Sample records for cognitive mapping techniques

  1. Cognitive Mapping Techniques: Implications for Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Dixon, Raymond A.; Lammi, Matthew

    2014-01-01

    The primary goal of this paper is to present the theoretical basis and application of two types of cognitive maps, concept map and mind map, and explain how they can be used by educational researchers in engineering design research. Cognitive mapping techniques can be useful to researchers as they study students' problem solving strategies…

  2. A symbolic/subsymbolic interface protocol for cognitive modeling

    PubMed Central

    Simen, Patrick; Polk, Thad

    2009-01-01

    Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520

  3. Perceptual-cognitive skills and performance in orienteering.

    PubMed

    Guzmán, José F; Pablos, Ana M; Pablos, Carlos

    2008-08-01

    The goal was analysis of the perceptual-cognitive skills associated with sport performance in orienteering in a sample of 22 elite and 17 nonelite runners. Variables considered were memory, basic orienteering techniques, map reading, symbol knowledge, map-terrain-map identification, and spatial organisation. A computerised questionnaire was developed to measure the variables. The reliability of the test (agreement between experts) was 90%. Findings suggested that competence in performing basic orienteering techniques efficiently was a key variable differentiating between the elite and the nonelite athletes. The results are discussed in comparison with previous studies.

  4. Old Lamps for New: Mnemonic Techniques and the Thesis

    ERIC Educational Resources Information Center

    Carter, Susan

    2009-01-01

    The mnemonic techniques of the past, like mind maps, metaphors, and narrative theory, offer research students, especially doctoral candidates, another cognitive support. These techniques pre-date computers (and possibly literacy), so shift cognitive organization from the page or the computer screen to the mind. This article compares early memory…

  5. The Random-Map Technique: Enhancing Mind-Mapping with a Conceptual Combination Technique to Foster Creative Potential

    ERIC Educational Resources Information Center

    Malycha, Charlotte P.; Maier, Günter W.

    2017-01-01

    Although creativity techniques are highly recommended in working environments, their effects have been scarcely investigated. Two cognitive processes are often considered to foster creative potential and are, therefore, taken as a basis for creativity techniques: knowledge activation and conceptual combination. In this study, both processes were…

  6. Cognitive Mapping Tobacco Control Advice for Dentistry: A Dental PBRN Study

    ERIC Educational Resources Information Center

    Qu, Haiyan; Houston, Thomas K.; Williams, Jessica H.; Gilbert, Gregg H.; Shewchuk, Richard M.

    2011-01-01

    Objective: To identify facilitative strategies that could be used in developing a tobacco cessation program for community dental practices. Methods: Nominal group technique (NGT) meetings and a card-sort task were used to obtain formative data. A cognitive mapping approach involving multidimensional scaling and hierarchical cluster analysis was…

  7. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  8. Management of the Lower St. Croix riverway: the application of cognitive visual mapping and social and resource assessment methods

    Treesearch

    Robert Becker; William Gates; Bernard J. Niemann Jr.

    1979-01-01

    This paper provides an overview of methods and results obtained from an extensive social and recreational carrying capacity study conducted for a National Scenic and Recreational Riverway - the Lower St. Croix. The paper also includes preliminary results and illustrations of a cognitive mapping technique for mapping scenic beauty. Over 1000 separate polygons were...

  9. Dynamic mapping of brain and cognitive control of virtual gameplay (study by functional magnetic resonance imaging).

    PubMed

    Rezakova, M V; Mazhirina, K G; Pokrovskiy, M A; Savelov, A A; Savelova, O A; Shtark, M B

    2013-04-01

    Using functional magnetic resonance imaging technique, we performed online brain mapping of gamers, practiced to voluntary (cognitively) control their heart rate, the parameter that operated a competitive virtual gameplay in the adaptive feedback loop. With the default start picture, the regions of interest during the formation of optimal cognitive strategy were as follows: Brodmann areas 19, 37, 39 and 40, i.e. cerebellar structures (vermis, amygdala, pyramids, clivus). "Localization" concept of the contribution of the cerebellum to cognitive processes is discussed.

  10. Neuroanatomical Substrates of Social Cognition Dysfunction in Autism

    ERIC Educational Resources Information Center

    Pelphrey, Kevin; Adolphs, Ralph; Morris, James P.

    2004-01-01

    In this review article, we summarize recent progress toward understanding the neural structures and circuitry underlying dysfunctional social cognition in autism. We review selected studies from the growing literature that has used the functional neuroimaging techniques of cognitive neuroscience to map out the neuroanatomical substrates of social…

  11. Time-space and cognition-space transformations for transportation network analysis based on multidimensional scaling and self-organizing map

    NASA Astrophysics Data System (ADS)

    Hong, Zixuan; Bian, Fuling

    2008-10-01

    Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.

  12. The Synthesis Map Is a Multidimensional Educational Tool That Provides Insight into Students' Mental Models and Promotes Students' Synthetic Knowledge Generation

    ERIC Educational Resources Information Center

    Ortega, Ryan A.; Brame, Cynthia J.

    2015-01-01

    Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping,…

  13. Concept Mapping as a Learning Tool for the Employment Relations Degree

    ERIC Educational Resources Information Center

    Martinez-Canas, Ricardo; Ruiz-Palomino, Pablo

    2011-01-01

    Concept mapping is a technique to represent relationships between concepts that can help students to improve their meaningful learning. Using the cognitive theories proposed by Ausubel (1968), concept maps can help instructors and students to enhance their logical thinking and study skills by revealing connections among concepts that can simplify…

  14. Sequential Pattern Analysis: Method and Application in Exploring How Students Develop Concept Maps

    ERIC Educational Resources Information Center

    Chiu, Chiung-Hui; Lin, Chien-Liang

    2012-01-01

    Concept mapping is a technique that represents knowledge in graphs. It has been widely adopted in science education and cognitive psychology to aid learning and assessment. To realize the sequential manner in which students develop concept maps, most research relies upon human-dependent, qualitative approaches. This article proposes a method for…

  15. An Analysis, Using Concept Mapping, of Diabetic Patients' Knowledge, before and after Patient Education.

    ERIC Educational Resources Information Center

    Marchand, C.; d'Ivernois, J. F.; Assal, J. P.; Slama, G.; Hivon, R.

    2002-01-01

    Assesses whether concept maps used with diabetic patients could describe their cognitive structure, before and after having followed an educational program. Involves 10 diabetic patients and shows that concept maps can be a suitable technique to explore the type and organization of the patients' prior knowledge and to visualize what they have…

  16. Studies of the Cognitive Representation of Spatial Relations: I. Overview.

    ERIC Educational Resources Information Center

    Baird, John C.

    1979-01-01

    This article reviews two experiments on the mapping and planning of actual (campus buildings) and hypothetical (ideal town facilities) items in a two-dimensional space. Direct mapping (planning) techniques are preferred over the method of pair comparisons, especially for the actual environment. (See TM 504 879-880) (Author/CTM)

  17. The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language

    PubMed Central

    Poeppel, David

    2012-01-01

    Research on the brain basis of speech and language faces theoretical and empirical challenges. The majority of current research, dominated by imaging, deficit-lesion, and electrophysiological techniques, seeks to identify regions that underpin aspects of language processing such as phonology, syntax, or semantics. The emphasis lies on localization and spatial characterization of function. The first part of the paper deals with a practical challenge that arises in the context of such a research program. This maps problem concerns the extent to which spatial information and localization can satisfy the explanatory needs for perception and cognition. Several areas of investigation exemplify how the neural basis of speech and language is discussed in those terms (regions, streams, hemispheres, networks). The second part of the paper turns to a more troublesome challenge, namely how to formulate the formal links between neurobiology and cognition. This principled problem thus addresses the relation between the primitives of cognition (here speech, language) and neurobiology. Dealing with this mapping problem invites the development of linking hypotheses between the domains. The cognitive sciences provide granular, theoretically motivated claims about the structure of various domains (the ‘cognome’); neurobiology, similarly, provides a list of the available neural structures. However, explanatory connections will require crafting computationally explicit linking hypotheses at the right level of abstraction. For both the practical maps problem and the principled mapping problem, developmental approaches and evidence can play a central role in the resolution. PMID:23017085

  18. Three-Dimensional Gray Matter Atrophy Mapping in Mild Cognitive Impairment and Mild Alzheimer Disease

    PubMed Central

    Apostolova, Liana G.; Steiner, Calen A.; Akopyan, Gohar G.; Dutton, Rebecca A.; Hayashi, Kiralee M.; Toga, Arthur W.; Cummings, Jeffrey L.; Thompson, Paul M.

    2011-01-01

    Background Alzheimer disease (AD) is the most common form of dementia worldwide. Mild cognitive impairment (MCI) is the recent terminology for patients with cognitive deficiencies in the absence of functional decline. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to dementia at a rate of 10% to 15% per year. Patients with AD and MCI experience progressive brain atrophy. Objective To analyze the structural magnetic resonance imaging data for 24 patients with amnestic MCI and 25 patients with mild AD using an advanced 3-dimensional cortical mapping technique. Design Cross-sectional cohort design. Patients/Methods We analyzed the structural magnetic resonance imaging data of 24 amnestic MCI (mean MMSE, 28.1; SD, 1.7) and 25 mild AD patients (all MMSE scores, >18; mean MMSE, 23.7; SD, 2.9) using an advanced 3-dimensional cortical mapping technique. Results We observed significantly greater cortical atrophy in patients with mild AD. The entorhinal cortex, right more than left lateral temporal cortex, right parietal cortex, and bilateral precuneus showed 15% more atrophy and the remainder of the cortex primarily exhibited 10% to 15% more atrophy in patients with mild AD than in patients with amnestic MCI. Conclusion There are striking cortical differences between mild AD and the immediately preceding cognitive state of amnestic MCI. Cortical areas affected earlier in the disease process are more severely affected than those that are affected late. Our method may prove to be a reliable in vivo disease-tracking technique that can also be used for evaluating disease-modifying therapies in the future. PMID:17923632

  19. Reflecting on the efficacy of cognitive mapping for decision-making in intellectual disability care: a case study.

    PubMed

    Duryan, Meri; Nikolik, Dragan; van Merode, Godefridus; Curfs, Leopold M G

    2015-01-01

    The central aspect of this study is a set of reflections on the efficacy of soft operational research techniques in understanding the dynamics of a complex system such as intellectual disability (ID) care providers. Organizations providing services to ID patients are complex and have many interacting stakeholders with often different and competing interests. Understanding the causes for failures in complex systems is crucial for appreciating the multiple perspectives of the key stakeholders of the system. Knowing the factors that adversely affect delivery of a patient-centred care by ID provider organizations offers the potential for identifying more effective resource-allocation solutions. The authors suggest cognitive mapping as a starting point for system dynamics modelling of optimal resource-allocation projects in ID care. The application of the method is illustrated via a case study in one of the ID care providers in the Netherlands. The paper discusses some of the practical implications of applying problem-structuring methods that support gathering feedback from vulnerable service users and front-line workers. The authors concluded that cognitive mapping technique can assist the management of healthcare organizations in strategic decision-making. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Awake surgery between art and science. Part II: language and cognitive mapping

    PubMed Central

    Talacchi, Andrea; Santini, Barbara; Casartelli, Marilena; Monti, Alessia; Capasso, Rita; Miceli, Gabriele

    Summary Direct cortical and subcortical stimulation has been claimed to be the gold standard for exploring brain function. In this field, efforts are now being made to move from intraoperative naming-assisted surgical resection towards the use of other language and cognitive tasks. However, before relying on new protocols and new techniques, we need a multi-staged system of evidence (low and high) relating to each step of functional mapping and its clinical validity. In this article we examine the possibilities and limits of brain mapping with the aid of a visual object naming task and various other tasks used to date. The methodological aspects of intraoperative brain mapping, as well as the clinical and operative settings, were discussed in Part I of this review. PMID:24139658

  1. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  2. Assessing Local Knowledge Use in Agroforestry Management with Cognitive Maps

    NASA Astrophysics Data System (ADS)

    Isaac, Marney E.; Dawoe, Evans; Sieciechowicz, Krystyna

    2009-06-01

    Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 ± 3 variables and 19 ± 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.

  3. Assessing local knowledge use in agroforestry management with cognitive maps.

    PubMed

    Isaac, Marney E; Dawoe, Evans; Sieciechowicz, Krystyna

    2009-06-01

    Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 +/- 3 variables and 19 +/- 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.

  4. Comparison of Content Structure and Cognitive Structure in the Learning of Probability.

    ERIC Educational Resources Information Center

    Geeslin, William E.

    Digraphs, graphs, and task analysis were used to map out the content structure of a programed text (SMSG) in elementary probability. Mathematical structure was defined as the relationship between concepts within a set of abstract systems. The word association technique was used to measure the existing relations (cognitive structure) in S's memory…

  5. Capturing Changes in HIV-Infected Breastfeeding Mothers’ Cognitive Processes from Before Delivery to 5 Months Postpartum: An Application of the Pile-Sorting Technique in Haiti

    PubMed Central

    Fox, Elizabeth L; Pelto, Gretel H; Bar, Haim; Rasmussen, Kathleen M; Young, Sera L; Debrosse, Marie Guerda; Rouzier, Vanessa A; Pape, Jean William; Pelletier, David L

    2018-01-01

    Abstract Background The cognitive processes involved in individuals’ perceptions and prioritization of information, and how these change with experience or exposure to interventions, are rarely examined in the evaluation of nutrition interventions. Exclusive breastfeeding counseling is a common infant and young-child feeding intervention and is used to promote HIV-free survival in the prevention of mother-to-child transmission programs. However, it is often designed without adequate attention to the changes in mothers’ perceptions over the course of their early breastfeeding experiences. Objective The aim of this study was to identify HIV-infected breastfeeding mothers’ cognitive structure (their organization of messages and ideas) of infant feeding messages and to characterize whether their cognitive organization of infant feeding messages changed from pregnancy through the first 5 mo postpartum. Methods With the use of semistructured interviews and the cognitive mapping technique of pile sorting, we interviewed 30 HIV-infected breastfeeding mothers in Port-au-Prince, Haiti. We asked them to sort and rate 18 infant feeding messages 3 times (during pregnancy, 0- to 1-mo postpartum, and 3- to 5-mo postpartum). We analyzed their responses by using multidimensional scaling, property fitting, and partition analyses. Results At all 3 visits, we found consistency in women's cognitive mapping of messages. For example, mothers consistently differentiated messages pertinent for exclusive breastfeeding compared with those that pertained to other practices. However, subtle variations in mothers’ cognition over time were also evident, particularly at 0- to 1-mo postpartum, when message proximity was tightly clustered compared with the earlier and later periods. Conclusions We conclude that mothers share a common cognitive organization of infant feeding messages and that this organization changes over time. Attention to variations in cognition can support context-sensitive, patient-centered counseling by practitioners and improve the effectiveness of nutrition interventions. Pile sorting is an efficient, systematic technique to examine cognitive processes related to health and nutrition.

  6. Concept Mapping as an Innovative Tool for the Assessment of Learning: An Experimental Experience among Business Management Degree Students

    ERIC Educational Resources Information Center

    Ruiz-Palomino, Pablo; Martinez-Canas, Ricardo

    2013-01-01

    In the search to improve the quality of education at the university level, the use of concept mapping is becoming an important instructional technique for enhancing the teaching-learning process. This educational tool is based on cognitive theories by making a distinction between learning by rote (memorizing) and learning by meaning, where…

  7. Collaborative and Multilingual Approach to Learn Database Topics Using Concept Maps

    PubMed Central

    Calvo, Iñaki

    2014-01-01

    Authors report on a study using the concept mapping technique in computer engineering education for learning theoretical introductory database topics. In addition, the learning of multilingual technical terminology by means of the collaborative drawing of a concept map is also pursued in this experiment. The main characteristics of a study carried out in the database subject at the University of the Basque Country during the 2011/2012 course are described. This study contributes to the field of concept mapping as these kinds of cognitive tools have proved to be valid to support learning in computer engineering education. It contributes to the field of computer engineering education, providing a technique that can be incorporated with several educational purposes within the discipline. Results reveal the potential that a collaborative concept map editor offers to fulfil the above mentioned objectives. PMID:25538957

  8. Human Orbitofrontal Cortex Represents a Cognitive Map of State Space.

    PubMed

    Schuck, Nicolas W; Cai, Ming Bo; Wilson, Robert C; Niv, Yael

    2016-09-21

    Although the orbitofrontal cortex (OFC) has been studied intensely for decades, its precise functions have remained elusive. We recently hypothesized that the OFC contains a "cognitive map" of task space in which the current state of the task is represented, and this representation is especially critical for behavior when states are unobservable from sensory input. To test this idea, we apply pattern-classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that unobservable task states can be decoded from activity in OFC, and decoding accuracy is related to task performance and the occurrence of individual behavioral errors. Moreover, similarity between the neural representations of consecutive states correlates with behavioral accuracy in corresponding state transitions. These results support the idea that OFC represents a cognitive map of task space and establish the feasibility of decoding state representations in humans using non-invasive neuroimaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Learning Strategies: Secondary LD Students in the Mainstream.

    ERIC Educational Resources Information Center

    D'Antoni, Alice; And Others

    The paper presents four learning strategy techniques--the SQ3R method of study, the Multipass Strategy, the Advanced Study Guide Technique, and Cognitive Mapping--for use with secondary level learning disabled students. The SQ3R method involves the five steps of survey, question, read, recite, and review. An adaption of the SQ3R method, the…

  10. Mapping Social Interactions: The Science of Proxemics.

    PubMed

    McCall, Cade

    Interpersonal distance and gaze provide a wealth of information during face-to-face social interactions. These "proxemic" behaviors offer a window into everyday social cognition by revealing interactants' affective states (e.g., interpersonal attitudes) and cognitive responses (e.g., social attention). Here we provide a brief overview of the social psychological literature in this domain. We focus on new techniques for experimentally manipulating and measuring proxemics, including the use of immersive virtual environments and digital motion capture. We also discuss ways in which these approaches can be integrated with psychophysiological and neuroimaging techniques. Throughout, we argue that contemporary proxemics research provides psychology and neuroscience with a means to study social cognition and behavior as they naturally emerge and unfold in vivo.

  11. Techniques to Collect and Analyze the Cognitive Map Knowledge of Persons with Visual Impairment or Blindness: Issues of Validity.

    ERIC Educational Resources Information Center

    Kitchin, R. M.; Jacobson, R. D.

    1997-01-01

    Assesses techniques used by researchers to collect and analyze data on how people with visual impairments or blindness learn, understand, and think about geographic space. Recommendations are made for increasing the validity of studies, including the use of multiple, mutually supportive tests; larger samples; and real-world environments.…

  12. How Albot0 finds its way home: a novel approach to cognitive mapping using robots.

    PubMed

    Yeap, Wai K

    2011-10-01

    Much of what we know about cognitive mapping comes from observing how biological agents behave in their physical environments, and several of these ideas were implemented on robots, imitating such a process. In this paper a novel approach to cognitive mapping is presented whereby robots are treated as a species of their own and their cognitive mapping is being investigated. Such robots are referred to as Albots. The design of the first Albot, Albot0 , is presented. Albot0 computes an imprecise map and employs a novel method to find its way home. Both the map and the return-home algorithm exhibited characteristics commonly found in biological agents. What we have learned from Albot0 's cognitive mapping are discussed. One major lesson is that the spatiality in a cognitive map affords us rich and useful information and this argues against recent suggestions that the notion of a cognitive map is not a useful one. Copyright © 2011 Cognitive Science Society, Inc.

  13. Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region

    PubMed Central

    Penn, Alexandra S.; Knight, Christopher J. K.; Lloyd, David J. B.; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case and in general. We conclude by proposing an extended FCM methodology, including multiple functional mappings within one participant-constructed graph. PMID:24244303

  14. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM)

    PubMed Central

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.

    2016-01-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628

  15. Constructivist developmental theory is needed in developmental neuroscience

    NASA Astrophysics Data System (ADS)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  16. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps

    PubMed Central

    2016-01-01

    Abstract Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  17. A Pragmatic Approach to Sales Training

    ERIC Educational Resources Information Center

    Buzzotta, V. R.; And Others

    1974-01-01

    A systematic ten-step approach to behavioral sales training is offered: (1) sales-behavior training goals, (2) cognitive maps, (3) sizing-up of skills, (4) selling techniques, (5) realistic practice, (6) feedback, (7) individual business goals, (8) plan of action, (9) review of results, and (10) research results. (MW)

  18. Assessing Understanding of Complex Causal Networks Using an Interactive Game

    ERIC Educational Resources Information Center

    Ross, Joel

    2013-01-01

    Assessing people's understanding of the causal relationships found in large-scale complex systems may be necessary for addressing many critical social concerns, such as environmental sustainability. Existing methods for assessing systems thinking and causal understanding frequently use the technique of cognitive causal mapping. However, the…

  19. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    PubMed

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Cognitive mapping tools: review and risk management needs.

    PubMed

    Wood, Matthew D; Bostrom, Ann; Bridges, Todd; Linkov, Igor

    2012-08-01

    Risk managers are increasingly interested in incorporating stakeholder beliefs and other human factors into the planning process. Effective risk assessment and management requires understanding perceptions and beliefs of involved stakeholders, and how these beliefs give rise to actions that influence risk management decisions. Formal analyses of risk manager and stakeholder cognitions represent an important first step. Techniques for diagramming stakeholder mental models provide one tool for risk managers to better understand stakeholder beliefs and perceptions concerning risk, and to leverage this new understanding in developing risk management strategies. This article reviews three methodologies for assessing and diagramming stakeholder mental models--decision-analysis-based mental modeling, concept mapping, and semantic web analysis--and assesses them with regard to their ability to address risk manager needs. © 2012 Society for Risk Analysis.

  1. A comparative study of the effect of student and instructor cognitive mapping on student achievement and attitudes in introductory college biology for nonmajors

    NASA Astrophysics Data System (ADS)

    Dardis, Deborah J. Athas

    Within a single research design, this investigation compared the effects of student and instructor cognitive mapping on student achievement and attitudes in introductory college biology for nonmajors. Subjects self-selected into either a Control Group that experienced no cognitive mapping, an Experimental Group 1 that experienced instructor cognitive mapping, or an Experimental Group 2 in which students constructed cognitive maps. Data were collected by a Students' Opinions of Teaching Poll and instructor prepared tests that included objective questions representing all levels of the cognitive domain. An ANCOVA revealed no significant differences in the academic achievement of students in the control and experimental groups. The academic performance of males and females was similar among all three groups of students and data confirmed a lack of interaction between gender and instructional strategy. This investigation confirmed that cognitive mapping will not disrupt a gender-neutral classroom environment. Students' opinions of teaching were overwhelmingly positive. A Kruskal Wallis analysis, followed by a nonparametric Tukey-type multiple comparison, revealed that students who experienced no mapping consistently rated the instructor with higher scores than did students who experienced instructor mapping. Students who cooperatively constructed cognitive maps reported the lowest scores on the opinion polls.

  2. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM).

    PubMed

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J; Gunter, Jeffrey L; Carmona, Susanna; Jaeggi, Susanne M; Thompson, Paul M

    2016-10-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Specialization of Function: Cognitive and Neural Perspectives

    PubMed Central

    Mahon, Bradford Z.; Cantlon, Jessica F.

    2014-01-01

    A unifying theme that cuts across all research areas and techniques in the cognitive and brain sciences is whether there is specialization of function at levels of processing that are ‘abstracted away’ from sensory inputs and motor outputs. Any theory that articulates claims about specialization of function in the mind/brain confronts the following types of interrelated questions, each of which carries with it certain theoretical commitments. What methods are appropriate for decomposing complex cognitive and neural processes into their constituent parts? How do cognitive processes map onto neural processes, and at what resolution are they related? What types of conclusions can be drawn about the structure of mind from dissociations observed at the neural level, and vice versa? The contributions that form this Special Issue of Cognitive Neuropsychology represent recent reflections on these and other issues from leading researchers in different areas of the cognitive and brain sciences. PMID:22185234

  4. Differences in Spatial Knowledge of Individuals with Blindness When Using Audiotactile Maps, Using Tactile Maps, and Walking

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Barouti, Marialena; Koustriava, Eleni

    2018-01-01

    To examine how individuals with visual impairments understand space and the way they develop cognitive maps, we studied the differences in cognitive maps resulting from different methods and tools for spatial coding in large geographical spaces. We examined the ability of 21 blind individuals to create cognitive maps of routes in unfamiliar areas…

  5. Cognitive styles and mental rotation ability in map learning.

    PubMed

    Pazzaglia, Francesca; Moè, Angelica

    2013-11-01

    In inspecting, learning and reproducing a map, a wide range of abilities is potentially involved. This study examined the role of mental rotation (MR) and verbal ability, together with that of cognitive styles in map learning. As regards cognitive styles, the traditional distinction between verbalizers and visualizers has been taken into account, together with a more recent distinction between two styles of visualization: spatial and object. One hundred and seven participants filled in two questionnaires on cognitive styles: the Verbalizer-Visualizer Questionnaire (Richardson in J Ment Imag 1:109-125, 1977) and the Object-Spatial Imagery Questionnaire (Blajenkova et al. in Appl Cogn Psych 20:239-263, 2006), performed MR and verbal tests, learned two maps, and were then tested for their recall. It was found that MR ability and cognitive styles played a role in predicting map learning, with some distinctions within cognitive styles: verbal style favoured learning of one of the two maps (the one rich in verbal labels), which in turn was disadvantaged by the adoption of spatial style. Conversely, spatial style predicted learning of the other map, rich in visual features. The discussion focuses on implications for cognitive psychology and everyday cognition.

  6. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment.

    PubMed

    Zanbaka, Catherine A; Lok, Benjamin C; Babu, Sabarish V; Ulinski, Amy C; Hodges, Larry F

    2005-01-01

    We describe a between-subjects experiment that compared four different methods of travel and their effect on cognition and paths taken in an immersive virtual environment (IVE). Participants answered a set of questions based on Crook's condensation of Bloom's taxonomy that assessed their cognition of the IVE with respect to knowledge, understanding and application, and higher mental processes. Participants also drew a sketch map of the IVE and the objects within it. The users' sense of presence was measured using the Steed-Usoh-Slater Presence Questionnaire. The participants' position and head orientation were automatically logged during their exposure to the virtual environment. These logs were later used to create visualizations of the paths taken. Path analysis, such as exploring the overlaid path visualizations and dwell data information, revealed further differences among the travel techniques. Our results suggest that, for applications where problem solving and evaluation of information is important or where opportunity to train is minimal, then having a large tracked space so that the participant can walk around the virtual environment provides benefits over common virtual travel techniques.

  7. How Do (Some) People Make a Cognitive Map? Routes, Places, and Working Memory

    ERIC Educational Resources Information Center

    Weisberg, Steven M.; Newcombe, Nora S.

    2016-01-01

    Research on the existence of cognitive maps and on the cognitive processes that support effective navigation has often focused on functioning across individuals. However, there are pronounced individual differences in navigation proficiency, which need to be explained and which can illuminate our understanding of cognitive maps and effective…

  8. Decreased theta power at encoding and cognitive mapping deficits in elderly individuals during a spatial memory task.

    PubMed

    Lithfous, Ségolène; Tromp, Delphine; Dufour, André; Pebayle, Thierry; Goutagny, Romain; Després, Olivier

    2015-10-01

    The purpose of this study was to investigate the role of theta activity in cognitive mapping, and to determine whether age-associated decreased theta power may account for navigational difficulties in elderly individuals. Cerebral activity was recorded using electroencephalograph in young and older individuals performing a spatial memory task that required the creation of cognitive maps. Power spectra were computed in the frontal and parietal regions and correlated with recognition performance. We found that accuracy of cognitive mapping was positively correlated with left frontal theta activity during encoding in young adults but not in older individuals. Compared with young adults, older participants were impaired in the creation of cognitive maps and showed reduced theta and alpha activity at encoding. These results suggest that encoding processes are impaired in older individual, which may explain age-related cognitive mapping deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Collaborative damage mapping for emergency response: the role of Cognitive Systems Engineering

    NASA Astrophysics Data System (ADS)

    Kerle, N.; Hoffman, R. R.

    2013-01-01

    Remote sensing is increasingly used to assess disaster damage, traditionally by professional image analysts. A recent alternative is crowdsourcing by volunteers experienced in remote sensing, using internet-based mapping portals. We identify a range of problems in current approaches, including how volunteers can best be instructed for the task, ensuring that instructions are accurately understood and translate into valid results, or how the mapping scheme must be adapted for different map user needs. The volunteers, the mapping organizers, and the map users all perform complex cognitive tasks, yet little is known about the actual information needs of the users. We also identify problematic assumptions about the capabilities of the volunteers, principally related to the ability to perform the mapping, and to understand mapping instructions unambiguously. We propose that any robust scheme for collaborative damage mapping must rely on Cognitive Systems Engineering and its principal method, Cognitive Task Analysis (CTA), to understand the information and decision requirements of the map and image users, and how the volunteers can be optimally instructed and their mapping contributions merged into suitable map products. We recommend an iterative approach involving map users, remote sensing specialists, cognitive systems engineers and instructional designers, as well as experimental psychologists.

  10. Using Data-Driven Model-Brain Mappings to Constrain Formal Models of Cognition

    PubMed Central

    Borst, Jelmer P.; Nijboer, Menno; Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John R.

    2015-01-01

    In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping from model components to brain regions. Although such mappings can be based on the experience of the modeler or on a reading of the literature, a formal method is preferred to prevent researcher-based biases. In this paper we used model-based fMRI analysis to create a data-driven model-brain mapping for five modules of the ACT-R cognitive architecture. We then validated this mapping by applying it to two new datasets with associated models. The new mapping was at least as powerful as an existing mapping that was based on the literature, and indicated where the models were supported by the data and where they have to be improved. We conclude that data-driven model-brain mappings can provide strong constraints on cognitive models, and that model-based fMRI is a suitable way to create such mappings. PMID:25747601

  11. Formalization of treatment guidelines using Fuzzy Cognitive Maps and semantic web tools.

    PubMed

    Papageorgiou, Elpiniki I; Roo, Jos De; Huszka, Csaba; Colaert, Dirk

    2012-02-01

    Therapy decision making and support in medicine deals with uncertainty and needs to take into account the patient's clinical parameters, the context of illness and the medical knowledge of the physician and guidelines to recommend a treatment therapy. This research study is focused on the formalization of medical knowledge using a cognitive process, called Fuzzy Cognitive Maps (FCMs) and semantic web approach. The FCM technique is capable of dealing with situations including uncertain descriptions using similar procedure such as human reasoning does. Thus, it was selected for the case of modeling and knowledge integration of clinical practice guidelines. The semantic web tools were established to implement the FCM approach. The knowledge base was constructed from the clinical guidelines as the form of if-then fuzzy rules. These fuzzy rules were transferred to FCM modeling technique and, through the semantic web tools, the whole formalization was accomplished. The problem of urinary tract infection (UTI) in adult community was examined for the proposed approach. Forty-seven clinical concepts and eight therapy concepts were identified for the antibiotic treatment therapy problem of UTIs. A preliminary pilot-evaluation study with 55 patient cases showed interesting findings; 91% of the antibiotic treatments proposed by the implemented approach were in fully agreement with the guidelines and physicians' opinions. The results have shown that the suggested approach formalizes medical knowledge efficiently and gives a front-end decision on antibiotics' suggestion for cystitis. Concluding, modeling medical knowledge/therapeutic guidelines using cognitive methods and web semantic tools is both reliable and useful. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The Reflective Macintosh: A Computer-Assisted Approach to Understanding and Improving Managerial Practice. Project Report.

    ERIC Educational Resources Information Center

    Kerchner, Charles; And Others

    The early stages of a microcomputer-based project to integrate managerial knowledge and practice are described in this report. Analysis of the problem-framing process that effective principals use to reduce complex problems into more manageable ones forms the basis of the project. Three cognitive-mapping techniques are used to understand the…

  13. Construction of Cognitive Maps to Improve E-Book Reading and Navigation

    ERIC Educational Resources Information Center

    Li, Liang-Yi; Chen, Gwo-Dong; Yang, Sheng-Jie

    2013-01-01

    People have greater difficulty reading academic textbooks on screen than on paper. One notable problem is that they cannot construct an effective cognitive map because of the lack of contextual information cues and ineffective navigational mechanisms in e-books. To support the construction of cognitive maps, this paper proposes the visual cue map,…

  14. Supervisor tolerance-responsiveness to substance abuse and workplace prevention training: use of a cognitive mapping tool.

    PubMed

    Bennett, Joel B; Lehman, Wayne E K

    2002-02-01

    Supervisor tolerance-responsiveness, referring to the attitudes and behaviors associated with either ignoring or taking proactive steps with troubled employees, was investigated in two studies. The studies were conducted to help examine, understand and improve supervisor responsiveness to employee substance abuse. Study 1 examined supervisor response to and tolerance of coworker substance use and ways of interfacing with the Employee Assistance Program (EAP) in two workplaces (n = 244 and 107). These surveys suggested that engaging supervisors in a dialogue about tolerance might improve their willingness to use the EAP. Study 2 was a randomized control field experiment that assessed a team-oriented training. This training adopted a cognitive mapping technique to help improve supervisor responsiveness. Supervisors receiving this training (n = 29) were more likely to improve on several dimensions of responsiveness (e.g. likely to contact the EAP) than were supervisors who received a more didactic, informational training (n = 23) or a no-training control group (n = 17). Trained supervisors also showed increases in their own help-seeking behavior. Procedures and maps from the mapping activity (two-stage conversational mapping) are described. Overall, results indicate that while supervisor tolerance of coworker substance use inhibits EAP utilization, it may be possible to address this tolerance using team-oriented prevention training in the work-site.

  15. Frames of reference for helicopter electronic maps - The relevance of spatial cognition and componential analysis

    NASA Technical Reports Server (NTRS)

    Harwood, Kelly; Wickens, Christopher D.

    1991-01-01

    Computer-generated map displays for NOE and low-level helicopter flight were formed according to prior research on maps, navigational problem solving, and spatial cognition in large-scale environments. The north-up map emphasized consistency of object location, wheareas, the track-up map emphasized map-terrain congruency. A component analysis indicates that different cognitive components, e.g., orienting and absolute object location, are supported to varying degrees by properties of different frames of reference.

  16. a Study on Mental Representations for Realistic Visualization the Particular Case of Ski Trail Mapping

    NASA Astrophysics Data System (ADS)

    Balzarini, R.; Dalmasso, A.; Murat, M.

    2015-08-01

    This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making) and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.

  17. Exploring the Interactive Patterns of Concept Map-Based Online Discussion: A Sequential Analysis of Users' Operations, Cognitive Processing, and Knowledge Construction

    ERIC Educational Resources Information Center

    Wu, Sheng-Yi; Chen, Sherry Y.; Hou, Huei-Tse

    2016-01-01

    Concept maps can be used as a cognitive tool to assist learners' knowledge construction. However, in a concept map-based online discussion environment, studies that take into consideration learners' manipulative actions of composing concept maps, cognitive process among learners' discussion, and social knowledge construction at the same time are…

  18. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science

    PubMed Central

    2016-01-01

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574303

  19. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science.

    PubMed

    Turner, Robert

    2016-10-05

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  20. Attitudes and cognitive distances: On the non-unitary and flexible nature of cognitive maps.

    PubMed

    Carbon, Claus-Christian; Hesslinger, Vera M

    2013-01-01

    Spatial relations of our environment are represented in cognitive maps. These cognitive maps are prone to various distortions (e.g., alignment and hierarchical effects) caused by basic cognitive factors (such as perceptual and conceptual reorganization) but also by affectively loaded and attitudinal influences. Here we show that even differences in attitude towards a single person representing a foreign country (here Barack Obama and the USA) can be related to drastic differences in the cognitive representation of distances concerning that country. Europeans who had a positive attitude towards Obama's first presidential program estimated distances between US and European cities as being much smaller than did people who were skeptical or negative towards Obama's ideas. On the basis of this result and existing literature, arguments on the non-unitary and flexible nature of cognitive maps are discussed.

  1. The Mental Manipulation of Cognitive Maps in Children and Adults.

    ERIC Educational Resources Information Center

    Hardwick, Douglas A.; McIntyre, Curtis W.

    Two experiments compared the cognitive maps (mental representations of the spatial environment) of first graders, fifth graders and college students, and investigated developmental changes in the ability to manipulate cognitive maps mentally. In the first experiment, subjects were asked to move from stationpoint to stationpoint and at each, to…

  2. Prioritising coastal zone management issues through fuzzy cognitive mapping approach.

    PubMed

    Meliadou, Aleka; Santoro, Francesca; Nader, Manal R; Dagher, Manale Abou; Al Indary, Shadi; Salloum, Bachir Abi

    2012-04-30

    Effective public participation is an essential component of Integrated Coastal Zone Management implementation. To promote such participation, a shared understanding of stakeholders' objectives has to be built to ultimately result in common coastal management strategies. The application of quantitative and semi-quantitative methods involving tools such as Fuzzy Cognitive Mapping is presently proposed for reaching such understanding. In this paper we apply the Fuzzy Cognitive Mapping tool to elucidate the objectives and priorities of North Lebanon's coastal productive sectors, and to formalize their coastal zone perceptions and knowledge. Then, we investigate the potential of Fuzzy Cognitive Mapping as tool for support coastal zone management. Five round table discussions were organized; one for the municipalities of the area and one for each of the main coastal productive sectors (tourism, industry, fisheries, agriculture), where the participants drew cognitive maps depicting their views. The analysis of the cognitive maps showed a large number of factors perceived as affecting the current situation of the North Lebanon coastal zone that were classified into five major categories: governance, infrastructure, environment, intersectoral interactions and sectoral initiatives. Furthermore, common problems, expectations and management objectives for all sectors were exposed. Within this context, Fuzzy Cognitive Mapping proved to be an essential tool for revealing stakeholder knowledge and perception and understanding complex relationships. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions

    PubMed Central

    Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping. PMID:28700619

  4. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    PubMed

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  5. Effects of Doctorate Program on a Novice Teacher's Conceptualization of an Effective Teacher: A Case Study

    ERIC Educational Resources Information Center

    Ilin, Gülden

    2016-01-01

    This case study, the framework of which is provided by Kelly's Personal Construct Theory, investigates how a female novice ELT teacher structures her constructs on the qualities of an effective teacher. Repertory grid, a cognitive mapping approach, based on Kelly's theory was used as an elicitation technique in the study. The study focused on four…

  6. 3D Mapping of Language Networks in Clinical and Pre-Clinical Alzheimer's Disease

    ERIC Educational Resources Information Center

    Apostolova, Liana G.; Lu, Po; Rogers, Steve; Dutton, Rebecca A.; Hayashi, Kiralee M.; Toga, Arthur W.; Cummings, Jeffrey L.; Thompson, Paul M.

    2008-01-01

    We investigated the associations between Boston naming and the animal fluency tests and cortical atrophy in 19 probable AD and 5 multiple domain amnestic mild cognitive impairment patients who later converted to AD. We applied a surface-based computational anatomy technique to MRI scans of the brain and then used linear regression models to detect…

  7. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.

    PubMed

    Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer

    2013-11-01

    Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping. © 2013.

  8. Looking beyond the Boundaries: Time to Put Landmarks Back on the Cognitive Map?

    ERIC Educational Resources Information Center

    Lew, Adina R.

    2011-01-01

    Since the proposal of Tolman (1948) that mammals form maplike representations of familiar environments, cognitive map theory has been at the core of debates on the fundamental mechanisms of animal learning and memory. Traditional formulations of cognitive map theory emphasize relations between landmarks and between landmarks and goal locations as…

  9. Superior Cognitive Mapping through Single Landmark-Related Learning than through Boundary-Related Learning

    ERIC Educational Resources Information Center

    Zhou, Ruojing; Mou, Weimin

    2016-01-01

    Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than striatum-dependent response learning. However, we proposed that either type of spatial learning, as long as it involves encoding metric relations between locations and reference points, could lead to a cognitive map. Furthermore, the fewer reference points…

  10. Attitudes and cognitive distances: On the non-unitary and flexible nature of cognitive maps

    PubMed Central

    Carbon, Claus-Christian; Hesslinger, Vera M.

    2013-01-01

    Spatial relations of our environment are represented in cognitive maps. These cognitive maps are prone to various distortions (e.g., alignment and hierarchical effects) caused by basic cognitive factors (such as perceptual and conceptual reorganization) but also by affectively loaded and attitudinal influences. Here we show that even differences in attitude towards a single person representing a foreign country (here Barack Obama and the USA) can be related to drastic differences in the cognitive representation of distances concerning that country. Europeans who had a positive attitude towards Obama’s first presidential program estimated distances between US and European cities as being much smaller than did people who were skeptical or negative towards Obama’s ideas. On the basis of this result and existing literature, arguments on the non-unitary and flexible nature of cognitive maps are discussed. PMID:24155860

  11. A Ranking Analysis/An Interlinking Approach of New Triangular Fuzzy Cognitive Maps and Combined Effective Time Dependent Matrix

    NASA Astrophysics Data System (ADS)

    Adiga, Shreemathi; Saraswathi, A.; Praveen Prakash, A.

    2018-04-01

    This paper aims an interlinking approach of new Triangular Fuzzy Cognitive Maps (TrFCM) and Combined Effective Time Dependent (CETD) matrix to find the ranking of the problems of Transgenders. Section one begins with an introduction that briefly describes the scope of Triangular Fuzzy Cognitive Maps (TrFCM) and CETD Matrix. Section two provides the process of causes of problems faced by Transgenders using Fuzzy Triangular Fuzzy Cognitive Maps (TrFCM) method and performs the calculations using the collected data among the Transgender. In Section 3, the reasons for the main causes for the problems of the Transgenders. Section 4 describes the Charles Spearmans coefficients of rank correlation method by interlinking of Triangular Fuzzy Cognitive Maps (TrFCM) Method and CETD Matrix. Section 5 shows the results based on our study.

  12. Memory and Space: Towards an Understanding of the Cognitive Map.

    PubMed

    Schiller, Daniela; Eichenbaum, Howard; Buffalo, Elizabeth A; Davachi, Lila; Foster, David J; Leutgeb, Stefan; Ranganath, Charan

    2015-10-14

    More than 50 years of research have led to the general agreement that the hippocampus contributes to memory, but there has been a major schism among theories of hippocampal function over this time. Some researchers argue that the hippocampus plays a broad role in episodic and declarative memory, whereas others argue for a specific role in the creation of spatial cognitive maps and navigation. Although both views have merit, neither provides a complete account of hippocampal function. Guided by recent reviews that attempt to bridge between these views, here we suggest that reconciliation can be accomplished by exploring hippocampal function from the perspective of Tolman's (1948) original conception of a cognitive map as organizing experience and guiding behavior across all domains of cognition. We emphasize recent studies in animals and humans showing that hippocampal networks support a broad range of domains of cognitive maps, that these networks organize specific experiences within the contextually relevant map, and that network activity patterns reflect behavior guided through cognitive maps. These results are consistent with a framework that bridges theories of hippocampal function by conceptualizing the hippocampus as organizing incoming information within the context of a multidimensional cognitive map of spatial, temporal, and associational context. Research of hippocampal function is dominated by two major views. The spatial view argues that the hippocampus tracks routes through space, whereas the memory view suggests a broad role in declarative memory. Both views rely on considerable evidence, but neither provides a complete account of hippocampal function. Here we review evidence that, in addition to spatial context, the hippocampus encodes a wide variety of information about temporal and situational context, about the systematic organization of events in abstract space, and about routes through maps of cognition and space. We argue that these findings cross the boundaries of the memory and spatial views and offer new insights into hippocampal function as a system supporting a broad range of cognitive maps. Copyright © 2015 the authors 0270-6474/15/3513904-08$15.00/0.

  13. What Should We Include in a Cultural Competence Curriculum? An Emerging Formative Evaluation Process to Foster Curriculum Development

    PubMed Central

    Crenshaw, Katie; Shewchuk, Richard M.; Qu, Haiyan; Staton, Lisa J.; Bigby, Judy Ann; Houston, Thomas K.; Allison, Jeroan; Estrada, Carlos A.

    2011-01-01

    Purpose To identify, prioritize, and organize components of a cultural competence curriculum to address disparities in cardiovascular disease. Method In 2006, four separate nominal group technique sessions were conducted with medical students, residents, community physicians, and academic physicians to generate and prioritize a list of concepts (i.e., ideas) to include in a curriculum. Afterward, 45 educators and researchers organized and prioritized the concepts using a card-sorting exercise. Multidimensional scaling (MDS) and hierarchical cluster analysis produced homogeneous groupings of related concepts and generated a cognitive map. The main outcome measures were the number of cultural competence concepts, their relative ranks, and the cognitive map. Results Thirty participants generated 61 concepts, 29 were identified by at least 2 participants. The cognitive map organized concepts into four clusters, interpreted as: (1) patient’s cultural background (e.g.,, information on cultures, habits, values); (2) provider and health care (e.g., clinical skills, awareness of one’s bias, patient-centeredness, and professionalism), communication skills (e.g., history, stereotype avoidance, and health disparities epidemiology); (3) cross-culture (e.g., idiomatic expressions, examples of effective communication); and (4) resources to manage cultural diversity (e.g., translator guides, instructions and community resources). The MDS two-dimensional solution demonstrated a good fit (stress=0.07; R2=0.97). Conclusions A novel, combined approach allowed stakeholders’ inputs to identify and cognitively organize critical domains used to guide development of a cultural competence curriculum. Educators may use this approach to develop and organize educational content for their target audiences, especially in ill-defined areas like cultural competence. PMID:21248602

  14. Spatial-area selective retrieval of multiple object-place associations in a hierarchical cognitive map formed by theta phase coding.

    PubMed

    Sato, Naoyuki; Yamaguchi, Yoko

    2009-06-01

    The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.

  15. Cognitive Maps as a Way of Presenting the Dimension of Comparison within the History of Psychology.

    ERIC Educational Resources Information Center

    Diekhoff, George M.

    1982-01-01

    Describes how cognitive maps can help to stimulate discussion of the structural inter-relationships of psychological theory in college-level history of psychology classes. The author describes a cognitive mapping activity in which students pair prominent theorists and theories, rate their degrees of similarity, and graph the relationships of their…

  16. The Synthesis Map Is a Multidimensional Educational Tool That Provides Insight into Students’ Mental Models and Promotes Students’ Synthetic Knowledge Generation

    PubMed Central

    Ortega, Ryan A.; Brame, Cynthia J.

    2015-01-01

    Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping, which utilizes embedding to layer information within concepts. Prezi’s zooming user interface lets the author of the presentation use both depth as well as distance to show connections between data, ideas, and concepts. Students in the class Biology of Cancer created synthesis maps to illustrate their knowledge of tumorigenesis. Students used multiple organizational schemes to build their maps. We present an analysis of student work, placing special emphasis on organization within student maps and how the organization of knowledge structures in student maps can reveal strengths and weaknesses in student understanding or instruction. We also provide a discussion of best practices for instructors who would like to implement synthesis mapping in their classrooms. PMID:25917385

  17. Mapping cognitive structures of community college students engaged in basic electrostatics laboratories

    NASA Astrophysics Data System (ADS)

    Haggerty, Dennis Charles

    Community college students need to be abstract thinkers in order to be successful in the introductory Physics curriculum. The purpose of this dissertation is to map the abstract thinking of community college Physics students. The laboratory environment was used as a vehicle for the mapping. Three laboratory experiments were encountered. One laboratory was based on the classic Piagetian task, the centripetal motion (CM) problem. The other two laboratories were introductory electrostatic Physics experiments, Resistance (RES) and Capacitance (CAP). The students performed all laboratories using the thinking-aloud technique. The researcher collected their verbal protocols using audiotapes. The audiotaped data was quantified by comparing it to a scoring matrix based on the Piagetian logical operators (Inhelder & Piaget, 1958) for abstract thinking. The students received scores for each laboratory experiment. These scores were compared to a reliable test of intellectual functioning, the Shipley Institute of Living Scale (SILS). Spearman rank correlation coefficients (SRCC) were obtained for SILS versus CM; SILS versus RES; and SILS versus CAP. Statistically significant results were obtained for SILS versus CM and SILS versus RES at the p < 0.05 level. When an outlier to the data was considered and suppressed, the SILS versus CAP was also statistically significant at the p < 0.05 level. The scoring matrix permits a bridge from the qualitative Piagetian level of cognitive development to a quantified, mapped level of cognitive development. The ability to quantify student abstract thinking in Physics education provides a means to adjust an instructional approach. This approach could lead to a proper state of Physics education.

  18. Cognitive Navigation: Toward a Biological Basis for Instructional Design.

    ERIC Educational Resources Information Center

    Tripp, Steven

    2001-01-01

    Discusses cognitive navigation, cognitive maps and online learning, and the role of the hippocampus in navigation. Topics include brain research in animal and human studies; types of memory; human navigation, including land navigation and information navigation; instructional strategies; tree maps of curriculum structure; cognitive complexity; and…

  19. Visualizing complex processes using a cognitive-mapping tool to support the learning of clinical reasoning.

    PubMed

    Wu, Bian; Wang, Minhong; Grotzer, Tina A; Liu, Jun; Johnson, Janice M

    2016-08-22

    Practical experience with clinical cases has played an important role in supporting the learning of clinical reasoning. However, learning through practical experience involves complex processes difficult to be captured by students. This study aimed to examine the effects of a computer-based cognitive-mapping approach that helps students to externalize the reasoning process and the knowledge underlying the reasoning process when they work with clinical cases. A comparison between the cognitive-mapping approach and the verbal-text approach was made by analyzing their effects on learning outcomes. Fifty-two third-year or higher students from two medical schools participated in the study. Students in the experimental group used the computer-base cognitive-mapping approach, while the control group used the verbal-text approach, to make sense of their thinking and actions when they worked with four simulated cases over 4 weeks. For each case, students in both groups reported their reasoning process (involving data capture, hypotheses formulation, and reasoning with justifications) and the underlying knowledge (involving identified concepts and the relationships between the concepts) using the given approach. The learning products (cognitive maps or verbal text) revealed that students in the cognitive-mapping group outperformed those in the verbal-text group in the reasoning process, but not in making sense of the knowledge underlying the reasoning process. No significant differences were found in a knowledge posttest between the two groups. The computer-based cognitive-mapping approach has shown a promising advantage over the verbal-text approach in improving students' reasoning performance. Further studies are needed to examine the effects of the cognitive-mapping approach in improving the construction of subject-matter knowledge on the basis of practical experience.

  20. Mapping Children--Mapping Space.

    ERIC Educational Resources Information Center

    Pick, Herbert L., Jr.

    Research is underway concerning the way the perception, conception, and representation of spatial layout develops. Three concepts are important here--space itself, frame of reference, and cognitive map. Cognitive map refers to a form of representation of the behavioral space, not paired associate or serial response learning. Other criteria…

  1. Frame of reference for electronic maps - The relevance of spatial cognition, mental rotation, and componential task analysis

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Aretz, Anthony; Harwood, Kelly

    1989-01-01

    Three experiments are reported that examine the difference between north-up and track-up maps for airborne navigation. The results of the first two experiments, conducted in a basic laboratory setting, identified the cost associated with mental rotation, when a north-up map is used. However, the data suggest that these costs are neither large nor consistent. The third experiment examined a range of tasks in a higher fidelity helicopter flight simulation, and associated the costs of north-up maps with a cognitive component related to orientation, and the costs of track-up maps with a cognitive component related to inconsistent landmark location. Different tasks are associated with different dependence on these components. The results are discussed in terms of their implications for map design, and for cognitive models of navigational processes.

  2. Linking late cognitive outcome with glioma surgery location using resection cavity maps.

    PubMed

    Hendriks, Eef J; Habets, Esther J J; Taphoorn, Martin J B; Douw, Linda; Zwinderman, Aeilko H; Vandertop, W Peter; Barkhof, Frederik; Klein, Martin; De Witt Hamer, Philip C

    2018-05-01

    Patients with a diffuse glioma may experience cognitive decline or improvement upon resective surgery. To examine the impact of glioma location, cognitive alteration after glioma surgery was quantified and related to voxel-based resection probability maps. A total of 59 consecutive patients (range 18-67 years of age) who had resective surgery between 2006 and 2011 for a supratentorial nonenhancing diffuse glioma (grade I-III, WHO 2007) were included in this observational cohort study. Standardized neuropsychological examination and MRI were obtained before and after surgery. Intraoperative stimulation mapping guided resections towards neurological functions (language, sensorimotor function, and visual fields). Maps of resected regions were constructed in standard space. These resection cavity maps were compared between patients with and without new cognitive deficits (z-score difference >1.5 SD between baseline and one year after resection), using a voxel-wise randomization test and calculation of false discovery rates. Brain regions significantly associated with cognitive decline were classified in standard cortical and subcortical anatomy. Cognitive improvement in any domain occurred in 10 (17%) patients, cognitive decline in any domain in 25 (42%), and decline in more than one domain in 10 (17%). The most frequently affected subdomains were attention in 10 (17%) patients and information processing speed in 9 (15%). Resection regions associated with decline in more than one domain were predominantly located in the right hemisphere. For attention decline, no specific region could be identified. For decline in information speed, several regions were found, including the frontal pole and the corpus callosum. Cognitive decline after resective surgery of diffuse glioma is prevalent, in particular, in patients with a tumor located in the right hemisphere without cognitive function mapping. © The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    PubMed Central

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S.; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G.

    2016-01-01

    Introduction We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). Methods 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Results Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II) short delay free recall (p = 0.004), the CVLT-II long delay free recall (p = 0.003), and the CVLT-II learning over trials 1-5 (p = 0.001). Discussion Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI. PMID:27920794

  4. MERINOVA: Meteorological risks as drivers of environmental innovation in agro-ecosystem management

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Oger, Robert; Marlier, Catherine; Van De Vijver, Hans; Vandermeulen, Valerie; Van Huylenbroeck, Guido; Zamani, Sepideh; Curnel, Yannick; Mettepenningen, Evi

    2013-04-01

    The BELSPO funded project 'MERINOVA' deals with risks associated with extreme weather phenomena and with risks of biological origin such as pests and diseases. The major objectives of the proposed project are to characterise extreme meteorological events, assess the impact on Belgian agro-ecosystems, characterise their vulnerability and resilience to these events, and explore innovative adaptation options to agricultural risk management. The project comprises of five major parts that reflect the chain of risks: (i) Hazard: Assessing the likely frequency and magnitude of extreme meteorological events by means of probability density functions; (ii) Impact: Analysing the potential bio-physical and socio-economic impact of extreme weather events on agro-ecosystems in Belgium using process-based modelling techniques commensurate with the regional scale; (iii) Vulnerability: Identifying the most vulnerable agro-ecosystems using fuzzy multi-criteria and spatial analysis; (iv) Risk Management: Uncovering innovative risk management and adaptation options using actor-network theory and fuzzy cognitive mapping techniques; and, (v) Communication: Communicating to research, policy and practitioner communities using web-based techniques. The different tasks of the MERINOVA project require expertise in several scientific disciplines: meteorology, statistics, spatial database management, agronomy, bio-physical impact modelling, socio-economic modelling, actor-network theory, fuzzy cognitive mapping techniques. These expertises are shared by the four scientific partners who each lead one work package. The MERINOVA project will concentrate on promoting a robust and flexible framework by demonstrating its performance across Belgian agro-ecosystems, and by ensuring its relevance to policy makers and practitioners. Impacts developed from physically based models will not only provide information on the state of the damage at any given time, but also assist in understanding the links between different factors causing damage and determining bio-physical vulnerability. Socio-economic impacts will enlarge the basis for vulnerability mapping, risk management and adaptation options. A strong expert and end-user network will be established to help disseminating and exploiting project results to meet user needs.

  5. Interpreting map art with a perspective learned from J.M. Blaut

    USGS Publications Warehouse

    Varanka, D.

    2006-01-01

    Map art has been mentioned only briefly in geographic or cartographic literature, and has been analyzed almost entirely at the interpretive level. This paper attempts to define and evaluate the cartographic value of contemporary map-like art by placing the body of work as a whole in the theoretical concepts proposed by J.M. Blaut and his colleagues about mapping as a cognitive and cultural universal. This paper discusses how map art resembles mapping characteristics similar to those observed empirically in very young children as described in the publications of Blaut and others. The theory proposes that these early mapping skills are later structured and refined by their social context and practice. Diverse cultural contexts account for the varieties, types, and degrees of mapping behavior documented with time and geographic place. The dynamics of early mapping are compared to mapping techniques employed by artists. The discipline of fine art serves as the context surrounding map artists and their work. My visual analysis, research about the art and the artists, and interviews with artists and curators form the basis of my interpretation of these works within varied and multiple contexts of late 20th century map art.

  6. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy.

    PubMed

    Pallud, J; Mandonnet, E; Corns, R; Dezamis, E; Parraga, E; Zanello, M; Spena, G

    2017-06-01

    Intraoperative application of electrical current to the brain is a standard technique during brain surgery for inferring the function of the underlying brain. The purpose of intraoperative functional mapping is to reliably identify cortical areas and subcortical pathways involved in eloquent functions, especially motor, sensory, language and cognitive functions. The aim of this article is to review the rationale and the electrophysiological principles of the use of direct bipolar electrostimulation for cortical and subcortical mapping under awake conditions. Direct electrical stimulation is a window into the whole functional network that sustains a particular function. It is an accurate (spatial resolution of about 5mm) and a reproducible technique particularly adapted to clinical practice for brain resection in eloquent areas. If the procedure is rigorously applied, the sensitivity of direct electrical stimulation for the detection of cortical and subcortical eloquent areas is nearly 100%. The main disadvantage of this technique is its suboptimal specificity. Another limitation is the identification of eloquent areas during surgery, which, however, could have been functionally compensated postoperatively if removed surgically. Direct electrical stimulation is an easy, accurate, reliable and safe invasive technique for the intraoperative detection of both cortical and subcortical functional brain connectivity for clinical purpose. In our opinion, it is the optimal technique for minimizing the risk of neurological sequelae when resecting in eloquent brain areas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Language mapping in children using resting-state functional connectivity: comparison with a task-based approach

    NASA Astrophysics Data System (ADS)

    Gallagher, Anne; Tremblay, Julie; Vannasing, Phetsamone

    2016-12-01

    Patients with brain tumor or refractory epilepsy may be candidates for neurosurgery. Presurgical evaluation often includes language investigation to prevent or reduce the risk of postsurgical language deficits. Current techniques involve significant limitations with pediatric populations. Recently, near-infrared spectroscopy (NIRS) has been shown to be a valuable neuroimaging technique for language localization in children. However, it typically requires the child to perform a task (task-based NIRS), which may constitute a significant limitation. Resting-state functional connectivity NIRS (fcNIRS) is an approach that can be used to identify language networks at rest. This study aims to assess the utility of fcNIRS in children by comparing fcNIRS to more conventional task-based NIRS for language mapping in 33 healthy participants: 25 children (ages 3 to 16) and 8 adults. Data were acquired at rest and during a language task. Results show very good concordance between both approaches for language localization (Dice similarity coefficient=0.81±0.13) and hemispheric language dominance (kappa=0.86, p<0.006). The fcNIRS technique may be a valuable tool for language mapping in clinical populations, including children and patients with cognitive and behavioral impairments.

  8. An investigation of the relationships between junior high school students' (8th and 9th grades) background variables and structure of knowledge recall of biological content

    NASA Astrophysics Data System (ADS)

    Demetrius, Olive Joyce

    The purpose of this study was to examine the relationships between Junior High School students' (8th and 9th grades) background variables (e.g. cognitive factors, prior knowledge, preference for science versus non-science activities, formal and informal activities) and structure of information recall of biological content. In addition, this study will illustrate how flow maps, a graphic display, designed to represent the sequential flow and cross linkage of ideas in information recalled by the learner can be used as a tool for analyzing science learning data. The participants (46 junior high school students) were taught a lesson on the human digestive system during which they were shown a model of the human torso. Their pattern of information recall was determined by using an interview technique to elicit their understanding of the functional anatomy of the human digestive system. The taped responses were later transcribed for construction of the flow map. The interview was also used to assess knowledge recall of biological content. The flow map, science interest questionnaire and the cognitive operations (based on content analysis of student's narrative) were used to analyze data from each respondent. This is a case study using individual subjects and interview techniques. The findings of this study are: (1) Based on flow map data higher academic ability students have more networking of ideas than low ability students. (2) A large percentage of 9th grade low ability students intend to pursue science/applied science course work after leaving school but they lack well organized ways of representing science knowledge in memory. (3) Content analysis of the narratives shows that students with more complex ideational networks use higher order cognitive thought processes compared to those with less networking of ideas. If students are to make a successful transition from low academic performance to high academic performance it seems that more emphasis should be placed on information networking skills. This is specifically likely to be productive for student currently performing on low academic ability levels and yet have high aspirations for pursuing science as a career.

  9. Cognitive Processes in Orienteering: A Review.

    ERIC Educational Resources Information Center

    Seiler, Roland

    1996-01-01

    Reviews recent research on information processing and decision making in orienteering. The main cognitive demands investigated were selection of relevant map information for route choice, comparison between map and terrain in map reading and in relocation, and quick awareness of mistakes. Presents a model of map reading based on results. Contains…

  10. Surface feature-guided mapping of cerebral metabolic changes in cognitively normal and mildly impaired elderly.

    PubMed

    Apostolova, Liana G; Thompson, Paul M; Rogers, Steve A; Dinov, Ivo D; Zoumalan, Charleen; Steiner, Calen A; Siu, Erin; Green, Amity E; Small, Gary W; Toga, Arthur W; Cummings, Jeffrey L; Phelps, Michael E; Silverman, Daniel H

    2010-04-01

    The aim of this study was to investigate the longitudinal positron emission tomography (PET) metabolic changes in the elderly. Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4 +/- 0.7 SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-D: -glucose (FDG)-PET scan (interval 21.7 +/- 3.7 months), baseline structural 3T magnetic resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes were analyzed in 3-D using the cortical pattern matching technique. Baseline vs. follow-up whole-group comparison revealed significant metabolic decline bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex. The declining group demonstrated 10-15% decline in bilateral posterior cingulate/precuneus, posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5-5% similarly distributed decline. ApoE4-positive individuals underwent 5-15% metabolic decline in the posterior association cortices. Using 3-D surface-based MR-guided FDG-PET mapping, significant metabolic changes were seen in five posterior and the left lateral frontal regions. The changes were more pronounced for the declining relative to the cognitively stable group.

  11. Manufacturing Phenomena or Preserving Phenomena? Core Issues in the Identification of Peer Social Groups with Social Cognitive Mapping Procedures

    ERIC Educational Resources Information Center

    Farmer, Thomas W.; Xie, Hongling

    2013-01-01

    In this commentary on the "Multiple Meanings of Peer Groups in Social Cognitive Mapping," Thomas W. Farmer and Hongling Xie discuss core issues in the identification of peer social groups in natural settings using the social cognitive mapping (SCM) procedures. Farmer and Xie applaud the authors for their efforts to advance the study of…

  12. Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm.

    PubMed

    Wenger, Michael J; Gibson, Bradley S

    2004-08-01

    Processing capacity--defined as the relative ability to perform mental work in a unit of time--is a critical construct in cognitive psychology and is central to theories of visual attention. The unambiguous use of the construct, experimentally and theoretically, has been hindered by both conceptual confusions and the use of measures that are at best only coarsely mapped to the construct. However, more than 25 years ago, J. T. Townsend and F. G. Ashby (1978) suggested that the hazard function on the response time (RT) distribution offered a number of conceptual advantages as a measure of capacity. The present study suggests that a set of statistical techniques, well-known outside the cognitive and perceptual literatures, offers the ability to perform hypothesis tests on RT-distribution hazard functions. These techniques are introduced, and their use is illustrated in application to data from the contingent attentional capture paradigm.

  13. Novice to Expert Cognition During Geologic Bedrock Mapping

    NASA Astrophysics Data System (ADS)

    Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.

    2011-12-01

    Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the novices in our sample, but not for the experts. For experienced mappers, we found a significant correlation between GCI scores and the thoroughness with which they covered the map area, plus a relationship between speed and map accuracy such that faster mappers produced better maps. However, fast novice mappers tended to produce the worst maps. Successful mappers formed a mental model of the underlying geologic structure immediately to early in the mapping task, then spent field time collecting observations to confirm, disconfirm, or modify their initial model. In contrast, the least successful mappers (all inexperienced) rarely generated explanations or models of the underlying geologic structure in the field.

  14. Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping.

    PubMed

    Pinho, Ana Luísa; Amadon, Alexis; Ruest, Torsten; Fabre, Murielle; Dohmatob, Elvis; Denghien, Isabelle; Ginisty, Chantal; Becuwe-Desmidt, Séverine; Roger, Séverine; Laurier, Laurence; Joly-Testault, Véronique; Médiouni-Cloarec, Gaëlle; Doublé, Christine; Martins, Bernadette; Pinel, Philippe; Eger, Evelyn; Varoquaux, Gaël; Pallier, Christophe; Dehaene, Stanislas; Hertz-Pannier, Lucie; Thirion, Bertrand

    2018-06-12

    Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.

  15. Superior cognitive mapping through single landmark-related learning than through boundary-related learning.

    PubMed

    Zhou, Ruojing; Mou, Weimin

    2016-08-01

    Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than striatum-dependent response learning. However, we proposed that either type of spatial learning, as long as it involves encoding metric relations between locations and reference points, could lead to a cognitive map. Furthermore, the fewer reference points to specify individual locations, the more accurate a cognitive map of these locations will be. We demonstrated that participants have more accurate representations of vectors between 2 locations and of configurations among 3 locations when locations are individually encoded in terms of a single landmark than when locations are encoded in terms of a boundary. Previous findings have shown that learning locations relative to a boundary involve stronger place learning and higher hippocampal activation whereas learning relative to a single landmark involves stronger response learning and higher striatal activation. Recognizing this, we have provided evidence challenging the cognitive map theory but favoring our proposal. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Cognitive balanced model: a conceptual scheme of diagnostic decision making.

    PubMed

    Lucchiari, Claudio; Pravettoni, Gabriella

    2012-02-01

    Diagnostic reasoning is a critical aspect of clinical performance, having a high impact on quality and safety of care. Although diagnosis is fundamental in medicine, we still have a poor understanding of the factors that determine its course. According to traditional understanding, all information used in diagnostic reasoning is objective and logically driven. However, these conditions are not always met. Although we would be less likely to make an inaccurate diagnosis when following rational decision making, as described by normative models, the real diagnostic process works in a different way. Recent work has described the major cognitive biases in medicine as well as a number of strategies for reducing them, collectively called debiasing techniques. However, advances have encountered obstacles in achieving implementation into clinical practice. While traditional understanding of clinical reasoning has failed to consider contextual factors, most debiasing techniques seem to fail in raising sound and safer medical praxis. Technological solutions, being data driven, are fundamental in increasing care safety, but they need to consider human factors. Thus, balanced models, cognitive driven and technology based, are needed in day-to-day applications to actually improve the diagnostic process. The purpose of this article, then, is to provide insight into cognitive influences that have resulted in wrong, delayed or missed diagnosis. Using a cognitive approach, we describe the basis of medical error, with particular emphasis on diagnostic error. We then propose a conceptual scheme of the diagnostic process by the use of fuzzy cognitive maps. © 2011 Blackwell Publishing Ltd.

  17. Using Web Maps to Analyze the Construction of Global Scale Cognitive Maps

    ERIC Educational Resources Information Center

    Pingel, Thomas J.

    2018-01-01

    Game-based Web sites and applications are changing the ways in which students learn the world map. In this study, a Web map-based digital learning tool was used as a study aid for a university-level geography course in order to examine the way in which global scale cognitive maps are constructed. A network analysis revealed that clicks were…

  18. Cognitions of Expert Supervisors in Academe: A Concept Mapping Approach

    ERIC Educational Resources Information Center

    Kemer, Gülsah; Borders, L. DiAnne; Willse, John

    2014-01-01

    Eighteen expert supervisors reported their thoughts while preparing for, conducting, and evaluating their supervision sessions. Concept mapping (Kane & Trochim, [Kane, M., 2007]) yielded 195 cognitions classified into 25 cognitive categories organized into 5 supervision areas: conceptualization of supervision, supervisee assessment,…

  19. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  20. Extending SME to Handle Large-Scale Cognitive Modeling.

    PubMed

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  1. Constructivist-Visual Mind Map Teaching Approach and the Quality of Students' Cognitive Structures

    NASA Astrophysics Data System (ADS)

    Dhindsa, Harkirat S.; Makarimi-Kasim; Roger Anderson, O.

    2011-04-01

    This study compared the effects of a constructivist-visual mind map teaching approach (CMA) and of a traditional teaching approach (TTA) on (a) the quality and richness of students' knowledge structures and (b) TTA and CMA students' perceptions of the extent that a constructivist learning environment (CLE) was created in their classes. The sample of the study consisted of six classes (140 Form 3 students of 13-15 years old) selected from a typical coeducational school in Brunei. Three classes (40 boys and 30 girls) were taught using the TTA while three other classes (41 boys and 29 girls) used the CMA, enriched with PowerPoint presentations. After the interventions (lessons on magnetism), the students in both groups were asked to describe in writing their understanding of magnetism accrued from the lessons. Their written descriptions were analyzed using flow map analyses to assess their content knowledge and its organisation in memory as evidence of cognitive structure. The extent of CLE was measured using a published CLE survey. The results showed that the cognitive structures of the CMA students were more extensive, thematically organised and richer in interconnectedness of thoughts than those of TTA students. Moreover, CMA students also perceived their classroom learning environment to be more constructivist than their counterparts. It is, therefore, recommended that teachers consider using the CMA teaching technique to help students enrich their understanding, especially for more complex or abstract scientific content.

  2. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  3. Cognitive Style Mapping at Mt. Hood Community College.

    ERIC Educational Resources Information Center

    Keyser, John S.

    1980-01-01

    Describes Mount Hood Community College's experiences using the Modified Hill Model for Cognitive Style Mapping (CSM). Enumerates the nine dimensions of cognitive style assessed by the model. Discusses the value and limitations of CSM, five major checks on the validity of the model, and Mount Hood faculty's involvement with CSM. (AYC)

  4. Concept Maps as Cognitive Visualizations of Writing Assignments

    ERIC Educational Resources Information Center

    Villalon, Jorge; Calvo, Rafael A.

    2011-01-01

    Writing assignments are ubiquitous in higher education. Writing develops not only communication skills, but also higher-level cognitive processes that facilitate deep learning. Cognitive visualizations, such as concept maps, can also be used as part of learning activities including as a form of scaffolding, or to trigger reflection by making…

  5. How do they make it look so easy? The expert orienteer's cognitive advantage.

    PubMed

    Eccles, David W; Arsal, Guler

    2015-01-01

    Expertise in sport can appear so extraordinary that it is difficult to imagine how "normal" individuals may achieve it. However, in this review, we show that experts in the sport of orienteering, which requires on-foot navigation using map and compass through wild terrain, can make the difficult look easy because they have developed a cognitive advantage. Specifically, they have acquired knowledge of cognitive and behavioural strategies that allow them to circumvent natural limitations on attention. Cognitive strategies include avoiding peaks of demand on attention by distributing the processing of map information over time and reducing the need to attend to the map by simplifying the navigation required to complete a race. Behavioural strategies include reducing the visual search required of the map by physically arranging and rearranging the map display during races. It is concluded that expertise in orienteering can be partly attributed to the circumvention of natural limitations on attention achieved via the employment of acquired cognitive and behavioural strategies. Thus, superior performance in sport may not be the possession of only a privileged few; it may be available to all aspiring athletes.

  6. Evidence-Based Concept Mapping for the Athletic Training Student

    ERIC Educational Resources Information Center

    Speicher, Timothy E.; Martin, Malissa; Zigmont, Jason

    2013-01-01

    Context: A concept map is a graphical and cognitive tool that enables learners to link together interrelated concepts using propositions or statements that answer a posed problem. As an assessment tool, concept mapping reveals a learner's research skill proficiency and cognitive processing. Background: The identification and organization of the…

  7. Fostering Multimedia Learning with Collaborative Concept Mapping: The Effect of Cognitive Aid on Performance and on Collaboration

    ERIC Educational Resources Information Center

    Acuña, Santiago Roger; Aymes, Gabriela López; Medrano, Carlos Sergio López

    2014-01-01

    This paper analyzes the use of collaborative concept maps in multimedia learning tasks. Specifically, the effect of a cognitive aid (providing students a list of main concepts to generate a concept map) on the performance of collaborative concept mapping and on the level of collaboration in this task is discussed. The study was carried out with 57…

  8. Navigation Maps in a Computer-Networked Hypertext Learning System.

    ERIC Educational Resources Information Center

    Chou, Chien; Lin, Hua

    A study of first-year college students (n=121) in Taiwan investigated the effects of navigation maps and learner cognitive styles on performance in searches for information, estimation of course scope, and the development of cognitive maps within a hypertext learning course. Students were tested to determine level of perceptual field dependence…

  9. The Strategic Design Inquiry: A Formal Methodology For Approaching, Designing, Integrating, And Articulating National Strategy

    DTIC Science & Technology

    2014-04-01

    15 Figure 4: Example cognitive map ... map , aligning planning efforts throughout the government. Even after strategy implementation, SDI calls for continuing, iterative learning and...the design before total commitment to it. Capturing this analysis on a cognitive map allows strategists to articulate a design to government

  10. Mapping the Postmodern Turn in Comparative Education.

    ERIC Educational Resources Information Center

    Liebman, Martin; Paulston, Rolland

    This paper advocates the use of cognitive maps by researchers in comparative education. Cognitive maps are defined as "visual imageries depicting on the two dimensional surface of a screen or paper the researcher's perceived application, allocation, or appropriation of social space by social groups at a given time and in a given place." The use of…

  11. Application of Information Visualization Techniques in Representing Patients' Temporal Personal History Data

    NASA Astrophysics Data System (ADS)

    Noah, Shahrul Azman; Yaakob, Suraya; Shahar, Suzana

    The anthropometries and nutrients records of patients are usually vast in quantity, complex and exhibit temporal features. Therefore, the information acceptance among users will become blur and give cognitive burden if such data is not displayed using effective techniques. The aim of this study is to apply, use and evaluate Information Visualization (IV) techniques for displaying the Personal History Data (PHD) of patients for dietitians during counseling sessions. Since PHD values change consistently with the counseling session, our implementation mainly focused on quantitative temporal data such as Body Mass Index (BMI), blood pressure and blood glucose readings. This data is mapped into orientation circle type of visual representation, whereas data about medicinal and supplement intake are mapped into timeline segment which is based on the thickness of lines as well as the colors. A usability testing has been conducted among dietitians at Faculty of Allied Health Sciences, UKM. The result of the testing has shown that the use of visual representations capable of summarising complex data which ease the dietitian task of checking the PHD.

  12. Option Generation Techniques for Command and Control.

    DTIC Science & Technology

    1983-01-01

    and discuss some reasons why decision making is often less than perfect. 3.2. The Process of Decision Making Figure 3.1 shows a model of the various...responses to changes in the problem context. Most of these potential reasons for poor decision making stem from the human decision maker’s cognitive...several advantages: (1) It provides a mechanism for quickly estimating the scope of the effort that should be involved in making the decison and a road map

  13. Electroencephalogram (EEG) and Magnetoencephalogram (MEG) as Tools for Evaluation of Cognitive Function

    NASA Technical Reports Server (NTRS)

    Fender, Derek H.; Hestenes, John D.

    1985-01-01

    We have developed computerized analysis and display techniques to help identify the origins of visually evoked scalped potentials (VESP). The potentials are recorded simultaneously from many electrodes (usually 40 to 48) spaced over the region of the scalp where appreciable evoked potentials are found in response to particular stimulus. Contour mapping algorithms are then used to display the time behavior of equipotential surfaces on the scalp during the VESP. We then use an optimization technique to select the parameters of arrays of current dipole sources within the model until the model equipotential field distribution closely fits the measured data. Computer graphics are then used to display, as a movie, the actual and model scalp potential fields and the parameters of the dipole generators within the model head during the course of VESP activity. We have devised reaction time tests that involve potentially separable stages of cognitive processing and utilize stimuli that produce measurable cognition-related features in the late component of the evoked potential. We have used these techniques to determine the loci in the brain where known cognition-related features in the evoked potential are generated and we have explored the extent to which each of these features can be related to the reaction time tasks. We have also examined the temporal-spatial aspects of their cerebral involvement. Our current work is planned to characterize the age-related changes in the processes performed by such sources. We also use a neuromagnetometer to measure the evoked magnetic fields in similar circumstances; we will discuss the relative merits of the two methodologies.

  14. Topological Schemas of Cognitive Maps and Spatial Learning.

    PubMed

    Babichev, Andrey; Cheng, Sen; Dabaghian, Yuri A

    2016-01-01

    Spatial navigation in mammals is based on building a mental representation of their environment-a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment-the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.

  15. Neural evidence for a multifaceted model of attachment security.

    PubMed

    Canterberry, Melanie; Gillath, Omri

    2013-06-01

    The sense of attachment security has been linked with a host of beneficial outcomes related to personal and relational well-being. Moreover, research has demonstrated that the sense of attachment security can be enhanced via cognitive priming techniques. Studies using such techniques have shown that security priming results with similar outcomes as dispositional attachment security. The way security priming leads to these effects, however, is yet to be unveiled. Using fMRI we took one step in that direction and examined the neural mechanisms underlying enhanced attachment security. Participants were exposed to explicit and implicit security- and insecurity-related words. Security priming led to co-occurring activation in brain areas reflective of cognitive, affective, and behavioral processes (e.g., medial frontal cortex, parahippocampus, BA 6). There were activation differences based on attachment style. This research serves as an important step in mapping out the security process and supports a conceptualization of security as part of a behavioral system with multiple components. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Neural Development Under Conditions of Spaceflight

    NASA Technical Reports Server (NTRS)

    Kosik, Kenneth S.; Steward, Oswald; Temple, Meredith D.; Denslow, Maria J.

    2003-01-01

    One of the key tasks the developing brain must learn is how to navigate within the environment. This skill depends on the brain's ability to establish memories of places and things in the environment so that it can form cognitive maps. Earth's gravity defines the plane of orientation of the spatial environment in which animals navigate, and cognitive maps are based on this plane of orientation. Given that experience during early development plays a key role in the development of other aspects of brain function, experience in a gravitational environment is likely to be essential for the proper organization of brain regions mediating learning and memory of spatial information. Since the hippocampus is the brain region responsible for cognitive mapping abilities, this study evaluated the development of hippocampal structure and function in rats that spent part of their early development in microgravity. Litters of male and female Sprague-Dawley rats were launched into space aboard the Space Shuttle Columbia on either postnatal day eight (P8) or 14 (P14) and remained in space for 16 days. Upon return to Earth, the rats were tested for their ability to remember spatial information and navigate using a variety of tests (the Morris water maze, a modified radial arm maze, and an open field apparatus). These rats were then tested physiologically to determine whether they exhibited normal synaptic plasticity in the hippocampus. In a separate group of rats (flight and controls), the hippocampus was analyzed using anatomical, molecular biological, and biochemical techniques immediately postlanding. There were remarkably few differences between the flight groups and their Earth-bound controls in either the navigation and spatial memory tasks or activity-induced synaptic plasticity. Microscopic and immunocytochemical analyses of the brain also did not reveal differences between flight animals and ground-based controls. These data suggest that, within the developmental window studied, microgravity has minimal long-term impact on cognitive mapping function and cellular substrates important for this function. Any differences due to development in microgravity were transient and returned to normal soon after return to Earth.

  17. Beyond Event Segmentation: Spatial- and Social-Cognitive Processes in Verb-to-Action Mapping

    ERIC Educational Resources Information Center

    Friend, Margaret; Pace, Amy

    2011-01-01

    The present article investigates spatial- and social-cognitive processes in toddlers' mapping of concepts to real-world events. In 2 studies we explore how event segmentation might lay the groundwork for extracting actions from the event stream and conceptually mapping novel verbs to these actions. In Study 1, toddlers demonstrated the ability to…

  18. Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition

    PubMed Central

    Phillips, Steven; Wilson, William H.

    2010-01-01

    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe—replaced by the relationships between the maps that transform them. PMID:20661306

  19. Categorial compositionality: a category theory explanation for the systematicity of human cognition.

    PubMed

    Phillips, Steven; Wilson, William H

    2010-07-22

    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe--replaced by the relationships between the maps that transform them.

  20. Concept mapping-An effective method for identifying diversity and congruity in cognitive style.

    PubMed

    Stoyanov, Slavi; Jablokow, Kathryn; Rosas, Scott R; Wopereis, Iwan G J H; Kirschner, Paul A

    2017-02-01

    This paper investigates the effects of cognitive style for decision making on the behaviour of participants in different phases of the group concept mapping process (GCM). It is argued that cognitive style should be included directly in the coordination of the GCM process and not simply considered as yet another demographic variable. The cognitive styles were identified using the Kirton Adaption-Innovation Inventory, which locates each person's style on a continuum ranging from very adaptive to very innovative. Cognitive style could explain diversity in the participants' behaviour in different phases of the GCM process. At the same time, the concept map as a group's common cognitive construct can consolidate individual differences and serves as a tool for managing diversity in groups of participants. Some of the results were that: (a) the more adaptive participants generated ideas that fit to a particular, well-established and consensually agreed paradigm, frame of reference, theory or practice; (b) the more innovative participants produced ideas that were more general in scope and required changing a settled structure (paradigm, frame of reference, theory or practice); and (c) the empirical comparison of the map configurations through Procrustes analysis indicated a strong dissimilarity between cognitive styles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Use of concept mapping as a facilitative tool to promote learning in pharmacology.

    PubMed

    Qadir, Farida; Zehra, Tabassum; Khan, Imrana

    2011-08-01

    To assess whether students find concept mapping a useful learning methodology to conceptualize and organize topics studied in CNS module of Pharmacology; and to evaluate whether addition of concept mapping assignment could help to improve examination scores. An analytical study. College of Dentistry, Jinnah Medical and Dental College, Karachi, Pakistan, from March to May 2009. A class of 50 BDS students was recruited for the study. Two randomly selected groups of 12 students each, prepared concept maps in topics from CNS pharmacology which were displayed and discussed during tutorial sessions. The other two groups (n = 25) following the traditional teaching methodology, served as controls. Scores from best choice questions and short essay questions were compared between the investigational and control groups using the student's t-test with significance at p < 0.05. Feedback obtained after completion of the study was evaluated as percent response. One-best-choice test of the control group showed a mean grade of 57.1 ± 16.7 vs. test group mean of 58.8 ± 13. For the short essay questions, control group obtained a mean of 52.3 ± 18.8 vs. test group mean grade of 53.8 ± 22.5. Both results were not significantly different (p > 0.05). However, feedback about concept mapping showed that the technique helped the students to conceptualize difficult topics in CNS pharmacology (86.36%). Concept mapping was particularly beneficial in preparing for exams as it provided a quick overview of the entire subject (68.68%). Students found concept mapping as a useful pedagogical tool which could potentially be used to acquire meaningful learning in Pharmacology as a supplement to traditional teaching techniques. It was not found beneficial in improving examination grades probably because standard examinations and concept mapping measure different cognitive domains.

  2. Equilibrium relations and bipolar cognitive mapping for online analytical processing with applications in international relations and strategic decision support.

    PubMed

    Zhang, Wen-Ran

    2003-01-01

    Bipolar logic, bipolar sets, and equilibrium relations are proposed for bipolar cognitive mapping and visualization in online analytical processing (OLAP) and online analytical mining (OLAM). As cognitive models, cognitive maps (CMs) hold great potential for clustering and visualization. Due to the lack of a formal mathematical basis, however, CM-based OLAP and OLAM have not gained popularity. Compared with existing approaches, bipolar cognitive mapping has a number of advantages. First, bipolar CMs are formal logical models as well as cognitive models. Second, equilibrium relations (with polarized reflexivity, symmetry, and transitivity), as bipolar generalizations and fusions of equivalence relations, provide a theoretical basis for bipolar visualization and coordination. Third, an equilibrium relation or CM induces bipolar partitions that distinguish disjoint coalition subsets not involved in any conflict, disjoint coalition subsets involved in a conflict, disjoint conflict subsets, and disjoint harmony subsets. Finally, equilibrium energy analysis leads to harmony and stability measures for strategic decision and multiagent coordination. Thus, this work bridges a gap for CM-based clustering and visualization in OLAP and OLAM. Basic ideas are illustrated with example CMs in international relations.

  3. Social cognition and aggression in methamphetamine dependence with and without a history of psychosis.

    PubMed

    Uhlmann, Anne; Ipser, Jonathan C; Wilson, Don; Stein, Dan J

    2018-04-01

    In substance use and psychotic disorders, socially problematic behaviours, such as high aggression may, in part, be explained by deficits in social cognition skills, like the detection of emotions or intentions in others. The aim of this study was to assess the magnitude of social cognition impairment and its association with aggression in individuals with methamphetamine (MA) dependence, methamphetamine-associated psychosis (MAP), and healthy controls (CTRL). A total of 20 MAP participants, 21 MA-dependent participants without psychosis, and 21 CTRL participants performed a facial morphing emotion recognition task (ERT) across four basic emotions (anger, fear, happiness and sadness) and the reading the mind in the eyes task (RMET), and completed the aggression questionnaire. Both MA-dependent groups showed impairment in social cognition in terms of lower RMET scores relative to CTRL participants (MA; p = .047; MAP: p < .001). Additionally, performance decrements were significantly greater in MAP (p = .040), compared to MA-dependent participants. While deficits in recognising emotional expressions were restricted to anger in the MA group (p = .020), a generalized impairment across all four emotions was observed in MAP (all p ≤ .001). Additionally, both patient groups demonstrated higher levels of aggression than CTRLs, yet no association was found with social cognition. This study supported the notion of deficits in recognising facial emotional expressions and inferring mental states of others in MA dependence, with additional impairments in MAP. Failure to detect an association between social cognitive impairment and aggressive behaviour may implicate independent disturbances of the two phenomena in MA dependence.

  4. Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis.

    PubMed

    Fujiwara, E; Kmech, J A; Cobzas, D; Sun, H; Seres, P; Blevins, G; Wilman, A H

    2017-05-01

    Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR imaging-based iron-susceptibility measures. Forty patients with multiple sclerosis (relapsing-remitting, n = 16; progressive, n = 24) and 27 healthy controls were imaged at 4.7T by using the transverse relaxation rate and quantitative susceptibility mapping. The transverse relaxation rate and quantitative susceptibility mapping values and volumes (atrophy) of the caudate, putamen, globus pallidus, and thalamus were determined by multiatlas segmentation. Cognition was assessed with the Brief Repeatable Battery of Neuropsychological Tests. Relationships between cognition and deep gray matter iron were examined by hierarchic regressions. Compared with controls, patients showed reduced memory ( P < .001) and processing speed ( P = .02) and smaller putamen ( P < .001), globus pallidus ( P = .002), and thalamic volumes ( P < .001). Quantitative susceptibility mapping values were increased in patients compared with controls in the putamen ( P = .003) and globus pallidus ( P = .003). In patients only, thalamus ( P < .001) and putamen ( P = .04) volumes were related to cognitive performance. After we controlled for volume effects, quantitative susceptibility mapping values in the globus pallidus ( P = .03; trend for transverse relaxation rate, P = .10) were still related to cognition. Quantitative susceptibility mapping was more sensitive compared with the transverse relaxation rate in detecting deep gray matter iron accumulation in the current multiple sclerosis cohort. Atrophy and iron accumulation in deep gray matter both have negative but separable relationships to cognition in multiple sclerosis. © 2017 by American Journal of Neuroradiology.

  5. Cognitive maps and attention.

    PubMed

    Hardt, Oliver; Nadel, Lynn

    2009-01-01

    Cognitive map theory suggested that exploring an environment and attending to a stimulus should lead to its integration into an allocentric environmental representation. We here report that directed attention in the form of exploration serves to gather information needed to determine an optimal spatial strategy, given task demands and characteristics of the environment. Attended environmental features may integrate into spatial representations if they meet the requirements of the optimal spatial strategy: when learning involves a cognitive mapping strategy, cues with high codability (e.g., concrete objects) will be incorporated into a map, but cues with low codability (e.g., abstract paintings) will not. However, instructions encouraging map learning can lead to the incorporation of cues with low codability. On the other hand, if spatial learning is not map-based, abstract cues can and will be used to encode locations. Since exploration appears to determine what strategy to apply and whether or not to encode a cue, recognition memory for environmental features is independent of whether or not a cue is part of a spatial representation. In fact, when abstract cues were used in a way that was not map-based, or when they were not used for spatial navigation at all, they were nevertheless recognized as familiar. Thus, the relation between exploratory activity on the one hand and spatial strategy and memory on the other appears more complex than initially suggested by cognitive map theory.

  6. Big Science, Nano Science?: Mapping the Evolution and Socio-Cognitive Structure of Nanoscience/Nanotechnology Using Mixed Methods

    ERIC Educational Resources Information Center

    Milojevic, Stasa

    2009-01-01

    This study examines the development of nanoscience/nanotechnology over a 35 year period (1970-2004) by mapping its social and cognitive structures using social network analysis, bibliometrics and document analysis, and following their changes in time. Mapping is performed based on 580,000 journal articles, 240,000 patents and 53,000 research…

  7. Cognitive Mapping Based on Conjunctive Representations of Space and Movement

    PubMed Central

    Zeng, Taiping; Si, Bailu

    2017-01-01

    It is a challenge to build robust simultaneous localization and mapping (SLAM) system in dynamical large-scale environments. Inspired by recent findings in the entorhinal–hippocampal neuronal circuits, we propose a cognitive mapping model that includes continuous attractor networks of head-direction cells and conjunctive grid cells to integrate velocity information by conjunctive encodings of space and movement. Visual inputs from the local view cells in the model provide feedback cues to correct drifting errors of the attractors caused by the noisy velocity inputs. We demonstrate the mapping performance of the proposed cognitive mapping model on an open-source dataset of 66 km car journey in a 3 km × 1.6 km urban area. Experimental results show that the proposed model is robust in building a coherent semi-metric topological map of the entire urban area using a monocular camera, even though the image inputs contain various changes caused by different light conditions and terrains. The results in this study could inspire both neuroscience and robotic research to better understand the neural computational mechanisms of spatial cognition and to build robust robotic navigation systems in large-scale environments. PMID:29213234

  8. Implementation is crucial but must be neurobiologically grounded. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L.

    2014-09-01

    From the perspective of language, Fitch's [1] claim that theories of cognitive computation should not be separated from those of implementation surely deserves applauding. Recent developments in the Cognitive Neuroscience of Language, leading to the new field of the Neurobiology of Language [2-4], emphasise precisely this point: rather than attempting to simply map cognitive theories of language onto the brain, we should aspire to understand how the brain implements language. This perspective resonates with many of the points raised by Fitch in his review, such as the discussion of unhelpful dichotomies (e.g., Nature versus Nurture). Cognitive dichotomies and debates have repeatedly turned out to be of limited usefulness when it comes to understanding language in the brain. The famous modularity-versus-interactivity and dual route-versus-connectionist debates are cases in point: in spite of hundreds of experiments using neuroimaging (or other techniques), or the construction of myriad computer models, little progress has been made in their resolution. This suggests that dichotomies proposed at a purely cognitive (or computational) level without consideration of biological grounding appear to be "asking the wrong questions" about the neurobiology of language. In accordance with these developments, several recent proposals explicitly consider neurobiological constraints while seeking to explain language processing at a cognitive level (e.g. [5-7]).

  9. Environmental effects on fish neural plasticity and cognition.

    PubMed

    Ebbesson, L O E; Braithwaite, V A

    2012-12-01

    Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  10. A review of fuzzy cognitive maps in medicine: Taxonomy, methods, and applications.

    PubMed

    Amirkhani, Abdollah; Papageorgiou, Elpiniki I; Mohseni, Akram; Mosavi, Mohammad R

    2017-04-01

    A high percentage of medical errors, committed because of physician's lack of experience, huge volume of data to be analyzed, and inaccessibility to medical records of previous patients, can be reduced using computer-aided techniques. Therefore, designing more efficient medical decision-support systems (MDSSs) to assist physicians in decision-making is crucially important. Through combining the properties of fuzzy logic and neural networks, fuzzy cognitive maps (FCMs) are among the latest, most efficient, and strongest artificial intelligence techniques for modeling complex systems. This review study is conducted to identify different FCM structures used in MDSS designs. The best structure for each medical application can be introduced by studying the properties of FCM structures. This paper surveys the most important decision- making methods and applications of FCMs in the medical field in recent years. To investigate the efficiency and capability of different FCM models in designing MDSSs, medical applications are categorized into four key areas: decision-making, diagnosis, prediction, and classification. Also, various diagnosis and decision support problems addressed by FCMs in recent years are reviewed with the goal of introducing different types of FCMs and determining their contribution to the improvements made in the fields of medical diagnosis and treatment. In this survey, a general trend for future studies in this field is provided by analyzing various FCM structures used for medical purposes, and the results from each category. Due to the unique specifications of FCMs in integrating human knowledge and experience with computer-aided techniques, they are among practical instruments for MDSS design. In the not too distant future, they will have a significant role in medical sciences. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Reading Attempt of the Urban Memory of Eskisehir Osmangazi University Meselik Campus via Cognitive Mapping

    NASA Astrophysics Data System (ADS)

    Alptekin, Orkun

    2017-10-01

    University campuses have a small city view containing basic city functions such as work, accommodation, rest and transportation. They are spaces of social life that occupy large areas, have population density and different activities, change and grow with the cities they live in, and memorize the past accumulations. In this context, it is necessary for campuses to form and protect their own memories like cities. Campus memory is the ability of individuals to keep, maintain and - when necessary- reveal the experiences, sensations, comprehensions gathered from physical environment. "Cognitive mapping" is used to reveal the physical and emotional relationship that individuals make with the city and the individual-city interaction. Cognitive maps are created graphically using verbal and geometric items on paper by remembering these coded urban images. In this study, to determine the urban images belonging to Eskisehir Osmangazi University Meselik Campus, architecture students who have a short period experience of the campus were asked to note the areas they interact with the campus on the cognitive map. Campus memory items are identified by analysing the cognitive maps of the individuals who experienced the campus. In the direction of the obtained data, the campus area was re-read with five basic elements of Lynch: paths, districts, edges, nodes, and landmarks. As a result of these analyses, it is seen that religious structure, which is a large symbolic structure, located next to the main entrance in the settlement and health care facilities defined as landmarks are located in the memory of most of the individuals. Then, paths, nodes, districts, edges and educational buildings are listed respectively in cognitive maps.

  12. [Neurology of the arts].

    PubMed

    Chiu, Hou-Chang

    2009-06-01

    The brain is the window of the artistic mind. Brain activities lead to the understanding of the outside world by perception and cognition, and the enjoyment of the artistic wonders. This article will demonstrate how different brain areas are responsible for the creative abilities of painting, music, and literature. Due to the advancement in neuroscientic techniques such as functional MRI, brain electric activity mapping, etc, we explore and understand the brain areas that are responsible for cognition and artistic creation. We also understand the functional localization of mental activities from neurological patients with lesions in different brain areas. On the other hand, the artists had produced great works in a way similar to finding the related brain areas in the stimulation experiments. Therefore, many neuroscientists have praised that artists are outstanding neurologists.

  13. A U-shaped Association between Blood Pressure and Cognitive Impairment in Chinese Elderly

    PubMed Central

    Lv, Yue-Bin; Zhu, Peng-Fei; Yin, Zhao-Xue; Kraus, Virginia Byers; Threapleton, Diane; Chei, Choy-Lye; Brasher, Melanie Sereny; Zhang, Juan; Qian, Han-Zhu; Mao, Chen; Matchar, David Bruce; Luo, Jie-Si; Zeng, Yi; Shi, Xiao-Ming

    2017-01-01

    Objectives Higher or lower blood pressure may relate to cognitive impairment, while the relationship between blood pressure and cognitive impairment among the elderly is not well-studied. The study objective was to determine whether blood pressure is associated with cognitive impairment in the elderly, and, if so, to accurately describe the association. Design Cross-sectional data from the sixth wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) conducted in 2011 Setting Community-based setting in longevity areas in China Participants 7,144 Chinese elderly aged 65 years and older were included in the sample Measures Systolic blood pressures (SBP) and diastolic blood pressures (DBP) were measured, pulse pressure (PP) was calculated as (SBP)-(DBP) and mean arterial pressures (MAP) was calculated as 1/3(SBP) + 2/3(DBP). Cognitive function was assessed via a validated Mini-Mental State Examination (MMSE). Results Based on the results of generalized additive models (GAMs), U-shaped associations were identified between cognitive impairment and SBP, DBP, PP and MAP. The cut-points at which risk for cognitive impairment (MMSE<24) was minimized were determined by quadratic models as 141 mmHg, 85 mmHg, 62 mmHg and 103 mmHg, respectively. In the logistic models, U-shaped associations remained for SBP, DBP, and MAP but not PP. Below the identified cut-points, each 1mmHg decrease in blood pressure corresponded to 0.7%, 1.1%, and 1.1% greater risk in the risk of cognitive impairment, respectively. Above the cut-points, each 1mmHg increase in blood pressure corresponded to 1.2%, 1.8%, and 2.1% greater risk of cognitive impairment for SBP, DBP and MAP, respectively. Conclusion A U-shaped association between blood pressure and cognitive function in an elderly Chinese population was found. Recognition of these instances is important identifying the high-risk population for cognitive impairment and to individualize blood pressure management for cognitive impairment prevention. PMID:28126139

  14. Comparable Rest-related Promotion of Spatial Memory Consolidation in Younger and Older Adults

    PubMed Central

    Craig, Michael; Wolbers, Thomas; Harris, Mathew A.; Hauff, Patrick; Della Sala, Sergio; Dewar, Michaela

    2017-01-01

    Flexible spatial navigation depends on cognitive mapping, a function that declines with increasing age. In young adults, a brief period of post-navigation rest promotes the consolidation/integration of spatial memories into accurate cognitive maps. We examined (1) whether rest promotes spatial memory consolidation/integration in older adults and (2) whether the magnitude of the rest benefit changes with increasing age. Young and older adults learned a route through a virtual environment, followed by a 10min delay comprising either wakeful rest or a perceptual task, and a subsequent cognitive mapping task, requiring the pointing to landmarks from different locations. Pointing accuracy was lower in the older than younger adults. However, there was a comparable rest-related enhancement in pointing accuracy in the two age groups. Together our findings suggest that (i) the age-related decline in cognitive mapping cannot be explained by increased consolidation interference in older adults, and (ii) as we grow older rest continues to support the consolidation/integration of spatial memories. PMID:27689512

  15. The design of electronic map displays

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1991-01-01

    This paper presents a cognitive analysis of a pilot's navigation task and describes an experiment comparing a new map display that employs the principle of visual momentum with the two traditional approaches, track-up and north-up. The data show that the advantage of a track-up alignment is its congruence with the egocentered forward view; however, the inconsistency of the rotating display hinders development of a cognitive map. The stability of a north-up alignment aids the acquisition of a cognitive map, but there is a cost associated with the mental rotation of the display to a track-up alignment for tasks involving the ego-centered forward view. The data also show that the visual momentum design captures the benefits and reduces the costs associated with the two traditional approaches.

  16. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  17. Visualization Case Study: Eyjafjallajökull Ash (Invited)

    NASA Astrophysics Data System (ADS)

    Simmon, R.

    2010-12-01

    Although data visualization is a powerful tool in Earth science, the resulting imagery is often complex and difficult to interpret for non-experts. Students, journalists, web site visitors, or museum attendees often have difficulty understanding some of the imagery scientists create, particularly false-color imagery and data-driven maps. Many visualizations are designed for data exploration or peer communication, and often follow discipline conventions or are constrained by software defaults. Different techniques are necessary for communication with a broad audience. Data visualization combines ideas from cognitive science, graphic design, and cartography, and applies them to the challenge of presenting data clearly. Visualizers at NASA's Earth Observatory web site (earthobservatory.nasa.gov) use these techniques to craft remote sensing imagery for interested but non-expert readers. Images range from natural-color satellite images and multivariate maps to illustrations of abstract concepts. I will use imagery of the eruption of Iceland's Eyjafjallajökull volcano as a case study, showing specific applications of general design techniques. By using color carefully (including contextual data), precisely aligning disparate data sets, and highlighting important features, we crafted an image that clearly conveys the complex vertical and horizontal distribution of airborne ash.

  18. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience.

    PubMed

    Poldrack, Russell A; Kittur, Aniket; Kalar, Donald; Miller, Eric; Seppa, Christian; Gil, Yolanda; Parker, D Stott; Sabb, Fred W; Bilder, Robert M

    2011-01-01

    Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what "mental processes" exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe a new open collaborative project that aims to provide a knowledge base for cognitive neuroscience, called the Cognitive Atlas (accessible online at http://www.cognitiveatlas.org), and outline how this project has the potential to drive novel discoveries about both mind and brain.

  19. Way-finding in displaced clock-shifted bees proves bees use a cognitive map.

    PubMed

    Cheeseman, James F; Millar, Craig D; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D M; Gallistel, Charles R; Warman, Guy R; Menzel, Randolf

    2014-06-17

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass-referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees.

  20. Way-finding in displaced clock-shifted bees proves bees use a cognitive map

    PubMed Central

    Cheeseman, James F.; Millar, Craig D.; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D. M.; Gallistel, Charles R.; Warman, Guy R.; Menzel, Randolf

    2014-01-01

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass–referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees. PMID:24889633

  1. The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary.

    PubMed

    Zhou, Ruojing; Mou, Weimin

    2018-05-01

    Previous research (Zhou, Mou, Journal of Experimental Psychology: Learning, Memory and Cognition 42(8):1316-1323, 2016) showed that learning individual locations relative to a single landmark, compared to learning relative to a boundary, led to more accurate inferences of inter-object spatial relations (cognitive mapping of multiple locations). Following our past findings, the current study investigated whether the larger number of reference points provided by a homogeneous circular boundary, as well as less accessible knowledge of direct spatial relations among the multiple reference points, would lead to less effective cognitive mapping relative to the boundary. Accordingly, we manipulated (a) the number of primary reference points (one segment drawn from a circular boundary, four such segments, vs. the complete boundary) available when participants were localizing four objects sequentially (Experiment 1) and (b) the extendedness of each of the four segments (Experiment 2). The results showed that cognitive mapping was the least accurate in the whole boundary condition. However, expanding each of the four segments did not affect the accuracy of cognitive mapping until the four were connected to form a continuous boundary. These findings indicate that when encoding locations relative to a homogeneous boundary, participants segmented the boundary into differentiated pieces and subsequently chose the most informative local part (i.e., the segment closest in distance to one location) as the primary reference point for a particular location. During this process, direct spatial relations among the reference points were likely not attended to. These findings suggest that people might encode and represent bounded space in a fragmented fashion when localizing within a homogeneous boundary.

  2. Effect of Cognitive Style on Learning and Retrieval of Navigational Environments.

    PubMed

    Boccia, Maddalena; Vecchione, Francesca; Piccardi, Laura; Guariglia, Cecilia

    2017-01-01

    Field independence (FI) has been found to correlate with a wide range of cognitive processes requiring cognitive restructuring. Cognitive restructuring, that is going beyond the information given by the setting, is pivotal in creating stable mental representations of the environment, the so-called "cognitive maps," and it affects visuo-spatial abilities underpinning environmental navigation. Here we evaluated whether FI, by fostering cognitive restructuring of environmental cues on the basis of an internal frame of reference, affects the learning and retrieval of a novel environment. Fifty-four participants were submitted to the Embedded Figure Test (EFT) for assessing their Cognitive Style (CS) and to the Perspective Taking/Spatial Orientation Test (PTSOT) and the Santa Barbara Sense of Direction Scale (SBSOD) for assessing their spatial perspective taking and orientation skills. They were also required to learn a path in a novel, real environment (route learning, RL), to recognize landmarks of this path among distracters (landmark recognition, LR), to order them (landmark ordering, LO) and to draw the learned path on a map (map drawing, MD). Retrieval tasks were performed both immediately after learning (immediate-retrieval) and the day after (24 h-retrieval). Performances on EFT significantly correlated with the time needed to learn the path, with MD (both in the immediate- and in the 24 h- retrievals), results on LR (in 24-retrieval) and performances on PTSOT. Interestingly, we found that gender interacted with CS on RL (time of learning) and MD. Females performed significantly worse than males only if they were classified as FD, but did not differ from males if they were classified as FI. These results suggest that CS affects learning and retrieval of navigational environment, especially when a map-like representation is required. We propose that CS may be pivotal in forming the cognitive map of the environment, likely due to the higher ability of FI individuals in restructuring environmental cues in a global and flexible long-term representation of the environment.

  3. Using Cognitive Maps to Promote Self-Managed Learning in Online Communities of Inquiry

    ERIC Educational Resources Information Center

    Peacock, Susi; Cowan, John

    2016-01-01

    As online learners become more diverse and less well-prepared individually, particular help is required when transitioning into new, online learning environments, requiring engagement in collaborative, community-based educational activities. Cognitive maps provide one tool for tutors to support individuals in navigating the unfamiliar maze of…

  4. Job Seekers' Perceptions of Teleworking: A Cognitive Mapping Approach.

    ERIC Educational Resources Information Center

    Kerrin, Maire; Hone, Kate

    2001-01-01

    College students (n=40) and nonstudent job seekers (n=20) rated four dimensions of telework. Results were plotted in cognitive maps. Students preferred office work to telework, citing lack of social interaction. Nonstudents, slightly older and more likely to be parents, slightly preferred telework. Targeting recruitment to account for these…

  5. Quantifying Qualitative Data Using Cognitive Maps

    ERIC Educational Resources Information Center

    Scherp, Hans-Ake

    2013-01-01

    The aim of the article is to show how substantial qualitative material consisting of graphic cognitive maps can be analysed by using digital CmapTools, Excel and SPSS. Evidence is provided of how qualitative and quantitative methods can be combined in educational research by transforming qualitative data into quantitative data to facilitate…

  6. Variations in Cognitive Maps: Understanding Individual Differences in Navigation

    ERIC Educational Resources Information Center

    Weisberg, Steven M.; Schinazi, Victor R.; Newcombe, Nora S.; Shipley, Thomas F.; Epstein, Russell A.

    2014-01-01

    There are marked individual differences in the formation of cognitive maps both in the real world and in virtual environments (VE; e.g., Blajenkova, Motes, & Kozhevnikov, 2005; Chai & Jacobs, 2010; Ishikawa & Montello, 2006; Wen, Ishikawa, & Sato, 2011). These differences, however, are poorly understood and can be difficult to…

  7. Visual analytics as a translational cognitive science.

    PubMed

    Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard

    2011-07-01

    Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.

  8. Mice haploinsufficient for Map2k7, a gene involved in neurodevelopment and risk for schizophrenia, show impaired attention, a vigilance decrement deficit and unstable cognitive processing in an attentional task: impact of minocycline.

    PubMed

    Openshaw, R L; Thomson, D M; Penninger, J M; Pratt, J A; Morris, B J

    2017-01-01

    Members of the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein (MAP) kinases, and the upstream kinase MKK7, have all been strongly linked with synaptic plasticity and with the development of the neocortex. However, the impact of disruption of this pathway on cognitive function is unclear. In the current study, we test the hypothesis that reduced MKK7 expression is sufficient to cause cognitive impairment. Attentional function in mice haploinsufficient for Map2k7 (Map2k7 +/- mice) was investigated using the five-choice serial reaction time task (5-CSRTT). Once stable performance had been achieved, Map2k7 +/- mice showed a distinctive attentional deficit, in the form of an increased number of missed responses, accompanied by a more pronounced decrement in performance over time and elevated intra-individual reaction time variability. When performance was reassessed after administration of minocycline-a tetracycline antibiotic currently showing promise for the improvement of attentional deficits in patients with schizophrenia-signs of improvement in attentional performance were detected. Overall, Map2k7 haploinsufficiency causes a distinctive pattern of cognitive impairment strongly suggestive of an inability to sustain attention, in accordance with those seen in psychiatric patients carrying out similar tasks. This may be important for understanding the mechanisms of cognitive dysfunction in clinical populations and highlights the possibility of treating some of these deficits with minocycline.

  9. Impact of Schematic Designs on the Cognition of Underground Tube Maps

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Li, Zhilin

    2016-06-01

    Schematic maps have been popularly employed to represent transport networks, particularly underground tube lines (or metro lines), since its adoption by the Official London Underground in early 1930s. Such maps employ straightened lines along horizontal, vertical and diagonal directions. Recently, some researchers started to argue that the distortion in such a schematization may cause big distortion and some new designs are proposed. This project aims to make a comparative analysis of such a schematic design with a new design proposed by Mark Noad in 2011, which makes use of lines along 30º and 60º directions instead of the 45º direction. Tasks have been designed for evaluating the effect of schematic designs on route planning by travellers. The participant was asked to choose the route s/he would take among two or three possible route options and then read the name of the selected transfer station. Eye-tracking technique has been employed to track the map recognition process. Total travel time is used as criterion for effectiveness; completion time and mental work cost are used for efficiency evaluation. It has been found that (1) the design of map style has significant impact on users' travel decision making, especially map distance and transfer station symbol designs, and (2) the design style of a schematic map will have great impact on the effectiveness and efficiency of map recognition.

  10. The Cognitive Atlas: Toward a Knowledge Foundation for Cognitive Neuroscience

    PubMed Central

    Poldrack, Russell A.; Kittur, Aniket; Kalar, Donald; Miller, Eric; Seppa, Christian; Gil, Yolanda; Parker, D. Stott; Sabb, Fred W.; Bilder, Robert M.

    2011-01-01

    Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what “mental processes” exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe a new open collaborative project that aims to provide a knowledge base for cognitive neuroscience, called the Cognitive Atlas (accessible online at http://www.cognitiveatlas.org), and outline how this project has the potential to drive novel discoveries about both mind and brain. PMID:21922006

  11. The Map in Our Head Is Not Oriented North: Evidence from a Real-World Environment.

    PubMed

    Brunyé, Tad T; Burte, Heather; Houck, Lindsay A; Taylor, Holly A

    2015-01-01

    Like most physical maps, recent research has suggested that cognitive maps of familiar environments may have a north-up orientation. We demonstrate that north orientation is not a necessary feature of cognitive maps and instead may arise due to coincidental alignment between cardinal directions and the built and natural environment. Experiment 1 demonstrated that pedestrians have difficulty pointing north while navigating a familiar real-world environment with roads, buildings, and green spaces oriented oblique to cardinal axes. Instead, north estimates tended to be parallel or perpendicular to roads. In Experiment 2, participants did not demonstrate privileged memory access when oriented toward north while making relative direction judgments. Instead, retrieval was fastest and most accurate when orientations were aligned with roads. In sum, cognitive maps are not always oriented north. Rather, in some real-world environments they can be oriented with respect to environment-specific features, serving as convenient reference systems for organizing and using spatial memory.

  12. GETTING LOST: TOPOGRAPHIC SKILLS IN ACQUIRED AND DEVELOPMENTAL PROSOPAGNOSIA

    PubMed Central

    Lee, Edison; Pancaroglu, Raika; Burles, Ford; Duchaine, Brad; Iaria, Giuseppe; Barton, Jason J S

    2016-01-01

    Previous studies report that acquired prosopagnosia is frequently associated with topographic disorientation. Whether this is associated with a specific anatomic subtype of prosopagnosia, how frequently it is seen with the developmental variant, and what specific topographic function is impaired to account for this problem are not known. We studied ten subjects with acquired prosopagnosia from either occipitotemporal or anterior temporal lesions and seven with developmental prosopagnosia. Subjects were given a battery of topographic tests, including house and scene recognition, the road map test, a test of cognitive map formation, and a standardized self-report questionnaire. House and/or scene recognition were frequently impaired after either occipitotemporal or anterior temporal lesions in acquired prosopagnosia. Subjects with occipitotemporal lesions were also impaired in cognitive map formation: an overlap analysis identified right fusiform and parahippocampal gyri as a likely correlate. Only one subject with acquired prosopagnosia had mild difficulty with directional orientation on the road map test. Only one subject with developmental prosopagnosia had difficulty with cognitive map formation, and none were impaired on the other tests. Scores for house and scene recognition correlated most strongly with the results of the questionnaire. We conclude that topographic disorientation in acquired prosopagnosia reflects impaired place recognition, with a contribution from poor cognitive map formation when there is occipitotemporal damage. Topographic impairments are less frequent in developmental prosopagnosia. PMID:26874939

  13. Combining network analysis with Cognitive Work Analysis: insights into social organisational and cooperation analysis.

    PubMed

    Houghton, Robert J; Baber, Chris; Stanton, Neville A; Jenkins, Daniel P; Revell, Kirsten

    2015-01-01

    Cognitive Work Analysis (CWA) allows complex, sociotechnical systems to be explored in terms of their potential configurations. However, CWA does not explicitly analyse the manner in which person-to-person communication is performed in these configurations. Consequently, the combination of CWA with Social Network Analysis provides a means by which CWA output can be analysed to consider communication structure. The approach is illustrated through a case study of a military planning team. The case study shows how actor-to-actor and actor-to-function mapping can be analysed, in terms of centrality, to produce metrics of system structure under different operating conditions. In this paper, a technique for building social network diagrams from CWA is demonstrated.The approach allows analysts to appreciate the potential impact of organisational structure on a command system.

  14. Spatial Cognition and Map Interpretation

    DTIC Science & Technology

    1987-09-01

    Terrain association Spatial cognition Map reading Videogames aa mldm II naeaaaaiy and Hontlty by block numbor) Spatial memory span Orientation...ability. Finally, field and classroom performance was compared to wayfinding in a simulated ( videogame ) environment in which position coordinates were...a simulated ( videogame ) environment. Findings: MITAC instruction significantly improved the experimental group’s ability to perform terrain

  15. The Multiple Meanings of Peer Groups in Social Cognitive Mapping

    ERIC Educational Resources Information Center

    Neal, Jennifer Watling; Neal, Zachary P.

    2013-01-01

    Social cognitive mapping (SCM) is a common approach to identifying peer groups in developmental research. However, this approach involves three stages that each implies a unique conception of peer group. This article aims to bring conceptual clarity to the identification of peer groups using SCM by demonstrating how the meaning of peer groups…

  16. Design of a Three-Dimensional Cognitive Mapping Approach to Support Inquiry Learning

    ERIC Educational Resources Information Center

    Chen, Juanjuan; Wang, Minhong; Dede, Chris; Grotzer, Tina A.

    2017-01-01

    The use of external representations has the potential to facilitate inquiry learning, especially hypothesis generation and reasoning, which typically present difficulties for students. This study describes a novel three-dimensional cognitive mapping (3DCM) approach that supports inquiry learning by allowing learners to combine the information on a…

  17. A Theory of Causal Learning in Children: Causal Maps and Bayes Nets

    ERIC Educational Resources Information Center

    Gopnik, Alison; Glymour, Clark; Sobel, David M.; Schulz, Laura E.; Kushnir, Tamar; Danks, David

    2004-01-01

    The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously…

  18. Formative use of select-and-fill-in concept maps in online instruction: Implications for students of different learning styles

    NASA Astrophysics Data System (ADS)

    Kaminski, Charles William

    The purpose of this research was to investigate the formative use of Select and Fill-In (SAFI) maps in online instruction and the cognitive, metacognitive, and affective responses of students to their use. In particular, the implications of their use with students of different learning styles was considered. The research question investigated in this qualitative study was: How do students of different learning styles respond to online instruction in which SAFI maps are utilized? This question was explored by using an emergent, collective case study. Each case consisted of community college students who shared a dominant learning style and were enrolled in an online course in environmental studies. Cases in the study were determined using Kolb's Learning Style Inventory (LSI). Seven forms of data were collected during the study. During the first phase of data collection, dominant learning style and background information on student experience with concept mapping and online instruction was determined. In the second phase of data collection, participants completed SAFI maps and quiz items that corresponded to the content of the maps. Achievement data on the map activities and quiz and student responses to a post-SAFI survey and questionnaire were recorded to identify learner cognitive, metacognitive, and affective responses to the tasks. Upon completion of data collection, cases were constructed and compared across learning styles. Cases are presented using the trends, across participants sharing the same dominant learning style, in achievement, behaviors and attitudes as seen in the evidence present in the data. Triangulation of multiple data sources increased reliability and validity, through cross-case analyses, and produced a thick description of the relationship between the cases for each learning style. Evidence suggesting a cognitive response to the SAFI tasks was inconsistent across cases. However, learners with an affinity towards reflective learning activities demonstrated more positive metacognitive and affective responses to the SAFI tasks. This suggests that the contemplation and consideration of relationships expressed in the map requires learners, while completing the SAFI task, to compare their existing cognitive structure with an accepted structure and to reflect on the differences and similarities that may exist. Subsequently, the value of formative online SAFI map use for learners lies within the cognitive process of completing the tasks, not in the construction of an abstract cognitive structure reflecting an accepted structure and organization of concepts suggested by a completed map.

  19. A U-shaped Association Between Blood Pressure and Cognitive Impairment in Chinese Elderly.

    PubMed

    Lv, Yue-Bin; Zhu, Peng-Fei; Yin, Zhao-Xue; Kraus, Virginia Byers; Threapleton, Diane; Chei, Choy-Lye; Brasher, Melanie Sereny; Zhang, Juan; Qian, Han-Zhu; Mao, Chen; Matchar, David Bruce; Luo, Jie-Si; Zeng, Yi; Shi, Xiao-Ming

    2017-02-01

    Higher or lower blood pressure may relate to cognitive impairment, whereas the relationship between blood pressure and cognitive impairment among the elderly is not well-studied. The study objective was to determine whether blood pressure is associated with cognitive impairment in the elderly, and, if so, to accurately describe the association. Cross-sectional data from the sixth wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) conducted in 2011. Community-based setting in longevity areas in China. A total of 7144 Chinese elderly aged 65 years and older were included in the sample. Systolic blood pressures (SBP) and diastolic blood pressures (DBP) were measured, pulse pressure (PP) was calculated as (SBP) - (DBP) and mean arterial pressures (MAP) was calculated as 1/3(SBP) + 2/3(DBP). Cognitive function was assessed via a validated Mini-Mental State Examination (MMSE). Based on the results of generalized additive models (GAMs), U-shaped associations were identified between cognitive impairment and SBP, DBP, PP, and MAP. The cutpoints at which risk for cognitive impairment (MMSE <24) was minimized were determined by quadratic models as 141 mm Hg, 85 mm Hg, 62 mm Hg, and 103 mm Hg, respectively. In the logistic models, U-shaped associations remained for SBP, DBP, and MAP but not PP. Below the identified cutpoints, each 1-mm Hg decrease in blood pressure corresponded to 0.7%, 1.1%, and 1.1% greater risk in the risk of cognitive impairment, respectively. Above the cutpoints, each 1-mm Hg increase in blood pressure corresponded to 1.2%, 1.8%, and 2.1% greater risk of cognitive impairment for SBP, DBP, and MAP, respectively. A U-shaped association between blood pressure and cognitive function in an elderly Chinese population was found. Recognition of these instances is important in identifying the high-risk population for cognitive impairment and to individualize blood pressure management for cognitive impairment prevention. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  20. Blood pressure, brain structure, and cognition: opposite associations in men and women.

    PubMed

    Cherbuin, Nicolas; Mortby, Moyra E; Janke, Andrew L; Sachdev, Perminder S; Abhayaratna, Walter P; Anstey, Kaarin J

    2015-02-01

    Research on associations between blood pressure, brain structure, and cognitive function has produced somewhat inconsistent results. In part, this may be due to differences in age ranges studied and because of sex differences in physiology and/or exposure to risk factors, which may lead to different time course or patterns in cardiovascular disease progression. The aim of this study was to investigate the impact of sex on associations between blood pressure, regional cerebral volumes, and cognitive function in older individuals. In this cohort study, brachial blood pressure was measured twice at rest in 266 community-based individuals free of dementia aged 68-73 years who had also undergone a brain scan and a neuropsychological assessment. Associations between mean blood pressure (MAP), regional brain volumes, and cognition were investigated with voxel-wise regression analyses. Positive associations between MAP and regional volumes were detected in men, whereas negative associations were found in women. Similarly, there were sex differences in the brain-volume cognition relationship, with a positive relationship between regional brain volumes associated with MAP in men and a negative relationship in women. In this cohort of older individuals, higher MAP was associated with larger regional volume and better cognition in men, whereas opposite findings were demonstrated in women. These effects may be due to different lifetime risk exposure or because of physiological differences between men and women. Future studies investigating the relationship between blood pressure and brain structure or cognitive function should evaluate the potential for differential sex effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls

    PubMed Central

    Chou, Yi-Yu; Leporé, Natasha; Avedissian, Christina; Madsen, Sarah K.; Parikshak, Neelroop; Hua, Xue; Shaw, Leslie M.; Trojanowski, John Q.; Weiner, Michael W.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Automated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer’s disease, NeuroImage 40(2): 615–630); with this method, we calculated minimal numbers of subjects needed to detect correlations between clinical scores and ventricular maps. We also assessed correlations between emerging CSF biomarkers of Alzheimer’s disease pathology and localizable deficits in the brain, in 80 AD, 80 mild cognitive impairment (MCI), and 80 healthy controls from the Alzheimer’s Disease Neuroimaging Initiative. Six expertly segmented images and their embedded parametric mesh surfaces were fluidly registered to each brain; segmentations were averaged within subjects to reduce errors. Surface-based statistical maps revealed powerful correlations between surface morphology and 4 variables: (1) diagnosis, (2) depression severity, (3) cognitive function at baseline, and (4) future cognitive decline over the following year. Cognitive function was assessed using the mini-mental state exam (MMSE), global and sum-of-boxes clinical dementia rating (CDR) scores, at baseline and 1-year follow-up. Lower CSF Aβ1–42 protein levels, a biomarker of AD pathology assessed in 138 of the 240 subjects, were correlated with lateral ventricular expansion. Using false discovery rate (FDR) methods, 40 and 120 subjects, respectively, were needed to discriminate AD and MCI from normal groups. 120 subjects were required to detect correlations between ventricular enlargement and MMSE, global CDR, sum-of-boxes CDR and clinical depression scores. Ventricular expansion maps correlate with pathological and cognitive measures in AD, and may be useful in future imaging-based clinical trials. PMID:19236926

  2. Conceptualization and application of an approach for designing healthcare software interfaces.

    PubMed

    Kumar, Ajit; Maskara, Reena; Maskara, Sanjeev; Chiang, I-Jen

    2014-06-01

    The aim of this study is to conceptualize a novel approach, which facilitates us to design prototype interfaces for healthcare software. Concepts and techniques from various disciplines were used to conceptualize an interface design approach named MORTARS (Map Original Rhetorical To Adapted Rhetorical Situation). The concepts and techniques included in this approach are (1) rhetorical situation - a concept of philosophy provided by Bitzer (1968); (2) move analysis - an applied linguistic technique provided by Swales (1990) and Bhatia (1993); (3) interface design guidelines - a cognitive and computer science concept provided by Johnson (2010); (4) usability evaluation instrument - an interface evaluation questionnaire provided by Lund (2001); (5) user modeling via stereotyping - a cognitive and computer science concept provided by Rich (1979). A prototype interface for outpatient clinic software was designed to introduce the underlying concepts of MORTARS. The prototype interface was evaluated by thirty-two medical informaticians. The medical informaticians found the designed prototype interface to be useful (73.3%), easy to use (71.9%), easy to learn (93.1%), and satisfactory (53.2%). MORTARS approach was found to be effective in designing the prototype user interface for the outpatient clinic software. This approach might be further used to design interfaces for various software pertaining to healthcare and other domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Concept-Mapping Strategy for Assessing Conceptual Change in a Student-Directed, Research-Based Geoscience Course

    NASA Astrophysics Data System (ADS)

    Rebich, S.

    2003-12-01

    The concept mapping technique has been proposed as a method for examining the evolving nature of students' conceptualizations of scientific concepts, and promises insight into a dimension of learning different from the one accessible through more conventional classroom testing techniques. The theory behind concept mapping is based on an assumption that knowledge acquisition is accomplished through "linking" of new information to an existing knowledge framework, and that meaningful (as opposed to arbitrary or verbatim) links allow for deeper understanding and conceptual change. Reflecting this theory, concept maps are constructed as a network of related concepts connected by labeled links that illustrate the relationship between the concepts. Two concepts connected by one such link make up a "proposition", the basic element of the concept map structure. In this paper, we examine the results of a pre- and post-test assessment program for an upper-division undergraduate geography course entitled "Mock Environmental Summit," which was part of a research project on assessment. Concept mapping was identified as a potentially powerful assessment tool for this course, as more conventional tools such as multiple-choice tests did not seem to provide a reliable indication of the learning students were experiencing as a result of the student-directed research, presentations, and discussions that make up a substantial portion of the course. The assessment program began at the beginning of the course with a one-hour training session during which students were introduced to the theory behind concept mapping, provided with instructions and guidance for constructing a concept map using the CMap software developed and maintained by the Institute for Human and Machine Cognition at the University of West Florida, and asked to collaboratively construct a concept map on a topic not related to the one to be assessed. This training session was followed by a 45-minute "pre-test" on the topic of global climate change, for which students were provided with a list of questions to guide their thoughts during the concept map construction. Following the pre-test, students were not exposed to further concept mapping until the end of the course, when they were asked to complete a "post-test" consisting of exactly the same task. In addition to a summary of our results, this paper presents an overview of available digital concept-mapping tools, proposed scoring techniques, and design principles to keep in mind when designing a concept-mapping assessment program. We also discuss our experience with concept map assessment, the insights it provided into the evolution in student understanding of global climate change that resulted from the course, and our ideas about the potential role of concept mapping in an overall assessment program for interdisciplinary and/or student-directed curricula.

  4. The role of the hippocampus in navigation is memory

    PubMed Central

    2017-01-01

    There is considerable research on the neurobiological mechanisms within the hippocampal system that support spatial navigation. In this article I review the literature on navigational strategies in humans and animals, observations on hippocampal function in navigation, and studies of hippocampal neural activity in animals and humans performing different navigational tasks and tests of memory. Whereas the hippocampus is essential to spatial navigation via a cognitive map, its role derives from the relational organization and flexibility of cognitive maps and not from a selective role in the spatial domain. Correspondingly, hippocampal networks map multiple navigational strategies, as well as other spatial and nonspatial memories and knowledge domains that share an emphasis on relational organization. These observations suggest that the hippocampal system is not dedicated to spatial cognition and navigation, but organizes experiences in memory, for which spatial mapping and navigation are both a metaphor for and a prominent application of relational memory organization. PMID:28148640

  5. Fuzzy cognitive maps for issue identification in a water resources conflict resolution system

    NASA Astrophysics Data System (ADS)

    Giordano, R.; Passarella, G.; Uricchio, V. F.; Vurro, M.

    In water management, conflicts of interests are inevitable due to the variety in quality demands and the number of stakeholders, which are affected in different ways by decisions concerning the use of the resources. Ignoring the differences among interests involved in water resources management and not resolving the emerging conflicts could lead to controversial strategies. In such cases, proposed solutions could generate strong opposition, making these solutions unfeasible. In our contribution, a Community Decision Support System is proposed. Such a system is able to support discussion and collaboration. The system helps participants to structure their problem, to help them learn about possible alternatives, their constraints and implications and to support the participants in the specification of their own preferences. More in detail, the proposed system helps each user in representing and communicating problem perspectives. To reach this aim, cognitive maps are used to capture parts of the stakeholders’ point of view and to enhance negotiation among individuals and organizations. The aim of the negotiation process is to define a shared cognitive map with regard to water management problems. Such a map can be called a water community cognitive map. The system performance has been tested by simulating a real conflict on water resources management that occurred some years ago in a river basin in the south of Italy.

  6. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    NASA Astrophysics Data System (ADS)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-03-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1) = 21.508; p < .001) and higher-order (F(1) = 42.842, p < .001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.

  7. The synthesis map is a multidimensional educational tool that provides insight into students' mental models and promotes students' synthetic knowledge generation.

    PubMed

    Ortega, Ryan A; Brame, Cynthia J

    2015-01-01

    Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping, which utilizes embedding to layer information within concepts. Prezi's zooming user interface lets the author of the presentation use both depth as well as distance to show connections between data, ideas, and concepts. Students in the class Biology of Cancer created synthesis maps to illustrate their knowledge of tumorigenesis. Students used multiple organizational schemes to build their maps. We present an analysis of student work, placing special emphasis on organization within student maps and how the organization of knowledge structures in student maps can reveal strengths and weaknesses in student understanding or instruction. We also provide a discussion of best practices for instructors who would like to implement synthesis mapping in their classrooms. © 2015 R. A. Ortega and C. J. Brame et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. R2* mapping for brain iron: associations with cognition in normal aging.

    PubMed

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps.

    PubMed

    Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.

  10. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps

    PubMed Central

    Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237

  11. Stimulation Mapping of Myelinated Tracts in Awake Patients

    PubMed Central

    Duffau, Hugues

    2016-01-01

    For a long time, although the functional anatomy of human cortex has extensively been studied, subcortical white matter tracts have received little consideration. Recent advances in tractography have opened the door to a non-invasive investigation of the subcortical fibers in vivo. However, this method cannot study directly the function of the bundles. Interestingly, for the first time in the history of cognitive neurosciences, direct axonal electrostimulation (DES) mapping of the neural pathways offers the unique opportunity to investigate the function of the connectomal anatomy. Indeed, this technique is able to perform real-time anatomo-functional correlations in awake patients who undergo brain surgery, especially at the level of the subcortical fibers. Here, the aim is to review original data issued from DES of myelinated tracts in adults, with regard to the functional connectivity mediating the sensorimotor, visuo-spatial, language, cognitive and emotional functions, as well as the interactions between these different sub-networks, leading ultimately to explore consciousness. Therefore, axonal stimulation is a valuable tool in the field of connectomics, that is, the map of neural connections, in order to switch from the traditional localizationist view of brain processing to a networking model in which cerebral functions are underpinned by the dynamic interactions of large-scale distributed and parallel sub-circuits. Such connectomal account should integrate the anatomic constraint represented by the subcortical fascicles. Indeed, post-lesional neuroplasticity is possible only on the condition that the white matter fibers are preserved, to allow communication and temporal synchronization among delocalized inter-connected networks. PMID:29765851

  12. Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content.

    PubMed

    Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M; Zukley, Linda M; Ferrucci, Luigi; Resnick, Susan M; Spencer, Richard G

    2018-04-18

    We investigated brain demyelination in aging, mild cognitive impairment (MCI), and dementia using magnetic resonance imaging of myelin. Brains of young and old controls and old subjects with MCI, Alzheimer's disease, or vascular dementia were scanned using our recently developed myelin water fraction (MWF) mapping technique, which provides greatly improved accuracy over previous comparable methods. Maps of MWF, a direct and specific myelin measure, and relaxation times and magnetization transfer ratio, indirect and nonspecific measures, were constructed. MCI subjects showed decreased MWF compared with old controls. Demyelination was greater in Alzheimer's disease or vascular dementia. As expected, decreased MWF was accompanied by decreased magnetization transfer ratio and increased relaxation times. The young subjects showed greater myelin content than the old subjects. We believe this to be the first demonstration of myelin loss in MCI, Alzheimer's disease, and vascular dementia using a method that provides a quantitative magnetic resonance imaging-based measure of myelin. Our findings add to the emerging evidence that myelination may represent an important biomarker for the pathology of MCI and dementia. This study supports the investigation of the role of myelination in MCI and dementia through use of this quantitative magnetic resonance imaging approach in clinical studies of disease progression, relationship of functional status to myelination status, and therapeutics. Furthermore, mapping MWF may permit myelin to serve as a therapeutic target in clinical trials. Copyright © 2018. Published by Elsevier Inc.

  13. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  14. Opening the Black Box of Social Cognitive Mapping

    ERIC Educational Resources Information Center

    Neal, Zachary P.; Neal, Jennifer Watling

    2013-01-01

    This article provides Zachary P. Neal and Jennifer Watling Neal's response to Thomas W. Farmer and Hongling Xie's commentary on Neal and Neal's "Multiple Meanings of Peer Groups in Social Cognitive Mapping." Neal and Neal assert that many of Farmer and Xie's comments highlight the motivation behind their original…

  15. Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience.

    PubMed

    Roland, Jarod L; Griffin, Natalie; Hacker, Carl D; Vellimana, Ananth K; Akbari, S Hassan; Shimony, Joshua S; Smyth, Matthew D; Leuthardt, Eric C; Limbrick, David D

    2017-12-01

    OBJECTIVE Cerebral mapping for surgical planning and operative guidance is a challenging task in neurosurgery. Pediatric patients are often poor candidates for many modern mapping techniques because of inability to cooperate due to their immature age, cognitive deficits, or other factors. Resting-state functional MRI (rs-fMRI) is uniquely suited to benefit pediatric patients because it is inherently noninvasive and does not require task performance or significant cooperation. Recent advances in the field have made mapping cerebral networks possible on an individual basis for use in clinical decision making. The authors present their initial experience translating rs-fMRI into clinical practice for surgical planning in pediatric patients. METHODS The authors retrospectively reviewed cases in which the rs-fMRI analysis technique was used prior to craniotomy in pediatric patients undergoing surgery in their institution. Resting-state analysis was performed using a previously trained machine-learning algorithm for identification of resting-state networks on an individual basis. Network maps were uploaded to the clinical imaging and surgical navigation systems. Patient demographic and clinical characteristics, including need for sedation during imaging and use of task-based fMRI, were also recorded. RESULTS Twenty patients underwent rs-fMRI prior to craniotomy between December 2013 and June 2016. Their ages ranged from 1.9 to 18.4 years, and 12 were male. Five of the 20 patients also underwent task-based fMRI and one underwent awake craniotomy. Six patients required sedation to tolerate MRI acquisition, including resting-state sequences. Exemplar cases are presented including anatomical and resting-state functional imaging. CONCLUSIONS Resting-state fMRI is a rapidly advancing field of study allowing for whole brain analysis by a noninvasive modality. It is applicable to a wide range of patients and effective even under general anesthesia. The nature of resting-state analysis precludes any need for task cooperation. These features make rs-fMRI an ideal technology for cerebral mapping in pediatric neurosurgical patients. This review of the use of rs-fMRI mapping in an initial pediatric case series demonstrates the feasibility of utilizing this technique in pediatric neurosurgical patients. The preliminary experience presented here is a first step in translating this technique to a broader clinical practice.

  16. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    ERIC Educational Resources Information Center

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  17. Effects of Prior Knowledge and Concept-Map Structure on Disorientation, Cognitive Load, and Learning

    ERIC Educational Resources Information Center

    Amadieu, Franck; van Gog, Tamara; Paas, Fred; Tricot, Andre; Marine, Claudette

    2009-01-01

    This study explored the effects of prior knowledge (high vs. low; HPK and LPK) and concept-map structure (hierarchical vs. network; HS and NS) on disorientation, cognitive load, and learning from non-linear documents on "the infection process of a retrograde virus (HIV)". Participants in the study were 24 adults. Overall subjective ratings of…

  18. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    ERIC Educational Resources Information Center

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from…

  19. Exploring the Impact of Visual Complexity Levels in 3d City Models on the Accuracy of Individuals' Orientation and Cognitive Maps

    NASA Astrophysics Data System (ADS)

    Rautenbach, V.; Çöltekin, A.; Coetzee, S.

    2015-08-01

    In this paper we report results from a qualitative user experiment (n=107) designed to contribute to understanding the impact of various levels of complexity (mainly based on levels of detail, i.e., LoD) in 3D city models, specifically on the participants' orientation and cognitive (mental) maps. The experiment consisted of a number of tasks motivated by spatial cognition theory where participants (among other things) were given orientation tasks, and in one case also produced sketches of a path they `travelled' in a virtual environment. The experiments were conducted in groups, where individuals provided responses on an answer sheet. The preliminary results based on descriptive statistics and qualitative sketch analyses suggest that very little information (i.e., a low LoD model of a smaller area) might have a negative impact on the accuracy of cognitive maps constructed based on a virtual experience. Building an accurate cognitive map is an inherently desired effect of the visualizations in planning tasks, thus the findings are important for understanding how to develop better-suited 3D visualizations such as 3D city models. In this study, we specifically discuss the suitability of different levels of visual complexity for development planning (urban planning), one of the domains where 3D city models are most relevant.

  20. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  1. Reference frames in virtual spatial navigation are viewpoint dependent.

    PubMed

    Török, Agoston; Nguyen, T Peter; Kolozsvári, Orsolya; Buchanan, Robert J; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory.

  2. Neuroimaging of Cognitive Load in Instructional Multimedia

    ERIC Educational Resources Information Center

    Whelan, Robert R.

    2007-01-01

    This paper reviews research literature on cognitive load measurement in learning and neuroimaging, and describes a mapping between the main elements of cognitive load theory and findings in functional neuroanatomy. It is argued that these findings may lead to the improved measurement of cognitive load using neuroimaging. The paper describes how…

  3. Land Use and Land Cover (LULC) Change Detection in Islamabad and its Comparison with Capital Development Authority (CDA) 2006 Master Plan

    NASA Astrophysics Data System (ADS)

    Hasaan, Zahra

    2016-07-01

    Remote sensing is very useful for the production of land use and land cover statistics which can be beneficial to determine the distribution of land uses. Using remote sensing techniques to develop land use classification mapping is a convenient and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. In Islamabad city and surrounding the land use has been changing, every day new developments (urban, industrial, commercial and agricultural) are emerging leading to decrease in vegetation cover. The purpose of this work was to develop the land use of Islamabad and its surrounding area that is an important natural resource. For this work the eCognition Developer 64 computer software was used to develop a land use classification using SPOT 5 image of year 2012. For image processing object-based classification technique was used and important land use features i.e. Vegetation cover, barren land, impervious surface, built up area and water bodies were extracted on the basis of object variation and compared the results with the CDA Master Plan. The great increase was found in built-up area and impervious surface area. On the other hand vegetation cover and barren area followed a declining trend. Accuracy assessment of classification yielded 92% accuracies of the final land cover land use maps. In addition these improved land cover/land use maps which are produced by remote sensing technique of class definition, meet the growing need of legend standardization.

  4. Event-related functional MRI: Past, present, and future

    PubMed Central

    Rosen, Bruce R.; Buckner, Randy L.; Dale, Anders M.

    1998-01-01

    The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods. PMID:9448240

  5. Glioma surgery with intraoperative mapping-balancing the onco-functional choice.

    PubMed

    Brennum, Jannick; Engelmann, Christina M; Thomsen, Johanne Asperud; Skjøth-Rasmussen, Jane

    2018-05-01

    Balancing survival versus risk of inducing functional deficits is a challenge when resecting gliomas in or near eloquent areas. Our objectives were to assess deficits prior to and at 6 and 12 months after awake craniotomies with cortical and subcortical mapping in patients with suspected grade 2 gliomas in eloquent areas. We analyzed whether pre- and intraoperative factors were linked to an increased risk of postoperative deficits. Retrospective study of 92 consecutive patients operated between January 2010 and June 2014. All deficits reported by any healthcare professional and KPS-score preoperatively, immediately postoperatively (day 1-10), at 6 months and 12 months, were analyzed. A decrease in neurological and or cognitive function was common in the first days after surgery, with a significant improvement at 6 months after surgery and further improvement at 12 months. Immediately after surgery, 33% of the patients had severe deficits compared to 2% prior to surgery; this improved to 9% at 6 months and 3% at 12 months. However, at 12 months, 18% of the patients had new or worsened minor or moderate deficits and only 10% had no deficits compared to 39% prior to surgery. There were only minor changes in KPS. None of the recorded pre/intraoperative factors were found significantly to influence the risk of moderate/severe late postoperative deficits. A significant amount of the patients in this study experienced new or worsened neurological and or cognitive deficits during follow-up. We found a higher frequency of deficits than normally reported. This is due to the inclusion of mild deficits, the use of patient-reported data, and our focus on cognitive deficits. Our study indicates that the impact of awake craniotomy with mapping on patient outcome is larger than expected. This in no way negates the use of the technique.

  6. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum.

    PubMed

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2015-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.

  7. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum

    PubMed Central

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2016-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine. PMID:26834535

  8. Topological Schemas of Memory Spaces.

    PubMed

    Babichev, Andrey; Dabaghian, Yuri A

    2018-01-01

    Hippocampal cognitive map-a neuronal representation of the spatial environment-is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework-the memory space-that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as "networks of interconnections among the representations of events," have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature-a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure.

  9. Concept mapping for virtual rehabilitation and training of the blind.

    PubMed

    Sanchez, Jaime; Flores, Hector

    2010-04-01

    Concept mapping is a technique that allows for the strengthening of the learning process, based on graphic representations of the learner's mental schemes. However, due to its graphic nature, it cannot be utilized by learners with visual disabilities. In response to this limitation we implemented a study that involves the design of AudiodMC, an audio-based, virtual environment for concept mapping designed for use by blind users and aimed at virtual training and rehabilitation. We analyzed the stages involved in the design of AudiodMC from a user-centered design perspective, considering user involvement and usability testing. These include an observation stage to learn how blind learners construct conceptual maps using concrete materials, a design stage to design of a software tool that aids blind users in creating concept maps, and a cognitive evaluation stage using AudiodMC. We also present the results of a study implemented in order to determine the impact of the use of this software on the development of essential skills for concept mapping (association, classification, categorization, sorting and summarizing). The results point to a high level of user acceptance, having identified key sound characteristics that help blind learners to learn concept codification and selection skills. The use of AudiodMC also allowed for the effective development of the skills under review in our research, thus facilitating meaningful learning.

  10. Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement.

    PubMed

    Reedijk, Susan A; Bolders, Anne; Colzato, Lorenza S; Hommel, Bernhard

    2015-01-01

    Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences.

  11. Some Challenges in the Empirical Investigation of Conceptual Mappings and Embodied Cognition in Science Education: Commentary on Dreyfus, Gupta and Redish; and Close and Scherr

    ERIC Educational Resources Information Center

    Núñez, Rafael

    2015-01-01

    The last couple of decades have seen an enormous development in the study of embodied cognition through the investigation of conceptual mappings, such as conceptual metaphor and conceptual blending. Initially, this progress was achieved at a theoretical level, and more recently through empirical research in basic science--from psycholinguistics,…

  12. An Annotated Bibliography of Concept Mapping

    ERIC Educational Resources Information Center

    Garcia, GNA

    2008-01-01

    A rich narrative-style bibliography of concept mapping (reviewing six articles published between 1992-2005). Articles reviewed include: (1) Cognitive mapping: A qualitative research method for social work (C. Bitoni); (2) Collaborative concept mapping: Provoking and supporting meaningful discourse (C. Boxtel, J. Linden, E. Roelofs, and G. Erkens);…

  13. Influence of consumers' cognitive style on results from projective mapping.

    PubMed

    Varela, Paula; Antúnez, Lucía; Berget, Ingunn; Oliveira, Denize; Christensen, Kasper; Vidal, Leticia; Naes, Tormod; Ares, Gastón

    2017-09-01

    Projective mapping (PM), one of the most holistic product profiling methods in approach, is increasingly being used to uncover consumers' perception of products and packages. Assessors rely on a process of synthesis for evaluating product information, which would determine the relative importance of the perceived characteristics they use for mapping them. Individual differences are expected, as participants are not instructed on the characteristics to consider for evaluating the degree of difference among samples, generating different perceptual spaces. Individual differences in cognitive style can affect synthesis processes and thus their perception of similarities and differences among samples. In this study, the influence of the cognitive style in the results of PM was explored. Two consumer studies were performed, one aimed at describing intrinsic sensory characteristics of chocolate flavoured milk and the other one looking into extrinsic (package only) of blueberry yogurts. Consumers completed the wholistic-analytic module of the extended Verbal Imagery Cognitive Styles Test & Extended Cognitive Style Analysis-Wholistic Analytic Test, to characterize their cognitive style. Differences between wholistic and analytic consumers in how they evaluated samples using projective mapping were found in both studies. Analytics separated the samples more in the PM perceptual space than wholistic consumers, showing more discriminating abilities. This may come from a deeper analysis of the samples, both from intrinsic and extrinsic point of views. From a sensory perspective (intrinsic), analytic consumers relied on more sensory characteristics, while wholistic mainly discriminated samples according to sweetness and bitterness/chocolate flavour. In the extrinsic study however, even if analytic consumers discriminated more between packs, they described the products using similar words in the descriptive step. One important recommendation coming from this study is the need to consider higher dimensions in the interpretation of projective mapping tasks, as the first dimensions could underestimate the complexity of the perceptual space; currently, most applications of PM consider two dimensions only, which may not uncover the perception of specific groups of consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Navigation experience and mental representations of the environment: do pilots build better cognitive maps?

    PubMed

    Sutton, Jennifer E; Buset, Melanie; Keller, Mikayla

    2014-01-01

    A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context.

  15. Navigation Experience and Mental Representations of the Environment: Do Pilots Build Better Cognitive Maps?

    PubMed Central

    Sutton, Jennifer E.; Buset, Melanie; Keller, Mikayla

    2014-01-01

    A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context. PMID:24603608

  16. Exploring the Structure of Spatial Representations

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  17. Building simplification algorithms based on user cognition in mobile environment

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Shi, Junfei; Wang, Meizhen; Wu, Chenyan

    2008-10-01

    With the development of LBS, mobile map should adaptively satisfy the cognitive requirement of user. User cognition in mobile environment is much more objective oriented and also seem to be a heavier burden than the user in static environment. The holistic idea and methods of map generalization can not fully suitable for the mobile map. This paper took the building simplification in habitation generalization as example, analyzed the characteristic of user cognition in mobile environment and the basic rules of building simplification, collected and studied the state-of-the-art of algorithms of building simplification in the static and mobile environment, put forward the idea of hierarchical building simplification based on user cognition. This paper took Hunan road business district of Nanjing as test area and took the building data with shapfile format of ESRI as test data and realized the simplification algorithm. The method took user as center, calculated the distance between user and the building which will be simplified and took the distance as the basis for choosing different simplification algorithm for different spaces. This contribution aimed to hierarchically present the building in different level of detail by real-time simplification.

  18. The effectiveness of learning with concept mapping on the science problem-solving of sixth-grade children

    NASA Astrophysics Data System (ADS)

    Jolly, Anju B.

    The purpose of this study was to analyze the relationship of concept mapping to science problem solving in sixth grade elementary school children. The study proposes to determine whether the students' ability to perform higher cognitive processes was a predictor of students' performance in solving problems in science and whether gender and socioeconomic status are related to performance in solving problems. Two groups participated in the study. Both groups were given a pre-test of higher cognitive ability--the Ross Test of Higher Cognitive Ability. One group received instruction on a science unit of study in concept mapping format and the other group received instruction in traditional format. The instruction lasted approximately 4 weeks. Both groups were given a problem-solving post-test. A comparison of post-test means was done using Analysis of Covariance (ANCOVA) as the statistical procedure with scores on the test of higher cognitive ability as the covariate. Also, Multiple Regression was performed to analyze the influence of participants' gender and socioeconomic status on their performance in solving problems. Results from the analysis of covariance showed that the group receiving instruction in the concept mapping format performed significantly better than the group receiving instruction in traditional format. Also the Ross Test of Higher Cognitive Processes emerged to be a predictor of performance on problem solving. There was no significant difference in the analysis of the performance of males and females. No pattern emerged regarding the influence of socioeconomic status on problem solving performance. In conclusion, the study showed that concept mapping improved problem solving in the classroom, and that gender and socioeconomic status are not predictors of student success in problem solving.

  19. Clinical applications of cognitive event-related potentials in Alzheimer's disease.

    PubMed

    Olichney, John M; Hillert, Dieter G

    2004-02-01

    This article has reviewed several abnormalities in the cognitive ERPs of AD patients. These abnormalities are prominent from latencies of approximately 200 msec and later. In contrast, sensory-dependent evoked potentials, such as N100, are generally normal in AD. This finding is as one familiar with the neuropathology of AD would predict. Predilection sites in early AD include the medial temporal lobe, other limbic areas, and multimodal association cortices with sparing of primary sensory areas. Unimodal association cortex is involved in AD, but not as heavily as multimodal cortex. Particular advantages of studying a given ERP paradigm or component depend largely on the specific application or hypothesis being tested. A P300 paradigm can be useful in detecting a disorder of attention or in quantifying the effects of drugs that improve attention, such as the cholinesterase inhibitors. For the early diagnosis of AD or other memory disorders, a word-repetition paradigm with an explicit recognition task or one that fosters associative learning would be recommended. This article has discussed potential use of N400 in tracking disease progression. ERPs provide a flexible and powerful technique, with superb temporal resolution, which can be used as a probe into subtle "subclinical" abnormalities of cognitive processes. Despite being applied to AD for about 25 years since the early P300 studies, the full potential of ERPs in helping diagnose and treat AD patients has yet to be realized. In this era of rapidly evolving brain-imaging techniques, electrophysiologic data are important in advancing understanding of cognition. Brain-mapping techniques that can inform where and when key cognitive processes occur are finally emerging. A final example of potential clinical application of cognitive ERPs is in the development of rational combinational treatment of cognitive enhancing drugs. Along these lines, P300 investigations in epilepsy proved helpful in ranking the cognitive side effects of anticonvulsant drugs. Drug studies that use 2 x 2 combinational designs, which compare the effects of drug A, drug B, with A + B, are currently prohibitively expensive for full-scale clinical trials in AD. It is likely that precise ERP measures could hasten drug development in several ways. Smaller samples could be used, at lower cost, to test the cognitive effects of each specific drug combination. Optimal doses of combinational therapy perhaps could be identified by repeated within-subject ERP measures. Longitudinal changes in the ERP hold promise as a marker of individual responsivity to a particular agent, which could have diagnostic utility (eg, testing response to cholinergic or dopaminergic therapy). This horizon and many others remain wide open for well-planned explorations.

  20. Spatial representation of pitch height: the SMARC effect.

    PubMed

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno L; Umiltà, Carlo; Butterworth, Brian

    2006-03-01

    Through the preferential pairing of response positions to pitch, here we show that the internal representation of pitch height is spatial in nature and affects performance, especially in musically trained participants, when response alternatives are either vertically or horizontally aligned. The finding that our cognitive system maps pitch height onto an internal representation of space, which in turn affects motor performance even when this perceptual attribute is irrelevant to the task, extends previous studies on auditory perception and suggests an interesting analogy between music perception and mathematical cognition. Both the basic elements of mathematical cognition (i.e. numbers) and the basic elements of musical cognition (i.e. pitches), appear to be mapped onto a mental spatial representation in a way that affects motor performance.

  1. Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement

    PubMed Central

    Reedijk, Susan A.; Bolders, Anne; Colzato, Lorenza S.; Hommel, Bernhard

    2015-01-01

    Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences. PMID:26089802

  2. Errors on the Trail Making Test Are Associated with Right Hemispheric Frontal Lobe Damage in Stroke Patients

    PubMed Central

    Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl

    2015-01-01

    Measures of performance on the Trail Making Test (TMT) are among the most popular neuropsychological assessment techniques. Completion time on TMT-A is considered to provide a measure of processing speed, whereas completion time on TMT-B is considered to constitute a behavioral measure of the ability to shift between cognitive sets (cognitive flexibility), commonly attributed to the frontal lobes. However, empirical evidence linking performance on the TMT-B to localized frontal lesions is mostly lacking. Here, we examined the association of frontal lesions following stroke with TMT-B performance measures (i.e., completion time and completion accuracy measures) using voxel-based lesion-behavior mapping, with a focus on right hemispheric frontal lobe lesions. Our results suggest that the number of errors, but not completion time on the TMT-B, is associated with right hemispheric frontal lesions. This finding contradicts common clinical practice—the use of completion time on the TMT-B to measure cognitive flexibility, and it underscores the need for additional research on the association between cognitive flexibility and the frontal lobes. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether our observation is specific for right frontal lesions. PMID:26074673

  3. The Additional Contribution of White Matter Hyperintensity Location to Post-stroke Cognitive Impairment: Insights From a Multiple-Lesion Symptom Mapping Study.

    PubMed

    Zhao, Lei; Wong, Adrian; Luo, Yishan; Liu, Wenyan; Chu, Winnie W C; Abrigo, Jill M; Lee, Ryan K L; Mok, Vincent; Shi, Lin

    2018-01-01

    White matter hyperintensities (WMH) are common in acute ischemic stroke patients. Although WMH volume has been reported to influence post-stroke cognition, it is still not clear whether WMH location, independent of acute ischemic lesion (AIL) volume and location, contributes to cognitive impairment after stroke. Here, we proposed a multiple-lesion symptom mapping model that considers both the presence of WMH and AIL to measure the additional contribution of WMH locations to post-stroke cognitive impairment. Seventy-six first-ever stroke patients with AILs in the left hemisphere were examined by Montreal Cognitive Assessment (MoCA) at baseline and 1 year after stroke. The association between the location of AIL and WMH and global cognition was investigated by a multiple-lesion symptom mapping (MLSM) model based on support vector regression (SVR). To explore the relative merits of MLSM over the existing lesion-symptom mapping approaches with only AIL considered (mass-univariate VLSM and SVR-LSM), we measured the contribution of the significant AIL and/or WMH clusters from these models to post-stroke cognitive impairment. In addition, we compared the significant WMH locations identified by the optimal SVR-MLSM model for cognitive impairment at baseline and 1 year post stroke. The identified strategic locations of WMH significantly contributed to the prediction of MoCA at baseline (short-term) and 1 year (long-term) after stroke independent of the strategic locations of AIL. The significant clusters of WMH for short-term and long-term post-stroke cognitive impairment were mainly in the corpus callosum, corona radiata, and posterior thalamic radiation. We noted that in some regions, the AIL clusters that were significant for short-term outcome were no longer significant for long-term outcome, and interestingly more WMH clusters in these regions became significant for long-term outcome compared to short-term outcome. This indicated that there are some regions where local WMH burden has larger impact than AIL burden on the long-term post-stroke cognitive impairment. In consequence, SVR-MLSM was effective in identifying the WMH locations that have additional impact on post-stroke cognition on top of AIL locations. Such a method can also be applied to other lesion-behavior studies where multiple types of lesions may have potential contributions to a specific behavior.

  4. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    PubMed Central

    Vernet, Marine; Quentin, Romain; Chanes, Lorena; Mitsumasu, Andres; Valero-Cabré, Antoni

    2014-01-01

    The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed. PMID:25202241

  5. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses

    PubMed Central

    Riera, J; Aubert, E; Iwata, K; Kawashima, R; Wan, X; Ozaki, T

    2005-01-01

    The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages. PMID:16087446

  6. Probing High School Students' Cognitive Structures and Key Areas of Learning Difficulties on Ethanoic Acid Using the Flow Map Method

    ERIC Educational Resources Information Center

    Zhou, Qing; Wang, Tingting; Zheng, Qi

    2015-01-01

    The purpose of this study was primarily to explore high school students' cognitive structures and to identify their learning difficulties on ethanoic acid through the flow map method. The subjects of this study were 30 grade 1 students from Dong Yuan Road Senior High School in Xi'an, China. The interviews were conducted a week after the students…

  7. Mental model mapping as a new tool to analyse the use of information in decision-making in integrated water management

    NASA Astrophysics Data System (ADS)

    Kolkman, M. J.; Kok, M.; van der Veen, A.

    The solution of complex, unstructured problems is faced with policy controversy and dispute, unused and misused knowledge, project delay and failure, and decline of public trust in governmental decisions. Mental model mapping (also called concept mapping) is a technique to analyse these difficulties on a fundamental cognitive level, which can reveal experiences, perceptions, assumptions, knowledge and subjective beliefs of stakeholders, experts and other actors, and can stimulate communication and learning. This article presents the theoretical framework from which the use of mental model mapping techniques to analyse this type of problems emerges as a promising technique. The framework consists of the problem solving or policy design cycle, the knowledge production or modelling cycle, and the (computer) model as interface between the cycles. Literature attributes difficulties in the decision-making process to communication gaps between decision makers, stakeholders and scientists, and to the construction of knowledge within different paradigm groups that leads to different interpretation of the problem situation. Analysis of the decision-making process literature indicates that choices, which are made in all steps of the problem solving cycle, are based on an individual decision maker’s frame of perception. This frame, in turn, depends on the mental model residing in the mind of the individual. Thus we identify three levels of awareness on which the decision process can be analysed. This research focuses on the third level. Mental models can be elicited using mapping techniques. In this way, analysing an individual’s mental model can shed light on decision-making problems. The steps of the knowledge production cycle are, in the same manner, ultimately driven by the mental models of the scientist in a specific discipline. Remnants of this mental model can be found in the resulting computer model. The characteristics of unstructured problems (complexity, uncertainty and disagreement) can be positioned in the framework, as can the communities of knowledge construction and valuation involved in the solution of these problems (core science, applied science, and professional consultancy, and “post-normal” science). Mental model maps, this research hypothesises, are suitable to analyse the above aspects of the problem. This hypothesis is tested for the case of the Zwolle storm surch barrier. Analysis can aid integration between disciplines, participation of public stakeholders, and can stimulate learning processes. Mental model mapping is recommended to visualise the use of knowledge, to analyse difficulties in problem solving process, and to aid information transfer and communication. Mental model mapping help scientists to shape their new, post-normal responsibilities in a manner that complies with integrity when dealing with unstructured problems in complex, multifunctional systems.

  8. Strategy generalization across orientation tasks: testing a computational cognitive model.

    PubMed

    Gunzelmann, Glenn

    2008-07-08

    Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps. 2008 Cognitive Science Society, Inc.

  9. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    PubMed

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cognitive-Developmental Hierarchies: A Search for Structure Using Item-Level Data.

    ERIC Educational Resources Information Center

    Martinez, Michael E.; Simpson, R. Scott

    Item-level statistics from ability and achievement tests have been underutilized as sources of data for building models of cognitive development. How item data can be used to build a cognitive-developmental map of proportional reasoning is demonstrated. The product of the analysis is a cognitive hierarchy with levels corresponding to categories of…

  11. How do task characteristics affect learning and performance? The roles of variably mapped and dynamic tasks.

    PubMed

    Macnamara, Brooke N; Frank, David J

    2018-05-01

    For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task characteristics' impact on learning and performance in a complex task while controlling for other task characteristics. In 2 experiments we test key theoretical task characteristic thought to moderate the relationship between practice, cognitive resources, and performance. We devised a task where each of several key task characteristics can be manipulated independently. Participants played 5 rounds of a game similar to the popular tower defense videogame Plants vs. Zombies where both cognitive load and game characteristics were manipulated. In Experiment 1, participants either played a consistently mapped version-the stimuli and the associated meaning of their properties were constant across the 5 rounds-or played a variably mapped version-the stimuli and the associated meaning of their properties changed every few minutes. In Experiment 2, participants either played a static version-that is, turn taking with no time pressure-or played a dynamic version-that is, the stimuli moved regardless of participants' response rates. In Experiment 1, participants' accuracy and efficiency were substantially hindered in the variably mapped conditions. In Experiment 2, learning and performance accuracy were hindered in the dynamic conditions, especially when under cognitive load. Our results suggest that task characteristics impact the relative importance of cognitive resources and practice on predicting learning and performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure.

    PubMed

    Poldrack, Russell A; Yarkoni, Tal

    2016-01-01

    A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings--for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis--including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience.

  13. Transcranial magnetic stimulation and neuroplasticity.

    PubMed

    Pascual-Leone, A; Tarazona, F; Keenan, J; Tormos, J M; Hamilton, R; Catala, M D

    1999-02-01

    We review past results and present novel data to illustrate different ways in which TMS can be used to study neural plasticity. Procedural learning during the serial reaction time task (SRTT) is used as a model of neural plasticity to illustrate the applications of TMS. These different applications of TMS represent principles of use that we believe are applicable to studies of cognitive neuroscience in general and exemplify the great potential of TMS in the study of brain and behavior. We review the use of TMS for (1) cortical output mapping using focal, single-pulse TMS; (2) identification of the mechanisms underlying neuroplasticity using paired-pulse TMS techniques; (3) enhancement of the information of other neuroimaging techniques by transient disruption of cortical function using repetitive TMS; and finally (4) modulation of cortical function with repetitive TMS to influence behavior and guide plasticity.

  14. Quantum cognition based on an ambiguous representation derived from a rough set approximation.

    PubMed

    Gunji, Yukio-Pegio; Sonoda, Kohei; Basios, Vasileios

    2016-03-01

    Over the last years, in a series papers by Arecchi and others, a model for the cognitive processes involved in decision making has been proposed and investigated. The key element of this model is the expression of apprehension and judgment, basic cognitive process of decision making, as an inverse Bayes inference classifying the information content of neuron spike trains. It has been shown that for successive plural stimuli this inference, equipped with basic non-algorithmic jumps, is affected by quantum-like characteristics. We show here that such a decision making process is related consistently with an ambiguous representation by an observer within a universe of discourse. In our work the ambiguous representation of an object or a stimuli is defined as a pair of maps from objects of a set to their representations, where these two maps are interrelated in a particular structure. The a priori and a posteriori hypotheses in Bayes inference are replaced by the upper and lower approximations, correspondingly, for the initial data sets that are derived with respect to each map. Upper and lower approximations herein are defined in the context of "rough set" analysis. The inverse Bayes inference is implemented by the lower approximations with respect to the one map and for the upper approximation with respect to the other map for a given data set. We show further that, due to the particular structural relation between the two maps, the logical structure of such combined approximations can only be expressed as an orthomodular lattice and therefore can be represented by a quantum rather than a Boolean logic. To our knowledge, this is the first investigation aiming to reveal the concrete logic structure of inverse Bayes inference in cognitive processes. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age.

    PubMed

    van Bergen, J M G; Li, X; Quevenco, F C; Gietl, A F; Treyer, V; Meyer, R; Buck, A; Kaufmann, P A; Nitsch, R M; van Zijl, P C M; Hock, C; Unschuld, P G

    2018-03-13

    The accumulation of β-amyloid plaques is a hallmark of Alzheimer's disease (AD), and recently published data suggest that increased brain iron burden may reflect pathologies that synergistically contribute to the development of cognitive dysfunction. While preclinical disease stages are considered most promising for therapeutic intervention, the link between emerging AD-pathology and earliest clinical symptoms remains largely unclear. In the current study we therefore investigated local correlations between iron and β-amyloid plaques, and their possible association with cognitive performance in healthy older adults. 116 older adults (mean age 75 ± 7.4 years) received neuropsychological testing to calculate a composite cognitive score of performance in episodic memory, executive functioning, attention, language and communication. All participants were scanned on a combined PET-MRI instrument and were administered T1-sequences for anatomical mapping, quantitative susceptibility mapping (QSM) for assessing iron, and 18F-Flutemetamol-PET for estimating β-amyloid plaque load. Biological parametric mapping (BPM) was used to generate masks indicating voxels with significant (p < 0.05) correlation between susceptibility and 18F-Flutemetamol-SUVR. We found a bilateral pattern of clusters characterized by a statistical relationship between magnetic susceptibility and 18F-Flutemetamol-SUVR, indicating local correlations between iron and β-amyloid plaque deposition. For two bilateral clusters, located in the frontal and temporal cortex, significant relationships (p<0.05) between local β-amyloid and the composite cognitive performance score could be observed. No relationship between whole-cortex β-amyloid plaque load and cognitive performance was observable. Our data suggest that the local correlation of β-amyloid plaque load and iron deposition may provide relevant information regarding cognitive performance of healthy older adults. Further studies are needed to clarify pathological correlates of the local interaction of β-amyloid, iron and other causes of altered magnetic susceptibility. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Stroke Location Is an Independent Predictor of Cognitive Outcome.

    PubMed

    Munsch, Fanny; Sagnier, Sharmila; Asselineau, Julien; Bigourdan, Antoine; Guttmann, Charles R; Debruxelles, Sabrina; Poli, Mathilde; Renou, Pauline; Perez, Paul; Dousset, Vincent; Sibon, Igor; Tourdias, Thomas

    2016-01-01

    On top of functional outcome, accurate prediction of cognitive outcome for stroke patients is an unmet need with major implications for clinical management. We investigated whether stroke location may contribute independent prognostic value to multifactorial predictive models of functional and cognitive outcomes. Four hundred twenty-eight consecutive patients with ischemic stroke were prospectively assessed with magnetic resonance imaging at 24 to 72 hours and at 3 months for functional outcome using the modified Rankin Scale and cognitive outcome using the Montreal Cognitive Assessment (MoCA). Statistical maps of functional and cognitive eloquent regions were derived from the first 215 patients (development sample) using voxel-based lesion-symptom mapping. We used multivariate logistic regression models to study the influence of stroke location (number of eloquent voxels from voxel-based lesion-symptom mapping maps), age, initial National Institutes of Health Stroke Scale and stroke volume on modified Rankin Scale and MoCA. The second part of our cohort was used as an independent replication sample. In univariate analyses, stroke location, age, initial National Institutes of Health Stroke Scale, and stroke volume were all predictive of poor modified Rankin Scale and MoCA. In multivariable analyses, stroke location remained the strongest independent predictor of MoCA and significantly improved the prediction compared with using only age, initial National Institutes of Health Stroke Scale, and stroke volume (area under the curve increased from 0.697-0.771; difference=0.073; 95% confidence interval, 0.008-0.155). In contrast, stroke location did not persist as independent predictor of modified Rankin Scale that was mainly driven by initial National Institutes of Health Stroke Scale (area under the curve going from 0.840 to 0.835). Similar results were obtained in the replication sample. Stroke location is an independent predictor of cognitive outcome (MoCA) at 3 months post stroke. © 2015 American Heart Association, Inc.

  17. Understanding and Modeling Information Dominance in Battle Management: Applications of Fuzzy Cognitive Maps

    DTIC Science & Technology

    1998-03-01

    The report takes a unique look at information dominance and how it relates to shared situation awareness and the decision making cycles of the OODA...loop. An explanation of information dominance is developed through a historical example of battle management (the Battle of Britain) to demonstrate the...contemporary information dominance . Fuzzy cognitive mapping, a method for eliciting and modeling human interactions in complex situations (such as information

  18. Children's planning performance in the Zoo Map task (BADS-C): Is it driven by general cognitive ability, executive functioning, or prospection?

    PubMed

    Ballhausen, Nicola; Mahy, Caitlin E V; Hering, Alexandra; Voigt, Babett; Schnitzspahn, Katharina M; Lagner, Prune; Ihle, Andreas; Kliegel, Matthias

    2017-01-01

    A minimal amount of research has examined the cognitive predictors of children's performance in naturalistic, errand-type planning tasks such as the Zoo Map task of the Behavioral Assessment of the Dysexecutive Syndrome for Children (BADS-C). Thus, the current study examined prospection (i.e., the ability to remember to carry out a future intention), executive functioning, and intelligence markers as predictors of performance in this widely used naturalistic planning task in 56 children aged 7- to 12-years-old. Measures of planning, prospection, inhibition, crystallized intelligence, and fluid intelligence were collected in an individual differences study. Regression analyses showed that prospection (rather than traditional measures of intelligence or inhibition) predicted planning, suggesting that naturalistic planning tasks such as the Zoo Map task may rely on future-oriented cognitive processes rather than executive problem solving or general knowledge.

  19. Cognitive mapping in mental time travel and mental space navigation.

    PubMed

    Gauthier, Baptiste; van Wassenhove, Virginie

    2016-09-01

    The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 & 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Changing Consciousness: Autoethnographic Mapping in a Dialog Group

    ERIC Educational Resources Information Center

    Hager, Tamar; Mazali, Rela

    2013-01-01

    This article introduces a pedagogical tool for raising critical consciousness and nurturing resistance to discrimination. "Autoethnographic mapping," integrating guided cognitive mapping and autoethnographies, has been implemented for a decade now within the framework of a college course occasioning dialogue between Palestinian Arab and…

  1. Resting fMRI measures are associated with cognitive deficits in schizophrenia assessed by the MATRICS consensus cognitive battery

    NASA Astrophysics Data System (ADS)

    He, Hao; Bustillo, Juan; Du, Yuhui; Yu, Qingbao; Jones, Thomas R.; Jiang, Tianzi; Calhoun, Vince D.; Sui, Jing

    2015-03-01

    The cognitive deficits of schizophrenia are largely resistant to current treatment, and are thus a life-long burden to patients. The MATRICS consensus cognitive battery (MCCB) provides a reliable and valid assessment of cognition across a comprehensive set of cognitive domains for schizophrenia. In resting-state fMRI, functional connectivity associated with MCCB has not yet been examined. In this paper, the interrelationships between MCCB and the abnormalities seen in two types of functional measures from resting-state fMRI—fractional amplitude of low frequency fluctuations (fALFF) and functional network connectivity (FNC) maps were investigated in data from 47 schizophrenia patients and 50 age-matched healthy controls. First, the fALFF maps were generated and decomposed by independent component analysis (ICA), and then the component showing the highest correlation with MCCB composite scores was selected. Second, the whole brain was separated into functional networks by group ICA, and the FNC maps were calculated. The FNC strengths with most significant correlations with MCCB were displayed and spatially overlapped with the fALFF component of interest. It demonstrated increased cognitive performance associated with higher fALFF values (intensity of regional spontaneous brain activity) in prefrontal regions, inferior parietal lobe (IPL) but lower ALFF values in thalamus, striatum, and superior temporal gyrus (STG). Interestingly, the FNC showing significant correlations with MCCB were in well agreement with the activated regions with highest z-values in fALFF component. Our results support the view that functional deficits in distributed cortico-striato-thalamic circuits and inferior parietal lobe may account for several aspects of cognitive impairment in schizophrenia.

  2. Patterns of white matter damage are non-random and associated with cognitive function in secondary progressive multiple sclerosis.

    PubMed

    Meijer, K A; Cercignani, M; Muhlert, N; Sethi, V; Chard, D; Geurts, J J G; Ciccarelli, O

    2016-01-01

    In multiple sclerosis (MS), white matter damage is thought to contribute to cognitive dysfunction, which is especially prominent in secondary progressive MS (SPMS). While studies in healthy subjects have revealed patterns of correlated fractional anisotropy (FA) across white matter tracts, little is known about the underlying patterns of white matter damage in MS. In the present study, we aimed to map the SPMS-related covariance patterns of microstructural white matter changes, and investigated whether or not these patterns were associated with cognitive dysfunction. Diffusion MRI was acquired from 30 SPMS patients and 32 healthy controls (HC). A tensor model was fitted and FA maps were processed using tract-based spatial statistics (TBSS) in order to obtain a skeletonised map for each subject. The skeletonised FA maps of patients only were decomposed into 18 spatially independent components (ICs) using independent component analysis. Comprehensive cognitive assessment was conducted to evaluate five cognitive domains. Correlations between cognitive performance and (1) severity of FA abnormalities of the extracted ICs (i.e. z-scores relative to FA values of HC) and (2) IC load (i.e. FA covariance of a particular IC) were examined. SPMS patients showed lower FA values of all examined patterns of correlated FA (i.e. spatially independent components) than HC (p < 0.01). Tracts visually assigned to the supratentorial commissural class were most severely damaged (z = - 3.54; p < 0.001). Reduced FA was significantly correlated with reduced IC load (i.e. FA covariance) (r = 0.441; p < 0.05). Lower mean FA and component load of the supratentorial projection tracts and limbic association tracts classes were associated with worse cognitive function, including executive function, working memory and verbal memory. Despite the presence of white matter damage, it was possible to reveal patterns of FA covariance across SPMS patients. This could indicate that white matter tracts belonging to the same cluster, and thus with similar characteristics, tend to follow similar trends during neurodegeneration. Furthermore, these underlying FA patterns might help to explain cognitive dysfunction in SPMS.

  3. Effects of acute insulin-induced hypoglycemia on spatial abilities in adults with type 1 diabetes.

    PubMed

    Wright, Rohana J; Frier, Brian M; Deary, Ian J

    2009-08-01

    OBJECTIVE To examine the effects of acute insulin-induced hypoglycemia on spatial cognitive abilities in adult humans with type 1 diabetes. RESEARCH DESIGN AND METHODS Sixteen adults with type 1 diabetes underwent two counterbalanced experimental sessions: euglycemia (blood glucose 4.5 mmol/l [81 mg/dl]) and hypoglycemia (2.5 mmol/l [45 mg/dl]). Arterialized blood glucose levels were maintained using a hyperinsulinemic glucose clamp technique. During each session, subjects underwent detailed assessment of spatial abilities from the Kit of Factor-Referenced Cognitive Tests and two tests of general cognitive function. RESULTS Spatial ability performance deteriorated significantly during hypoglycemia. Results for the Hidden Patterns, Card Rotations, Paper Folding, and Maze Tracing tests were all impaired significantly (P < or = 0.001) during hypoglycemia, as were results for the Cube Comparisons Test (P = 0.03). The Map Memory Test was not significantly affected by hypoglycemia. CONCLUSIONS Hypoglycemia is a common side effect of insulin therapy in individuals with type 1 diabetes, and spatial abilities are of critical importance in day-to-day functioning. The deterioration in spatial abilities observed during modest experimental hypoglycemia provides novel information on the cerebral hazards of hypoglycemia that has potential relevance to everyday activities.

  4. A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Barrineau, C. P.

    2014-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.

  5. Beethoven's Last Piano Sonata and Those Who Follow Crocodiles: Cross-Domain Mappings of Auditory Pitch in a Musical Context

    ERIC Educational Resources Information Center

    Eitan, Zohar; Timmers, Renee

    2010-01-01

    Though auditory pitch is customarily mapped in Western cultures onto spatial verticality (high-low), both anthropological reports and cognitive studies suggest that pitch may be mapped onto a wide variety of other domains. We collected a total number of 35 pitch mappings and investigated in four experiments how these mappings are used and…

  6. Comparative Cognition: Past, Present, and Future

    PubMed Central

    Beran, Michael J.; Parrish, Audrey E.; Perdue, Bonnie M.; Washburn, David A.

    2014-01-01

    Comparative cognition is the field of inquiry concerned with understanding the cognitive abilities and mechanisms that are evident in nonhuman species. Assessments of animal cognition have a long history, but in recent years there has been an explosion of new research topics, and a general broadening of the phylogenetic map of animal cognition. To review the past of comparative cognition, we describe the historical trends. In regards to the present state, we examine current “hot topics” in comparative cognition. Finally, we offer our unique and combined thoughts on the future of the field. PMID:25419047

  7. Architecture of cognitive flexibility revealed by lesion mapping

    PubMed Central

    Barbey, Aron K.; Colom, Roberto; Grafman, Jordan

    2013-01-01

    Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism–Extraversion–Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R2 = 0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. PMID:23721727

  8. Planning or something else? Examining neuropsychological predictors of Zoo Map performance.

    PubMed

    Oosterman, Joukje M; Wijers, Marijn; Kessels, Roy P C

    2013-01-01

    The Zoo Map Test of the Behavioral Assessment of the Dysexecutive Syndrome battery is often applied to measure planning ability as part of executive function. Successful performance on this test is, however, dependent on various cognitive functions, and deficient Zoo Map performance does therefore not necessarily imply selectively disrupted planning abilities. To address this important issue, we examined whether planning is still the most important predictor of Zoo Map performance in a heterogeneous sample of neurologic and psychiatric outpatients (N = 71). In addition to the Zoo Map Test, the patients completed other neuropsychological tests of planning, inhibition, processing speed, and episodic memory. Planning was the strongest predictor of the total raw score and inappropriate places visited, and no additional contribution of other cognitive scores was found. One exception to this was the total time, which was associated with processing speed. Overall, our findings indicate that the Zoo Map Test is a valid indicator of planning ability in a heterogeneous patient sample.

  9. Cognitive task analysis: Techniques applied to airborne weapons training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, M.; Seamster, T.L.; Snyder, C.E.

    1989-01-01

    This is an introduction to cognitive task analysis as it may be used in Naval Air Systems Command (NAVAIR) training development. The focus of a cognitive task analysis is human knowledge, and its methods of analysis are those developed by cognitive psychologists. This paper explains the role that cognitive task analysis and presents the findings from a preliminary cognitive task analysis of airborne weapons operators. Cognitive task analysis is a collection of powerful techniques that are quantitative, computational, and rigorous. The techniques are currently not in wide use in the training community, so examples of this methodology are presented alongmore » with the results. 6 refs., 2 figs., 4 tabs.« less

  10. The visual attention saliency map for movie retrospection

    NASA Astrophysics Data System (ADS)

    Rogalska, Anna; Napieralski, Piotr

    2018-04-01

    The visual saliency map is becoming important and challenging for many scientific disciplines (robotic systems, psychophysics, cognitive neuroscience and computer science). Map created by the model indicates possible salient regions by taking into consideration face presence and motion which is essential in motion pictures. By combining we can obtain credible saliency map with a low computational cost.

  11. Concept Maps: Practice Applications in Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Daley, Barbara J.

    2010-01-01

    Concept maps can be used as both a cognitive and constructivist learning strategy in teaching and learning in adult education and human resource development. The maps can be used to understand course readings, analyze case studies, develop reflective thinking and enhance research skills. The creation of concept maps can also be supported by the…

  12. Challenging the Myth of Right Nondominant Hemisphere: Lessons from Corticosubcortical Stimulation Mapping in Awake Surgery and Surgical Implications.

    PubMed

    Vilasboas, Tatiana; Herbet, Guillaume; Duffau, Hugues

    2017-07-01

    For many years, the right hemisphere (RH) was considered as nondominant, especially in right-handers. In neurosurgical practice, this dogma resulted in the selection of awake procedure with language mapping only for lesions of the left dominant hemisphere. Conversely, surgery under general anesthesia (possibly with motor mapping) was usually proposed for right lesions. However, when objective neuropsychological assessments were performed, they frequently showed cognitive and behavioral deficits after brain surgery, even in the RH. Therefore, to preserve an optimal quality of life, especially in patients with a long survival expectancy (as in low-grade gliomas), awake surgery with cortical and axonal electrostimulation mapping has recently been proposed for resection of right tumors. Here, we review new insights gained from intraoperative stimulation into the pivotal role of the RH in movement execution and control, visual processes and spatial cognition, language and nonverbal semantic processing, executive functions (e.g., attention), and social cognition (mentalizing and emotion recognition). These original findings, which break with the myth of a nondominant RH, may have important implications in cognitive neurosciences, by improving our knowledge of the functional connectivity of the RH, as well as for the clinical management of patients with a right lesion. In brain surgery, awake mapping should be considered more systematically in the RH. Moreover, neuropsychological examination must be achieved in a more systematic manner before and after surgery within the RH, to optimize care by predicting the likelihood of functional recovery and by elaborating specific programs of rehabilitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Memory matters: influence from a cognitive map on animal space use.

    PubMed

    Gautestad, Arild O

    2011-10-21

    A vertebrate individual's cognitive map provides a capacity for site fidelity and long-distance returns to favorable patches. Fractal-geometrical analysis of individual space use based on collection of telemetry fixes makes it possible to verify the influence of a cognitive map on the spatial scatter of habitat use and also to what extent space use has been of a scale-specific versus a scale-free kind. This approach rests on a statistical mechanical level of system abstraction, where micro-scale details of behavioral interactions are coarse-grained to macro-scale observables like the fractal dimension of space use. In this manner, the magnitude of the fractal dimension becomes a proxy variable for distinguishing between main classes of habitat exploration and site fidelity, like memory-less (Markovian) Brownian motion and Levy walk and memory-enhanced space use like Multi-scaled Random Walk (MRW). In this paper previous analyses are extended by exploring MRW simulations under three scenarios: (1) central place foraging, (2) behavioral adaptation to resource depletion (avoidance of latest visited locations) and (3) transition from MRW towards Levy walk by narrowing memory capacity to a trailing time window. A generalized statistical-mechanical theory with the power to model cognitive map influence on individual space use will be important for statistical analyses of animal habitat preferences and the mechanics behind site fidelity and home ranges. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Diagnostics and therapy of Alzheimer's disease.

    PubMed

    Mikiciuk-Olasik, Elzbieta; Szymański, Paweł; Zurek, Elzbieta

    2007-04-01

    Alzheimer's Disease (AD) is described as a degenerative disease of the central nervous system characterized by a noticeable cognitive decline defined by a loss of memory and learning ability, together with a reduced ability to perform basic activities of daily living. In the brain of an AD patients is the dramatic decrease in cholinergic innervation in the cortex and hippocampus due to the loss of neurons in the basal forebrain. The above findings led to the development of the cholinergic hypothesis, which proposes that the cognitive loss associated with AD is related to decreased cortical cholinergic neurotransmission. In brain of Alzheimer's patient's one ascertained presence of neuritic plaques containing the beta-amyloid peptide and protein tau. Biochemical and genetics studies implicated a central role for beta-amyloid in the pathological cascade of events in AD. The most therapeutic strategies in AD have been directed to two main targets: the beta-amyloid peptide and the cholinergic neurotransmission. The first approach is to act on the amyloid precursor protein (APP) processing. The second main approach is to slow of decline of neuronal degeneration or increasing cholinergic transmission. Diagnosis of AD is very difficult and to date no specific diagnostic tests of the disease are available. Intellectual function testing to determine the degree of cognitive status during routine medical examination is a useful supplementary method of diagnosing dementia. The permissible result, come down from radiopharmacy, which is an integral part of a nuclear medicine. A radiopharmaceutical may be defined as a pharmaceutical substance containing radioactive atoms. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are capable of mapping the distribution of radionuclides in three dimensions, producing maps of brain biochemical and physiological processes. The techniques are reasonably sensitive and specific in differentiating AD from other dementias.

  15. [Analyzing the impact of decisions in the scope of long term care by fuzzy cognitive maps, Spain].

    PubMed

    Gutiérrez Moya, Ester; González Camacho, M Carmen; Salmerón Silvera, Jose Luis

    2012-12-01

    System for Autonomy and Care for Dependency (Spanish acronym SAAD) was created to provide a framework for the protection of dependent people. The priority established by law on benefits in kind over cash benefits, together with the efficient management of public resources provided economic returns for the SAAD, such as employment generation. The variables that influence the implementation of the SAAD are extremely complex and dynamic, and there are multiple relationships between them. The aim of this paper is to analyze the problem of satisfying a growing demand for protection, at minimum cost, and reaps the economic returns using fuzzy logic (fuzzy cognitive map). This technique is designed as a tool for decision-making in this area, to analyze the evolution of causal variables to a state of equilibrium. To do this, we have developed 4 scenarios (E1: Ageing, E2: Ageing and benefits in kind, E3: Ageing and cash benefits, E4: Ageing and cash benefit for care in the family), to analyze the evolution of variables, especially public expenditure and employment. Among the main results are: ageing is critical for the increased spending in all scenarios, but only in E1 and E2 is generated employment, residential care is not altered, even in E2; Telecare increases in all scenarios, and the cash benefit for personal attendant increases in E1 and E2.

  16. Comparisons of Cognitive, Music, and Imagery Techniques on Anxiety Reduction with University Students.

    ERIC Educational Resources Information Center

    Russell, Lori A.

    1992-01-01

    Investigated effectiveness of imagery, music, and cognitive therapeutic techniques in reducing anxiety among 78 anxious college students. Found that familiar-sedative music plus imagery was most effective technique in reducing state anxiety compared to music, a cognitive intervention, or control group. (Author/NB)

  17. Using Self-Organizing Neural Network Map Combined with Ward's Clustering Algorithm for Visualization of Students' Cognitive Structural Models about Aliveness Concept

    PubMed Central

    Ugulu, Ilker; Aydin, Halil

    2016-01-01

    We propose an approach to clustering and visualization of students' cognitive structural models. We use the self-organizing map (SOM) combined with Ward's clustering to conduct cluster analysis. In the study carried out on 100 subjects, a conceptual understanding test consisting of open-ended questions was used as a data collection tool. The results of analyses indicated that students constructed the aliveness concept by associating it predominantly with human. Motion appeared as the most frequently associated term with the aliveness concept. The results suggest that the aliveness concept has been constructed using anthropocentric and animistic cognitive structures. In the next step, we used the data obtained from the conceptual understanding test for training the SOM. Consequently, we propose a visualization method about cognitive structure of the aliveness concept. PMID:26819579

  18. Quantitative Susceptibility Mapping of Amyloid-β Aggregates in Alzheimer's Disease with 7T MR.

    PubMed

    Tiepolt, Solveig; Schäfer, Andreas; Rullmann, Michael; Roggenhofer, Elisabeth; Gertz, Hermann-Josef; Schroeter, Matthias L; Patt, Marianne; Bazin, Pierre-Louis; Jochimsen, Thies H; Turner, Robert; Sabri, Osama; Barthel, Henryk

    2018-05-28

    PET imaging is an established technique to detect cerebral amyloid-β (Aβ) plaques in vivo. Some preclinical and postmortem data report an accumulation of redox-active iron near Aβ plaques. Quantitative susceptibility mapping (QSM) at high-field MRI enables iron deposits to be depicted with high spatial resolution. Aim of this study was to examine whether iron and Aβ plaque accumulation is related and thus, whether 7T MRI might be an additive diagnostic tool to Aβ PET imaging. Postmortem human Alzheimer's disease (AD) and healthy control (HC) frontal gray matter (GM) was imaged with 7T MRI which resulted in T1 maps and QSM. Aβ plaque load was determined by histopathology. In vivo, 10 Aβ PET-positive AD patients (74.1±6.0a) and 10 Aβ PET-negative HCs (67.1±4.4a) underwent 7T MR examination and QSM maps were analyzed. Severity of cognitive deficits was determined by MMSE. Postmortem, the susceptibility of Aβ plaque-containing GM were higher than those of Aβ plaque-free GM (0.011±0.002 versus - 0.008±0.003 ppm, p <  0.001). In vivo, only the bilateral globus pallidus showed significantly higher susceptibility in AD patients compared to HCs (right: 0.277±0.018 versus - 0.009±0.009 ppm; left: 0.293±0.014 versus - 0.007±0.012 ppm, p <  0.0001). The pallidal QSM values were negatively correlated with those of the MMSE (r = - 0.69, p = 0.001). The postmortem study revealed significant susceptibility differences between the Aβ plaque-containing and Aβ plaque-free GM, whereas in vivo only the QSM values of the globus pallidus differed significantly between AD and HC group. The pallidal QSM values correlated with the severity of cognitive deficits. These findings encourage efforts to optimize the 7T-QSM methodology.

  19. The efficacy of the 'mind map' study technique.

    PubMed

    Farrand, Paul; Hussain, Fearzana; Hennessy, Enid

    2002-05-01

    To examine the effectiveness of using the 'mind map' study technique to improve factual recall from written information. To obtain baseline data, subjects completed a short test based on a 600-word passage of text prior to being randomly allocated to form two groups: 'self-selected study technique' and 'mind map'. After a 30-minute interval the self-selected study technique group were exposed to the same passage of text previously seen and told to apply existing study techniques. Subjects in the mind map group were trained in the mind map technique and told to apply it to the passage of text. Recall was measured after an interfering task and a week later. Measures of motivation were taken. Barts and the London School of Medicine and Dentistry, University of London. 50 second- and third-year medical students. Recall of factual material improved for both the mind map and self-selected study technique groups at immediate test compared with baseline. However this improvement was only robust after a week for those in the mind map group. At 1 week, the factual knowledge in the mind map group was greater by 10% (adjusting for baseline) (95% CI -1% to 22%). However motivation for the technique used was lower in the mind map group; if motivation could have been made equal in the groups, the improvement with mind mapping would have been 15% (95% CI 3% to 27%). Mind maps provide an effective study technique when applied to written material. However before mind maps are generally adopted as a study technique, consideration has to be given towards ways of improving motivation amongst users.

  20. Linking Inter-Individual Variability in Functional Brain Connectivity to Cognitive Ability in Elderly Individuals

    PubMed Central

    Li, Rui; Yin, Shufei; Zhu, Xinyi; Ren, Weicong; Yu, Jing; Wang, Pengyun; Zheng, Zhiwei; Niu, Ya-Nan; Huang, Xin; Li, Juan

    2017-01-01

    Increasing evidence suggests that functional brain connectivity is an important determinant of cognitive aging. However, the fundamental concept of inter-individual variations in functional connectivity in older individuals is not yet completely understood. It is essential to evaluate the extent to which inter-individual variability in connectivity impacts cognitive performance at an older age. In the current study, we aimed to characterize individual variability of functional connectivity in the elderly and to examine its significance to individual cognition. We mapped inter-individual variability of functional connectivity by analyzing whole-brain functional connectivity magnetic resonance imaging data obtained from a large sample of cognitively normal older adults. Our results demonstrated a gradual increase in variability in primary regions of the visual, sensorimotor, and auditory networks to specific subcortical structures, particularly the hippocampal formation, and the prefrontal and parietal cortices, which largely constitute the default mode and fronto-parietal networks, to the cerebellum. Further, the inter-individual variability of the functional connectivity correlated significantly with the degree of cognitive relevance. Regions with greater connectivity variability demonstrated more connections that correlated with cognitive performance. These results also underscored the crucial function of the long-range and inter-network connections in individual cognition. Thus, individual connectivity–cognition variability mapping findings may provide important information for future research on cognitive aging and neurocognitive diseases. PMID:29209203

  1. Cognitive and Pedagogical Benefits of Argument Mapping: L.A.M.P. Guides the Way to Better Thinking

    NASA Astrophysics Data System (ADS)

    Rider, Yanna; Thomason, Neil

    Experimental evidence shows that in dedicated Critical Thinking courses “Lots of Argument Mapping Practice” (LAMP) using a software tool like Rationale considerably improves students’ critical thinking skills. We believe that teaching with LAMP has additional cognitive and pedagogical benefits, even outside dedicated Critical Thinking subjects. Students learn to better understand and critique arguments, improve in their reading and writing, become clearer in their thinking and, perhaps, even gain meta-cognitive skills that ultimately make them better learners. We discuss some of the evidence for these claims, explain how, as we believe, LAMP confers these benefits, and call for proper experimental and educational research.

  2. EEG Patterns Related to Cognitive Tasks of Varying Complexity.

    ERIC Educational Resources Information Center

    Dunn, Denise A.; And Others

    A study was conducted that attempted to show changes in electroencephalographic (EEG) patterns (identified using topographic EEG mapping) when children were required to perform the relatively simple task of button pressing during an eyes-open baseline session of low cognitive demand and a complex reaction time (RT) task of high cognitive demand.…

  3. Cognitive-Operative Model of Intelligent Learning Systems Behavior

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; Mora-Torres, Martha; de Arriaga, Fernando; Escarela-Perez, Rafael

    2010-01-01

    In this paper behavior during the teaching-learning process is modeled by means of a fuzzy cognitive map. The elements used to model such behavior are part of a generic didactic model, which emphasizes the use of cognitive and operative strategies as part of the student-tutor interaction. Examples of possible initial scenarios for the…

  4. Cyberspace Classification and Cognition: Information and Communications Cyberspaces

    ERIC Educational Resources Information Center

    Kellerman, Aharon

    2007-01-01

    The notions cognitive space and cognitive/mental maps were proposed in the late 1940s, and have been extensively studied since the 1970s within behavioral geography, as well as within tangent disciplines, notably environmental psychology and architecture. Viewing these notions from the perspective of the 2000s, one can state that the hidden…

  5. Hippocampal Morphology and Distinguishing Late-Onset From Early-Onset Elderly Depression

    PubMed Central

    Ballmaier, Martina; Narr, Katherine L.; Toga, Arthur W.; Elderkin-Thompson, Virginia; Thompson, Paul M.; Hamilton, Liberty; Haroon, Ebrahim; Pham, Daniel; Heinz, Andreas; Kumar, Anand

    2010-01-01

    Objective Despite evidence for hippocampal abnormalities in elderly depression, it is unknown whether these changes are regionally specific. This study used three-dimensional mapping techniques to identify regional hippocampal abnormalities in early- and late-onset depression. Neuropsychological correlates of hippocampal morphology were also investigated. Method With high-resolution magnetic resonance imaging, hippocampal morphology was compared among elderly patients with early- (N=24) and late-onset (N=22) depression and comparison subjects (N=34). Regional structural abnormalities were identified by comparing distances, measured from homologous hippocampal surface points to the central core of each individual’s hippocampal surface model, between groups. Results Hippocampal volumes differed between depressed patients and comparison subjects but not between patients with early- and late-onset depression. However, statistical mapping results showed that regional surface contractions were significantly pronounced in late-compared to early-onset depression in the anterior of the subiculum and lateral posterior of the CA1 subfield in the left hemisphere. Significant shape differences were observed bilaterally in anterior CA1–CA3 subfields and the subiculum in patients in relation to comparison subjects. These results were similar when each disease group was separately compared to comparison subjects. Hippocampal surface contractions significantly correlated with memory measures among late- but not early-onset depressed patients or comparison subjects. Conclusions More pronounced regional volume deficits and their associations with memory in late-onset depression may suggest that these patients are more likely to develop cognitive impairment over time than individuals with early-onset depression. Mapping regional hippocampal abnormalities and their cognitive correlates may help guide research in defining risk profiles and treatment strategies. PMID:17986679

  6. Care mapping in clinical neuroscience settings: Cognitive impairment and dependency.

    PubMed

    Leigh, Andrew James; O'Hanlon, Katie; Sheldrick, Russell; Surr, Claire; Hare, Dougal Julian

    2015-01-01

    Person-centred care can improve the well-being of patients and is therefore a key driver in healthcare developments in the UK. The current study aims to investigate the complex relationship between cognitive impairment, dependency and well-being in people with a wide range of acquired brain and spinal injuries. Sixty-five participants, with varied acquired brain and spinal injuries, were selected by convenience sampling from six inpatient clinical neuroscience settings. Participants were observed using Dementia Care Mapping - Neurorehabilitation (DCM-NR) and categorised based on severity of cognitive impairment. A significant difference in the behaviours participants engaged in, their well-being and dependency was found between the severe cognitive impairment group and the mild, moderate or no cognitive impairment groups. Dependency and cognitive impairment accounted for 23.9% of the variance in well-ill-being scores and 17.2% of the variance in potential for positive engagement. The current study highlights the impact of severe cognitive impairment and dependency on the behaviours patients engaged in and their well-being. It also affirms the utility of DCM-NR in providing insights into patient experience. Consideration is given to developing DCM-NR as a process that may improve person-centred care in neuroscience settings.

  7. Brain mapping in cognitive disorders: a multidisciplinary approach to learning the tools and applications of functional neuroimaging

    PubMed Central

    Kelley, Daniel J; Johnson, Sterling C

    2007-01-01

    Background With rapid advances in functional imaging methods, human studies that feature functional neuroimaging techniques are increasing exponentially and have opened a vast arena of new possibilities for understanding brain function and improving the care of patients with cognitive disorders in the clinical setting. There is a growing need for medical centers to offer clinically relevant functional neuroimaging courses that emphasize the multifaceted and multidisciplinary nature of this field. In this paper, we describe the implementation of a functional neuroimaging course focusing on cognitive disorders that might serve as a model for other medical centers. We identify key components of an active learning course design that impact student learning gains in methods and issues pertaining to functional neuroimaging that deserve consideration when optimizing the medical neuroimaging curriculum. Methods Learning gains associated with the course were assessed using polychoric correlation analysis of responses to the SALG (Student Assessment of Learning Gains) instrument. Results Student gains in the functional neuroimaging of cognition as assessed by the SALG instrument were strongly associated with several aspects of the course design. Conclusion Our implementation of a multidisciplinary and active learning functional neuroimaging course produced positive learning outcomes. Inquiry-based learning activities and an online learning environment contributed positively to reported gains. This functional neuroimaging course design may serve as a useful model for other medical centers. PMID:17953758

  8. Right Hemisphere Cognitive Functions: From Clinical and Anatomic Bases to Brain Mapping During Awake Craniotomy Part I: Clinical and Functional Anatomy.

    PubMed

    Bernard, Florian; Lemée, Jean-Michel; Ter Minassian, Aram; Menei, Philippe

    2018-05-12

    The nondominant hemisphere (usually the right) is responsible for primary cognitive functions such as visuospatial and social cognition. Awake surgery using direct electric stimulation for right cerebral tumor removal remains challenging because of the complexity of the functional anatomy and difficulties in adapting standard bedside tasks to awake surgery conditions. An understanding of semiology and anatomic bases, along with an analysis of the available cognitive tasks for visuospatial and social cognition per operative mapping allow neurosurgeons to better appreciate the functional anatomy of the right hemisphere and its relevance to tumor surgery. In this article, the first of a 2-part review, we discuss the anatomic and functional basis of right hemisphere function. Whereas part II of the review focuses primarily on semiology and surgical management of right-sided tumors under awake conditions, this article provides a comprehensive review of knowledge underpinning awake surgery on the right hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The Structure-Mapping Engine: Algorithm and Examples.

    ERIC Educational Resources Information Center

    Falkenhainer, Brian; And Others

    This description of the Structure-Mapping Engine (SME), a flexible, cognitive simulation program for studying analogical processing which is based on Gentner's Structure-Mapping theory of analogy, points out that the SME provides a "tool kit" for constructing matching algorithms consistent with this theory. This report provides: (1) a…

  10. Fast Mapping in Late-Talking Toddlers

    ERIC Educational Resources Information Center

    Weismer, Susan Ellis; Venker, Courtney E.; Evans, Julia L.; Moyle, Maura Jones

    2013-01-01

    This study investigated fast mapping in late-talking (LT) toddlers and toddlers with normal language (NL) development matched on age, nonverbal cognition, and maternal education. The fast-mapping task included novel object labels and familiar words. The LT group scored significantly lower than the NL group on novel word comprehension and…

  11. Sensitivity of subjective questionnaires to cognitive loading while driving with navigation aids: a pilot study.

    PubMed

    Smyth, Christopher C

    2007-05-01

    Developers of future forces are implementing automated aiding for driving tasks. In designing such systems, the effect of cognitive task interference on driving performance is important. The crew of such vehicles may have to occasionally perform communication and planning tasks while driving. Subjective questionnaires may aid researchers to parse out the sources of task interference in crew station designs. In this preliminary study, sixteen participants drove a vehicle simulator with automated road-turn cues (i.e., visual, audio, combined, or neither) along a course marked on a map display while replying to spoken test questions (i.e., repeating sentences, math and logical puzzles, route planning, or none) and reporting other vehicles in the scenario. Following each trial, a battery of subjective questionnaires was administered to determine the perceived effects of the loading on their cognitive functionality. Considering the performance, the participants drove significantly faster with the road-turn cues than with just the map. They recalled fewer vehicle sightings with the cognitive tests than without them. Questionnaire results showed that their reasoning was more straightforward, the quantity of information for understanding higher, and the trust greater with the combined cues than the map-only. They reported higher perceived workload with the cognitive tests. The capacity for maintaining situational awareness was reduced with the cognitive tests because of the increased division of attention and the increase in the instability, variability, and complexity of the demands. The association and intuitiveness of cognitive processing were lowest and the subjective stress highest for the route planning test. Finally, the confusability in reasoning was greater for the auditory cue with the route planning than the auditory cue without the cognitive tests. The subjective questionnaires are sensitive to the effects of the cognitive loading and, therefore, may be useful for guiding the development of automated aid designs.

  12. MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG

    PubMed Central

    Dalal, Sarang S.; Zumer, Johanna M.; Guggisberg, Adrian G.; Trumpis, Michael; Wong, Daniel D. E.; Sekihara, Kensuke; Nagarajan, Srikantan S.

    2011-01-01

    NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions. PMID:21437174

  13. MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG.

    PubMed

    Dalal, Sarang S; Zumer, Johanna M; Guggisberg, Adrian G; Trumpis, Michael; Wong, Daniel D E; Sekihara, Kensuke; Nagarajan, Srikantan S

    2011-01-01

    NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions.

  14. The Tölz Temporal Topography Study: mapping the visual field across the life span. Part II: cognitive factors shaping visual field maps.

    PubMed

    Poggel, Dorothe A; Treutwein, Bernhard; Calmanti, Claudia; Strasburger, Hans

    2012-08-01

    Part I described the topography of visual performance over the life span. Performance decline was explained only partly by deterioration of the optical apparatus. Part II therefore examines the influence of higher visual and cognitive functions. Visual field maps for 95 healthy observers of static perimetry, double-pulse resolution (DPR), reaction times, and contrast thresholds, were correlated with measures of visual attention (alertness, divided attention, spatial cueing), visual search, and the size of the attention focus. Correlations with the attentional variables were substantial, particularly for variables of temporal processing. DPR thresholds depended on the size of the attention focus. The extraction of cognitive variables from the correlations between topographical variables and participant age substantially reduced those correlations. There is a systematic top-down influence on the aging of visual functions, particularly of temporal variables, that largely explains performance decline and the change of the topography over the life span.

  15. Cognitive and artificial representations in handwriting recognition

    NASA Astrophysics Data System (ADS)

    Lenaghan, Andrew P.; Malyan, Ron

    1996-03-01

    Both cognitive processes and artificial recognition systems may be characterized by the forms of representation they build and manipulate. This paper looks at how handwriting is represented in current recognition systems and the psychological evidence for its representation in the cognitive processes responsible for reading. Empirical psychological work on feature extraction in early visual processing is surveyed to show that a sound psychological basis for feature extraction exists and to describe the features this approach leads to. The first stage of the development of an architecture for a handwriting recognition system which has been strongly influenced by the psychological evidence for the cognitive processes and representations used in early visual processing, is reported. This architecture builds a number of parallel low level feature maps from raw data. These feature maps are thresholded and a region labeling algorithm is used to generate sets of features. Fuzzy logic is used to quantify the uncertainty in the presence of individual features.

  16. Cognitive memory and mapping in a brain-like system for robotic navigation.

    PubMed

    Tang, Huajin; Huang, Weiwei; Narayanamoorthy, Aditya; Yan, Rui

    2017-03-01

    Electrophysiological studies in animals may provide a great insight into developing brain-like models of spatial cognition for robots. These studies suggest that the spatial ability of animals requires proper functioning of the hippocampus and the entorhinal cortex (EC). The involvement of the hippocampus in spatial cognition has been extensively studied, both in animal as well as in theoretical studies, such as in the brain-based models by Edelman and colleagues. In this work, we extend these earlier models, with a particular focus on the spatial coding properties of the EC and how it functions as an interface between the hippocampus and the neocortex, as proposed by previous work. By realizing the cognitive memory and mapping functions of the hippocampus and the EC, respectively, we develop a neurobiologically-inspired system to enable a mobile robot to perform task-based navigation in a maze environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Diagnosis support system based on clinical guidelines: comparison between case-based fuzzy cognitive maps and Bayesian networks.

    PubMed

    Douali, Nassim; Csaba, Huszka; De Roo, Jos; Papageorgiou, Elpiniki I; Jaulent, Marie-Christine

    2014-01-01

    Several studies have described the prevalence and severity of diagnostic errors. Diagnostic errors can arise from cognitive, training, educational and other issues. Examples of cognitive issues include flawed reasoning, incomplete knowledge, faulty information gathering or interpretation, and inappropriate use of decision-making heuristics. We describe a new approach, case-based fuzzy cognitive maps, for medical diagnosis and evaluate it by comparison with Bayesian belief networks. We created a semantic web framework that supports the two reasoning methods. We used database of 174 anonymous patients from several European hospitals: 80 of the patients were female and 94 male with an average age 45±16 (average±stdev). Thirty of the 80 female patients were pregnant. For each patient, signs/symptoms/observables/age/sex were taken into account by the system. We used a statistical approach to compare the two methods. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Applying Cognitive Psychology to User Interfaces

    NASA Astrophysics Data System (ADS)

    Durrani, Sabeen; Durrani, Qaiser S.

    This paper explores some key aspects of cognitive psychology that may be mapped onto user interfaces. Major focus in existing user interface guidelines is on consistency, simplicity, feedback, system messages, display issues, navigation, colors, graphics, visibility and error prevention [8-10]. These guidelines are effective indesigning user interfaces. However, these guidelines do not handle the issues that may arise due to the innate structure of human brain and human limitations. For example, where to place graphics on the screen so that user can easily process them and what kind of background should be given on the screen according to the limitation of human motor system. In this paper we have collected some available guidelines from the area of cognitive psychology [1, 5, 7]. In addition, we have extracted few guidelines from theories and studies of cognitive psychology [3, 11] which may be mapped to user interfaces.

  19. The EpiCanvas infectious disease weather map: an interactive visual exploration of temporal and spatial correlations

    PubMed Central

    Livnat, Yarden; Galli, Nathan; Samore, Matthew H; Gundlapalli, Adi V

    2012-01-01

    Advances in surveillance science have supported public health agencies in tracking and responding to disease outbreaks. Increasingly, epidemiologists have been tasked with interpreting multiple streams of heterogeneous data arising from varied surveillance systems. As a result public health personnel have experienced an overload of plots and charts as information visualization techniques have not kept pace with the rapid expansion in data availability. This study sought to advance the science of public health surveillance data visualization by conceptualizing a visual paradigm that provides an ‘epidemiological canvas’ for detection, monitoring, exploration and discovery of regional infectious disease activity and developing a software prototype of an ‘infectious disease weather map'. Design objectives were elucidated and the conceptual model was developed using cognitive task analysis with public health epidemiologists. The software prototype was pilot tested using retrospective data from a large, regional pediatric hospital, and gastrointestinal and respiratory disease outbreaks were re-created as a proof of concept. PMID:22358039

  20. A Meta-Cognitive Tool for Courseware Development, Maintenance, and Reuse

    ERIC Educational Resources Information Center

    Coffey, John W.

    2007-01-01

    Novak and Iuli [Novak, J. D. & Iuli, R. J. (1991). The use of meta-cognitive tools to facilitate knowledge production. In "A paper presented at the fourth Florida AI research symposium (FLAIRS '91)," Pensacola Beach, FL, May, 1991.] discuss the use of Concept Maps as meta-cognitive tools that help people to think about thinking. This work…

  1. Gait profile score and movement analysis profile in patients with Parkinson's disease during concurrent cognitive load

    PubMed Central

    Speciali, Danielli S.; Oliveira, Elaine M.; Cardoso, Jefferson R.; Correa, João C. F.; Baker, Richard; Lucareli, Paulo R. G.

    2014-01-01

    Background: Gait disorders are common in individuals with Parkinson's Disease (PD) and the concurrent performance of motor and cognitive tasks can have marked effects on gait. The Gait Profile Score (GPS) and the Movement Analysis Profile (MAP) were developed in order to summarize the data of kinematics and facilitate understanding of the results of gait analysis. Objective: To investigate the effectiveness of the GPS and MAP in the quantification of changes in gait during a concurrent cognitive load while walking in adults with and without PD. Method: Fourteen patients with idiopathic PD and nine healthy subjects participated in the study. All subjects performed single and dual walking tasks. The GPS/MAP was computed from three-dimensional gait analysis data. Results: Differences were found between tasks for GPS (P<0.05) and Gait Variable Score (GVS) (pelvic rotation, knee flexion-extension and ankle dorsiflexion-plantarflexion) (P<0.05) in the PD group. An interaction between task and group was observed for GPS (P<0.01) for the right side (Cohen's ¯d=0.99), left side (Cohen's ¯d=0.91), and overall (Cohen's ¯d=0.88). No interaction was observed only for hip internal-external rotation and foot internal-external progression GVS variables in the PD group. Conclusions: The results showed gait impairment during the dual task and suggest that GPS/MAP may be used to evaluate the effects of concurrent cognitive load while walking in patients with PD. PMID:25054382

  2. ConMap: Investigating New Computer-Based Approaches to Assessing Conceptual Knowledge Structure in Physics.

    ERIC Educational Resources Information Center

    Beatty, Ian D.

    There is a growing consensus among educational researchers that traditional problem-based assessments are not effective tools for diagnosing a student's knowledge state and for guiding pedagogical intervention, and that new tools grounded in the results of cognitive science research are needed. The ConMap ("Conceptual Mapping") project, described…

  3. Modeling Research Project Risks with Fuzzy Maps

    ERIC Educational Resources Information Center

    Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana

    2009-01-01

    The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…

  4. Leading to a New Paradigm: The Example of Bioregional Mapping.

    ERIC Educational Resources Information Center

    Shapiro, David W.

    1996-01-01

    Examines bioregional mapping as an example of how a different system (educational or otherwise) could be designed through shifting the focus of figure-ground gestalts and revisioning core metaphors. Discusses the notions of community and place, the potential for cognitive restructuring, literal and conceptual maps, and the potential of solving…

  5. A Developmental Mapping Program Integrating Geography and Mathematics.

    ERIC Educational Resources Information Center

    Muir, Sharon Pray; Cheek, Helen Neely

    Presented and discussed is a model which can be used by educators who want to develop an interdisciplinary map skills program in geography and mathematics. The model assumes that most children in elementary schools perform cognitively at Piaget's concrete operational stage, that readiness for map skills can be assessed with Piagetian or…

  6. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  7. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: A systematic review of an emerging area of research.

    PubMed

    Agbangla, Nounagnon F; Audiffren, Michel; Albinet, Cédric T

    2017-09-01

    The cognitive neuroscience of aging is a growing and stimulating research area. The development of neuroimaging techniques in the past two decades has considerably increased our understanding of the brain mechanisms that might underlie cognitive performance and resulting changes due to normal aging. Beside traditional metabolic neuroimaging techniques, such as Positron Emission Tomography and functional Magnetic Resonance Imaging, near infrared spectroscopy (NIRS), an optical imaging technique allowing to monitor real-time cerebral blood oxygenation, has gained recent interest in this field. The aim of the present review paper, after briefly presenting the NIRS technique, is to review and to summarize the recent results of neuroimaging studies using this technique in the field of cognitive aging. The reviewed literature shows that, despite low spatial resolution and cerebral depth penetration, this technique provides consistent findings on the reduced hemodynamic activity as a function of chronological age, mainly in the prefrontal cortex. Important moderators of brain hemodynamics, such as cognitive load, subjects' characteristics and experimental conditions, for which the NIRS technique is sensitive, are discussed. Strengths and weaknesses of functional NIRS in the field of cognitive aging are presented and finally, novel perspectives of research are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Eye Tracking to Explore the Impacts of Photorealistic 3d Representations in Pedstrian Navigation Performance

    NASA Astrophysics Data System (ADS)

    Dong, Weihua; Liao, Hua

    2016-06-01

    Despite the now-ubiquitous two-dimensional (2D) maps, photorealistic three-dimensional (3D) representations of cities (e.g., Google Earth) have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users' eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  9. Employing Cognitive Chunking Techniques to Enhance Sight-Reading Performance of Undergraduate Group-Piano Students

    ERIC Educational Resources Information Center

    Pike, Pamela D.; Carter, Rebecca

    2010-01-01

    The purpose of this study was to compare the effect of cognitive chunking techniques among first-semester group-piano music majors. The ability to group discrete pieces of information into larger, more meaningful chunks is essential for efficient cognitive processing. Since reading keyboard music and playing the piano is a cognitively complex…

  10. An Experimental Comparison of Techniques: Cognitive Defusion, Cognitive Restructuring, and in-vivo Exposure for Social Anxiety.

    PubMed

    Barrera, Terri L; Szafranski, Derek D; Ratcliff, Chelsea G; Garnaat, Sarah L; Norton, Peter J

    2016-03-01

    One of the primary differences between Cognitive Behavioral Therapy (CBT) and Acceptance and Commitment Therapy (ACT) for anxiety is the approach to managing negative thoughts. CBT focuses on challenging the accuracy of dysfunctional thoughts through cognitive restructuring exercises, whereas ACT attempts to foster acceptance of such thoughts through cognitive defusion exercises. Previous research suggests that both techniques reduce the distress associated with negative thoughts, though questions remain regarding the benefit of these techniques above and beyond exposure to feared stimuli. In the present study, we conducted a brief experimental intervention to examine the utility of cognitive defusion + in-vivo exposure, cognitive restructuring + in-vivo exposure, and in-vivo exposure alone in reducing the impact of negative thoughts in patients with social anxiety disorder. All participants completed a brief public speaking exposure and those in the cognitive conditions received training in the assigned cognitive technique. Participants returned a week later to complete a second exposure task and self-report measures. All three conditions resulted in similar decreases in discomfort related to negative thoughts. ANOVA models failed to find an interaction between change in accuracy or importance and assignment to condition in predicting decreased distress of negative thoughts. These preliminary results suggest that changes in perceived importance and accuracy of negative thoughts may not be the mechanisms by which cognitive defusion and cognitive restructuring affect distress in the short-term.

  11. Translating the use of an enriched environment poststroke from bench to bedside: study design and protocol used to test the feasibility of environmental enrichment on stroke patients in rehabilitation.

    PubMed

    Janssen, H; Ada, L; Karayanidis, F; Drysdale, K; McElduff, P; Pollack, M; White, J; Nilsson, M; Bernhardt, J; Spratt, N J

    2012-08-01

    Environmental enrichment, a paradigm investigated extensively in animal models, is an intervention, which by design facilitates motor, sensory, social, and cognitive activity. It has been shown to improve poststroke motor and cognitive function in animal models of stroke. This is the first study to attempt to translate this intervention from the laboratory to the clinical setting. The overall aim of this pilot study is to test the feasibility of using environmental enrichment with stroke patients in a rehabilitation setting. The aim is to enrich the environment of stroke survivors in a rehabilitation ward and measure changes in their activity (physical, cognitive, and social activity). Prospective nonrandomized block design intervention study. In the control phase we will determine the change in activity levels of patients treated in a usual rehabilitation environment over time. In the intervention phase structured observational techniques (behavioural mapping) will be used to quantify the change in activity levels of patients exposed to environmental enrichment. The primary outcome is change in activity level. Additional data collected on entry to and exit from the study will include: cognitive function using a battery of cognitive tests, general function using the Functional Independence Measure, mood using the Patient Health Questionnaire 9 and boredom using the Stroke Rehabilitation Boredom Survey. Quality of life will be assessed using the Assessment of Quality of Life 1 month postdischarge from rehabilitation. Australian New Zealand Clinical Trials Registry# ACTRN12611000629932. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  12. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation

    PubMed Central

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70–90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces. PMID:29046625

  13. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation.

    PubMed

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70-90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces.

  14. Strategic Role of Frontal White Matter Tracts in Vascular Cognitive Impairment: A Voxel-Based Lesion-Symptom Mapping Study in CADASIL

    ERIC Educational Resources Information Center

    Duering, Marco; Zieren, Nikola; Herve, Dominique; Jouvent, Eric; Reyes, Sonia; Peters, Nils; Pachai, Chahin; Opherk, Christian; Chabriat, Hugues; Dichgans, Martin

    2011-01-01

    Cerebral small vessel disease is the most common cause of vascular cognitive impairment. It typically manifests with lacunar infarcts and ischaemic white matter lesions. However, little is known about how these lesions relate to the cognitive symptoms. Previous studies have found a poor correlation between the burden of ischaemic lesions and…

  15. From surprise to cognition: Some effects of the structure of C.A.L. simulation programs on the cognitive and scientific activities of young adults

    NASA Astrophysics Data System (ADS)

    Dicker, R. J.

    The main objective of this thesis is to describe the effect on cognition of the structure of CAL simulation programs used, in science teaching. Four programs simulating a pond ecosystem were written so as to present a simulation model and to assist in cognition in different ways. Various clinically detailed methods of describing learning were developed and tried including concept maps which were found to be sammative rather than formative descriptions of learning, and to be ambiguous) and hierarchical structures (which were found to be difficult to produce). Fran these concept maps and hierarchical structures I developed my Interaction Model of Learning which can be used to describe the chronological events concerned with cognition. Using the Interaction Model, the nature of cognition and the effect that CAL program structure has on this process is described. Various scenarios are presented as a means of showing the possible effects of program structure on learning. Four forms of concept learning activity and their relationship to learning valid and alternative conceptions are described. The findings from the study are particularly related to the work of Driver (1983), Marton (1976) and Entwistle (1981).

  16. A Fuzzy Approach of Study to Improve the Status of Middle Class Family

    NASA Astrophysics Data System (ADS)

    Ramkumar, C.; Chandrasekaran, A. D.; Siva, E. P.

    2018-04-01

    In this chapter, we use the notion of FCM and its properties given, which was introduced by Bark Kosko in the year 1986. Further, this method is more simple and effective one as it can analyze the data by connection matrices and directed graphs. This paper has three sections; first section is introductory of Super Fuzzy Cognitive Maps. The application of super fuzzy cognitive maps to this problem is given in section two. In section three of this paper gives the conclusions based on our study.

  17. Digital Mapping Techniques '11–12 workshop proceedings

    USGS Publications Warehouse

    Soller, David R.

    2014-01-01

    At these meetings, oral and poster presentations and special discussion sessions emphasized: (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase formats; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  18. Brain temperature in volunteers subjected to intranasal cooling.

    PubMed

    Covaciu, L; Weis, J; Bengtsson, C; Allers, M; Lunderquist, A; Ahlström, H; Rubertsson, S

    2011-08-01

    Intranasal cooling can be used to initiate therapeutic hypothermia. However, direct measurement of brain temperature is difficult and the intra-cerebral distribution of temperature changes with cooling is unknown. The purpose of this study was to measure the brain temperature of human volunteers subjected to intranasal cooling using non-invasive magnetic resonance (MR) methods. Intranasal balloons catheters circulated with saline at 20°C were applied for 60 min in ten awake volunteers. No sedation was used. Brain temperature changes were measured and mapped using MR spectroscopic imaging (MRSI) and phase-mapping techniques. Heart rate and blood pressure were monitored throughout the experiment. Rectal temperature was measured before and after the cooling. Mini Mental State Examination (MMSE) test and nasal inspection were done before and after the cooling. Questionnaires about the subjects' personal experience were completed after the experiment. Brain temperature decrease measured by MRSI was -1.7 ± 0.8°C and by phase-mapping -1.8 ± 0.9°C (n = 9) at the end of cooling. Spatial distribution of temperature changes was relatively uniform. Rectal temperature decreased by -0.5 ± 0.3°C (n = 5). The physiological parameters were stable and no shivering was reported. The volunteers remained alert during cooling and no cognitive dysfunctions were apparent in the MMSE test. Postcooling nasal examination detected increased nasal secretion in nine of the ten volunteers. Volunteers' acceptance of the method was good. Both MR techniques revealed brain temperature reductions after 60 min of intranasal cooling with balloons circulated with saline at 20°C in awake, unsedated volunteers.

  19. Contemporary Accounts of the Cognition/Language Relationship: Implications for Speech-Language Clinicians.

    ERIC Educational Resources Information Center

    Rice, Mabel L.

    1983-01-01

    A review of research on how cognition relates to language in children with language impairments discusses terminology and analyzes the basic mapping problem. Evidence for a variety of hypotheses related to the issue are examined. (CL)

  20. In Search for Instructional Techniques to Maximize the Use of Germane Cognitive Resources: A Case of Teaching Complex Tasks in Physics

    ERIC Educational Resources Information Center

    Sliva, Yekaterina

    2014-01-01

    The purpose of this study was to introduce an instructional technique for teaching complex tasks in physics, test its effectiveness and efficiency, and understand cognitive processes taking place in learners' minds while they are exposed to this technique. The study was based primarily on cognitive load theory (CLT). CLT determines the amount of…

  1. The Effectiveness of Panoramic Maps Design: a Preliminary Study Based on Mobile Eye-Tracking

    NASA Astrophysics Data System (ADS)

    Balzarini, R.; Murat, M.

    2016-06-01

    This paper presents preliminary results from an ongoing research based on the study of visual attention through mobile eye-tracking techniques. The visual-cognitive approach investigates the reading-comprehension of a particular territorial representation: ski trails maps. The general issue of the study is to provide insights about the effectiveness of panoramic ski maps and more broadly, to suggest innovative efficient representation of the geographic information in mountain. According to some mountain operators, the information provided by paper ski maps no longer meets the needs of a large part of the customers; the question now arises of their adaptation to new digital practices (iPhone, tablets). In a computerized process perspective, this study particularly focuses on the representations, and the inferred information, which are really helpful to the users-skiers to apprehend the territory and make decisions, and which could be effectively replicated into a digital system. The most interesting output relies on the relevance of the panorama view: panorama still fascinates, but contrary to conventional wisdom, the information it provides does not seem to be useful to the skier. From a socio-historical perspective this study shows how empirical evidence-based approach can support the change: our results enhance the discussion on the effectiveness of the message that mountain operators want to convey to the tourist and therefore, on the renewal of (geographical) information in ski resorts.

  2. Prior Knowledge Activation: How Different Concept Mapping Tasks Lead to Substantial Differences in Cognitive Processes, Learning Outcomes, and Perceived Self-Efficacy

    ERIC Educational Resources Information Center

    Gurlitt, Johannes; Renkl, Alexander

    2010-01-01

    Two experiments investigated the effects of characteristic features of concept mapping used for prior knowledge activation. Characteristic demands of concept mapping include connecting lines representing the relationships between concepts and labeling these lines, specifying the type of the semantic relationships. In the first experiment,…

  3. Mapping the Future, Mapping Education: An Analysis of the 2011 State of the Union Address

    ERIC Educational Resources Information Center

    Collin, Ross

    2012-01-01

    This article presents a discourse analysis of President Barack Obama's 2011 State of the Union Address. Fredric Jameson's concepts of cognitive mapping, cultural revolution, and the unconscious are employed to examine the president's vision of educational and economic transformation. Ultimately, it is argued this vision evokes a world in which…

  4. Mapping Their Place: Preschoolers Explore Space, Place, and Literacy

    ERIC Educational Resources Information Center

    Fantozzi, Victoria B.; Cottino, Elizabeth; Gennarelli, Cindy

    2013-01-01

    While maps and globes continue to be an important part of the geography and social studies curricula, there has been some debate about the ability of young children to engage in maps in a meaningful way. Some researchers have argued that children younger than seven do not have the spatial-cognitive abilities to truly understand the perspective and…

  5. A risk management model for familial breast cancer: A new application using Fuzzy Cognitive Map method.

    PubMed

    Papageorgiou, Elpiniki I; Jayashree Subramanian; Karmegam, Akila; Papandrianos, Nikolaos

    2015-11-01

    Breast cancer is the most deadly disease affecting women and thus it is natural for women aged 40-49 years (who have a family history of breast cancer or other related cancers) to assess their personal risk for developing familial breast cancer (FBC). Besides, as each individual woman possesses different levels of risk of developing breast cancer depending on their family history, genetic predispositions and personal medical history, individualized care setting mechanism needs to be identified so that appropriate risk assessment, counseling, screening, and prevention options can be determined by the health care professionals. The presented work aims at developing a soft computing based medical decision support system using Fuzzy Cognitive Map (FCM) that assists health care professionals in deciding the individualized care setting mechanisms based on the FBC risk level of the given women. The FCM based FBC risk management system uses NHL to learn causal weights from 40 patient records and achieves a 95% diagnostic accuracy. The results obtained from the proposed model are in concurrence with the comprehensive risk evaluation tool based on Tyrer-Cuzick model for 38/40 patient cases (95%). Besides, the proposed model identifies high risk women by calculating higher accuracy of prediction than the standard Gail and NSAPB models. The testing accuracy of the proposed model using 10-fold cross validation technique outperforms other standard machine learning based inference engines as well as previous FCM-based risk prediction methods for BC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Cognitive techniques and language: A return to behavioral origins.

    PubMed

    Froján Parga, María X; Núñez de Prado Gordillo, Miguel; de Pascual Verdú, Ricardo

    2017-08-01

    the main purpose of this study is to offer an alternative explanatory account of the functioning of cognitive techniques that is based on the principles of associative learning and highlights their verbal nature. The traditional accounts are questioned and analyzed in the light of the situation of psychology in the 1970s. conceptual analysis is employed to revise the concepts of language, cognition and behavior. Several operant- and Pavlovian-based approaches to these phenomena are presented, while particular emphasis is given to Mowrer’s (1954) approach and Ryle (1949) and Wittgenstein’s (1953) philosophical contributions to the field. several logical problems are found in regard to the theoretical foundations of cognitive techniques. A combination of both operant and Pavlovian paradigms based on the above-mentioned approaches is offered as an alternative explanatory account of cognitive techniques. This new approach could overcome the conceptual fragilities of the cognitive standpoint and its dependence upon constructs of dubious logical and scientific validity.

  7. Neural mechanisms of hypnosis and meditation.

    PubMed

    De Benedittis, Giuseppe

    2015-12-01

    Hypnosis has been an elusive concept for science for a long time. However, the explosive advances in neuroscience in the last few decades have provided a "bridge of understanding" between classical neurophysiological studies and psychophysiological studies. These studies have shed new light on the neural basis of the hypnotic experience. Furthermore, an ambitious new area of research is focusing on mapping the core processes of psychotherapy and the neurobiology/underlying them. Hypnosis research offers powerful techniques to isolate psychological processes in ways that allow their neural bases to be mapped. The Hypnotic Brain can serve as a way to tap neurocognitive questions and our cognitive assays can in turn shed new light on the neural bases of hypnosis. This cross-talk should enhance research and clinical applications. An increasing body of evidence provides insight in the neural mechanisms of the Meditative Brain. Discrete meditative styles are likely to target different neurodynamic patterns. Recent findings emphasize increased attentional resources activating the attentional and salience networks with coherent perception. Cognitive and emotional equanimity gives rise to an eudaimonic state, made of calm, resilience and stability, readiness to express compassion and empathy, a main goal of Buddhist practices. Structural changes in gray matter of key areas of the brain involved in learning processes suggest that these skills can be learned through practice. Hypnosis and Meditation represent two important, historical and influential landmarks of Western and Eastern civilization and culture respectively. Neuroscience has beginning to provide a better understanding of the mechanisms of both Hypnotic and Meditative Brain, outlining similarities but also differences between the two states and processes. It is important not to view either the Eastern or the Western system as superior to the other. Cross-fertilization of the ancient Eastern meditation techniques presented with Western modern clinical hypnosis will hopefully result in each enriching the other. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cognitive Achievement and Motivation in Hands-on and Teacher-Centred Science Classes: Does an additional hands-on consolidation phase (concept mapping) optimise cognitive learning at work stations?

    NASA Astrophysics Data System (ADS)

    Gerstner, Sabine; Bogner, Franz X.

    2010-05-01

    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.

  9. NeuroPhysics: Studying how neurons create the perception of space-time using Physics' tools and techniques

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali; Sandler, Roman; Rios, Rodrigo; Vuong, Cliff; Mehta, Mayank

    All animals naturally perceive the abstract concept of space-time. A brain region called the Hippocampus is known to be important in creating these perceptions, but the underlying mechanisms are unknown. In our lab we employ several experimental and computational techniques from Physics to tackle this fundamental puzzle. Experimentally, we use ideas from Nanoscience and Materials Science to develop techniques to measure the activity of hippocampal neurons, in freely-behaving animals. Computationally, we develop models to study neuronal activity patterns, which are point processes that are highly stochastic and multidimensional. We then apply these techniques to collect and analyze neuronal signals from rodents while they're exploring space in Real World or Virtual Reality with various stimuli. Our findings show that under these conditions neuronal activity depends on various parameters, such as sensory cues including visual and auditory, and behavioral cues including, linear and angular, position and velocity. Further, neuronal networks create internally-generated rhythms, which influence perception of space and time. In totality, these results further our understanding of how the brain develops a cognitive map of our surrounding space, and keep track of time.

  10. Gender differences in patterns of spatial ability, environmental cognition, and math and English achievement in late adolescence.

    PubMed

    Pearson, J L; Ferguson, L R

    1989-01-01

    Relationships were explored among three measures of spatial ability--the Embedded Figures Test (EFT), the Mental Rotations Test (MRT), and the Differential Aptitude Spatial Relations subtest (DAT)--an environmental cognition task (MAP), American College Testing (ACT) math and English achievement, and gender in a sample of 282 undergraduates. Variance attributable to gender among the spatial tasks ranged from 0.5% in the EFT to 12% in the MRT. Gender accounted for only 1% of the variance in the MAP task. Gender differences were noted in regression analyses; women's math and English achievement scores were both predictive of spatial ability, while for men, only math achievement was predictive of spatial ability. The results were interpreted as substantiating sex role socialization theory of cognitive abilities.

  11. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography.

    PubMed

    Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M D; Rotenberg, Alexander; Daskalakis, Zafiris J; Pascual-Leone, Alvaro

    2016-01-01

    The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.

  12. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography

    PubMed Central

    Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M. D.; Rotenberg, Alexander; Daskalakis, Zafiris J.; Pascual-Leone, Alvaro

    2016-01-01

    The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research. PMID:27713691

  13. Analyzing the Effects of Various Concept Mapping Techniques on Learning Achievement under Different Learning Styles

    ERIC Educational Resources Information Center

    Chiou, Chei-Chang; Lee, Li-Tze; Tien, Li-Chu; Wang, Yu-Min

    2017-01-01

    This study explored the effectiveness of different concept mapping techniques on the learning achievement of senior accounting students and whether achievements attained using various techniques are affected by different learning styles. The techniques are computer-assisted construct-by-self-concept mapping (CACSB), computer-assisted…

  14. Instructional Curriculum Mapping.

    ERIC Educational Resources Information Center

    Wager, Walter

    Instructional Curriculum Mapping (ICM) is a set of guidelines for diagramming the interrelationships among objectives from different domains of learning. Five major learning domains are identified: (1) intellectual skills; (2) cognitive strategies; (3) verbal information; (4) motor skills; and (5) attitudes. This paper examines the functional…

  15. Clues to the Foundations of Numerical Cognitive Impairments: Evidence From Genetic Disorders

    PubMed Central

    Simon, Tony J.

    2011-01-01

    Several neurodevelopmental disorders of known genetic etiology generate phenotypes that share the characteristic of numerical and mathematical cognitive impairments. This article reviews some of the main findings that suggest a possible key role that spatial and temporal information processing impairments may play in the atypical development of numerical cognitive competence. The question of what neural substrate might underlie these impairments is also addressed, as are the challenges for interpreting neural structure/cognitive function mapping in atypically developing populations. PMID:21761998

  16. Computational Models of Relational Processes in Cognitive Development

    ERIC Educational Resources Information Center

    Halford, Graeme S.; Andrews, Glenda; Wilson, William H.; Phillips, Steven

    2012-01-01

    Acquisition of relational knowledge is a core process in cognitive development. Relational knowledge is dynamic and flexible, entails structure-consistent mappings between representations, has properties of compositionality and systematicity, and depends on binding in working memory. We review three types of computational models relevant to…

  17. Optimising the Use of Note-Taking as an External Cognitive Aid for Increasing Learning

    ERIC Educational Resources Information Center

    Makany, Tamas; Kemp, Jonathan; Dror, Itiel E.

    2009-01-01

    Taking notes is of uttermost importance in academic and commercial use and success. Different techniques for note-taking utilise different cognitive processes and strategies. This experimental study examined ways to enhance cognitive performance via different note-taking techniques. By comparing performances of traditional, linear style…

  18. Focus on Clinical Research: Cognitive Rehabilitation of Severely Closed-Head-Injured Patients Using Computer-Assisted and Noncomputerized Treatment Techniques.

    ERIC Educational Resources Information Center

    Batchelor, J.; And Others

    1988-01-01

    The study compared computer assisted cognitive retraining of 47 patients with severe closed head injury with comparable noncomputerized treatment techniques. Results on neuropsychological tests did not support the increased effectiveness of the computer assisted cognitive therapy. (DB)

  19. Representing spatial structure through maps and language: Lord of the Rings encodes the spatial structure of middle Earth.

    PubMed

    Louwerse, Max M; Benesh, Nick

    2012-01-01

    Spatial mental representations can be derived from linguistic and non-linguistic sources of information. This study tested whether these representations could be formed from statistical linguistic frequencies of city names, and to what extent participants differed in their performance when they estimated spatial locations from language or maps. In a computational linguistic study, we demonstrated that co-occurrences of cities in Tolkien's Lord of the Rings trilogy and The Hobbit predicted the authentic longitude and latitude of those cities in Middle Earth. In a human study, we showed that human spatial estimates of the location of cities were very similar regardless of whether participants read Tolkien's texts or memorized a map of Middle Earth. However, text-based location estimates obtained from statistical linguistic frequencies better predicted the human text-based estimates than the human map-based estimates. These findings suggest that language encodes spatial structure of cities, and that human cognitive map representations can come from implicit statistical linguistic patterns, from explicit non-linguistic perceptual information, or from both. Copyright © 2012 Cognitive Science Society, Inc.

  20. Performance Evaluation of Cognitive Interference Channels Using a Spectrum Overlay Strategy

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.

    2018-01-01

    The use of cognitive radios (CR) and cooperative communications techniques may assist in interference mitigation via sensing of the environment and dynamically altering communications parameters through the use of various mechanisms - one of which is the overlay technique. This report provides a performance analysis of an interference channel with a cognitive transceiver operating in an overlay configuration to evaluate the gains from using cognition. As shown in this report, a cognitive transceiver can simultaneously share spectrum while enhancing performance of non-cognitive nodes via knowledge of the communications channel as well as knowledge of neighboring users' modulation and coding schemes.

  1. Convergent? Minds? Some questions about mental evolution.

    PubMed

    Cartmill, Matt

    2017-06-06

    In investigating convergent minds, we need to be sure that the things we are looking at are both minds and convergent. In determining whether a shared character state represents a convergence between two organisms, we must know the wider distribution and primitive state of that character so that we can map that character and its state transitions onto a phylogenetic tree. When we do this, some apparently primitive shared traits may prove to represent convergent losses of cognitive capacities. To avoid having to talk about the minds of plants and paramecia, we need to go beyond assessments of behaviourally defined cognition to ask questions about mind in the primary sense of the word, defined by the presence of mental events and consciousness. These phenomena depend upon the possession of brains of adequate size and centralized ontogeny and organization. They are probably limited to vertebrates. Recent discoveries suggest that consciousness is adaptively valuable as a late error-detection mechanism in the initiation of action, and point to experimental techniques for assessing its presence or absence in non-human mammals.

  2. Novel Neuroimaging Methods to Understand How HIV Affects the Brain

    PubMed Central

    Thompson, Paul

    2015-01-01

    In much of the developed world, the HIV epidemic has largely been controlled by anti-retroviral treatment. Even so, there is growing concern that HIV-infected individuals may be at risk for accelerated brain aging, and a range of cognitive impairments. What promotes or resists these changes is largely unknown. There is also interest in discovering factors that promote resilience to HIV, and combat its adverse effects in children. Here we review recent developments in brain imaging that reveal how the virus affects the brain. We relate these brain changes to changes in blood markers, cognitive function, and other patient outcomes or symptoms, such as apathy or neuropathic pain. We focus on new and emerging techniques, including new variants of brain MRI. Diffusion tensor imaging, for example, can map the brain’s structural connections while fMRI can uncover functional connections. Finally, we suggest how large-scale global research alliances, such as ENIGMA, may resolve controversies over effects where evidence is now lacking. These efforts pool scans from tens of thousands of individuals, and offer a source of power not previously imaginable for brain imaging studies. PMID:25902966

  3. Combining Techniques to Refine Item to Skills Q-Matrices with a Partition Tree

    ERIC Educational Resources Information Center

    Desmarais, Michel C.; Xu, Peng; Beheshti, Behzad

    2015-01-01

    The problem of mapping items to skills is gaining interest with the emergence of recent techniques that can use data for both defining this mapping, and for refining mappings given by experts. We investigate the problem of refining mapping from an expert by combining the output of different techniques. The combination is based on a partition tree…

  4. The Theory-based Influence of Map Features on Risk Beliefs: Self-reports of What is Seen and Understood for Maps Depicting an Environmental Health Hazard

    PubMed Central

    Vatovec, Christine

    2013-01-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. We report results from thirteen cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed three formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (pre-attentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared to abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: pre-attentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals. PMID:22715919

  5. The theory-based influence of map features on risk beliefs: self-reports of what is seen and understood for maps depicting an environmental health hazard.

    PubMed

    Severtson, Dolores J; Vatovec, Christine

    2012-08-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive "incremental risk" meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.

  6. Virtual displays for 360-degree video

    NASA Astrophysics Data System (ADS)

    Gilbert, Stephen; Boonsuk, Wutthigrai; Kelly, Jonathan W.

    2012-03-01

    In this paper we describe a novel approach for comparing users' spatial cognition when using different depictions of 360- degree video on a traditional 2D display. By using virtual cameras within a game engine and texture mapping of these camera feeds to an arbitrary shape, we were able to offer users a 360-degree interface composed of four 90-degree views, two 180-degree views, or one 360-degree view of the same interactive environment. An example experiment is described using these interfaces. This technique for creating alternative displays of wide-angle video facilitates the exploration of how compressed or fish-eye distortions affect spatial perception of the environment and can benefit the creation of interfaces for surveillance and remote system teleoperation.

  7. Computational Model for Ethnographically Informed Systems Design

    NASA Astrophysics Data System (ADS)

    Iqbal, Rahat; James, Anne; Shah, Nazaraf; Terken, Jacuqes

    This paper presents a computational model for ethnographically informed systems design that can support complex and distributed cooperative activities. This model is based on an ethnographic framework consisting of three important dimensions (e.g., distributed coordination, awareness of work and plans and procedure), and the BDI (Belief, Desire and Intention) model of intelligent agents. The ethnographic framework is used to conduct ethnographic analysis and to organise ethnographically driven information into three dimensions, whereas the BDI model allows such information to be mapped upon the underlying concepts of multi-agent systems. The advantage of this model is that it is built upon an adaptation of existing mature and well-understood techniques. By the use of this model, we also address the cognitive aspects of systems design.

  8. Bibliometrically Mapping Team Cognition Literature: A Co-citation Analysis

    DTIC Science & Technology

    2008-03-01

    understanding the purpose of these efforts requires an introductory framing of team cognition as a research topic . As opposed to many constructs within...concerning distributed cognition are often cited as foundational to the emergence of the research topic (as cited in Hutchins, 2000, p. 2). As a...Finally, various criticisms of the research topic will be highlighted before concluding with a summary of the chapter. A separate literature review

  9. Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old.

    PubMed

    van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C; Gietl, Anton F; Treyer, Valerie; Leh, Sandra E; Meyer, Rafael; Buck, Alfred; Kaufmann, Philipp A; Nitsch, Roger M; van Zijl, Peter C M; Hock, Christoph; Unschuld, Paul G

    2018-04-01

    The aging brain is characterized by an increased presence of neurodegenerative and vascular pathologies. However, there is substantial variation regarding the relationship between an individual's pathological burden and resulting cognitive impairment. To identify correlates of preserved cognitive functioning at highest age, the relationship between β-amyloid plaque load, presence of small vessel cerebrovascular disease (SVCD), iron-burden, and brain atrophy was investigated. Eighty cognitively unimpaired participants (44 oldest-old, aged 85-96 years; 36 younger-old, aged 55-80 years) were scanned by integrated positron emission tomography-magnetic resonance imaging for assessing beta regional amyloid plaque load (18F-flutemetamol), white matter hyperintensities as an indicator of SVCD (fluid-attenuated inversion recovery-magnetic resonance imaging), and iron load (quantitative susceptibility mapping). For the oldest-old group, lower cortical volume, increased β-amyloid plaque load, prevalence of SVCD, and lower cognitive performance in the normal range were found. However, compared to normal-old, cortical iron burden was lower in the oldest-old. Moreover, only in the oldest-old, entorhinal cortex volume positively correlated with β-amyloid plaque load. Our data thus indicate that the co-occurrence of aging-associated neuropathologies with reduced quantitative susceptibility mapping measures of cortical iron load constitutes a lower vulnerability to cognitive loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Topological Schemas of Memory Spaces

    PubMed Central

    Babichev, Andrey; Dabaghian, Yuri A.

    2018-01-01

    Hippocampal cognitive map—a neuronal representation of the spatial environment—is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework—the memory space—that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as “networks of interconnections among the representations of events,” have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature—a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure. PMID:29740306

  11. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    PubMed

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  12. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.

    PubMed

    Fan, Lingzhong; Li, Hai; Zhuo, Junjie; Zhang, Yu; Wang, Jiaojian; Chen, Liangfu; Yang, Zhengyi; Chu, Congying; Xie, Sangma; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2016-08-01

    The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states. © The Author 2016. Published by Oxford University Press.

  13. What Cognitive Behavioral Techniques Do Therapists Report Using when Delivering Cognitive Behavioral Therapy for the Eating Disorders?

    ERIC Educational Resources Information Center

    Waller, Glenn; Stringer, Hannah; Meyer, Caroline

    2012-01-01

    Objective: Clinicians commonly "drift" away from using proven therapeutic techniques. This study examined the degree to which such drift occurs among cognitive behavioral therapy (CBT) clinicians working with a specific clinical population--adults with eating disorders. Method: The study used a correlational design. The participants were…

  14. Spatiotemporal Mapping of Interictal Spike Propagation: A Novel Methodology Applied to Pediatric Intracranial EEG Recordings

    PubMed Central

    Tomlinson, Samuel B.; Bermudez, Camilo; Conley, Chiara; Brown, Merritt W.; Porter, Brenda E.; Marsh, Eric D.

    2016-01-01

    Synchronized cortical activity is implicated in both normative cognitive functioning and many neurologic disorders. For epilepsy patients with intractable seizures, irregular synchronization within the epileptogenic zone (EZ) is believed to provide the network substrate through which seizures initiate and propagate. Mapping the EZ prior to epilepsy surgery is critical for detecting seizure networks in order to achieve postsurgical seizure control. However, automated techniques for characterizing epileptic networks have yet to gain traction in the clinical setting. Recent advances in signal processing and spike detection have made it possible to examine the spatiotemporal propagation of interictal spike discharges across the epileptic cortex. In this study, we present a novel methodology for detecting, extracting, and visualizing spike propagation and demonstrate its potential utility as a biomarker for the EZ. Eighteen presurgical intracranial EEG recordings were obtained from pediatric patients ultimately experiencing favorable (i.e., seizure-free, n = 9) or unfavorable (i.e., seizure-persistent, n = 9) surgical outcomes. Novel algorithms were applied to extract multichannel spike discharges and visualize their spatiotemporal propagation. Quantitative analysis of spike propagation was performed using trajectory clustering and spatial autocorrelation techniques. Comparison of interictal propagation patterns revealed an increase in trajectory organization (i.e., spatial autocorrelation) among Sz-Free patients compared with Sz-Persist patients. The pathophysiological basis and clinical implications of these findings are considered. PMID:28066315

  15. Topographic Map Reading

    DTIC Science & Technology

    1991-05-12

    MinnesotaREOTMBII Institute of Child Development tR * 51 East River Road JS I Minneapolis, MN 55455-0345 9. SPONSOInwG/MONTORING AGENCY NAME(S) AMD...Cognitive maps in children and men. [Clark, 1983] J. Clark. Integration of imagery and car- Child Development, 45:707-716, 1974. tographic data

  16. Predicting successful tactile mapping of virtual objects.

    PubMed

    Brayda, Luca; Campus, Claudio; Gori, Monica

    2013-01-01

    Improving spatial ability of blind and visually impaired people is the main target of orientation and mobility (O&M) programs. In this study, we use a minimalistic mouse-shaped haptic device to show a new approach aimed at evaluating devices providing tactile representations of virtual objects. We consider psychophysical, behavioral, and subjective parameters to clarify under which circumstances mental representations of spaces (cognitive maps) can be efficiently constructed with touch by blindfolded sighted subjects. We study two complementary processes that determine map construction: low-level perception (in a passive stimulation task) and high-level information integration (in an active exploration task). We show that jointly considering a behavioral measure of information acquisition and a subjective measure of cognitive load can give an accurate prediction and a practical interpretation of mapping performance. Our simple TActile MOuse (TAMO) uses haptics to assess spatial ability: this may help individuals who are blind or visually impaired to be better evaluated by O&M practitioners or to evaluate their own performance.

  17. Adapting Cognitive Interviewing for Early Adolescent Hispanic Girls and Sensitive Topics

    PubMed Central

    Norris, Anne E.; Torres-Thomas, Sylvia; Williams, Ellita T.

    2015-01-01

    Cognitive interviewing is a research technique commonly used in survey research to improve measurement validity. However, this technique is useful to researchers planning to use self-report measures in intervention research because invalidity of such measures jeopardizes detection of intervention effects. Little research currently exists regarding the use of cognitive interviewing techniques with adolescent populations, particularly those who are Hispanic. This article describes common challenges to conducting cognitive interviewing with early adolescent girls and how these challenges are impacted by Hispanic culture and sensitive topics. A focus group approach is recommended over the traditional one-on-one cognitive interview format, and experiences from actual focus groups, conducted in preparation for an intervention study are used to illustrate strategies for accomplishing the goals of cognitive interviewing. Creative and careful planning, attention to developmental considerations, and incorporation of cultural values are essential to the success of this approach. PMID:25239207

  18. Therapist and client predictors of use of therapy techniques within the context of implementation efforts in a large public mental health system

    PubMed Central

    Wolk, Courtney Benjamin; Marcus, Steven C.; Weersing, V. Robin; Hawley, Kristin M.; Evans, Arthur; Hurford, Matthew; Beidas, Rinad

    2016-01-01

    Objective Many youth receiving community mental health treatment do not receive evidence-based interventions. Research suggests that community mental health therapists use a broad range of therapeutic techniques at low intensities. The present study examined the relationship between therapist- and client-level predictors on community-based therapists’ report of cognitive, behavioral, psychodynamic, and family techniques within the context of implementation efforts. Methods One hundred thirty therapists from 23 organizations in an urban publicly funded behavioral health system implementing evidence-based practices participated. Therapist-level predictors included age, gender, clinical experience, licensure status, and participation in evidence-based practice initiatives. Child-level predictors included therapist-reported child primary disorder (i.e., externalizing, internalizing, or other) and child age. Therapists completed the Therapist Procedures Checklist- Family Revised, a self-report measure of therapeutic techniques used. Results Unlicensed therapists were more likely to report use of both psychodynamic and behavioral techniques. Therapists who did not participate in an evidence-based practice initiative were less likely to report use of cognitive techniques. Those with externalizing clients were more likely to report use of behavioral and family techniques. Therapists with the youngest clients (aged 3-7) were most likely to report use of behavioral techniques and less likely to report use of cognitive and psychodynamic techniques. Conclusions Results suggest that both therapist and client factors predict self-reported use of therapy techniques. Participating in an evidence-based practice initiative increased report of cognitive techniques. Therapists reported using more behavioral and family techniques for youth with externalizing disorders and fewer cognitive and psychodynamic techniques with young clients. PMID:26876658

  19. A Mathematical Analysis of Semantic Maps, with Theoretical and Applied Implications for Blended Learning Software

    ERIC Educational Resources Information Center

    Tang, Michael; David, Hyerle; Byrne, Roxanne; Tran, John

    2012-01-01

    This paper is a mathematical (Boolean) analysis a set of cognitive maps called Thinking Maps[R], based on Albert Upton's semantic principles developed in his seminal works, Design for Thinking (1961) and Creative Analysis (1961). Albert Upton can be seen as a brilliant thinker who was before his time or after his time depending on the future of…

  20. Parallels between Action-Object Mapping and Word-Object Mapping in Young Children

    ERIC Educational Resources Information Center

    Riggs, Kevin J.; Mather, Emily; Hyde, Grace; Simpson, Andrew

    2016-01-01

    Across a series of four experiments with 3- to 4-year-olds we demonstrate how cognitive mechanisms supporting noun learning extend to the mapping of actions to objects. In Experiment 1 (n = 61) the demonstration of a novel action led children to select a novel, rather than a familiar object. In Experiment 2 (n = 78) children exhibited long-term…

  1. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  2. Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009

    USGS Publications Warehouse

    Soller, David R.

    2011-01-01

    As in the previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  3. The Mapping Model: A Cognitive Theory of Quantitative Estimation

    ERIC Educational Resources Information Center

    von Helversen, Bettina; Rieskamp, Jorg

    2008-01-01

    How do people make quantitative estimations, such as estimating a car's selling price? Traditionally, linear-regression-type models have been used to answer this question. These models assume that people weight and integrate all information available to estimate a criterion. The authors propose an alternative cognitive theory for quantitative…

  4. Cognitive Load Theory and the Effects of Transient Information on the Modality Effect

    ERIC Educational Resources Information Center

    Leahy, Wayne; Sweller, John

    2016-01-01

    Based on cognitive load theory and the "transient information effect," this paper investigated the "modality effect" while interpreting a contour map. The length and complexity of auditory and visual text instructions were manipulated. Experiment 1 indicated that longer audio text information within a presentation was inferior…

  5. Improving Students' Science Text Comprehension through Metacognitive Self-Regulation When Applying Learning Strategies

    ERIC Educational Resources Information Center

    Leopold, Claudia; Leutner, Detlev

    2015-01-01

    In three experiments, students were trained to use strategies for learning from scientific texts: text highlighting (Experiment 1), knowledge mapping (Experiment 2), and visualizing (Experiment 3). Each experiment compared a control condition, cognitive strategy training, and a combined cognitive strategy plus metacognitive self-regulation…

  6. Neural and Cognitive Plasticity: From Maps to Minds

    ERIC Educational Resources Information Center

    Mercado, Eduardo, III

    2008-01-01

    Some species and individuals are able to learn cognitive skills more flexibly than others. Learning experiences and cortical function are known to contribute to such differences, but the specific factors that determine an organism's intellectual capacities remain unclear. Here, an integrative framework is presented suggesting that variability in…

  7. Design of a Cognitive Tool to Enhance Problemsolving Performance

    ERIC Educational Resources Information Center

    Lee, Youngmin; Nelson, David

    2005-01-01

    The design of a cognitive tool to support problem-solving performance for external representation of knowledge is described. The limitations of conventional knowledge maps are analyzed in proposing the tool. The design principles and specifications are described. This tool is expected to enhance learners problem-solving performance by allowing…

  8. The Multiple-Choice Concept Map (MCCM): An Interactive Computer-Based Assessment Method

    ERIC Educational Resources Information Center

    Sas, Ioan Ciprian

    2010-01-01

    This research attempted to bridge the gap between cognitive psychology and educational measurement (Mislevy, 2008; Leighton & Gierl, 2007; Nichols, 1994; Messick, 1989; Snow & Lohman, 1989) by using cognitive theories from working memory (Baddeley, 1986; Miyake & Shah, 1999; Grimley & Banner, 2008), multimedia learning (Mayer, 2001), and cognitive…

  9. Temperament and Personality Theory: The Perspective of Cognitive-Experiential Self-Theory.

    ERIC Educational Resources Information Center

    Teglasi, Hedwig; Epstein, Seymour

    1998-01-01

    Illustrates the applicability of temperamental constructs to personality theory by mapping key temperament constructs onto Cognitive-Experiential Self-Theory (CEST). Examines the role of temperament in shaping experiences, and looks at the implications for education and socialization that stem from the synthesis of temperament constructs and…

  10. Web-Based Learning: Cognitive Styles and Instructional Strategies

    ERIC Educational Resources Information Center

    Alomyan, Hesham Raji

    2016-01-01

    This paper reports a study, which investigated whether different instructional strategies might interact with individual's cognitive style in learning. A web-based learning package was designed employing three strategies, Interactive Concept Maps, Illustration with Embedded Text and Text-Only. Group Embedded Figure Test was administered to 178…

  11. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts.

    PubMed

    Foo, Patrick; Warren, William H; Duchon, Andrew; Tarr, Michael J

    2005-03-01

    Do humans integrate experience on specific routes into metric survey knowledge of the environment, or do they depend on a simpler strategy of landmark navigation? The authors tested this question using a novel shortcut paradigm during walking in a virtual environment. The authors find that participants could not take successful shortcuts in a desert world but could do so with dispersed landmarks in a forest. On catch trials, participants were drawn toward the displaced landmarks whether the landmarks were clustered near the target location or along the shortcut route. However, when landmarks appeared unreliable, participants fell back on coarse survey knowledge. Like honeybees (F. C. Dyer, 1991), humans do not appear to derive accurate cognitive maps from path integration to guide navigation but, instead, depend on landmarks when they are available.

  12. Body Maps in the Infant Brain

    PubMed Central

    Marshall, Peter J.; Meltzoff, Andrew N.

    2015-01-01

    Researchers have examined representations of the body in the adult brain, but relatively little attention has been paid to ontogenetic aspects of neural body maps in human infants. Novel applications of methods for recording brain activity in infants are delineating cortical body maps in the first months of life. Body maps may facilitate infants’ registration of similarities between self and other—an ability that is foundational to developing social cognition. Alterations in interpersonal aspects of body representations might also contribute to social deficits in certain neurodevelopmental disorders. PMID:26231760

  13. Beethoven's last piano sonata and those who follow crocodiles: cross-domain mappings of auditory pitch in a musical context.

    PubMed

    Eitan, Zohar; Timmers, Renee

    2010-03-01

    Though auditory pitch is customarily mapped in Western cultures onto spatial verticality (high-low), both anthropological reports and cognitive studies suggest that pitch may be mapped onto a wide variety of other domains. We collected a total number of 35 pitch mappings and investigated in four experiments how these mappings are used and structured. In particular, we inquired (1) how Western subjects apply Western and non-Western metaphors to "high" and "low" pitches, (2) whether mappings applied in an abstract conceptual task are similarly applied by listeners to actual music, (3) how mappings of spatial height relate to these pitch mappings, and (4) how mappings of "high" and "low" pitch associate with other dimensions, in particular quantity, size, intensity and valence. The results show strong agreement among Western participants in applying familiar and unfamiliar metaphors for pitch, in both an abstract, conceptual task (Exp. 1) and in a music listening task (Exp. 2), indicating that diverse cross-domain mappings for pitch exist latently besides the common verticality metaphor. Furthermore, limited overlap between mappings of spatial height and pitch height was found, suggesting that, the ubiquity of the verticality metaphor in Western usage notwithstanding, cross-domain pitch mappings are largely independent of that metaphor, and seem to be based upon other underlying dimensions. Part of the discrepancy between spatial height and pitch height is that, for pitch, "up" is not necessarily "more," nor is it necessarily "good." High pitch is only "more" for height, intensity and brightness. It is "less" for mass, size and quantity. We discuss implications of these findings for music and speech prosody, and their relevance to notions of embodied cognition and of cross-domain magnitude representation. Copyright 2009 Elsevier B.V. All rights reserved.

  14. A random matrix approach to language acquisition

    NASA Astrophysics Data System (ADS)

    Nicolaidis, A.; Kosmidis, Kosmas; Argyrakis, Panos

    2009-12-01

    Since language is tied to cognition, we expect the linguistic structures to reflect patterns that we encounter in nature and are analyzed by physics. Within this realm we investigate the process of lexicon acquisition, using analytical and tractable methods developed within physics. A lexicon is a mapping between sounds and referents of the perceived world. This mapping is represented by a matrix and the linguistic interaction among individuals is described by a random matrix model. There are two essential parameters in our approach. The strength of the linguistic interaction β, which is considered as a genetically determined ability, and the number N of sounds employed (the lexicon size). Our model of linguistic interaction is analytically studied using methods of statistical physics and simulated by Monte Carlo techniques. The analysis reveals an intricate relationship between the innate propensity for language acquisition β and the lexicon size N, N~exp(β). Thus a small increase of the genetically determined β may lead to an incredible lexical explosion. Our approximate scheme offers an explanation for the biological affinity of different species and their simultaneous linguistic disparity.

  15. Cortex and amygdala morphology in psychopathy.

    PubMed

    Boccardi, Marina; Frisoni, Giovanni B; Hare, Robert D; Cavedo, Enrica; Najt, Pablo; Pievani, Michela; Rasser, Paul E; Laakso, Mikko P; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari

    2011-08-30

    Psychopathy is characterized by abnormal emotional processes, but only recent neuroimaging studies have investigated its cerebral correlates. The study aim was to map local differences of cortical and amygdalar morphology. Cortical pattern matching and radial distance mapping techniques were used to analyze the magnetic resonance images of 26 violent male offenders (age: 32±8) with psychopathy diagnosed using the Psychopathy Checklist-Revised (PCL-R) and no schizophrenia spectrum disorders, and in matched controls (age: 35± sp="0.12"/>11). The cortex displayed up to 20% reduction in the orbitofrontal and midline structures (corrected p<0.001 bilaterally). Up to 30% tissue reduction in the basolateral nucleus, and 10-30% enlargement effects in the central and lateral nuclei indicated abnormal structure of the amygdala (corrected p=0.05 on the right; and symmetrical pattern on the left). Psychopathy features specific morphology of the main cerebral structures involved in cognitive and emotional processing, consistent with clinical and functional data, and with a hypothesis of an alternative evolutionary brain development. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Mapping Joint Action.

    ERIC Educational Resources Information Center

    Slawski, Carl

    The flow diagrams in this document provide cognitive maps to aid in synthesizing diverse areas of knowledge in a special brand of field theory. A model is presented which highlights the domains of structural functionalism (with concepts of cultural, personal and societal systems) and symbolic interactionism (with the concepts of self, sentiments…

  17. Cognitive ergonomics: the use of mind mapping tool in maintaining productive sector of a Brazilian paper company.

    PubMed

    Mattos, Diego; Mateus, José Roberto; Merino, Eugenio

    2012-01-01

    The use of mind maps as a method of building knowledge, planning, organizing activities and ideas can be seen in the literature related to ergonomics. The results of such use are relevant and its use in academic area found. However, regarding to its use in industrial environments, studies can't not be found. With this scenario, and based on the perception of the ergonomist about the importance of using methods such as mind maps in support of human cognition, it seems pertinent to its use in industry sectors whose cognitive demand requires. Given these assumptions, this study aimed to apply the method of Mind Maps in Productive Maintenance sector of a Brazilian paper. The Productive Maintenance sector in the Paper Industry has an important contribution to operational performance. With practical Predictive Maintenance, Preventive Maintenance and Corrective Maintenance, the industry advocates to make the machines to produce paper is not to stop producing when they are programmed to do so. Among the practices cited, the Preventive Maintenance is one that leads to pre-determined intervals in order to reduce the possibility of placing the equipment in a condition below the required level of acceptance. Therefore, this article aims to propose using the tool "mental maps" in order to collaborate in planning and implementation of preventive maintenance activities in the sector of mechanical maintenance of a pulp and paper industry in southern Brazil. The study investigated the maintenance sector through its employees, who went through training about the tool and then use it and ergonomists company.

  18. A comparison of two conformal mapping techniques applied to an aerobrake body

    NASA Technical Reports Server (NTRS)

    Hommel, Mark J.

    1987-01-01

    Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.

  19. Using a concept map as a tool for strategic planning: The Healthy Brain Initiative.

    PubMed

    Anderson, Lynda A; Day, Kristine L; Vandenberg, Anna E

    2011-09-01

    Concept mapping is a tool to assist in strategic planning that allows planners to work through a sequence of phases to produce a conceptual framework. Although several studies describe how concept mapping is applied to various public health problems, the flexibility of the methods used in each phase of the process is often overlooked. If practitioners were more aware of the flexibility, more public health endeavors could benefit from using concept mapping as a tool for strategic planning. The objective of this article is to describe how the 6 concept-mapping phases originally outlined by William Trochim guided our strategic planning process and how we adjusted the specific methods in the first 2 phases to meet the specialized needs and requirements to create The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health. In the first stage (phases 1 and 2 of concept mapping), we formed a steering committee, convened 4 work groups over a period of 3 months, and generated an initial set of 42 action items grounded in science. In the second stage (phases 3 and 4), we engaged stakeholders in sorting and rating the action items and constructed a series of concept maps. In the third and final stage (phases 5 and 6), we examined and refined the action items and generated a final concept map consisting of 44 action items. We then selected the top 10 action items, and in 2007, we published The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health, which represents the strategic plan for The Healthy Brain Initiative.

  20. Classification and evaluation of the pharmacodynamics of psychotropic drugs by single-lead pharmaco-EEG, EEG mapping and tomography (LORETA).

    PubMed

    Saletu, B; Anderer, P; Saletu-Zyhlarz, G M; Arnold, O; Pascual-Marqui, R D

    2002-01-01

    Utilizing computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (EEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ: the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG profiles and maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described in this paper. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects, therapeutic efficacy and pharmacokinetic and pharmacodynamic data will be discussed. In recent times, imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be demonstrated for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently.

  1. Multimodal connectivity of motor learning-related dorsal premotor cortex.

    PubMed

    Hardwick, Robert M; Lesage, Elise; Eickhoff, Claudia R; Clos, Mareike; Fox, Peter; Eickhoff, Simon B

    2015-12-01

    The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Resiliency Techniques in School Practice

    ERIC Educational Resources Information Center

    Molony, Terry; Henwood, Maureen; Gilroy, Shawn

    2010-01-01

    School psychologists can help build resilience in youth in many ways. This article offers a list of some easy techniques to use when working with individuals or groups, most based on basic cognitive-behavior therapy (CBT) techniques. They include: (1) Emotional awareness; (2) Emotional Regulation; (3) Cognitive Flexibility; (4) Self-efficacy; and…

  3. Behaviorism, Latent Learning, and Cognitive Maps: Needed Revisions in Introductory Psychology Textbooks

    PubMed Central

    Jensen, Robert

    2006-01-01

    This paper critically assesses the scholarship in introductory psychology textbooks in relation to the topic of latent learning. A review of the treatment of latent learning in 48 introductory psychology textbooks published between 1948 and 2004, with 21 of these texts published since 1999, reveals that the scholarship on the topic of latent learning demonstrated in introductory textbooks warrants improvement. Errors that persist in textbooks include the assertion that the latent learning experiments demonstrate unequivocally that reinforcement was not necessary for learning to occur, that behavioral theories could not account for the results of the latent learning experiments, that B. F. Skinner was an S-R association behaviorist who argued that reinforcement is necessary for learning to occur, and that because behavioral theories (including that of B. F. Skinner) were unable explain the results of the latent learning experiments the cognitive map invoked by Edward Tolman is the only explanation for latent learning. Finally, the validity of the cognitive map is typically accepted without question. Implications of the presence of these errors for students and the discipline are considered. Lastly, remedies are offered to improve the scholarship found in introductory psychology textbooks. PMID:22478463

  4. Spatial Representation in Blind Children. 3: Effects of Individual Differences.

    ERIC Educational Resources Information Center

    Fletcher, Janet F.

    1981-01-01

    Data from a study of spatial representation in blind children were subjected to two stepwise regression analyses to determine the relationships between several subject related variables and responses to "map" (cognitive map) and "route" (sequential memory) questions about the position of furniture in a recently explored room. (Author/SBH)

  5. Memorization versus Semantic Mapping in L2 Vocabulary Acquisition

    ERIC Educational Resources Information Center

    Khoii, Roya; Sharififar, Samira

    2013-01-01

    This study investigated the effects of two cognitive strategies, rote memorization and semantic mapping, on L2 vocabulary acquisition. Thirty-eight intermediate female EFL learners divided into two experimental groups participated in this study. Each experimental group used one of the strategies for vocabulary acquisition. After the four-month…

  6. Mathemagenic Activities Program: [Reports on Cognitive/Language Development].

    ERIC Educational Resources Information Center

    Smock, Charles D., Ed.

    This set of 13 research reports, bulletins and papers is a product of the Mathemagenic Activities Program (MAP) for early childhood education of the University of Georgia Follow Through Program. Based on Piagetian theory, the MAP provides sequentially structured sets of curriculum materials and processes that are designed to continually challenge…

  7. First Steps and beyond: Serious Games as Preparation for Future Learning

    ERIC Educational Resources Information Center

    Reese, Debbie Denise

    2007-01-01

    Electronic game technologies can prepare novice learners for future learning of complex concepts. This paper describes the underlying instructional design, learning science, cognitive science, and game theory. A structural, or syntactic mapping (structure mapping), approach to game design can produce a game world relationally isomorphic to a…

  8. Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects.

    PubMed

    Apostolova, Liana G; Morra, Jonathan H; Green, Amity E; Hwang, Kristy S; Avedissian, Christina; Woo, Ellen; Cummings, Jeffrey L; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2010-05-15

    We used a previously validated automated machine learning algorithm based on adaptive boosting to segment the hippocampi in baseline and 12-month follow-up 3D T1-weighted brain MRIs of 150 cognitively normal elderly (NC), 245 mild cognitive impairment (MCI) and 97 Dementia of the Alzheimer's type (DAT) ADNI subjects. Using the radial distance mapping technique, we examined the hippocampal correlates of delayed recall performance on three well-established verbal memory tests--ADAScog delayed recall (ADAScog-DR), the Rey Auditory Verbal Learning Test -DR (AVLT-DR) and Wechsler Logical Memory II-DR (LM II-DR). We observed no significant correlations between delayed recall performance and hippocampal radial distance on any of the three verbal memory measures in NC. All three measures were associated with hippocampal volumes and radial distance in the full sample and in the MCI group at baseline and at follow-up. In DAT we observed stronger left-sided associations between hippocampal radial distance, LM II-DR and ADAScog-DR both at baseline and at follow-up. The strongest linkage between memory performance and hippocampal atrophy in the MCI sample was observed with the most challenging verbal memory test-the AVLT-DR, as opposed to the DAT sample where the least challenging test the ADAScog-DR showed strongest associations with the hippocampal structure. After controlling for baseline hippocampal atrophy, memory performance showed regionally specific associations with hippocampal radial distance in predominantly CA1 but also in subicular distribution. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  9. Stimulating neural plasticity with real-time fMRI neurofeedback in Huntington's disease: A proof of concept study.

    PubMed

    Papoutsi, Marina; Weiskopf, Nikolaus; Langbehn, Douglas; Reilmann, Ralf; Rees, Geraint; Tabrizi, Sarah J

    2018-03-01

    Novel methods that stimulate neuroplasticity are increasingly being studied to treat neurological and psychiatric conditions. We sought to determine whether real-time fMRI neurofeedback training is feasible in Huntington's disease (HD), and assess any factors that contribute to its effectiveness. In this proof-of-concept study, we used this technique to train 10 patients with HD to volitionally regulate the activity of their supplementary motor area (SMA). We collected detailed behavioral and neuroimaging data before and after training to examine changes of brain function and structure, and cognitive and motor performance. We found that patients overall learned to increase activity of the target region during training with variable effects on cognitive and motor behavior. Improved cognitive and motor performance after training predicted increases in pre-SMA grey matter volume, fMRI activity in the left putamen, and increased SMA-left putamen functional connectivity. Although we did not directly target the putamen and corticostriatal connectivity during neurofeedback training, our results suggest that training the SMA can lead to regulation of associated networks with beneficial effects in behavior. We conclude that neurofeedback training can induce plasticity in patients with Huntington's disease despite the presence of neurodegeneration, and the effects of training a single region may engage other regions and circuits implicated in disease pathology. © 2017 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. The current and ideal state of anatomic pathology patient safety.

    PubMed

    Raab, Stephen Spencer

    2014-01-01

    An anatomic pathology diagnostic error may be secondary to a number of active and latent technical and/or cognitive components, which may occur anywhere along the total testing process in clinical and/or laboratory domains. For the pathologist interpretive steps of diagnosis, we examine Kahneman's framework of slow and fast thinking to explain different causes of error in precision (agreement) and in accuracy (truth). The pathologist cognitive diagnostic process involves image pattern recognition and a slow thinking error may be caused by the application of different rationally-constructed mental maps of image criteria/patterns by different pathologists. This type of error is partly related to a system failure in standardizing the application of these maps. A fast thinking error involves the flawed leap from image pattern to incorrect diagnosis. In the ideal state, anatomic pathology systems would target these cognitive error causes as well as the technical latent factors that lead to error.

  11. Historical shoreline mapping (I): improving techniques and reducing positioning errors

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A critical need exists among coastal researchers and policy-makers for a precise method to obtain shoreline positions from historical maps and aerial photographs. A number of methods that vary widely in approach and accuracy have been developed to meet this need. None of the existing methods, however, address the entire range of cartographic and photogrammetric techniques required for accurate coastal mapping. Thus, their application to many typical shoreline mapping problems is limited. In addition, no shoreline mapping technique provides an adequate basis for quantifying the many errors inherent in shoreline mapping using maps and air photos. As a result, current assessments of errors in air photo mapping techniques generally (and falsely) assume that errors in shoreline positions are represented by the sum of a series of worst-case assumptions about digitizer operator resolution and ground control accuracy. These assessments also ignore altogether other errors that commonly approach ground distances of 10 m. This paper provides a conceptual and analytical framework for improved methods of extracting geographic data from maps and aerial photographs. We also present a new approach to shoreline mapping using air photos that revises and extends a number of photogrammetric techniques. These techniques include (1) developing spatially and temporally overlapping control networks for large groups of photos; (2) digitizing air photos for use in shoreline mapping; (3) preprocessing digitized photos to remove lens distortion and film deformation effects; (4) simultaneous aerotriangulation of large groups of spatially and temporally overlapping photos; and (5) using a single-ray intersection technique to determine geographic shoreline coordinates and express the horizontal and vertical error associated with a given digitized shoreline. As long as historical maps and air photos are used in studies of shoreline change, there will be a considerable amount of error (on the order of several meters) present in shoreline position and rate-of- change calculations. The techniques presented in this paper, however, provide a means to reduce and quantify these errors so that realistic assessments of the technological noise (as opposed to geological noise) in geographic shoreline positions can be made.

  12. Conditional Random Field-Based Offline Map Matching for Indoor Environments

    PubMed Central

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-01-01

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm. PMID:27537892

  13. Conditional Random Field-Based Offline Map Matching for Indoor Environments.

    PubMed

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-08-16

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.

  14. Theorizing and Studying the Language-Teaching Mind: Mapping Research on Language Teacher Cognition

    ERIC Educational Resources Information Center

    Burns, Anne; Freeman, Donald; Edwards, Emily

    2015-01-01

    The overarching project of the conceptual and empirical contributions in this special issue is to redraw boundaries for language teacher cognition research. Our aim in this final article is to complement the foregoing collection of articles by conceptualizing ontologically and methodologically past and current trajectories in language teacher…

  15. Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.

    2016-01-01

    The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…

  16. Cognitive Processes in Interpreting the Contour-Line Portrayal of Terrain Relief.

    ERIC Educational Resources Information Center

    Cross, Kenneth D.; And Others

    Designed to gain a more thorough understanding of the cognitive processes involved and apply this knowledge in defining improved teaching strategies, this study of contour interpretation (referred to as "position fixing") required 12 subjects to locate their position on a map after being transported, blindfolded, to test sites where…

  17. The relation between young children's cognitive role-taking and mothers' preference for a conflict-inducing childrearing method.

    PubMed

    Peterson, C; Skevington, S

    1988-06-01

    In this study, we examined children's cognitive role-taking in relation to their mothers' choices of techniques to solve domestic dilemmas involving children's misbehavior, social skills, and logical reasoning. Results showed that a mother's preference for the childrearing strategy known as distancing, which uses a Socratic or dialectical inquiry to create cognitive conflict in the child, bore a significant association to her child's advancement in cognitive role-taking skill. This finding is discussed in relation to theories of cognitive development that postulate that mental conflict or tension stimulates cognitive growth. Practical factors that might inhibit mothers from making effective use of the distancing technique are also considered.

  18. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  19. Digital Mapping Techniques '07 - Workshop Proceedings

    USGS Publications Warehouse

    Soller, David R.

    2008-01-01

    The Digital Mapping Techniques '07 (DMT'07) workshop was attended by 85 technical experts from 49 agencies, universities, and private companies, including representatives from 27 state geological surveys. This year's meeting, the tenth in the annual series, was hosted by the South Carolina Geological Survey, from May 20-23, 2007, on the University of South Carolina campus in Columbia, South Carolina. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous year's meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.

  20. Visualising inter-subject variability in fMRI using threshold-weighted overlap maps

    NASA Astrophysics Data System (ADS)

    Seghier, Mohamed L.; Price, Cathy J.

    2016-02-01

    Functional neuroimaging studies are revealing the neural systems sustaining many sensory, motor and cognitive abilities. A proper understanding of these systems requires an appreciation of the degree to which they vary across subjects. Some sources of inter-subject variability might be easy to measure (demographics, behavioural scores, or experimental factors), while others are more difficult (cognitive strategies, learning effects, and other hidden sources). Here, we introduce a simple way of visualising whole-brain consistency and variability in brain responses across subjects using threshold-weighted voxel-based overlap maps. The output quantifies the proportion of subjects activating a particular voxel or region over a wide range of statistical thresholds. The sensitivity of our approach was assessed in 30 healthy adults performing a matching task with their dominant hand. We show how overlap maps revealed many effects that were only present in a subsample of our group; we discuss how overlap maps can provide information that may be missed or misrepresented by standard group analysis, and how this information can help users to understand their data. In particular, we emphasize that functional overlap maps can be particularly useful when it comes to explaining typical (or atypical) compensatory mechanisms used by patients following brain damage.

  1. Mental maps and travel behaviour: meanings and models

    NASA Astrophysics Data System (ADS)

    Hannes, Els; Kusumastuti, Diana; Espinosa, Maikel León; Janssens, Davy; Vanhoof, Koen; Wets, Geert

    2012-04-01

    In this paper, the " mental map" concept is positioned with regard to individual travel behaviour to start with. Based on Ogden and Richards' triangle of meaning (The meaning of meaning: a study of the influence of language upon thought and of the science of symbolism. International library of psychology, philosophy and scientific method. Routledge and Kegan Paul, London, 1966) distinct thoughts, referents and symbols originating from different scientific disciplines are identified and explained in order to clear up the notion's fuzziness. Next, the use of this concept in two major areas of research relevant to travel demand modelling is indicated and discussed in detail: spatial cognition and decision-making. The relevance of these constructs to understand and model individual travel behaviour is explained and current research efforts to implement these concepts in travel demand models are addressed. Furthermore, these mental map notions are specified in two types of computational models, i.e. a Bayesian Inference Network (BIN) and a Fuzzy Cognitive Map (FCM). Both models are explained, and a numerical and a real-life example are provided. Both approaches yield a detailed quantitative representation of the mental map of decision-making problems in travel behaviour.

  2. The role of meta-cognitions and thought control techniques in predisposition to auditory and visual hallucinations.

    PubMed

    García-Montes, José M; Cangas, Adolfo; Pérez-Alvarez, M; Fidalgo, Angel M; Gutiérrez, Olga

    2006-09-01

    This study examines the relationship between a predisposition to hallucinations and meta-cognitive variables and thought-control techniques, controlling for the possible effect of anxiety. In order to do so, we start out with the hypothesis that anxiety does not, in itself, explain the association between meta-cognitions and a predisposition to auditory and visual hallucinations. A within-participants correlational design was employed. Four psychometric tests relating to predisposition to hallucinations, anxiety, meta-cognitions and thought-control techniques were administered to 150 participants. It was found that, after controlling for participants' anxiety levels, the 'loss of cognitive confidence' factor predicted the score on the scale of predisposition to both auditory and visual hallucinations. Thought-control strategies based on worry were also found to be predictive of a greater predisposition to hallucinations, regardless of whether or not participants' anxiety level was controlled. Meta-cognitive variables of cognitive confidence and thought control through worry are positively associated with a predisposition to hallucinations. The correlational nature of the design does not allow inferences about causal relationships.

  3. Goal Seeking Components for Adaptive Intelligence: An Initial Assessment.

    DTIC Science & Technology

    1981-04-01

    of Rescorla and Wagner (1972). They state their theory in cognitive terms as follows: ...organisms only learn when events violate their expectations...implements Rescorla and Wagner’s cognitive theory referred to above: The expectations that are built up are the associative strengths, and these are...solution of this T-maze problem as an ilstance of tiie use of an internal model, in this case a spatial cognitive map, suggests two aspects of the idea

  4. Does cognitive performance map to categorical diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder? A discriminant functions analysis.

    PubMed

    Van Rheenen, Tamsyn E; Bryce, Shayden; Tan, Eric J; Neill, Erica; Gurvich, Caroline; Louise, Stephanie; Rossell, Susan L

    2016-03-01

    Despite known overlaps in the pattern of cognitive impairments in individuals with bipolar disorder (BD), schizophrenia (SZ) and schizoaffective disorder (SZA), few studies have examined the extent to which cognitive performance validates traditional diagnostic boundaries in these groups. Individuals with SZ (n=49), schizoaffective disorder (n=33) and BD (n=35) completed a battery of cognitive tests measuring the domains of processing speed, immediate memory, semantic memory, learning, working memory, executive function and sustained attention. A discriminant functions analysis revealed a significant function comprising semantic memory, immediate memory and processing speed that maximally separated patients with SZ from those with BD. Initial classification scores on the basis of this function showed modest diagnostic accuracy, owing in part to the misclassification of SZA patients as having SZ. When SZA patients were removed from the model, a second cross-validated classifier yielded slightly improved diagnostic accuracy and a single function solution, of which semantic memory loaded most heavily. A cluster of non-executive cognitive processes appears to have some validity in mapping onto traditional nosological boundaries. However, since semantic memory performance was the primary driver of the discrimination between BD and SZ, it is possible that performance differences between the disorders in this cognitive domain in particular, index separate underlying aetiologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: An MRI sub-regional volumetric analysis.

    PubMed

    D'Ambrosio, Alessandro; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo; Rocca, Maria A

    2017-08-01

    To investigate the role of cerebellar sub-regions on motor and cognitive performance in multiple sclerosis (MS) patients. Whole and sub-regional cerebellar volumes, brain volumes, T2 hyperintense lesion volumes (LV), and motor performance scores were obtained from 95 relapse-onset MS patients and 32 healthy controls (HC). MS patients also underwent an evaluation of working memory and processing speed functions. Cerebellar anterior and posterior lobes were segmented using the Spatially Unbiased Infratentorial Toolbox (SUIT) from Statistical Parametric Mapping (SPM12). Multivariate linear regression models assessed the relationship between magnetic resonance imaging (MRI) measures and motor/cognitive scores. Compared to HC, only secondary progressive multiple sclerosis (SPMS) patients had lower cerebellar volumes (total and posterior cerebellum). In MS patients, lower anterior cerebellar volume and brain T2 LV predicted worse motor performance, whereas lower posterior cerebellar volume and brain T2 LV predicted poor cognitive performance. Global measures of brain volume and infratentorial T2 LV were not selected by the final multivariate models. Cerebellar volumetric abnormalities are likely to play an important contribution to explain motor and cognitive performance in MS patients. Consistently with functional mapping studies, cerebellar posterior-inferior volume accounted for variance in cognitive measures, whereas anterior cerebellar volume accounted for variance in motor performance, supporting the assessment of cerebellar damage at sub-regional level.

  6. Midlife Hypertensive Status and Cognitive Function 20 Years Later: The Southall and Brent Revisited Study

    PubMed Central

    Taylor, Clare; Tillin, Therese; Chaturvedi, Nish; Dewey, Michael; Ferri, Cleusa P; Hughes, Alun; Prince, Martin; Richards, Marcus; Shah, Ajit; Stewart, Robert

    2013-01-01

    Objectives: To investigate long-term prospective associations between a range of measurements of hypertensive status in midlife and cognitive impairment 20 years later. Design: Cohort study. Setting: Two areas (Southall and Brent) of northwest London. Participants: Survey samples of a multiethnic population (European, African Caribbean, South Asian) aged 40 to 67 were followed up 20 years later. Measurements: Comprehensive cardiovascular assessments were performed at baseline, including measurements of resting blood pressure (BP) and, in a subsample, ambulatory BP. At follow-up, a battery of cognitive assessments was administered, and a composite outcome was derived, with impairment defined as the lowest 10% within each ethnic group. Logistic regression models were used to investigate associations with prior measures of hypertensive status. Results: In 1,484 participants at follow-up, cognitive impairment showed significant U-shaped associations with baseline diastolic BP (DBP) and mean arterial pressure (MAP; strongest for those aged ≥50 at baseline), independent of a range of covariates, but no associations were found with systolic BP or pulse pressure. Cognitive impairment was also associated with antihypertensive medication use and higher evening ambulatory DBP at baseline. No substantial differences in strengths of association were found between ethnic groups. Conclusion: Low and high DBP and MAP were associated with cognitive impairment 20 years later. Higher evening DBP on ambulatory monitoring was also associated with greater risk. PMID:24028355

  7. Cognitive Support in Teaching Football Techniques

    ERIC Educational Resources Information Center

    Duda, Henryk

    2009-01-01

    Study aim: To improve the teaching of football techniques by applying cognitive and imagery techniques. Material and methods: Four groups of subjects, n = 32 each, were studied: male and female physical education students aged 20-21 years, not engaged previously in football training; male juniors and minors, aged 16 and 13 years, respectively,…

  8. Interventions for the treatment of theory of mind deficits in schizophrenia: Systematic literature review.

    PubMed

    Vass, Edit; Fekete, Zita; Simon, Viktória; Simon, Lajos

    2018-05-22

    Theory of Mind (ToM) plays a central role in regulating social interactions and its impairment is consistently reported in schizophrenia. Regarding schizophrenia, ToM is usually discussed as a sub-domain of social cognition. Since social cognitive deficits have drawn the attention of researchers, a variety of novel treatment techniques and approaches targeting social cognitive deficits have been developed. Encouraging results have repeatedly been reported on the modifiability of social cognitive impairment through these techniques. However, emotional perception seems to be over-represented in these approaches at the expense of other areas, such as ToM. This article presents a systematic review on the social cognitive interventions of the last 10 years, which focused on the remediation of ToM or used techniques primarily focusing on one or more social cognitive domains other than ToM, but with hypothetical effects on it. The aim of our systematic review was to compare these intervention techniques in order to see how effective they are in the remediation of ToM, and to find the best techniques to ameliorate ToM deficits in schizophrenia. According to our findings targeted ToM intervention produced more improvement in ToM tasks, while data regarding non-ToM interventions showed contradictory results with limited effects on ToM. Copyright © 2018. Published by Elsevier B.V.

  9. Randomized response estimates for the 12-month prevalence of cognitive-enhancing drug use in university students.

    PubMed

    Dietz, Pavel; Striegel, Heiko; Franke, Andreas G; Lieb, Klaus; Simon, Perikles; Ulrich, Rolf

    2013-01-01

    To estimate the 12-month prevalence of cognitive-enhancing drug use. Paper-and-pencil questionnaire that used the randomized response technique. University in Mainz, Germany. A total of 2569 university students who completed the questionnaire. An anonymous, specialized questionnaire that used the randomized response technique was distributed to students at the beginning of classes and was collected afterward. From the responses, we calculated the prevalence of students taking drugs only to improve their cognitive performance and not to treat underlying mental disorders such as attention-deficit-hyperactivity disorder, depression, and sleep disorders. The estimated 12-month prevalence of using cognitive-enhancing drugs was 20%. Prevalence varied by sex (male 23.7%, female 17.0%), field of study (highest in students studying sports-related fields, 25.4%), and semester (first semester 24.3%, beyond first semester 16.7%). To our knowledge, this is the first time that the randomized response technique has been used to survey students about cognitive-enhancing drug use. Using the randomized response technique, our questionnaire provided data that showed a high 12-month prevalence of cognitive-enhancing drug use in German university students. Our study suggests that other direct survey techniques have underestimated the use of these drugs. Drug prevention programs need to be established at universities to address this issue. © 2013 Pharmacotherapy Publications, Inc.

  10. Mapping the semantic structure of cognitive neuroscience.

    PubMed

    Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A

    2014-09-01

    Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.

  11. Communication map of elderly people Sociodemographic and cognitive-linguistic aspects

    PubMed Central

    Silagi, Marcela Lima; Peres, Aline Rufo; Schochat, Eliane; Mansur, Leticia Lessa

    2013-01-01

    Language and communication difficulties may occur in the elderly population. This is the case of the tip-of-the-tongue phenomenon and receptive and auditory comprehension difficulties. Few studies have focused on examining the effects of social exposure on maintaining communication in the aging process. OBJECTIVES [1] To describe the communication map of healthy elderly subjects; [2] To search for associations between frequency and time dedicated to communication and cognitive and sociodemographic factors. METHODS Healthy elderly subjects were submitted to cognitive screening, the Token Test – Revised, and the Verbal Fluency test, and answered the ASHA-FACS and the Circles of Communication Partners questionnaires. RESULTS 55 subjects, 67% female, with ages over 60 years and varied schooling were included in the sample. Interlocutors in the circle of close friends and acquaintances predominated in the communication map, although the time devoted to communication with these partners was lower than in other circles. Overall, the elderly reported no deficits in language comprehension, with some reports of the tip-of-the-tongue phenomenon. Poor performances on the Token Test – Revised and in phonemic verbal fluency along with reports of communication functionality indicated that these subjects compensate for their problems. CONCLUSION Older subjects with lower schooling tended to predominantly communicate within the family circle. Within other circles, the number of hours devoted to communication and dialogue partners was not associated with age or schooling. The time devoted to the circle of communication with friends may indicate cognitive difficulties. PMID:29213862

  12. What does semantic tiling of the cortex tell us about semantics?

    PubMed

    Barsalou, Lawrence W

    2017-10-01

    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) feature and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow Potential and Impound Water Upstream Flow Potential. The FCM is constructed using what is currently our understanding of how glacier lake outbursts occur, whereas the causal connection between concepts is defined to capture the expertise of glacier scientists. The proposed graph contains 27 nodes and a network of connections that represent the causal link between concepts. To test the developed FCM, we defined three scenarios representing glacier lake environmental conditions that either occurred or that are likely to occur in such highly dynamic environments. For each case, the FCM has been initialized using observables extracted from hypothesized remote sensing imagery. The map, which converges to a fixed point for all of the test scenarios within 15 iterations, shows reasoning consistent with that of glacier experts. The FCM-based cognitive approach has the potential to be the AI core of real-time operational hazards assessment and detection systems.

  14. A Method of Surrogate Model Construction which Leverages Lower-Fidelity Information using Space Mapping Techniques

    DTIC Science & Technology

    2014-03-27

    fidelity. This pairing is accomplished through the use of a space mapping technique, which is a process where the design space of a lower fidelity model...is aligned a higher fidelity model. The intent of applying space mapping techniques to the field of surrogate construction is to leverage the

  15. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  16. Patterns in response to chronic terrorism threats: A construct of emotional, cognitive, and behavioral responses among Israeli citizens.

    PubMed

    Cohen-Louck, Keren; Saka, Yael

    2017-10-01

    Israeli citizens are exposed to unpredictable and chronic terrorism threats that significantly jeopardize their personal sense of safety. The purpose of the present study is to present how Israeli discourse is structured with regard to emotional, cognitive, and behavioral responses to chronic terrorism threats and to understand the range of responses as well as map the risk and protective factors of this existential threat. Semistructured in-depth interviews were conducted with 40 Israeli adults (22 women and 18 men). Qualitative analysis revealed three patterns of responses to ongoing terrorism: emotional, cognitive, and behavioral. Emotional responses include fear, worry, sense of empathy, and detachment. Cognitive responses include situational assessment and pursuit of solutions, the use of traumatic imagining, beliefs in fate and luck, and optimism. Behavioral responses include looking for information, alertness, and habituation. The findings also revealed another response, which combines cognitive and behavioral responses. Some of the responses are innovative and unique to the threat of terrorism. Mapping the responses revealed mental health risk factors, as well as protective factors that can help structure personal and national resilience. These findings have implications on the treatment and prevention of personal and social pathologies, and how to effectively cope with terrorism threats. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Meta-analysis: how does posterior parietal cortex contribute to reasoning?

    PubMed Central

    Wendelken, Carter

    2015-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations—including spatial attention, mathematical cognition, working memory, long-term memory, and language—and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: (1) reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC; and (3) reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific to reasoning. PMID:25653604

  18. Changes in running pattern due to fatigue and cognitive load in orienteering.

    PubMed

    Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit

    2010-01-01

    The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.

  19. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    PubMed

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  20. Occupational Aptitude Patterns Map: Development and Implications for a Theory of Job Aptitude Requirements.

    ERIC Educational Resources Information Center

    Gottfredson, Linda S.

    1986-01-01

    United States Employment Service data on the cognitive and noncognitive aptitude requirements of different occupations were used to create an occupational classification--the Occupational Aptitude Patterns (OAP) Map. Thirteen job clusters are arrayed according to major differences in overall intellectual difficulty level and in functional focus…

  1. Mapping the Structure of Knowledge for Teaching Nominal Categorical Data Analysis

    ERIC Educational Resources Information Center

    Groth, Randall E.; Bergner, Jennifer A.

    2013-01-01

    This report describes a model for mapping cognitive structures related to content knowledge for teaching. The model consists of knowledge elements pertinent to teaching a content domain, the nature of the connections among them, and a means for representing the elements and connections visually. The model is illustrated through empirical data…

  2. Using Concept Maps to Reveal Conceptual Typologies

    ERIC Educational Resources Information Center

    Hay, David B.; Kinchin, Ian M.

    2006-01-01

    Purpose: The purpose of this paper is to explain and develop a classification of cognitive structures (or typologies of thought), previously designated as spoke, chain and network thinking by Kinchin "et al." Design/methodology/approach: The paper shows how concept mapping can be used to reveal these conceptual typologies and endeavours to place…

  3. The Spatial Influence of Apartheid on the South African City

    ERIC Educational Resources Information Center

    Schoeman, Thea

    2018-01-01

    Maps and satellite images can be used effectively to identify and compare settlement patterns. Spatial cognition and interpretation are important to further map literacy (Larangeira and Van der Merwe 2016). Although Apartheid ended in 1994 in South Africa, the legacy of this "separate development" system is still very noticeable in South…

  4. Environmentalism and community: connections and implications for social action

    Treesearch

    Benjamin J. Marcus; Allen M. Omoto; Patricia L. Winter

    2011-01-01

    This qualitative study explored conceptualizations of environmentalism and community, as well as the connections of ethnicity to these concepts in a small but diverse sample. Semistructured interviews were conducted with eight participants and included a conceptual content cognitive mapping procedure. The resulting maps were examined for themes and ideas about the key...

  5. Two techniques for mapping and area estimation of small grains in California using Landsat digital data

    NASA Technical Reports Server (NTRS)

    Sheffner, E. J.; Hlavka, C. A.; Bauer, E. M.

    1984-01-01

    Two techniques have been developed for the mapping and area estimation of small grains in California from Landsat digital data. The two techniques are Band Ratio Thresholding, a semi-automated version of a manual procedure, and LCLS, a layered classification technique which can be fully automated and is based on established clustering and classification technology. Preliminary evaluation results indicate that the two techniques have potential for providing map products which can be incorporated into existing inventory procedures and automated alternatives to traditional inventory techniques and those which currently employ Landsat imagery.

  6. Advantage of spatial map ion imaging in the study of large molecule photodissociation

    NASA Astrophysics Data System (ADS)

    Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2017-07-01

    The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.

  7. Neural correlates of cognitive improvements following cognitive remediation in schizophrenia: a systematic review of randomized trials

    PubMed Central

    Isaac, Clémence; Januel, Dominique

    2016-01-01

    Background Cognitive impairments are a core feature in schizophrenia and are linked to poor social functioning. Numerous studies have shown that cognitive remediation can enhance cognitive and functional abilities in patients with this pathology. The underlying mechanism of these behavioral improvements seems to be related to structural and functional changes in the brain. However, studies on neural correlates of such enhancement remain scarce. Objectives We explored the neural correlates of cognitive enhancement following cognitive remediation interventions in schizophrenia and the differential effect between cognitive training and other therapeutic interventions or patients’ usual care. Method We searched MEDLINE, PsycInfo, and ScienceDirect databases for studies on cognitive remediation therapy in schizophrenia that used neuroimaging techniques and a randomized design. Search terms included randomized controlled trial, cognitive remediation, cognitive training, rehabilitation, magnetic resonance imaging, positron emission tomography, electroencephalography, magnetoencephalography, near infrared spectroscopy, and diffusion tensor imaging. We selected randomized controlled trials that proposed multiple sessions of cognitive training to adult patients with a schizophrenia spectrum disorder and assessed its efficacy with imaging techniques. Results In total, 15 reports involving 19 studies were included in the systematic review. They involved a total of 455 adult patients, 271 of whom received cognitive remediation. Cognitive remediation therapy seems to provide a neurobiological enhancing effect in schizophrenia. After therapy, increased activations are observed in various brain regions mainly in frontal – especially prefrontal – and also in occipital and anterior cingulate regions during working memory and executive tasks. Several studies provide evidence of an improved functional connectivity after cognitive training, suggesting a neuroplastic effect of therapy through mechanisms of functional reorganization. Neurocognitive and social-cognitive training may have a cumulative effect on neural networks involved in social cognition. The variety of proposed programs, imaging tasks, and techniques may explain the heterogeneity of observed neural improvements. Future studies would need to specify the effect of cognitive training depending on those variables. PMID:26993787

  8. A Cognitive Map of Human Performance Technology: A Study of Domain Expertise.

    ERIC Educational Resources Information Center

    Villachica, Steven W.; Lohr, Linda L.; Summers, Laura; Lowell, Nate; Roberts, Stephanie; Javeri, Manisha; Hunt, Erin; Mahoney, Chris; Conn, Cyndie

    Most representations of academic disciplines have been created when experts depict or report what they know; however, there are potential problems that can arise when practitioners rely on expert self-report. One way to avoid potential problems associated with expert self-report is to employ cognitive task analysis methods. The Pathfinder Scaling…

  9. How Do Task Characteristics Affect Learning and Performance? The Roles of Variably Mapped and Dynamic Tasks

    ERIC Educational Resources Information Center

    Macnamara, Brooke N.; Frank, David J.

    2018-01-01

    For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task…

  10. Are Cortical Motor Maps Based on Body Parts or Coordinated Actions? Implications for Embodied Semantics

    ERIC Educational Resources Information Center

    Fernandino, Leonardo; Iacoboni, Marco

    2010-01-01

    The embodied cognition approach to the study of the mind proposes that higher order mental processes such as concept formation and language are essentially based on perceptual and motor processes. Contrary to the classical approach in cognitive science, in which concepts are viewed as amodal, arbitrary symbols, embodied semantics argues that…

  11. Neurobiological Circuits Regulating Attention, Cognitive Control, Motivation, and Emotion: Disruptions in Neurodevelopmental Psychiatric Disorders

    ERIC Educational Resources Information Center

    Arnsten, Amy F. T.; Rubia, Katya

    2012-01-01

    Objective: This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Method: Studies of animals,…

  12. Cognitive Analysis of Chinese-English Metaphors of Animal and Human Body Part Words

    ERIC Educational Resources Information Center

    Song, Meiying

    2009-01-01

    Metaphorical cognition arises from the mapping of two conceptual domains onto each other. According to the "Anthropocentrism", people tend to know the world first by learning about their bodies including Apparatuses. Based on that, people begin to know the material world, and the human body part metaphorization emerges as the times…

  13. Cultural Commonalities and Differences in Spatial Problem-Solving: A Computational Analysis

    ERIC Educational Resources Information Center

    Lovett, Andrew; Forbus, Kenneth

    2011-01-01

    A fundamental question in human cognition is how people reason about space. We use a computational model to explore cross-cultural commonalities and differences in spatial cognition. Our model is based upon two hypotheses: (1) the structure-mapping model of analogy can explain the visual comparisons used in spatial reasoning; and (2) qualitative,…

  14. Executive Function in Preschool-Age Children: Integrating Measurement, Neurodevelopment, and Translational Research

    ERIC Educational Resources Information Center

    Griffin, James A., Ed.; McCardle, Peggy, Ed.; Freund, Lisa, Ed.

    2016-01-01

    A primary aim of the neuropsychological revolution has been the mapping of what has come to be known as executive function (EF). This term encompasses a range of mental processes such as working memory, inhibitory control, and cognitive flexibility that, together, regulate our social behavior, and our emotional and cognitive well-being. In this…

  15. [A Study on the Cognitive Learning Effectiveness of Scenario-Based Concept Mapping in a Neurological Nursing Course].

    PubMed

    Pan, Hui-Ching; Hsieh, Suh-Ing; Hsu, Li-Ling

    2015-12-01

    The multiple levels of knowledge related to the neurological system deter many students from pursuing studies on this topic. Thus, in facing complicated and uncertain medical circumstances, nursing students have diffi-culty adjusting and using basic neurological-nursing knowledge and skills. Scenario-based concept-mapping teaching has been shown to promote the integration of complicated data, clarify related concepts, and increase the effectiveness of cognitive learning. To investigate the effect on the neurological-nursing cognition and learning attitude of nursing students of a scenario-based concept-mapping strategy that was integrated into the neurological nursing unit of a medical and surgical nursing course. This quasi-experimental study used experimental and control groups and a pre-test / post-test design. Sopho-more (2nd year) students in a four-year program at a university of science and technology in Taiwan were convenience sampled using cluster randomization that was run under SPSS 17.0. Concept-mapping lessons were used as the intervention for the experimental group. The control group followed traditional lesson plans only. The cognitive learning outcome was measured using the neurological nursing-learning examination. Both concept-mapping and traditional lessons significantly improved post-test neurological nursing learning scores (p < .001), with no significant difference between the two groups (p = .51). The post-test feedback from the control group mentioned that too much content was taught and that difficulties were experienced in understanding mechanisms and in absorbing knowledge. In contrast, the experimental group held a significantly more positive perspective and learning attitude with regard to the teaching material. Furthermore, a significant number in the experimental group expressed the desire to add more lessons on anatomy, physiology, and pathology. These results indicate that this intervention strategy may help change the widespread fear and refusal of nursing students with regard to neurological lessons and may facilitate interest and positively affect learning in this important subject area. Integrating the concept-mapping strategy and traditional clinical-case lessons into neurological nursing lessons holds the potential to increase post-test scores significantly. Concept mapping helped those in the experimental group adopt views and attitudes toward learning the teaching material that were more positive than those held by their control-group peers. In addition, while 59% of the experimental group and 49% of the control group submitted opinions related to learning attitude in the open-ended questions, positive feedback was greater in the experimental group than in the control group.

  16. Quantifying Patterns of Smooth Muscle Motility in the Gut and Other Organs With New Techniques of Video Spatiotemporal Mapping

    PubMed Central

    Lentle, Roger G.; Hulls, Corrin M.

    2018-01-01

    The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps. PMID:29686624

  17. Mapping surface disturbance of energy-related infrastructure in southwest Wyoming--An assessment of methods

    USGS Publications Warehouse

    Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne

    2012-01-01

    We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.

  18. Digital Mapping Techniques '08—Workshop Proceedings, Moscow, Idaho, May 18–21, 2008

    USGS Publications Warehouse

    Soller, David R.

    2009-01-01

    The Digital Mapping Techniques '08 (DMT'08) workshop was attended by more than 100 technical experts from 40 agencies, universities, and private companies, including representatives from 24 State geological surveys. This year's meeting, the twelfth in the annual series, was hosted by the Idaho Geological Survey, from May 18-21, 2008, on the University of Idaho campus in Moscow, Idaho. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  19. A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles.

    PubMed

    Liu, Zhong; Gao, Xiaoguang; Fu, Xiaowei

    2018-05-08

    In this paper, we mainly study a cooperative search and coverage algorithm for a given bounded rectangle region, which contains several unknown stationary targets, by a team of unmanned aerial vehicles (UAVs) with non-ideal sensors and limited communication ranges. Our goal is to minimize the search time, while gathering more information about the environment and finding more targets. For this purpose, a novel cooperative search and coverage algorithm with controllable revisit mechanism is presented. Firstly, as the representation of the environment, the cognitive maps that included the target probability map (TPM), the uncertain map (UM), and the digital pheromone map (DPM) are constituted. We also design a distributed update and fusion scheme for the cognitive map. This update and fusion scheme can guarantee that each one of the cognitive maps converges to the same one, which reflects the targets’ true existence or absence in each cell of the search region. Secondly, we develop a controllable revisit mechanism based on the DPM. This mechanism can concentrate the UAVs to revisit sub-areas that have a large target probability or high uncertainty. Thirdly, in the frame of distributed receding horizon optimizing, a path planning algorithm for the multi-UAVs cooperative search and coverage is designed. In the path planning algorithm, the movement of the UAVs is restricted by the potential fields to meet the requirements of avoiding collision and maintaining connectivity constraints. Moreover, using the minimum spanning tree (MST) topology optimization strategy, we can obtain a tradeoff between the search coverage enhancement and the connectivity maintenance. The feasibility of the proposed algorithm is demonstrated by comparison simulations by way of analyzing the effects of the controllable revisit mechanism and the connectivity maintenance scheme. The Monte Carlo method is employed to validate the influence of the number of UAVs, the sensing radius, the detection and false alarm probabilities, and the communication range on the proposed algorithm.

  20. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    PubMed

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.

  1. Investigating the Similarities and Differences between Practitioners of Second and Third Wave Cognitive-Behavioral Therapies

    PubMed Central

    Brown, Lily A.; Gaudiano, Brandon A.; Miller, Ivan W.

    2013-01-01

    There has been much discussion in the literature recently regarding the conceptual and techniual differences between so-called second (e.g., Beckian cognitive therapy) and third “wave” (e.g., acceptance and commitment therapy) behavior therapies. Previous research has not addressed the potential similarities and differences among the practitioners of these types of approaches. The current study examined possible differences in the characteristics of second wave (n=55) and third wave cognitive-behavioral therapists (n=33) using an internet-based survey. There were differences found at the technique level between the two groups. As expected, third wave therapists reported greater use of mindfulness/acceptance techniques. Also, third wave therapists reported greater use of exposure techniques and second wave therapists reported greater use of cognitive restructuring and relaxation techniques. In general, third wave clinicians were more eclectic at the technique level, and demonstrated significantly greater use of family systems techniques, existential/humanistic techniques, and the total number of techniques used. No significant differences were found on the attitudinal measures administered, including reliance on an intuitive thinking style, acceptance of complementary and alternative therapies and related health beliefs, or most attitudes toward evidence-based practices. We did not identify many differences between second wave and third wave therapists other than in terms of the techniques they employ. The clinical and research implications for these findings are discussed. PMID:21324946

  2. Language mapping with navigated transcranial magnetic stimulation in pediatric and adult patients undergoing epilepsy surgery: Comparison with extraoperative direct cortical stimulation.

    PubMed

    Lehtinen, Henri; Mäkelä, Jyrki P; Mäkelä, Teemu; Lioumis, Pantelis; Metsähonkala, Liisa; Hokkanen, Laura; Wilenius, Juha; Gaily, Eija

    2018-06-01

    Navigated transcranial magnetic stimulation (nTMS) is becoming increasingly popular in noninvasive preoperative language mapping, as its results correlate well enough with those obtained by direct cortical stimulation (DCS) during awake surgery in adult patients with tumor. Reports in the context of epilepsy surgery or extraoperative DCS in adults are, however, sparse, and validation of nTMS with DCS in children is lacking. Furthermore, little is known about the risk of inducing epileptic seizures with nTMS in pediatric epilepsy patients. We provide the largest validation study to date in an epilepsy surgery population. We compared language mapping with nTMS and extraoperative DCS in 20 epilepsy surgery patients (age range 9-32 years; 14 children and adolescents). In comparison with DCS, sensitivity of nTMS was 68%, specificity 76%, positive predictive value 27%, and negative predictive value 95%. Age, location of ictal-onset zone near or within DCS-mapped language areas or severity of cognitive deficits had no significant effect on these values. None of our patients had seizures during nTMS. Our study suggests that nTMS language mapping is clinically useful and safe in epilepsy surgery patients, including school-aged children and patients with extensive cognitive dysfunction. Similar to in tumor surgery, mapping results in the frontal region are most reliable. False negative findings may be slightly more likely in epilepsy than in tumor surgery patients. Mapping results should always be verified by other methods in individual patients.

  3. Interpreting fMRI data: maps, modules and dimensions

    PubMed Central

    Op de Beeck, Hans P.; Haushofer, Johannes; Kanwisher, Nancy G.

    2009-01-01

    Neuroimaging research over the past decade has revealed a detailed picture of the functional organization of the human brain. Here we focus on two fundamental questions that are raised by the detailed mapping of sensory and cognitive functions and illustrate these questions with findings from the object-vision pathway. First, are functionally specific regions that are located close together best understood as distinct cortical modules or as parts of a larger-scale cortical map? Second, what functional properties define each cortical map or module? We propose a model in which overlapping continuous maps of simple features give rise to discrete modules that are selective for complex stimuli. PMID:18200027

  4. Dynamic cerebral autoregulation during cognitive task: Effect of hypoxia.

    PubMed

    Ogoh, Shigehiko; Nakata, Hiroki; Miyamoto, Tadayoshi; Bailey, Damian M; Shibasaki, Manabu

    2018-02-08

    Changes in cerebral blood flow (CBF) subsequent to alterations in the partial pressures of oxygen and carbon dioxide can modify dynamic cerebral autoregulation (CA). While cognitive activity increases CBF, to what extent it impacts CA remains to be established. In the present study we determined if dynamic CA would decrease during a cognitive task and whether hypoxia would further compound impairment. Fourteen young healthy subjects performed a simple Go/No-go task during normoxia and hypoxia (FIO 2 =12%) and the corresponding relationship between mean arterial pressure (MAP) and mean middle cerebral artery blood velocity (MCA V mean ) was examined. Dynamic CA and steady-state changes in MCA V in relation to changes in arterial pressure were evaluated using transfer function analysis (TFA). While MCA V mean increased during the cognitive activity (P<0.001), hypoxia did not cause any additional changes (P=0.804 vs. normoxia). Cognitive performance was also unaffected by hypoxia (Reaction time, P=0.712; Error, P=0.653). A decrease in the very low and low frequency Phase shift (VLF and LF; P=0.021 and P=0.01) and increase in LF gain were observed (P=0.037) during cognitive activity implying impaired dynamic CA. While hypoxia also increased VLF gain (P<0.001) it failed to cause any additional modifications in dynamic CA. Collectively, our findings suggest that dynamic CA is impaired during cognitive activity independent of altered systemic O 2 availability though we acknowledge the interpretive complications associated with additional competing, albeit undefined inputs that could potentially distort the MAP-MCA V mean relationship.

  5. Cortical thickness in neuropsychologically near-normal schizophrenia.

    PubMed

    Cobia, Derin J; Csernansky, John G; Wang, Lei

    2011-12-01

    Schizophrenia is a severe psychiatric illness with widespread impairments of cognitive functioning; however, a certain percentage of subjects are known to perform in the normal range on neuropsychological measures. While the cognitive profiles of these individuals have been examined, there has been relatively little attention to the neuroanatomical characteristics of this important subgroup. The aims of this study were to statistically identify schizophrenia subjects with relatively normal cognition, examine their neuroanatomical characteristics relative to their more impaired counterparts using cortical thickness mapping, and to investigate relationships between these characteristics and demographic variables to better understand the nature of cognitive heterogeneity in schizophrenia. Clinical, neuropsychological, and MRI data were collected from schizophrenia (n = 79) and healthy subjects (n = 65). A series of clustering algorithms on neuropsychological scores was examined, and a 2-cluster solution that separated subjects into neuropsychologically near-normal (NPNN) and neuropsychologically impaired (NPI) groups was determined most appropriate. Surface-based cortical thickness mapping was utilized to examine differences in thinning among schizophrenia subtypes compared with the healthy participants. A widespread cortical thinning pattern characteristic of schizophrenia emerged in the NPI group, while NPNN subjects demonstrated very limited thinning relative to healthy comparison subjects. Analysis of illness duration indicated minimal effects on subtype classification and cortical thickness results. Findings suggest a strong link between cognitive impairment and cortical thinning in schizophrenia, where subjects with near-normal cognitive abilities also demonstrate near-normal cortical thickness patterns. While generally supportive of distinct etiological processes for cognitive subtypes, results provide direction for further examination of additional neuroanatomical differences. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. High-field fMRI unveils orientation columns in humans.

    PubMed

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  7. Approaches to Measuring the Effects of Wake-Promoting Drugs: A Focus on Cognitive Function

    PubMed Central

    Edgar, Christopher J.; Pace-Schott, Edward F.; Wesnes, Keith A.

    2009-01-01

    Objectives In clinical drug development, wakefulness and wake-promotion maybe assessed by a large number of scales and questionnaires. Objective assessment of wakefulness is most commonly made using sleep latency/maintenance of wakefulness tests, polysomnography and/or behavioral measures. The purpose of the present review is to highlight the degree of overlap in the assessment of wakefulness and cognition, with consideration of assessment techniques and the underlying neurobiology of both concepts. Design Reviews of four key areas were conducted: commonly used techniques in the assessment of wakefulness; neurobiology of sleep/wake and cognition; targets of wake promoting and/or cognition enhancing drugs; and ongoing clinical trials investigating wake promoting effects. Results There is clear overlap between the assessment of wakefulness and cognition. There are common techniques which may be used to assess both concepts; aspects of the neurobiology of both concepts may be closely related; and wake promoting drugs may have nootropic properties (and vice-versa). Clinical trials of wake promoting drugs often, though not routinely, assess aspects of cognition. Conclusions Routine and broad assessment of cognition in the development of wake promoting drugs may reveal important nootropic effects, which are not secondary to alertness/wakefulness, whilst existing cognitive enhancers may have under explored or unknown wake promoting properties. PMID:19565524

  8. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    DTIC Science & Technology

    2017-05-14

    AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various

  9. A Framework for Hierarchical Perception-Action Learning Utilizing Fuzzy Reasoning.

    PubMed

    Windridge, David; Felsberg, Michael; Shaukat, Affan

    2013-02-01

    Perception-action (P-A) learning is an approach to cognitive system building that seeks to reduce the complexity associated with conventional environment-representation/action-planning approaches. Instead, actions are directly mapped onto the perceptual transitions that they bring about, eliminating the need for intermediate representation and significantly reducing training requirements. We here set out a very general learning framework for cognitive systems in which online learning of the P-A mapping may be conducted within a symbolic processing context, so that complex contextual reasoning can influence the P-A mapping. In utilizing a variational calculus approach to define a suitable objective function, the P-A mapping can be treated as an online learning problem via gradient descent using partial derivatives. Our central theoretical result is to demonstrate top-down modulation of low-level perceptual confidences via the Jacobian of the higher levels of a subsumptive P-A hierarchy. Thus, the separation of the Jacobian as a multiplying factor between levels within the objective function naturally enables the integration of abstract symbolic manipulation in the form of fuzzy deductive logic into the P-A mapping learning. We experimentally demonstrate that the resulting framework achieves significantly better accuracy than using P-A learning without top-down modulation. We also demonstrate that it permits novel forms of context-dependent multilevel P-A mapping, applying the mechanism in the context of an intelligent driver assistance system.

  10. Application of the Yoshida-Ruth Techniques to Implicit Integration and Multi-Map Explicit Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, E.; Bengtsson, J.; Reusch, M.F.

    1991-04-01

    The full power of Yoshida's technique is exploited to produce an arbitrary order implicit symplectic integrator and multi-map explicit integrator. This implicit integrator uses a characteristic function involving the force term alone. Also we point out the usefulness of the plain Ruth algorithm in computing Taylor series map using the techniques first introduced by Berz in his 'COSY-INFINITY' code.

  11. Cognitive measure on different profiles.

    PubMed

    Spindola, Marilda; Carra, Giovani; Balbinot, Alexandre; Zaro, Milton A

    2010-01-01

    Based on neurology and cognitive science many studies are developed to understand the human model mental, getting to know how human cognition works, especially about learning processes that involve complex contents and spatial-logical reasoning. Event Related Potential - ERP - is a basic and non-invasive method of electrophysiological investigation. It can be used to assess aspects of human cognitive processing by changing the rhythm of the frequency bands brain indicate that some type of processing or neuronal behavior. This paper focuses on ERP technique to help understand cognitive pathway in subjects from different areas of knowledge when they are exposed to an external visual stimulus. In the experiment we used 2D and 3D visual stimulus in the same picture. The signals were captured using 10 (ten) Electroencephalogram - EEG - channel system developed for this project and interfaced in a ADC (Analogical Digital System) board with LabVIEW system - National Instruments. That research was performed using project of experiments technique - DOE. The signal processing were done (math and statistical techniques) showing the relationship between cognitive pathway by groups and intergroups.

  12. Mind the fish: zebrafish as a model in cognitive social neuroscience

    PubMed Central

    Oliveira, Rui F.

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed. PMID:23964204

  13. Mind the fish: zebrafish as a model in cognitive social neuroscience.

    PubMed

    Oliveira, Rui F

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed.

  14. Correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh M.; Leahy, Martin J.

    2015-03-01

    Changes in the microcirculation are associated with conditions such as Raynauds disease. Current modalities used to assess the microcirculation such as nailfold capillaroscopy are limited due to their depth ambiguity. A correlation mapping technique was recently developed to extend the capabilities of Optical Coherence Tomography to generate depth resolved images of the microcirculation. Here we present the extension of this technique to microscopy modalities, including confocal microscopy. It is shown that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution.

  15. An Embodiment Perspective on Number-Space Mapping in 3.5-year-old Dutch Children

    ERIC Educational Resources Information Center

    Noordende, Jaccoline E.; Volman, M(Chiel). J. M.; Leseman, Paul P. M.; Kroesbergen, Evelyn H.

    2017-01-01

    Previous research suggests that block adding, subtracting and counting direction are early forms of number-space mapping. In this study, an embodiment perspective on these skills was taken. Embodiment theory assumes that cognition emerges through sensory-motor interaction with the environment. In line with this assumption, it was investigated if…

  16. Designs of Concept Maps and Their Impacts on Readers' Performance in Memory and Reasoning while Reading

    ERIC Educational Resources Information Center

    Tzeng, Jeng-Yi

    2010-01-01

    From the perspective of the Fuzzy Trace Theory, this study investigated the impacts of concept maps with two strategic orientations (comprehensive and thematic representations) on readers' performance of cognitive operations (such as perception, verbatim memory, gist reasoning and syntheses) while the readers were reading two history articles that…

  17. New Model of Mapping Difficulties in Solving Analogical Problems among Adolescents and Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Lifshitz, Hefziba; Weiss, Itzhak; Tzuriel, David; Tzemach, Moran

    2011-01-01

    The main goal of the study was to map the difficulties and cognitive processes among adolescents (aged 13-21, N = 30) and adults (aged 25-66, N = 30) with mild and moderate intellectual disability (ID) when solving analogical problems. The participants were administered the "Conceptual and Perceptual Analogical Modifiability" test. A…

  18. Constructivist-Visual Mind Map Teaching Approach and the Quality of Students' Cognitive Structures

    ERIC Educational Resources Information Center

    Dhindsa, Harkirat S.; Makarimi-Kasim; Anderson, O. Roger

    2011-01-01

    This study compared the effects of a constructivist-visual mind map teaching approach (CMA) and of a traditional teaching approach (TTA) on (a) the quality and richness of students' knowledge structures and (b) TTA and CMA students' perceptions of the extent that a constructivist learning environment (CLE) was created in their classes. The sample…

  19. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson's disease.

    PubMed

    Ray, Nicola J; Bradburn, Steven; Murgatroyd, Christopher; Toseeb, Umar; Mir, Pablo; Kountouriotis, George K; Teipel, Stefan J; Grothe, Michel J

    2018-01-01

    See Gratwicke and Foltynie (doi:10.1093/brain/awx333) for a scientific commentary on this article.Cognitive impairments are a prevalent and disabling non-motor complication of Parkinson's disease, but with variable expression and progression. The onset of serious cognitive decline occurs alongside substantial cholinergic denervation, but imprecision of previously available techniques for in vivo measurement of cholinergic degeneration limit their use as predictive cognitive biomarkers. However, recent developments in stereotactic mapping of the cholinergic basal forebrain have been found useful for predicting cognitive decline in prodromal stages of Alzheimer's disease. These methods have not yet been applied to longitudinal Parkinson's disease data. In a large sample of people with de novo Parkinson's disease (n = 168), retrieved from the Parkinson's Progressive Markers Initiative database, we measured cholinergic basal forebrain volumes, using morphometric analysis of T1-weighted images in combination with a detailed stereotactic atlas of the cholinergic basal forebrain nuclei. Using a binary classification procedure, we defined patients with reduced basal forebrain volumes (relative to age) at baseline, based on volumes measured in a normative sample (n = 76). Additionally, relationships between the basal forebrain volumes at baseline, risk of later cognitive decline, and scores on up to 5 years of annual cognitive assessments were assessed with regression, survival analysis and linear mixed modelling. In patients, smaller volumes in a region corresponding to the nucleus basalis of Meynert were associated with greater change in global cognitive, but not motor scores after 2 years. Using the binary classification procedure, patients classified as having smaller than expected volumes of the nucleus basalis of Meynert had ∼3.5-fold greater risk of being categorized as mildly cognitively impaired over a period of up to 5 years of follow-up (hazard ratio = 3.51). Finally, linear mixed modelling analysis of domain-specific cognitive scores revealed that patients classified as having smaller than expected nucleus basalis volumes showed more severe and rapid decline over up to 5 years on tests of memory and semantic fluency, but not on tests of executive function. Thus, we provide the first evidence that volumetric measurement of the nucleus basalis of Meynert can predict early cognitive decline. Our methods therefore provide the opportunity for multiple-modality biomarker models to include a cholinergic biomarker, which is currently lacking for the prediction of cognitive deterioration in Parkinson's disease. Additionally, finding dissociated relationships between nucleus basalis status and domain-specific cognitive decline has implications for understanding the neural basis of heterogeneity of Parkinson's disease-related cognitive decline. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  20. Automated Semantic Indices Related to Cognitive Function and Rate of Cognitive Decline

    ERIC Educational Resources Information Center

    Pakhomov, Serguei V. S.; Hemmy, Laura S.; Lim, Kelvin O.

    2012-01-01

    The objective of our study is to introduce a fully automated, computational linguistic technique to quantify semantic relations between words generated on a standard semantic verbal fluency test and to determine its cognitive and clinical correlates. Cognitive differences between patients with Alzheimer's disease and mild cognitive impairment are…

  1. Switch Hands! Mapping Proactive and Reactive Cognitive Control across the Life Span

    ERIC Educational Resources Information Center

    Van Gerven, Pascal W. M.; Hurks, Petra P. M.; Bovend'Eerdt, Thamar J. H.; Adam, Jos J.

    2016-01-01

    We investigated the effects of age on proactive and reactive cognitive control in a large population sample of 809 individuals, ranging in age between 5 and 97 years. For that purpose, we used an anticue paradigm, which required a consistent remapping of cue location and response hand: Left-sided cues required right-hand responses and vice versa.…

  2. An Updated Account of the WISELAV Project: A Visual Construction of the English Verb System

    ERIC Educational Resources Information Center

    Pablos, Andrés Palacios

    2016-01-01

    This article presents the state of the art in WISELAV, an on-going research project based on the metaphor Languages Are (like) Visuals (LAV) and its mapping Words-In-Shapes Exchange (WISE). First, the cognitive premises that motivate the proposal are recalled: the power of images, students' increasingly visual cognitive learning style, and the…

  3. Interactions of spatial strategies producing generalization gradient and blocking: A computational approach

    PubMed Central

    Dollé, Laurent; Chavarriaga, Ricardo

    2018-01-01

    We present a computational model of spatial navigation comprising different learning mechanisms in mammals, i.e., associative, cognitive mapping and parallel systems. This model is able to reproduce a large number of experimental results in different variants of the Morris water maze task, including standard associative phenomena (spatial generalization gradient and blocking), as well as navigation based on cognitive mapping. Furthermore, we show that competitive and cooperative patterns between different navigation strategies in the model allow to explain previous apparently contradictory results supporting either associative or cognitive mechanisms for spatial learning. The key computational mechanism to reconcile experimental results showing different influences of distal and proximal cues on the behavior, different learning times, and different abilities of individuals to alternatively perform spatial and response strategies, relies in the dynamic coordination of navigation strategies, whose performance is evaluated online with a common currency through a modular approach. We provide a set of concrete experimental predictions to further test the computational model. Overall, this computational work sheds new light on inter-individual differences in navigation learning, and provides a formal and mechanistic approach to test various theories of spatial cognition in mammals. PMID:29630600

  4. An integrative architecture for general intelligence and executive function revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393

  5. Map Your Way to Speech Success! Employing Mind Mapping as a Speech Preparation Technique

    ERIC Educational Resources Information Center

    Paxman, Christina G.

    2011-01-01

    Mind mapping has gained considerable credibility recently in corporations such as Boeing and Nabisco, as well as in the classroom in terms of preparing for examinations and preparing for speeches. A mind map is a graphic technique for organizing an individual's thoughts and other information. It harnesses the full range of cortical skills--word,…

  6. Mapping ecological risks with a portfolio-based technique: incorporating uncertainty and decision-making preferences

    Treesearch

    Denys Yemshanov; Frank H. Koch; Mark Ducey; Klaus Koehler

    2013-01-01

    Geographic mapping of risks is a useful analytical step in ecological risk assessments and in particular, in analyses aimed to estimate risks associated with introductions of invasive organisms. In this paper, we approach invasive species risk mapping as a portfolio allocation problem and apply techniques from decision theory to build an invasion risk map that combines...

  7. Surface mapping of spike potential fields: experienced EEGers vs. computerized analysis.

    PubMed

    Koszer, S; Moshé, S L; Legatt, A D; Shinnar, S; Goldensohn, E S

    1996-03-01

    An EEG epileptiform spike focus recorded with scalp electrodes is clinically localized by visual estimation of the point of maximal voltage and the distribution of its surrounding voltages. We compared such estimated voltage maps, drawn by experienced electroencephalographers (EEGers), with a computerized spline interpolation technique employed in the commercially available software package FOCUS. Twenty-two spikes were recorded from 15 patients during long-term continuous EEG monitoring. Maps of voltage distribution from the 28 electrodes surrounding the points of maximum change in slope (the spike maximum) were constructed by the EEGer. The same points of maximum spike and voltage distributions at the 29 electrodes were mapped by computerized spline interpolation and a comparison between the two methods was made. The findings indicate that the computerized spline mapping techniques employed in FOCUS construct voltage maps with similar maxima and distributions as the maps created by experienced EEGers. The dynamics of spike activity, including correlations, are better visualized using the computerized technique than by manual interpretation alone. Its use as a technique for spike localization is accurate and adds information of potential clinical value.

  8. Distinct Representations of Magnitude and Spatial Position within Parietal Cortex during Number-Space Mapping.

    PubMed

    Kanayet, Frank J; Mattarella-Micke, Andrew; Kohler, Peter J; Norcia, Anthony M; McCandliss, Bruce D; McClelland, James L

    2018-02-01

    Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.

  9. Developing Analytical Inspection Criteria for Health IT Personnel with Minimum Training in Cognitive Ergonomics: A Practical Solution to EHR Improving EHR Usability

    PubMed Central

    Zhang, Zhen; Franklin, Amy; Walji, Muhammad; Zhang, Jiajie; Gong, Yang

    2014-01-01

    EHR usability has been identified as a major barrier to care quality optimization. One major challenge of improving EHR usability is the lack of systematic training in usability or cognitive ergonomics for EHR designers/developers in the vendor community and EHR analysts making significant configurations in healthcare organizations. A practical solution is to provide usability inspection tools that can be easily operationalized by EHR analysts. This project is aimed at developing a set of usability tools with demonstrated validity and reliability. We present a preliminary study of a metric for cognitive transparency and an exploratory experiment testing its validity in predicting the effectiveness of action-effect mapping. Despite the pilot nature of both, we found high sensitivity and specificity of the metric and higher response accuracy within a shorter time for users to determine action-effect mappings in transparent user interface controls. We plan to expand the sample size in our empirical study. PMID:25954439

  10. Cognitive impairment categorized in community-dwelling older adults with and without dementia using in-home sensors that recognise activities of daily living

    NASA Astrophysics Data System (ADS)

    Urwyler, Prabitha; Stucki, Reto; Rampa, Luca; Müri, René; Mosimann, Urs P.; Nef, Tobias

    2017-02-01

    Cognitive impairment due to dementia decreases functionality in Activities of Daily Living (ADL). Its assessment is useful to identify care needs, risks and monitor disease progression. This study investigates differences in ADL pattern-performance between dementia patients and healthy controls using unobtrusive sensors. Around 9,600 person-hours of activity data were collected from the home of ten dementia patients and ten healthy controls using a wireless-unobtrusive sensors and analysed to detect ADL. Recognised ADL were visualized using activity maps, the heterogeneity and accuracy to discriminate patients from healthy were analysed. Activity maps of dementia patients reveal unorganised behaviour patterns and heterogeneity differed significantly between the healthy and diseased. The discriminating accuracy increases with observation duration (0.95 for 20 days). Unobtrusive sensors quantify ADL-relevant behaviour, useful to uncover the effect of cognitive impairment, to quantify ADL-relevant changes in the course of dementia and to measure outcomes of anti-dementia treatments.

  11. Computer-aided analysis of Skylab scanner data for land use mapping, forestry and water resource applications

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1975-01-01

    Skylab data were obtained over a mountainous test site containing a complex association of cover types and rugged topography. The application of computer-aided analysis techniques to the multispectral scanner data produced a number of significant results. Techniques were developed to digitally overlay topographic data (elevation, slope, and aspect) onto the S-192 MSS data to provide a method for increasing the effectiveness and accuracy of computer-aided analysis techniques for cover type mapping. The S-192 MSS data were analyzed using computer techniques developed at Laboratory for Applications of Remote Sensing (LARS), Purdue University. Land use maps, forest cover type maps, snow cover maps, and area tabulations were obtained and evaluated. These results compared very well with information obtained by conventional techniques. Analysis of the spectral characteristics of Skylab data has conclusively proven the value of the middle infrared portion of the spectrum (about 1.3-3.0 micrometers), a wavelength region not previously available in multispectral satellite data.

  12. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  13. Can cognitive processes help explain the success of instructional techniques recommended by behavior analysts?

    NASA Astrophysics Data System (ADS)

    Markovits, Rebecca A.; Weinstein, Yana

    2018-01-01

    The fields of cognitive psychology and behavior analysis have undertaken separate investigations into effective learning strategies. These studies have led to several recommendations from both fields regarding teaching techniques that have been shown to enhance student performance. While cognitive psychology and behavior analysis have studied student performance independently from their different perspectives, the recommendations they make are remarkably similar. The lack of discussion between the two fields, despite these similarities, is surprising. The current paper seeks to remedy this oversight in two ways: first, by reviewing two techniques recommended by behavior analysts—guided notes and response cards—and comparing them to their counterparts in cognitive psychology that are potentially responsible for their effectiveness; and second, by outlining some other areas of overlap that could benefit from collaboration. By starting the discussion with the comparison of two specific recommendations for teaching techniques, we hope to galvanize a more extensive collaboration that will not only further the progression of both fields, but also extend the practical applications of the ensuing research.

  14. Mobile therapy: case study evaluations of a cell phone application for emotional self-awareness.

    PubMed

    Morris, Margaret E; Kathawala, Qusai; Leen, Todd K; Gorenstein, Ethan E; Guilak, Farzin; Labhard, Michael; Deleeuw, William

    2010-04-30

    Emotional awareness and self-regulation are important skills for improving mental health and reducing the risk of cardiovascular disease. Cognitive behavioral therapy can teach these skills but is not widely available. This exploratory study examined the potential of mobile phone technologies to broaden access to cognitive behavioral therapy techniques and to provide in-the-moment support. We developed a mobile phone application with touch screen scales for mood reporting and therapeutic exercises for cognitive reappraisal (ie, examination of maladaptive interpretations) and physical relaxation. The application was deployed in a one-month field study with eight individuals who had reported significant stress during an employee health assessment. Participants were prompted via their mobile phones to report their moods several times a day on a Mood Map-a translation of the circumplex model of emotion-and a series of single-dimension mood scales. Using the prototype, participants could also activate mobile therapies as needed. During weekly open-ended interviews, participants discussed their use of the device and responded to longitudinal views of their data. Analyses included a thematic review of interview narratives, assessment of mood changes over the course of the study and the diurnal cycle, and interrogation of this mobile data based on stressful incidents reported in interviews. Five case studies illustrate participants' use of the mobile phone application to increase self-awareness and to cope with stress. One example is a participant who had been coping with longstanding marital conflict. After reflecting on his mood data, particularly a drop in energy each evening, the participant began practicing relaxation therapies on the phone before entering his house, applying cognitive reappraisal techniques to cope with stressful family interactions, and talking more openly with his wife. His mean anger, anxiety and sadness ratings all were lower in the second half of the field study than in the first (P

  15. Execution models for mapping programs onto distributed memory parallel computers

    NASA Technical Reports Server (NTRS)

    Sussman, Alan

    1992-01-01

    The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program.

  16. A knowledge representation approach using fuzzy cognitive maps for better navigation support in an adaptive learning system.

    PubMed

    Chrysafiadi, Konstantina; Virvou, Maria

    2013-12-01

    In this paper a knowledge representation approach of an adaptive and/or personalized tutoring system is presented. The domain knowledge should be represented in a more realistic way in order to allow the adaptive and/or personalized tutoring system to deliver the learning material to each individual learner dynamically taking into account her/his learning needs and her/his different learning pace. To succeed this, the domain knowledge representation has to depict the possible increase or decrease of the learner's knowledge. Considering that the domain concepts that constitute the learning material are not independent from each other, the knowledge representation approach has to allow the system to recognize either the domain concepts that are already partly or completely known for a learner, or the domain concepts that s/he has forgotten, taking into account the learner's knowledge level of the related concepts. In other words, the system should be informed about the knowledge dependencies that exist among the domain concepts of the learning material, as well as the strength on impact of each domain concept on others. Fuzzy Cognitive Maps (FCMs) seem to be an ideal way for representing graphically this kind of information. The suggested knowledge representation approach has been implemented in an e-learning adaptive system for teaching computer programming. The particular system was used by the students of a postgraduate program in the field of Informatics in the University of Piraeus and was compared with a corresponding system, in which the domain knowledge was represented using the most common used technique of network of concepts. The results of the evaluation were very encouraging.

  17. Techniques of stapler-based navigational thoracoscopic segmentectomy using virtual assisted lung mapping (VAL-MAP)

    PubMed Central

    Murayama, Tomonori; Nakajima, Jun

    2016-01-01

    Anatomical segmentectomies play an important role in oncological lung resection, particularly for ground-glass types of primary lung cancers. This operation can also be applied to metastatic lung tumors deep in the lung. Virtual assisted lung mapping (VAL-MAP) is a novel technique that allows for bronchoscopic multi-spot dye markings to provide “geometric information” to the lung surface, using three-dimensional virtual images. In addition to wedge resections, VAL-MAP has been found to be useful in thoracoscopic segmentectomies, particularly complex segmentectomies, such as combined subsegmentectomies or extended segmentectomies. There are five steps in VAL-MAP-assisted segmentectomies: (I) “standing” stitches along the resection lines; (II) cleaning hilar anatomy; (III) confirming hilar anatomy; (IV) going 1 cm deeper; (V) step-by-step stapling technique. Depending on the anatomy, segmentectomies can be classified into linear (lingular, S6, S2), V- or U-shaped (right S1, left S3, S2b + S3a), and three dimensional (S7, S8, S9, S10) segmentectomies. Particularly three dimensional segmentectomies are challenging in the complexity of stapling techniques. This review focuses on how VAL-MAP can be utilized in segmentectomy, and how this technique can assist the stapling process in even the most challenging ones. PMID:28066675

  18. Fusing DTI and FMRI Data: A Survey of Methods and Applications

    PubMed Central

    Zhu, Dajiang; Zhang, Tuo; Jiang, Xi; Hu, Xintao; Chen, Hanbo; Yang, Ning; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming

    2014-01-01

    The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain’s white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come. PMID:24103849

  19. Studying social cognition using near-infrared spectroscopy: the case of social Simon effect

    NASA Astrophysics Data System (ADS)

    Costantini, Marcello; Di Vacri, Assunta; Maria Chiarelli, Antonio; Ferri, Francesca; Luca Romani, Gian; Merla, Arcangelo

    2013-02-01

    In order to understand the so-called "social brain," we need to monitor social interactions in face-to-face paradigms. Near-infrared spectroscopy (NIRS) is a promising technique to achieve this goal. We investigate the neuronal underpinnings of sharing a task in a proper social context. We record cortical activity by means of NIRS, while participants perform a joint Simon task. Different from other hemodynamic techniques, NIRS allows us to have both participants sit comfortably close to each other in a realistic and ecological environment. We found higher activation in the sensorimotor cortex while processing compatible trials as compared to incompatible ones referring to one's own action alternative. Strikingly, when the participant was not responding because it was the turn of the other member of the pair, the inferior parietal was activated. This study provides twofold findings: first, they suggest that the joint Simon effect relies more on shared attentional mechanisms than a proper mapping of the other's motor response. Second, they highlight the invaluable contribution NIRS can afford to social neuroscience in order to preserve ecological and naturalistic settings.

  20. Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.

    PubMed

    Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George

    2010-09-01

    Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.

  1. Cortical maturation and myelination in healthy toddlers and young children.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan

    2015-07-15

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development. Copyright © 2015. Published by Elsevier Inc.

  2. Analyzing the impact of social factors on homelessness: a Fuzzy Cognitive Map approach

    PubMed Central

    2013-01-01

    Background The forces which affect homelessness are complex and often interactive in nature. Social forces such as addictions, family breakdown, and mental illness are compounded by structural forces such as lack of available low-cost housing, poor economic conditions, and insufficient mental health services. Together these factors impact levels of homelessness through their dynamic relations. Historic models, which are static in nature, have only been marginally successful in capturing these relationships. Methods Fuzzy Logic (FL) and fuzzy cognitive maps (FCMs) are particularly suited to the modeling of complex social problems, such as homelessness, due to their inherent ability to model intricate, interactive systems often described in vague conceptual terms and then organize them into a specific, concrete form (i.e., the FCM) which can be readily understood by social scientists and others. Using FL we converted information, taken from recently published, peer reviewed articles, for a select group of factors related to homelessness and then calculated the strength of influence (weights) for pairs of factors. We then used these weighted relationships in a FCM to test the effects of increasing or decreasing individual or groups of factors. Results of these trials were explainable according to current empirical knowledge related to homelessness. Results Prior graphic maps of homelessness have been of limited use due to the dynamic nature of the concepts related to homelessness. The FCM technique captures greater degrees of dynamism and complexity than static models, allowing relevant concepts to be manipulated and interacted. This, in turn, allows for a much more realistic picture of homelessness. Through network analysis of the FCM we determined that Education exerts the greatest force in the model and hence impacts the dynamism and complexity of a social problem such as homelessness. Conclusions The FCM built to model the complex social system of homelessness reasonably represented reality for the sample scenarios created. This confirmed that the model worked and that a search of peer reviewed, academic literature is a reasonable foundation upon which to build the model. Further, it was determined that the direction and strengths of relationships between concepts included in this map are a reasonable approximation of their action in reality. However, dynamic models are not without their limitations and must be acknowledged as inherently exploratory. PMID:23971944

  3. Mapping common aphasia assessments to underlying cognitive processes and their neural substrates

    PubMed Central

    Lacey, Elizabeth H.; Skipper-Kallal, LM; Xing, S; Fama, ME; Turkeltaub, PE

    2017-01-01

    Background Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. Objective To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Methods 25 behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high resolution MRI was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. Results The principal components analysis yielded four dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. Conclusions An extensive clinical aphasia assessment identifies four independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual’s specific pattern of deficits and preserved abilities. PMID:28135902

  4. Mapping and correcting the influence of gaze position on pupil size measurements

    PubMed Central

    Petrov, Alexander A.

    2015-01-01

    Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE)—the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface. PMID:25953668

  5. Predictors of community therapists' use of therapy techniques in a large public mental health system.

    PubMed

    Beidas, Rinad S; Marcus, Steven; Aarons, Gregory A; Hoagwood, Kimberly E; Schoenwald, Sonja; Evans, Arthur C; Hurford, Matthew O; Hadley, Trevor; Barg, Frances K; Walsh, Lucia M; Adams, Danielle R; Mandell, David S

    2015-04-01

    Few studies have examined the effects of individual and organizational characteristics on the use of evidence-based practices in mental health care. Improved understanding of these factors could guide future implementation efforts to ensure effective adoption, implementation, and sustainment of evidence-based practices. To estimate the relative contribution of individual and organizational factors on therapist self-reported use of cognitive-behavioral, family, and psychodynamic therapy techniques within the context of a large-scale effort to increase use of evidence-based practices in an urban public mental health system serving youth and families. In this observational, cross-sectional study of 23 organizations, data were collected from March 1 through July 25, 2013. We used purposive sampling to recruit the 29 largest child-serving agencies, which together serve approximately 80% of youth receiving publically funded mental health care. The final sample included 19 agencies with 23 sites, 130 therapists, 36 supervisors, and 22 executive administrators. Therapist self-reported use of cognitive-behavioral, family, and psychodynamic therapy techniques, as measured by the Therapist Procedures Checklist-Family Revised. Individual factors accounted for the following percentages of the overall variation: cognitive-behavioral therapy techniques, 16%; family therapy techniques, 7%; and psychodynamic therapy techniques, 20%. Organizational factors accounted for the following percentages of the overall variation: cognitive-behavioral therapy techniques, 23%; family therapy techniques, 19%; and psychodynamic therapy techniques, 7%. Older therapists and therapists with more open attitudes were more likely to endorse use of cognitive-behavioral therapy techniques, as were those in organizations that had spent fewer years participating in evidence-based practice initiatives, had more resistant cultures, and had more functional climates. Women were more likely to endorse use of family therapy techniques, as were those in organizations employing more fee-for-service staff and with more stressful climates. Therapists with more divergent attitudes and less knowledge about evidence-based practices were more likely to use psychodynamic therapy techniques. This study suggests that individual and organizational factors are important in explaining therapist behavior and use of evidence-based practices, but the relative importance varies by therapeutic technique.

  6. A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

    NASA Astrophysics Data System (ADS)

    Hanford, Scott D.

    Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the object of interest has been detected, the Soar agent uses the topological map to make decisions about how to efficiently return to the location where the mission began. Additionally, the CRS can send an email containing step-by-step directions using the intersections in the environment as landmarks that describe a direct path from the mission's start location to the object of interest. The CRS has displayed several characteristics of intelligent behavior, including reasoning, planning, learning, and communication of learned knowledge, while autonomously performing two missions. The CRS has also demonstrated how Soar can be integrated with common robotic motor and perceptual systems that complement the strengths of Soar for unmanned vehicles and is one of the few systems that use perceptual systems such as occupancy grid, computer vision, and fuzzy logic algorithms with cognitive architectures for robotics. The use of these perceptual systems to generate symbolic information about the environment during the indoor search mission allowed the CRS to use Soar's planning and learning mechanisms, which have rarely been used by agents to control mobile robots in real environments. Additionally, the system developed for the indoor search mission represents the first known use of a topological map with a cognitive architecture on a mobile robot. The ability to learn both a topological map and production rules allowed the Soar agent used during the indoor search mission to make intelligent decisions and behave more efficiently as it learned about its environment. While the CRS has been applied to two different missions, it has been developed with the intention that it be extended in the future so it can be used as a general system for mobile robot control. The CRS can be expanded through the addition of new sensors and sensor processing algorithms, development of Soar agents with more production rules, and the use of new architectural mechanisms in Soar.

  7. Lost in transportation: Information measures and cognitive limits in multilayer navigation.

    PubMed

    Gallotti, Riccardo; Porter, Mason A; Barthelemy, Marc

    2016-02-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world's 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the "Dunbar number," which represents a limit to the size of an individual's friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially.

  8. Lost in transportation: Information measures and cognitive limits in multilayer navigation

    PubMed Central

    Gallotti, Riccardo; Porter, Mason A.; Barthelemy, Marc

    2016-01-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially. PMID:26989769

  9. Enhanced avatar design using cognitive map-based simulation.

    PubMed

    Lee, Kun Chang; Moon, Byung Suk

    2007-12-01

    With the advent of the Internet era and the maturation of electronic commerce, strategic avatar design has become an important way of keeping up with market changes and customer tastes. In this study, we propose a new approach to an adaptive avatar design that uses cognitive map (CM) as a what-if simulation vehicle. The main virtue of the new design is its ability to change specific avatar design features with objective consideration of the subsequent effects upon other design features, thereby enhancing user satisfaction. Statistical analyses of focus group interview results with a group of experts majoring in avatars and CM showed that our proposed approach could be used to effectively analyze avatar design in an adaptive and practical manner when the market situation is changing.

  10. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    PubMed

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  11. A self-trained classification technique for producing 30 m percent-water maps from Landsat data

    USGS Publications Warehouse

    Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei

    2010-01-01

    Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.

  12. Digital Mapping Techniques '10-Workshop Proceedings, Sacramento, California, May 16-19, 2010

    USGS Publications Warehouse

    Soller, David R.; Soller, David R.

    2012-01-01

    The Digital Mapping Techniques '10 (DMT'10) workshop was attended by 110 technical experts from 40 agencies, universities, and private companies, including representatives from 19 State geological surveys (see Appendix A). This workshop, hosted by the California Geological Survey, May 16-19, 2010, in Sacramento, California, was similar in nature to the previous 13 meetings (see Appendix B). The meeting was coordinated by the U.S. Geological Survey's (USGS) National Geologic Map Database project. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was again successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products ("publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  13. Estimating generalized skew of the log-Pearson Type III distribution for annual peak floods in Illinois

    USGS Publications Warehouse

    Oberg, Kevin A.; Mades, Dean M.

    1987-01-01

    Four techniques for estimating generalized skew in Illinois were evaluated: (1) a generalized skew map of the US; (2) an isoline map; (3) a prediction equation; and (4) a regional-mean skew. Peak-flow records at 730 gaging stations having 10 or more annual peaks were selected for computing station skews. Station skew values ranged from -3.55 to 2.95, with a mean of -0.11. Frequency curves computed for 30 gaging stations in Illinois using the variations of the regional-mean skew technique are similar to frequency curves computed using a skew map developed by the US Water Resources Council (WRC). Estimates of the 50-, 100-, and 500-yr floods computed for 29 of these gaging stations using the regional-mean skew techniques are within the 50% confidence limits of frequency curves computed using the WRC skew map. Although the three variations of the regional-mean skew technique were slightly more accurate than the WRC map, there is no appreciable difference between flood estimates computed using the variations of the regional-mean technique and flood estimates computed using the WRC skew map. (Peters-PTT)

  14. 3D silicon breast surface mapping via structured light profilometry

    NASA Astrophysics Data System (ADS)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  15. A Cognitive Perspective in the Treatment of Incarcerated Clients.

    ERIC Educational Resources Information Center

    Walsh, Thomas C.

    1990-01-01

    Proposes a cognitive therapy model as a workable approach in treating incarcerated clients. Reviews principal components and techniques of cognitive theory. Uses case vignettes to illustrate application of this approach. Delineates key features of cognitive model which relate to treatment of incarcerated population. (Author/ABL)

  16. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  17. A Virtual Map to Support People Who Are Blind in Navigation through Real Spaces

    ERIC Educational Resources Information Center

    Lahav, Orly; Schloerb, David W.; Kumar, Siddarth; Srinivasan, Mandayam A.

    2011-01-01

    Most of the spatial information needed by sighted people to construct cognitive maps of spaces is gathered through the visual channel. Unfortunately, people who are blind lack the ability to collect the required spatial information in advance. The use of virtual reality as a learning and rehabilitation tool for people with disabilities has been on…

  18. Enhancing Learning Outcomes through New E-Textbooks: A Desirable Combination of Presentation Methods and Concept Maps

    ERIC Educational Resources Information Center

    Huang, Kuo-Liang; Chen, Kuo-Hsiang; Ho, Chun-Heng

    2014-01-01

    It is possible that e-textbook readers and tablet PC's will become mainstream reading devices in the future. However, knowledge about instructional design in this field of learning sciences is inadequate. This study aimed to analyse how two factors, that is, presentation methods and concept maps, interact with cognitive load and learning…

  19. Do Humans Integrate Routes Into a Cognitive Map? Map- Versus Landmark-Based Navigation of Novel Shortcuts

    ERIC Educational Resources Information Center

    Foo, Patrick; Warren, William H.; Duchon, Andrew; Tarr, Michael J.

    2005-01-01

    Do humans integrate experience on specific routes into metric survey knowledge of the environment, or do they depend on a simpler strategy of landmark navigation? The authors tested this question using a novel shortcut paradigm during walking in a virtual environment. The authors find that participants could not take successful shortcuts in a…

  20. Cognitive Load Study Using Increasingly Immersive Levels of Map-based Information Portrayal on the End User Device

    DTIC Science & Technology

    2012-09-01

    2.3.4 operating system on a Samsung Galaxy S II. All four types of digital mapping capabilities were integrated with this software. The display size...Leader’s course 0 Senior Leader’s course 0 Ranger 12 Combat Life Saver 0 Master Gunner 5 Other: armorer, landscaping 9. Using the scale below

  1. Schematizing and Processing Informational Texts with Mind Maps in Fifth and Sixth Grade

    ERIC Educational Resources Information Center

    Merchie, Emmelien; Van Keer, Hilde

    2013-01-01

    From the age of 11-13, children start to spend increasingly more time on learning from texts. The need arises to support them in dealing with this text information and engaging them in self-regulated learning (SRL). This study is embedded within the cognitive component of SRL and focuses on mind mapping as a promising organizational learning…

  2. A close-range photogrammetric technique for mapping neotectonic features in trenches

    USGS Publications Warehouse

    Fairer, G.M.; Whitney, J.W.; Coe, J.A.

    1989-01-01

    Close-range photogrammetric techniques and newly available computerized plotting equipment were used to map exploratory trench walls that expose Quaternary faults in the vicinity of Yucca Mountain, Nevada. Small-scale structural, lithologic, and stratigraphic features can be rapidly mapped by the photogrammetric method. This method is more accurate and significantly more rapid than conventional trench-mapping methods, and the analytical plotter is capable of producing cartographic definition of high resolution when detailed trench maps are necessary. -from Authors

  3. Cognitive-behavior therapy for problem gambling: a critique of current treatments and proposed new unified approach.

    PubMed

    Tolchard, Barry

    2017-06-01

    There is evidence supporting the use of cognitive-behavioral therapy (CBT) in the treatment of problem gambling. Despite this, little is known about how CBT works and which particular approach is most effective. This paper aims to synthesize the evidence for current CBT and propose a more unified approach to treatment. A literature review and narrative synthesis of the current research evidence of CBT for the treatment of problem gambling was conducted, focusing on the underlying mechanisms within the treatment approach. Several CBT approaches were critiqued. These can be divided into forms of exposure therapy (including aversion techniques, systematic desensitization and other behavioral experiments) those focusing on cognitive restructuring techniques (such as reinforcement of nongambling activity, use of diaries, motivational enhancement and audio-playback techniques and third wave techniques including mindfulness. Findings, in relation to the treatment actions, from this synthesis are reported. The debate surrounding the treatment of problem gambling has been conducted as an either/or rather than a both/and discourse. This paper proposes a new, unified approach to the treatment of problem gambling that incorporates the best elements of both exposure and cognitive restructuring techniques, alongside the use of techniques borrowed from mindfulness and other CBT approaches.

  4. The Impact of Control Belief and Learning Disorientation on Cognitive Load: The Mediating Effect of Academic Emotions in Two Types of Hypermedia Learning Environments

    ERIC Educational Resources Information Center

    Sunawan; Xiong, Junmei

    2017-01-01

    The present study tested the influence of control belief, learning disorientation, and academic emotions on cognitive load in two types of concept-map structures within hypermedia learning environment. Four hundred and eighty-five students were randomly assigned to two groups: 245 students in the hierarchical group and 240 students in the…

  5. Interactive and Socially Inclusive Pedagogy: A Comparison of Practitioner- and Child-Oriented Cognitive/Learning Activities Involving Four-Year-Old Children in Preschools in England

    ERIC Educational Resources Information Center

    Kutnick, Peter; Brighi, Antonella; Colwell, Jennifer

    2016-01-01

    This study describes the social contexts in which four-year-olds undertake practitioner-assigned cognitive/learning tasks within preschools and the different experiences these contexts provide for children. Data was collected in 34 preschool settings in South East England, using a phenomenographic mapping of activities and social groupings during…

  6. Power in the Classroom VII: Linking Behavior Alteration Techniques to Cognitive Learning.

    ERIC Educational Resources Information Center

    Richmond, Virginia P.; And Others

    1987-01-01

    Argues that Behavior Alteration Techniques (BATs) improve students' on-task compliance which, in turn, is consistently associated with achievement. Indicates a substantial relationship between BAT use and cognitive learning on both absolute and relative measures of achievement. Shows that the teachers perceived by students as "good"…

  7. The Cognitive Underpinnings of Incremental Rehearsal

    ERIC Educational Resources Information Center

    Varma, Sashank; Schleisman, Katrina B.

    2014-01-01

    Incremental rehearsal (IR) is a flashcard technique that has been developed and evaluated by school psychologists. We discuss potential learning and memory effects from cognitive psychology that may explain the observed superiority of IR over other flashcard techniques. First, we propose that IR is a form of "spaced practice" that…

  8. Evidence from Blindness for a Cognitively Pluripotent Cortex.

    PubMed

    Bedny, Marina

    2017-09-01

    Cognitive neuroscience seeks to discover how cognitive functions are implemented in neural circuits. Studies of plasticity in blindness suggest that this mind-brain mapping is highly flexible during development. In blindness, 'visual' cortices take on higher-cognitive functions, including language and mathematics, becoming sensitive to the grammatical structure of spoken sentences and the difficulty of math equations. Visual cortex activity at rest becomes synchronized with higher-cognitive networks. Such repurposing is striking in light of the cognitive and evolutionary differences between vision, language, and mathematics. We propose that human cortices are cognitively pluripotent, that is, capable of assuming a wide range of cognitive functions. Specialization is driven by input during development, which is itself constrained by connectivity and experience. 'The child who methodically adds two numbers from right to left, carrying a digit when necessary, may be using the same algorithm that is implemented by the wires and transistors of the cash register in the neighborhood supermarket…' ▓▓Vision, 1982, David Marr. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cartographic mapping study

    NASA Technical Reports Server (NTRS)

    Wilson, C.; Dye, R.; Reed, L.

    1982-01-01

    The errors associated with planimetric mapping of the United States using satellite remote sensing techniques are analyzed. Assumptions concerning the state of the art achievable for satellite mapping systems and platforms in the 1995 time frame are made. An analysis of these performance parameters is made using an interactive cartographic satellite computer model, after first validating the model using LANDSAT 1 through 3 performance parameters. An investigation of current large scale (1:24,000) US National mapping techniques is made. Using the results of this investigation, and current national mapping accuracy standards, the 1995 satellite mapping system is evaluated for its ability to meet US mapping standards for planimetric and topographic mapping at scales of 1:24,000 and smaller.

  10. Forest and range mapping in the Houston area with ERTS-1

    NASA Technical Reports Server (NTRS)

    Heath, G. R.; Parker, H. D.

    1973-01-01

    ERTS-1 data acquired over the Houston area has been analyzed for applications to forest and range mapping. In the field of forestry the Sam Houston National Forest (Texas) was chosen as a test site, (Scene ID 1037-16244). Conventional imagery interpretation as well as computer processing methods were used to make classification maps of timber species, condition and land-use. The results were compared with timber stand maps which were obtained from aircraft imagery and checked in the field. The preliminary investigations show that conventional interpretation techniques indicated an accuracy in classification of 63 percent. The computer-aided interpretations made by a clustering technique gave 70 percent accuracy. Computer-aided and conventional multispectral analysis techniques were applied to range vegetation type mapping in the gulf coast marsh. Two species of salt marsh grasses were mapped.

  11. Computer-composite mapping for geologists

    USGS Publications Warehouse

    van Driel, J.N.

    1980-01-01

    A computer program for overlaying maps has been tested and evaluated as a means for producing geologic derivative maps. Four maps of the Sugar House Quadrangle, Utah, were combined, using the Multi-Scale Data Analysis and Mapping Program, in a single composite map that shows the relative stability of the land surface during earthquakes. Computer-composite mapping can provide geologists with a powerful analytical tool and a flexible graphic display technique. Digitized map units can be shown singly, grouped with different units from the same map, or combined with units from other source maps to produce composite maps. The mapping program permits the user to assign various values to the map units and to specify symbology for the final map. Because of its flexible storage, easy manipulation, and capabilities of graphic output, the composite-mapping technique can readily be applied to mapping projects in sedimentary and crystalline terranes, as well as to maps showing mineral resource potential. ?? 1980 Springer-Verlag New York Inc.

  12. [Repetitive transcranial magnetic stimulation: A potential therapy for cognitive disorders?

    PubMed

    Nouhaud, C; Sherrard, R M; Belmin, J

    2017-03-01

    Considering the limited effectiveness of drugs treatments in cognitive disorders, the emergence of noninvasive techniques to modify brain function is very interesting. Among these techniques, repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability and have potential therapeutic effects on cognition and behaviour. These effects are due to physiological modifications in the stimulated cortical tissue and their associated circuits, which depend on the parameters of stimulation. The objective of this article is to specify current knowledge and efficacy of rTMS in cognitive disorders. Previous studies found very encouraging results with significant improvement of higher brain functions. Nevertheless, these few studies have limits: a few patients were enrolled, the lack of control of the mechanisms of action by brain imaging, insufficiently formalized technique and variability of cognitive tests. It is therefore necessary to perform more studies, which identify statistical significant improvement and to specify underlying mechanisms of action and the parameters of use of the rTMS to offer rTMS as a routine therapy for cognitive dysfunction. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  13. A Pragmatic Cognitive System Engineering Approach to Model Dynamic Human Decision-Making Activities in Intelligent and Automated Systems

    DTIC Science & Technology

    2003-10-01

    Among the procedures developed to identify cognitive processes, there are the Cognitive Task Analysis (CTA) and the Cognitive Work Analysis (CWA...of Cognitive Task Design. [11] Potter, S.S., Roth, E.M., Woods, D.D., and Elm, W.C. (2000). Cognitive Task Analysis as Bootstrapping Multiple...Converging Techniques, In Schraagen, Chipman, and Shalin (Eds.). Cognitive Task Analysis . Mahwah, NJ: Lawrence Erlbaum Associates. [12] Roth, E.M

  14. A campus-based course in field geology

    NASA Astrophysics Data System (ADS)

    Richard, G. A.; Hanson, G. N.

    2009-12-01

    GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.

  15. Designing to Support Command and Control in Urban Firefighting

    DTIC Science & Technology

    2008-06-01

    complex human- machine systems. Keywords: Command and control, firefighting, cognitive systems engineering, cognitive task analysis 1...Elm, W. (2000). Bootstrapping multiple converging cognitive task analysis techniques for system design. In J.M.C. Schraagen, S.F. Chipman, & V.L...Shalin, (Eds.), Cognitive Task Analysis . (pp. 317-340). Mahwah, NJ: Lawrence Erlbaum. Rasmussen, J., Pejtersen, A., Goodman, L. (1994). Cognitive

  16. Autonomous indoor wayfinding for individuals with cognitive impairments

    PubMed Central

    2010-01-01

    Background A challenge to individuals with cognitive impairments in wayfinding is how to remain oriented, recall routines, and travel in unfamiliar areas in a way relying on limited cognitive capacity. While people without disabilities often use maps or written directions as navigation tools or for remaining oriented, this cognitively-impaired population is very sensitive to issues of abstraction (e.g. icons on maps or signage) and presents the designer with a challenge to tailor navigation information specific to each user and context. Methods This paper describes an approach to providing distributed cognition support of travel guidance for persons with cognitive disabilities. A solution is proposed based on passive near-field RFID tags and scanning PDAs. A prototype is built and tested in field experiments with real subjects. The unique strength of the system is the ability to provide unique-to-the-user prompts that are triggered by context. The key to the approach is to spread the context awareness across the system, with the context being flagged by the RFID tags and the appropriate response being evoked by displaying the appropriate path guidance images indexed by the intersection of specific end-user and context ID embedded in RFID tags. Results We found that passive RFIDs generally served as good context for triggering navigation prompts, although individual differences in effectiveness varied. The results of controlled experiments provided more evidence with regard to applicabilities of the proposed autonomous indoor wayfinding method. Conclusions Our findings suggest that the ability to adapt indoor wayfinding devices for appropriate timing of directions and standing orientation will be particularly important. PMID:20840786

  17. Mapping accuracy via spectrally and structurally based filtering techniques: comparisons through visual observations

    NASA Astrophysics Data System (ADS)

    Chockalingam, Letchumanan

    2005-01-01

    The data of Gunung Ledang region of Malaysia acquired through LANDSAT are considered to map certain hydrogeolocial features. To map these significant features, image-processing tools such as contrast enhancement, edge detection techniques are employed. The advantages of these techniques over the other methods are evaluated from the point of their validity in properly isolating features of hydrogeolocial interest are discussed. As these techniques take the advantage of spectral aspects of the images, these techniques have several limitations to meet the objectives. To discuss these limitations, a morphological transformation, which generally considers the structural aspects rather than spectral aspects from the image, are applied to provide comparisons between the results derived from spectral based and the structural based filtering techniques.

  18. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    PubMed

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  19. Application of satellite data and LARS's data processing techniques to mapping vegetation of the Dismal Swamp. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Messmore, J. A.

    1976-01-01

    The feasibility of using digital satellite imagery and automatic data processing techniques as a means of mapping swamp forest vegetation was considered, using multispectral scanner data acquired by the LANDSAT-1 satellite. The site for this investigation was the Dismal Swamp, a 210,000 acre swamp forest located south of Suffolk, Va. on the Virginia-North Carolina border. Two basic classification strategies were employed. The initial classification utilized unsupervised techniques which produced a map of the swamp indicating the distribution of thirteen forest spectral classes. These classes were later combined into three informational categories: Atlantic white cedar (Chamaecyparis thyoides), Loblolly pine (Pinus taeda), and deciduous forest. The subsequent classification employed supervised techniques which mapped Atlantic white cedar, Loblolly pine, deciduous forest, water and agriculture within the study site. A classification accuracy of 82.5% was produced by unsupervised techniques compared with 89% accuracy using supervised techniques.

  20. Concept Maps Applied to Mars Exploration Public Outreach

    NASA Technical Reports Server (NTRS)

    Briggs, Geoffrey; Canas, Alberto; Shamma, David; Scargle, Jeffrey; Novak, Joseph

    2004-01-01

    This paper describes CMEX Mars, an effort in the creation of a comprehensive set of concept maps to describe all aspects of Mars exploration. These concept maps, created using the CmapTools software developed by the Institute for Human and Machine Cognition, are available on the Internet at http:/cmex.arc.nasa.gov/CMEX and are linked among themselves as well as to resources on the Internet. The work described took place mainly between 1998 and 2001 and combined the goals of: 1) developing a library of concept maps for educational outreach while also 2) refining the capabilities of the software used to create the interactive maps and 3) making them available on the Internet. Here we focus on the library of Mars exploration concept maps that has been created.

  1. CAN NONINVASIVE BRAIN STIMULATION ENHANCE COGNITION IN NEUROPSYCHIATRIC DISORDERS?

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Pascual-Leone, Alvaro

    2013-01-01

    Cognitive impairment is a core symptom of many neuropsychiatric diseases and a key contributor to the patient’s quality of life. However, an effective therapeutic strategy has yet to be developed. Noninvasive brain stimulation techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are promising techniques that are under investigation for a variety of otherwise treatment-resistant neuropsychiatric diseases. Notably, these tools can induce alterations in neural networks subserving cognitive operations and thus may provide a means for cognitive restoration. The purpose of this article is to review the available evidence concerning cognitive enhancing properties of noninvasive brain stimulation in neuropsychiatry. We specifically focus on major depression, Alzheimer’s disease, schizophrenia, autism and attention deficit hyperactivity disorder (ADHD), where cognitive dysfunction is a major symptom and some studies have been completed with promising results. We provide a critical assessment of the available research and suggestions to guide future efforts. PMID:22749945

  2. The Meaning of Terrace as Social Interaction Place in Vertical Kampung

    NASA Astrophysics Data System (ADS)

    Sihombing, Antony; Gumay Poetri, Nurul

    2018-01-01

    The pros and cons of vertical housing development in Jakarta make me intend to raise the issue of the vertical kampung. In the kampung, there are social spaces where people interact to create a culture of rukun and gotong-royong. It is the terrace which become a container of social interaction. The purpose of this study is to reveal the meaning of the terrace in social interaction in the vertical kampung and its influence when the terrace room is not presented in the vertical kampung. The lost meaning of kampung when terrace is not presented in vertical kampung can be known through cognitive maps. Cognitive maps are the methodologies used to gain a human perception or view of life experiences in a particular place. This study involved several families in West Jatinegara Rusunawa to find out how people looked at the terrace in their life while in Kampung Pulo. Based on the cognitive maps method that has been done by the respondents, the terrace referred to by the villagers is an open space where people can see and interact with each other. Social space in the form of terraces which is needed by the kampung dweller, in fact is not a terrace house which is used as a place to receive guests and as a barrier between the fence and the body of the house.

  3. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment.

    PubMed

    Plank, Markus; Snider, Joseph; Kaestner, Erik; Halgren, Eric; Poizner, Howard

    2015-02-01

    Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans. Copyright © 2015 the American Physiological Society.

  4. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders?

    PubMed

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M; Pascual-Leone, Alvaro

    2013-01-01

    Cognitive impairment is a core symptom of many neuropsychiatric diseases and a key contributor to the patient's quality of life. However, an effective therapeutic strategy has yet to be developed. Noninvasive brain stimulation techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are promising techniques that are under investigation for a variety of otherwise treatment-resistant neuropsychiatric diseases. Notably, these tools can induce alterations in neural networks subserving cognitive operations and thus may provide a means for cognitive restoration. The purpose of this article is to review the available evidence concerning cognitive enhancing properties of noninvasive brain stimulation in neuropsychiatry. We specifically focus on major depression, Alzheimer's disease, schizophrenia, autism and attention deficit hyperactivity disorder (ADHD), where cognitive dysfunction is a major symptom and some studies have been completed with promising results. We provide a critical assessment of the available research and suggestions to guide future efforts. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Advancing Lie Detection by Inducing Cognitive Load on Liars: A Review of Relevant Theories and Techniques Guided by Lessons from Polygraph-Based Approaches

    PubMed Central

    Walczyk, Jeffrey J.; Igou, Frank P.; Dixon, Alexa P.; Tcholakian, Talar

    2013-01-01

    This article critically reviews techniques and theories relevant to the emerging field of “lie detection by inducing cognitive load selectively on liars.” To help these techniques benefit from past mistakes, we start with a summary of the polygraph-based Controlled Question Technique (CQT) and the major criticisms of it made by the National Research Council (2003), including that it not based on a validated theory and administration procedures have not been standardized. Lessons from the more successful Guilty Knowledge Test are also considered. The critical review that follows starts with the presentation of models and theories offering insights for cognitive lie detection that can undergird theoretically load-inducing approaches. This is followed by evaluation of specific research-based, load-inducing proposals, especially for their susceptibility to rehearsal and other countermeasures. To help organize these proposals and suggest new direction for innovation and refinement, a theoretical taxonomy is presented based on the type of cognitive load induced in examinees (intrinsic or extraneous) and how open-ended the responses to test items are. Finally, four recommendations are proffered that can help researchers and practitioners to avert the corresponding mistakes with the CQT and yield new, valid cognitive lie detection technologies. PMID:23378840

  6. Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique

    PubMed Central

    Riaz, Muhammad Mohsin; Ghafoor, Abdul

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  7. A cognitive account of belief: a tentative road map

    PubMed Central

    Connors, Michael H.; Halligan, Peter W.

    2015-01-01

    Over the past decades, delusions have become the subject of growing and productive research spanning clinical and cognitive neurosciences. Despite this, the nature of belief, which underpins the construct of delusions, has received little formal investigation. No account of delusions, however, would be complete without a cognitive level analysis of belief per se. One reason for this neglect is the assumption that, unlike more established and accessible modular psychological process (e.g., vision, audition, face-recognition, language-processing, and motor-control systems), beliefs comprise more distributed and therefore less accessible central cognitive processes. In this paper, we suggest some defining characteristics and functions of beliefs. Working back from cognitive accounts of delusions, we consider potential candidate cognitive processes that may be involved in normal belief formation. Finally, we advance a multistage account of the belief process that could provide the basis for a more comprehensive model of belief. PMID:25741291

  8. A social-cognitive framework of multidisciplinary team innovation.

    PubMed

    Paletz, Susannah B F; Schunn, Christian D

    2010-01-01

    The psychology of science typically lacks integration between cognitive and social variables. We present a new framework of team innovation in multidisciplinary science and engineering groups that ties factors from both literatures together. We focus on the effects of a particularly challenging social factor, knowledge diversity, which has a history of mixed effects on creativity, most likely because those effects are mediated and moderated by cognitive and additional social variables. In addition, we highlight the distinction between team innovative processes that are primarily divergent versus convergent; we propose that the social and cognitive implications are different for each, providing a possible explanation for knowledge diversity's mixed results on team outcomes. Social variables mapped out include formal roles, communication norms, sufficient participation and information sharing, and task conflict; cognitive variables include analogy, information search, and evaluation. This framework provides a roadmap for research that aims to harness the power of multidisciplinary teams. Copyright © 2009 Cognitive Science Society, Inc.

  9. Identification of cryovolcanism on Titan using fuzzy cognitive maps

    NASA Astrophysics Data System (ADS)

    Furfaro, Roberto; Kargel, Jeffrey S.; Lunine, Jonathan I.; Fink, Wolfgang; Bishop, Michael P.

    2010-04-01

    Future planetary exploration of Titan will require higher degrees of on-board automation, including autonomous determination of sites where the probability of significant scientific findings is the highest. In this paper, a novel Artificial Intelligence (AI) method for the identification and interpretation of sites that yield the highest potential of cryovolcanic activity is presented. We introduce the theory of fuzzy cognitive maps (FCM) as a tool for the analysis of remotely collected data in planetary exploration. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction of planetary scientists and AI experts. As an application example, we show how FCM can be employed to solve the challenging problem of recognizing cryovolcanism from Synthetic Aperture Radar (SAR) Cassini data. The fuzzy cognitive map is constructed using what is currently known about cryovolcanism on Titan and relies on geological mapping performed by planetary scientists to interpret different locales as cryovolcanic in nature. The system is not conceived to replace the human scientific interpretation, but to enhance the scientists' ability to deal with large amounts of data, and it is a first step in designing AI systems that will be able, in the future, to autonomously make decisions in situations where human analysis and interpretation is not readily available or could not be sufficiently timely. The proposed FCM is tested on Cassini radar data to show the effectiveness of the system in reaching conclusions put forward by human experts and published in the literature. Four tests are performed using the Ta SAR image (October 2004 fly-by). Two regions (i.e. Ganesa Macula and the lobate high backscattering region East of Ganesa) are interpreted by the designed FCM as exhibiting cryovolcanism in agreement with the initial interpretation of the regions by Stofan et al. (2006). Importantly, the proposed FCM is shown to be flexible and adaptive as new data and knowledge are acquired during the course of exploration. Subsequently, the FCM has been modified to include topographic information derived from SAR stereo data. With this additional information, the map concludes that Ganesa Macula is not a cryovolcanic region. In conclusion, the FCM methodology is shown to be a critical and powerful component of future autonomous robotic spacecraft (e.g., orbiter(s), balloon(s), surface/lake lander(s), rover(s)) that will be deployed for the exploration of Titan.

  10. Patients' Experience of Myositis and Further Validation of a Myositis-specific Patient Reported Outcome Measure - Establishing Core Domains and Expanding Patient Input on Clinical Assessment in Myositis. Report from OMERACT 12.

    PubMed

    Regardt, Malin; Basharat, Pari; Christopher-Stine, Lisa; Sarver, Catherine; Björn, Anita; Lundberg, Ingrid E; Wook Song, Yeong; Bingham, Clifton O; Alexanderson, Helene

    2015-12-01

    The Outcome Measures in Rheumatology (OMERACT) myositis working group was established to examine patient-reported outcomes (PRO) as well as to validate patient-reported outcome measures (PROM) in myositis. Qualitative studies using focus group interviews and cognitive debriefing of the myositis-specific Myositis Activities Profile (MAP) were used to explore the experience of adults living with polymyositis (PM) and dermatomyositis (DM). Preliminary results underscore the importance of patient input in the development of PROM to ensure content validity. Results from multicenter focus groups indicate the range of symptoms experienced including pain, fatigue, and impaired cognitive function, which are not currently assessed in myositis. Preliminary cognitive debriefing of the MAP indicated that while content was deemed relevant and important, several activities were not included; and that questionnaire construction and wording may benefit from revision. A research agenda was developed to continue work toward optimizing PRO assessment in myositis with 2 work streams. The first would continue to conduct and analyze focus groups until saturation in the thematic analysis was achieved to develop a framework that encompassed the patient-relevant aspects of myositis. The second would continue cognitive debriefing of the MAP to identify potential areas for revision. There was agreement that further work would be needed for inclusion body myositis and juvenile dermatomyositis, and that the inclusion of additional contributors such as caregivers and individuals from the pharmaceutical/regulatory spheres would be desirable. The currently used PROM do not assess symptoms or the effects of disease that are most important to patients; this emphasizes the necessity of patient involvement. Our work provides concrete examples for PRO identification.

  11. 2D Presentation Techniques of Mind-maps for Blind Meeting Participants.

    PubMed

    Pölzer, Stephan; Miesenberger, Klaus

    2015-01-01

    Mind-maps, used as ideation technique in co-located meetings (e.g. in brainstorming sessions), which meet with increased importance in business and education, show considerably accessibility challenges for blind meeting participants. Besides an overview of general aspects of accessibility issues in co-located meetings, this paper focuses on the design and development of alternative non-visual presentation techniques for mind-maps. The different aspects of serialized presentation techniques (e.g. treeview) for Braille and audio rendering and two dimensional presentation techniques (e.g. tactile two dimensional array matrix and edge-projection method [1]) are discussed based on the user feedback gathered in intermediate tests following a user centered design approach.

  12. Think Aloud: Using Cognitive Interviewing to Validate the PISA Assessment of Student Self-Efficacy in Mathematics

    ERIC Educational Resources Information Center

    Pepper, David; Hodgen, Jeremy; Lamesoo, Katri; Kõiv, Pille; Tolboom, Jos

    2018-01-01

    Cognitive interviewing (CI) provides a method of systematically collecting validity evidence of response processes for questionnaire items. CI involves a range of techniques for prompting individuals to verbalise their responses to items. One such technique is concurrent verbalisation, as developed in Think Aloud Protocol (TAP). This article…

  13. Mexican Immigrants and the Use of Cognitive Assessment Techniques in Questionnaire Development

    ERIC Educational Resources Information Center

    Agans, Robert P.; Deeb-Sossa, Natalia; Kalsbeek, William

    2006-01-01

    The aim of this article is to identify the measurement challenges involved in obtaining sensitive health outcomes from Mexican women in both settled and unsettled segments of the United States population and to suggest how cognitive assessment techniques might be better employed to construct culturally and linguistically appropriate survey…

  14. Exploring Teachers' Knowledge of Second Language Pronunciation Techniques: Teacher Cognitions, Observed Classroom Practices, and Student Perceptions

    ERIC Educational Resources Information Center

    Baker, Amanda

    2014-01-01

    This study explored some of the intricate connections between the cognitions (beliefs, knowledge, perceptions, attitudes) and pedagogical practices of five English language teachers, specifically in relation to pronunciation-oriented techniques. Integral to the study was the use of semistructured interviews, classroom observations, and stimulated…

  15. A Systematic Characterization of Cognitive Techniques for Learning from Textual and Pictorial Representations

    ERIC Educational Resources Information Center

    Ploetzner, Rolf; Lowe, Richard; Schlag, Sabine

    2013-01-01

    Pictorial representations can play a pivotal role in both printed and digital learning material. Although there has been extensive research on cognitive techniques and strategies for learning from text, the same cannot be said for static and dynamic pictorial representations. In this paper we propose a systematic characterization of cognitive…

  16. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  17. Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett

    According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual’s cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a "good-enough" response instead of deliberating for the "best" response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plantmore » risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included.« less

  18. Thinking Maps in Writing Project in English for Taiwanese Elementary School Students

    ERIC Educational Resources Information Center

    Fan, Yu Shu

    2016-01-01

    Thinking Maps is a language of eight visual patterns, each based on a fundamental thought process, designed by Dr. David N. Hyerle. The visual patterns are based on cognitive skills and applied in all content areas. Not only are they used in different combinations for depth and complexity, but are also used by all members in the school community.…

  19. The Role of IQ in the Use of Cognitive Strategies to Learn Information from a Map

    ERIC Educational Resources Information Center

    Cho, Seokhee

    2010-01-01

    The role of IQ in individual differences in real-life problem solving and strategies use was explored. Repeated trials of learning and recall of information from a map were analyzed with high IQ and average IQ Korean students. IQ correlated with the selection and use of strategies in recall. However, the performance and strategic behaviors of…

  20. Current trends in the empirical study of cognitive remediation for schizophrenia.

    PubMed

    Saperstein, Alice M; Kurtz, Matthew M

    2013-06-01

    Cognitive remediation (CR) for schizophrenia is a learning-based behavioural skills training intervention designed to enhance neuro and (or) social cognitive skills, with the ultimate goal of generalization to improve psychosocial outcomes. This review summarizes conceptual approaches to CR for schizophrenia and the evidence for efficacy in clinical research settings. Four issues are at the forefront of ongoing research: the identification of techniques that produce the largest cognitive change, delineation of techniques that enhance transfer of cognitive skills to functional skills, the identification of CR methods that can be personalized to meet the specific cognitive and functional needs of each individual, and, all the while, ensuring that when CR methods are developed in a research setting, they remain scalable for delivery in the larger clinical community. In response to these issues, 3 prominent research trends have emerged: the rise of a new generation of computerized restorative cognitive training, the integration of CR with skills training to promote generalization, and the application of techniques to enhance motivation and learning during CR. As data on the neural basis of learning in people with schizophrenia become available, new technologies that harness the ability of the brain to make sustainable, functional changes may be integrated within a therapeutic context that promotes a personalized approach to learning. The development of transportable and scalable methods of CR that maximize the ability of people with schizophrenia to improve cognition will help them achieve personal goals for recovery.

Top