bernstein, Leslie R.; Trahiotis, Constantine
2004-05-01
We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.
Dynamic Spectrum Access for Internet of Things Service in Cognitive Radio-Enabled LPWANs
Moon, Bongkyo
2017-01-01
In this paper, we focus on a dynamic spectrum access strategy for Internet of Things (IoT) applications in two types of radio systems: cellular networks and cognitive radio-enabled low power wide area networks (CR-LPWANs). The spectrum channel contention between the licensed cellular networks and the unlicensed CR-LPWANs, which work with them, only takes place within the cellular radio spectrum range. Our aim is to maximize the spectrum capacity for the unlicensed users while ensuring that it never interferes with the licensed network. Therefore, in this paper we propose a dynamic spectrum access strategy for CR-LPWANs operating in both licensed and unlicensed bands. The simulation and the numerical analysis by using a matrix geometric approach for the strategy are presented. Finally, we obtain the blocking probability of the licensed users, the mean dwell time of the unlicensed user, and the total carried traffic and combined service quality for the licensed and unlicensed users. The results show that the proposed strategy can maximize the spectrum capacity for the unlicensed users using IoT applications as well as keep the service quality of the licensed users independent of them. PMID:29206215
Dynamic Spectrum Access for Internet of Things Service in Cognitive Radio-Enabled LPWANs.
Moon, Bongkyo
2017-12-05
In this paper, we focus on a dynamic spectrum access strategy for Internet of Things (IoT) applications in two types of radio systems: cellular networks and cognitive radio-enabled low power wide area networks (CR-LPWANs). The spectrum channel contention between the licensed cellular networks and the unlicensed CR-LPWANs, which work with them, only takes place within the cellular radio spectrum range. Our aim is to maximize the spectrum capacity for the unlicensed users while ensuring that it never interferes with the licensed network. Therefore, in this paper we propose a dynamic spectrum access strategy for CR-LPWANs operating in both licensed and unlicensed bands. The simulation and the numerical analysis by using a matrix geometric approach for the strategy are presented. Finally, we obtain the blocking probability of the licensed users, the mean dwell time of the unlicensed user, and the total carried traffic and combined service quality for the licensed and unlicensed users. The results show that the proposed strategy can maximize the spectrum capacity for the unlicensed users using IoT applications as well as keep the service quality of the licensed users independent of them.
Cardiac reactivity and preserved performance under stress: two sides of the same coin?
Pattyn, Nathalie; Mairesse, Olivier; Cortoos, Aisha; Morais, José; Soetens, Eric; Roelands, Bart; van den Nest, Annick; Kolinsky, Régine
2014-07-01
In the present experiment, cognitive control under stress was investigated using a real-life paradigm, namely an evaluation flight for military student pilots. The magnitude of cognitive interference on color-word, numerical and emotional Stroop paradigms was studied during a baseline recording and right before the test flight. Cardio-respiratory parameters were simultaneously assessed during rest and the performance of the Stroop tasks. Cognitive data suggested a different speed/accuracy trade-off under stress, and no modulation of the interference effect for color words or numerical stimuli. However, we observed a major increase in error rates for specific emotional stimuli related to the evaluation situation in the stress condition. The increase in cognitive interference from emotional stimuli, expressed as an increase in error rates, was correlated to the decreased cardiac reactivity to challenge in the stress situation. This relationship is discussed in the framework of Sanders' (1983) model of stress and performance. In terms of future research, this link warrants a fruitful lead to be followed for investigating the causal mechanism of performance decrements under the influence of stress. Copyright © 2013 Elsevier B.V. All rights reserved.
Dennis, Andrea; Bosnell, Rose; Dawes, Helen; Howells, Ken; Cockburn, Janet; Kischka, Udo; Matthews, Paul; Johansen-Berg, Heidi
2011-04-01
Stroke patients often have difficulties in simultaneously performing a motor and cognitive task. Functional imaging studies have shown that movement of an affected hand after stroke is associated with increased activity in multiple cortical areas, particularly in the contralesional hemisphere. We hypothesized patients for whom executing simple movements demands greater selective attention will show greater brain activity during movement. Eight chronic stroke patients performed a behavioral interference test using a visuo-motor tracking with and without a simultaneous cognitive task. The magnitude of behavioral task decrement under cognitive motor interference (CMI) conditions was calculated for each subject. Functional MRI was used to assess brain activity in the same patients during performance of a visuo-motor tracking task alone; correlations between CMI score and movement-related brain activation were then explored. Movement-related activation in the dorsal precentral gyrus of the contralesional hemisphere correlated strongly and positively with CMI score (r(2) at peak voxel=0.92; P<0.05). Similar but weaker relationships were observed in the ventral precentral and middle frontal gyrus. There was no independent relationship between hand motor impairment and CMI. Results suggest that variations in the degree to which a cognitive task interferes with performance of a concurrent motor task explains a substantial proportion of the variations in movement-related brain activity in patients after stroke. The results emphasize the importance of considering cognitive context when interpreting brain activity patterns and provide a rationale for further evaluation of integrated cognitive and movement interventions for rehabilitation in stroke.
A Cognitive Paradigm to Investigate Interference in Working Memory by Distractions and Interruptions
Janowich, Jacki; Mishra, Jyoti; Gazzaley, Adam
2015-01-01
Goal-directed behavior is often impaired by interference from the external environment, either in the form of distraction by irrelevant information that one attempts to ignore, or by interrupting information that demands attention as part of another (secondary) task goal. Both forms of external interference have been shown to detrimentally impact the ability to maintain information in working memory (WM). Emerging evidence suggests that these different types of external interference exert different effects on behavior and may be mediated by distinct neural mechanisms. Better characterizing the distinct neuro-behavioral impact of irrelevant distractions versus attended interruptions is essential for advancing an understanding of top-down attention, resolution of external interference, and how these abilities become degraded in healthy aging and in neuropsychiatric conditions. This manuscript describes a novel cognitive paradigm developed the Gazzaley lab that has now been modified into several distinct versions used to elucidate behavioral and neural correlates of interference, by to-be-ignored distractors versus to-be-attended interruptors. Details are provided on variants of this paradigm for investigating interference in visual and auditory modalities, at multiple levels of stimulus complexity, and with experimental timing optimized for electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) studies. In addition, data from younger and older adult participants obtained using this paradigm is reviewed and discussed in the context of its relationship with the broader literatures on external interference and age-related neuro-behavioral changes in resolving interference in working memory. PMID:26273742
Yaffe, Beril; Walder, Deborah J
2016-05-30
Attentional-interference using emotional Stroop tasks (ESTs) is greater among individuals in the general population with positive (versus negative) schizotypal traits; specifically in response to negatively (versus positively) valenced words, potentially capturing threat-sensitivity. Variability in attentional-interference as a function of subcategories of negatively valenced words (and in relation to schizotypal traits) remains underexplored in EST studies. We examined attentional-interference across negative word subcategories (fear/anger/sadness/disgust), and in relation to positive schizotypy, among non-clinical individuals in the general population reporting varying degrees of schizotypal traits. As hypothesized, performance differed across word subcategories, though the pattern varied from expectation. Attentional-interference was greater for fear and sadness compared to anger; and analogous for fear, disgust, and sadness. In the high schizotypy group, positive schizotypal traits were directly associated with attentional-interference to disgust. Attentional-interference was comparable between high- and low-positive schizotypy. Results suggest negative emotion subcategories may differentially reflect threat-sensitivity. Disgust-sensitivity may be particularly salient in (non-clinical) positive schizotypy. Findings have implications for understanding negative emotion specificity and variability in stimulus presentation modality when studying threat-related attentional-interference. Finally, disgust-related attentional-interference may serve as a cognitive correlate of (non-clinical) positive schizotypy. Expanding this research to prodromal populations will help explore disgust-related attentional-interference as a potential cognitive marker of positive symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Loewenstein, David A; Curiel, Rosie E; Greig, Maria T; Bauer, Russell M; Rosado, Marian; Bowers, Dawn; Wicklund, Meredith; Crocco, Elizabeth; Pontecorvo, Michael; Joshi, Abhinay D; Rodriguez, Rosemarie; Barker, Warren W; Hidalgo, Jacqueline; Duara, Ranjan
2016-10-01
To examine the utility of a novel "cognitive stress test" to detect subtle cognitive impairments and amyloid load within the brains of neuropsychologically normal community-dwelling elders. Participants diagnosed as cognitively normal (CN), subjective memory impairment (SMI), mild cognitive impairment (MCI), and preclinical mild cognitive impairment (PreMCI) were administered the Loewenstein-Acevedo Scale for Semantic Interference and Learning (LASSI-L), a sensitive test of proactive semantic interference (PSI), retroactive semantic interference, and, uniquely, the ability to recover from the effects of PSI. Ninety-three subjects (31 men and 62 women) were recruited from three academic institutions in a research consortium. A subset of these individuals underwent 18F florbetapir positron emission tomography scanning. Relative percentages of impairment for each diagnostic group on the LASSI-L were calculated by χ(2) and Fisher's exact tests. Spearman's rho was used to examine associations between amyloid load and different cognitive measures. LASSI-L deficits were identified among 89% of those with MCI, 47% with PreMCI, 33% with SMI, and 13% classified as CN. CN subjects had no difficulties with recovery from PSI, whereas SMI, preMCI, and MCI participants evidenced deficits in recovery from PSI effects. Among a subgroup of participants with normal scores on traditional neuropsychological tests, the strong associations were between the failure to recover from the effects of PSI and amyloid load in the brain. Failure to recover or compensate for the effects of PSI on the LASSI-L distinguishes the LASSI-L from other widely used neuropsychological tests and appears to be sensitive to subtle cognitive impairments and increasing amyloid load. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Brief Cognitive-Behavioral Treatment for TMD Pain: Long-Term Outcomes and Moderators of Treatment
Litt, Mark D.; Shafer, David M.; Kreutzer, Donald L.
2010-01-01
The purpose of this study was to determine whether a brief (6–8 sessions) cognitive-behavioral treatment for temporomandibular dysfunction-related pain could be efficacious in reducing pain, pain-related interference with lifestyle and depressive symptoms. The patients were 101 men and women with pain in the area of the temporomandibular joint of at least 3 months duration, randomly assigned to either Standard Treatment (STD; n=49) or to Standard Treatment + Cognitive-Behavioral skills training (STD+CBT; n=52). Patients were assessed at posttreatment (6 weeks), 12 weeks, 24 weeks, 36 weeks, and 52 weeks. Linear mixed model analyses of reported pain indicated that both treatments yielded significant decreases in pain, with the STD+CBT condition resulting in steeper decreases in pain over time compared to the STD condition. Somatization, self-efficacy and readiness for treatment emerged as significant moderators of outcome, such that those low in somatization, or higher in self-efficacy or readiness, and treated with STD+CBT reported lower pain over time. Somatization was also a significant moderator of treatment effects on pain-related interference with functioning, with those low on somatization reporting less pain interference over time when treated in the STD+CBT condition. It was concluded that brief treatments can yield significant reductions in pain, life interference and depressive symptoms in TMD sufferers, and that the addition of cognitive-behavioral coping skills will add to efficacy, especially for those low in somatization, or high in readiness or self-efficacy. PMID:20655662
Effects of Auditory Distraction on Cognitive Processing of Young Adults
ERIC Educational Resources Information Center
LaPointe, Leonard L.; Heald, Gary R.; Stierwalt, Julie A. G.; Kemker, Brett E.; Maurice, Trisha
2007-01-01
Objective: The effects of interference, competition, and distraction on cognitive processing are unclearly understood, particularly regarding type and intensity of auditory distraction across a variety of cognitive processing tasks. Method: The purpose of this investigation was to report two experiments that sought to explore the effects of types…
Cognitive-Behavioral Therapy for HIV Medication Adherence and Depression
ERIC Educational Resources Information Center
Safren, Steven A.; Hendriksen, Ellen S.; Mayer, Kenneth H.; Mimiaga, Matthew J.; Pickard, Robert; Otto, Michael W.
2004-01-01
For patients with HIV, depression is a common, distressing condition that can interfere with a critical self-care behavior--adherence to antiretroviral therapy. The present study describes a cognitive-behavioral treatment designed to integrate cognitive-behavioral therapy for depression with our previously tested approach to improving adherence to…
NASA Technical Reports Server (NTRS)
Sydor, John T.
1988-01-01
Samples of speech modulated by narrowband frequency modulation (NBFM) (cellular) and amplitude companded single sideband (ACSSB) radios were subjected to simulated co- and adjacent channel interference environments typical of proposed frequency division multiple access (FDMA) mobile satellite systems. These samples were then listened to by a group of evaluators whose subjective responses to the samples were used to produce a series of graphs showing the relationship between subjective acceptability, carrier to noise density (C/No), carrier to interference ratio (C/I), and frequency offset. The results show that in a mobile satellite environment, ACSSB deteriorates more slowly than NBFM. The co- and adjacent channel protection ratios for both modulation techniques were roughly the same, even though the mechanism for signal deterioration is different.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogatskaya, A. V., E-mail: annabogatskaya@gmail.com; Volkova, E. A.; Popov, A. M.
2016-09-15
The interference stabilization of Rydberg atoms in strong laser fields is proposed for producing a plasma channel with the inverse population. Inversion between a group of Rydberg levels and low-lying excited levels and the ground state permits amplification and lasing in the IR, visible, and VUV frequency ranges. The lasing and light amplification processes in the plasma channel are analyzed using rate equations and the efficiency of this method is compared with that in the usual method for high harmonic generation during rescattering of electrons by a parent ion.
Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing
NASA Astrophysics Data System (ADS)
Yu, Youngjin; Murata, Hidekazu; Yamamoto, Koji; Yoshida, Susumu
Reliable detection of other radio systems is crucial for systems that share the same frequency band. In wireless communication channels, there is uncertainty in the received signal level due to multipath fading and shadowing. Cooperative sensing techniques in which radio stations share their sensing information can improve the detection probability of other systems. In this paper, a new cooperative sensing scheme that reduces the false detection probability while maintaining the outage probability of other systems is investigated. In the proposed system, sensing information is collected using multi-hop transmission from all sensing stations that detect other systems, and transmission decisions are based on the received sensing information. The proposed system also controls the transmit power based on the received CINRs from the sensing stations. Simulation results reveal that the proposed system can reduce the outage probability of other systems, or improve its link success probability.
Interference effect on a heavy Higgs resonance signal in the γ γ and Z Z channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jeonghyeon; Yoon, Yeo Woong; Jung, Sunghoon
2016-03-24
The resonance-continuum interference is usually neglected when the width of a resonance is small compared to the resonance mass. We reexamine this standard by studying the interference effects in high-resolution decay channels, γγ and ZZ, of the heavy Higgs boson H in nearly aligned two-Higgs-doublet models. For the H with a sub-percent width-to-mass ratio, we find that, in the parameter space where the LHC 14 TeV ZZ resonance search can be sensitive, the interference effects can modify the ZZ signal rate by O(10)% and the exclusion reach by O(10) GeV. In other parameter space where the ZZ or γγ signalmore » rate is smaller, the LHC 14 TeV reach is absent, but a resonance shape can be much more dramatically changed. In particular, the γγ signal rate can change by O(100)%. Relevant to such parameter space, we suggest variables that can characterize a general resonance shape. Furthermore, we also illustrate the relevance of the width on the interference by adding nonstandard decay modes of the heavy Higgs boson.« less
Interaction-induced interference in the integer quantum Hall effect
NASA Astrophysics Data System (ADS)
Sivan, I.; Bhattacharyya, R.; Choi, H. K.; Heiblum, M.; Feldman, D. E.; Mahalu, D.; Umansky, V.
2018-03-01
In recent interference experiments with an electronic Fabry-Pérot interferometer (FPI), implemented in the integer quantum Hall effect regime, a flux periodicity of h /2 e was observed at bulk fillings νB>2.5 . The halved periodicity was accompanied by an interfering charge e*=2 e , determined by shot-noise measurements. Here, we present measurements demonstrating that, counterintuitively, the coherence and the interference periodicity of the interfering chiral edge channel are solely determined by the coherence and the enclosed flux of the adjacent edge channel. Our results elucidate the important role of the latter and suggest that a neutral chiral edge mode plays a crucial role in the pairing phenomenon. Our findings reveal that the observed pairing of electrons is not a curious isolated phenomenon, but one of many manifestations of unexpected edge physics in the quantum Hall effect regime.
47 CFR 73.810 - Third adjacent channel interference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... reception of the input signal of any TV translator, TV booster, FM translator or FM booster station; or (iii... authorized and operating LPFM stations, FM translators and FM booster stations. Interference will be... power FM, FM translator or FM booster station to such affected station and to the Commission. (ii) A...
47 CFR 73.810 - Third adjacent channel interference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... reception of the input signal of any TV translator, TV booster, FM translator or FM booster station; or (iii... authorized and operating LPFM stations, FM translators and FM booster stations. Interference will be... power FM, FM translator or FM booster station to such affected station and to the Commission. (ii) A...
Self-limiting filters for band-selective interferer rejection or cognitive receiver protection
Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.
2017-03-07
The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.
Cognitive load selectively influences the interruptive effect of pain on attention.
Moore, David J; Eccleston, Christopher; Keogh, Edmund
2017-10-01
Pain is known to interrupt attentional performance. Such interference effects seem to occur preferentially for tasks that are complex and/or difficult. However, few studies have directly manipulated memory load in the context of pain interference to test this view. Therefore, this study examines the effect of experimental manipulations of both memory load and pain on 3 tasks previously found to be sensitive to pain interference. Three experiments were conducted. A different task was examined in each experiment, each comprising of a high- and low-cognitive load versions of the task. Experiment 1 comprised an attention span (n-back) task, experiment 2 an attention switching task, and experiment 3 a divided attention task. Each task was conducted under painful and nonpainful conditions. Within the pain condition, an experimental thermal pain induction protocol was administered at the same time participants completed the task. The load manipulations were successful in all experiments. Pain-related interference occurred under the high-load condition but only for the attention span task. No effect of pain was found on either the attentional switching or divided attention task. These results suggest that while cognitive load may influence the interruptive effect of pain on attention, this effect may be selective. Because pain affected the high-load version of the n-back task but did not interrupt performance on attentional switching or dual-task paradigms, this means that our findings did not completely support our hypotheses. Future research should explore further the parameters and conditions under which pain-related interference occurs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... the quality, utility, and clarity of the information collected; (d) ways to minimize the burden of the... kilometers of a TV channel 7 transmitter to ensure that the system does not cause interference to TV channel 7 viewers. Applicants shall serve a copy of the analysis to the licensee of the affected TV Channel...
Lynen, Frederic; Saavedra, Luis; Saveedra, Luis; Nickerson, Beverly; Sandra, Pat
2011-05-15
A multiplexed capillary electrophoresis (CE) system equipped with 96 channels was evaluated for high-throughput screening in drug discovery by microemulsion electrokinetic chromatography (MEEKC). Method transfer from a single channel to a multichannel CE system is described. Loss of efficiency and reduced migration times could be elucidated to the poor efficacy in Joule heat dissipation by forced air cooling in the multiarray system compared to liquid cooling in the single channel instrument. On the other hand, only 48 channels could actually be used because of the maximum total current of 3 mA. Precision data remained below 8% and 9% for migration times and peak areas, respectively. Some UV-detector cross-talk interference between neighboring capillary channels was noted. Impurities at 0.5% compared to the main peak (100%) could be detected with the multiplexed system which is 10 times lower compared to the single capillary system. Higher efficiency and improved figures of merit (absolute sensitivity and no cross-talk interferences) were obtained by using an array of only 24 capillaries. Copyright © 2011 Elsevier B.V. All rights reserved.
Does oxytocin lead to emotional interference during a working memory paradigm?
Tollenaar, Marieke S; Ruissen, M; Elzinga, B M; de Bruijn, E R A
2017-12-01
Oxytocin administration may increase attention to emotional information. We hypothesized that this augmented emotional processing might in turn lead to interference on concurrent cognitive tasks. To test this hypothesis, we examined whether oxytocin administration would lead to heightened emotional interference during a working memory paradigm. Additionally, moderating effects of childhood maltreatment were explored. Seventy-eight healthy males received 24 IU of intranasal oxytocin or placebo in a randomized placebo-controlled double-blind between-subjects study. A working memory task was performed during which neutral, positive, and negative distractors were presented. The main outcome observed was that oxytocin did not enhance interference by emotional information during the working memory task. There was a non-significant trend for oxytocin to slow down performance irrespective of distractor valence, while accuracy was unaffected. Exploratory analyses showed that childhood maltreatment was related to lower overall accuracy, but in the placebo condition only. However, the maltreated group sample size was very small precluding any conclusions on its moderating effect. Despite oxytocin's previously proposed role in enhanced emotional processing, no proof was found that this would lead to reduced performance on a concurrent cognitive task. The routes by which oxytocin exerts its effects on cognitive and social-emotional processes remain to be fully elucidated.
Miller, Paul; Hazan-Liran, Batel; Cohen, Danielle
2018-06-01
Previous studies have shown that task-irrelevant information impedes learning by creating extraneous cognitive load. But still open is whether such intrusion reflects a purely semantic phenomenon or whether it also stands for sheer perceptual interference. Using Cognitive Load Theory as a framework, this study aimed to answer this question by examining whether and how task-irrelevant colour information modifies extraneous cognitive load in relation to a new code-learning paradigm. For this purpose, university students were asked to learn, based on an example, associations between colour-related and colour-unrelated words and digits presented in black or in a mismatched ink colour. Evident costs in learning efficacy were found in learning the associations between words and digits for colour-related, but not for colour-unrelated, word stimuli. This suggests that interference by task-irrelevant information in learning stands for a mere semantic conflict. Implications of the findings for extraneous cognitive load on learning efficacy are discussed.
The Recent Microrelief Features of the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Wu, S. H.
2016-02-01
Based on the bedforms date were made in the Yangtze estuary, China, during January 2010 and July 2015 with the acoustic multi-beam bathymetric and shallow sediment profiler and surface sediment samples collected recently, the microrelief features of the Yangtze Estuary under the human interference recently is studied. Results show that in addition to four types of common microrelief (smooth bedfloors , sandwaves, hollow and gully), but also there are two types of microrelief under the human interference (sand and dredging mark).Restricted by the nature of sediment, sand waves exist only in the local region of the South Channel, the North Channel the South Passage and the Hengsha passage whose main types of the surface sediment was fine sand. Under the combined effect of a series of large-scale engineering with watershed and estuary, the upper reach of North Channel, the Hengsha passage, the upper reach of south Channel and the upper reach of the South passage are subject to different degrees of erosion recently, so there are varying degrees of erosive microrelief (hollow and gully). Due to dredging engineering and artificial disordered mining, there are a huge range of dredging mark in the lower reach of South Channel, Yuanyuansha channel and North passage and there are a degree of sand in the main channel of south side of Ruifengsha.
Interference effects of categorization on decision making.
Wang, Zheng; Busemeyer, Jerome R
2016-05-01
Many decision making tasks in life involve a categorization process, but the effects of categorization on subsequent decision making has rarely been studied. This issue was explored in three experiments (N=721), in which participants were shown a face stimulus on each trial and performed variations of categorization-decision tasks. On C-D trials, they categorized the stimulus and then made an action decision; on X-D trials, they were told the category and then made an action decision; on D-alone trials, they only made an action decision. An interference effect emerged in some of the conditions, such that the probability of an action on the D-alone trials (i.e., when there was no explicit categorization before the decision) differed from the total probability of the same action on the C-D or X-D trials (i.e., when there was explicit categorization before the decision). Interference effects are important because they indicate a violation of the classical law of total probability, which is assumed by many cognitive models. Across all three experiments, a complex pattern of interference effects systematically occurred for different types of stimuli and for different types of categorization-decision tasks. These interference effects present a challenge for traditional cognitive models, such as Markov and signal detection models, but a quantum cognition model, called the belief-action entanglement (BAE) model, predicted that these results could occur. The BAE model employs the quantum principles of superposition and entanglement to explain the psychological mechanisms underlying the puzzling interference effects. The model can be applied to many important and practical categorization-decision situations in life. Copyright © 2016 Elsevier B.V. All rights reserved.
Sánchez, Stella M; Abulafia, Carolina; Duarte-Abritta, Barbara; de Guevara, M Soledad Ladrón; Castro, Mariana N; Drucaroff, Lucas; Sevlever, Gustavo; Nemeroff, Charles B; Vigo, Daniel E; Loewenstein, David A; Villarreal, Mirta F; Guinjoan, Salvador M
2017-01-01
We have obtained previous evidence of limbic dysfunction in middle-aged, asymptomatic offspring of late-onset Alzheimer's disease (LOAD) patients, and failure to recover from proactive semantic interference has been shown to be a sensitive cognitive test in other groups at risk for LOAD. To assess the effects of specific proactive semantic interference deficits as they relate to functional magnetic resonance imaging (fMRI) neocortical and limbic functional connectivity in middle aged offspring of individuals with LOAD (O-LOAD) and age-equivalent controls. We examined 21 O-LOAD and 20 controls without family history of neurodegenerative disorders (CS) on traditional measures of cognitive functioning and the LASSI-L, a novel semantic interference test uniquely sensitive to the failure to recover from proactive interference (frPSI). Cognitive tests then were correlated to fMRI connectivity of seeds located in entorhinal cortex and anterodorsal thalamic nuclei among O-LOAD and CS participants. Relative to CS, O-LOAD participants evidenced lower connectivity between entorhinal cortex and orbitofrontal, anterior cingulate, and anterior temporal cortex. In the offspring of LOAD patients, LASSI-L measures of frPSI were inversely associated with connectivity between anterodorsal thalamus and contralateral posterior cingulate. Intrusions on the task related to frPSI were inversely correlated with a widespread connectivity network involving hippocampal, insular, posterior cingulate, and dorsolateral prefrontal cortices, along with precunei and anterior thalamus in this group. Different patterns of connectivity associated with frPSI were observed among controls. The present results suggest that both semantic interference deficits and connectivity abnormalities might reflect limbic circuit dysfunction as a very early clinical signature of LOAD pathology, as previously demonstrated for other limbic phenotypes, such as sleep and circadian alterations.
Jiang, Zhongqing; Waters, Allison C; Liu, Ying; Li, Wenhui; Yang, Lizhu
2017-06-01
We investigated the brain oscillatory contribution to emotion-cognition interaction in young children. Five-year-old participants (n=27) underwent EEG recording while engaged in a color identification task. Each trial began with an emotional prime. Response times indicated whether emotional primes facilitated or interfered with performance. Related effects were detected in theta-band power over parietal-occipital cortex, early in the response epoch (<500ms). Children in the emotion facilitation group showed greater theta synchronization for negative stimuli. The opposite trend was observed in the interference group. Results suggest a role for theta oscillations in children's adaptive response to emotional content in cognitive performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Decision making by superimposing information from parallel cognitive channels
NASA Astrophysics Data System (ADS)
Aityan, Sergey K.
1993-08-01
A theory of decision making with perception through parallel information channels is presented. Decision making is considered a parallel competitive process. Every channel can provide confirmation or rejection of a decision concept. Different channels provide different impact on the specific concepts caused by the goals and individual cognitive features. All concepts are divided into semantic clusters due to the goals and the system defaults. The clusters can be alternative or complimentary. The 'winner-take-all' concept nodes firing takes place within the alternative cluster. Concepts can be independently activated in the complimentary cluster. A cognitive channel affects a decision concept by sending an activating or inhibitory signal. The complimentary clusters serve for building up complex concepts by superimposing activation received from various channels. The decision making is provided by the alternative clusters. Every active concept in the alternative cluster tends to suppress the competitive concepts in the cluster by sending inhibitory signals to the other nodes of the cluster. The model accounts for a time delay in signal transmission between the nodes and explains decreasing of the reaction time if information is confirmed by different channels and increasing of the reaction time if deceiving information received from the channels.
Webster, Gregory; Jordao, Ligia; Martuscello, Maria; Mahajan, Tarun; Alexander, Mark E; Cecchin, Frank; Triedman, John K; Walsh, Edward P; Berul, Charles I
2008-04-01
Concern exists regarding the potential electromagnetic interaction between pacemakers, implantable cardioverter-defibrillators (ICDs) and digital music players (DMPs). A preliminary study reported interference in 50% of patients whose devices were interrogated near Apple iPods. Given the high prevalence of DMP use among young patients, we sought to define the nature of interference from iPods and evaluate other DMPs. Four DMPs (Apple Nano, Apple Video, SanDisk Sansa and Microsoft Zune) were evaluated against pacemakers and ICDs (PM/ICD). Along with continuous monitoring, we recorded a baseline ECG strip, sensing parameters and lead impedance at baseline and for each device. Among 51 patients evaluated (age 6 to 60 years, median 22), there was no interference with intrinsic device function. Interference with the programmer occurred in 41% of the patients. All four DMPs caused programmer interference, including disabled communication between the PM/ICD and programmer, noise in the ECG channel, and lost marker channel indicators. Sensing parameters and lead impedances exhibited no more than baseline variability. When the DMPs were removed six inches, there were no further programmer telemetry interactions. Contrary to a prior report, we did not identify any evidence for electromagnetic interference between a selection of DMPs and intrinsic function of PM/ICDs. The DMPs did sometimes interfere with device-programmer communication, but not in a way that compromised device function. Therefore, we recommend that DMPs not be used during device interrogation, but suggest that there is reassuring counterevidence to mitigate the current high level of concern for interactions between DMPs and implantable cardiac rhythm devices.
The Influence of a Pedagogical Agent on Learners' Cognitive Load
ERIC Educational Resources Information Center
Schroeder, Noah L.
2017-01-01
According to cognitive load theorists, the incorporation of extraneous features, such as pedagogical agents, into the learning environment can introduce extraneous cognitive load and thus interfere with learning outcome scores. In this study, the influence of a pedagogical agent's presence in an instructional video was compared to a video that did…
Studies of radio frequency interference at Parkes Observatory
NASA Astrophysics Data System (ADS)
Backus, Peter R.; Laroque, Sam; Tarter, Jill C.; Dreher, John; Gullers, Kent; Patrick, Alan; Heiligman, Gary
1997-01-01
From February through early June 1995, Project Phoenix conducted SETI observations of 209 stars over the frequency range from 1195 to 3005 MHz. A byproduct of this search is a unique data set suitable for studying the Radio Frequency Interference (RFI) environment at the Parkes 64-m telescope in New South Wales, Australia. RFI is an increasing problem for SETI and other radio astronomy observations conducted outside of the 'protected' frequency bands. The data analyzed for this paper were 'mean baseline' spectra in Left and Right Circular Polarization (LCP, RCP), integrated for either 138 or 276 s, covering a 10-MHz bandwidth with 15,552 channels at a resolution of 643 Hz. Channels were identified as contaminated by RFI when the power in the channel exceeded the mean noise by 3 percent. The 'spectral occupancy', the fraction of time RFI was seen, was determined for each channel. The RFI occupancy for LCP and RCP are distinctly different. Approximately 100 MHz of the spectrum was too heavily contaminated for SETI observations.
Some characteristics of the international space channel
NASA Technical Reports Server (NTRS)
Noack, T. L.; Poland, W. B., Jr.
1975-01-01
Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-05-25
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-01-01
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085
Thomas, Susan J; Gonsalvez, Craig J; Johnstone, Stuart J
2013-09-01
Attentional biases to threat are considered central to anxiety disorders, however physiological evidence of their nature and time course is lacking. Event-related potentials (ERPs) characterized sensory and cognitive changes while 20 outpatients with panic disorder (PD), 20 with obsessive-compulsive disorder (OCD), and 20 healthy controls (HCs) responded to the color (emotional Stroop task) or meaning of threatening and neutral stimuli. ERPs indicated larger P1 amplitude and longer N1 latency in OCD, and shorter P1 latency in PD, to threatening (versus neutral) stimuli, across instructions to attend to, or ignore, threat content. Emotional Stroop interference correlated with phobic anxiety and was significant in PD. Participants with emotional Stroop interference had augmented P1 and P3 amplitudes to threat (versus neutral) stimuli when color-naming. The results suggest early attentional biases to threat in both disorders, with disorder-specific characteristics. ERPs supported preferential early attentional capture and cognitive elaboration hypotheses of emotional Stroop interference. Copyright © 2013 Elsevier B.V. All rights reserved.
Beamspace Multiple Input Multiple Output. Part II: Steerable Antennas in Mobile Ad Hoc Networks
2016-09-01
to the transmitter with half the channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram...steering in a wireless network to maximize signal power and minimize interference [8–10]. The ability to switch beams adds another diversity dimension to...channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram: The transmit array sends four
Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI
NASA Astrophysics Data System (ADS)
Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He
2013-09-01
In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.
Zhao, Min; Hibbert, D Brynn; Gooding, J Justin
2003-02-01
A generic fill-and-flow channel biosensor with upstream electrodes to determine the extent of interferences in the sample is described. A pair of upstream electrodes poised at a suitable potential allows both the calculation of the extent of removal of interfering agents and the effect of interfering agents at the detector electrode. A model was developed and tested that predicts the concentrations of all species throughout the channel and, hence, the current at each electrode due to each species. This enables correction of the detector electrode current and a more accurate determination of the analyte concentration. The concept was applied to a biosensor for the determination of glucose in the presence of ascorbic acid, acetamidophenol, and uric acid, as well as glucose in wine samples containing polyphenolic interfering agents.
In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber.
Zhang, Nan; Humbert, Georges; Wu, Zhifang; Li, Kaiwei; Shum, Perry Ping; Zhang, Nancy Meng Ying; Cui, Ying; Auguste, Jean-Louis; Dinh, Xuan Quyen; Wei, Lei
2016-11-28
An in-line optofluidic refractive index (RI) sensing platform is constructed by splicing a side-channel photonic crystal fiber (SC-PCF) with side-polished single mode fibers. A long-period grating (LPG) combined with an intermodal interference between LP01 and LP11 core modes is used for sensing the RI of the liquid in the side channel. The resonant dip shows a nonlinear wavelength shift with increasing RI over the measured range from 1.3330 to 1.3961. The RI response of this sensing platform for a low RI range of 1.3330-1.3780 is approximately linear, and exhibits a sensitivity of 1145 nm/RIU. Besides, the detection limit of our sensing scheme is improved by around one order of magnitude by introducing the intermodal interference.
Uebel-von Sandersleben, Henrik; Albrecht, Björn; Rothenberger, Aribert; Fillmer-Heise, Anke; Roessner, Veit; Sergeant, Joseph; Tannock, Rosemary; Banaschewski, Tobias
2017-01-01
Attention Deficit / Hyperactivity Disorder (ADHD) and Chronic Tic Disorder (CTD) are two common and frequently co-existing disorders, probably following an additive model. But this is not yet clear for the basic sensory function of colour processing sensitive to dopaminergic functioning in the retina and higher cognitive functions like attention and interference control. The latter two reflect important aspects for psychoeducation and behavioural treatment approaches. Colour discrimination using the Farnsworth-Munsell 100-hue Test, sustained attention during the Frankfurt Attention Inventory (FAIR), and interference liability during Colour- and Counting-Stroop-Tests were assessed to further clarify the cognitive profile of the co-existence of ADHD and CTD. Altogether 69 children were classified into four groups: ADHD (N = 14), CTD (N = 20), ADHD+CTD (N = 20) and healthy Controls (N = 15) and compared in cognitive functioning in a 2×2-factorial statistical model. Difficulties with colour discrimination were associated with both ADHD and CTD factors following an additive model, but in ADHD these difficulties tended to be more pronounced on the blue-yellow axis. Attention problems were characteristic for ADHD but not CTD. Interference load was significant in both Colour- and Counting-Stroop-Tests and unrelated to colour discrimination. Compared to Controls, interference load in the Colour-Stroop was higher in pure ADHD and in pure CTD, but not in ADHD+CTD, following a sub-additive model. In contrast, interference load in the Counting-Stroop did not reveal ADHD or CTD effects. The co-existence of ADHD and CTD is characterized by additive as well as sub-additive performance impairments, suggesting that their co-existence may show simple additive characteristics of both disorders or a more complex interaction, depending on demand. The equivocal findings on interference control may indicate limited validity of the Stroop-Paradigm for clinical assessments.
Rothenberger, Aribert; Fillmer-Heise, Anke; Roessner, Veit; Sergeant, Joseph; Tannock, Rosemary; Banaschewski, Tobias
2017-01-01
Objective Attention Deficit / Hyperactivity Disorder (ADHD) and Chronic Tic Disorder (CTD) are two common and frequently co-existing disorders, probably following an additive model. But this is not yet clear for the basic sensory function of colour processing sensitive to dopaminergic functioning in the retina and higher cognitive functions like attention and interference control. The latter two reflect important aspects for psychoeducation and behavioural treatment approaches. Methods Colour discrimination using the Farnsworth-Munsell 100-hue Test, sustained attention during the Frankfurt Attention Inventory (FAIR), and interference liability during Colour- and Counting-Stroop-Tests were assessed to further clarify the cognitive profile of the co-existence of ADHD and CTD. Altogether 69 children were classified into four groups: ADHD (N = 14), CTD (N = 20), ADHD+CTD (N = 20) and healthy Controls (N = 15) and compared in cognitive functioning in a 2×2-factorial statistical model. Results Difficulties with colour discrimination were associated with both ADHD and CTD factors following an additive model, but in ADHD these difficulties tended to be more pronounced on the blue-yellow axis. Attention problems were characteristic for ADHD but not CTD. Interference load was significant in both Colour- and Counting-Stroop-Tests and unrelated to colour discrimination. Compared to Controls, interference load in the Colour-Stroop was higher in pure ADHD and in pure CTD, but not in ADHD+CTD, following a sub-additive model. In contrast, interference load in the Counting-Stroop did not reveal ADHD or CTD effects. Conclusion The co-existence of ADHD and CTD is characterized by additive as well as sub-additive performance impairments, suggesting that their co-existence may show simple additive characteristics of both disorders or a more complex interaction, depending on demand. The equivocal findings on interference control may indicate limited validity of the Stroop-Paradigm for clinical assessments. PMID:28594866
Modulation and coding for fast fading mobile satellite communication channels
NASA Technical Reports Server (NTRS)
Mclane, P. J.; Wittke, P. H.; Smith, W. S.; Lee, A.; Ho, P. K. M.; Loo, C.
1988-01-01
The performance of Gaussian baseband filtered minimum shift keying (GMSK) using differential detection in fast Rician fading, with a novel treatment of the inherent intersymbol interference (ISI) leading to an exact solution is discussed. Trellis-coded differentially coded phase shift keying (DPSK) with a convolutional interleaver is considered. The channel is the Rician Channel with the line-of-sight component subject to a lognormal transformation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... the technical report entitled `Experimental Measurements of the Third-Adjacent Channel Impacts of Low... rules designed to prevent any predicted interference. 31. We propose to adopt a basic threshold test. This test is designed to closely track the interference standard developed by Mitre, without...
47 CFR 73.525 - TV Channel 6 protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... interference area and population. Predictions of interference required under this section and calculations to... specified in § 73.684, “Prediction of coverage,” using the F(50,50) curves in Figure 9, § 73.699. (ii) For... procedures specified in § 73.313, “Prediction of Coverage,” using the proposed antenna height and...
47 CFR 73.525 - TV Channel 6 protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... interference area and population. Predictions of interference required under this section and calculations to... specified in § 73.684, “Prediction of coverage,” using the F(50,50) curves in Figure 9, § 73.699. (ii) For... procedures specified in § 73.313, “Prediction of Coverage,” using the proposed antenna height and...
47 CFR 73.525 - TV Channel 6 protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... interference area and population. Predictions of interference required under this section and calculations to... specified in § 73.684, “Prediction of coverage,” using the F(50,50) curves in Figure 9, § 73.699. (ii) For... procedures specified in § 73.313, “Prediction of Coverage,” using the proposed antenna height and...
Power allocation for SWIPT in K-user interference channels using game theory
NASA Astrophysics Data System (ADS)
Wen, Zhigang; Liu, Ying; Liu, Xiaoqing; Li, Shan; Chen, Xianya
2018-12-01
A simultaneous wireless information and power transfer system in interference channels of multi-users is considered. In this system, each transmitter sends one data stream to its targeted receiver, which causes interference to other receivers. Since all transmitter-receiver links want to maximize their own average transmission rate, a power allocation problem under the transmit power constraints and the energy-harvesting constraints is developed. To solve this problem, we propose a game theory framework. Then, we convert the game into a variational inequalities problem by establishing the connection between game theory and variational inequalities and solve the variational inequalities problem. Through theoretical analysis, the existence and uniqueness of Nash equilibrium are both guaranteed by the theory of variational inequalities. A distributed iterative alternating optimization water-filling algorithm is derived, which is proved to converge. Numerical results show that the proposed algorithm reaches fast convergence and achieves a higher sum rate than the unaided scheme.
Quantum correlation of fiber-based telecom-band photon pairs through standard loss and random media.
Sua, Yong Meng; Malowicki, John; Lee, Kim Fook
2014-08-15
We study quantum correlation and interference of fiber-based telecom-band photon pairs with one photon of the pair experiencing multiple scattering in a random medium. We measure joint probability of two-photon detection for signal photon in a normal channel and idler photon in a channel, which is subjected to two independent conditions: standard loss (neutral density filter) and random media. We observe that both conditions degrade the correlation of signal and idler photons, and depolarization of the idler photon in random medium can enhance two-photon interference at certain relative polarization angles. Our theoretical calculation on two-photon polarization correlation and interference as a function of mean free path is in agreement with our experiment data. We conclude that quantum correlation of a polarization-entangled photon pair is better preserved than a polarization-correlated photon pair as one photon of the pair scatters through a random medium.
Karle, James W; Watter, Scott; Shedden, Judith M
2010-05-01
Research into the perceptual and cognitive effects of playing video games is an area of increasing interest for many investigators. Over the past decade, expert video game players (VGPs) have been shown to display superior performance compared to non-video game players (nVGPs) on a range of visuospatial and attentional tasks. A benefit of video game expertise has recently been shown for task switching, suggesting that VGPs also have superior cognitive control abilities compared to nVGPs. In two experiments, we examined which aspects of task switching performance this VGP benefit may be localized to. With minimal trial-to-trial interference from minimally overlapping task set rules, VGPs demonstrated a task switching benefit compared to nVGPs. However, this benefit disappeared when proactive interference between tasks was increased, with substantial stimulus and response overlap in task set rules. We suggest that VGPs have no generalized benefit in task switching-related cognitive control processes compared to nVGPs, with switch cost reductions due instead to a specific benefit in controlling selective attention. Copyright 2009 Elsevier B.V. All rights reserved.
47 CFR 15.711 - Interference avoidance methods.
Code of Federal Regulations, 2011 CFR
2011-10-01
... channel availability for a TVBD is determined based on the geo-location and database access method described in paragraphs (a) and (b) of this section. (a) Geo-location and database access. A TVBD shall rely on the geo-location and database access mechanism to identify available television channels...
47 CFR 15.711 - Interference avoidance methods.
Code of Federal Regulations, 2013 CFR
2013-10-01
... channel availability for a TVBD is determined based on the geo-location and database access method described in paragraphs (a) and (b) of this section. (a) Geo-location and database access. A TVBD shall rely on the geo-location and database access mechanism to identify available television channels...
47 CFR 15.711 - Interference avoidance methods.
Code of Federal Regulations, 2014 CFR
2014-10-01
... channel availability for a TVBD is determined based on the geo-location and database access method described in paragraphs (a) and (b) of this section. (a) Geo-location and database access. A TVBD shall rely on the geo-location and database access mechanism to identify available television channels...
47 CFR 15.711 - Interference avoidance methods.
Code of Federal Regulations, 2012 CFR
2012-10-01
... channel availability for a TVBD is determined based on the geo-location and database access method described in paragraphs (a) and (b) of this section. (a) Geo-location and database access. A TVBD shall rely on the geo-location and database access mechanism to identify available television channels...
ERIC Educational Resources Information Center
Helton, William S.
2007-01-01
The motor control of novice participants is often cognitively demanding and susceptible to interference by other tasks. As people develop expertise, their motor control becomes less susceptible to interference from other tasks. Researchers propose a transition in human motor skill from active control to automaticity. This progression may also be…
Xu, Fang; Poon, Andrew W
2008-06-09
We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.
A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
NASA Astrophysics Data System (ADS)
Yang, Peiling; Ma, Jianxin; Zhang, Junyi
2018-06-01
In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.
A Spectrum Access Based on Quality of Service (QoS) in Cognitive Radio Networks.
Zhai, Linbo; Wang, Hua; Gao, Chuangen
2016-01-01
The quality of service (QoS) is important issue for cognitive radio networks. In the cognitive radio system, the licensed users, also called primary users (PUs), are authorized to utilize the wireless spectrum, while unlicensed users, also called secondary users (SUs), are not authorized to use the wireless spectrum. SUs access the wireless spectrum opportunistically when the spectrum is idle. While SUs use an idle channel, the instance that PUs come back makes SUs terminate their communications and leave the current channel. Therefore, quality of service (QoS) is difficult to be ensured for SUs. In this paper, we first propose an analysis model to obtain QoS for cognitive radio networks such as blocking probability, completed traffic and termination probability of SUs. When the primary users use the channels frequently, QoS of SUs is difficult to be ensured, especially the termination probability. Then, we propose a channel reservation scheme to improve QoS of SUs. The scheme makes the terminated SUs move to the reserved channels and keep on communications. Simulation results show that our scheme can improve QoS of SUs especially the termination probability with a little cost of blocking probability in dynamic environment.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-10-12
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-01-01
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316
Social priming improves cognitive control in elderly adults--evidence from the Simon task.
Aisenberg, Daniela; Cohen, Noga; Pick, Hadas; Tressman, Iris; Rappaport, Michal; Shenberg, Tal; Henik, Avishai
2015-01-01
We examined whether social priming of cognitive states affects the inhibitory process in elderly adults, as aging is related to deficits in inhibitory control. Forty-eight elderly adults and 45 young adults were assigned to three groups and performed a cognitive control task (Simon task), which was followed by 3 different manipulations of social priming (i.e., thinking about an 82 year-old person): 1) negative--characterized by poor cognitive abilities, 2) neutral--characterized by acts irrelevant to cognitive abilities, and 3) positive--excellent cognitive abilities. After the manipulation, the Simon task was performed again. Results showed improvement in cognitive control effects in seniors after the positive manipulation, indicated by a significant decrease in the magnitude of the Simon and interference effects, but not after the neutral and negative manipulations. Furthermore, a healthy pattern of sequential effect (Gratton) that was absent before the manipulation in all 3 groups appeared after the positive manipulation. Namely, the Simon effect was only present after congruent but not after incongruent trials for the positive manipulation group. No influence of manipulations was found in young adults. These meaningful results were replicated in a second experiment and suggest a decrease in conflict interference resulting from positive cognitive state priming. Our study provides evidence that an implicit social concept of a positive cognitive condition in old age can affect the control process of the elderly and improve cognitive abilities.
Social Priming Improves Cognitive Control in Elderly Adults—Evidence from the Simon Task
Aisenberg, Daniela; Cohen, Noga; Pick, Hadas; Tressman, Iris; Rappaport, Michal; Shenberg, Tal; Henik, Avishai
2015-01-01
We examined whether social priming of cognitive states affects the inhibitory process in elderly adults, as aging is related to deficits in inhibitory control. Forty-eight elderly adults and 45 young adults were assigned to three groups and performed a cognitive control task (Simon task), which was followed by 3 different manipulations of social priming (i.e., thinking about an 82 year-old person): 1) negative—characterized by poor cognitive abilities, 2) neutral—characterized by acts irrelevant to cognitive abilities, and 3) positive—excellent cognitive abilities. After the manipulation, the Simon task was performed again. Results showed improvement in cognitive control effects in seniors after the positive manipulation, indicated by a significant decrease in the magnitude of the Simon and interference effects, but not after the neutral and negative manipulations. Furthermore, a healthy pattern of sequential effect (Gratton) that was absent before the manipulation in all 3 groups appeared after the positive manipulation. Namely, the Simon effect was only present after congruent but not after incongruent trials for the positive manipulation group. No influence of manipulations was found in young adults. These meaningful results were replicated in a second experiment and suggest a decrease in conflict interference resulting from positive cognitive state priming. Our study provides evidence that an implicit social concept of a positive cognitive condition in old age can affect the control process of the elderly and improve cognitive abilities. PMID:25635946
Patel, P; Lamar, M; Bhatt, T
2014-02-28
We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lu, Chia-Chen
2017-01-01
Environmental experience can enhance the ideas of design students. Thus, this type of experience may interfere with the influence of design students' cognitive style on creativity. The aim of this study was to examine the influence of environmental experience on the relationship between innovative cognitive style and industrial design students'…
The Unconscious Allocation of Cognitive Resources to Task-Relevant and Task-Irrelevant Thoughts
ERIC Educational Resources Information Center
Kuldas, Seffetullah; Hashim, Shahabuddin; Ismail, Hairul Nizam; Samsudin, Mohd Ali; Bakar, Zainudin Abu
2014-01-01
Conscious allocation of cognitive resources to task-relevant thoughts is necessary for learning. However, task-irrelevant thoughts often associated with fear of failure can enter the mind and interfere with learning. Effects like this prompt the question of whether or not learners consciously shift their cognitive resources from task-relevant to…
Cohen, Michael A; Rhee, Juliana Y; Alvarez, George A
2016-01-01
Human cognition has a limited capacity that is often attributed to the brain having finite cognitive resources, but the nature of these resources is usually not specified. Here, we show evidence that perceptual interference between items can be predicted by known receptive field properties of the visual cortex, suggesting that competition within representational maps is an important source of the capacity limitations of visual processing. Across the visual hierarchy, receptive fields get larger and represent more complex, high-level features. Thus, when presented simultaneously, high-level items (e.g., faces) will often land within the same receptive fields, while low-level items (e.g., color patches) will often not. Using a perceptual task, we found long-range interference between high-level items, but only short-range interference for low-level items, with both types of interference being weaker across hemifields. Finally, we show that long-range interference between items appears to occur primarily during perceptual encoding and not during working memory maintenance. These results are naturally explained by the distribution of receptive fields and establish a link between perceptual capacity limits and the underlying neural architecture. (c) 2015 APA, all rights reserved).
McAulay, Vincent; Deary, Ian J; Sommerfield, Andrew J; Matthews, Gerald; Frier, Brian M
2006-04-01
To examine the effect of acute hypoglycemia on motivation and cognitive interference in adult humans with type 1 diabetes. A hyperinsulinemic glucose clamp was used to either maintain euglycemia (arterialized blood glucose 4.5 mmol/L) or induce hypoglycemia (2.6 mmol/L) in 16 adults with type 1 diabetes, each of whom were studied on 2 separate occasions in a counterbalanced order. During each study condition, the subjects completed parallel tests of cognitive function. The Dundee Stress State Questionnaire (DSSQ) was administered before and after the cognitive function tests. Hypoglycemia decreased task-relevant (P = 0.03) and increased task-irrelevant (P = 0.02) interference. Self-focus of attention was much higher after hypoglycemia than euglycemia (P = 0.02). Motivation declined to a similar extent during the euglycemia and hypoglycemia conditions (P = 0.07). Hypoglycemia produced a negative mood state with a significant fall in energy levels (P = 0.03) and a concomitant rise in anxiety level (P = 0.05). The subjective perception of concentration was unaffected during hypoglycemia (P = 0.14), and the scores for control and confidence did not fall (P = 0.19). In people with type 1 diabetes, hypoglycemia causes a state of heightened self-awareness and distraction during active mental activity. This is likely to leave fewer processing resources available to allow completion of cognitive tasks. Acute hypoglycemia induces a state of significant worry and anxiety that is likely to affect the social, personal, and work activities of people with diabetes.
Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan
2017-01-01
This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shi, M.; Sun, J.; Yang, C.; Zhang, Yajuan; Scopesi, F.; Makobore, P.; Chin, C.; Serra, G.; Wickramasinghe, Y. A. B. D.; Rolfe, P.
2015-02-01
Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.
CCD filter and transform techniques for interference excision
NASA Technical Reports Server (NTRS)
Borsuk, G. M.; Dewitt, R. N.
1976-01-01
The theoretical and some experimental results of a study aimed at applying CCD filter and transform techniques to the problem of interference excision within communications channels were presented. Adaptive noise (interference) suppression was achieved by the modification of received signals such that they were orthogonal to the recently measured noise field. CCD techniques were examined to develop real-time noise excision processing. They were recursive filters, circulating filter banks, transversal filter banks, an optical implementation of the chirp Z transform, and a CCD analog FFT.
The Cost of Being Watched: Stroop Interference Increases under Concomitant Eye Contact
ERIC Educational Resources Information Center
Conty, Laurence; Gimmig, David; Belletier, Clement; George, Nathalie; Huguet, Pascal
2010-01-01
Current models in social neuroscience advance that eye contact may automatically recruit cognitive resources. Here, we directly tested this hypothesis by evaluating the distracting strength of eye contact on concurrent visual processing in the well-known Stroop's paradigm. As expected, participants showed stronger Stroop interference under…
Control and Interference in Task Switching--A Review
ERIC Educational Resources Information Center
Kiesel, Andrea; Steinhauser, Marco; Wendt, Mike; Falkenstein, Michael; Jost, Kerstin; Philipp, Andrea M.; Koch, Iring
2010-01-01
The task-switching paradigm offers enormous possibilities to study cognitive control as well as task interference. The current review provides an overview of recent research on both topics. First, we review different experimental approaches to task switching, such as comparing mixed-task blocks with single-task blocks, predictable task-switching…
Load Theory of Selective Attention and Cognitive Control
ERIC Educational Resources Information Center
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W.; Viding, Essi
2004-01-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings…
47 CFR 80.101 - Radiotelephone testing procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... five minutes. (b) Testing of transmitters must be confined to single frequency channels on working... operator must not interfere with transmissions in progress. (2) The testing station's call sign, followed by the word “test”, must be announced on the radio-channel being used for the test. (3) If any...
47 CFR 80.101 - Radiotelephone testing procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... five minutes. (b) Testing of transmitters must be confined to single frequency channels on working... operator must not interfere with transmissions in progress. (2) The testing station's call sign, followed by the word “test”, must be announced on the radio-channel being used for the test. (3) If any...
47 CFR 101.1421 - Coordination of adjacent area MVDDS stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for... compatible with adjacent and co-channel operations in the adjacent areas on all its frequencies; and (2... adjacent and co-channel operations in adjacent areas. (b) Harmful interference to public safety stations...
Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network
Usman, Muhammad; Sajjad Khan, Muhammad; Vu-Van, Hiep; Insoo, Koo
2015-01-01
The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question “Should we switch the channel?” The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936
Guo, Qiang; Qi, Liangang
2017-04-10
In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal.
Guo, Qiang; Qi, Liangang
2017-01-01
In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal. PMID:28394290
Concurrent Transmission Based on Channel Quality in Ad Hoc Networks: A Game Theoretic Approach
NASA Astrophysics Data System (ADS)
Chen, Chen; Gao, Xinbo; Li, Xiaoji; Pei, Qingqi
In this paper, a decentralized concurrent transmission strategy in shared channel in Ad Hoc networks is proposed based on game theory. Firstly, a static concurrent transmissions game is used to determine the candidates for transmitting by channel quality threshold and to maximize the overall throughput with consideration of channel quality variation. To achieve NES (Nash Equilibrium Solution), the selfish behaviors of node to attempt to improve the channel gain unilaterally are evaluated. Therefore, this game allows each node to be distributed and to decide whether to transmit concurrently with others or not depending on NES. Secondly, as there are always some nodes with lower channel gain than NES, which are defined as hunger nodes in this paper, a hunger suppression scheme is proposed by adjusting the price function with interferences reservation and forward relay, to fairly give hunger nodes transmission opportunities. Finally, inspired by stock trading, a dynamic concurrent transmission threshold determination scheme is implemented to make the static game practical. Numerical results show that the proposed scheme is feasible to increase concurrent transmission opportunities for active nodes, and at the same time, the number of hunger nodes is greatly reduced with the least increase of threshold by interferences reservation. Also, the good performance on network goodput of the proposed model can be seen from the results.
Xiang, Ling; Zhang, Baoqiang; Wang, Baoxi; Jiang, Jun; Zhang, Fenghua; Hu, Zhujing
2016-01-01
A prime-target interference task was used to investigate the effects of cognitive aging on reactive and proactive control after eliminating frequency confounds and feature repetitions from the cognitive control measures. We used distributional analyses to explore the dynamics of the two control functions by distinguishing the strength of incorrect response capture and the efficiency of suppression control. For reactive control, within-trial conflict control and between-trial conflict adaption were analyzed. The statistical analysis showed that there were no reliable between-trial conflict adaption effects for either young or older adults. For within-trial conflict control, the results revealed that older adults showed larger interference effects on mean RT and mean accuracy. Distributional analyses showed that the decline mainly stemmed from inefficient suppression rather than from stronger incorrect responses. For proactive control, older adults showed comparable proactive conflict resolution to young adults on mean RT and mean accuracy. Distributional analyses showed that older adults were as effective as younger adults in adjusting their responses based on congruency proportion information to minimize automatic response capture and actively suppress the direct response activation. The results suggest that older adults were less proficient at suppressing interference after conflict was detected but can anticipate and prevent inference in response to congruency proportion manipulation. These results challenge earlier views that older adults have selective deficits in proactive control but intact reactive control. PMID:27847482
Xiang, Ling; Zhang, Baoqiang; Wang, Baoxi; Jiang, Jun; Zhang, Fenghua; Hu, Zhujing
2016-01-01
A prime-target interference task was used to investigate the effects of cognitive aging on reactive and proactive control after eliminating frequency confounds and feature repetitions from the cognitive control measures. We used distributional analyses to explore the dynamics of the two control functions by distinguishing the strength of incorrect response capture and the efficiency of suppression control. For reactive control, within-trial conflict control and between-trial conflict adaption were analyzed. The statistical analysis showed that there were no reliable between-trial conflict adaption effects for either young or older adults. For within-trial conflict control, the results revealed that older adults showed larger interference effects on mean RT and mean accuracy. Distributional analyses showed that the decline mainly stemmed from inefficient suppression rather than from stronger incorrect responses. For proactive control, older adults showed comparable proactive conflict resolution to young adults on mean RT and mean accuracy. Distributional analyses showed that older adults were as effective as younger adults in adjusting their responses based on congruency proportion information to minimize automatic response capture and actively suppress the direct response activation. The results suggest that older adults were less proficient at suppressing interference after conflict was detected but can anticipate and prevent inference in response to congruency proportion manipulation. These results challenge earlier views that older adults have selective deficits in proactive control but intact reactive control.
Kohn, Nils; Fernández, Guillén
2017-12-06
Our surrounding provides a host of sensory input, which we cannot fully process without streamlining and automatic processing. Levels of automaticity differ for different cognitive and affective processes. Situational and contextual interactions between cognitive and affective processes in turn influence the level of automaticity. Automaticity can be measured by interference in Stroop tasks. We applied an emotional version of the Stroop task to investigate how stress as a contextual factor influences the affective valence-dependent level of automaticity. 120 young, healthy men were investigated for behavioral and brain interference following a stress induction or control procedure in a counter-balanced cross-over-design. Although Stroop interference was always observed, sex and emotion of the face strongly modulated interference, which was larger for fearful and male faces. These effects suggest higher automaticity when processing happy and also female faces. Supporting behavioral patterns, brain data show lower interference related brain activity in executive control related regions in response to happy and female faces. In the absence of behavioral stress effects, congruent compared to incongruent trials (reverse interference) showed little to no deactivation under stress in response to happy female and fearful male trials. These congruency effects are potentially based on altered context- stress-related facial processing that interact with sex-emotion stereotypes. Results indicate that sex and facial emotion modulate Stroop interference in brain and behavior. These effects can be explained by altered response difficulty as a consequence of the contextual and stereotype related modulation of automaticity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas
2016-10-01
While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamical coupled-channels study of {pi}N {right arrow} {pi pi}N reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamano, H.; Julia-Diaz, B.; Lee, T.-S. H.
As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N {yields} {pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N {yields} {pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{Delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The datamore » of total cross sections and {pi}N and {pi}{pi} invariant mass distributions of {pi} + p {yields} {pi} + {pi} + n, {pi} + {pi}0p and {pi} - p {yields} {pi} + {pi} - n, {pi} - {pi}0p,{pi}0{pi}0n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{Delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.« less
On Searching Available Channels with Asynchronous MAC-Layer Spectrum Sensing
NASA Astrophysics Data System (ADS)
Jiang, Chunxiao; Ma, Xin; Chen, Canfeng; Ma, Jian; Ren, Yong
Dynamic spectrum access has become a focal issue recently, in which identifying the available spectrum plays a rather important role. Lots of work has been done concerning secondary user (SU) synchronously accessing primary user's (PU's) network. However, on one hand, SU may have no idea about PU's communication protocols; on the other, it is possible that communications among PU are not based on synchronous scheme at all. In order to address such problems, this paper advances a strategy for SU to search available spectrums with asynchronous MAC-layer sensing. With this method, SUs need not know the communication mechanisms in PU's network when dynamically accessing. We will focus on four aspects: 1) strategy for searching available channels; 2) vacating strategy when PUs come back; 3) estimation of channel parameters; 4) impact of SUs' interference on PU's data rate. The simulations show that our search strategy not only can achieve nearly 50% less interference probability than equal allocation of total search time, but also well adapts to time-varying channels. Moreover, access by our strategies can attain 150% more access time than random access. The moment matching estimator shows good performance in estimating and tracing time-varying channels.
NASA Astrophysics Data System (ADS)
Xi, Songnan; Zoltowski, Michael D.
2008-04-01
Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.
Subramaniam, Savitha; Wan-Ying Hui-Chan, Christina; Bhatt, Tanvi
2014-10-01
The impaired ability to maintain balance while performing higher-level cognitive tasks (cognitive-motor interference) significantly predisposes stroke survivors to risk of falls. We investigated adherence and intervention-related effects of gaming to improve balance control and decrease cognitive-motor interference in stroke survivors. Community-dwelling individuals with hemiparetic stroke (N = 8) received balance control training using Wii Fit in conjunction with cognitive training for approximately 110 min/d for 5 consecutive days. Changes in balance and cognitive performance were evaluated by the limits of stability test performed under single-task (ST) and dual-task (DT) conditions. The outcome measures from the limits of stability test included reaction time and movement velocity of the center of pressure. The cognitive performance was quantified by the number of errors. The DT cost was computed for the balance and cognitive outcome measures using [(ST - DT)/ST × 100]. Adherence was assessed by change on the Intrinsic Motivation Inventory scores postintervention. No commercial party having a direct financial interest in the research findings reported here has conferred orwill confer. Posttraining, reaction time cost in the forward direction improved from 31 ± 8.02 to ±8.7 ± 6.6. Similarly, movement velocity cost improved from 33.7 ± 12.3 to 11 ± 1. Cognitive cost also decreased from 47.9 ± 13.9 to 20 ± 18.8. There were similar improvements in the backward direction for all the outcome measures. Scores on the Intrinsic Motivation Inventory improved from 16.6 ± 1.3 to 23.5 ± 1.5. The results demonstrate good adherence and evidence of clinical value of this high-intensity, short-duration protocol for reducing cognitive-motor interference and improving balance control in stroke survivors. Future studies should examine the dose-response effects and long-term changes of such DT training paradigm applied to improve fall efficacy.Video Abstract available. See Video (Supplemental Digital Content 1, http://links.lww.com/JNPT/A80) for more insights from the authors.
PAD-MAC: Primary User Activity-Aware Distributed MAC for Multi-Channel Cognitive Radio Networks
Ali, Amjad; Piran, Md. Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young
2015-01-01
Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084
Banaceur, Sana; Banasr, Sihem; Sakly, Mohsen; Abdelmelek, Hafedh
2013-03-01
The present investigation aimed at evaluating the effects of long-term exposure to WIFI type radiofrequency (RF) signals (2.40 GHz), two hours per day during one month at a Specific Absorption Rate (SAR) of 1.60 W/kg. The effects of RF exposure were studied on wildtype mice and triple transgenic mice (3xTg-AD) destined to develop Alzheimer's-like cognitive impairment. Mice were divided into four groups: two sham groups (WT, TG; n=7) and two exposed groups (WTS, TGS; n=7). The cognitive interference task used in this study was designed from an analogous human cognitive interference task including the Flex field activity system test, the two-compartment box test and the Barnes maze test. Our data demonstrate for the first time that RF improves cognitive behavior of 3xTg-AD mice. We conclude that RF exposure may represent an effective memory-enhancing approach in Alzheimer's disease. Copyright © 2012 Elsevier B.V. All rights reserved.
Influence of empathetic pain processing on cognition in schizophrenia.
Hu, Kesong; Lijffijt, Marijn; Beauchaine, Theodore P; Fan, Zhiwei; Shi, Hui; He, Shuchang
2015-10-01
Deficits in both empathy and cognition have been reported widely in patients with schizophrenia. However, little is known about how these deficits interact among such patients. In the present study, we used pain portraying pictures preceding a color-word Stroop task to investigate the effect of empathetic pain observation on cognition among patients with schizophrenia. Twenty patients with schizophrenia and twenty healthy controls were included. The control group showed increased Stroop facilitation and decreased interference during the empathetic pain condition compared with the non-empathetic condition. Although patients with schizophrenia exhibited deficits in cognition, they demonstrated a similar empathy effect to controls on Stroop facilitation, but a somewhat larger empathy effect on Stroop interference (a more decreased effect). In particular, the groups did not differ in either automatic or controlled processing during the non-empathetic condition, suggesting general rather than specific cognitive deficits in schizophrenia. Together, we interpret our findings in terms of two opposing effects of empathy on cognition in schizophrenia, with possible neuromodulatory mechanism. Whereas prior studies showed empathy to be impaired, our outcomes indicate that at least some components of empathetic pain processing are preserved in such patients.
Cognitive and behavioral changes in Huntington disease before diagnosis.
Paulsen, Jane S; Miller, Amanda C; Hayes, Terry; Shaw, Emily
2017-01-01
Phenotypic manifestations of Huntington disease (HD) can be detected at least 15 years prior to the time when a motor diagnosis is given. Advances in clinical care and future research will require consistent use of HD definitions and HD premanifest (prodromal) stages being used across clinics, sites, and countries. Cognitive and behavioral (psychiatric) changes in HD are summarized and implications for ongoing advancement in our knowledge of prodromal HD are suggested. The earliest detected cognitive changes are observed in the Symbol Digit Modalities Test, Stroop Interference, Stroop Color and Word Test-interference condition, and Trail Making Test. Cognitive changes in the middle and near motor diagnostic stages of prodromal HD involve nearly every cognitive test administered and the greatest changes over time (i.e., slopes) are found in those prodromal HD participants who are nearest to motor diagnosis. Psychiatric changes demonstrate significant worsening over time and remain elevated compared with healthy controls throughout the prodromal disease course. Psychiatric and behavior changes in prodromal HD are much lower than that obtained using cognitive assessment, although the psychiatric and behavioral changes represent symptoms most debilitating to independent capacity and wellness. Copyright © 2017 Elsevier B.V. All rights reserved.
Memory factors in Rey AVLT: Implications for early staging of cognitive decline.
Fernaeus, Sven-Erik; Ostberg, Per; Wahlund, Lars-Olof; Hellström, Ake
2014-12-01
Supraspan verbal list learning is widely used to assess dementia and related cognitive disorders where declarative memory deficits are a major clinical sign. While the overall learning rate is important for diagnosis, serial position patterns may give insight into more specific memory processes in patients with cognitive impairment. This study explored these patterns in a memory clinic clientele. One hundred eighty three participants took the Rey Auditory-Verbal Learning Test (RAVLT). The major groups were patients with Alzheimer's disease (AD), Vascular Dementia (VD), Mild Cognitive Impairment (MCI), and Subjective Cognitive Impairment (SCI) as well as healthy controls (HC). Raw scores for the five trials and five serial partitions were factor analysed. Three memory factors were found and interpreted as Primacy, Recency, and Resistance to Interference. AD and MCI patients had impaired scores in all factors. SCI patients were significantly impaired in the Resistance to Interference factor, and in the Recency factor at the first trial. The main conclusion is that serial position data from word list testing reflect specific memory capacities which vary with levels of cognitive impairment. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Energy efficient cooperation in underlay RFID cognitive networks for a water smart home.
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-09-30
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model's (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes.
Nixon, Elena; Liddle, Peter F; Nixon, Neil L; Liotti, Mario
2013-03-01
The present study employed high-density ERPs to examine the effect of induced sad mood on the spatiotemporal correlates of conflict monitoring and resolution in a colour-word Stroop interference task. Neuroimaging evidence and dipole modelling implicates the involvement of the anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) regions in conflict-laden interference control. On the basis that these structures have been found to mediate emotion-cognition interactions in negative mood states, it was predicted that Stroop-related cognitive control, which relies heavily on anterior neural sources, would be affected by effective sad mood provocation. Healthy participants (N=14) were induced into transient sadness via use of autobiographical sad scripts, a well-validated mood induction technique (Liotti et al., 2000a, 2002). In accord with previous research, interference effects were shown at both baseline and sad states while Stroop conflict was associated with early (N450) and late (Late Positive Component; LPC) electrophysiological modulations at both states. Sad mood induction attenuated the N450 effect in line with our expectation that it would be susceptible to modulation by mood, given its purported anterior limbic source. The LPC effect was displayed at the typical posterior lateral sites but, as predicted, was not affected by sad mood. However, frontocentral LPC activity-presumably generated from an additional anterior limbic source-was affected at sad state, hinting a role in conflict monitoring. Although the neurophysiological underpinnings of interference control are yet to be clarified, this study provided further insight into emotion-cognition interactions as indexed by Stroop conflict-laden processing. Copyright © 2012 Elsevier B.V. All rights reserved.
Energy Efficient Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-01-01
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model’s (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes. PMID:25271565
Testing complex animal cognition: Concept learning, proactive interference, and list memory.
Wright, Anthony A
2018-01-01
This article describes an approach for assessing and comparing complex cognition in rhesus monkeys and pigeons by training them in a sequence of synergistic tasks, each yielding a whole function for enhanced comparisons. These species were trained in similar same/different tasks with expanding training sets (8, 16, 32, 64, 128 … 1024 pictures) followed by novel-stimulus transfer eventually resulting in full abstract-concept learning. Concept-learning functions revealed better rhesus transfer throughout and full concept learning at the 128 set, versus pigeons at the 256 set. They were then tested in delayed same/different tasks for proactive interference by inserting occasional tests within trial-unique sessions where the test stimulus matched a previous sample stimulus (1, 2, 4, 8, 16 trials prior). Proactive-interference functions revealed time-based interference for pigeons (1, 10 s delays), but event-based interference for rhesus (no effect of 1, 10, 20 s delays). They were then tested in list-memory tasks by expanding the sample to four samples in trial-unique sessions (minimizing proactive interference). The four-item, list-memory functions revealed strong recency memory at short delays, gradually changing to strong primacy memory at long delays over 30 s for rhesus, and 10 s for pigeons. Other species comparisons and future directions are discussed. © 2018 Society for the Experimental Analysis of Behavior.
[Wireless human body communication technology].
Sun, Lei; Zhang, Xiaojuan
2014-12-01
The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.
"Testing during Study Insulates against the Buildup of Proactive Interference": Correction
ERIC Educational Resources Information Center
Szpunar, Karl K.; McDermott, Kathleen B.; Roedigger, Henry L., III
2009-01-01
Reports an error in "Testing during study insulates against the buildup of proactive interference" by Karl K. Szpunar, Kathleen B. McDermott and Henry L. Roediger III ("Journal of Experimental Psychology: Learning, Memory, and Cognition," 2008[Nov], Vol 34[6], 1392-1399). Incorrect figures were printed due to an error in the…
Development and Initial Psychometric Evaluation of the Sport Interference Checklist
ERIC Educational Resources Information Center
Donohue, Brad; Silver, N. Clayton; Dickens, Yani; Covassin, Tracey; Lancer, Kevin
2007-01-01
The Sport Interference Checklist (SIC) was developed in 141 athletes to assist in the concurrent assessment of cognitive and behavioral problems experienced by athletes in both training (Problems in Sports Training Scale, PSTS) and competition (Problems in Sports Competition Scale, PSCS). An additional scale (Desire for Sport Psychology Scale,…
Face-to-Face Interference in Typical and Atypical Development
ERIC Educational Resources Information Center
Riby, Deborah M.; Doherty-Sneddon, Gwyneth; Whittle, Lisa
2012-01-01
Visual communication cues facilitate interpersonal communication. It is important that we look at faces to retrieve and subsequently process such cues. It is also important that we sometimes look away from faces as they increase cognitive load that may interfere with online processing. Indeed, when typically developing individuals hold face gaze…
The Crosstalk Hypothesis: Why Language Interferes with Driving
ERIC Educational Resources Information Center
Bergen, Benjamin; Medeiros-Ward, Nathan; Wheeler, Kathryn; Drews, Frank; Strayer, David
2013-01-01
Performing two cognitive tasks at the same time can degrade performance for either domain-general reasons (e.g., both tasks require attention) or domain-specific reasons (e.g., both tasks require visual working memory). We tested predictions of these two accounts of interference on the task of driving while using language, a naturally occurring…
Marko, Martin; Riečanský, Igor
2018-05-01
Cognitive flexibility emerges from an interplay of multiple cognitive systems, of which lexical-semantic and executive are thought to be the most important. Yet this has not been addressed by previous studies demonstrating that such forms of flexible thought deteriorate under stress. Motivated by these shortcomings, the present study evaluated several candidate mechanisms implied to mediate the impairing effects of stress on flexible thinking. Fifty-seven healthy adults were randomly assigned to psychosocial stress or control condition while assessed for performance on cognitive flexibility, working memory capacity, semantic fluency, and self-reported cognitive interference. Stress response was indicated by changes in skin conductance, hearth rate, and state anxiety. Our analyses showed that acute stress impaired cognitive flexibility via a concomitant increase in sympathetic arousal, while this mediator was positively associated with semantic fluency. Stress also decreased working memory capacity, which was partially mediated by elevated cognitive interference, but neither of these two measures were associated with cognitive flexibility or sympathetic arousal. Following these findings, we conclude that acute stress impairs cognitive flexibility via sympathetic arousal that modulates lexical-semantic and associative processes. In particular, the results indicate that stress-level of sympathetic activation may restrict the accessibility and integration of remote associates and bias the response competition towards prepotent and dominant ideas. Importantly, our results indicate that stress-induced impairments of cognitive flexibility and executive functions are mediated by distinct neurocognitive mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
75 FR 33220 - Unlicensed Personal Communications Services Devices in the 1920-1930 MHz Band
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... required minimum number of channels and transmit on the channels with the lowest power. According to DECT... interference to adjacent-band Advanced Wireless Service (AWS) and PCS services. 3. DECT claims that its... with the lowest power and an alternative approach suggested by DECT--could require affected systems to...
47 CFR 22.911 - Cellular geographic service area.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-adjacent channel interference by changing channels used at specific cells or by other technical means. (2...). (1) Except as provided in paragraphs (a)(2) and (b) of this section, the distance from a cell... Watts (2) The distance from a cell transmitting antenna located in the Gulf of Mexico Service Area (GMSA...
Electro-optic device having a laterally varying region
NASA Technical Reports Server (NTRS)
Andrews, James T. (Inventor); Ladany, Ivan (Inventor)
1989-01-01
A distributed feedback laser comprising a semiconductor body having a channel which varies in width in the laterial direction and is periodic in the longitudinal direction. When the laser is electrically excited constructive interference of reflected light gives rise to a stable single wavelength output due to the periodic variations in the channel.
Short separation channel location impacts the performance of short channel regression in NIRS
Gagnon, Louis; Cooper, Robert J.; Yücel, Meryem A.; Perdue, Katherine L.; Greve, Douglas N.; Boas, David A.
2011-01-01
Near-Infrared Spectroscopy (NIRS) allows the recovery of cortical oxy-and deoxyhemoglobin changes associated with evoked brain activity. NIRS is a back-reflection measurement making it very sensitive to the superficial layers of the head, i.e. the skin and the skull, where systemic interference occurs. As a result, the NIRS signal is strongly contaminated with systemic interference of superficial origin. A recent approach to overcome this problem has been the use of additional short source-detector separation optodes as regressors. Since these additional measurements are mainly sensitive to superficial layers in adult humans, they can be used to remove the systemic interference present in longer separation measurements, improving the recovery of the cortical hemodynamic response function (HRF). One question that remains to answer is whether or not a short separation measurement is required in close proximity to each long separation NIRS channel. Here, we show that the systemic interference occurring in the superficial layers of the human head is inhomogeneous across the surface of the scalp. As a result, the improvement obtained by using a short separation optode decreases as the relative distance between the short and the long measurement is increased. NIRS data was acquired on 6 human subjects both at rest and during a motor task consisting of finger tapping. The effect of distance between the short and the long channel was first quantified by recovering a synthetic hemodynamic response added over the resting-state data. The effect was also observed in the functional data collected during the finger tapping task. Together, these results suggest that the short separation measurement must be located as close as 1.5 cm from the standard NIRS channel in order to provide an improvement which is of practical use. In this case, the improvement in Contrast-to-Noise Ratio (CNR) compared to a standard General Linear Model (GLM) procedure without using any small separation optode reached 50 % for HbO and 100 % for HbR. Using small separations located farther than 2 cm away resulted in mild or negligible improvements only. PMID:21945793
NASA Astrophysics Data System (ADS)
Hortos, William S.
1997-04-01
The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics of convergence rate and call blocking. Genetic algorithms (GAs) are also considered in PCS networks as a means to overcome the known weakness of Hopfield NNAs in determining global minima. The resulting GAs for DCA in PCS networks are compared to improved DCA algorithms based on Hopfield NNs for stationary cellular networks. Algorithm performance is compared on the basis of rate of convergence, blocking probability, analytic complexity, and parametric sensitivity to transient traffic demands and channel interference.
Lupyan, Gary
2009-08-01
In addition to its communicative functions, language has been argued to have a variety of extracommunicative functions, as assessed by its causal involvement in putatively nonlinguistic tasks. In the present work, I argue that language may be critically involved in the ability of human adults to categorize objects on a specific dimension (e.g., color) while abstracting over other dimensions (e.g., size). This ability is frequently impaired in aphasic patients. The present work demonstrates that normal participants placed under conditions of verbal interference show a pattern of deficits strikingly similar to that of aphasic patients: impaired taxonomic categorization along perceptual dimensions, and preserved thematic categorization. A control experiment using a visuospatial-interference task failed to find this selective pattern of deficits. The present work has implications for understanding the online role of language in normal cognition and supports the claim that language is causally involved in nonverbal cognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
Cognitive control in media multitaskers
Ophir, Eyal; Nass, Clifford; Wagner, Anthony D.
2009-01-01
Chronic media multitasking is quickly becoming ubiquitous, although processing multiple incoming streams of information is considered a challenge for human cognition. A series of experiments addressed whether there are systematic differences in information processing styles between chronically heavy and light media multitaskers. A trait media multitasking index was developed to identify groups of heavy and light media multitaskers. These two groups were then compared along established cognitive control dimensions. Results showed that heavy media multitaskers are more susceptible to interference from irrelevant environmental stimuli and from irrelevant representations in memory. This led to the surprising result that heavy media multitaskers performed worse on a test of task-switching ability, likely due to reduced ability to filter out interference from the irrelevant task set. These results demonstrate that media multitasking, a rapidly growing societal trend, is associated with a distinct approach to fundamental information processing. PMID:19706386
NASA Astrophysics Data System (ADS)
Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji
2017-07-01
In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.
The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice.
Bausch, Anne E; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K; Ruth, Peter; Lukowski, Robert
2015-07-01
Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels. © 2015 Bausch et al.; Published by Cold Spring Harbor Laboratory Press.
The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice
Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.
2015-01-01
Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels. PMID:26077685
Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans
Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W. Pieter; Kessels, Roy P. C.; Daselaar, Sander M.
2017-01-01
So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories. PMID:28424596
Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans.
Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W Pieter; Kessels, Roy P C; Daselaar, Sander M
2017-01-01
So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories.
Sauce, Bruno; Wass, Christopher; Smith, Andrew; Kwan, Stephanie; Matzel, Louis D.
2016-01-01
Attention is a component of the working memory system, and as such, is responsible for protecting task-relevant information from interference. Cognitive performance (particularly outside of the laboratory) is often plagued by interference, and the source of this interference, either external or internal, might influence the expression of individual differences in attentional ability. By definition, external attention (also described as “selective attention”) protects working memory against sensorial distractors of all kinds, while internal attention (also called “inhibition”) protects working memory against emotional impulses, irrelevant information from memory, and automatically-generated responses. At present, it is unclear if these two types of attention are expressed independently in non-human animals, and how they might differentially impact performance on other cognitive processes, such as learning. By using a diverse battery of four attention tests (with varying levels of internal and external sources of interference), here we aimed both to explore this issue, and to obtain a robust and general (less task-specific) measure of attention in mice. Exploratory factor analyses revealed two factors (external and internal attention) that in total, accounted for 73% of the variance in attentional performance. Confirmatory factor analyses found an excellent fit with the data of the model of attention that assumed an external and internal distinction (with a resulting correlation of 0.43). In contrast, a model of attention that assumed one source of variance (i.e., “general attention”) exhibited a poor fit with the data. Regarding the relationship between attention and learning, higher resistance against external sources of interference promoted better new learning, but tended to impair performance when cognitive flexibility was required, such as during the reversal of a previously instantiated response. The present results suggest that there can be (at least) two types of attention that contribute to the common variance in attentional performance in mice, and that external and internal attentions might have opposing influences on the rate at which animals learn. PMID:25452087
Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo
2016-03-31
This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated.
Does the radiologically isolated syndrome exist? A dual-task cost pilot study.
Dattola, Vincenzo; Logiudice, Anna Lisa; Bonanno, Lilla; Famà, Fausto; Milardi, Demetrio; Chillemi, Gaetana; D'Aleo, Giangaetano; Marino, Silvia; Calabrò, Rocco Salvatore; Russo, Margherita
2017-11-01
Simultaneous performance of motor and cognitive tasks may compete for common brain network resources in aging or patients with some neurological diseases, suggesting the occurrence of a cognitive-motor interference. While this phenomenon has been well described for multiple sclerosis (MS) patients, it never has been tested on asymptomatic subject with magnetic resonance imaging (MRI) findings suggestive of demyelinating disease (i.e., radiologically isolated syndrome: RIS). In this pilot study, 10 RIS subjects and 10 sex/age-matched healthy controls were tested by means of static posturography under eyes opened (single-task trial) and while performing two different cognitive tasks (semantic modified word list generation for first dual-task trial and phonemic semantic modified word list generation for second dual-task trial), to estimate the dual-task cost (DTC) of standing balance. In our sample, under cognitive interference (without any substantial differences between semantic and phonemic modified word list generation), the RIS group showed significance differences in CoP (center of pressure) total sway area, ellipse eccentricity, CoP sway path length, CoP median sway velocity along the AP (anteroposterior) axis and along the ML (mediolateral) axis, reflecting a higher negative DTC respect to healthy subjects (which have simply shown a statistical trend, failing to reach a significance, in some trials). The phenomenon of cognitive-motor interference might be unmasked by a dual-task posturography in RIS subjects, too. We hypothesize that this approach could be useful to early reveal the presence of a demyelinating disease and to reach a MS diagnosis in subjects otherwise classified as RIS.
Hung, Yuwen; Gaillard, Schuyler L; Yarmak, Pavel; Arsalidou, Marie
2018-06-19
Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions. © 2018 Wiley Periodicals, Inc.
Cognitive Motor Interference in Multiple Sclerosis: Insights From a Systematic Quantitative Review.
Learmonth, Yvonne C; Ensari, Ipek; Motl, Robert W
2017-06-01
To synthesize the evidence for differences in cognitive motor interference (CMI) between persons with multiple sclerosis (MS) and those without MS by using systematic review and meta-analysis. EMBASE, PubMed, ScienceDirect, Scopus, SPORTDiscus, and Web of Science. Our focused literature search was informed by past systematic reviews of CMI during walking in MS. The key terms searched included Multiple sclerosis and synonyms of motor function (eg, Gait disorders, Gait, Walking, Balance, or Fall) and motor and cognitive functions (eg, Cognitive motor interference or Thinking). From the 116 abstract-identified articles, 13 experimental studies were selected for the final analysis and were rated using the Quality Assessment of Diagnostic Accuracy Studies tool. A meta-analysis was performed for all considered outcomes. The results yielded a small overall effect size (ES) of .08 (SE=.17; 95% confidence interval, -.25 to .40; z=.49; P>.05), which indicated a nonsignificant minimal difference in CMI between persons with MS and those without MS. The moderator analysis for motor task (mobility task: ES, .22; postural task: ES, -.11) was not significantly different between persons with MS and those without MS. The moderator analysis for cognitive task (verbal fluency task: ES, .66; mental tracking task: ES, .04; discrimination and decision-making task: ES, -.30) resulted in a significant difference in CMI between persons with MS and those without MS (P<.05). We provide evidence that overall there is a minimal difference in CMI between persons with MS and those without MS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Noël, Xavier; Van der Linden, Martial; Brevers, Damien; Campanella, Salvatore; Verbanck, Paul; Hanak, Catherine; Kornreich, Charles; Verbruggen, Frederick
2013-03-01
Impulsivity is a hallmark of addictive behaviors. Addicts' weakened inhibition of irrelevant prepotent responses is commonly thought to explain this association. However, inhibition is not a unitary mechanism. This study investigated the efficiency of overcoming competition due to irrelevant responses (i.e., inhibition of a prepotent response) and overcoming competition in memory (i.e., resistance to proactive interference) in sober and recently detoxified alcohol-dependent individuals. Three cognitive tasks assessing the inhibition of a prepotent response (Hayling task, anti-saccade task and Stroop task) and two tasks tapping into the capacity to resist proactive interference (cued recall, Brown-Peterson variant) were administered to 30 non-amnesic recently detoxified alcohol-dependent individuals and 30 matched healthy participants without alcohol dependency. In addition, possible confounds such as verbal updating in working memory was assessed. Alcohol-dependent subjects performed worse than healthy participants on the three cognitive tasks assessing the inhibition of irrelevant prepotent responses but group performance was similar in the tasks assessing overcoming proactive interference in memory, updating of working memory and abstract reasoning. These findings suggest that alcohol-dependence is mainly associated with impaired capacity to intentionally suppress irrelevant prepotent response information. Control of proactive interference from memory is preserved. Theoretical and clinical implications are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Wermelinger, Stephanie; Gampe, Anja; Daum, Moritz M
2017-11-07
Action perception and action production are tightly linked and elicit bi-directional influences on each other when performed simultaneously. In this study, we investigated whether age-related differences in manual fine-motor competence and/or age affect the (interfering) influence of action production on simultaneous action perception. In a cross-sectional eye-tracking study, participants of a broad age range (N = 181, 20-80 years) observed a manual grasp-and-transport action while performing an additional motor or cognitive distractor task. Action perception was measured via participants' frequency of anticipatory gaze shifts towards the action goal. Manual fine-motor competence was assessed with the Motor Performance Series. The interference effect in action perception was greater in the motor than the cognitive distractor task. Furthermore, manual fine-motor competence and age in years were both associated with this interference. The better the participants' manual fine-motor competence and the younger they were, the smaller the interference effect. However, when both influencing factors (age and fine-motor competence) were taken into account, a model including only age-related differences in manual fine-motor competence best fit with our data. These results add to the existing literature that motor competence and its age-related differences influence the interference effects between action perception and production.
Cognitive Load Selectively Interferes with Utilitarian Moral Judgment
ERIC Educational Resources Information Center
Greene, Joshua D.; Morelli, Sylvia A.; Lowenberg, Kelly; Nystrom, Leigh E.; Cohen, Jonathan D.
2008-01-01
Traditional theories of moral development emphasize the role of controlled cognition in mature moral judgment, while a more recent trend emphasizes intuitive and emotional processes. Here we test a dual-process theory synthesizing these perspectives. More specifically, our theory associates utilitarian moral judgment (approving of harmful actions…
Cognitive-Behavioral Therapy for Adolescent Body Dysmorphic Disorder
ERIC Educational Resources Information Center
Greenberg, Jennifer L.; Markowitz, Sarah; Petronko, Michael R.; Taylor, Caitlin E.; Wilhelm, Sabine; Wilson, G. Terence
2010-01-01
The onset of appearance-related concerns associated with body dysmorphic disorder (BDD) typically occurs in adolescence, and these concerns are often severe enough to interfere with normal development and psychosocial functioning. Cognitive behavioral therapy (CBT) is an effective treatment for adults with BDD. However, no treatment studies…
Assignment of channels and polarisations in a broadcasting satellite service environment
NASA Astrophysics Data System (ADS)
Fortes, J. M. P.
1986-07-01
In the process of synthesizing a satellite communications plan, a large number of possible configurations has to be analyzed in a short amount of time. An important part of the process concerns the allocation of channels and polarizations to the various systems. It is, of course, desirable to make these allocations based on the aggregate carrier/interference ratios, but this needs a considerable amount of time, and for this reason the single-entry carrier/interference criterion is usually employed. The paper presents an integer programming model based on an approximate evaluation of the aggregate carrier/interference ratios, which is fast enough to justify its application in the synthesis process. It was developed to help the elaboration of a downlink plan for the broadcasting satellite service (BSS) of North, Central, and South America. The official software package of the 1983 Administrative Radio Conference (RARC 83), responsible for the planning of the BSS in region 2, contains a routine based on this model.
Cognition and speech-in-noise recognition: the role of proactive interference.
Ellis, Rachel J; Rönnberg, Jerker
2014-01-01
Complex working memory (WM) span tasks have been shown to predict speech-in-noise (SIN) recognition. Studies of complex WM span tasks suggest that, rather than indexing a single cognitive process, performance on such tasks may be governed by separate cognitive subprocesses embedded within WM. Previous research has suggested that one such subprocess indexed by WM tasks is proactive interference (PI), which refers to difficulties memorizing current information because of interference from previously stored long-term memory representations for similar information. The aim of the present study was to investigate phonological PI and to examine the relationship between PI (semantic and phonological) and SIN perception. A within-subjects experimental design was used. An opportunity sample of 24 young listeners with normal hearing was recruited. Measures of resistance to, and release from, semantic and phonological PI were calculated alongside the signal-to-noise ratio required to identify 50% of keywords correctly in a SIN recognition task. The data were analyzed using t-tests and correlations. Evidence of release from and resistance to semantic interference was observed. These measures correlated significantly with SIN recognition. Limited evidence of phonological PI was observed. The results show that capacity to resist semantic PI can be used to predict SIN recognition scores in young listeners with normal hearing. On the basis of these findings, future research will focus on investigating whether tests of PI can be used in the treatment and/or rehabilitation of hearing loss. American Academy of Audiology.
Auditory working memory impairments in individuals at familial high risk for schizophrenia.
Seidman, Larry J; Meyer, Eric C; Giuliano, Anthony J; Breiter, Hans C; Goldstein, Jill M; Kremen, William S; Thermenos, Heidi W; Toomey, Rosemary; Stone, William S; Tsuang, Ming T; Faraone, Stephen V
2012-05-01
The search for predictors of schizophrenia has accelerated with a growing focus on early intervention and prevention of psychotic illness. Studying nonpsychotic relatives of individuals with schizophrenia enables identification of markers of vulnerability for the illness independent of confounds associated with psychosis. The goal of these studies was to develop new auditory continuous performance tests (ACPTs) and evaluate their effects in individuals with schizophrenia and their relatives. We carried out two studies of auditory vigilance with tasks involving working memory (WM) and interference control with increasing levels of cognitive load to discern the information-processing vulnerabilities in a sample of schizophrenia patients, and two samples of nonpsychotic relatives of individuals with schizophrenia and controls. Study 1 assessed adults (mean age = 41), and Study 2 assessed teenagers and young adults age 13-25 (M = 19). Patients with schizophrenia were impaired on all five versions of the ACPTs, whereas relatives were impaired only on WM tasks, particularly the two interference tasks that maximize cognitive load. Across all groups, the interference tasks were more difficult to perform than the other tasks. Schizophrenia patients performed worse than relatives, who performed worse than controls. For patients, the effect sizes were large (Cohen's d = 1.5), whereas for relatives they were moderate (d = ~0.40-0.50). There was no age by group interaction in the relatives-control comparison except for participants <31 years of age. Novel WM tasks that manipulate cognitive load and interference control index an important component of the vulnerability to schizophrenia.
Kisilevsky, Alexandra E; Mulligan, Sean J; Altier, Christophe; Iftinca, Mircea C; Varela, Diego; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; Macvicar, Brian A; Zamponi, Gerald W
2008-05-22
Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.
Dynamical coupled-channels study of {pi}N{yields}{pi}{pi}N reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamano, H.; Julia-Diaz, B.; Department d'Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona E-08028 Barcelona
As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N{yields}{pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N{yields}{pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The data of total cross sectionsmore » and {pi}N and {pi}{pi} invariant mass distributions of {pi}{sup +}p{yields}{pi}{sup +}{pi}{sup +}n,{pi}{sup +}{pi}{sup 0}p and {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n,{pi}{sup -}{pi}{sup 0}p,{pi}{sup 0}{pi}{sup 0}n reactions from threshold to the invariant mass W=2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.« less
Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference
Santi, C. M.; Yuan, A.; Fawcett, G.; Wang, Z.-W.; Butler, A.; Nonet, M. L.; Wei, A.; Rojas, P.; Salkoff, L.
2003-01-01
GFP-promoter experiments have previously shown that at least nine genes encoding potassium channel subunits are expressed in Caenorhabditis elegans muscle. By using genetic, RNA interference, and physiological techniques we revealed the molecular identity of the major components of the outward K+ currents in body wall muscle cells in culture. We found that under physiological conditions, outward current is dominated by the products of only two genes, Shaker (Kv1) and Shal (Kv4), both expressing voltage-dependent potassium channels. Other channels may be held in reserve to respond to particular circumstances. Because GFP-promoter experiments indicated that slo-2 expression is prominent, we created a deletion mutant to identify the SLO-2 current in vivo. In both whole-cell and single-channel modes, in vivo SLO-2 channels were active only when intracellular Ca2+ and Cl- were raised above normal physiological conditions, as occurs during hypoxia. Under such conditions, SLO-2 is the largest outward current, contributing up to 87% of the total current. Other channels are present in muscle, but our results suggest that they are unlikely to contribute a large outward component under physiological conditions. However, they, too, may contribute currents conditional on other factors. Hence, the picture that emerges is of a complex membrane with a small number of household conductances functioning under normal circumstances, but with additional conductances that are activated during unusual circumstances. PMID:14612577
Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene.
Wei, Di S; van der Sar, Toeno; Sanchez-Yamagishi, Javier D; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand I; Yacoby, Amir
2017-08-01
Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.
ERIC Educational Resources Information Center
Stambaugh, Laura A.; Demorest, Steven M.
2010-01-01
The effects of three practice schedules on beginning instrumental achievement were explored. A total of 19 seventh-grade clarinet and saxophone students completed one 18-minute practice session using either a blocked schedule causing a low level of cognitive (contextual) interference, a hybrid schedule causing a moderate level of interference, or…
Converging Evidence for Control of Color-Word Stroop Interference at the Item Level
ERIC Educational Resources Information Center
Bugg, Julie M.; Hutchison, Keith A.
2013-01-01
Prior studies have shown that cognitive control is implemented at the list and context levels in the color-word Stroop task. At first blush, the finding that Stroop interference is reduced for mostly incongruent items as compared with mostly congruent items (i.e., the item-specific proportion congruence [ISPC] effect) appears to provide evidence…
Tinnitus and Cognitive Interference: A Stroop Paradigm Study.
ERIC Educational Resources Information Center
Andersson, Gerhard; Eriksson, Jan; Lundh, Lars-Gunnar; Lyttkens, Leif
2000-01-01
This study examined the performance of 23 tinnitus patients on three versions of the Stroop color-word test. Results showed that tinnitus patients performed significantly slower than controls on all test conditions. Results suggest that tinnitus patients have impaired cognitive performance overall, possibly confounded by hearing impairment.…
Context-Sensitive Adjustment of Cognitive Control in Dual-Task Performance
ERIC Educational Resources Information Center
Fischer, Rico; Gottschalk, Caroline; Dreisbach, Gesine
2014-01-01
Performing 2 highly similar tasks at the same time requires an adaptive regulation of cognitive control to shield prioritized primary task processing from between-task (cross-talk) interference caused by secondary task processing. In the present study, the authors investigated how implicitly and explicitly delivered information promotes the…
Cognitive-Behavioral Classifications of Chronic Pain in Patients with Multiple Sclerosis
ERIC Educational Resources Information Center
Khan, Fary; Pallant, Julie F.; Amatya, Bhasker; Young, Kevin; Gibson, Steven
2011-01-01
The aim of this study was to replicate, in patients with multiple sclerosis (MS), the three-cluster cognitive-behavioral classification proposed by Turk and Rudy. Sixty-two patients attending a tertiary MS rehabilitation center completed the Pain Impact Rating questionnaire measuring activity interference, pain intensity, social support, and…
Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems
Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio
2014-01-01
Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274
Low-bit rate feedback strategies for iterative IA-precoded MIMO-OFDM-based systems.
Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio
2014-01-01
Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge.
Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance
Liang, Jinxing; Zhang, Jing; Zhou, Wenxiang; Ueda, Toshitsugu
2017-01-01
When the quartz crystal microbalance (QCM) is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM. PMID:28509851
Pritchard, Verena E; Neumann, Ewald; Rucklidge, Julia J
2007-01-01
Three visual selective attention tasks were used to measure potential differences in susceptibility to interference and inhibitory cognitive control processes in 16 adolescents diagnosed with attention deficit hyperactivity disorder (ADHD) and 45 similar-aged controls. Susceptibility to interference was assessed using the Stroop color and word naming test. Efficiency of distractor inhibition was assessed in two conceptual negative priming tasks. The majority of studies in this area indicate that people with ADHD demonstrate higher levels of interference and lower negative priming effects in comparison with age-matched peers. However, we found that although the ADHD group was consistently slower to name target stimuli than the control group, there were no differences in interference or negative priming between the two groups.
Improved CDMA Performance Using Parallel Interference Cancellation
NASA Technical Reports Server (NTRS)
Simon, Marvin; Divsalar, Dariush
1995-01-01
This report considers a general parallel interference cancellation scheme that significantly reduces the degradation effect of user interference but with a lesser implementation complexity than the maximum-likelihood technique. The scheme operates on the fact that parallel processing simultaneously removes from each user the interference produced by the remaining users accessing the channel in an amount proportional to their reliability. The parallel processing can be done in multiple stages. The proposed scheme uses tentative decision devices with different optimum thresholds at the multiple stages to produce the most reliably received data for generation and cancellation of user interference. The 1-stage interference cancellation is analyzed for three types of tentative decision devices, namely, hard, null zone, and soft decision, and two types of user power distribution, namely, equal and unequal powers. Simulation results are given for a multitude of different situations, in particular, those cases for which the analysis is too complex.
Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti
2017-02-01
We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.
Novel Cognitive Paradigms for the Detection of Memory Impairment in Preclinical Alzheimer’s Disease
Loewenstein, David A.; Curiel, Rosie E.; Duara, Ranjan; Buschke, Herman
2017-01-01
In spite of advances in neuroimaging and other brain biomarkers to assess preclinical Alzheimer’s disease (AD), cognitive assessment has relied on traditional memory paradigms developed well over six decades ago. This has led to a growing concern about their effectiveness in the early diagnosis of AD which is essential to develop preventive and early targeted interventions before the occurrence of multisystem brain degeneration. We describe the development of novel tests that are more cognitively challenging, minimize variability in learning strategies, enhance initial acquisition and retrieval using cues, and exploit vulnerabilities in persons with incipient AD such as the susceptibility to proactive semantic interference, and failure to recover from proactive semantic interference. The advantages of various novel memory assessment paradigms are examined as well as how they compare with traditional neuropsychological assessments of memory. Finally, future directions for the development of more effective assessment paradigms are suggested. PMID:29214859
Early adolescents show sustained susceptibility to cognitive interference by emotional distractors.
Heim, Sabine; Ihssen, Niklas; Hasselhorn, Marcus; Keil, Andreas
2013-01-01
A child's ability to continuously pay attention to a cognitive task is often challenged by distracting events. Distraction is especially detrimental in a learning or classroom environment in which attended information is typically associated with establishing skills and knowledge. Here we report a study examining the effect of emotional distractors on performance in a subsequent visual lexical decision task in 11- to 13-year-old students (n=30). Lexical decisions about neutral verbs and verb-like pseudowords (i.e., targets) were analysed as a function of the preceding distractor type (pleasant, neutral, or unpleasant photos) and the picture-target stimulus-onset asynchrony (SOA; 200 or 600 ms). Across distractor categories, emotionally arousing pictures prolonged decisions about word targets when compared to neutral pictures, irrespective of the SOA. The present results demonstrate that similar to adults, early adolescent students exhibit sustained susceptibility to cognitive interference by irrelevant emotional events.
Koutsis, G; Panas, M; Giogkaraki, E; Karadima, G; Sfagos, C; Vassilopoulos, D
2009-02-01
Elevated ApoA1 levels have been associated with decreased dementia risk. The A-allele of the APOA1 -75G/A promoter polymorphism has been associated with elevated ApoA1 levels. We sought to investigate the effect of the APOA1 -75G/A promoter polymorphism on cognitive performance in patients with multiple sclerosis (MS). A total of 138 patients with MS and 43 controls were studied and underwent neuropsychological assessment with Rao's Brief Repeatable Battery and the Stroop test. All patients were genotyped for APOA1. APOA1 A-allele carriers displayed superior overall cognitive performance compared with non-carriers (P 0.008) and had a three-fold decrease in the relative risk of overall cognitive impairment (OR 0.29, 95% CI 0.11-0.74). Regarding performance on individual cognitive domains, although APOA1 A-allele carriers performed better than non-carriers on all tests, this was significant only for semantic verbal fluency and the Stroop interference task (P 0.036 and 0.018, respectively). We found an association of the APOA1 -75G/A promoter polymorphism with cognitive performance in MS. This effect was most prominent on semantic verbal fluency and the Stroop interference task.
Cubeddu, Luigi X.
2016-01-01
Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294
Electric field controlled spin interference in a system with Rashba spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftja, Orion, E-mail: ogciftja@pvamu.edu
There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of amore » new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.« less
Nierat, Marie-Cécile; Demiri, Suela; Dupuis-Lozeron, Elise; Allali, Gilles; Morélot-Panzini, Capucine; Similowski, Thomas; Adler, Dan
2016-01-01
Human breathing stems from automatic brainstem neural processes. It can also be operated by cortico-subcortical networks, especially when breathing becomes uncomfortable because of external or internal inspiratory loads. How the "irruption of breathing into consciousness" interacts with cognition remains unclear, but a case report in a patient with defective automatic breathing (Ondine's curse syndrome) has shown that there was a cognitive cost of breathing when the respiratory cortical networks were engaged. In a pilot study of putative breathing-cognition interactions, the present study relied on a randomized design to test the hypothesis that experimentally loaded breathing in 28 young healthy subjects would have a negative impact on cognition as tested by "timed up-and-go" test (TUG) and its imagery version (iTUG). Progressive inspiratory threshold loading resulted in slower TUG and iTUG performance. Participants consistently imagined themselves faster than they actually were. However, progressive inspiratory loading slowed iTUG more than TUG, a finding that is unexpected with regard to the known effects of dual tasking on TUG and iTUG (slower TUG but stable iTUG). Insofar as the cortical networks engaged in response to inspiratory loading are also activated during complex locomotor tasks requiring cognitive inputs, we infer that competition for cortical resources may account for the breathing-cognition interference that is evidenced here.
Physical layer simulation study for the coexistence of WLAN standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howlader, M. K.; Keiger, C.; Ewing, P. D.
This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less
Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E
2017-12-01
We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5 dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.
Evans, Julia L; Gillam, Ronald B; Montgomery, James W
2018-05-10
This study examined the influence of cognitive factors on spoken word recognition in children with developmental language disorder (DLD) and typically developing (TD) children. Participants included 234 children (aged 7;0-11;11 years;months), 117 with DLD and 117 TD children, propensity matched for age, gender, socioeconomic status, and maternal education. Children completed a series of standardized assessment measures, a forward gating task, a rapid automatic naming task, and a series of tasks designed to examine cognitive factors hypothesized to influence spoken word recognition including phonological working memory, updating, attention shifting, and interference inhibition. Spoken word recognition for both initial and final accept gate points did not differ for children with DLD and TD controls after controlling target word knowledge in both groups. The 2 groups also did not differ on measures of updating, attention switching, and interference inhibition. Despite the lack of difference on these measures, for children with DLD, attention shifting and interference inhibition were significant predictors of spoken word recognition, whereas updating and receptive vocabulary were significant predictors of speed of spoken word recognition for the children in the TD group. Contrary to expectations, after controlling for target word knowledge, spoken word recognition did not differ for children with DLD and TD controls; however, the cognitive processing factors that influenced children's ability to recognize the target word in a stream of speech differed qualitatively for children with and without DLDs.
Augmented Reality Cues and Elderly Driver Hazard Perception
Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew
2013-01-01
Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037
Recurrent pain is associated with decreased selective attention in a population-based sample.
Gijsen, C P; Dijkstra, J B; van Boxtel, M P J
2011-01-01
Studies which have examined the impact of pain on cognitive functioning in the general population are scarce. In the present study we assessed the predictive value of recurrent pain on cognitive functioning in a population-based study (N=1400). Furthermore, we investigated the effect of pain on cognitive functioning in individuals with specific pain complaints (i.e. back pain, gastric pain, muscle pain and headache). Cognitive functioning was assessed using the Stroop Color-Word Interference test (Stroop interference), the Letter-Digit-Substitution test (LDST) and the Visual Verbal learning Task (VVLT). Pain was measured with the COOP/WONCA pain scale (Dartmouth Primary Care Cooperative Information Project/World Organization of National Colleges, Academies, and Academic Associations of General Practice /Family Physicians). We controlled for the effects of age, sex, level of education and depressive symptoms. It was demonstrated that pain had a negative impact on the performance on the Stroop interference but not on the VVLT and the LDST. This indicates that subjects who reported extreme pain had more problems with selective attention and were more easily distracted. Effects were in general larger in the specific pain groups when compared to the associations found in the total group. Implications of these findings are discussed. The experience of recurrent pain has a negative influence on selective attention in a healthy population. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Symbol Error Rate of Underlay Cognitive Relay Systems over Rayleigh Fading Channel
NASA Astrophysics Data System (ADS)
Ho van, Khuong; Bao, Vo Nguyen Quoc
Underlay cognitive systems allow secondary users (SUs) to access the licensed band allocated to primary users (PUs) for better spectrum utilization with the power constraint imposed on SUs such that their operation does not harm the normal communication of PUs. This constraint, which limits the coverage range of SUs, can be offset by relaying techniques that take advantage of shorter range communication for lower path loss. Symbol error rate (SER) analysis of underlay cognitive relay systems over fading channel has not been reported in the literature. This paper fills this gap. The derived SER expressions are validated by simulations and show that underlay cognitive relay systems suffer a high error floor for any modulation level.
2008-12-01
The effective two-way tactical data rate is 3,060 bits per second. Note that there is no parity check or forward error correction (FEC) coding used in...of 1800 bits per second. With the use of FEC coding , the channel data rate is 2250 bits per second; however, the information data rate is still the...Link-11. If the parity bits are included, the channel data rate is 28,800 bps. If FEC coding is considered, the channel data rate is 59,520 bps
When Delays Improve Memory: Stabilizing Memory in Children May Require Time.
Darby, Kevin P; Sloutsky, Vladimir M
2015-12-01
Memory is critical for learning, cognition, and cognitive development. Recent work has suggested that preschool-age children are vulnerable to catastrophic levels of memory interference, in which new learning dramatically attenuates memory for previously acquired knowledge. In the work reported here, we investigated the effects of consolidation on children's memory by introducing a 48-hr delay between learning and testing. In Experiment 1, the delay improved children's memory and eliminated interference. Results of Experiment 2 suggest that the benefit of this delay is limited to situations in which children are given enough information to form complex memory structures. These findings have important implications for understanding consolidation processes and memory development. © The Author(s) 2015.
Rogers, Laura Q; Fogleman, Amanda; Verhulst, Steven; Bhugra, Mudita; Rao, Krishna; Malone, James; Robbs, Randall; Robbins, K Thomas
2015-01-01
Social cognitive theory (SCT) measures related to exercise adherence in head and neck cancer (HNCa) patients were developed. Enrolling 101 HNCa patients, psychometric properties and associations with exercise behavior were examined for barriers self-efficacy, perceived barriers interference, outcome expectations, enjoyment, and goal setting. Cronbach's alpha ranged from.84 to.95; only enjoyment demonstrated limited test-retest reliability. Subscales for barriers self-efficacy (motivational, physical health) and barriers interference (motivational, physical health, time, environment) were identified. Multiple SCT constructs were cross-sectional correlates and prospective predictors of exercise behavior. These measures can improve the application of the SCT to exercise adherence in HNCa patients.
Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks
Hao, Li; Ni, Dadong; Tran, Quang Thanh
2018-01-01
An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios. PMID:29415452
Focusing the Search: Proactive and Retroactive Interference and the Dynamics of Free Recall
ERIC Educational Resources Information Center
Unsworth, Nash; Brewer, Gene A.; Spillers, Gregory J.
2013-01-01
Targeting information in long-term memory is an important cognitive ability, but one that is not well understood. In this study, 4 experiments were conducted to examine the influence of proactive and retroactive interference on memory targeting. Participants were given either 1 or 2 lists and asked to recall List 1, List 2, or in some cases both…
NASA Astrophysics Data System (ADS)
Kalidoss, R.; Bhagyaveni, M. A.; Vishvaksenan, K. S.
2014-08-01
The search for a method of utilizing the scarce spectrum in an efficient manner is an active area of research in both academic and industrial communities. IEEE 802.22 is a standard for wireless regional area network (WRAN) based on cognitive radio (CR) that operates over underutilized portions of TV bands (54-862 MHz). Time division duplex (TDD)-based WRAN cells have such advantages as dynamic traffic allocation, traffic asymmetry to users and ease of spectrum allocation. However, these cells suffer from severe cross time slot (CTS) interference when the frames of the cells are not synchronized with adjacent WRAN cells. In this paper, we evaluate the location-based duplex (LBD) scheme for eliminating the CTS interference. The proposed LBD system is much more flexible and efficient in providing asymmetric data service and eliminating CTS interference by exploiting the advantages of both TDD and frequency division duplex (FDD) schemes. We also compare the performance of LBD systems with virtual cell concepts. Furthermore, our simulation results reveal that LBD-based systems outperform the virtual cell approach in terms of the low signal-to-interference (SIR) ratio requirement by mitigating the effects of CTS.
Butler, Christopher R; Miller, Thomas D; Kaur, Manveer S; Baker, Ian W; Boothroyd, Georgie D; Illman, Nathan A; Rosenthal, Clive R; Vincent, Angela; Buckley, Camilla J
2014-04-01
Limbic encephalitis (LE) associated with antibodies to the voltage-gated potassium channel complex (VGKC) is a potentially reversible cause of cognitive impairment. Despite the prominence of cognitive dysfunction in this syndrome, little is known about patients' neuropsychological profile at presentation or their long-term cognitive outcome. We used a comprehensive neuropsychological test battery to evaluate cognitive function longitudinally in 19 patients with VGKC-LE. Before immunotherapy, the group had significant impairment of memory, processing speed and executive function, whereas language and perceptual organisation were intact. At follow-up, cognitive impairment was restricted to the memory domain, with processing speed and executive function having returned to the normal range. Residual memory function was predicted by the antibody titre at presentation. The results show that, despite broad cognitive dysfunction in the acute phase, patients with VGKC-LE often make a substantial recovery with immunotherapy but may be left with permanent anterograde amnesia.
NASA Astrophysics Data System (ADS)
Quang Nguyen, Sang; Kong, Hyung Yun
2016-11-01
In this article, the presence of multi-hop relaying, eavesdropper and co-channel interference (CCI) in the same system model is investigated. Specifically, the effect of CCI on a secured multi-hop relaying network is studied, in which the source communicates with the destination via multi-relay-hopping under the presence of an eavesdropper and CCI at each node. The optimal relay at each cluster is selected to help forward the message from the source to the destination. We apply two relay selection approaches to such a system model, i.e. the optimal relay is chosen based on (1) the maximum channel gain from the transmitter to all relays in the desired cluster and (2) the minimum channel gain from the eavesdropper to all relays in each cluster. For the performance evaluation and comparison, we derived the exact closed form of the secrecy outage probability of the two approaches. That analysis is verified by Monte Carlo simulation. Finally, the effects of the number of hops, the transmit power at the source, relays and the external sources, the distance between the external sources and each node in the system, and the location of the eavesdropper are presented and discussed.
Cognitive Communications Protocols for SATCOM
2017-10-20
both inadvertent Radio Frequency Interference (RFI) and deliberate jammers. Cognitive satellite and space communications strategies based on the... communications protocols for satellite and space communications with possible broad applications in defense, homeland-security as well as consumer...proposed WACR as the basis for future space communication systems that will offer significant benefits to national war‐fighting and peacekeeping
How Task Representations Guide Attention: Further Evidence for the Shielding Function of Task Sets
ERIC Educational Resources Information Center
Dreisbach, Gesine; Haider, Hilde
2009-01-01
To pursue goal directed behavior, the cognitive system must be shielded against interference from irrelevant information. Aside from the online adjustment of cognitive control widely discussed in the literature, an additional mechanism of preventive goal shielding is suggested that circumvents irrelevant information from being processed in the…
ERIC Educational Resources Information Center
Worsham, Whitney; Gray, Whitney E.; Larson, Michael J.; South, Mikle
2015-01-01
Background: The modification of performance following conflict can be measured using conflict adaptation tasks thought to measure the change in the allocation of cognitive resources in order to reduce conflict interference and improve performance. While previous studies have suggested atypical processing during nonsocial cognitive control tasks,…
ERIC Educational Resources Information Center
Mahalik, James R.; Morrison, Jay A.
2006-01-01
Cognitive therapists may be able to help fathers increase their involvement with their children by identifying and changing restrictive masculine schemas that interfere with men's parenting roles. In this paper, we (a) discuss the development of restrictive masculine schemas, (b) explain how these schemas may affect men's involvement in fathering…
The Timing and Magnitude of Stroop Interference and Facilitation in Monolinguals and Bilinguals
ERIC Educational Resources Information Center
Coderre, Emily L.; Van Heuven, Walter J. B.; Conklin, Kathy
2013-01-01
Executive control abilities and lexical access speed in Stroop performance were investigated in English monolinguals and two groups of bilinguals (English-Chinese and Chinese-English) in their first (L1) and second (L2) languages. Predictions were based on a bilingual cognitive advantage hypothesis, implicating cognitive control ability as the…
Composite Material Aircraft Electromagnetic Properties and Design Guidelines
1981-01-01
Diode Characteristics for IN914 Diode at 220 MHz 7-6 7.5 Characteristics of a 2N2369A Transitor With and Without RF Interference on the Collector Lead...Analylsi Miser Reiponse Model Adjacent Channel Interference Summary 7. STATISTICAL AND NUMERICAL I. PROPAGATION MODELS ANALYSIS MASTER PROPAGATION SYSTEM...Propagation System lIPS) Simsulationst Smorothe Curve Smooth Earth (SCSIS) Oemtralltzd File Statistics Analyzer (Q63) flislance Free Space Spherical Raflectiot
High Throughput via Cross-Layer Interference Alignment for Mobile Ad Hoc Networks
2013-08-26
MIMO zero-forcing receiver in the presence of channel estimation error,” IEEE Transactions on Wireless Communications , vol. 6 , no. 3, pp. 805–810, Mar...Robert W. Heath, Nachiappan Valliappan. Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication , IEEE Transactions on...in MIMO Interference Alignment Networks, IEEE Transactions on Wireless Communications , (02 2012): 0. doi: 10.1109/TWC.2011.120511.111088 TOTAL: 2
Crocco, Elizabeth; Curiel, Rosie E.; Acevedo, Amarilis; Czaja, Sara J.; Loewenstein, David A.
2015-01-01
OBJECTIVE To determine the degree to which susceptibility to different types of semantic interference may reflect the earliest manifestations of early Alzheimer disease (AD) beyond the effects of global memory impairment. METHODS Normal elderly (NE) subjects (n= 47), subjects with amnestic mild cognitive impairment (aMCI: n=34) and 40 subjects with probable AD were evaluated using a unique cued recall paradigm that allowed for an evaluation of both proactive and retroactive interference effects while controlling for global memory impairment (LASSI-L procedure). RESULTS Controlling for overall memory impairment, aMCI subjects had much greater proactive and retroactive interference effects than NE subjects. LASSI-L indices of learning using cued recall evidenced high levels of sensitivity and specificity with an overall correct classification rate of 90%. These provided better discrimination than traditional neuropsychological measures of memory function. CONCLUSION The LASSI-L paradigm is unique and unlike other assessments of memory in that items presented for cued recall are explicitly presented, and semantic interference and cuing effects can be assessed while controlling for initial level of memory impairment. This represents a powerful procedure allowing the participant to serve as his or her own control. The high levels of discrimination between subjects with aMCI and normal cognition that exceeded traditional neuropsychological measures makes the LASSI-L worthy of further research in the detection of early AD. PMID:23768680
Maran, Thomas; Sachse, Pierre; Martini, Markus; Furtner, Marco
2017-01-01
Hunger is an everyday motivational state, which biases cognition to detect food. Although evidence exists on how hunger affects basic attentional and mnemonic processes, less is known about how motivational drive for food modulates higher cognition. We aimed to investigate the effects of food deprivation on proactive interference resolution, in the presence and absence of food. Normal-weight participants performed a recency probes paradigm providing an experimental block with food and object stimuli as well as a control block with object stimuli only, in a fasted and a sated state. Results showed that the interaction of shifts in nutritional state with the perception of food cues evoked an altered resolution of proactive interference. Satiety led to impaired performance, whereas a hungry state resulted in strengthened resistance to proactive interference and lying in between, the control block presenting neutral objects remained unaffected by nutritional state manipulation. Additionally, a further increase in proactive interference resolution occurred when the conflicting probe depicted food compared to non-food objects. We conclude that when exposed to food, hunger initiates biased competition of active memory representations in favor of prioritized source information at cost of familiar, but irrelevant information. The implications of these findings are discussed in terms of an arousal-biased competition in working memory. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Overview of Non-pathological Geroneuropsychology: Implications for Nursing Practice and Research
Graham, Martha A.; Fazeli, Pariya L.; Heaton, Karen; Moneyham, Linda
2011-01-01
One aspect of successful aging is maintaining cognitive functioning; that includes both subjective cognitive functioning and objective cognitive functioning even in lieu of subtle cognitive deficits that occur with normal, non-pathological aging. Age-related cognitive deficits emerge across several domains including attention, memory, language, speed of processing, executive, and psychomotor, just to name a few. A primary theory explaining such cognitive deficits is cognitive reserve theory; it posits that biological factors such as demyelination and oxidative stress interfere with neuronal communication which eventually produces observable deficits in cognitive functioning. Therefore, it is important to maintain or improve cognitive reserve in order to augment cognitive functioning in later life. This article provides a general overview of the principles of geroneuropsychology along with implications for nursing practice and research. PMID:22210304
High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes
NASA Astrophysics Data System (ADS)
Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz
2016-04-01
Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords: u channel , P-Wave, Gamma Ray Density, High resolution measurements, Data accuracy
Simoni, David; Rubbieri, Gaia; Baccini, Marco; Rinaldi, Lucio; Becheri, Dimitri; Forconi, Tatiana; Mossello, Enrico; Zanieri, Samanta; Marchionni, Niccolò; Di Bari, Mauro
2013-07-01
Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chatham, Christopher H.; Wiseheart, Melody; Munakata, Yuko
2014-01-01
Good executive function has been linked to many positive outcomes in academic performance, health, and social competence. However, some aspects of executive function may interfere with other cognitive processes. Childhood provides a unique test case for investigating such cognitive trade-offs, given the dramatic failures and developments observed during this period. For example, most children categorically switch or perseverate when asked to switch between rules on a card-sorting task. To test potential trade-offs with the development of task switching abilities, we compared 6-year-olds who switched versus perseverated in a card-sorting task on two aspects of inhibitory control: response inhibition (via a stop signal task) and interference control (via a Simon task). Across two studies, switchers showed worse response inhibition than perseverators, consistent with the idea of cognitive trade-offs; however, switchers showed better interference control than perseverators, consistent with prior work documenting benefits associated with the development of executive function. This pattern of positive and negative associations may reflect aspects of working memory (active maintenance of current goals, and clearing of prior goals) that help children focused on a single task-goal but hurt in situations with conflicting goals. Implications for understanding components of executive function and their relationships across development are discussed. PMID:24791710
Anders, Royce; Riès, Stéphanie; Van Maanen, Leendert; Alario, F-Xavier
Patients with lesions in the left prefrontal cortex (PFC) have been shown to be impaired in lexical selection, especially when interference between semantically related alternatives is increased. To more deeply investigate which computational mechanisms may be impaired following left PFC damage due to stroke, a psychometric modelling approach is employed in which we assess the cognitive parameters of the patients from an evidence accumulation (sequential information sampling) modelling of their response data. We also compare the results to healthy speakers. Analysis of the cognitive parameters indicates an impairment of the PFC patients to appropriately adjust their decision threshold, in order to handle the increased item difficulty that is introduced by semantic interference. Also, the modelling contributes to other topics in psycholinguistic theory, in which specific effects are observed on the cognitive parameters according to item familiarization, and the opposing effects of priming (lower threshold) and semantic interference (lower drift) which are found to depend on repetition. These results are developed for the blocked-cyclic picture naming paradigm, in which pictures are presented within semantically homogeneous (HOM) or heterogeneous (HET) blocks, and are repeated several times per block. Overall, the results are in agreement with a role of the left PFC in adjusting the decision threshold for lexical selection in language production.
Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs
Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung
2017-01-01
Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes. PMID:28471416
Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs.
Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung
2017-05-04
Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.
Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio
2018-04-24
Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.
Auditory working memory impairments in individuals at familial high risk for schizophrenia
Seidman, Larry J.; Meyer, Eric C.; Giuliano, Anthony J.; Breiter, Hans C.; Goldstein, Jill M.; Kremen, William S.; Thermenos, Heidi W.; Toomey, Rosemary; Stone, William S.; Tsuang, Ming T.; Faraone, Stephen V.
2012-01-01
Objectives The search for predictors of schizophrenia has accelerated with a growing focus on early intervention and prevention of psychotic illness. Studying nonpsychotic relatives of individuals with schizophrenia enables identification of markers of vulnerability for the illness independent of confounds associated with psychosis. The goal of these studies was to develop new auditory continuous performance tests (ACPTs) and evaluate their effects in individuals with schizophrenia and their relatives. Methods We carried out two studies of auditory vigilance with tasks involving working memory (WM) and interference control with increasing levels of cognitive load to discern the information processing vulnerabilities in a sample of schizophrenia patients, and two samples of nonpsychotic relatives of individuals with schizophrenia and controls. Study 1 assessed adults (mean age = 41), and Study 2 assessed teenagers and young adults age 13-25 (mean =19). Results Patients with schizophrenia were impaired on all five versions of the ACPTs, while relatives were impaired only on WM tasks, particularly the two interference tasks that maximize cognitive load. Across all groups, the interference tasks were more difficult to perform than the other tasks. Schizophrenia patients performed worse than relatives who performed worse than controls. For patients, the effect sizes were large (Cohen’s d =1.5), whereas for relatives, they were moderate (d = ~0.40-0.50). There was no age by group interaction in the relatives –control comparison except for participants <31 years of age. Conclusions Novel WM tasks that manipulate cognitive load and interference control index an important component of the vulnerability to schizophrenia. PMID:22563872
NASA Technical Reports Server (NTRS)
Wagner, Raymond S.; Barton, Richard J.
2011-01-01
Wireless Sensor Networks (WSNs) can provide a substantial benefit in spacecraft systems, reducing launch weight and providing unprecedented flexibility by allowing instrumentation capabilities to grow and change over time. Achieving data transport reliability on par with that of wired systems, however, can prove extremely challenging in practice. Fortunately, much progress has been made in developing standard WSN radio protocols for applications from non-critical home automation to mission-critical industrial process control. The relative performances of candidate protocols must be compared in representative aerospace environments, however, to determine their suitability for spaceflight applications. In this paper, we will present the results of a rigorous laboratory analysis of the performance of two standards-based, low power, low data rate WSN protocols: ZigBee Pro and ISA100.11a. Both are based on IEEE 802.15.4 and augment that standard's specifications to build complete, multi-hop networking stacks. ZigBee Pro targets primarily the home and office automation markets, providing an ad-hoc protocol that is computationally lightweight and easy to implement in inexpensive system-on-a-chip components. As a result of this simplicity, however, ZigBee Pro can be susceptible to radio frequency (RF) interference. ISA100.11a, on the other hand, targets the industrial process control market, providing a robust, centrally-managed protocol capable of tolerating a significant amount of RF interference. To achieve these gains, a coordinated channel hopping mechanism is employed, which entails a greater computational complexity than ZigBee and requires more sophisticated and costly hardware. To guide future aerospace deployments, we must understand how well these standards relatively perform in analog environments under expected operating conditions. Specifically, we are interested in evaluating goodput -- application level throughput -- in a representative crewed environment in the presence of varying levels of 802.11g Wi-Fi traffic. To do so, we use the NASA Johnson Space Center Wireless Habitat Testbed (WHT), a metallic, habitation-sized module designed for co-existence testing of wireless systems. In its quiescent state, the sealed WHT provides an RF-quiet environment to which we can selectively add interfering systems; it also provides a realistic level of multi-path self-interference for systems under investigation. In our test, we deploy two representative five node networks, configured in a star topology with all nodes reporting directly to a WSN gateway. Each ZigBee network WSN node is built using a Texas Instruments (TI) CC2530 system-on-a-chip radio running TI's ZigBee Pro Z-stack. Each ISA100.11a network node is built using a Nivis VersaNode 210 system-on-a-chip radio. In both cases, radios interface with TI MSP430-F5438 microcontroller implementing a common test application. Interference is provided by a D-link 802.11g Wi-Fi router transporting traffic generated using the Iperf network testing tool. For the single-channel ZigBee network, effects of both direct and indirect Wi-Fi interference are evaluated. For the channel-hopping ISA100.11a network, effects of interference from multiple Wi-Fi routers configured in non-overlapping 802.11g channels are evaluated. Our results show that, in general, the more lightweight ZigBee network performs well at low interference levels, but performance degrades as interference increases. Conversely, the more complex and costly ISA100.11a network continues to perform well as Wi-Fi interference levels increase.
NASA Astrophysics Data System (ADS)
Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian
2017-04-01
Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.
[Cognitive experimental approach to anxiety disorders].
Azaïs, F
1995-01-01
Cognitive psychology is proposing a functional model to explain the mental organisation leading to emotional disorders. Among these disorders, anxiety spectrum represents a domain in which this model seems to be interesting for an efficient and comprehensive approach of the pathology. Number of behavioral or cognitive psychotherapeutic methods are relating to these cognitive references, but the theorical concepts of cognitive "shemata" or cognitive "processes" evoked to describe mental functioning in anxiety need an experimental approach for a better rational understanding. Cognitive function as perception, attention or memory can be explored in this domaine in an efficient way, allowing a more precise study of each stage of information processing. The cognitive model proposed in the psychopathology of anxiety suggests that anxious subjects are characterized by biases in processing of emotionally valenced information. This hypothesis suggests functional interference in information processing in these subjects, leading to an anxious response to the most of different stimuli. Experimental approach permit to explore this hypothesis, using many tasks for testing different cognitive dysfunction evoked in the anxious cognitive organisation. Impairments revealed in anxiety disorders seem to result from specific biases in threat-related information processing, involving several stages of cognitive processes. Semantic interference, attentional bias, implicit memory bias and priming effect are the most often disorders observed in anxious pathology, like simple phobia, generalised anxiety, panic disorder or post-traumatic stress disorder. These results suggest a top-down organisation of information processing in anxious subjects, who tend to detect, perceive and label many situations as threatening experience. The processes of reasoning and elaboration are consequently impaired in their adaptative function to threat, leading to the anxious response observed in clinical condition. The cognitive, behavioral and emotional components of this anxious reaction maintain the stressful experience for the subject, in which the self cognitive competence remain pathologically decreased. Cognitive psychology proposes an interesting model for the understanding of anxiety, in a domain in which subjectivity could benefit from an experimental approach.(ABSTRACT TRUNCATED AT 400 WORDS)
A multichannel amplitude and relative-phase controller for active sound quality control
NASA Astrophysics Data System (ADS)
Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.
2017-05-01
The enhancement of the sound quality of periodic disturbances for a number of listeners within an enclosure often confronts difficulties given by cross-channel interferences, which arise from simultaneously profiling the primary sound at each error sensor. These interferences may deteriorate the original sound among each listener, which is an unacceptable result from the point of view of sound quality control. In this paper we provide experimental evidence on controlling both amplitude and relative-phase functions of stationary complex primary sounds for a number of listeners within a cavity, attaining amplifications of twice the original value, reductions on the order of 70 dB, and relative-phase shifts between ± π rad, still in a free-of-interference control scenario. To accomplish such burdensome control targets, we have designed a multichannel active sound profiling scheme that bases its operation on exchanging time-domain control signals among the control units during uptime. Provided the real parts of the eigenvalues of persistently excited control matrices are positive, the proposed multichannel array is able to counterbalance cross-channel interferences, while attaining demanding control targets. Moreover, regularization of unstable control matrices is not seen to prevent the proposed array to provide free-of-interference amplitude and relative-phase control, but the system performance is degraded, as a function of the amount of regularization needed. The assessment of Loudness and Roughness metrics on the controlled primary sound proves that the proposed distributed control scheme noticeably outperforms current techniques, since active amplitude- and/or relative-phase-based enhancement of the auditory qualities of a primary sound no longer implies in causing interferences among different positions. In this regard, experimental results also confirm the effectiveness of the proposed scheme on stably enhancing the sound qualities of periodic sounds for multiple listeners within a cavity.
An Improved Mathematical Scheme for LTE-Advanced Coexistence with FM Broadcasting Service
Al-hetar, Abdulaziz M.
2016-01-01
Power spectral density (PSD) overlapping analysis is considered the surest approach to evaluate feasibility of compatibility between wireless communication systems. In this paper, a new closed-form for the Interference Signal Power Attenuation (ISPA) is mathematically derived to evaluate interference caused from Orthogonal Frequency Division Multiplexing (OFDM)-based Long Term Evolution (LTE)-Advanced into Frequency Modulation (FM) broadcasting service. In this scheme, ISPA loss due to PSD overlapping of both OFDM-based LTE-Advanced and FM broadcasting service is computed. The proposed model can estimate power attenuation loss more precisely than the Advanced Minimum Coupling Loss (A-MCL) and approximate-ISPA methods. Numerical results demonstrate that the interference power is less than that obtained using the A-MCL and approximate ISPA methods by 2.8 and 1.5 dB at the co-channel and by 5.2 and 2.2 dB at the adjacent channel with null guard band, respectively. The outperformance of this scheme over the other methods leads to more diminishing in the required physical distance between the two systems which ultimately supports efficient use of the radio frequency spectrum. PMID:27855216
An Improved Mathematical Scheme for LTE-Advanced Coexistence with FM Broadcasting Service.
Shamsan, Zaid Ahmed; Al-Hetar, Abdulaziz M
2016-01-01
Power spectral density (PSD) overlapping analysis is considered the surest approach to evaluate feasibility of compatibility between wireless communication systems. In this paper, a new closed-form for the Interference Signal Power Attenuation (ISPA) is mathematically derived to evaluate interference caused from Orthogonal Frequency Division Multiplexing (OFDM)-based Long Term Evolution (LTE)-Advanced into Frequency Modulation (FM) broadcasting service. In this scheme, ISPA loss due to PSD overlapping of both OFDM-based LTE-Advanced and FM broadcasting service is computed. The proposed model can estimate power attenuation loss more precisely than the Advanced Minimum Coupling Loss (A-MCL) and approximate-ISPA methods. Numerical results demonstrate that the interference power is less than that obtained using the A-MCL and approximate ISPA methods by 2.8 and 1.5 dB at the co-channel and by 5.2 and 2.2 dB at the adjacent channel with null guard band, respectively. The outperformance of this scheme over the other methods leads to more diminishing in the required physical distance between the two systems which ultimately supports efficient use of the radio frequency spectrum.
Self-consistent Dark Matter simplified models with an s-channel scalar mediator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W., E-mail: n.bell@unimelb.edu.au, E-mail: giorgio.busoni@unimelb.edu.au, E-mail: isanderson@student.unimelb.edu.au
We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedommore » for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.« less
Crocco, Elizabeth; Curiel, Rosie E; Acevedo, Amarilis; Czaja, Sara J; Loewenstein, David A
2014-09-01
To determine the degree to which susceptibility to different types of semantic interference may reflect the initial manifestations of early Alzheimer's disease (AD) beyond the effects of global memory impairment. Normal elderly (NE) subjects (n = 47), subjects with amnestic mild cognitive impairment (aMCI; n = 34), and subjects with probable AD (n = 40) were evaluated by using a unique cued recall paradigm that allowed for evaluation of both proactive and retroactive interference effects while controlling for global memory impairment (i.e., Loewenstein-Acevedo Scales of Semantic Interference and Learning [LASSI-L] procedure). Controlling for overall memory impairment, aMCI subjects had much greater proactive and retroactive interference effects than NE subjects. LASSI-L indices of learning by using cued recall revealed high levels of sensitivity and specificity, with an overall correct classification rate of 90%. These measures provided better discrimination than traditional neuropsychological measures of memory function. The LASSI-L paradigm is unique and unlike other assessments of memory in that items posed for cued recall are explicitly presented, and semantic interference and cueing effects can be assessed while controlling for initial level of memory impairment. This is a powerful procedure that allows the participant to serve as his or her own control. The high levels of discrimination between subjects with aMCI and normal cognition that exceeded traditional neuropsychological measures makes the LASSI-L worthy of further research in the detection of early AD. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Negative Priming Effect after Inhibition of Weight/Number Interference in a Piaget-Like Task
ERIC Educational Resources Information Center
Schirlin, Olivier; Houde, Olivier
2007-01-01
Piagetian tasks have more to do with the child's ability to inhibit interference than they do with the ability to grasp their underlying logic. Here we used a chronometric paradigm with 11-year-olds, who succeed in Piaget's conservation-of-weight task, to test the role of cognitive inhibition in a priming version of this classical task. The…
Sauce, Bruno; Wass, Christopher; Smith, Andrew; Kwan, Stephanie; Matzel, Louis D
2014-12-01
Attention is a component of the working memory system, and is responsible for protecting task-relevant information from interference. Cognitive performance (particularly outside of the laboratory) is often plagued by interference, and the source of this interference, either external or internal, might influence the expression of individual differences in attentional ability. By definition, external attention (also described as "selective attention") protects working memory against sensorial distractors of all kinds, while internal attention (also called "inhibition") protects working memory against emotional impulses, irrelevant information from memory, and automatically-generated responses. At present, it is unclear if these two types of attention are expressed independently in non-human animals, and how they might differentially impact performance on other cognitive processes, such as learning. By using a diverse battery of four attention tests (with varying levels of internal and external sources of interference), here we aimed both to explore this issue, and to obtain a robust and general (less task-specific) measure of attention in mice. Exploratory factor analyses revealed two factors (external and internal attention) that in total, accounted for 73% of the variance in attentional performance. Confirmatory factor analyses found an excellent fit with the data of the model of attention that assumed an external and internal distinction (with a resulting correlation of 0.43). In contrast, a model of attention that assumed one source of variance (i.e., "general attention") exhibited a poor fit with the data. Regarding the relationship between attention and learning, higher resistance against external sources of interference promoted better new learning, but tended to impair performance when cognitive flexibility was required, such as during the reversal of a previously instantiated response. The present results suggest that there can be (at least) two types of attention that contribute to the common variance in attentional performance in mice, and that external and internal attentions might have opposing influences on the rate at which animals learn. Copyright © 2014 Elsevier Inc. All rights reserved.
O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H
2011-08-01
The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Impact of Working Memory Load on Cognitive Control in Trait Anxiety: An ERP Study
Qi, Senqing; Zeng, Qinghong; Luo, Yangmei; Duan, Haijun; Ding, Cody; Hu, Weiping; Li, Hong
2014-01-01
Whether trait anxiety is associated with a general impairment of cognitive control is a matter of debate. This study investigated whether and how experimentally manipulated working memory (WM) load modulates the relation between trait anxiety and cognitive control. This question was investigated using a dual-task design in combination with event-related potentials. Participants were required to remember either one (low WM load) or six letters (high WM load) while performing a flanker task. Our results showed that a high WM load disrupted participants' ability to overcome distractor interference and this effect was exacerbated for the high trait-anxious (HTA) group. This exacerbation was reflected by larger interference effects (i.e., incongruent minus congruent) on reaction times (RTs) and N2 amplitudes for the HTA group than for the low trait-anxious group under high WM load. The two groups, however, did not differ in their ability to inhibit task-irrelevant distractors under low WM load, as indicated by both RTs and N2 amplitudes. These findings underscore the significance of WM-related cognitive demand in contributing to the presence (or absence) of a general cognitive control deficit in trait anxiety. Furthermore, our findings show that when limited WM resources are depleted by high WM load, HTA individuals exhibit less efficient recruitments of cognitive control required for the inhibition of distractors, therefore resulting in a greater degree of response conflict. PMID:25369121
Impact of working memory load on cognitive control in trait anxiety: an ERP study.
Qi, Senqing; Zeng, Qinghong; Luo, Yangmei; Duan, Haijun; Ding, Cody; Hu, Weiping; Li, Hong
2014-01-01
Whether trait anxiety is associated with a general impairment of cognitive control is a matter of debate. This study investigated whether and how experimentally manipulated working memory (WM) load modulates the relation between trait anxiety and cognitive control. This question was investigated using a dual-task design in combination with event-related potentials. Participants were required to remember either one (low WM load) or six letters (high WM load) while performing a flanker task. Our results showed that a high WM load disrupted participants' ability to overcome distractor interference and this effect was exacerbated for the high trait-anxious (HTA) group. This exacerbation was reflected by larger interference effects (i.e., incongruent minus congruent) on reaction times (RTs) and N2 amplitudes for the HTA group than for the low trait-anxious group under high WM load. The two groups, however, did not differ in their ability to inhibit task-irrelevant distractors under low WM load, as indicated by both RTs and N2 amplitudes. These findings underscore the significance of WM-related cognitive demand in contributing to the presence (or absence) of a general cognitive control deficit in trait anxiety. Furthermore, our findings show that when limited WM resources are depleted by high WM load, HTA individuals exhibit less efficient recruitments of cognitive control required for the inhibition of distractors, therefore resulting in a greater degree of response conflict.
Optimization of an optically implemented on-board FDMA demultiplexer
NASA Technical Reports Server (NTRS)
Fargnoli, J.; Riddle, L.
1991-01-01
Performance of a 30 GHz frequency division multiple access (FDMA) uplink to a processing satellite is modelled for the case where the onboard demultiplexer is implemented optically. Included in the performance model are the effects of adjacent channel interference, intersymbol interference, and spurious signals associated with the optical implementation. Demultiplexer parameters are optimized to provide the minimum bit error probability at a given bandwidth efficiency when filtered QPSK modulation is employed.
A cognitive dual task affects gait variability in patients suffering from chronic low back pain.
Hamacher, Dennis; Hamacher, Daniel; Schega, Lutz
2014-11-01
Chronic pain and gait variability in a dual-task situation are both associated with higher risk of falling. Executive functions regulate (dual-task) gait variability. A possible cause explaining why chronic pain increases risk of falling in an everyday dual-task situation might be that pain interferes with executive functions and results in a diminished dual-task capability with performance decrements on the secondary task. The main goal of this experiment was to evaluate the specific effects of a cognitive dual task on gait variability in chronic low back pain (CLBP) patients. Twelve healthy participants and twelve patients suffering from CLBP were included. The subjects were asked to perform a cognitive single task, a walking single task and a motor-cognitive dual task. Stride variability of trunk movements was calculated. A two-way ANOVA was performed to compare single-task walking with dual-task walking and the single cognitive task performance with the motor-cognitive dual-task performance. We did not find any differences in both of the single-task performances between groups. However, regarding single-task walking and dual-task walking, we observed an interaction effect indicating that low back pain patients show significantly higher gait variability in the dual-task condition as compared to controls. Our data suggest that chronic pain reduces motor-cognitive dual-task performance capability. We postulate that the detrimental effects are caused by central mechanisms where pain interferes with executive functions which, in turn, might contribute to increased risk of falling.
ERIC Educational Resources Information Center
Wagner, Valentin; Jescheniak, Jorg D.; Schriefers, Herbert
2010-01-01
Three picture-word interference experiments addressed the question of whether the scope of grammatical advance planning in sentence production corresponds to some fixed unit or rather is flexible. Subjects produced sentences of different formats under varying amounts of cognitive load. When speakers described 2-object displays with simple…
ERIC Educational Resources Information Center
Hofer, Manfred; Kuhnle, Claudia; Kilian, Britta; Fries, Stefan
2012-01-01
The predictive power of cognitive ability and self-control strength for self-reported grades and an achievement test were studied. It was expected that the variables use of time structure, academic procrastination, and motivational interference during learning further aid in predicting students' achievement because they are operative in situations…
ERIC Educational Resources Information Center
Vuontela, Virve; Jiang, Ping; Tokariev, Maksym; Savolainen, Petri; Ma, YuanYe; Aronen, Eeva T.; Fontell, Tuija; Liiri, Tiina; Ahlstrom, Matti; Salonen, Oili; Carlson, Synnove
2013-01-01
Developmental studies have demonstrated that cognitive processes such as attention, suppression of interference and memory develop throughout childhood and adolescence. However, little is currently known about the development of top-down control mechanisms and their influence on cognitive performance. In the present study, we used functional…
Husain, Noreen; Yabuki, Yasushi; Shinoda, Yasuharu; Fukunaga, Kohji
2018-01-01
Hypothyroidism is a common disorder that is associated with psychological disturbances such as dementia, depression, and psychomotor disorders. We recently found that chronic treatment with the T-type calcium channel enhancer SAK3 prevents the cholinergic neurodegeneration induced by a single intraperitoneal (i.p.) injection of methimazole (MMI; 75 mg/kg), thereby improving cognition. Here, we evaluated the acute effect of SAK3 on cognitive impairments and its mechanism of action following the induction of hypothyroidism. Hypothyroidism was induced by 2 injections of MMI (75 mg/kg, i.p.) administered once per week. Four weeks after the final MMI treatment, MMI-treated mice showed reduced serum thyroxine (T4) levels and cognitive impairments without depression-like behaviors. Although acute SAK3 (1.0 mg/kg, p.o.) administration failed to ameliorate the decreased T4 levels and histochemical destruction of the glomerular structure, acute SAK3 (1.0 mg/kg, p.o.) administration significantly reduced cognitive impairments in MMI-treated mice. Importantly, the α7 nicotinic acetylcholine receptor (nAChR)-selective inhibitor methyllycaconitine (MLA; 12 mg/kg, i.p.) and T-type calcium channel-specific blocker NNC 55-0396 (25 mg/kg, i.p.) antagonized the acute effect of SAK3 on memory deficits in MMI-treated mice. We also confirmed that acute SAK3 administration does not rescue reduced olfactory marker protein or choline acetyltransferase immunoreactivity levels in the olfactory bulb or medial septum. Taken together, these results suggest that SAK3 has the ability to improve the cognitive decline caused by hypothyroidism directly through activation of nAChR signaling and T-type calcium channels. © 2018 S. Karger AG, Basel.
Quantum channels from reflections on moving mirrors.
Gianfelici, Giulio; Mancini, Stefano
2017-11-16
Light reflection on a mirror can be thought as a simple physical effect. However if this happens when the mirror moves a rich scenario opens up. Here we aim at analyzing it from a quantum communication perspective. In particular, we study the kind of quantum channel that arises from (Gaussian) light reflection upon an accelerating mirror. Two competing mechanisms emerge in such a context, namely photons production by the mirror's motion and interference between modes. As consequence we find out a quantum amplifier channel and quantum lossy channel respectively below and above a threshold frequency (that depends on parameters determining mirror's acceleration). Exactly at the threshold frequency the channel behaves like a purely classical additive channel, while it becomes purely erasure for large frequencies. In addition the time behavior of the channel is analyzed by employing wave packets expansion of the light field.
The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks
NASA Astrophysics Data System (ADS)
Lakshmanan, Sriram; Sundaresan, Karthikeyan; Rangarajan, Sampath; Sivakumar, Raghupathy
Interference among co-channel users is a fundamental problem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wireless transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mitigation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce interference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to develop an alternative approach that provides better interference reduction in indoor networks compared to directional links.
Ernst, Monique; Lago, Tiffany; Davis, Andrew; Grillon, Christian
2016-01-01
Rationale Research documents a reciprocal impact of anxiety on working memory (WM), although its strength and direction depend on factors like task difficulty. A better understanding of these factors may generate insights into cognitive mechanisms of action involved in anxiety, culminating into treatment implications. By blocking the physiological effects of anxiety, propranolol might also block anxiety interference on WM. Conversely, by improving task-directed attention, methylphenidate might reduce anxiety, or, alternatively, by improving cognitive efficiency and free up processing resources to compute anxiety. Objectives To investigate the interplay between induced anxiety and WM, we pharmacologically manipulated either anxiety or cognition, using single doses of 40 mg propranolol (PRO), 20 mg methylphenidate (MPH), or placebo (PLA). In this double-blind parallel-group design study, 60 healthy volunteers (20/drug group) performed a verbal WM task under three loads, 1-, 2- and 3-back, and in two conditions, threat of shock and safety. Startle electromyography (EMG) was used to measure anxiety. Results Findings were twofold: (1) MPH blocked anxiety interference only on the 3-back WM performance, while PRO or PLA had no effects on anxiety-WM interference, and (2) drugs had no effects on anxiety, but, after controlling for baseline anxiety, MPH enhanced anxiety-potentiated startle during the 3-back task. Conclusions These findings support that MPH-related improvement of cognitive efficiency permits anxiety to be processed and expressed. In conclusion, MPH may be a useful tool to investigate the mechanisms of interaction between anxiety and WM, particularly those under catecholaminergic control. PMID:27492789
Ernst, Monique; Lago, Tiffany; Davis, Andrew; Grillon, Christian
2016-10-01
Research documents a reciprocal impact of anxiety on working memory (WM), although its strength and direction depend on factors like task difficulty. A better understanding of these factors may generate insights into cognitive mechanisms of action involved in anxiety, culminating into treatment implications. By blocking the physiological effects of anxiety, propranolol might also block anxiety interference on WM. Conversely, by improving task-directed attention, methylphenidate might reduce anxiety, or, alternatively, by improving cognitive efficiency and free up processing resources to compute anxiety. To investigate the interplay between induced anxiety and WM, we pharmacologically manipulated either anxiety or cognition, using single doses of 40 mg propranolol (PRO), 20 mg methylphenidate (MPH), or placebo (PLA). In this double-blind parallel-group design study, 60 healthy volunteers (20/drug group) performed a verbal WM task under three loads, 1-, 2- and 3-back, and in two conditions, threat of shock and safety. Startle electromyography (EMG) was used to measure anxiety. Findings were twofold: (1) MPH blocked anxiety interference only on the 3-back WM performance, while PRO or PLA had no effects on anxiety-WM interference, and (2) drugs had no effects on anxiety, but, after controlling for baseline anxiety, MPH enhanced anxiety-potentiated startle during the 3-back task. These findings support that MPH-related improvement of cognitive efficiency permits anxiety to be processed and expressed. In conclusion, MPH may be a useful tool to investigate the mechanisms of interaction between anxiety and WM, particularly those under catecholaminergic control.
The mediating role of pain acceptance during mindfulness-based cognitive therapy for headache.
Day, Melissa A; Thorn, Beverly E
2016-04-01
This study aimed to determine if mindfulness-based cognitive therapy (MBCT) engenders improvement in headache outcomes via the mechanisms specified by theory: (1) change in psychological process, (i.e., pain acceptance); and concurrently (2) change in cognitive content, (i.e., pain catastrophizing; headache management self-efficacy). A secondary analysis of a randomized controlled trial comparing MBCT to a medical treatment as usual, delayed treatment (DT) control was conducted. Participants were individuals with headache pain who completed MBCT or DT (N=24) at the Kilgo Headache Clinic or psychology clinic. Standardized measures of the primary outcome (pain interference) and proposed mediators were administered at pre- and post-treatment; change scores were calculated. Bootstrap mediation models were conducted. Pain acceptance emerged as a significant mediator of the group-interference relation (p<.05). Mediation models examining acceptance subscales showed nuances in this effect, with activity engagement emerging as a significant mediator (p<.05), but pain willingness not meeting criteria for mediation due to a non-significant pathway from the mediator to outcome. Criteria for mediation was also not met for the catastrophizing or self-efficacy models as neither of these variables significantly predicted pain interference. Pain acceptance, and specifically engagement in valued activities despite pain, may be a key mechanism underlying improvement in pain outcome during a MBCT for headache pain intervention. The theorized mediating role of cognitive content factors was not supported in this preliminary study. A large, definitive trial is warranted to replicate and extend the findings in order to streamline and optimize MBCT for headache. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gich, Jordi; Freixenet, Jordi; Garcia, Rafael; Vilanova, Joan Carles; Genís, David; Silva, Yolanda; Montalban, Xavier; Ramió-Torrentà, Lluís
2015-09-01
Cognitive rehabilitation is often delayed in multiple sclerosis (MS). To develop a free and specific cognitive rehabilitation programme for MS patients to be used from early stages that does not interfere with daily living activities. MS-line!, cognitive rehabilitation materials consisting of written, manipulative and computer-based materials with difficulty levels developed by a multidisciplinary team. Mathematical, problem-solving and word-based exercises were designed. Physical materials included spatial, coordination and reasoning games. Computer-based material included logic and reasoning, working memory and processing speed games. Cognitive rehabilitation exercises that are specific for MS patients have been successfully developed. © The Author(s), 2014.
Dissociating interference-control processes between memory and response.
Bissett, Patrick G; Nee, Derek Evan; Jonides, John
2009-09-01
The ability to mitigate interference is of central importance to cognition. Previous research has provided conflicting accounts about whether operations that resolve interference are singular in character or form a family of functions. Here, the authors examined the relationship between interference-resolution processes acting on working memory representations versus responses. The authors combined multiple forms of interference into a single paradigm by merging a directed-forgetting task, which induces proactive interference, with a stop-signal task, which taps response inhibition processes. The results demonstrated that proactive interference and response inhibition produced distinct behavioral signatures that did not interact. By contrast, combining two different measures of response inhibition by merging a go/no-go task variant and a stop signal produced overadditive behavioral interference, demonstrating that different forms of response inhibition tap the same processes. However, not all forms of response conflict interacted, suggesting that inhibition-related functions acting on response selection are dissociable from those acting on response inhibition. These results suggest that inhibition-related functions for memory and responses are dissociable. (c) 2009 APA, all rights reserved.
Dasgupta, Amitava; Syklawer, Erica; Johnson, Myrtle; Hwang, Shen-An; Boyd, Sydney A; Actor, Jeffrey K
2011-10-01
Chan Su, Asian ginseng, Siberian ginseng, and American ginseng are known to interfere with various digoxin immunoassays. Recently, a homogeneous sequential chemiluminescent assay for digoxin based on the luminescent oxygen channeling technology (LOCI digoxin) for application on the Dimension and Vista platform has been introduced into the market. The effects of interference by Chan Su and various ginsengs on this new immunoassay have not yet been reported. Aliquots of a drug-free serum pool were supplemented with Chan Su, Asian ginseng, Siberian ginseng, and American ginseng representing the expected in vivo concentrations after normal usage and cases of overdose. Serum digoxin concentrations were measured using the LOCI digoxin assay on the Vista 1500 analyzer. We also prepared 3 digoxin pools from patients receiving digoxin. Two digoxin pools were supplemented with these traditional medicines to investigate their effect on serum digoxin measurements. Mice were fed Chan Su extract to determine the potential of in vivo derived interfering factors. The possibility of eliminating interference of Chan Su on serum digoxin measurement was also investigated, by measuring free digoxin concentration after supplementing aliquots of the third digoxin pool with various amounts of Chan Su extract. A clinically significant interference by Chan Su with serum digoxin measurement was observed using the LOCI digoxin assay. The various ginsengs demonstrated negligible effects. In addition, apparent digoxin concentrations were observed in sera of mice after feeding them with Chan Su; the half-life of digoxin-like immunoreactive components was approximately 1 hour. Moreover, serum digoxin concentrations were significantly elevated in the presence of Chan Su, whereas the various ginsengs exhibited no effect. Monitoring free digoxin can only partly eliminate the interference of Chan Su in serum digoxin measurement. Chan Su interferes with serum digoxin measurement using the LOCI Digoxin, whereas the ginsengs demonstrated no measurable interference at clinically relevant concentrations.
Speech-Message Extraction from Interference Introduced by External Distributed Sources
NASA Astrophysics Data System (ADS)
Kanakov, V. A.; Mironov, N. A.
2017-08-01
The problem of this study involves the extraction of a speech signal originating from a certain spatial point and calculation of the intelligibility of the extracted voice message. It is solved by the method of decreasing the influence of interference from the speech-message sources on the extracted signal. This method is based on introducing the time delays, which depend on the spatial coordinates, to the recording channels. Audio records of the voices of eight different people were used as test objects during the studies. It is proved that an increase in the number of microphones improves intelligibility of the speech message which is extracted from interference.
Experimental results supporting the determination of service quality objectives for DBS systems
NASA Technical Reports Server (NTRS)
Chouinard, G.; Whyte, W. A., Jr.; Goldberg, A. A.; Jones, B. L.
1985-01-01
A summary of the results of a joint United States and Canadian program on subjective measurements of the picture degradation caused by noise and interference on an NTSC encoded color television signal is given in this paper. The effects of system noise, cochannel and adjacent channel interference, and both single entry and aggregate as well as a combination of these types of interference were subjectively evaluated by expert and nonexpert viewers under reference conditions. These results were used to develop the rationale used at RARC '83 to establish the service quality objective for planning the DBS service for the American continents.
Lee, Kuan-I; Lin, Hui-Ching; Lee, Hsueh-Te; Tsai, Feng-Chuan; Lee, Tzong-Shyuan
2017-07-01
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that helps regulate inflammatory pain sensation and nociception and the development of inflammatory diseases. However, the potential role of the TRPA1 channel and the underlying mechanism in brain functions are not fully resolved. In this study, we demonstrated that genetic deletion of the TRPA1 channel in mice or pharmacological inhibition of its activity increased neurite outgrowth. In vivo study in mice provided evidence of the TRPA1 channel as a negative regulator in hippocampal functions; functional ablation of the TRPA1 channel in mice enhanced hippocampal functions, as evidenced by less anxiety-like behavior, and enhanced fear-related or spatial learning and memory, and novel location recognition as well as social interactions. However, the TRPA1 channel appears to be a prerequisite for motor function; functional loss of the TRPA1 channel in mice led to axonal bundle fragmentation, downregulation of myelin basic protein, and decreased mature oligodendrocyte population in the brain, for impaired motor function. The TRPA1 channel may play a crucial role in neuronal development and oligodendrocyte maturation and be a potential regulator in emotion, cognition, learning and memory, and social behavior.
Bilingualism Enriches the Poor: Enhanced Cognitive Control in Low-Income Minority Children
Engel de Abreu, Pascale M. J.; Cruz-Santos, Anabela; Tourinho, Carlos J.; Martin, Romain; Bialystok, Ellen
2014-01-01
This study explores whether the cognitive advantage associated with bilingualism in executive functioning extends to young immigrant children challenged by poverty and, if it does, which specific processes are most affected. In the study reported here, 40 Portuguese-Luxembourgish bilingual children from low-income immigrant families in Luxembourg and 40 matched monolingual children from Portugal completed visuospatial tests of working memory, abstract reasoning, selective attention, and interference suppression. Two broad cognitive factors of executive functioning—representation (abstract reasoning and working memory) and control (selective attention and interference suppression)—emerged from principal component analysis. Whereas there were no group differences in representation, the bilinguals performed significantly better than did the monolinguals in control. These results demonstrate, first, that the bilingual advantage is neither confounded with nor limited by socioeconomic and cultural factors and, second, that separable aspects of executive functioning are differentially affected by bilingualism. The bilingual advantage lies in control but not in visuospatial representational processes. PMID:23044796
Two languages, two minds: flexible cognitive processing driven by language of operation.
Athanasopoulos, Panos; Bylund, Emanuel; Montero-Melis, Guillermo; Damjanovic, Ljubica; Schartner, Alina; Kibbe, Alexandra; Riches, Nick; Thierry, Guillaume
2015-04-01
People make sense of objects and events around them by classifying them into identifiable categories. The extent to which language affects this process has been the focus of a long-standing debate: Do different languages cause their speakers to behave differently? Here, we show that fluent German-English bilinguals categorize motion events according to the grammatical constraints of the language in which they operate. First, as predicted from cross-linguistic differences in motion encoding, bilingual participants functioning in a German testing context prefer to match events on the basis of motion completion to a greater extent than do bilingual participants in an English context. Second, when bilingual participants experience verbal interference in English, their categorization behavior is congruent with that predicted for German; when bilingual participants experience verbal interference in German, their categorization becomes congruent with that predicted for English. These findings show that language effects on cognition are context-bound and transient, revealing unprecedented levels of malleability in human cognition. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan
2018-02-01
In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.
Spiegel, M A; Koester, D; Weigelt, M; Schack, T
2012-02-16
How much cognitive effort does it take to change a movement plan? In previous studies, it has been shown that humans plan and represent actions in advance, but it remains unclear whether or not action planning and verbal working memory share cognitive resources. Using a novel experimental paradigm, we combined in two experiments a grasp-to-place task with a verbal working memory task. Participants planned a placing movement toward one of two target positions and subsequently encoded and maintained visually presented letters. Both experiments revealed that re-planning the intended action reduced letter recall performance; execution time, however, was not influenced by action modifications. The results of Experiment 2 suggest that the action's interference with verbal working memory arose during the planning rather than the execution phase of the movement. Together, our results strongly suggest that movement planning and verbal working memory share common cognitive resources. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Wilson, Jeffrey D.
2010-01-01
Interference issues related to the operation of an aeronautical mobile airport communications system (AeroMACS) in the C-Band (specifically 5091-5150 MHz) is being investigated. The issue of primary interest is co-channel interference from AeroMACS into mobile-satellite system (MSS) feeder uplinks. The effort is focusing on establishing practical limits on AeroMACS transmissions from airports so that the threshold of interference into MSS is not exceeded. The analyses are being performed with the software package Visualyse Professional, developed by Transfinite Systems Limited. Results with omni-directional antennas and plans to extend the models to represent AeroMACS more accurately will be presented. These models should enable realistic analyses of emerging AeroMACS designs to be developed from NASA Test Bed, RTCA 223, and European results.
Baker, Katharine S; Georgiou-Karistianis, Nellie; Lampit, Amit; Valenzuela, Michael; Gibson, Stephen J; Giummarra, Melita J
2018-04-01
Chronic pain is associated with reduced efficiency of cognitive performance, and few studies have investigated methods of remediation. We trialled a computerised cognitive training protocol to determine whether it could attenuate cognitive difficulties in a chronic pain sample. Thirty-nine adults with chronic pain (mean age = 43.3, 61.5% females) were randomised to an 8-week online course (3 sessions/week from home) of game-like cognitive training exercises, or an active control involving watching documentary videos. Participants received weekly supervision by video call. Primary outcomes were a global neurocognitive composite (tests of attention, speed, and executive function) and self-reported cognition. Secondary outcomes were pain (intensity; interference), mood symptoms (depression; anxiety), and coping with pain (catastrophising; self-efficacy). Thirty participants (15 training and 15 control) completed the trial. Mixed model intention-to-treat analyses revealed significant effects of training on the global neurocognitive composite (net effect size [ES] = 0.43, P = 0.017), driven by improved executive function performance (attention switching and working memory). The control group reported improvement in pain intensity (net ES = 0.65, P = 0.022). Both groups reported subjective improvements in cognition (ES = 0.28, P = 0.033) and catastrophising (ES = 0.55, P = 0.006). Depression, anxiety, self-efficacy, and pain interference showed no change in either group. This study provides preliminary evidence that supervised cognitive training may be a viable method for enhancing cognitive skills in persons with chronic pain, but transfer to functional and clinical outcomes remains to be demonstrated. Active control results suggest that activities perceived as relaxing or enjoyable contribute to improved perception of well-being. Weekly contact was pivotal to successful program completion.
A double-slit experiment for non-classical interference effects in decision making.
La Mura, Pierfrancesco
2014-01-01
We discuss the possible nature and role of non-physical entanglement, and the classical vs. non-classical interface, in models of human decision-making. We also introduce an experimental setting designed after the double-slit experiment in physics, and discuss how it could be used to discriminate between classical and non-classical interference effects in human decisions. Copyright © 2013 Cognitive Science Society, Inc.
Stress and binge drinking: A toxic combination for the teenage brain.
Goldstein, Aaron; Déry, Nicolas; Pilgrim, Malcolm; Ioan, Miruna; Becker, Suzanna
2016-09-01
Young adult university students frequently binge on alcohol and have high stress levels. Based on findings in rodents, we predicted that heavy current alcohol use and elevated stress and depression scores would be associated with deficits on high interference memory tasks, while early onset, prolonged binge patterns would lead to broader cognitive deficits on tests of associative encoding and executive functions. We developed the Concentration Memory Task, a novel computerized version of the Concentration card game with a high degree of interference. We found that young adults with elevated stress, depression, and alcohol consumption scores were impaired in the Concentration Memory Task. We also analyzed data from a previous study, and found that higher alcohol consumption scores were associated with impaired performance on another high interference memory task, based on Kirwan and Stark's Mnemonic Similarity Test. On the other hand, adolescent onset of binge drinking predicted poorer performance on broader range of memory tests, including a more systematic test of spatial recognition memory, and an associative learning task. Our results are broadly consistent with findings in rodents that acute alcohol and stress exposure suppress neurogenesis in the adult hippocampus, which in turn impairs performance in high interference memory tasks, while adolescent onset binge drinking causes more extensive brain damage and cognitive deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.
Libon, David J.; Bondi, Mark W.; Price, Catherine C.; Lamar, Melissa; Eppig, Joel; Wambach, Denene M.; Nieves, Christine; Delano-Wood, Lisa; Giovannetti, Tania; Lippa, Carol; Kabasakalian, Anahid; Cosentino, Stephanie; Swenson, Rod; Penney, Dana L.
2012-01-01
Using cluster analysis Libon et al. (2010) found three verbal serial list-learning profiles involving delay memory test performance in patients with mild cognitive impairment (MCI). Amnesic MCI (aMCI) patients presented with low scores on delay free recall and recognition tests; mixed MCI (mxMCI) patients scored higher on recognition compared to delay free recall tests; and dysexecutive MCI (dMCI) patients generated relatively intact scores on both delay test conditions. The aim of the current research was to further characterize memory impairment in MCI by examining forgetting/savings, interference from a competing word list, intrusion errors/perseverations, intrusion word frequency, and recognition foils in these three statistically determined MCI groups compared to normal control (NC) participants. The aMCI patients exhibited little savings, generated more highly prototypic intrusion errors, and displayed indiscriminate responding to delayed recognition foils. The mxMCI patients exhibited higher saving scores, fewer and less prototypic intrusion errors, and selectively endorsed recognition foils from the interference list. dMCI patients also selectively endorsed recognition foils from the interference list but performed similarly compared to NC participants. These data suggest the existence of distinct memory impairments in MCI and caution against the routine use of a single memory test score to operationally define MCI. PMID:21880171
Effects of nicotine on response inhibition and interference control.
Ettinger, Ulrich; Faiola, Eliana; Kasparbauer, Anna-Maria; Petrovsky, Nadine; Chan, Raymond C K; Liepelt, Roman; Kumari, Veena
2017-04-01
Nicotine is a cholinergic agonist with known pro-cognitive effects in the domains of alerting and orienting attention. However, its effects on attentional top-down functions such as response inhibition and interference control are less well characterised. Here, we investigated the effects of 7 mg transdermal nicotine on performance on a battery of response inhibition and interference control tasks. A sample of N = 44 healthy adult non-smokers performed antisaccade, stop signal, Stroop, go/no-go, flanker, shape matching and Simon tasks, as well as the attentional network test (ANT) and a continuous performance task (CPT). Nicotine was administered in a within-subjects, double-blind, placebo-controlled design, with order of drug administration counterbalanced. Relative to placebo, nicotine led to significantly shorter reaction times on a prosaccade task and on CPT hits but did not significantly improve inhibitory or interference control performance on any task. Instead, nicotine had a negative influence in increasing the interference effect on the Simon task. Nicotine did not alter inter-individual associations between reaction times on congruent trials and error rates on incongruent trials on any task. Finally, there were effects involving order of drug administration, suggesting practice effects but also beneficial nicotine effects when the compound was administered first. Overall, our findings support previous studies showing positive effects of nicotine on basic attentional functions but do not provide direct evidence for an improvement of top-down cognitive control through acute administration of nicotine at this dose in healthy non-smokers.
The influence of training on the attentional blink and psychological refractory period.
Garner, K G; Tombu, M N; Dux, P E
2014-05-01
A growing body of research suggests that dual-task interference in sensory consolidation (e.g., the attentional blink, AB) and response selection (e.g., the psychological refractory period, PRP) stems from a common central bottleneck of information processing. With regard to response selection, it is well known that training reduces dual-task interference. We tested whether training that is known to be effective for response selection can also reduce dual-task interference in sensory consolidation. Over two experiments, performance on a PRP paradigm (Exp. 1) and on AB paradigms (differing in their stimuli and task demands, Exps. 1 and 2) was examined after participants had completed a relevant training regimen (T1 practice for both paradigms), an irrelevant training regimen (comparable sensorimotor training, not related to T1 for both tasks), a visual-search training regimen (Exp. 2 only), or after participants had been allocated to a no-training control group. Training that had shown to be effective for reducing dual-task interference in response selection was also found to be effective for reducing interference in sensory consolidation. In addition, we found some evidence that training benefits transferred to the sensory consolidation of untrained stimuli. Collectively, these findings show that training benefits can transfer across cognitive operations that draw on the central bottleneck in information processing. These findings have implications for theories of the AB and for the design of cognitive-training regimens that aim to produce transferable training benefits.
Comparison of cognitive functions between male and female medical students: a pilot study.
Upadhayay, Namrata; Guragain, Sanjeev
2014-06-01
There are gender differences in cognitive abilities. The major enigma is whether males or females perform better in various cognitive tasks. The reports were found to be contradictory. Studies have shown that oestrogen and testosterone accentuate cognitive functions. But the effects of progesterone on cognitive functions are still contradictory. To assess and compare the cognitive functions between male and female students. This study was conducted on healthy male (n=21) and female (n=21) volunteers who were aged between 19-37 years. Cognitive functions which were assessed in males (one time) and females (two times: during preovulatory and postovulatory phases of the menstrual cycle) were attentional: visual reaction time (VRT) and Go/No-Go VRT; perceptual: fast counting (FC), executive: Erisken Flanker Test (EFT) and Stroop Test (ST), and working memory. Data were compared by using Mann-Whitney U-test. Cognitive functions in female preovulatory phase were comparable to male cognitive functions. In addition, the female postovulatory phase cognitive functions were also similar to those of males in all the tasks, except those seen in VRT and ST. Male performed better than females in VRT (M: 331.66 ms, IQR: 286.99-375.33 vs. M: 367.8 ms, IQR: 340.66-435.66; p=0.05). However, in ST, females showed higher accuracies in reading colour interferences than males (M: 100%, IQR: 95.12-100 vs. M: 95.24%, IQR: 86.36-100; p=0.04). In addition, males showed trend of a poorer performance than females in Go/No-Go VRT, ST colour reading normal time and interference time and in working-memory time. Male cognitive functions were comparable to female preovulatory phase cognitive functions. However, females, during postovulatory phase of their cycle, may have advantages in executive tasks (Stroop test) and disadvantages in attentional tasks (VRT), as compared to males.
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774
Meier, Matt E; Kane, Michael J
2015-11-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. (c) 2015 APA, all rights reserved).
Lightweight Payload for High Altitude Balloons
1991-05-21
common at microwave frequencies. Examples of such transponders are DSCS-fl, DSCS-Ill, NATO- III, Nato-IV, and Skynet-4.I Rx Translation Tx Wideband BPF ...Narrowband Limiter BPF Bank BankI Figure 2.4-2. Channelized Transponder ArchitectureI The disadvantage of channelization is the hardware complexity. We...excessive electromagnetic interference (EMI), either conducted or radiated, from one part of the circuit to another. There are three major guidelines
Ultracompact beam splitters based on plasmonic nanoslits
Zhou, Chuanhong; Kohli, Punit
2011-01-01
An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248
Kwaaitaal, Mark; Huisman, Rik; Maintz, Jens; Reinstädler, Anja; Panstruga, Ralph
2011-12-15
Binding of specific microbial epitopes [MAMPs (microbe-associated molecular patterns)] to PRRs (pattern recognition receptors) and subsequent receptor kinase activation are key steps in plant innate immunity. One of the earliest detectable events after MAMP perception is a rapid and transient rise in cytosolic Ca2+ levels. In plants, knowledge about the signalling events leading to Ca2+ influx and on the molecular identity of the channels involved is scarce. We used a transgenic Arabidopsis thaliana line stably expressing the luminescent aequorin Ca2+ biosensor to monitor pharmacological interference with Ca2+ signatures following treatment with the bacterial peptide MAMPs flg22 and elf18, and the fungal carbohydrate MAMP chitin. Using a comprehensive set of compounds known to impede Ca2+-transport processes in plants and animals we found strong evidence for a prominent role of amino acid-controlled Ca2+ fluxes, probably through iGluR (ionotropic glutamate receptor)-like channels. Interference with amino acid-mediated Ca2+ fluxes modulates MAMP-triggered MAPK (mitogen-activated protein kinase) activity and affects MAMP-induced accumulation of defence gene transcripts. We conclude that the initiation of innate immune responses upon flg22, elf18 and chitin recognition involves apoplastic Ca2+ influx via iGluR-like channels.
System-Level Performance of Antenna Arrays in CDMA-Based Cellular Mobile Radio Systems
NASA Astrophysics Data System (ADS)
Czylwik, Andreas; Dekorsy, Armin
2004-12-01
Smart antennas exploit the inherent spatial diversity of the mobile radio channel, provide an antenna gain, and also enable spatial interference suppression leading to reduced intracell as well as intercell interference. Especially, for the downlink of future CDMA-based mobile communications systems, transmit beamforming is seen as a well-promising smart antenna technique. The main objective of this paper is to study the performance of diverse antenna array topologies when applied for transmit beamforming in the downlink of CDMA-based networks. In this paper, we focus on uniform linear array (ULA) and uniform circular array (UCA) topologies. For the ULA, we consider three-sector base stations with one linear array per sector. While recent research on downlink beamforming is often restricted to one single cell, this study takes into account the important impact of intercell interference on the performance by evaluating complete networks. Especially, from the operator perspective, system capacity and system coverage are very essential parameters of a cellular system so that there is a clear necessity of intensive system level investigations. Apart from delivering assessments on the performance of the diverse antenna array topologies, in the paper also different antenna array parameters, such as element spacing and beamwidth of the sector antennas, are optimized. Although we focus on the network level, fast channel fluctuations are taken into account by including them analytically into the signal-to-interference calculation.
NASA Astrophysics Data System (ADS)
Wang, Yupeng; Chang, Kyunghi
In this paper, we analyze the coexistence issues of M-WiMAX TDD and WCDMA FDD systems. Smart antenna techniques are applied to mitigate the performance loss induced by adjacent channel interference (ACI) in the scenarios where performance is heavily degraded. In addition, an ACI model is proposed to capture the effect of transmit beamforming at the M-WiMAX base station. Furthermore, a MCS-based throughput analysis is proposed, to jointly consider the effects of ACI, system packet error rate requirement, and the available modulation and coding schemes, which is not possible by using the conventional Shannon equation based analysis. From the results, we find that the proposed MCS-based analysis method is quite suitable to analyze the system theoretical throughput in a practical manner.
NASA Astrophysics Data System (ADS)
Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana
For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.
NASA Astrophysics Data System (ADS)
Nagarajan, K.; Shashidharan Nair, C. K.
2007-07-01
The channelled spectrum employing polarized light interference is a very convenient method for the study of dispersion of birefringence. However, while using this method, the absolute order of the polarized light interference fringes cannot be determined easily. Approximate methods are therefore used to estimate the order. One of the approximations is that the dispersion of birefringence across neighbouring integer order fringes is negligible. In this paper, we show how this approximation can cause errors. A modification is reported whereby the error in the determination of absolute fringe order can be reduced using fractional orders instead of integer orders. The theoretical background for this method supported with computer simulation is presented. An experimental arrangement implementing these modifications is described. This method uses a Constant Deviation Spectrometer (CDS) and a Soleil Babinet Compensator (SBC).
Design considerations for near-infrared filter photometry: effects of noise sources and selectivity.
Tarumi, Toshiyasu; Amerov, Airat K; Arnold, Mark A; Small, Gary W
2009-06-01
Optimal filter design of two-channel near-infrared filter photometers is investigated for simulated two-component systems consisting of an analyte and a spectrally overlapping interferent. The degree of overlap between the analyte and interferent bands is varied over three levels. The optimal design is obtained for three cases: a source or background flicker noise limited case, a shot noise limited case, and a detector noise limited case. Conventional photometers consist of narrow-band optical filters with their bands located at discrete wavelengths. However, the use of broadband optical filters with overlapping responses has been proposed to obtain as much signal as possible from a weak and broad analyte band typical of near-infrared absorptions. One question regarding the use of broadband optical filters with overlapping responses is the selectivity achieved by such filters. The selectivity of two-channel photometers is evaluated on the basis of the angle between the analyte and interferent vectors in the space spanned by the relative change recorded for each of the two detector channels. This study shows that for the shot noise limited or detector noise limited cases, the slight decrease in selectivity with the use of broadband optical filters can be compensated by the higher signal-to-noise ratio afforded by the use of such filters. For the source noise limited case, the best quantitative results are obtained with the use of narrow-band non-overlapping optical filters.
ERIC Educational Resources Information Center
Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-01-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…
ERIC Educational Resources Information Center
Hsu, Pi-Shan; Chang, Te-Jeng; Wu, Ming-Hsiung
2009-01-01
The level of learners' expertise has been used as a metric and diagnostic mechanism of instruction. This metric influences mental effort directly according to the applications of cognitive load theory. Cognitive efficiency, an optimal measurement technique of expertise, was developed by Kalyuga and Sweller to replace instructional efficiency in…
Mechanisms in Chronic Multisympton Illnesses
2007-10-01
Fibro-fog While cognition appears to modulate the experience of pain, it is also likely that pain interferes with the ability to think and process...the ability of exercise and/or cognitive behavioral therapies to alter patients’ locus of control for pain, the neurobiological mechanism(s) of...evaluate the ability of different measures to predict group membership (symptomatic vs. asymptomatic). Two abstracts reflecting preliminary results
Exergaming immediately enhances children's executive function.
Best, John R
2012-09-01
The current study examined an important aspect of experience--physical activity--that may contribute to children's executive function. The design attempted to tease apart 2 important aspects of children's exercise by examining the separate and combined effects of acute physical activity and cognitive engagement on an aspect of children's executive functioning. In a 2 × 2 within-subject experimental design, children (N = 33, 6 to 10 years old) completed activities that varied systematically in both physical activity (physically active video games versus sedentary video activities) and cognitive engagement (challenging and interactive video games versus repetitive video activities). Cognitive functioning, including executive function, was assessed after each activity by a modified flanker task (Rueda et al., 2004). Whereas cognitive engagement had no effect on any aspect of task performance, physical activity (i.e., exergaming) enhanced children's speed to resolve interference from conflicting visuospatial stimuli. Age comparisons indicated improvements with age in the accuracy of resolving interference and in overall response time. The results extend past research by showing more precisely how physical activity influences executive function and how this effect differs from the improvements that occur with development. PsycINFO Database Record (c) 2012 APA, all rights reserved.
[Cognitive Function and Calcium. Structures and functions of Ca2+-permeable channels].
Kaneko, Shuji
2015-02-01
Calcium is essential for living organisms where the increase in intracellular Ca2+ concentration functions as a second messenger for many cellular processes including synaptic transmission and neural plasticity. The cytosolic concentration of Ca2+ is finely controlled by many Ca2+-permeable ion channels and transporters. The comprehensive view of their expression, function, and regulation will advance our understanding of neural and cognitive functions of Ca2+, which leads to the future drug discovery.
NASA Astrophysics Data System (ADS)
Hettiarachchi, Ranga; Yokoyama, Mitsuo; Uehara, Hideyuki
This paper presents a novel interference cancellation (IC) scheme for both synchronous and asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless channels. In the DS-CDMA system, the multiple access interference (MAI) and the near-far problem (NFP) are the two factors which reduce the capacity of the system. In this paper, we propose a new algorithm that is able to detect all interference signals as an individual MAI signal by maximum correlation detection. It is based on the discovery of all the unknowing spreading codes of the interference signals. Then, all possible MAI patterns so called replicas are generated as a summation of interference signals. And the true MAI pattern is found by taking correlation between the received signal and the replicas. Moreover, the receiver executes MAI cancellation in a successive manner, removing all interference signals by single-stage. Numerical results will show that the proposed IC strategy, which alleviates the detrimental effect of the MAI and the near-far problem, can significantly improve the system performance. Especially, we can obtain almost the same receiving characteristics as in the absense of interference for asynchrnous system when received powers are equal. Also, the same performances can be seen under any received power state for synchronous system.
Age-related changes in cognitive conflict processing: an event-related potential study.
Mager, Ralph; Bullinger, Alex H; Brand, Serge; Schmidlin, Maria; Schärli, Heinz; Müller-Spahn, Franz; Störmer, Robert; Falkenstein, Michael
2007-12-01
Cognitive tasks involving conflicting stimuli and responses are associated with an early age-related decline in performance. Conflict and conflict-induced interference can be stimulus- or response-related. In classical stimulus-response compatibility tasks, such as the Stroop task, the event-related potential (ERP) usually reveals a greater negativity on incongruent versus congruent trials which has often been linked with conflict processing. However, it is unclear whether this negativity is related to stimulus- or response-related conflict, thus rendering the meaning of age-related changes inconclusive. In the present study, a modified Stroop task was used to focus on stimulus-related interference processes while excluding response-related interference. Since we intended to study work-relevant effects ERPs and performance were determined in young (about 30 years old) and middle-aged (about 50 years old) healthy subjects (total n=80). In the ERP, a broad negativity developed after incongruent versus congruent stimuli between 350 and 650 ms. An age-related increase of the latency and amplitude of this negativity was observed. These results indicate age-related alterations in the processing of conflicting stimuli already in middle age.
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valérie
2009-07-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and spatial storage were combined with both visual and spatial on-line processing components in computer-paced working memory span tasks (Experiment 1) and in a selective interference paradigm (Experiment 2). The cognitive load of the processing components was manipulated to investigate its impact on concurrent maintenance for both within-domain and between-domain combinations of processing and storage components. In contrast to both domain- and process-based fractionations of visuo-spatial working memory, the results revealed that recall performance was determined by the cognitive load induced by the processing of items, rather than by the domain to which those items pertained. These findings are interpreted as evidence for a time-based resource-sharing mechanism in visuo-spatial working memory.
Rapid Automatized Naming in Children with Dyslexia: Is Inhibitory Control Involved?
Bexkens, Anika; van den Wildenberg, Wery P M; Tijms, Jurgen
2015-08-01
Rapid automatized naming (RAN) is widely seen as an important indicator of dyslexia. The nature of the cognitive processes involved in rapid naming is however still a topic of controversy. We hypothesized that in addition to the involvement of phonological processes and processing speed, RAN is a function of inhibition processes, in particular of interference control. A total 86 children with dyslexia and 31 normal readers were recruited. Our results revealed that in addition to phonological processing and processing speed, interference control predicts rapid naming in dyslexia, but in contrast to these other two cognitive processes, inhibition is not significantly associated with their reading and spelling skills. After variance in reading and spelling associated with processing speed, interference control and phonological processing was partialled out, naming speed was no longer consistently associated with the reading and spelling skills of children with dyslexia. Finally, dyslexic children differed from normal readers on naming speed, literacy skills, phonological processing and processing speed, but not on inhibition processes. Both theoretical and clinical interpretations of these results are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Aging, subjective experience, and cognitive control: dramatic false remembering by older adults.
Jacoby, Larry L; Bishara, Anthony J; Hessels, Sandra; Toth, Jeffrey P
2005-05-01
Recent research suggests that older adults are more susceptible to interference effects than are young adults; however, that research has failed to equate differences in original learning. In 4 experiments, the authors show that older adults are more susceptible to interference effects produced by a misleading prime. Even when original learning was equated, older adults were 10 times as likely to falsely remember misleading information and were much less likely to increase their accuracy by opting not to answer under conditions of free responding. The results are well described by a multinomial model that postulates multiple modes of cognitive control. According to that model, older adults are likely to be captured by misleading information, a form of goal neglect or deficit in inhibitory functions. Copyright 2005 APA, all rights reserved.
Tanner, Darren; Nicol, Janet; Brehm, Laurel
2014-01-01
Attraction interference in language comprehension and production may be as a result of common or different processes. In the present paper, we investigate attraction interference during language comprehension, focusing on the contexts in which interference arises and the time-course of these effects. Using evidence from event-related brain potentials (ERPs) and sentence judgment times, we show that agreement attraction in comprehension is best explained as morphosyntactic interference during memory retrieval. This stands in contrast to attraction as a message-level process involving the representation of the subject NP's number features, which is a strong contributor to attraction in production. We thus argue that the cognitive antecedents of agreement attraction in comprehension are non-identical with those of attraction in production, and moreover, that attraction in comprehension is primarily a consequence of similarity-based interference in cue-based memory retrieval processes. We suggest that mechanisms responsible for attraction during language comprehension are a subset of those involved in language production. PMID:25258471
Neural mechanisms of proactive interference-resolution.
Nee, Derek Evan; Jonides, John; Berman, Marc G
2007-12-01
The ability to mitigate interference from information that was previously relevant, but is no longer relevant, is central to successful cognition. Several studies have implicated left ventrolateral prefrontal cortex (VLPFC) as a region tied to this ability, but it is unclear whether this result generalizes across different tasks. In addition, it has been suggested that left anterior prefrontal cortex (APFC) also plays a role in proactive interference-resolution although support for this claim has been limited. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate the role of these regions in resolving proactive-interference across two different tasks performed on the same subjects. Results indicate that both left VLPFC and left APFC are involved in the resolution of proactive interference across tasks. However, different functional networks related to each region suggest dissociable roles for the two regions. Additionally, regions of the posterior cingulate gyrus demonstrated unique involvement in facilitation when short- and long-term memory converged. This pattern of results serves to further specify models of proactive interference-resolution.
Tanner, Darren; Nicol, Janet; Brehm, Laurel
2014-10-01
Attraction interference in language comprehension and production may be as a result of common or different processes. In the present paper, we investigate attraction interference during language comprehension, focusing on the contexts in which interference arises and the time-course of these effects. Using evidence from event-related brain potentials (ERPs) and sentence judgment times, we show that agreement attraction in comprehension is best explained as morphosyntactic interference during memory retrieval. This stands in contrast to attraction as a message-level process involving the representation of the subject NP's number features, which is a strong contributor to attraction in production. We thus argue that the cognitive antecedents of agreement attraction in comprehension are non-identical with those of attraction in production, and moreover, that attraction in comprehension is primarily a consequence of similarity-based interference in cue-based memory retrieval processes. We suggest that mechanisms responsible for attraction during language comprehension are a subset of those involved in language production.
Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Tanaka, Naofumi; Izumi, Shin-Ichi
2016-02-01
Smartphone use while walking is becoming a public concern owing to an increased risk of falling that can result from cognitive-motor interference. We evaluated prefrontal cortex (PFC) activity in participants playing a smartphone game while walking, in order to elucidate the role of the PFC in the allocation of attention between physical and cognitive demands. Sixteen young and 15 older adults participated in this study. Participants were instructed to perform a touch number-selecting game on a smartphone while walking. The numbers of correct and mistake responses were analyzed as a measure of cognitive performance. Linear trunk accelerations were measured by another smartphone and analyzed for step time and acceleration magnitude as an assay of gait performance. PFC activity during the task was measured using a wearable 16-channel near-infrared spectroscopy system. Smartphone game playing while walking decreased the cognitive and gait performances compared with performances of single-task condition in older group more than in young group. There was no difference in PFC activation during smartphone use while walking between young and older groups, but age appeared to mediate correlation magnitude between PFC activation and changes in performance. In young adults, multiple regression analysis revealed an association of the right PFC with a reduction in acceleration magnitude (β = 0.581, p = 0.023), and an association of the left PFC with an increase in game-playing mistakes (β = -0.556, p = 0.032) during smartphone use while walking. In older adults, multiple regression analysis revealed an association of the middle PFC with a prolongation of step time (β = -0.550, p = 0.042) and of the left PFC with a reduction in acceleration magnitude (β = -0.648, p = 0.012). In young adults, the left PFC inhibited inappropriate action and the right PFC stabilized gait performance. In older adults, a less-lateralized PFC activity pattern suppressed the deterioration of gait performance, but this resulted in impairment on a simultaneous cognitive task. These results suggest that lateralization of motor and cognitive tasks aids in efficient task completion during a complex action such as using a smartphone while walking.
Koike, Shinsuke; Takizawa, Ryu; Nishimura, Yukika; Kinou, Masaru; Kawasaki, Shingo; Kasai, Kiyoto
2013-09-01
Caudal regions of the prefrontal cortex, including the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex, are involved in essential cognitive functions such as working memory. In contrast, more rostral regions, such as the frontopolar cortex (FpC), have integrative functions among cognitive functions and thereby contribute crucially to real-world social activity. Previous functional magnetic resonance imaging studies have shown patients with schizophrenia had different DLPFC activity pattern in response to cognitive load changes compared to healthy controls; however, the spatial relationship between the caudal and rostral prefrontal activation has not been evaluated under less-constrained conditions. Twenty-six patients with schizophrenia and 26 age-, sex-, and premorbid-intelligence-matched healthy controls participated in this study. Hemodynamic changes during n-back working memory tasks with different cognitive loads were measured using multi-channel near-infrared spectroscopy (NIRS). Healthy controls showed significant task-related activity in the bilateral VLPFC and significant task-related decreased activity in the DLPFC, with greater signal changes when the task required more cognitive load. In contrast, patients with schizophrenia showed activation in the more rostral regions, including bilateral DLPFC and FpC. Neither decreased activity nor greater activation in proportion to elevated cognitive load occurred. This multi-channel NIRS study demonstrated that activation intensity did not increase in patients with schizophrenia associated with cognitive load changes, suggesting hypo-frontality as cognitive impairment in schizophrenia. On the other hand, patients had broader prefrontal activity in areas such as the bilateral DLPFC and FpC regions, thus suggesting a hyper-frontality compensatory response. Copyright © 2013 Elsevier Ltd. All rights reserved.
Practical gigahertz quantum key distribution robust against channel disturbance.
Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; He, De-Yong; Hui, Cong; Hao, Peng-Lei; Fan-Yuan, Guan-Jie; Wang, Chao; Zhang, Li-Jun; Kuang, Jie; Liu, Shu-Feng; Zhou, Zheng; Wang, Yong-Gang; Guo, Guang-Can; Han, Zheng-Fu
2018-05-01
Quantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transferred from the laboratory to the field. Here a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation. Over a 50 km fiber channel with 30 Hz polarization scrambling, the practicality of this phase-coding QKD system was characterized with an interference fringe visibility of 99.35% over 24 h and a stable secure key rate of 306 k bits/s over seven days without active polarization alignment.
Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya
2005-05-30
We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.
Two-pole microring weight banks.
Tait, Alexander N; Wu, Allie X; Ferreira de Lima, Thomas; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R
2018-05-15
Weighted addition is an elemental multi-input to single-output operation that can be implemented with high-performance photonic devices. Microring (MRR) weight banks bring programmable weighted addition to silicon photonics. Prior work showed that their channel limits are affected by coherent inter-channel effects that occur uniquely in weight banks. We fabricate two-pole designs that exploit this inter-channel interference in a way that is robust to dynamic tuning and fabrication variation. Scaling analysis predicts a channel count improvement of 3.4-fold, which is substantially greater than predicted by incoherent analysis used in conventional MRR devices. Advances in weight bank design expand the potential of reconfigurable analog photonic networks and multivariate microwave photonics.
Estimating cognitive workload using wavelet entropy-based features during an arithmetic task.
Zarjam, Pega; Epps, Julien; Chen, Fang; Lovell, Nigel H
2013-12-01
Electroencephalography (EEG) has shown promise as an indicator of cognitive workload; however, precise workload estimation is an ongoing research challenge. In this investigation, seven levels of workload were induced using an arithmetic task, and the entropy of wavelet coefficients extracted from EEG signals is shown to distinguish all seven levels. For a subject-independent multi-channel classification scheme, the entropy features achieved high accuracy, up to 98% for channels from the frontal lobes, in the delta frequency band. This suggests that a smaller number of EEG channels in only one frequency band can be deployed for an effective EEG-based workload classification system. Together with analysis based on phase locking between channels, these results consistently suggest increased synchronization of neural responses for higher load levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combining universal beauty and cultural context in a unifying model of visual aesthetic experience.
Redies, Christoph
2015-01-01
In this work, I propose a model of visual aesthetic experience that combines formalist and contextual aspects of aesthetics. The model distinguishes between two modes of processing. First, perceptual processing is based on the intrinsic form of an artwork, which may or may not be beautiful. If it is beautiful, a beauty-responsive mechanism is activated in the brain. This bottom-up mechanism is universal amongst humans; it is widespread in the visual brain and responsive across visual modalities. Second, cognitive processing is based on contextual information, such as the depicted content, the intentions of the artist or the circumstances of the presentation of the artwork. Cognitive processing is partially top-down and varies between individuals according to their cultural experience. Processing in the two channels is parallel and largely independent. In the general case, an aesthetic experience is induced if processing in both channels is favorable, i.e., if there is resonance in the perceptual processing channel ("aesthetics of perception"), and successful mastering in the cognitive processing channel ("aesthetics of cognition"). I speculate that this combinatorial mechanism has evolved to mediate social bonding between members of a (cultural) group of people. Primary emotions can be elicited via both channels and modulate the degree of the aesthetic experience. Two special cases are discussed. First, in a subset of (post-)modern art, beauty no longer plays a prominent role. Second, in some forms of abstract art, beautiful form can be enjoyed with minimal cognitive processing. The model is applied to examples of Western art. Finally, implications of the model are discussed. In summary, the proposed model resolves the seeming contradiction between formalist perceptual approaches to aesthetic experience, which are based on the intrinsic beauty of artworks, and contextual approaches, which account for highly individual and culturally dependent aspects of aesthetics.
Long-term interference at the semantic level: Evidence from blocked-cyclic picture matching.
Wei, Tao; Schnur, Tatiana T
2016-01-01
Processing semantically related stimuli creates interference across various domains of cognition, including language and memory. In this study, we identify the locus and mechanism of interference when retrieving meanings associated with words and pictures. Subjects matched a probe stimulus (e.g., cat) to its associated target picture (e.g., yarn) from an array of unrelated pictures. Across trials, probes were either semantically related or unrelated. To test the locus of interference, we presented probes as either words or pictures. If semantic interference occurs at the stage common to both tasks, that is, access to semantic representations, then interference should occur in both probe presentation modalities. Results showed clear semantic interference effects independent of presentation modality and lexical frequency, confirming a semantic locus of interference in comprehension. To test the mechanism of interference, we repeated trials across 4 presentation cycles and manipulated the number of unrelated intervening trials (zero vs. two). We found that semantic interference was additive across cycles and survived 2 intervening trials, demonstrating interference to be long-lasting as opposed to short-lived. However, interference was smaller with zero versus 2 intervening trials, which we interpret to suggest that short-lived facilitation counteracted the long-lived interference. We propose that retrieving meanings associated with words/pictures from the same semantic category yields both interference due to long-lasting changes in connection strength between semantic representations (i.e., incremental learning) and facilitation caused by short-lived residual activation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
29 CFR 776.1 - General interpretative guides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... commerce and the channels and instrumentalities of commerce to be used to perpetuate such labor conditions... commerce and the free flow of goods in commerce and (e) interferes with the orderly and fair marketing of...
Exploring adolescent cognitive control in a combined interference switching task.
Mennigen, Eva; Rodehacke, Sarah; Müller, Kathrin U; Ripke, Stephan; Goschke, Thomas; Smolka, Michael N
2014-08-01
Cognitive control enables individuals to flexibly adapt to environmental challenges. In the present functional magnetic resonance imaging (fMRI) study, we investigated 185 adolescents at the age of 14 with a combined response interference switching task measuring behavioral responses (reaction time, RT and error rate, ER) and brain activity during the task. This task comprises two types of conflict which are co-occurring, namely, task switching and stimulus-response incongruence. Data indicated that already in adolescents an overlapping cognitive control network comprising the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA) and posterior parietal cortex (PPC) is recruited by conflicts arising from task switching and response incongruence. Furthermore our study revealed higher blood oxygenation level dependent (BOLD) responses elicited by incongruent stimuli in participants with a pronounced incongruence effect, calculated as the RT difference between incongruent and congruent trials. No such correlation was observed for switch costs. Furthermore, increased activation of the default mode network (DMN) was only observed in congruent trials compared to incongruent trials, but not in task repetition relative to task switch trials. These findings suggest that even though the two processes of task switching and response incongruence share a common cognitive control network they might be processed differentially within the cognitive control network. Results are discussed in the context of a novel hypothesis concerning antagonistic relations between the DMN and the cognitive control network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fales, Christina L.; Barch, Deanna M.; Rundle, Melissa M.; Mintun, Mark A.; Snyder, Abraham Z.; Cohen, Jonathan D.; Mathews, Jose; Sheline, Yvette I.
2008-01-01
Background Major depression is characterized by a negativity bias: an enhanced responsiveness to, and memory for, affectively negative stimuli. However it is not yet clear whether this bias represents (1) impaired top-down cognitive control over affective responses, potentially linked to deficits in dorsolateral prefrontal cortex function; or (2) enhanced bottom-up responses to affectively-laden stimuli that dysregulate cognitive control mechanisms, potentially linked to deficits in amygdala and anterior cingulate function. Methods We used an attentional interference task using emotional distracters to test for top-down versus bottom-up dysfunction in the interaction of cognitive-control circuitry and emotion-processing circuitry. A total of 27 patients with major depression and 24 controls were tested. Event-related functional magnetic resonance imaging was carried out as participants directly attended to, or attempted to ignore, fear-related stimuli. Results Compared to controls, patients with depression showed an enhanced amygdala response to unattended fear-related stimuli (relative to unattended neutral). By contrast, control participants showed increased activity in right dorsolateral prefrontal cortex (Brodmann areas 46/9) when ignoring fear stimuli (relative to neutral), which the patients with depression did not. In addition, the depressed participants failed to show evidence of error-related cognitive adjustments (increased activity in bilateral dorsolateral prefrontal cortex on post-error trials), but the control group did show them. Conclusions These results suggest multiple sources of dysregulation in emotional and cognitive control circuitry in depression, implicating both top-down and bottom-up dysfunction. PMID:17719567
[Cognitive impairment of alcohol-dependent subjects].
Bernardin, Florent; Maheut-Bosser, Anne; Paille, François
2014-04-01
Chronic excessive alcohol consumption induces multiple brain damages. Secondary cognitive disorders include executive functions, episodic memory and visuospatial capacities. The severity of these alcohol induced disorders may vary between sub-clinical manifestations (that may, nevertheless, interfere with medical management) and more important ones like Korsakoff syndrome or dementia. The latter are usually irreversible but many of these manifestations are potentially reversible with persistent abstinence. It therefore appears of particular importance to clearly define neuropsychological management in order to identify and evaluate the type and severity of alcohol-related cognitive disorders. The patients may then be offered rehabilitation for these cognitive impairments. This is the first step of a complete addiction program based especially on cognitive behavioral therapies.
Cognitive Facilitation Following Intentional Odor Exposure
Johnson, Andrew J.
2011-01-01
This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities. PMID:22163909
Gustafson, Deborah R.; Mielke, Michelle M.; Tien, Phyllis C.; Valcour, Victor; Cohen, Mardge; Anastos, Kathryn; Liu, Chenglong; Pearce, Leigh; Golub, Elizabeth T.; Minkoff, Howard; Crystal, Howard A.
2014-01-01
Objective To explore the relationship of body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR) with cognition in women with (HIV+) and without HIV (HIV-) infection. Design/Methods 1690 participants (1196 HIV+, 494 HIV-) in the Women's Interagency HIV Study (WIHS) with data available on anthropometric measures comprise the analytical sample. Cross-sectional analyses using linear regression models estimated the relationship between anthropometric variables and Trails A, Trails B, Stroop interference time, Stroop word recall, Stroop color naming and reading, and Symbol Digit Modalities Test (SDMT) with consideration for age, HIV infection status, Wide Range Achievement Test score, CD4 count, insulin resistance, drug use, and race/ethnicity. Results Among HIV+ women, BMI < 18.5 kg/m2 was associated with poorer cognitive performance evidenced by longer Trails A and Trails B and shorter SDMT completion times. An obese BMI (30 kg/m2 or higher) was related to better performance on Trails B and worse performance on the Stroop Interference test. Among HIV- women, an obese BMI was related to worse performance on the Stroop – Color naming test. Few and inconsistent associations were observed between WC, WHR and cognition. Conclusion Among women at mid-life with chronic (at least 10 years) HIV infection, common anthropometric measures, primarily BMI, were differentially related to cognitive test performance by cognitive domain. Higher levels of BMI were associated with better cognitive function. In this era of antiretroviral therapies, restoration of health evidenced as higher BMI due to effective antiretroviral therapies, may improve cognitive function in middle-aged HIV infected women. PMID:24338243
Evaluation of Clipping Based Iterative PAPR Reduction Techniques for FBMC Systems
Kollár, Zsolt
2014-01-01
This paper investigates filter bankmulticarrier (FBMC), a multicarrier modulation technique exhibiting an extremely low adjacent channel leakage ratio (ACLR) compared to conventional orthogonal frequency division multiplexing (OFDM) technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR) is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER). PMID:24558338
Electricity resonance-induced fast transport of water through nanochannels.
Kou, Jianlong; Lu, Hangjun; Wu, Fengmin; Fan, Jintu; Yao, Jun
2014-09-10
We performed molecular dynamics simulations to study water permeation through a single-walled carbon nanotube with electrical interference. It was found that the water net flux across the nanochannel is greatly affected by the external electrical interference, with the maximal net flux occurred at an electrical interference frequency of 16670 GHz being about nine times as high as the net flux at the low or high frequency range of (<1000 GHz or >80,000 GHz). The above phenomena can be attributed to the breakage of hydrogen bonds as the electrical interference frequency approaches to the inherent resonant frequency of hydrogen bonds. The new mechanism of regulating water flux across nanochannels revealed in this study provides an insight into the water transportation through biological water channels and has tremendous potential in the design of high-flux nanofluidic systems.
Leroux, Gaëlle; Joliot, Marc; Dubal, Stéphanie; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie; Houdé, Olivier
2006-06-01
We sought to determine whether the neural traces of a previous cognitive developmental stage could be evidenced in young adults. In order to do so, 12 young adults underwent two functional imaging acquisitions (EEG then fMRI). During each session, two experimental conditions were applied: a Piaget-like task with number/length interference (INT), and a reference task with number/length covariation (COV). To succeed at Piaget's numerical task, which children under the age of 7 years usually fail, the subjects had to inhibit a misleading strategy, namely, the visuospatial length-equals-number bias, a quantification heuristic that is often relevant and that continues to be used through adulthood. Behavioral data confirmed that although there was an automation in the young adult subjects as assessed by the very high number of accurate responses (>97%), the inhibition of the "length equals number strategy" had a cognitive cost, as the reaction times were significantly higher in INT than in COV (with a difference of 230 ms). The event-related potential results acquired during the first session showed electrophysiological markers of the cognitive inhibition of the number/length interference. Indeed, the frontal N2 was greater during INT than during COV, and a P3(late)/P6 was detected only during INT. During the fMRI session, a greater activation of unimodal areas (the right middle and superior occipital cortex) and in the ventral route (the left inferior temporal cortex) was observed in INT than in COV. These results seem to indicate that when fully automated in adults, inhibition processes might take place in unimodal areas. Copyright 2005 Wiley-Liss, Inc.
Performance of the split-symbol moments SNR estimator in the presence of inter-symbol interference
NASA Technical Reports Server (NTRS)
Shah, B.; Hinedi, S.
1989-01-01
The Split-Symbol Moments Estimator (SSME) is an algorithm that is designed to estimate symbol signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise (AWGN). The performance of the SSME algorithm in band-limited channels is examined. The effects of the resulting inter-symbol interference (ISI) are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance prediction purposes. Furthermore, they are validated through digital simulations.
Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.
2013-01-01
We used Surface Enhanced Raman Spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between microfluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells (Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules. PMID:24932024