Science.gov

Sample records for cognitive neuroscience view

  1. Culture, attribution and automaticity: a social cognitive neuroscience view.

    PubMed

    Mason, Malia F; Morris, Michael W

    2010-06-01

    A fundamental challenge facing social perceivers is identifying the cause underlying other people's behavior. Evidence indicates that East Asian perceivers are more likely than Western perceivers to reference the social context when attributing a cause to a target person's actions. One outstanding question is whether this reflects a culture's influence on automatic or on controlled components of causal attribution. After reviewing behavioral evidence that culture can shape automatic mental processes as well as controlled reasoning, we discuss the evidence in favor of cultural differences in automatic and controlled components of causal attribution more specifically. We contend that insights emerging from social cognitive neuroscience research can inform this debate. After introducing an attribution framework popular among social neuroscientists, we consider findings relevant to the automaticity of attribution, before speculating how one could use a social neuroscience approach to clarify whether culture affects automatic, controlled or both types of attribution processes.

  2. Culture, attribution and automaticity: a social cognitive neuroscience view

    PubMed Central

    Morris, Michael W.

    2010-01-01

    A fundamental challenge facing social perceivers is identifying the cause underlying other people’s behavior. Evidence indicates that East Asian perceivers are more likely than Western perceivers to reference the social context when attributing a cause to a target person’s actions. One outstanding question is whether this reflects a culture’s influence on automatic or on controlled components of causal attribution. After reviewing behavioral evidence that culture can shape automatic mental processes as well as controlled reasoning, we discuss the evidence in favor of cultural differences in automatic and controlled components of causal attribution more specifically. We contend that insights emerging from social cognitive neuroscience research can inform this debate. After introducing an attribution framework popular among social neuroscientists, we consider findings relevant to the automaticity of attribution, before speculating how one could use a social neuroscience approach to clarify whether culture affects automatic, controlled or both types of attribution processes. PMID:20460302

  3. [Cognitive aging considered from the point of view of cognitive neurosciences of consciousness].

    PubMed

    Naccache, Lionel

    2007-03-01

    Linking together cognitive neurosciences of aging with the study of psychological and neurophysiological properties of consciousness opens rich fundamental and clinical perspectives. Indeed, several aspects of cognitive aging seem to deal with modifications of processes directly involved in conscious processing. In the light of this relation between consciousness and aging, three tracks of experimental research are proposed and discussed.

  4. Cognitive Network Neuroscience

    PubMed Central

    Medaglia, John D.; Lynall, Mary-Ellen; Bassett, Danielle S.

    2016-01-01

    Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience. PMID:25803596

  5. Cognitive network neuroscience.

    PubMed

    Medaglia, John D; Lynall, Mary-Ellen; Bassett, Danielle S

    2015-08-01

    Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience.

  6. From Cognitive to Educational Neuroscience

    ERIC Educational Resources Information Center

    Dündar, Sefa; Ayvaz, Ülkü

    2016-01-01

    In recent years, several theoretical discussions as to the relationship between neuroscience and education have been held. Researchers have started to have cooperation over neuroscience and the interdisciplinary researches in which education is included. It was found that there were interactions between cognitive neuroscience and educational…

  7. Coordination Dynamics in Cognitive Neuroscience

    PubMed Central

    Bressler, Steven L.; Kelso, J. A. Scott

    2016-01-01

    Many researchers and clinicians in cognitive neuroscience hold to a modular view of cognitive function in which the cerebral cortex operates by the activation of areas with circumscribed elementary cognitive functions. Yet an ongoing paradigm shift to a dynamic network perspective is underway. This new viewpoint treats cortical function as arising from the coordination dynamics within and between cortical regions. Cortical coordination dynamics arises due to the unidirectional influences imposed on a cortical area by inputs from other areas that project to it, combined with the projection reciprocity that characterizes cortical connectivity and gives rise to reentrant processing. As a result, cortical dynamics exhibits both segregative and integrative tendencies and gives rise to both cooperative and competitive relations within and between cortical areas that are hypothesized to underlie the emergence of cognition in brains. PMID:27695395

  8. When the self represents the other: a new cognitive neuroscience view on psychological identification.

    PubMed

    Decety, Jean; Chaminade, Thierry

    2003-12-01

    There is converging evidence from developmental and cognitive psychology, as well as from neuroscience, to suggest that the self is both special and social, and that self-other interaction is the driving force behind self-development. We review experimental findings which demonstrate that human infants are motivated for social interactions and suggest that the development of an awareness of other minds is rooted in the implicit notion that others are like the self. We then marshall evidence from functional neuroimaging explorations of the neurophysiological substrate of shared representations between the self and others, using various ecological paradigms such as mentally representing one's own actions versus others' actions, watching the actions executed by others, imitating the others' actions versus being imitated by others. We suggest that within this shared neural network the inferior parietal cortex and the prefrontal cortex in the right hemisphere play a special role in the essential ability to distinguish the self from others, and in the way the self represents the other. Interestingly, the right hemisphere develops its functions earlier than the left.

  9. Security implications and governance of cognitive neuroscience.

    PubMed

    Kosal, Margaret E; Huang, Jonathan Y

    2015-01-01

    In recent years, significant efforts have been made toward elucidating the potential of the human brain. Spanning fields as disparate as psychology, biomedicine, computer science, mathematics, electrical engineering, and chemistry, research venturing into the growing domains of cognitive neuroscience and brain research has become fundamentally interdisciplinary. Among the most interesting and consequential applications to international security are the military and defense community's interests in the potential of cognitive neuroscience findings and technologies. In the United States, multiple governmental agencies are actively pursuing such endeavors, including the Department of Defense, which has invested over $3 billion in the last decade to conduct research on defense-related innovations. This study explores governance and security issues surrounding cognitive neuroscience research with regard to potential security-related applications and reports scientists' views on the role of researchers in these areas through a survey of over 200 active cognitive neuroscientists.

  10. Cognitive Neuroscience in Space

    PubMed Central

    De la Torre, Gabriel G.

    2014-01-01

    Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond. PMID:25370373

  11. Cognitive neuroscience in space.

    PubMed

    De la Torre, Gabriel G

    2014-07-03

    Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  12. The cognitive neuroscience of ageing.

    PubMed

    Grady, Cheryl

    2012-06-20

    The availability of neuroimaging technology has spurred a marked increase in the human cognitive neuroscience literature, including the study of cognitive ageing. Although there is a growing consensus that the ageing brain retains considerable plasticity of function, currently measured primarily by means of functional MRI, it is less clear how age differences in brain activity relate to cognitive performance. The field is also hampered by the complexity of the ageing process itself and the large number of factors that are influenced by age. In this Review, current trends and unresolved issues in the cognitive neuroscience of ageing are discussed.

  13. What The Cognitive Neurosciences Mean To Me

    PubMed Central

    Pereira, Alfredo

    2007-01-01

    Cognitive Neuroscience is an interdisciplinary area of research that combines measurement of brain activity (mostly by means of neuroimaging) with a simultaneous performance of cognitive tasks by human subjects. These investigations have been successful in the task of connecting the sciences of the brain (Neurosciences) and the sciences of the mind (Cognitive Sciences). Advances on this kind of research provide a map of localization of cognitive functions in the human brain. Do these results help us to understand how mind relates to the brain? In my view, the results obtained by the Cognitive Neurosciences lead to new investigations in the domain of Molecular Neurobiology, aimed at discovering biophysical mechanisms that generate the activity measured by neuroimaging instruments. In this context, I argue that the understanding of how ionic/molecular processes support cognition and consciousness cannot be made by means of the standard reductionist explanations. Knowledge of ionic/molecular mechanisms can contribute to our understanding of the human mind as long as we assume an alternative form of explanation, based on psycho-physical similarities, together with an ontological view of mentality and spirituality as embedded in physical nature (and not outside nature, as frequently assumed in western culture). PMID:22058629

  14. Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience

    PubMed Central

    Toepper, Max

    2017-01-01

    Both normal aging and Alzheimer’s disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity. PMID:28269778

  15. Dissociating Normal Aging from Alzheimer's Disease: A View from Cognitive Neuroscience.

    PubMed

    Toepper, Max

    2017-02-25

    Both normal aging and Alzheimer's disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity.

  16. Neuropsychology and Cognitive Neuroscience in the fMRI Era: A Recapitulation of Localizationist and Connectionist Views.

    PubMed

    Sutterer, Matthew J; Tranel, Daniel

    2017-09-21

    We highlight the past 25 years of cognitive neuroscience and neuropsychology, focusing on the impact to the field of the introduction in 1992 of functional MRI (fMRI). We reviewed the past 25 years of literature in cognitive neuroscience and neuropsychology, focusing on the relation and interplay of fMRI studies and studies utilizing the "lesion method" in human participants with focal brain damage. Our review highlights the state of localist/connectionist research debates in cognitive neuroscience and neuropsychology circa 1992, and details how the introduction of fMRI into the field at that time catalyzed a new wave of efforts to map complex human behavior to specific brain regions. This, in turn, eventually evolved into many studies that focused on networks and connections between brain areas, culminating in recent years with large-scale investigations such as the Human Connectome Project. We argue that throughout the past 25 years, neuropsychology-and more precisely, the "lesion method" in humans-has continued to play a critical role in arbitrating conclusions and theories derived from inferred patterns of local brain activity or wide-spread connectivity from functional imaging approaches. We conclude by highlighting the future for neuropsychology in the context of an increasingly complex methodological armamentarium. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Preface: psychophysiology and cognitive neuroscience.

    PubMed

    Tranel, Daniel

    2006-07-01

    The intersection of psychophysiology and cognitive neuroscience has proved to be fertile ground for advancing our understanding of the neurobiological basis of behavior. The eight original empirical articles in this special issue contribute a variety of new evidence for how various bodily processes interrelate with brain processes, especially in the service of emotions and feelings. The findings are rich in their own right, and they also underscore the value of psychophysiological approaches in the investigation of brain-behavior relationships. This type of work is helping to shape a new field of "affective neuroscience."

  18. Cognitive Neuroscience of Sleep

    PubMed Central

    Poe, Gina R.; Walsh, Christine M.; Bjorness, Theresa E.

    2014-01-01

    Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity (long-term potentiation (LTP) and its reversal, depotentiation). Thus, REM sleep provides a novel neural environment in which the synaptic remodeling essential to learning and cognition can occur, at least within the hippocampal complex. During nonREM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta nonREM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This nonREM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of

  19. Cognitive neuroscience of sleep.

    PubMed

    Poe, Gina R; Walsh, Christine M; Bjorness, Theresa E

    2010-01-01

    Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity, long-term potentiation (LTP) and its reversal, depotentiation. Thus, REM sleep provides a novel neural environment in which the synaptic remodelling essential to learning and cognition can occur, at least within the hippocampal complex. During non-REM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta non-REM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long-lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This non-REM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of

  20. Generalist genes and cognitive neuroscience.

    PubMed

    Butcher, Lee M; Kennedy, Joanna Kj; Plomin, Robert

    2006-04-01

    Multivariate genetic research suggests that a single set of genes affects most cognitive abilities and disabilities. This finding already has far-reaching implications for cognitive neuroscience, and will become even more revealing when this - presumably large - set of generalist genes is identified. Similar to other complex disorders and dimensions, molecular genetic research on cognitive abilities and disabilities is adopting genome-wide association strategies. These strategies involve very large samples to detect DNA associations of small effect size using microarrays that simultaneously assess hundreds of thousands of DNA markers. When this set of generalist genes is identified, it can be used to provide solid footholds in the climb towards a systems-level understanding of how genetically driven brain processes work together to affect diverse cognitive abilities and disabilities.

  1. Cognitive Neuroscience Discoveries and Educational Practices

    ERIC Educational Resources Information Center

    Sylwester, Robert

    2006-01-01

    In this article, the author describes seven movement-related areas of cognitive neuroscience research that will play key roles in shifting the current behavioral orientation of teaching and learning to an orientation that also incorporates cognitive neuroscience discoveries. These areas of brain research include: (1) mirroring system; (2) plastic…

  2. Human intracranial recordings and cognitive neuroscience.

    PubMed

    Mukamel, Roy; Fried, Itzhak

    2012-01-01

    The ultimate goal of neuroscience research is to understand the operating mechanism of the human brain and to exploit this understanding to devise methods for repair when it malfunctions. A key feature of this operating mechanism is electrical activity of single brain cells and cell assemblies. For obvious ethical reasons, scientists rely mostly on animal research in the study of such signals. Research in humans is often limited to electrical signals that can be recorded at the scalp or to surrogates of electrical activity, namely magnetic source imaging and measures of regional blood flow and metabolism. Invasive brain recordings performed in patients during various clinical procedures provide a unique opportunity to record high-resolution signals in vivo from the human brain-data that are otherwise unavailable. Of special value are the rare opportunities to record in awake humans the activity of single brain cells and small cellular assemblies. These recordings provide a unique view on aspects of human cognition that are impossible to study in animals, including language, imagery, episodic memory, volition, and even consciousness. In the current review we discuss the unique contribution of invasive recordings from patients to the field of cognitive neuroscience.

  3. The cognitive-affective neuroscience of the unconscious.

    PubMed

    Stein, Dan J; Solms, Mark; van Honk, Jack

    2006-08-01

    There is an ongoing debate about how best to conceptualize the unconscious. Early psychodynamic views employed theories influenced by physics to explain clinical material, while subsequent cognitivist views relied on computational models of the mind to explain laboratory data. More recently, advances in cognitive-affective neuroscience have provided new insights into the workings of unconscious cognition and affect. We briefly review some of this recent work and its clinical implications.

  4. Research possibilities for organizational cognitive neuroscience.

    PubMed

    Butler, Michael J R; Senior, Carl

    2007-11-01

    In this article, we identify research possibilities for organizational cognitive neuroscience that emerge from the papers in this special issue. We emphasize the intriguing finding that the papers share a common theme-the use of cognitive neuroscience to investigate the role of emotions in organizational behavior; this suggests a research agenda in its own right. We conclude the article by stressing that there is much yet to discover about how the mind works, especially in organizational settings.

  5. The Developmental Cognitive Neuroscience of Functional Connectivity

    ERIC Educational Resources Information Center

    Stevens, Michael C.

    2009-01-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of "functional connectivity" among distributed brain regions believed to underlie cognition and…

  6. The Developmental Cognitive Neuroscience of Functional Connectivity

    ERIC Educational Resources Information Center

    Stevens, Michael C.

    2009-01-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of "functional connectivity" among distributed brain regions believed to underlie cognition and…

  7. Cognitive Neuroscience Meets Mathematics Education

    ERIC Educational Resources Information Center

    De Smedt, Bert; Ansari, Daniel; Grabner, Roland H.; Hannula, Minna M.; Schneider, Michael; Verschaffel, Lieven

    2010-01-01

    While there has been much theoretical debate concerning the relationship between neuroscience and education, researchers have started to collaborate across both disciplines, giving rise to the interdisciplinary research field of neuroscience and education. The present contribution tries to reflect on the challenges of this new field of empirical…

  8. Cognitive Neuroscience Meets Mathematics Education

    ERIC Educational Resources Information Center

    De Smedt, Bert; Ansari, Daniel; Grabner, Roland H.; Hannula, Minna M.; Schneider, Michael; Verschaffel, Lieven

    2010-01-01

    While there has been much theoretical debate concerning the relationship between neuroscience and education, researchers have started to collaborate across both disciplines, giving rise to the interdisciplinary research field of neuroscience and education. The present contribution tries to reflect on the challenges of this new field of empirical…

  9. Neuroeconomics: a view from neuroscience.

    PubMed

    Montague, P Read

    2007-01-01

    All choices are economic decisions, and this is true because mobile organisms run on batteries. For them the clock is always ticking and their battery draining so every moment represents a choice of how to invest a bit of energy. From this perspective, all choices - those made and those not made - engender costs and yield variable future returns. There is no more fundamental stricture for an organism than to behave so as to recharge their batteries; consequently, each moment of existence is attended by the need to value that moment and its near-term future quickly and accurately. The central issue of neuroeconomics is valuation - the way the brain values literally everything from internal mental states to experienced time (the neuroscience part), and why it should do so one way and not another (the normative economics part). All these valuations have now begun to be probed in experiments by pairing quantitative behavioral and computational modeling with neuroimaging or neurophysiological experiments.

  10. Motor cognition and neuroscience in sport psychology.

    PubMed

    Holmes, Paul S; Wright, David J

    2017-08-01

    Advances in technology have allowed research in cognitive neuroscience to contribute significantly to the discipline of sport psychology. In most cases, the research has become more rigorous and has directed current thinking on the mechanisms subserving a number of psychological theories and models of practice. Currently, the three most common neuroscience techniques informing sport and exercise research are electroencephalography, transcranial magnetic stimulation and functional magnetic resonance imaging. In this review, we highlight and discuss the contributions to sport psychology that have been made in recent years by applying these techniques, with a focus on the development of expertise, motor cognition, motor imagery and action observation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The developmental cognitive neuroscience of functional connectivity.

    PubMed

    Stevens, Michael C

    2009-06-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of 'functional connectivity' among distributed brain regions believed to underlie cognition and behavioral control. Due to the recent availability of relatively easy-to-use tools for functional connectivity analysis, there has been a sharp upsurge of studies that seek to characterize normal and psychopathologically abnormal brain functional integration. However, relatively few studies have applied functional and effective connectivity analysis techniques to developmental cognitive neuroscience. Functional and effective connectivity analysis methods are ideally suited to advance our understanding of the neural substrates of cognitive development, particularly in understanding how and why changes in the functional 'wiring' of neural networks promotes optimal cognitive control throughout development. The purpose of this review is to summarize the central concepts, methods, and findings of functional integration neuroimaging research to discuss key questions in the field of developmental cognitive neuroscience. These ideas will be presented within a context that merges relevant concepts and proposals from different developmental theorists. The review will outline a few general predictions about likely relationships between typical 'executive' cognitive maturation and changes in brain network functional integration during adolescence. Although not exhaustive, this conceptual review also will showcase some of recent findings that have emerged to support these predictions.

  12. Mapping the semantic structure of cognitive neuroscience.

    PubMed

    Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A

    2014-09-01

    Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.

  13. Cognitive Neuroscience and Education: Unravelling the Confusion

    ERIC Educational Resources Information Center

    Purdy, Noel; Morrison, Hugh

    2009-01-01

    This paper critically examines the application of research into cognitive neuroscience to educational contexts. It first considers recent warnings from within the neuroscientific community itself about the limitations of current neuroscientific knowledge and the urgent need to dispel popular "neuromyths" which have become accepted in…

  14. Cognitive Neuroscience and Education: Unravelling the Confusion

    ERIC Educational Resources Information Center

    Purdy, Noel; Morrison, Hugh

    2009-01-01

    This paper critically examines the application of research into cognitive neuroscience to educational contexts. It first considers recent warnings from within the neuroscientific community itself about the limitations of current neuroscientific knowledge and the urgent need to dispel popular "neuromyths" which have become accepted in…

  15. Developmental Cognitive Neuroscience: Origins, Issues, and Prospects

    ERIC Educational Resources Information Center

    Pennington, Bruce F.; Snyder, Kelly A.; Roberts, Ralph J., Jr.

    2007-01-01

    This commentary explains how the field of developmental cognitive neuroscience (DCN) holds the promise of a much wider interdisciplinary integration across sciences concerned with development: psychology, molecular genetics, neurobiology, and evolutionary developmental biology. First we present a brief history of DCN, including the key theoretical…

  16. Developmental Cognitive Neuroscience: Origins, Issues, and Prospects

    ERIC Educational Resources Information Center

    Pennington, Bruce F.; Snyder, Kelly A.; Roberts, Ralph J., Jr.

    2007-01-01

    This commentary explains how the field of developmental cognitive neuroscience (DCN) holds the promise of a much wider interdisciplinary integration across sciences concerned with development: psychology, molecular genetics, neurobiology, and evolutionary developmental biology. First we present a brief history of DCN, including the key theoretical…

  17. A Cognitive Neuroscience View of Schizophrenic Symptoms: Abnormal Activation of a System for Social Perception and Communication

    PubMed Central

    Wible, Cynthia G.; Preus, Alexander P.; Hashimoto, Ryuichiro

    2009-01-01

    We will review converging evidence that language related symptoms of the schizophrenic syndrome such as auditory verbal hallucinations arise at least in part from processing abnormalities in posterior language regions. These language regions are either adjacent to or overlapping with regions in the (posterior) temporal cortex and temporo-parietal occipital junction that are part of a system for processing social cognition, emotion, and self representation or agency. The inferior parietal and posterior superior temporal regions contain multi-modal representational systems that may also provide rapid feedback and feed-forward activation to unimodal regions such as auditory cortex. We propose that the over-activation of these regions could not only result in erroneous activation of semantic and speech (auditory word) representations, resulting in thought disorder and voice hallucinations, but could also result in many of the other symptoms of schizophrenia. These regions are also part of the so-called “default network”, a network of regions that are normally active; and their activity is also correlated with activity within the hippocampal system. PMID:19809534

  18. The Cognitive Atlas: Toward a Knowledge Foundation for Cognitive Neuroscience

    PubMed Central

    Poldrack, Russell A.; Kittur, Aniket; Kalar, Donald; Miller, Eric; Seppa, Christian; Gil, Yolanda; Parker, D. Stott; Sabb, Fred W.; Bilder, Robert M.

    2011-01-01

    Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what “mental processes” exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe a new open collaborative project that aims to provide a knowledge base for cognitive neuroscience, called the Cognitive Atlas (accessible online at http://www.cognitiveatlas.org), and outline how this project has the potential to drive novel discoveries about both mind and brain. PMID:21922006

  19. Cognitive Neuroscience of Self-Regulation Failure

    PubMed Central

    Heatherton, Todd F.; Wagner, Dylan D.

    2011-01-01

    Self-regulatory failure is a core feature of many social and mental health problems. Self-regulation can by undermined by failures to transcend overwhelming temptations, negative moods, resource depletion, and when minor lapses in self-control snowball into self-regulatory collapse. Cognitive neuroscience research suggests that successful self-regulation is dependent on top-down control from the prefrontal cortex over subcortical regions involved in reward and emotion. We highlight recent neuroimaging research on self-regulatory failure, the findings of which support a balance model of self-regulation whereby self-regulatory failure occurs whenever the balance is tipped in favor of subcortical areas, either due to particularly strong impulses, or when prefrontal function itself is impaired. Such a model is consistent with recent findings in the cognitive neuroscience of addictive behavior, emotion regulation, and decision making. PMID:21273114

  20. The Year in Cognitive Neuroscience

    PubMed Central

    Bestmann, Sven; Feredoes, Eva

    2013-01-01

    Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. PMID:23631540

  1. Cognitive Neuroscience and Single-Word Processing.

    PubMed

    Sable, Jeffrey J

    2016-01-01

    Early neuroimaging research on language-related function is useful for teaching cognitive neuroscience. In these studies, researchers used relatively simple experimental designs in an attempt to break down complex cognitive processes. In addition, the hypotheses tested in these studies were based on models derived from non-imaging observations, such as lesion studies. Thus, students at all levels may find the research accessible in its simplicity and engaging in its attempt to test existing theories in novel ways. Raichle (1996) describes a series of such studies that used what were, at the time, novel applications of relatively young imaging methods to measure brain activity related to single-word processing. In a short, readable article, he places the studies in their historical context (i.e., models of language function based largely on case studies of patients with brain lesions) and describes the methods and designs used in the research. He summarizes the results and the main takeaways from the research and its practical implications for research and medicine in the future. This paper touches on many important features of cognitive neuroscience, as well as psychology and neuroscience more broadly. It can serve as a springboard into discussion of many topics in many course contexts.

  2. Cognitive Neuroscience and Single-Word Processing

    PubMed Central

    Sable, Jeffrey J.

    2016-01-01

    Early neuroimaging research on language-related function is useful for teaching cognitive neuroscience. In these studies, researchers used relatively simple experimental designs in an attempt to break down complex cognitive processes. In addition, the hypotheses tested in these studies were based on models derived from non-imaging observations, such as lesion studies. Thus, students at all levels may find the research accessible in its simplicity and engaging in its attempt to test existing theories in novel ways. Raichle (1996) describes a series of such studies that used what were, at the time, novel applications of relatively young imaging methods to measure brain activity related to single-word processing. In a short, readable article, he places the studies in their historical context (i.e., models of language function based largely on case studies of patients with brain lesions) and describes the methods and designs used in the research. He summarizes the results and the main takeaways from the research and its practical implications for research and medicine in the future. This paper touches on many important features of cognitive neuroscience, as well as psychology and neuroscience more broadly. It can serve as a springboard into discussion of many topics in many course contexts. PMID:27980487

  3. The Neurodynamics of Cognition: A Tutorial on Computational Cognitive Neuroscience.

    PubMed

    Ashby, F Gregory; Helie, Sebastien

    2011-08-01

    Computational Cognitive Neuroscience (CCN) is a new field that lies at the intersection of computational neuroscience, machine learning, and neural network theory (i.e., connectionism). The ideal CCN model should not make any assumptions that are known to contradict the current neuroscience literature and at the same time provide good accounts of behavior and at least some neuroscience data (e.g., single-neuron activity, fMRI data). Furthermore, once set, the architecture of the CCN network and the models of each individual unit should remain fixed throughout all applications. Because of the greater weight they place on biological accuracy, CCN models differ substantially from traditional neural network models in how each individual unit is modeled, how learning is modeled, and how behavior is generated from the network. A variety of CCN solutions to these three problems are described. A real example of this approach is described, and some advantages and limitations of the CCN approach are discussed.

  4. The Neurodynamics of Cognition: A Tutorial on Computational Cognitive Neuroscience

    PubMed Central

    Ashby, F. Gregory; Helie, Sebastien

    2011-01-01

    Computational Cognitive Neuroscience (CCN) is a new field that lies at the intersection of computational neuroscience, machine learning, and neural network theory (i.e., connectionism). The ideal CCN model should not make any assumptions that are known to contradict the current neuroscience literature and at the same time provide good accounts of behavior and at least some neuroscience data (e.g., single-neuron activity, fMRI data). Furthermore, once set, the architecture of the CCN network and the models of each individual unit should remain fixed throughout all applications. Because of the greater weight they place on biological accuracy, CCN models differ substantially from traditional neural network models in how each individual unit is modeled, how learning is modeled, and how behavior is generated from the network. A variety of CCN solutions to these three problems are described. A real example of this approach is described, and some advantages and limitations of the CCN approach are discussed. PMID:21841845

  5. Reciprocal Relations Between Cognitive Neuroscience and Cognitive Models: Opposites Attract?

    PubMed Central

    Forstmann, Birte U.; Wagenmakers, Eric-Jan; Eichele, Tom; Brown, Scott; Serences, John T.

    2012-01-01

    Cognitive neuroscientists study how the brain implements particular cognitive processes such as perception, learning, and decision-making. Traditional approaches in which experiments are designed to target a specific cognitive process have been supplemented by two recent innovations. First, formal models of cognition can decompose observed behavioral data into multiple latent cognitive processes, allowing brain measurements to be associated with a particular cognitive process more precisely and more confidently. Second, cognitive neuroscience can provide additional data to inform the development of cognitive models, providing greater constraint than behavioral data alone. We argue that these fields are mutually dependent: not only can models guide neuroscientific endeavors, but understanding neural mechanisms can provide critical insights into formal models of cognition. PMID:21612972

  6. [Cognitive neuroscience of aging: explanatory models].

    PubMed

    Grandi, Fabrissio; Tirapu Ustárroz, Javier

    2017-05-12

    The aim of the cognitive neuroscience of aging is the study of brain activity and the cognitive processes associated with age. In order to understand the dynamics of neurocognitive activity in older people, the present review highlights four explanatory models. The first one (HAROLD) highlights brain bilaterality, mainly in the pre-frontal cortex. The second paradigm (PASA) places special emphasis on neuronal polarisation (anterior-posterior). The third model (CRUNCH) relates the manifest activity of the brain to the level of complexity of the task. The last one (ELSA) emphasises the spatial and temporal distribution of brain activity in the different phases of recovery. Although different in their content, the four explanatory models are perfectly compatible with the findings reported by neuroimaging techniques, suggesting the use of compensation strategies and cognitive reserve for interventions that may help to optimise the performance of older people. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Jung's views on causes and treatments of schizophrenia in light of current trends in cognitive neuroscience and psychotherapy research I. Aetiology and phenomenology.

    PubMed

    Silverstein, Steven M

    2014-02-01

    Jung's writings on schizophrenia are almost completely ignored or forgotten today. The purpose of this paper, along with a follow-up article, is to review the primary themes found in Jung's writings on schizophrenia, and to assess the validity of his theories about the disorder in light of our current knowledge base in the fields of psychopathology, cognitive neuroscience and psychotherapy research. In this article, five themes related to the aetiology and phenomenology of schizophrenia from Jung's writings are discussed:1) abaissement du niveau mental; 2) the complex; 3) mandala imagery; 4) constellation of archetypes and 5) psychological versus toxic aetiology. Reviews of the above areas suggest three conclusions. First, in many ways, Jung's ideas on schizophrenia anticipated much current thinking and data about the disorder. Second, with the recent (re)convergence of psychological and biological approaches to understanding and treating schizophrenia, the pioneering ideas of Jung regarding the importance of both factors and their interaction remain a useful and rich, but still underutilized resource. Finally, a more concerted effort to understand and evaluate the validity of Jung's concepts in terms of evidence from neuroscience could lead both to important advances in analytical psychology and to developments in therapeutic approaches that would extend beyond the treatment of schizophrenia. © 2014, The Society of Analytical Psychology.

  8. Principles of Learning, Implications for Teaching: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Goswami, Usha

    2008-01-01

    Cognitive neuroscience aims to improve our understanding of aspects of human learning and performance by combining data acquired with the new brain imaging technologies with data acquired in cognitive psychology paradigms. Both neuroscience and psychology use the philosophical assumptions underpinning the natural sciences, namely the scientific…

  9. Can Cognitive Neuroscience Ground a Science of Learning?

    ERIC Educational Resources Information Center

    Kelly, Anthony E.

    2011-01-01

    In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.

  10. Can Cognitive Neuroscience Ground a Science of Learning?

    ERIC Educational Resources Information Center

    Kelly, Anthony E.

    2011-01-01

    In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.

  11. Principles of Learning, Implications for Teaching: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Goswami, Usha

    2008-01-01

    Cognitive neuroscience aims to improve our understanding of aspects of human learning and performance by combining data acquired with the new brain imaging technologies with data acquired in cognitive psychology paradigms. Both neuroscience and psychology use the philosophical assumptions underpinning the natural sciences, namely the scientific…

  12. Reciprocity between second-person neuroscience and cognitive robotics.

    PubMed

    Dominey, Peter Ford

    2013-08-01

    As there is "dark matter" in the neuroscience of individuals engaged in dynamic interactions, similar dark matter is present in the domain of interaction between humans and cognitive robots. Progress in second-person neuroscience will contribute to the development of robotic cognitive systems, and such developed robotic systems will be used to test the validity of the underlying theories.

  13. Cognitive Neuroscience and Causal Inference: Implications for Psychiatry

    PubMed Central

    Dijkstra, Nadine; de Bruin, Leon

    2016-01-01

    In this paper, we investigate to what extent it is justified to draw conclusions about causal relations between brain states and mental states from cognitive neuroscience studies. We first explain the views of two prominent proponents of the interventionist account of causation: Woodward and Baumgartner. We then discuss the implications of their views in the context of traditional cognitive neuroscience studies in which the effect of changes in mental state on changes in brain states is investigated. After this, we turn to brain stimulation studies in which brain states are manipulated to investigate the effects on mental states. We argue that, depending on whether one sides with Woodward or Baumgartner, it is possible to draw causal conclusions from both types of studies (Woodward) or from brain stimulation studies only (Baumgartner). We show what happens to these conclusions if we adopt different views of the relation between mental states and brain states. Finally, we discuss the implications of our findings for psychiatry and the treatment of psychiatric disorders. PMID:27486408

  14. The cognitive neuroscience of working memory.

    PubMed

    D'Esposito, Mark; Postle, Bradley R

    2015-01-03

    For more than 50 years, psychologists and neuroscientists have recognized the importance of a working memory to coordinate processing when multiple goals are active and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory by allocating attention to internal representations, whether semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking memory contexts. The prefrontal cortex (PFC), on the other hand, exerts control over behavior by biasing the salience of mnemonic representations and adjudicating among competing, context-dependent rules. The "control of the controller" emerges from a complex interplay between PFC and striatal circuits and ascending dopaminergic neuromodulatory signals.

  15. The future of fMRI in Cognitive Neuroscience

    PubMed Central

    Poldrack, Russell A.

    2014-01-01

    Over the last twenty years, fMRI has revolutionized cognitive neuroscience. Here I outline a vision for what the next twenty years of fMRI in cognitive neuroscience might look like. Some developments that I hope for include increased methodological rigor, an increasing focus on connectivity and pattern analysis as opposed to “blobology”, a greater focus on selective inference powered by open databases, and increased use of ontologies and computational models to describe underlying processes. PMID:21856431

  16. Getting to the Heart of the Brain: Using Cognitive Neuroscience to Explore the Nature of Human Ability and Performance

    ERIC Educational Resources Information Center

    Kalbfleisch, M. Layne

    2008-01-01

    This article serves as a primer to make the neuroimaging literature more accessible to the lay reader and to increase the evaluative capability of the educated consumer of cognitive neuroscience. This special issue gives gifted education practitioners and researchers a primary source view of current neuroscience relevant to modern definitions and…

  17. Getting to the Heart of the Brain: Using Cognitive Neuroscience to Explore the Nature of Human Ability and Performance

    ERIC Educational Resources Information Center

    Kalbfleisch, M. Layne

    2008-01-01

    This article serves as a primer to make the neuroimaging literature more accessible to the lay reader and to increase the evaluative capability of the educated consumer of cognitive neuroscience. This special issue gives gifted education practitioners and researchers a primary source view of current neuroscience relevant to modern definitions and…

  18. Cognitive neuroscience of human counterfactual reasoning.

    PubMed

    Van Hoeck, Nicole; Watson, Patrick D; Barbey, Aron K

    2015-01-01

    Counterfactual reasoning is a hallmark of human thought, enabling the capacity to shift from perceiving the immediate environment to an alternative, imagined perspective. Mental representations of counterfactual possibilities (e.g., imagined past events or future outcomes not yet at hand) provide the basis for learning from past experience, enable planning and prediction, support creativity and insight, and give rise to emotions and social attributions (e.g., regret and blame). Yet remarkably little is known about the psychological and neural foundations of counterfactual reasoning. In this review, we survey recent findings from psychology and neuroscience indicating that counterfactual thought depends on an integrative network of systems for affective processing, mental simulation, and cognitive control. We review evidence to elucidate how these mechanisms are systematically altered through psychiatric illness and neurological disease. We propose that counterfactual thinking depends on the coordination of multiple information processing systems that together enable adaptive behavior and goal-directed decision making and make recommendations for the study of counterfactual inference in health, aging, and disease.

  19. THE COGNITIVE NEUROSCIENCE OF WORKING MEMORY

    PubMed Central

    D’Esposito, Mark; Postle, Bradley R.

    2015-01-01

    For over 50 years, psychologists and neuroscientists have recognized the importance of a “working memory” to coordinate processing when multiple goals are active, and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory via the allocation of attention to internal representations – be they semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking-memory contexts. The prefrontal cortex, on the other hand, exerts control over behavior by biasing the salience of mnemonic representations, and adjudicating among competing, context-dependent rules. The “control of the controller” emerges from a complex interplay between PFC and striatal circuits, and ascending dopaminergic neuromodulatory signals. PMID:25251486

  20. Cognitive neuroscience of human counterfactual reasoning

    PubMed Central

    Van Hoeck, Nicole; Watson, Patrick D.; Barbey, Aron K.

    2015-01-01

    Counterfactual reasoning is a hallmark of human thought, enabling the capacity to shift from perceiving the immediate environment to an alternative, imagined perspective. Mental representations of counterfactual possibilities (e.g., imagined past events or future outcomes not yet at hand) provide the basis for learning from past experience, enable planning and prediction, support creativity and insight, and give rise to emotions and social attributions (e.g., regret and blame). Yet remarkably little is known about the psychological and neural foundations of counterfactual reasoning. In this review, we survey recent findings from psychology and neuroscience indicating that counterfactual thought depends on an integrative network of systems for affective processing, mental simulation, and cognitive control. We review evidence to elucidate how these mechanisms are systematically altered through psychiatric illness and neurological disease. We propose that counterfactual thinking depends on the coordination of multiple information processing systems that together enable adaptive behavior and goal-directed decision making and make recommendations for the study of counterfactual inference in health, aging, and disease. PMID:26257633

  1. Mechanisms of attention: Psychophysics, cognitive psychology, and cognitive neuroscience.

    PubMed

    Lu, Zhong-Lin

    2008-01-01

    Sensory physiologists and psychologists have recognized the importance of attention on human performance for more than 100 years. Since the 1970s, controlled and extensive experiments have examined effects of selective attention to a location in space or to an object. In addition to behavioral studies, cognitive neuroscientists have investigated the neural bases of attention. In this paper, I briefly review some classical attention paradigms, recent advances on the theory of attention, and some new insights from psychophysics and cognitive neuroscience. The focus is on the mechanisms of attention, that is, how attention improves human performance. Situations in which the perception of objects is unchanged, but performance may differ due to different decision structures, are distinguished from those in which attention changes the perceptual processes. The perceptual template model is introduced as a theoretical framework for analyzing mechanisms of attention. I also present empirical evidence for two attention mechanisms, stimulus enhancement and external noise exclusion, from psychophysics, neurophysiology and brain imaging.

  2. Perceptual anomalies in schizophrenia: integrating phenomenology and cognitive neuroscience.

    PubMed

    Uhlhaas, Peter J; Mishara, Aaron L

    2007-01-01

    From phenomenological and experimental perspectives, research in schizophrenia has emphasized deficits in "higher" cognitive functions, including attention, executive function, as well as memory. In contrast, general consensus has viewed dysfunctions in basic perceptual processes to be relatively unimportant in the explanation of more complex aspects of the disorder, including changes in self-experience and the development of symptoms such as delusions. We present evidence from phenomenology and cognitive neuroscience that changes in the perceptual field in schizophrenia may represent a core impairment. After introducing the phenomenological approach to perception (Husserl, the Gestalt School), we discuss the views of Paul Matussek, Klaus Conrad, Ludwig Binswanger, and Wolfgang Blankenburg on perception in schizophrenia. These 4 psychiatrists describe changes in perception and automatic processes that are related to the altered experience of self. The altered self-experience, in turn, may be responsible for the emergence of delusions. The phenomenological data are compatible with current research that conceptualizes dysfunctions in perceptual processing as a deficit in the ability to combine stimulus elements into coherent object representations. Relationships of deficits in perceptual organization to cognitive and social dysfunction as well as the possible neurobiological mechanisms are discussed.

  3. Perceptual Anomalies in Schizophrenia: Integrating Phenomenology and Cognitive Neuroscience

    PubMed Central

    Uhlhaas, Peter J.; Mishara, Aaron L.

    2007-01-01

    From phenomenological and experimental perspectives, research in schizophrenia has emphasized deficits in “higher” cognitive functions, including attention, executive function, as well as memory. In contrast, general consensus has viewed dysfunctions in basic perceptual processes to be relatively unimportant in the explanation of more complex aspects of the disorder, including changes in self-experience and the development of symptoms such as delusions. We present evidence from phenomenology and cognitive neuroscience that changes in the perceptual field in schizophrenia may represent a core impairment. After introducing the phenomenological approach to perception (Husserl, the Gestalt School), we discuss the views of Paul Matussek, Klaus Conrad, Ludwig Binswanger, and Wolfgang Blankenburg on perception in schizophrenia. These 4 psychiatrists describe changes in perception and automatic processes that are related to the altered experience of self. The altered self-experience, in turn, may be responsible for the emergence of delusions. The phenomenological data are compatible with current research that conceptualizes dysfunctions in perceptual processing as a deficit in the ability to combine stimulus elements into coherent object representations. Relationships of deficits in perceptual organization to cognitive and social dysfunction as well as the possible neurobiological mechanisms are discussed. PMID:17118973

  4. Avian Models for Human Cognitive Neuroscience: A Proposal.

    PubMed

    Clayton, Nicola S; Emery, Nathan J

    2015-06-17

    Research on avian cognitive neuroscience over the past two decades has revealed the avian brain to be a better model for understanding human cognition than previously thought, despite differences in the neuroarchitecture of avian and mammalian brains. The brain, behavior, and cognition of songbirds have provided an excellent model of human cognition in one domain, namely learning human language and the production of speech. There are other important behavioral candidates of avian cognition, however, notably the capacity of corvids to remember the past and plan for the future, as well as their ability to think about another's perspective, and physical reasoning. We review this work and assess the evidence that the corvid brain can support such a cognitive architecture. We propose potential applications of these behavioral paradigms for cognitive neuroscience, including recent work on single-cell recordings and neuroimaging in corvids. Finally, we discuss their impact on understanding human developmental cognition.

  5. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging.

    PubMed

    Zamroziewicz, Marta K; Barbey, Aron K

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition-from entire diets to specific nutrients-affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  6. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    PubMed Central

    Zamroziewicz, Marta K.; Barbey, Aron K.

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition—from entire diets to specific nutrients—affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging. PMID:27375409

  7. Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions

    PubMed Central

    Forstmann, B.U.; Ratcliff, R.; Wagenmakers, E.-J.

    2016-01-01

    Sequential sampling models assume that people make speeded decisions by gradually accumulating noisy information until a threshold of evidence is reached. In cognitive science, one such model—the diffusion decision model—is now regularly used to decompose task performance into underlying processes such as the quality of information processing, response caution, and a priori bias. In the cognitive neurosciences, the diffusion decision model has recently been adopted as a quantitative tool to study the neural basis of decision making under time pressure. We present a selective overview of several recent applications and extensions of the diffusion decision model in the cognitive neurosciences. PMID:26393872

  8. Bridges over troubled waters: education and cognitive neuroscience.

    PubMed

    Ansari, Daniel; Coch, Donna

    2006-04-01

    Recently there has been growing interest in and debate about the relation between cognitive neuroscience and education. Our goal is to advance the debate beyond both recitation of potentially education-related cognitive neuroscience findings and the claim that a bridge between fields is chimerical. In an attempt to begin a dialogue about mechanisms among students, educators, researchers and practitioner-scientists, we propose that multiple bridges can be built to make connections between education and cognitive neuroscience, including teacher training, researcher training and collaboration. These bridges--concrete mechanisms that can advance the study of mind, brain and education--will benefit both educators and cognitive neuroscientists, who will gain new perspectives for posing and answering crucial questions about the learning brain.

  9. Cognitive neuroscience of synesthesia: Introduction to the special issue.

    PubMed

    Ward, Jamie

    2015-01-01

    This Special Issue of Cognitive Neuroscience showcases the latest theories and findings in research on synesthesia. The various contributions are discussed in relation to three broad themes: Models and neural mechanisms; new types of synesthesia; and cognitive profile and demographic characteristics.

  10. The Need for a Cognitive Neuroscience of Naturalistic Social Cognition

    PubMed Central

    Zaki, Jamil; Ochsner, Kevin

    2010-01-01

    Understanding the minds of others is one of the great challenges humans face. Accordingly, much work in cognitive neuroscience has explored the brain systems engaged when perceivers share and make inferences about the internal states of social targets. These studies, however, typically use divergent and highly simplified stimuli and methods, and as a consequence have produced largely non-overlapping sets of results that have motivated artificially constrained theories about the processes involved in perceivers' abilities to understand targets. Here we suggest that these difficulties may stem from two main sources: the lack of meaningful behavioral data about the brain bases of perceivers' actual accuracy in inferring target states, and qualitative differences between the social stimuli used in neuroimaging paradigms and the social information perceivers encounter in the real world. We advocate more focus on studies of naturalistic social cognition, which could overcome these limitations and complement current approaches, and discuss work in our lab that has demonstrated the feasibility and utility of such paradigms. Finally, we discuss the relevance of naturalistic social cognition to diagnosing and treating autism spectrum disorder. Overall, using naturalistic paradigms in neuroimaging will be critical to modeling the way the brain actually understands other minds. PMID:19580548

  11. Using developmental cognitive neuroscience to study behavioral and attentional control.

    PubMed

    Astle, Duncan E; Scerif, Gaia

    2009-03-01

    Adult cognitive neuroscience employs a wide variety of techniques to investigate a broad range of behavioral and cognitive functions. One prominent area of study is that of executive control, complemented by a smaller but growing literature exploring the developmental cognitive neuroscience of executive control. To date this approach has often compared children with specific developmental disorders, such as ADHD and ASD, with typically developing controls. Whilst these comparisons have done much to advance our understanding of the neural markers that underpin behavioral difficulties at specific time-points in development, we contend that they should leave developmental cognitive neuroscientists wanting. Studying the neural correlates of typical changes in executive control in their own right can reveal how different neural mechanisms characteristic of the adult end-state emerge, and it can therefore inform the adult cognitive neuroscience of executive control itself. The current review addresses the extent to which developmentalists and adult cognitive neuroscientists have tapped this common ground. Some very elegant investigations illustrate how seemingly common processes in adulthood present as separable in childhood, on the basis of their distinctive developmental trajectories. These demonstrations have implications not only for an understanding of changing behavior from infancy through childhood and adolescence into adulthood, but, moreover, for our grasp of the adult end-state per se. We contend that, if used appropriately, developmental cognitive neuroscience could enable us to construct a more mechanistic account of executive control.

  12. Out of my real body: cognitive neuroscience meets eating disorders

    PubMed Central

    Riva, Giuseppe

    2014-01-01

    Clinical psychology is starting to explain eating disorders (ED) as the outcome of the interaction among cognitive, socio-emotional and interpersonal elements. In particular two influential models—the revised cognitive-interpersonal maintenance model and the transdiagnostic cognitive behavioral theory—identified possible key predisposing and maintaining factors. These models, even if very influential and able to provide clear suggestions for therapy, still are not able to provide answers to several critical questions: why do not all the individuals with obsessive compulsive features, anxious avoidance or with a dysfunctional scheme for self-evaluation develop an ED? What is the role of the body experience in the etiology of these disorders? In this paper we suggest that the path to a meaningful answer requires the integration of these models with the recent outcomes of cognitive neuroscience. First, our bodily representations are not just a way to map an external space but the main tool we use to generate meaning, organize our experience, and shape our social identity. In particular, we will argue that our bodily experience evolves over time by integrating six different representations of the body characterized by specific pathologies—body schema (phantom limb), spatial body (unilateral hemi-neglect), active body (alien hand syndrome), personal body (autoscopic phenomena), objectified body (xenomelia) and body image (body dysmorphia). Second, these representations include either schematic (allocentric) or perceptual (egocentric) contents that interact within the working memory of the individual through the alignment between the retrieved contents from long-term memory and the ongoing egocentric contents from perception. In this view EDs may be the outcome of an impairment in the ability of updating a negative body representation stored in autobiographical memory (allocentric) with real-time sensorimotor and proprioceptive data (egocentric). PMID:24834042

  13. The cognitive neuroscience toolkit for the neuroeconomist: A functional overview

    PubMed Central

    Kable, Joseph W.

    2011-01-01

    This article provides the beginning neuroeconomist with an introductory overview to the different methods used in human neuroscience. It describes basic strengths and weaknesses of each technique, points to examples of how each technique has been used in neuroeconomic studies, and provides key tutorial references that contain more detailed information. In addition to this overview, the article presents a framework that organizes human neuroscience methods functionally, according to whether they provide tests of the association between brain activity and cognition or behavior, or whether they test the necessity or the sufficiency of brain activity for cognition and behavior. This framework demonstrates the utility of a multi-method research approach, since converging evidence from tests of association, necessity and sufficiency provides the strongest inference regarding brain-behavior relationships. Set against this goal of converging evidence, human neuroscience studies in neuroeconomics currently rely far too heavily on methods that test association, most notably functional MRI. PMID:21796272

  14. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Transition to the Intelligence Community

    DTIC Science & Technology

    2014-12-01

    Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking (ICArUS): Transition to the Intelligence Community Kevin...Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking (ICArUS): A Computational Basis for ICArUS: Transition to the...Research Projects Activity) program ICArUS (Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking) developed and tested brain

  15. Panksepp's common sense view of affective neuroscience is not the commonsense view in large areas of neuroscience.

    PubMed

    Watt, Douglas F

    2005-03-01

    Jaak Panksepp's article 'Affective Consciousness: Core Emotional Feelings in Animals and Humans' is a excellent review and summary by a leading empirical contributor whose work for many years has been running counter to reigning behavioristic premises in neuroscience. It may unfortunately be true that he could not get this review published in many neuroscience journals because it attacks too many sacred (behavioristic) cows. Panksepp has given readers of Consciousness and Cognition a nicely condensed summary of much of his classic 1998 textbook, Affective Neuroscience. I'm reasonably confident that future neuroscience students will look on that textbook as one of the seminal publications on the subject of emotion and the brain, much as we might now look back on Luria's Higher Cortical Functions in Man, or Paul MacLean's classic work, The Triune Brain. There is probably little that I can add to his elegant presentation of the basic affective neuroscience findings, but I would like to highlight a few key issues for the reader.

  16. Automatic goals and conscious regulation in social cognitive affective neuroscience.

    PubMed

    Sripada, Chandra; Swain, John D; Ho, S Shaun; Swain, James E

    2014-04-01

    The Selfish Goal model challenges traditional agentic models that place conscious systems at the helm of motivation. We highlight the need for ongoing supervision and intervention of automatic goals by higher-order conscious systems with examples from social cognitive affective neuroscience. We contend that interplay between automatic and supervisory systems is required for adaptive human behavior.

  17. Building Bridges between Neuroscience, Cognition and Education with Predictive Modeling

    ERIC Educational Resources Information Center

    Stringer, Steve; Tommerdahl, Jodi

    2015-01-01

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. This article presents a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include…

  18. Building Bridges between Neuroscience, Cognition and Education with Predictive Modeling

    ERIC Educational Resources Information Center

    Stringer, Steve; Tommerdahl, Jodi

    2015-01-01

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. This article presents a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include…

  19. The use of repetition suppression paradigms in developmental cognitive neuroscience.

    PubMed

    Nordt, Marisa; Hoehl, Stefanie; Weigelt, Sarah

    2016-07-01

    Repetition suppression paradigms allow a more detailed look at brain functioning than classical paradigms and have been applied vigorously in adult cognitive neuroscience. These paradigms are well suited for studies in the field of developmental cognitive neuroscience as they can be applied without collecting a behavioral response and across all age groups. Furthermore, repetition suppression paradigms can be employed in various neuroscience techniques, such as functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), electroencephalography (EEG) and magnetoencephalography (MEG). In the present article we review studies using repetition suppression paradigms in developmental cognitive neuroscience covering the age range from infancy to adolescence. Our first goal is to point out characteristics of developmental repetition suppression effects. In doing so, we discuss the relationship of the direction of repetition effects (suppression vs enhancement) with developmental factors, and address the question how the direction of repetition effects might be related to looking-time effects in behavioral infant paradigms, the most prominently used behavioral measure in infant research. To highlight the potential of repetition suppression paradigms, our second goal is to provide an overview on the insights recently obtained by applying repetition paradigms in neurodevelopmental studies, including research on children with autism spectrum disorders (ASDs). We conclude that repetition suppression paradigms are valuable tools for investigating neurodevelopmental processes, while at the same time we highlight the necessity for further studies that disentangle methodological and developmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. What Can Cognitive Neuroscience Teach Us About Anorexia Nervosa?

    PubMed Central

    Kidd, Amelia; Steinglass, Joanna

    2012-01-01

    Anorexia nervosa (AN) is a complex illness and highly challenging to treat. One promising approach to significantly advance our understanding of the underlying pathophysiology of AN involves developing a cognitive neuroscience model of illness. Cognitive neuroscience uses probes such as neuropsychological tasks and neuroimaging techniques to identify the neural underpinnings of behavior. With this approach, advances have been made in identifying higher order cognitive processes that likely mediate symptom expression in AN. Identification of related neuropathology is beginning. Such findings have led to the development of complex neurobehavioral models that aim to explain the etiology and persistence of AN. Future research will use these advanced tools to test and refine hypotheses about the underlying mechanisms of AN. PMID:22660896

  1. What can cognitive neuroscience teach us about anorexia nervosa?

    PubMed

    Kidd, Amelia; Steinglass, Joanna

    2012-08-01

    Anorexia nervosa (AN) is a complex illness and highly challenging to treat. One promising approach to significantly advance our understanding of the underlying pathophysiology of AN involves developing a cognitive neuroscience model of illness. Cognitive neuroscience uses probes such as neuropsychological tasks and neuroimaging techniques to identify the neural underpinnings of behavior. With this approach, advances have been made in identifying higher-order cognitive processes that likely mediate symptom expression in AN. Identification of related neuropathology is beginning. Such findings led to the development of complex neurobehavioral models that aim to explain the etiology and persistence of AN. Future research will use these advanced tools to test and refine hypotheses about the underlying mechanisms of AN.

  2. The embodied brain: towards a radical embodied cognitive neuroscience

    PubMed Central

    Kiverstein, Julian; Miller, Mark

    2015-01-01

    In this programmatic paper we explain why a radical embodied cognitive neuroscience is needed. We argue for such a claim based on problems that have arisen in cognitive neuroscience for the project of localizing function to specific brain structures. The problems come from research concerned with functional and structural connectivity that strongly suggests that the function a brain region serves is dynamic, and changes over time. We argue that in order to determine the function of a specific brain area, neuroscientists need to zoom out and look at the larger organism-environment system. We therefore argue that instead of looking to cognitive psychology for an analysis of psychological functions, cognitive neuroscience should look to an ecological dynamical psychology. A second aim of our paper is to develop an account of embodied cognition based on the inseparability of cognitive and emotional processing in the brain. We argue that emotions are best understood in terms of action readiness (Frijda, 1986, 2007) in the context of the organism’s ongoing skillful engagement with the environment (Rietveld, 2008; Bruineberg and Rietveld, 2014; Kiverstein and Rietveld, 2015, forthcoming). States of action readiness involve the whole living body of the organism, and are elicited by possibilities for action in the environment that matter to the organism. Since emotion and cognition are inseparable processes in the brain it follows that what is true of emotion is also true of cognition. Cognitive processes are likewise processes taking place in the whole living body of an organism as it engages with relevant possibilities for action. PMID:25999836

  3. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Walkthrough

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Walkthrough Kevin Burns...IARPA-BAA-10-04, via contract 2009- 0917826-016, and is subject to the Rights in Data-General Clause 52.227-14, Alt. IV (DEC 2007). Any views and...governmental purposes notwithstanding any copyright annotation therein. © 2014 The MITRE Corporation. All rights reserved. Approved for Public

  4. The cognition and neuroscience of relational reasoning.

    PubMed

    Krawczyk, Daniel C

    2012-01-05

    There has been a growing interest in understanding the complex cognitive processes that give rise to human reasoning. This review focuses on the cognitive and neural characteristics of relational reasoning and analogy performance. Initially relational reasoning studies that have investigated the neural basis of abstract reasoning with an emphasis on the prefrontal cortex are described. Next studies of analogical reasoning are reviewed with insights from neuropsychological and neuroimaging studies. Additionally, studies of cognitive components in analogical reasoning are described. This review draws together insights from numerous studies and concludes that prefrontal areas exhibit domain independence in relational reasoning, while posterior areas within the temporal, parietal, and occipital lobes show evidence of domain dependence in reasoning. Lastly, future directions in the study of relational reasoning are discussed.

  5. Progress Toward Openness, Transparency, and Reproducibility in Cognitive Neuroscience

    PubMed Central

    Gilmore, Rick O.; Diaz, Michele T.; Wyble, Brad A.; Yarkoni, Tal

    2017-01-01

    Accumulating evidence suggests that many findings in psychological science and cognitive neuroscience may prove difficult to reproduce; statistical power in brain imaging studies is low, and has not improved recently; software errors in common analysis tools are common, and can go undetected for many years; and, a few large scale studies notwithstanding, open sharing of data, code, and materials remains the rare exception. At the same time, there is a renewed focus on reproducibility, transparency, and openness as essential core values in cognitive neuroscience. The emergence and rapid growth of data archives, meta-analytic tools, software pipelines, and research groups devoted to improved methodology reflects this new sensibility. We review evidence that the field has begun to embrace new open research practices, and illustrate how these can begin to address problems of reproducibility, statistical power, and transparency in ways that will ultimately accelerate discovery. PMID:28464561

  6. Prestige versus citation volume as journal indices in cognitive neuroscience.

    PubMed

    Ward, Jamie

    2014-01-01

    In recent years, alternative measures of a journal's influence have been developed to those based on citation metrics (such as Impact Factor). This includes the Scimago Journal Rank (SJR) which is adapted from algorithms used to prioritize webpages in search engines. It is considered a measure of "prestige" insofar as it takes into account the importance of links/citations and not just their total number. Taking a sample of 38 journals from within the field of cognitive neuroscience, it is shown that SJR and Impact Factor correlate highly (r = .83) but with a few large discrepancies in rankings. This journal, Cognitive Neuroscience, fares better on the prestige-based measure than might otherwise be expected from its citation-based rank.

  7. Developmental Social Cognitive Neuroscience: Insights from Deafness

    ERIC Educational Resources Information Center

    Corina, David; Singleton, Jenny

    2009-01-01

    The condition of deafness presents a developmental context that provides insight into the biological, cultural, and linguistic factors underlying the development of neural systems that impact social cognition. Studies of visual attention, behavioral regulation, language development, and face and human action perception are discussed. Visually…

  8. Developmental Social Cognitive Neuroscience: Insights from Deafness

    ERIC Educational Resources Information Center

    Corina, David; Singleton, Jenny

    2009-01-01

    The condition of deafness presents a developmental context that provides insight into the biological, cultural, and linguistic factors underlying the development of neural systems that impact social cognition. Studies of visual attention, behavioral regulation, language development, and face and human action perception are discussed. Visually…

  9. Jung's views on causes and treatments of schizophrenia in light of current trends in cognitive neuroscience and psychotherapy research II: psychological research and treatment.

    PubMed

    Silverstein, Steven M

    2014-04-01

    Jung was the first to emphasize the importance of psychological factors in the aetiology and treatment of schizophrenia. Despite this, and other seminal contributions, his work on schizophrenia is almost completely ignored or forgotten today. This paper, a follow-up to one on Jung's theories of aetiology and symptom formation in schizophrenia (Journal of Analytical Psychology, 59, 1) reviews Jung's views on psychological approaches to research on, and treatment of, the disorder. Five themes are covered: 1) experimental psychopathology; 2) attentional disturbance; 3) psychological treatment; 4) the relationship between the environment (including the psychiatric hospital) and symptom expression; and 5) heterogeneity and the schizophrenia spectrum. Review of these areas reveal that Jung's ideas about the kind of research that can elucidate psychological mechanisms in schizophrenia, and the importance of psychotherapy for people with this condition, are very much in line with contemporary paradigms. Moreover, further exploration of several points of convergence could lead to advances in both of these fields, as well as within analytical psychology.

  10. The clinical neuroscience course: viewing mental health from neurobiological perspectives.

    PubMed

    Lambert, Kelly G

    2005-01-01

    Although the field of neuroscience is booming, a challenge for researchers in mental health disciplines is the integration of basic research findings into applied clinical approaches leading to effective therapies. Recently the National Institute of Mental Health called for translational research grants to encourage collaboration between neuroscientists and mental health professionals. In order for this "clinical neuroscience" to emerge and thrive, an important first step is the provision of appropriate course offerings so that future neuroscience researchers and mental health practitioners will have a common neurobiological base from which to make informed decisions about the most efficacious treatments for mental illnesses. Accordingly, an integrative course, Clinical Neuroscience, was developed to address these issues. After reviewing the historical origins of this emerging discipline, students are exposed to fundamental overviews of neuroanatomy, neurochemistry, and neural development before approaching the neurobiological components of several disorders (e.g., schizophrenia, depression, Tourette's syndrome, drug abuse, obsessive compulsive disorder). Finally, the maintenance of mental health is emphasized as topics such as psychoneuroimmunology, coping with stress, and eating regulation are discussed. Important themes emphasized in this course include (1) the consideration of only empirically based evidence, (2) the view that mental illness represents a disruption of neurobiological homeostasis, (3) the acknowledgement that, because the brain is a plastic organ, the clinical relevance of environmental and behavioral influences is difficult to overestimate, and (4) the recognition of the value of ecologically relevant animal models in the investigation of various aspects of mental illness. Because of the importance of stress maintenance in mental health, exercises have been developed to increase students' awareness of their own coping strategies. Finally

  11. Care mapping in clinical neuroscience settings: Cognitive impairment and dependency.

    PubMed

    Leigh, Andrew James; O'Hanlon, Katie; Sheldrick, Russell; Surr, Claire; Hare, Dougal Julian

    2015-01-01

    Person-centred care can improve the well-being of patients and is therefore a key driver in healthcare developments in the UK. The current study aims to investigate the complex relationship between cognitive impairment, dependency and well-being in people with a wide range of acquired brain and spinal injuries. Sixty-five participants, with varied acquired brain and spinal injuries, were selected by convenience sampling from six inpatient clinical neuroscience settings. Participants were observed using Dementia Care Mapping - Neurorehabilitation (DCM-NR) and categorised based on severity of cognitive impairment. A significant difference in the behaviours participants engaged in, their well-being and dependency was found between the severe cognitive impairment group and the mild, moderate or no cognitive impairment groups. Dependency and cognitive impairment accounted for 23.9% of the variance in well-ill-being scores and 17.2% of the variance in potential for positive engagement. The current study highlights the impact of severe cognitive impairment and dependency on the behaviours patients engaged in and their well-being. It also affirms the utility of DCM-NR in providing insights into patient experience. Consideration is given to developing DCM-NR as a process that may improve person-centred care in neuroscience settings.

  12. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience

    PubMed Central

    Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-01-01

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574302

  13. Method matters: an empirical study of impact in cognitive neuroscience.

    PubMed

    Fellows, Lesley K; Heberlein, Andrea S; Morales, Dawn A; Shivde, Geeta; Waller, Sara; Wu, Denise H

    2005-06-01

    A major thrust of cognitive neuroscience is the elucidation of structure-function relationships in the human brain. Over the last several years, functional neuroimaging has risen in prominence relative to the lesion studies that formed the historical core of work in this field. These two methods have different strengths and weaknesses. Among these is a crucial difference in the nature of evidence each can provide. Lesion studies can provide evidence for necessity claims, whereas functional neuroimaging studies do not. We hypothesized that lesion studies will continue to have greater scientific impact even as the relative proportion of such studies in the cognitive neuroscience literature declines. Using methods drawn from systematic literature review, we identified a set of original cognitive neuroscience articles that employed either functional imaging or lesion techniques, published at one of two time points in the 1990s, and assessed the effect of the method used on each article's impact across the decade. Functional neuroimaging studies were cited three times more often than lesion studies throughout the time span we examined. This effect was in large part due to differences in the influence of the journals publishing the two methods; functional neuroimaging studies appeared disproportionately more often in higher impact journals. There were also differences in the degree to which articles using one method cited articles using the other method. Functional neuroimaging articles were less likely to include such cross-method citations.

  14. Adolescent social cognitive and affective neuroscience: past, present, and future

    PubMed Central

    Blakemore, Sarah-Jayne

    2012-01-01

    In this article, we review three areas of research within adolescent social cognitive and affective neuroscience: (i) emotion reactivity and regulation, (ii) mentalizing and (iii) peer relations, including social rejection or acceptance as well as peer influence. The review provides a context for current contributions to the special issue of Social Cognitive and Affective Neuroscience on Adolescence, and highlights three important themes that emerge from the special issue, which are relevant to future research. First, the age of participants studied (and labels for these age groups) is a critical design consideration. We suggest that it might be logical to reduce the reliance on convenience samples of undergraduates to represent adults in psychology and cognitive neuroscience studies, since there is substantial evidence that the brain is still developing within this age range. Second, developmental researchers are broadening their scope of inquiry by testing for non-linear effects, via increased use of longitudinal strategies or much wider age ranges and larger samples. Third, there is increasing appreciation for the interrelatedness of the three areas of focus in this special issue (emotion reactivity and regulation, mentalizing, and peer relations), as well as with other areas of interest in adolescent development. PMID:22228750

  15. Cognitive neuroscience of delusions in aging

    PubMed Central

    Holt, Anna EM; Albert, Martin L

    2006-01-01

    Assessments and clinical understanding of late-onset delusions in the elderly are inconsistent and often incomplete. In this review, we consider the prevalence, neurobehavioral features, and neuroanatomic correlations of delusions in elderly persons – those with documented cognitive decline and those with no evidence of cognitive decline. Both groups exhibit a common phenotype: delusions are either of persecution or of misidentification. Late-onset delusions show a nearly complete absence of the grandiose, mystical, or erotomanic content typical of early onset psychoses. Absent also from both elderly populations are formal thought disorders, thought insertions, and delusions of external control. Neuroimaging and behavioral studies suggest a frontotemporal localization of delusions in the elderly, with right hemispheric lateralization in delusional misidentification and left lateralization in delusions of persecution. We propose that delusions in the elderly reflect a common neuroanatomic and functional phenotype, and we discuss applications of our proposal to diagnosis and treatment. PMID:19412462

  16. Developmental cognitive neuroscience of arithmetic: implications for learning and education

    PubMed Central

    2011-01-01

    In this article, we review the brain and cognitive processes underlying the development of arithmetic skills. This review focuses primarily on the development of arithmetic skills in children, but it also summarizes relevant findings from adults for which a larger body of research currently exists. We integrate relevant findings and theories from experimental psychology and cognitive neuroscience. We describe the functional neuroanatomy of cognitive processes that influence and facilitate arithmetic skill development, including calculation, retrieval, strategy use, decision making, as well as working memory and attention. Building on recent findings from functional brain imaging studies, we describe the role of distributed brain regions in the development of mathematical skills. We highlight neurodevelopmental models that go beyond the parietal cortex role in basic number processing, in favor of multiple neural systems and pathways involved in mathematical information processing. From this viewpoint, we outline areas for future study that may help to bridge the gap between the cognitive neuroscience of arithmetic skill development and educational practice. PMID:22003371

  17. Developmental cognitive neuroscience of arithmetic: implications for learning and education.

    PubMed

    Menon, Vinod

    2010-10-01

    In this article, we review the brain and cognitive processes underlying the development of arithmetic skills. This review focuses primarily on the development of arithmetic skills in children, but it also summarizes relevant findings from adults for which a larger body of research currently exists. We integrate relevant findings and theories from experimental psychology and cognitive neuroscience. We describe the functional neuroanatomy of cognitive processes that influence and facilitate arithmetic skill development, including calculation, retrieval, strategy use, decision making, as well as working memory and attention. Building on recent findings from functional brain imaging studies, we describe the role of distributed brain regions in the development of mathematical skills. We highlight neurodevelopmental models that go beyond the parietal cortex role in basic number processing, in favor of multiple neural systems and pathways involved in mathematical information processing. From this viewpoint, we outline areas for future study that may help to bridge the gap between the cognitive neuroscience of arithmetic skill development and educational practice.

  18. The Clinical Neuroscience Course: Viewing Mental Health from Neurobiological Perspectives

    PubMed Central

    Lambert, Kelly G.

    2005-01-01

    Although the field of neuroscience is booming, a challenge for researchers in mental health disciplines is the integration of basic research findings into applied clinical approaches leading to effective therapies. Recently the National Institute of Mental Health called for translational research grants to encourage collaboration between neuroscientists and mental health professionals. In order for this “clinical neuroscience” to emerge and thrive, an important first step is the provision of appropriate course offerings so that future neuroscience researchers and mental health practitioners will have a common neurobiological base from which to make informed decisions about the most efficacious treatments for mental illnesses. Accordingly, an integrative course, Clinical Neuroscience, was developed to address these issues. After reviewing the historical origins of this emerging discipline, students are exposed to fundamental overviews of neuroanatomy, neurochemistry, and neural development before approaching the neurobiological components of several disorders (e.g., schizophrenia, depression, Tourette’s syndrome, drug abuse, obsessive compulsive disorder). Finally, the maintenance of mental health is emphasized as topics such as psychoneuroimmunology, coping with stress, and eating regulation are discussed. Important themes emphasized in this course include (1) the consideration of only empirically based evidence, (2) the view that mental illness represents a disruption of neurobiological homeostasis, (3) the acknowledgement that, because the brain is a plastic organ, the clinical relevance of environmental and behavioral influences is difficult to overestimate, and (4) the recognition of the value of ecologically relevant animal models in the investigation of various aspects of mental illness. Because of the importance of stress maintenance in mental health, exercises have been developed to increase students’ awareness of their own coping strategies

  19. Struggle for life, struggle for love and recognition: the neglected self in social cognitive neuroscience.

    PubMed

    Paradiso, Sergio; Rudrauf, David

    2012-03-01

    In the following article we present a view that social cognition and social neuroscience, as shaped by the current research paradigms, are not sufficient to improve our understanding of psychopathological phenomena. We hold that the self, self-awareness, and inter-subjectivity are integral to social perception and actions. In addition, we emphasize that the self and self-awareness are, by their very nature and function, involved over the entire lifespan with the way the individual is perceived in the social environment. Likewise, the modes of operation and identification of the self and self-awareness receive strong developmental contributions from social interactions with parental figures, siblings, peers, and significant others. These contributions are framed by a competitive and cooperative struggle for love and recognition. We suggest that in humans social cognitive neuroscience should be informed by a thoughtful appreciation of the equal significance of the struggle for "life" and that for love and recognition. In order to be better positioned to improve the research agenda and practice of clinical psychiatry, we propose that cognitive and social neurosciences explicitly incorporate in their models phenomena relative to the self, self-awareness, and inter-subjectivity.

  20. Struggle for life, struggle for love and recognition: the neglected self in social cognitive neuroscience

    PubMed Central

    Paradiso, Sergio; Rudrauf, David

    2012-01-01

    In the following article we present a view that social cognition and social neuroscience, as shaped by the current research paradigms, are not sufficient to improve our understanding of psychopathological phenomena. We hold that the self, self-awareness, and inter-subjectivity are integral to social perception and actions. In addition, we emphasize that the self and self-awareness are, by their very nature and function, involved over the entire lifespan with the way the individual is perceived in the social environment. Likewise, the modes of operation and identification of the self and self-awareness receive strong developmental contributions from social interactions with parental figures, siblings, peers, and significant others. These contributions are framed by a competitive and cooperative struggle for love and recognition. We suggest that in humans social cognitive neuroscience should be informed by a thoughtful appreciation of the equal significance of the struggle for “life” and that for love and recognition. In order to be better positioned to improve the research agenda and practice of clinical psychiatry, we propose that cognitive and social neurosciences explicitly incorporate in their models phenomena relative to the self, self-awareness, and inter-subjectivity. PMID:22577306

  1. Toward a model-based cognitive neuroscience of mind wandering.

    PubMed

    Hawkins, G E; Mittner, M; Boekel, W; Heathcote, A; Forstmann, B U

    2015-12-03

    People often "mind wander" during everyday tasks, temporarily losing track of time, place, or current task goals. In laboratory-based tasks, mind wandering is often associated with performance decrements in behavioral variables and changes in neural recordings. Such empirical associations provide descriptive accounts of mind wandering - how it affects ongoing task performance - but fail to provide true explanatory accounts - why it affects task performance. In this perspectives paper, we consider mind wandering as a neural state or process that affects the parameters of quantitative cognitive process models, which in turn affect observed behavioral performance. Our approach thus uses cognitive process models to bridge the explanatory divide between neural and behavioral data. We provide an overview of two general frameworks for developing a model-based cognitive neuroscience of mind wandering. The first approach uses neural data to segment observed performance into a discrete mixture of latent task-related and task-unrelated states, and the second regresses single-trial measures of neural activity onto structured trial-by-trial variation in the parameters of cognitive process models. We discuss the relative merits of the two approaches, and the research questions they can answer, and highlight that both approaches allow neural data to provide additional constraint on the parameters of cognitive models, which will lead to a more precise account of the effect of mind wandering on brain and behavior. We conclude by summarizing prospects for mind wandering as conceived within a model-based cognitive neuroscience framework, highlighting the opportunities for its continued study and the benefits that arise from using well-developed quantitative techniques to study abstract theoretical constructs.

  2. Psychoanalysis and social cognitive neuroscience: a new framework for a dialogue.

    PubMed

    Georgieff, Nicolas

    2011-12-01

    The fields of psychoanalysis and neuroscience use different methods of description, analysis and comprehension of reality, and because each is based on a different methodology, each approach constructs a different representation of reality. Thus, psychoanalysis could contribute to a general psychology involving neuroscience to the extent that a "psychoanalytical psychology" (the theory of mental functioning that is extrapolated from psychoanalytical practice) defines natural objects of study (mind functions) for a multidisciplinary approach. However, the so called "naturalisation" of psychoanalytical concepts (metapsychology) does not imply the reduction of these concepts to biology; rather, it suggests a search for compatibility between psychoanalytical concepts and neuroscientific description. Such compatibility would mean the search for common objects that could be described from either a psychoanalytic or a neuroscientific point of view. We suggest that inter-subjectivity, empathy or "co-thinking" processes, from early development to the psychoanalytic relationship or the interaction between the patient and the analyst, could be such a common object for cognitive social neuroscience and psychoanalysis. Together, neuroscience and psychoanalysis could then contribute to a multidisciplinary approach of psychic inter- or co-activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Application of a cognitive neuroscience perspective of cognitive control to late-life anxiety

    PubMed Central

    Beaudreau, Sherry A.; MacKay-Brandt, Anna; Reynolds, Jeremy

    2013-01-01

    Recent evidence supports a negative association between anxiety and cognitive control. Given age-related reductions in some cognitive abilities and the relation of late life anxiety to cognitive impairment, this negative association may be particularly relevant to older adults. This critical review conceptualizes anxiety and cognitive control from cognitive neuroscience and cognitive aging theoretical perspectives and evaluates the methodological approaches and measures used to assess cognitive control. Consistent with behavioral investigations of young adults, the studies reviewed implicate specific and potentially negative effects of anxiety on cognitive control processes in older adults. Hypotheses regarding the role of both aging and anxiety on cognitive control, the bi-directionality between anxiety and cognitive control, and the potential for specific symptoms of anxiety (particularly worry) to mediate this association, are specified and discussed. PMID:23602352

  4. Application of a cognitive neuroscience perspective of cognitive control to late-life anxiety.

    PubMed

    Beaudreau, Sherry A; MacKay-Brandt, Anna; Reynolds, Jeremy

    2013-08-01

    Recent evidence supports a negative association between anxiety and cognitive control. Given age-related reductions in some cognitive abilities and the relation of late life anxiety to cognitive impairment, this negative association may be particularly relevant to older adults. This critical review conceptualizes anxiety and cognitive control from cognitive neuroscience and cognitive aging theoretical perspectives and evaluates the methodological approaches and measures used to assess cognitive control. Consistent with behavioral investigations of young adults, the studies reviewed implicate specific and potentially negative effects of anxiety on cognitive control processes in older adults. Hypotheses regarding the role of both aging and anxiety on cognitive control, the bi-directionality between anxiety and cognitive control, and the potential for specific symptoms of anxiety (particularly worry) to mediate this association, are specified and discussed. Published by Elsevier Ltd.

  5. Plasticity of the aging brain: new directions in cognitive neuroscience.

    PubMed

    Gutchess, Angela

    2014-10-31

    Cognitive neuroscience has revealed aging of the human brain to be rich in reorganization and change. Neuroimaging results have recast our framework around cognitive aging from one of decline to one emphasizing plasticity. Current methods use neurostimulation approaches to manipulate brain function, providing a direct test of the ways that the brain differently contributes to task performance for younger and older adults. Emerging research into emotional, social, and motivational domains provides some evidence for preservation with age, suggesting potential avenues of plasticity, alongside additional evidence for reorganization. Thus, we begin to see that aging of the brain, amidst interrelated behavioral and biological changes, is as complex and idiosyncratic as the brain itself, qualitatively changing over the life span.

  6. Mind and muscle: the cognitive-affective neuroscience of exercise.

    PubMed

    Stein, Dan J; Collins, Malcolm; Daniels, Willie; Noakes, Timothy D; Zigmond, Michael

    2007-01-01

    There is growing basic-science interest in the mechanisms underpinning the positive effects of exercise on brain function and cognitive-affective performance. There is also increasing clinical evidence that exercise may prevent and treat various neuropsychiatric disorders. At the same time, there is growing awareness that athletic performance is mediated in crucial ways by central nervous system mechanisms. The relevant mechanisms in all these cases requires further exploration, but likely includes neurotrophic, neuroendocrine, and neurotransmitter systems, which in turn are crucial mediators of psychopathology and resilience. The hypothesis that Homo sapiens evolved as a specialist endurance runner provides an intriguing context against which to research the proximal mechanisms relevant to a cognitive-affective neuroscience of exercise.

  7. The Neuroscience of Mathematical Cognition and Learning. OECD Education Working Papers, No. 136

    ERIC Educational Resources Information Center

    Looi, Chung Yen; Thompson, Jacqueline; Krause, Beatrix; Kadosh, Roi Cohen

    2016-01-01

    The synergistic potential of cognitive neuroscience and education for efficient learning has attracted considerable interest from the general public, teachers, parents, academics and policymakers alike. This review is aimed at providing 1) an accessible and general overview of the research progress made in cognitive neuroscience research in…

  8. The Neuroscience of Mathematical Cognition and Learning. OECD Education Working Papers, No. 136

    ERIC Educational Resources Information Center

    Looi, Chung Yen; Thompson, Jacqueline; Krause, Beatrix; Kadosh, Roi Cohen

    2016-01-01

    The synergistic potential of cognitive neuroscience and education for efficient learning has attracted considerable interest from the general public, teachers, parents, academics and policymakers alike. This review is aimed at providing 1) an accessible and general overview of the research progress made in cognitive neuroscience research in…

  9. Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models.

    PubMed

    Moore, Holly; Geyer, Mark A; Carter, Cameron S; Barch, Deanna M

    2013-11-01

    Over the past two decades, the awareness of the disabling and treatment-refractory effects of impaired cognition in schizophrenia has increased dramatically. In response to this still unmet need in the treatment of schizophrenia, the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative was developed. The goal of CNTRICS is to harness cognitive neuroscience to develop a brain-based set of tools for measuring cognition in schizophrenia and to test new treatments. CNTRICS meetings focused on development of tasks with cognitive construct validity for use in both human and animal model studies. This special issue presents papers discussing the cognitive testing paradigms selected by CNTRICS for animal model systems. These paradigms are designed to measure cognitive constructs within the domains of perception, attention, executive function, working memory, object/relational long-term memory, and social/affective processes.

  10. Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models

    PubMed Central

    Moore, Holly; Geyer, Mark A.; Carter, Cameron S.; Barch, Deanna M.

    2014-01-01

    Over the past two decades, the awareness of the disabling and treatment-refractory effects of impaired cognition in schizophrenia has increased dramatically. In response to this still unmet need in the treatment of schizophrenia, the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative was developed. The goal of CNTRICS is to harness cognitive neuroscience to develop a brain-based set of tools for measuring cognition in schizophrenia and to test new treatments. CNTRICS meetings focused on development of tasks with cognitive construct validity for use in both human and animal model studies. This special issue presents papers discussing the cognitive testing paradigms selected by CNTRICS for animal model systems. These paradigms are designed to measure cognitive constructs within the domains of perception, attention, executive function, working memory, object/relational long-term memory, and social/affective processes. PMID:24090823

  11. Strategic Cognitive Sequencing: A Computational Cognitive Neuroscience Approach

    PubMed Central

    Herd, Seth A.; Krueger, Kai A.; Kriete, Trenton E.; Huang, Tsung-Ren; Hazy, Thomas E.; O'Reilly, Randall C.

    2013-01-01

    We address strategic cognitive sequencing, the “outer loop” of human cognition: how the brain decides what cognitive process to apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present four preliminary neural network models. The first addresses how the prefrontal cortex (PFC) and basal ganglia (BG) cooperate to perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward, and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or “self-instruction”). The last shows how a constraint satisfaction process can find useful plans. The PFC maintains current and goal states and associates from both of these to find a “bridging” state, an abstract plan. We discuss how these processes could work together to produce strategic cognitive sequencing and discuss future directions in this area. PMID:23935605

  12. Strategic cognitive sequencing: a computational cognitive neuroscience approach.

    PubMed

    Herd, Seth A; Krueger, Kai A; Kriete, Trenton E; Huang, Tsung-Ren; Hazy, Thomas E; O'Reilly, Randall C

    2013-01-01

    We address strategic cognitive sequencing, the "outer loop" of human cognition: how the brain decides what cognitive process to apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present four preliminary neural network models. The first addresses how the prefrontal cortex (PFC) and basal ganglia (BG) cooperate to perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward, and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or "self-instruction"). The last shows how a constraint satisfaction process can find useful plans. The PFC maintains current and goal states and associates from both of these to find a "bridging" state, an abstract plan. We discuss how these processes could work together to produce strategic cognitive sequencing and discuss future directions in this area.

  13. Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer.

    PubMed

    Parkin, Beth L; Ekhtiari, Hamed; Walsh, Vincent F

    2015-09-02

    The use of non-invasive brain stimulation is widespread in studies of human cognitive neuroscience. This has led to some genuine advances in understanding perception and cognition, and has raised some hopes of applying the knowledge in clinical contexts. There are now several forms of stimulation, the ability to combine these with other methods, and ethical questions that are special to brain stimulation. In this Primer, we aim to give the users of these methods a starting point and perspective from which to view the key questions and usefulness of the different forms of non-invasive brain stimulation. We have done so by taking a critical view of recent highlights in the literature, selected case studies to illustrate the elements necessary and sufficient for good experiments, and pointed to questions and findings that can only be addressed using interference methods.

  14. Meeting the Challenge of Preparing Undergraduates for Careers in Cognitive Neuroscience

    PubMed Central

    Mickley Steinmetz, Katherine R.; Atapattu, Ranga K.

    2010-01-01

    Preparing students for a career in cognitive neuroscience may be especially challenging due to the expense and complexity of many types of cognitive neuroscience technologies. However, it is possible to train students in cognitive neuroscience at a primarily undergraduate university (PUI) in both the classroom and the laboratory. First, we propose specific methods that can be used in the classroom to make cognitive neuroscience material accessible. We also suggest ways to introduce cognitive neuroscience methodology through lab-based courses or activities. Second, we offer suggestions on how to conduct more complex functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) research with undergraduates at a small school. We hope that these suggestions will be a helpful guide for those wishing to prepare their students for further studies and careers in this exciting and challenging field. PMID:23495003

  15. Meeting the challenge of preparing undergraduates for careers in cognitive neuroscience.

    PubMed

    Mickley Steinmetz, Katherine R; Atapattu, Ranga K

    2010-01-01

    Preparing students for a career in cognitive neuroscience may be especially challenging due to the expense and complexity of many types of cognitive neuroscience technologies. However, it is possible to train students in cognitive neuroscience at a primarily undergraduate university (PUI) in both the classroom and the laboratory. First, we propose specific methods that can be used in the classroom to make cognitive neuroscience material accessible. We also suggest ways to introduce cognitive neuroscience methodology through lab-based courses or activities. Second, we offer suggestions on how to conduct more complex functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) research with undergraduates at a small school. We hope that these suggestions will be a helpful guide for those wishing to prepare their students for further studies and careers in this exciting and challenging field.

  16. Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition

    NASA Astrophysics Data System (ADS)

    Fitch, W. Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a

  17. Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition.

    PubMed

    Fitch, W Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a

  18. How neuroscience will change our view on consciousness.

    PubMed

    Lamme, Victor A F

    2010-09-01

    Is there consciousness in machines? Or in animals? What happens to consciousness when we are asleep, or in vegetative state? These are just a few examples of the many questions about consciousness that are troubling scientists and laypersons alike. Moreover, these questions share a striking feature: They seem to have been around forever, yet neither science nor philosophy has been able to provide an answer. Why is that? In my view, the main reason is that the study of consciousness is dominated by what we know from introspection and behavior. This has fooled us into thinking that we know what we are conscious of. The scientific equivalent of this is Global Workspace theory. But in fact we don't know what we are conscious of, as I will explain from a simple experiment in visual perception. Once we acknowledge that, it is clear that we need other evidence about the presence or absence of a conscious sensation than introspection or behavior. Assuming the brain has something to do with it, I will demonstrate how arguments from neuroscience, together with theoretical and ontological arguments, can help us resolve what the exact nature of our conscious sensation is. It turns out that we see much more than we think, and that Global Workspace theory is all about access but not about seeing. The exercise is an example of how neuroscience will move us away from psychological intuitions about consciousness, and hence depict a notion of consciousness that may go against our deepest conviction: "My consciousness is mine, and mine alone." It's not.

  19. Thinking in circuits: toward neurobiological explanation in cognitive neuroscience.

    PubMed

    Pulvermüller, Friedemann; Garagnani, Max; Wennekers, Thomas

    2014-10-01

    Cognitive theory has decomposed human mental abilities into cognitive (sub) systems, and cognitive neuroscience succeeded in disclosing a host of relationships between cognitive systems and specific structures of the human brain. However, an explanation of why specific functions are located in specific brain loci had still been missing, along with a neurobiological model that makes concrete the neuronal circuits that carry thoughts and meaning. Brain theory, in particular the Hebb-inspired neurocybernetic proposals by Braitenberg, now offers an avenue toward explaining brain-mind relationships and to spell out cognition in terms of neuron circuits in a neuromechanistic sense. Central to this endeavor is the theoretical construct of an elementary functional neuronal unit above the level of individual neurons and below that of whole brain areas and systems: the distributed neuronal assembly (DNA) or thought circuit (TC). It is shown that DNA/TC theory of cognition offers an integrated explanatory perspective on brain mechanisms of perception, action, language, attention, memory, decision and conceptual thought. We argue that DNAs carry all of these functions and that their inner structure (e.g., core and halo subcomponents), and their functional activation dynamics (e.g., ignition and reverberation processes) answer crucial localist questions, such as why memory and decisions draw on prefrontal areas although memory formation is normally driven by information in the senses and in the motor system. We suggest that the ability of building DNAs/TCs spread out over different cortical areas is the key mechanism for a range of specifically human sensorimotor, linguistic and conceptual capacities and that the cell assembly mechanism of overlap reduction is crucial for differentiating a vocabulary of actions, symbols and concepts.

  20. Building bridges between neuroscience, cognition and education with predictive modeling

    DOE PAGES

    Stringer, Steve; Tommerdahl, Jodi

    2015-05-06

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. In this article, we present a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include representations from the neural level to the policy level. Researchers could calibrate, test, and question the model, potentially providing quicker, more efficient, and more responsible ways of making advances in the developing educational field. Likewise, virtual investigations using models with this sort of capability can supplement themore » valuable information derived from carrying out policy and instructional experiments in real educational contexts.« less

  1. Building bridges between neuroscience, cognition and education with predictive modeling

    SciTech Connect

    Stringer, Steve; Tommerdahl, Jodi

    2015-05-06

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. In this article, we present a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include representations from the neural level to the policy level. Researchers could calibrate, test, and question the model, potentially providing quicker, more efficient, and more responsible ways of making advances in the developing educational field. Likewise, virtual investigations using models with this sort of capability can supplement the valuable information derived from carrying out policy and instructional experiments in real educational contexts.

  2. Dyslexia: a new synergy between education and cognitive neuroscience.

    PubMed

    Gabrieli, John D E

    2009-07-17

    Reading is essential in modern societies, but many children have dyslexia, a difficulty in learning to read. Dyslexia often arises from impaired phonological awareness, the auditory analysis of spoken language that relates the sounds of language to print. Behavioral remediation, especially at a young age, is effective for many, but not all, children. Neuroimaging in children with dyslexia has revealed reduced engagement of the left temporo-parietal cortex for phonological processing of print, altered white-matter connectivity, and functional plasticity associated with effective intervention. Behavioral and brain measures identify infants and young children at risk for dyslexia, and preventive intervention is often effective. A combination of evidence-based teaching practices and cognitive neuroscience measures could prevent dyslexia from occurring in the majority of children who would otherwise develop dyslexia.

  3. The Cognitive Neuroscience of Memory Function and Dysfunction in Schizophrenia

    PubMed Central

    Ranganath, Charan; Minzenberg, Michael; Ragland, J. Daniel

    2008-01-01

    Patients with schizophrenia have pronounced deficits in memory for events, or episodic memory. These deficits severely affect patients’ quality of life and functional outcome, and current medications have only a modest effect, making episodic memory an important domain for translational development of clinical trial paradigms. The current article provides a brief review of the significant progress that cognitive neuroscience has made in understanding basic mechanisms of episodic memory formation and retrieval that were presented and discussed at the first CNTRICS meeting in Washington, D.C. During that meeting a collaborative decision was made that measures of item-specific and relational memory were the most promising constructs for immediate translational development. A brief summary of research on episodic memory in schizophrenia is presented to provide a context for investigating item-specific and relational memory processes. Candidate brain regions are also discussed. PMID:18495087

  4. Mood dysregulation and stabilization: perspectives from emotional cognitive neuroscience.

    PubMed

    Yamawaki, Shigeto; Okada, Go; Okamoto, Yasumasa; Liberzon, Israel

    2012-06-01

    Mood is conceptualized as a long-lasting emotional state, which can have profound implications for mental and physical health. The development of neuroimaging methods has enabled significant advances towards elucidating the mechanisms underlying regulation of mood and emotion; however, our understanding of mood and emotion dysregulation in stress-related psychiatric disorders is still largely lacking. From the cognitive-affective neuroscience perspective, achieving deeper, more mechanistic understanding of mood disorders necessitates detailed understanding of specific components of neural systems involved in mood dysregulation and stabilization. In this review, we provide an overview of neural systems implicated in the development of a long-term negative mood state, as well as those related to emotion and emotion regulation, and discuss their proposed involvement in mood and anxiety disorders.

  5. Cognitive neuroscience neuroimaging repository for the adult lifespan.

    PubMed

    Razlighi, Qolamreza R; Habeck, Christian; Barulli, Daniel; Stern, Yaakov

    2017-01-01

    With recent advances in neuroimaging technology, it is now possible to image human brain function in vivo, which revolutionized the cognitive neuroscience field. However, like any other newly developed technique, the acquisition of neuroimaging data is costly and logistically challenging. Furthermore, studying human cognition requires acquiring a large amount of neuroimaging data, which might not be feasible to do by every researcher in the field. Here, we describe our group's efforts to acquire one of the largest neuroimaging datasets that aims to investigate the neural substrates of age-related cognitive decline, which will be made available to share with other investigators. Our neuroimaging repository includes up to 14 different functional images for more than 486 subjects across the entire adult lifespan in addition to their 3 structural images. Currently, data from 234 participants have been acquired, including all 14 functional and 3 structural images, which is planned to increased to 375 participants in the next few years. A complete battery of neuropsychological tests was also administered to all participants. The neuroimaging and accompanying psychometric data will be available through an online and easy-to-use data sharing website.

  6. Who's afraid of a cognitive neuroscience of creativity?

    PubMed

    Dietrich, Arne

    2007-05-01

    This article has two goals. First, the ideas outlined here can be seen as a sustained and disciplined demolition project aimed at sanitizing our bad habits of thinking about creativity. Apart from the enormous amount of fluff out there, the study of creativity is, quite unfortunately, still dominated by a number of rather dated ideas that are either so simplistic that nothing good can possibly come out of them or, given what we know about the brain, factually mistaken. As cognitive neuroscience is making more serious contact with the knowledge base of creativity, we must, from the outset, clear the ground of these pernicious fossil traces from a bygone era. The best neuroimaging techniques help little if we don't know what to look for. Second, as an antidote to these theoretical duds, the article offers fresh ideas on possible mechanisms of creativity. Given that they are grounded in current understanding of cognitive and neural processes, it is hoped that these ideas represent steps broadly pointing in the right direction. In the end, the fundamental question we must ask ourselves is what, exactly, are the mental processes--or their critical elements--that yield creative thoughts.

  7. The Potential Relevance of Cognitive Neuroscience for the Development and Use of Technology-Enhanced Learning

    ERIC Educational Resources Information Center

    Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert

    2015-01-01

    There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating neuroscientific concepts into TEL research. We caution…

  8. The Potential Relevance of Cognitive Neuroscience for the Development and Use of Technology-Enhanced Learning

    ERIC Educational Resources Information Center

    Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert

    2015-01-01

    There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating neuroscientific concepts into TEL research. We caution…

  9. A retrospective view on research in neuroscience in Norway.

    PubMed

    Gjerstad, L; Gilhus, N E; Storstein, A

    2008-01-01

    This brief historical review on neuroscience in Norway shows a comparatively high research activity with many important results. The Norwegian zoologist Fridtjof Nansen, who later became a famous Arctic explorer, was the first to formulate the neuron doctrine. 'The Oslo School of Neuroanatomy' contributed enormously to the understanding of the detailed anatomy and chemistry of the central nervous system. Norwegian neurophysiologists made important findings from studies of hippocampus including the inhibitory basket cell, the LTP phenomenon and the 'hippocampal-slice-technique'. In clinical neuroscience the description of Refsum's disease and studies of myasthenia gravis and multiple sclerosis have been of particular importance. Two of 13 centres of excellence in Norway selected in 2003 were from neuroscience, and The Norwegian Research Council has its own programme for neuroscience. The Norwegian Neurological Association arranges annual meetings to promote interest in neurological research.

  10. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder: Current Status and Working Hypotheses

    ERIC Educational Resources Information Center

    Vaidya, Chandan J.; Stollstorff, Melanie

    2008-01-01

    Cognitive neuroscience studies of Attention Deficit Hyperactivity Disorder (ADHD) suggest multiple loci of pathology with respect to both cognitive domains and neural circuitry. Cognitive deficits extend beyond executive functioning to include spatial, temporal, and lower-level "nonexecutive" functions. Atypical functional anatomy extends beyond…

  11. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder: Current Status and Working Hypotheses

    ERIC Educational Resources Information Center

    Vaidya, Chandan J.; Stollstorff, Melanie

    2008-01-01

    Cognitive neuroscience studies of Attention Deficit Hyperactivity Disorder (ADHD) suggest multiple loci of pathology with respect to both cognitive domains and neural circuitry. Cognitive deficits extend beyond executive functioning to include spatial, temporal, and lower-level "nonexecutive" functions. Atypical functional anatomy extends beyond…

  12. Probabilistic language models in cognitive neuroscience: Promises and pitfalls.

    PubMed

    Armeni, Kristijan; Willems, Roel M; Frank, Stefan L

    2017-09-05

    Cognitive neuroscientists of language comprehension study how neural computations relate to cognitive computations during comprehension. On the cognitive part of the equation, it is important that the computations and processing complexity are explicitly defined. Probabilistic language models can be used to give a computationally explicit account of language complexity during comprehension. Whereas such models have so far predominantly been evaluated against behavioral data, only recently have the models been used to explain neurobiological signals. Measures obtained from these models emphasize the probabilistic, information-processing view of language understanding and provide a set of tools that can be used for testing neural hypotheses about language comprehension. Here, we provide a cursory review of the theoretical foundations and example neuroimaging studies employing probabilistic language models. We highlight the advantages and potential pitfalls of this approach and indicate avenues for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Case studies continue to illuminate the cognitive neuroscience of memory.

    PubMed

    Rosenbaum, R Shayna; Gilboa, Asaf; Moscovitch, Morris

    2014-05-01

    The current ubiquity of functional neuroimaging studies, and the importance they have had in elucidating brain function, obscures the fact that much of what we know about brain-behavior relationships derives largely from the study of single- and multiple-patient cases. A major goal of the present review is to describe how single cases continue to uniquely and critically contribute to cognitive neuroscience theory. With several recent examples from the literature, we demonstrate that single cases can both challenge accepted dogma and generate hypotheses and theories that steer the field in new directions. We discuss recent findings from case studies that specify critical functions of the hippocampus in episodic memory and recollection, and clarify its role in nonmnemonic abilities. Although we focus on the hippocampus, we discuss other regions and the occurrence of new associative learning, as well as the involvement of the ventromedial prefrontal and parietal cortices in memory encoding and retrieval. We also describe ways of dealing with the shortcomings of case studies, and emphasize the partnership of patient and neuroimaging methods in constraining neurocognitive models of memory.

  14. Point of View: Taking a Cue from Neuroscience

    ERIC Educational Resources Information Center

    Miele, Eleanor A.

    2015-01-01

    This column shares reflections or thoughtful opinions on issues of broad interest to the community. This article encourages teachers to use emerging scientific evidence to change classroom culture--accept the evidence from neuroscience and find ways to make classrooms less stressful and more successful.

  15. Point of View: Taking a Cue from Neuroscience

    ERIC Educational Resources Information Center

    Miele, Eleanor A.

    2015-01-01

    This column shares reflections or thoughtful opinions on issues of broad interest to the community. This article encourages teachers to use emerging scientific evidence to change classroom culture--accept the evidence from neuroscience and find ways to make classrooms less stressful and more successful.

  16. A modern neuroscience approach to chronic spinal pain: combining pain neuroscience education with cognition-targeted motor control training.

    PubMed

    Nijs, Jo; Meeus, Mira; Cagnie, Barbara; Roussel, Nathalie A; Dolphens, Mieke; Van Oosterwijck, Jessica; Danneels, Lieven

    2014-05-01

    Chronic spinal pain (CSP) is a severely disabling disorder, including nontraumatic chronic low back and neck pain, failed back surgery, and chronic whiplash-associated disorders. Much of the current therapy is focused on input mechanisms (treating peripheral elements such as muscles and joints) and output mechanisms (addressing motor control), while there is less attention to processing (central) mechanisms. In addition to the compelling evidence for impaired motor control of spinal muscles in patients with CSP, there is increasing evidence that central mechanisms (ie, hyperexcitability of the central nervous system and brain abnormalities) play a role in CSP. Hence, treatments for CSP should address not only peripheral dysfunctions but also the brain. Therefore, a modern neuroscience approach, comprising therapeutic pain neuroscience education followed by cognition-targeted motor control training, is proposed. This perspective article explains why and how such an approach to CSP can be applied in physical therapist practice.

  17. Connecting Education and Cognitive Neuroscience: Where Will the Journey Take Us?

    ERIC Educational Resources Information Center

    Ansari, Daniel; Coch, Donna; De Smedt, Bert

    2011-01-01

    In recent years there have been growing calls for forging greater connections between education and cognitive neuroscience. As a consequence great hopes for the application of empirical research on the human brain to educational problems have been raised. In this article we contend that the expectation that results from cognitive neuroscience…

  18. Connecting Neuroscience, Cognitive, and Educational Theories and Research to Practice: A Review of Mathematics Intervention Programs

    ERIC Educational Resources Information Center

    Kroeger, Lori A.; Brown, Rhonda Douglas; O'Brien, Beth A.

    2012-01-01

    Research Findings: This article describes major theories and research on math cognition across the fields of neuroscience, cognitive psychology, and education and connects these literatures to intervention practices. Commercially available math intervention programs were identified and evaluated using the following questions: (a) Did neuroscience…

  19. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    ERIC Educational Resources Information Center

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  20. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    ERIC Educational Resources Information Center

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  1. Connecting Education and Cognitive Neuroscience: Where Will the Journey Take Us?

    ERIC Educational Resources Information Center

    Ansari, Daniel; Coch, Donna; De Smedt, Bert

    2011-01-01

    In recent years there have been growing calls for forging greater connections between education and cognitive neuroscience. As a consequence great hopes for the application of empirical research on the human brain to educational problems have been raised. In this article we contend that the expectation that results from cognitive neuroscience…

  2. Connecting Neuroscience, Cognitive, and Educational Theories and Research to Practice: A Review of Mathematics Intervention Programs

    ERIC Educational Resources Information Center

    Kroeger, Lori A.; Brown, Rhonda Douglas; O'Brien, Beth A.

    2012-01-01

    Research Findings: This article describes major theories and research on math cognition across the fields of neuroscience, cognitive psychology, and education and connects these literatures to intervention practices. Commercially available math intervention programs were identified and evaluated using the following questions: (a) Did neuroscience…

  3. Behaviorism and neuroscience.

    PubMed

    Thompson, R F

    1994-04-01

    The influence of the methods and theories of behaviorism on theory and research in the neurosciences is examined, partly in light of Watson's (1913) original call-to-arms. Behaviorist approaches to animal behavior, particularly in the study of processes of learning and memory, have had a profound and continual influence in the area of neuroscience concerned with animal studies of brain substrates of behavior. Similarly, contemporary behaviorists have not been opposed to the study of neurobiological substrates of behavior. On the other hand, classical behaviorist views of thinking, that is, as reflex chains, have been largely discounted by developments in neuroscience. Classical behaviorism is viewed by many as being most at odds with the modern fields of cognitive psychology and cognitive neuroscience, particularly regarding "mind" and "consciousness." A modest attempt at reconciliation is offered.

  4. Cognitive Neuroscience Approaches to Understanding Behavior Change in Alcohol Use Disorder Treatments.

    PubMed

    Naqvi, Nasir H; Morgenstern, Jon

    2015-01-01

    Researchers have begun to apply cognitive neuroscience concepts and methods to study behavior change mechanisms in alcohol use disorder (AUD) treatments. This review begins with an examination of the current state of treatment mechanisms research using clinical and social psychological approaches. It then summarizes what is currently understood about the pathophysiology of addiction from a cognitive neuroscience perspective. Finally, it reviews recent efforts to use cognitive neuroscience approaches to understand the neural mechanisms of behavior change in AUD, including studies that use neural functioning to predict relapse and abstinence; studies examining neural mechanisms that operate in current evidence-based behavioral interventions for AUD; as well as research on novel behavioral interventions that are being derived from our emerging understanding of the neural and cognitive mechanisms of behavior change in AUD. The article highlights how the regulation of subcortical regions involved in alcohol incentive motivation by prefrontal cortical regions involved in cognitive control may be a core mechanism that plays a role in these varied forms of behavior change in AUD. We also lay out a multilevel framework for integrating cognitive neuroscience approaches with more traditional methods for examining AUD treatment mechanisms.

  5. How Does Neuroscience Inform the Study of Cognitive Development?

    ERIC Educational Resources Information Center

    Nelson, Charles A.; Moulson, Margaret C.; Richmond, Jenny

    2006-01-01

    The fields of developmental psychology and developmental neuroscience have existed independently of one another for many years. This is unfortunate, as knowledge of how the brain develops can inform the study of behavioral development. In this paper, we provide two examples of how knowledge about brain development has improved our understanding of…

  6. Applying Cognitive Neuroscience Research to Education: The Case of Literacy

    ERIC Educational Resources Information Center

    Katzir, Tami; Pare-Blagoev, Juliana

    2006-01-01

    Neuroscience has provided fascinating glimpses into the brain's development and function. Despite remarkable progress, brain research has not yet been successfully brought to bear in many fields of educational psychology. In this article, work on literacy serves as a test case for an examination of potential future bridges linking mind, brain, and…

  7. Systems biology in neuroscience: bridging genes to cognition.

    PubMed

    Grant, Seth G N

    2003-10-01

    Systems biology is a new branch of biology aimed at understanding biological complexity. Genomic and proteomic methods integrated with cellular and organismal analyses allow modelling of physiological processes. Progress in understanding synapse composition and new experimental and bioinformatics methods indicate the synapse is an excellent starting point for global systems biology of the brain. A neuroscience systems biology programme, organized as a consortium, is proposed.

  8. Technical evolutions of the french multipurpose instruments for cognitive neurosciences

    NASA Astrophysics Data System (ADS)

    Bois, JM; Legrand, G.; Matsakis, Y.; Venet, M.; McIntyre, J.; Shulenin, A.

    Since the first French flight in space in 1982, the CNES has developed a wide range of instruments, especially in the field of Neurosciences. The design of these instruments has considerably evolved from rather simple equipment up to much more sophisticated tools that are being specially tayloried for these missions. Four major phases can be identified: - a simple adaptation of an echographe leading to the first neurosciences experiments (the ARAGATZ'88 mission), - the ILLUSIONS and VIMINAL instruments used during the ANTARES'92 and ALTAIR'93 missions, - the COGNILAB instrument developed for the CASSIOPEE'96 mission, to be re-used in 1997 and in 1999, - a preliminary design of the 1999 mission payload, including virtual reality concepts, in a modular design to adapt to the European COF. Aside from the evolution of scientific requirements, the experience gained during the flights led to progressive improvements in the different technical parts, including visual system, body restraint systems, accessories, such as a force feedback joystick, computer and software, etc. This paper describes the technical evolutions in the CNES Neurosciences program.

  9. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): A Computational Basis for ICArUS Challenge Problem Design

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking (ICArUS): A Computational Basis for ICArUS Challenge...4. TITLE AND SUBTITLE Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking (ICArUS): A Computational Basis for ICArUS...Advanced Research Projects Activity) program ICArUS (Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking) requires

  10. Basic Cognitive Neuroscience of Memory and Self-Appraisals in PTSD

    DTIC Science & Technology

    2014-02-01

    Control condition. In the High Self Efficacy condition, individuals were asked to recall three autobiographical memories associated with success and......DATE 2. REPORT TYPE Annual 3. DATES COVERED 15 JAN 2013-14 JAN 2014 4. TITLE AND SUBTITLE Basic Cognitive Neuroscience of Memory and Self

  11. Public Understanding of Cognitive Neuroscience Research Findings: Trying to Peer beyond Enchanted Glass

    ERIC Educational Resources Information Center

    Grotzer, Tina A.

    2011-01-01

    This article considers the appeal of cognitive neuroscience research to the general public within the context of the deep puzzles involved in using our minds to understand how our minds work. It offers a few promising examples of findings that illuminate the ways of the mind and reveal these workings to be counter-intuitive with our subjective…

  12. From Neurons to Brainpower: Cognitive Neuroscience and Brain-Based Learning

    ERIC Educational Resources Information Center

    Phillips, Janet M.

    2005-01-01

    We have learned more about the brain in the past five years than the previous 100. Neuroimaging, lesion studies, and animal studies have revealed the intricate inner workings of the brain and learning. Synaptogenesis, pruning, sensitive periods, and plasticity have all become accepted concepts of cognitive neuroscience that are now being applied…

  13. Do the Modern Neurosciences Call for a New Model of Organizational Cognition?

    ERIC Educational Resources Information Center

    Seni, Dan Alexander

    2012-01-01

    Our purpose in this paper is to try to make a significant contribution to the analysis of cognitive capabilities of the organization of active social systems such as the business enterprise by re-examining the concepts of organizational intelligence, organizational memory and organizational learning in light of the findings of modern neuroscience.…

  14. Cognitive Neuroscience and Mathematics Learning: How Far Have We Come? Where Do We Need to Go?

    ERIC Educational Resources Information Center

    Ansari, Daniel; Lyons, Ian M.

    2016-01-01

    In this commentary on the ZDM special issue: "Cognitive neuroscience and mathematics learning--revisited after 5 years," we explore the progress that has been made since ZDM published a similar special issue in 2010. We consider the extent to which future frontiers and methodological concerns raised in the commentary on the 2010 issue by…

  15. Teaching Empathy: A Framework Rooted in Social Cognitive Neuroscience and Social Justice

    ERIC Educational Resources Information Center

    Gerdes, Karen E.; Segal, Elizabeth A.; Jackson, Kelly F.; Mullins, Jennifer L.

    2011-01-01

    We propose that a targeted and structured explication of empathy is a useful, if not essential, foundation for social work theory and practice. We outline a social work framework for empathy, one that is rooted in an interdisciplinary context, emphasizes recent findings in the field of social cognitive neuroscience, and yet is embedded in a social…

  16. Cognitive Neuroscience and Mathematics Learning: How Far Have We Come? Where Do We Need to Go?

    ERIC Educational Resources Information Center

    Ansari, Daniel; Lyons, Ian M.

    2016-01-01

    In this commentary on the ZDM special issue: "Cognitive neuroscience and mathematics learning--revisited after 5 years," we explore the progress that has been made since ZDM published a similar special issue in 2010. We consider the extent to which future frontiers and methodological concerns raised in the commentary on the 2010 issue by…

  17. Do the Modern Neurosciences Call for a New Model of Organizational Cognition?

    ERIC Educational Resources Information Center

    Seni, Dan Alexander

    2012-01-01

    Our purpose in this paper is to try to make a significant contribution to the analysis of cognitive capabilities of the organization of active social systems such as the business enterprise by re-examining the concepts of organizational intelligence, organizational memory and organizational learning in light of the findings of modern neuroscience.…

  18. Creativity, Problem Solving and Innovative Science: Insights from History, Cognitive Psychology and Neuroscience

    ERIC Educational Resources Information Center

    Aldous, Carol R.

    2007-01-01

    This paper examines the intersection between creativity, problem solving, cognitive psychology and neuroscience in a discussion surrounding the genesis of new ideas and innovative science. Three creative activities are considered. These are (a) the interaction between visual-spatial and analytical or verbal reasoning, (b) attending to feeling in…

  19. Basic Cognitive Neuroscience of Memory and Self-Appraisals in PTSD

    DTIC Science & Technology

    2015-02-01

    autobiographical memories associated with success and self- efficacy. In the Control condition, participants recalled any three personally significant memories ...less recruitment in areas associated with the construction of autobiographical memories . In particular, OEF/OIF veterans appears to show...AD_________________ Award Number: W81XWH-13-2-0021 TITLE: Basic Cognitive Neuroscience of Memory and Self-Appraisals in PTSD PRINCIPAL

  20. Public Understanding of Cognitive Neuroscience Research Findings: Trying to Peer beyond Enchanted Glass

    ERIC Educational Resources Information Center

    Grotzer, Tina A.

    2011-01-01

    This article considers the appeal of cognitive neuroscience research to the general public within the context of the deep puzzles involved in using our minds to understand how our minds work. It offers a few promising examples of findings that illuminate the ways of the mind and reveal these workings to be counter-intuitive with our subjective…

  1. Children's Language Production: How Cognitive Neuroscience and Industrial Engineering Can Inform Public Education Policy and Practice

    ERIC Educational Resources Information Center

    Leisman, Gerry

    2012-01-01

    Little of 150 years of research in Cognitive Neurosciences, Human Factors, and the mathematics of Production Management have found their way into educational policy and certainly not into the classroom or in the production of educational materials in any meaningful or practical fashion. Whilst more mundane concepts of timing, sequencing, spatial…

  2. Principles, processes, and puzzles of social cognition: an introduction for the special issue on social cognitive neuroscience.

    PubMed

    Lieberman, Matthew D

    2005-12-01

    This article introduces the special issue of NeuroImage focused on social cognitive neuroscience. Social psychology has a rich history of making sense of the often paradoxical aspects of social cognition and the social world. This article reviews the principles, processes, and puzzles of social cognition and behavior that have been examined by social psychologists for decades. Five principles of social cognition and behavior are reviewed including: (1) the power of the situation over behavior, (2) blindness for situational influences, (3) social perception and self-perception are constructive processes, (4) blindness for the constructed nature of social and self-perception, and (5) self-processes are social. Four processes of social cognition are reviewed including: (1) cognitive architecture; (2) automaticity and control; (3) motivated reasoning; and (4) accessibility, frames, and expectations. Finally, five areas of social cognition that contain enduring puzzles are described including (1) the self, (2) attitudes, (3) reflective social cognition, (4) automatic social cognition, and (5) social motives. In several of the areas of study reviewed, cognitive neuroscience is well positioned to make important contributions to these research traditions either by allowing for new tests of hypotheses or by allowing for unobtrusive measurement of social cognitive processes.

  3. The cognitive neuroscience of human decision making: a review and conceptual framework.

    PubMed

    Fellows, Lesley K

    2004-09-01

    Decision making, the process of choosing between options, is a fundamental human behavior that has been studied intensively by disciplines ranging from cognitive psychology to economics. Despite the importance of this behavior, the neural substrates of decision making are only beginning to be understood. Impaired decision making is recognized in neuropsychiatric conditions such as dementia and drug addiction, and the inconsistencies and biases of healthy decision makers have been intensively studied. However, the tools of cognitive neuroscience have only recently been applied to understanding the brain basis of this complex behavior. This article reviews the literature on the cognitive neuroscience of human decision making, focusing on the roles of the frontal lobes, and provides a conceptual framework for organizing this disparate body of work.

  4. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology

    PubMed Central

    Posner, Jonathan; Russell, James A.; Peterson, Bradley S.

    2008-01-01

    The circumplex model of affect proposes that all affective states arise from cognitive interpretations of core neural sensations that are the product of two independent neurophysiological systems. This model stands in contrast to theories of basic emotions, which posit that a discrete and independent neural system subserves every emotion. We propose that basic emotion theories no longer explain adequately the vast number of empirical observations from studies in affective neuroscience, and we suggest that a conceptual shift is needed in the empirical approaches taken to the study of emotion and affective psychopathologies. The circumplex model of affect is more consistent with many recent findings from behavioral, cognitive neuroscience, neuroimaging, and developmental studies of affect. Moreover, the model offers new theoretical and empirical approaches to studying the development of affective disorders as well as the genetic and cognitive underpinnings of affective processing within the central nervous system. PMID:16262989

  5. Do the Modern Neurosciences Call for a New Model of Organizational Cognition?

    NASA Astrophysics Data System (ADS)

    Seni, Dan Alexander

    2012-10-01

    Our purpose in this paper is to try to make a significant contribution to the analysis of cognitive capabilities of the organization of active social systems such as the business enterprise by re-examining the concepts of organizational intelligence, organizational memory and organizational learning in light of the findings of modern neuroscience. In fact, in this paper we propose that neuroscience shows that sociocognitivity is for real. In other words, cognition, in the broad sense, is not exclusive to living organisms: Certain kinds of social organizations (e.g. the enterprise) possess elementary cognitive capabilities by virtue of their structure and their functions. The classical theory of organizational cognition is the theory of Artificial Intelligence. We submit that this approach has proven to be false and barren, and that a materialist emergentist neuroscientific approach, in the tradition of Mario Bunge (2003, 2006), leads to a far more fruitful viewpoint, both for theory development and for eventual factual verification. Our proposals for sociocognitivity are based on findings in three areas of modern neuroscience and biopsychology: (1) The theory of intelligence and of intelligent systems; (2) The neurological theory of memory as distributed, hierarchical neuronal systems; (3) The theory of cognitive action in general and of learning in particular. We submit that findings in every one of these areas are applicable to the social organization.

  6. Worth a Glance: Using Eye Movements to Investigate the Cognitive Neuroscience of Memory

    PubMed Central

    Hannula, Deborah E.; Althoff, Robert R.; Warren, David E.; Riggs, Lily; Cohen, Neal J.; Ryan, Jennifer D.

    2010-01-01

    Results of several investigations indicate that eye movements can reveal memory for elements of previous experience. These effects of memory on eye movement behavior can emerge very rapidly, changing the efficiency and even the nature of visual processing without appealing to verbal reports and without requiring conscious recollection. This aspect of eye movement based memory investigations is particularly useful when eye movement methods are used with special populations (e.g., young children, elderly individuals, and patients with severe amnesia), and also permits use of comparable paradigms in animals and humans, helping to bridge different memory literatures and permitting cross-species generalizations. Unique characteristics of eye movement methods have produced findings that challenge long-held views about the nature of memory, its organization in the brain, and its failures in special populations. Recently, eye movement methods have been successfully combined with neuroimaging techniques such as fMRI, single-unit recording, and magnetoencephalography, permitting more sophisticated investigations of memory. Ultimately, combined use of eye-tracking with neuropsychological and neuroimaging methods promises to provide a more comprehensive account of brain–behavior relationships and adheres to the “converging evidence” approach to cognitive neuroscience. PMID:21151363

  7. Worth a glance: using eye movements to investigate the cognitive neuroscience of memory.

    PubMed

    Hannula, Deborah E; Althoff, Robert R; Warren, David E; Riggs, Lily; Cohen, Neal J; Ryan, Jennifer D

    2010-01-01

    Results of several investigations indicate that eye movements can reveal memory for elements of previous experience. These effects of memory on eye movement behavior can emerge very rapidly, changing the efficiency and even the nature of visual processing without appealing to verbal reports and without requiring conscious recollection. This aspect of eye movement based memory investigations is particularly useful when eye movement methods are used with special populations (e.g., young children, elderly individuals, and patients with severe amnesia), and also permits use of comparable paradigms in animals and humans, helping to bridge different memory literatures and permitting cross-species generalizations. Unique characteristics of eye movement methods have produced findings that challenge long-held views about the nature of memory, its organization in the brain, and its failures in special populations. Recently, eye movement methods have been successfully combined with neuroimaging techniques such as fMRI, single-unit recording, and magnetoencephalography, permitting more sophisticated investigations of memory. Ultimately, combined use of eye-tracking with neuropsychological and neuroimaging methods promises to provide a more comprehensive account of brain-behavior relationships and adheres to the "converging evidence" approach to cognitive neuroscience.

  8. [LONI & Co: about the epistemic specificity of digital spaces of knowledge in cognitive neuroscience].

    PubMed

    Huber, Lara

    2011-06-01

    In the neurosciences digital databases more and more are becoming important tools of data rendering and distributing. This development is due to the growing impact of imaging based trial design in cognitive neuroscience, including morphological as much as functional imaging technologies. As the case of the 'Laboratory of Neuro Imaging' (LONI) is showing, databases are attributed a specific epistemological power: Since the 1990s databasing is seen to foster the integration of neuroscientific data, although local regimes of data production, -manipulation and--interpretation are also challenging this development. Databasing in the neurosciences goes along with the introduction of new structures of integrating local data, hence establishing digital spaces of knowledge (epistemic spaces): At this stage, inherent norms of digital databases are affecting regimes of imaging-based trial design, for example clinical research into Alzheimer's disease.

  9. Neuroanatomy and Global Neuroscience.

    PubMed

    DeFelipe, Javier

    2017-07-05

    Our brains are like a dense forest-a complex, seemingly impenetrable terrain of interacting cells mediating cognition and behavior. However, we should view the challenge of understanding the brain with optimism, provided that we choose appropriate strategies for the development of global neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Temporal Decision-Making: Insights from Cognitive Neuroscience

    PubMed Central

    Luhmann, Christian C.

    2009-01-01

    Decisions frequently have consequences that play out over time and these temporal factors can exert strong influences on behavior. For example, decision-makers exhibit delay discounting, behaving as though immediately consumable goods are more valuable than those available only after some delay. With the use of functional magnetic resonance imaging, we are now beginning to characterize the physiological bases of such behavior in humans and to link work on this topic from neuroscience, psychology, and economics. Here we review recent neurocognitive investigations of temporal decision-making and outline the theoretical picture that is beginning to take shape. Taken as a whole, this body of work illustrates the progress made in understanding temporal choice behavior. However, we also note several questions that remain unresolved and areas where future work is needed. PMID:19898688

  11. Combining TMS and EEG offers new prospects in cognitive neuroscience.

    PubMed

    Miniussi, Carlo; Thut, Gregor

    2010-01-01

    The combination of brain stimulation by transcranial magnetic stimulation (TMS) with simultaneous electroencephalographic (EEG) imaging has become feasible due to recent technical developments. The TMS-EEG integration provides real-time information on cortical reactivity and connectivity through the analysis of TMS-evoked potentials (TEPs), and how functional activity links to behavior through the study of TMS-induced modulations thereof. It reveals how these effects vary as a function of neuronal state, differing between individuals and patient groups but also changing rapidly over time during task performance. This review discusses the wide range of possible TMS-EEG applications and what new information may be gained using this technique on the dynamics of brain functions, hierarchical organization, and cortical connectivity, as well as on TMS action per se. An advance in the understanding of these issues is timely and promises to have a substantial impact on many areas of clinical and basic neuroscience.

  12. New Views on Cognitive Development

    ERIC Educational Resources Information Center

    Kagan, Jerome

    1976-01-01

    Reviews recent empirical findings toward three cognitive developmental perspectives: the fears of infancy, the discontinuous quality of stages in cognitive functioning, and the capacity for resilience in cognitive development. (DEP)

  13. Emotional power of music in patients with memory disorders: clinical implications of cognitive neuroscience.

    PubMed

    Samson, Séverine; Dellacherie, Delphine; Platel, Hervé

    2009-07-01

    By adapting methods of cognitive psychology to neuropsychology, we examined memory and familiarity abilities in music in relation to emotion. First we present data illustrating how the emotional content of stimuli influences memory for music. Second, we discuss recent findings obtained in patients with two different brain disorders (medically intractable epilepsy and Alzheimer's disease) that show relatively spared memory performance for music, despite severe verbal memory disorders. Studies on musical memory and its relation to emotion open up paths for new strategies in cognitive rehabilitation and reinstate the importance of examining interactions between cognitive and clinical neurosciences.

  14. Computational Cognitive Neuroscience Modeling of Sequential Skill Learning

    DTIC Science & Technology

    2016-09-21

    Psychonomic Bulletin & Review, in press. 6. Chen, M-Y., Jimura, K., White, C.N., Maddox, W.T., & Poldrack, R.A. (2015) Multiple brain networks contribute...W. T. (2014). Context-dependent savings in procedural category learning. Brain & Cognition, 92, 1-10. 10. Crossley, M. J., Paul, E. J., Roeder, J...data. Brain & Cognition, 95, 19- 34. 13. Soto, F. A., Vucovich, L., Musgrave, R., & Ashby, F. G., (2015). General recognition theory with

  15. Focusing the Neuroscience and Societal Implications of Cognitive Enhancers.

    PubMed

    Savulich, G; Piercy, T; Brühl, A B; Fox, C; Suckling, J; Rowe, J B; O'Brien, J T; Sahakian, B J

    2017-02-01

    Cognitive enhancement can benefit the individual and society, but also has associated risks and ethical concerns. Cognitive-enhancing drugs are used in the treatment of neuropsychiatric disorders. Nonpharmacological strategies are also emerging, which have the potential to improve motivational deficits associated with neuropsychiatric symptoms and should be prioritized for development. The increasing lifestyle use of "smart" and other drugs indicates the desire for healthy people to improve themselves. Safety and ethical implications are discussed.

  16. Translating cognitive neuroscience to the driver’s operational environment: a neuroergonomics approach

    PubMed Central

    Lees, Monica N.; Cosman, Joshua D.; Lee, John D.; Rizzo, Matthew; Fricke, Nicola

    2012-01-01

    Neuroergonomics provides a multidisciplinary translational approach that merges elements of neuroscience, human factors, cognitive psychology, and ergonomics to study brain structure and function in everyday environments. Driving safety, particularly that of older drivers with cognitive impairments, is a fruitful application domain for neuroergonomics. Driving makes demands on multiple cognitive processes that are often studied in isolation and so presents a useful challenge in generalizing findings from controlled laboratory tasks to predict safety outcomes. Neurology and the cognitive sciences help explain the mechanisms of cognitive breakdowns that undermine driving safety. Ergonomics complements this explanation with the tools for systematically exploring the various layers of complexity that define the activity of driving. A variety of tools, such as part task simulators, driving simulators, and instrumented vehicles provide a window into cognition in the natural settings needed to assess the generalizability of laboratory findings and can provide an array of potential interventions to increase safety. PMID:21291157

  17. Translating cognitive neuroscience to the driver's operational environment: a neuroergonomic approach.

    PubMed

    Lees, Monica N; Cosman, Joshua D; Lee, John D; Fricke, Nicola; Rizzo, Matthew

    2010-01-01

    Neuroergonomics provides a multidisciplinary translational approach that merges elements of neuroscience, human factors, cognitive psychology, and ergonomics to study brain structure and function in everyday environments. Driving safety, particularly that of older drivers with cognitive impairments, is a fruitful application domain for neuroergonomics. Driving makes demands on multiple cognitive processes that are often studied in isolation and so presents a useful challenge in generalizing findings from controlled laboratory tasks to predict safety outcomes. Neurology and the cognitive sciences help explain the mechanisms of cognitive breakdowns that undermine driving safety. Ergonomics complements this explanation with the tools for systematically exploring the various layers of complexity that define the activity of driving. A variety of tools, such as part task simulators, driving simulators, and instrumented vehicles, provide a window into cognition in the natural settings needed to assess the generalizability of laboratory findings and can provide an array of potential interventions to increase driving safety.

  18. The Cognitive Neuroscience of Placebo Effects: Concepts, Predictions, and Physiology.

    PubMed

    Geuter, Stephan; Koban, Leonie; Wager, Tor D

    2017-04-07

    Placebos have been used ubiquitously throughout the history of medicine. Expectations and associative learning processes are important psychological determinants of placebo effects, but their underlying brain mechanisms are only beginning to be understood. We examine the brain systems underlying placebo effects on pain, autonomic, and immune responses. The ventromedial prefrontal cortex (vmPFC), insula, amygdala, hypothalamus, and periaqueductal gray emerge as central brain structures underlying placebo effects. We argue that the vmPFC is a core element of a network that represents structured relationships among concepts, providing a substrate for expectations and a conception of the situation-the self in context-that is crucial for placebo effects. Such situational representations enable multidimensional predictions, or priors, that are combined with incoming sensory information to construct percepts and shape motivated behavior. They influence experience and physiology via descending pathways to physiological effector systems, including the spinal cord and other peripheral organs. Expected final online publication date for the Annual Review of Neuroscience Volume 40 is July 8, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. Current advances in the cognitive neuroscience of music.

    PubMed

    Levitin, Daniel J; Tirovolas, Anna K

    2009-03-01

    The study of music perception and cognition is one of the oldest topics in experimental psychology. The last 20 years have seen an increased interest in understanding the functional neuroanatomy of music processing in humans, using a variety of technologies including fMRI, PET, ERP, MEG, and lesion studies. We review current findings in the context of a rich intellectual history of research, organized by the cognitive systems underlying different aspects of human musical behavior. We pay special attention to the perception of components of musical processing, musical structure, laterality effects, cultural issues, links between music and movement, emotional processing, expertise, and the amusias. Current trends are noted, such as the increased interest in evolutionary origins of music and comparisons of music and language. The review serves to demonstrate the important role that music can play in informing broad theories of higher order cognitive processes such as music in humans.

  20. Facial expressions of emotion: a cognitive neuroscience perspective.

    PubMed

    Erickson, Kristine; Schulkin, Jay

    2003-06-01

    Facial expressions are one example of emotional behavior that illustrate the importance of emotions to both basic survival and social interaction. Basic facial responses to stimuli such as sweet and bitter taste are important for species fitness and governed by simple rules. Even at this basic level, facial responses have communicative value to other species members. During evolution simple facial responses were extended for use in more complex nonverbal communications; the responses are labile. The perception and production of facial expressions are cognitive processes and numerous subcortical and cortical areas contribute to these operations. We suggest that no specific emotion center exists over and above cognitive systems in the brain, and that emotion should not be divorced from cognition.

  1. Of the Helmholtz Club, South-Californian seedbed for visual and cognitive neuroscience, and its patron Francis Crick

    PubMed Central

    Aicardi, Christine

    2014-01-01

    Taking up the view that semi-institutional gatherings such as clubs, societies, research schools, have been instrumental in creating sheltered spaces from which many a 20th-century project-driven interdisciplinary research programme could develop and become established within the institutions of science, the paper explores the history of one such gathering from its inception in the early 1980s into the 2000s, the Helmholtz Club, which brought together scientists from such various research fields as neuroanatomy, neurophysiology, psychophysics, computer science and engineering, who all had an interest in the study of the visual system and of higher cognitive functions relying on visual perception such as visual consciousness. It argues that British molecular biologist turned South Californian neuroscientist Francis Crick had an early and lasting influence over the Helmholtz Club of which he was a founding pillar, and that from its inception, the club served as a constitutive element in his long-term plans for a neuroscience of vision and of cognition. Further, it argues that in this role, the Helmholtz Club served many purposes, the primary of which was to be a social forum for interdisciplinary discussion, where ‘discussion’ was not mere talk but was imbued with an epistemic value and as such, carefully cultivated. Finally, it questions what counts as ‘doing science’ and in turn, definitions of success and failure—and provides some material evidence towards re-appraising the successfulness of Crick’s contribution to the neurosciences. PMID:24384229

  2. An integrative cognitive neuroscience theory of social reasoning and moral judgment.

    PubMed

    Barbey, Aron K; Grafman, Jordan

    2011-01-01

    Cognitive neuroscience has made considerable progress in understanding the involvement of the prefrontal cortex (PFC) in social cognition and moral judgment. Accumulating evidence suggests that representations within the lateral PFC enable people to orchestrate their thoughts and actions in concert with their intentions to support goal-directed social behavior. Despite the pivotal role of this region in guiding social interactions, remarkably little is known about the functional organization and forms of social knowledge mediated by the lateral PFC. Here, we review recent theoretical developments in evolutionary psychology and emerging evidence from the social and decision neuroscience literatures demonstrating the importance of the lateral PFC for orchestrating behavior on the basis of evolutionarily adaptive social norms for obligatory, prohibited, and permissible courses of action. WIREs Cogn Sci 2011 2 55-67 DOI: 10.1002/wcs.84 For further resources related to this article, please visit the WIREs website.

  3. The cognitive neuroscience of time perception: how psychological studies might help to dissect the timing system.

    PubMed

    Wearden, John H

    2013-01-01

    It is argued that the cognitive neuroscience of time perception does not make sufficient use of a range of experimental techniques and theoretical approaches which might be useful in "dissecting" the human timing system, and thus helping to uncover its neural basis. These techniques are mostly inspired by scalar expectancy theory, but do not depend on acceptance of that model. Most of the methods result in the same physical stimuli giving rise to systematically different time judgements, thus they avoid problems of control which have haunted some areas of the cognitive neuroscience of timing. Among the possibilities are (a) changing the basic duration judgement of stimuli and events, (b) manipulating working memory and reference memories for duration, and (c) changing temporal decision processes. Copyright © 2012. Published by Elsevier Ltd.

  4. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health.

    PubMed

    Raichlen, David A; Alexander, Gene E

    2017-07-01

    The field of cognitive neuroscience was transformed by the discovery that exercise induces neurogenesis in the adult brain, with the potential to improve brain health and stave off the effects of neurodegenerative disease. However, the basic mechanisms underlying exercise-brain connections are not well understood. We use an evolutionary neuroscience approach to develop the adaptive capacity model (ACM), detailing how and why physical activity improves brain function based on an energy-minimizing strategy. Building on studies showing a combined benefit of exercise and cognitive challenge to enhance neuroplasticity, our ACM addresses two fundamental questions: (i) what are the proximate and ultimate mechanisms underlying age-related brain atrophy, and (ii) how do lifestyle changes influence the trajectory of healthy and pathological aging? Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction.

    PubMed

    Morgenstern, Jon; Naqvi, Nasir H; Debellis, Robert; Breiter, Hans C

    2013-06-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research.

  6. Body ownership and beyond: connections between cognitive neuroscience and linguistic typology.

    PubMed

    Kemmerer, David

    2014-05-01

    During the past few decades, two disciplines that rarely come together-namely, cognitive neuroscience and linguistic typology-have been generating remarkably similar results regarding the representational domain of personal possessions. Research in cognitive neuroscience indicates that although the core self is grounded in body ownership, the extended self encompasses a variety of noncorporeal possessions, especially those that play a key role in defining one's identity. And research in linguistic typology indicates that many languages around the world contain a distinct grammatical construction for encoding what is commonly called "inalienable" possession-a category of owned objects that almost always includes body parts, but that also tends to include several other kinds of personally relevant entities. Both of these independent lines of investigation are summarized, and a number of interdisciplinary connections between them are discussed.

  7. The Contributions of Cognitive Neuroscience and Neuroimaging to Understanding Mechanisms of Behavior Change in Addiction

    PubMed Central

    Morgenstern, Jon; Naqvi, Nasir H.; Debellis, Robert; Breiter, Hans C.

    2013-01-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. PMID:23586452

  8. Evidence for Intensive Aphasia Therapy: Consideration of Theories From Neuroscience and Cognitive Psychology.

    PubMed

    Dignam, Jade K; Rodriguez, Amy D; Copland, David A

    2016-03-01

    Treatment intensity is a critical component to the delivery of speech-language pathology and rehabilitation services. Within aphasia rehabilitation, however, insufficient evidence currently exists to guide clinical decision making with respect to the optimal treatment intensity. This review considers perspectives from 2 key bodies of research, the neuroscience and cognitive psychology literature, with respect to the scheduling of aphasia rehabilitation services. Neuroscience research suggests that intensive training is a key element of rehabilitation and is necessary to achieve functional and neurologic changes after a stroke occurs. In contrast, the cognitive psychology literature suggests that optimal long-term learning is achieved when training is provided in a distributed or nonintensive schedule. These perspectives are evaluated and discussed with respect to the current evidence for treatment intensity in aphasia rehabilitation. In addition, directions for future research are identified, including study design, methods of defining and measuring treatment intensity, and selection of outcome measures in aphasia rehabilitation.

  9. The Cognitive Neuroscience of the Teacher-Student Interaction

    ERIC Educational Resources Information Center

    Battro, Antonio M.; Calero, Cecilia I.; Goldin, Andrea P.; Holper, Lisa; Pezzatti, Laura; Shalóm, Diego E.; Sigman, Mariano

    2013-01-01

    Pedagogy is the science and art of teaching. Each generation needs to explore the history, theory, and practice of the teacher-student interaction. Here we pave the path to develop a science that explores the cognitive and physiological processes involved in the human capacity to communicate knowledge through teaching. We review examples from our…

  10. The Cognitive Neuroscience of the Teacher-Student Interaction

    ERIC Educational Resources Information Center

    Battro, Antonio M.; Calero, Cecilia I.; Goldin, Andrea P.; Holper, Lisa; Pezzatti, Laura; Shalóm, Diego E.; Sigman, Mariano

    2013-01-01

    Pedagogy is the science and art of teaching. Each generation needs to explore the history, theory, and practice of the teacher-student interaction. Here we pave the path to develop a science that explores the cognitive and physiological processes involved in the human capacity to communicate knowledge through teaching. We review examples from our…

  11. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature

    PubMed Central

    Szucs, Denes; Ioannidis, John P. A.

    2017-01-01

    We have empirically assessed the distribution of published effect sizes and estimated power by analyzing 26,841 statistical records from 3,801 cognitive neuroscience and psychology papers published recently. The reported median effect size was D = 0.93 (interquartile range: 0.64–1.46) for nominally statistically significant results and D = 0.24 (0.11–0.42) for nonsignificant results. Median power to detect small, medium, and large effects was 0.12, 0.44, and 0.73, reflecting no improvement through the past half-century. This is so because sample sizes have remained small. Assuming similar true effect sizes in both disciplines, power was lower in cognitive neuroscience than in psychology. Journal impact factors negatively correlated with power. Assuming a realistic range of prior probabilities for null hypotheses, false report probability is likely to exceed 50% for the whole literature. In light of our findings, the recently reported low replication success in psychology is realistic, and worse performance may be expected for cognitive neuroscience. PMID:28253258

  12. Donders is dead: cortical traveling waves and the limits of mental chronometry in cognitive neuroscience.

    PubMed

    Alexander, David M; Trengove, Chris; van Leeuwen, Cees

    2015-11-01

    An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.

  13. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature.

    PubMed

    Szucs, Denes; Ioannidis, John P A

    2017-03-01

    We have empirically assessed the distribution of published effect sizes and estimated power by analyzing 26,841 statistical records from 3,801 cognitive neuroscience and psychology papers published recently. The reported median effect size was D = 0.93 (interquartile range: 0.64-1.46) for nominally statistically significant results and D = 0.24 (0.11-0.42) for nonsignificant results. Median power to detect small, medium, and large effects was 0.12, 0.44, and 0.73, reflecting no improvement through the past half-century. This is so because sample sizes have remained small. Assuming similar true effect sizes in both disciplines, power was lower in cognitive neuroscience than in psychology. Journal impact factors negatively correlated with power. Assuming a realistic range of prior probabilities for null hypotheses, false report probability is likely to exceed 50% for the whole literature. In light of our findings, the recently reported low replication success in psychology is realistic, and worse performance may be expected for cognitive neuroscience.

  14. Applying Neuroscience to Enhance Tactical Leader Cognitive Performance in Combat

    DTIC Science & Technology

    2011-12-16

    to respond emotionally, (2) stress degrades the form of conscious attention know as “working memory ,” and (3) certain brain areas can be...Combat, Prefrontal Cortex, Tactical, Army, Working Memory 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...sacrifices cognitive resources to respond emotionally, (2) stress degrades the form of conscious attention know as “working memory ,” and (3) certain

  15. The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience.

    PubMed

    Burgess, Neil

    2014-12-17

    Understanding how the cognitive functions of the brain arise from its basic physiological components has been an enticing final frontier in science for thousands of years. The Nobel Prize in Physiology or Medicine 2014 was awarded one half to John O'Keefe, the other half jointly to May-Britt Moser and Edvard I. Moser "for their discoveries of cells that constitute a positioning system in the brain." This prize recognizes both a paradigm shift in the study of cognitive neuroscience, and some of the amazing insights that have followed from it concerning how the world is represented within the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cognitive neuroscience 2.0: building a cumulative science of human brain function

    PubMed Central

    Yarkoni, Tal; Poldrack, Russell A.; Van Essen, David C.; Wager, Tor D.

    2010-01-01

    Cognitive neuroscientists increasingly recognize that continued progress in understanding human brain function will require not only the acquisition of new data, but also the synthesis and integration of data across studies and laboratories. Here we review ongoing efforts to develop a more cumulative science of human brain function. We discuss the rationale for an increased focus on formal synthesis of the cognitive neuroscience literature, provide an overview of recently developed tools and platforms designed to facilitate the sharing and integration of neuroimaging data, and conclude with a discussion of several emerging developments that hold even greater promise in advancing the study of human brain function. PMID:20884276

  17. The 2014 Nobel Prize in Physiology or Medicine: A Spatial Model for Cognitive Neuroscience

    PubMed Central

    Burgess, Neil

    2014-01-01

    Understanding how the cognitive functions of the brain arise from its basic physiological components has been an enticing final frontier in science for thousands of years. The Nobel Prize in Physiology or Medicine 2014 was awarded one half to John O’Keefe, the other half jointly to May-Britt Moser and Edvard I. Moser “for their discoveries of cells that constitute a positioning system in the brain.” This prize recognizes both a paradigm shift in the study of cognitive neuroscience, and some of the amazing insights that have followed from it concerning how the world is represented within the brain. PMID:25521374

  18. Cognitive neuroscience 2.0: building a cumulative science of human brain function.

    PubMed

    Yarkoni, Tal; Poldrack, Russell A; Van Essen, David C; Wager, Tor D

    2010-11-01

    Cognitive neuroscientists increasingly recognize that continued progress in understanding human brain function will require not only the acquisition of new data, but also the synthesis and integration of data across studies and laboratories. Here we review ongoing efforts to develop a more cumulative science of human brain function. We discuss the rationale for an increased focus on formal synthesis of the cognitive neuroscience literature, provide an overview of recently developed tools and platforms designed to facilitate the sharing and integration of neuroimaging data, and conclude with a discussion of several emerging developments that hold even greater promise in advancing the study of human brain function.

  19. Identifying cognitive mechanisms targeted for treatment development in schizophrenia: an overview of the first meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia Initiative.

    PubMed

    Carter, Cameron S; Barch, Deanna M; Buchanan, Robert W; Bullmore, Ed; Krystal, John H; Cohen, Jonathan; Geyer, Mark; Green, Michael; Nuechterlein, Keith H; Robbins, Trevor; Silverstein, Steven; Smith, Edward E; Strauss, Milton; Wykes, Til; Heinssen, Robert

    2008-07-01

    This overview describes the generation and development of the ideas that led to the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative. It also describes the organization, process, and products of the first meeting. The CNTRICS initiative involves a series of three conferences that will systematically address barriers to translating paradigms developed in the basic animal and human cognitive neuroscience fields for use in translational research aimed at developing novel treatments for cognitive impairments in schizophrenia. The articles in this special section report on the results of the first conference, which used a criterion-based consensus-building process to develop a set of cognitive constructs to be targeted for translation efforts.

  20. Mind the fish: zebrafish as a model in cognitive social neuroscience

    PubMed Central

    Oliveira, Rui F.

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed. PMID:23964204

  1. Mind the fish: zebrafish as a model in cognitive social neuroscience.

    PubMed

    Oliveira, Rui F

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed.

  2. Emotional Arousal, Blood Glucose Levels, and Memory Modulation: Three Laboratory Exercises in Cognitive Neuroscience

    PubMed Central

    Flint, Robert W.

    2004-01-01

    The relationships between emotional arousal and cognition in humans represent an important field in cognitive neuroscience. Studies examining the characteristics of emotion-induced memory enhancement and the mechanisms through which these effects occur are becoming increasingly common. This article describes three affordable laboratory exercises of relevance to the growing interest in this field. Specifically, Experiment one reviews a protocol for examining memory, hypermnesia, reminiscence, and primacy/recency effects for emotional and neutral words. Experiments two and three provide opportunities to examine the relationships between blood glucose level and memory for either a list of pictures or the spatial location of pictures. Each laboratory exercise contains a certain amount of flexibility and is malleable to the specific needs of the instructor. For example, the use of blood glucose monitoring may be of value to a variety of different exercises examining stress and/or emotional arousal and the stimuli used in each of the protocols may be varied, creating opportunities for a number of different novel exercises. A series of questions have been provided at the end of each exercise in order to help stimulate inclass discussion. The potential application of this line of research in cognitive neuroscience is conveyed through a list of references where glucose has been used to attenuate cognitive deficits in Alzheimer’s disease, age-related cognitive decline, and other neuropsychological conditions. PMID:23493939

  3. Literature Review of Cognitive Neuroscience and Anorexia Nervosa.

    PubMed

    Reville, Marie-Claire; O'Connor, Lorna; Frampton, Ian

    2016-02-01

    Studies published between the beginning of 2013 and May 2015 on the neuropsychological functioning of patients with anorexia nervosa compared with healthy participants framed in the context of the Research Domain Criteria matrix identifies evidence for functional differences in three domains: Negative Valance Systems-negative attentional biases and lack of neural responsivity to hunger; Cognitive Systems-limited congruence between clinical and cognitive performance, poorer non-verbal than verbal performance, altered attentional styles to disorder related stimuli, perceptual processing impairment in discriminating body images, weaknesses in central coherence, set shifting weaknesses at low weight status, decision-making weaknesses, and greater neural resources required for working memory; Systems for Social Processes-patients appear to have a different attentional response to faces, and perception and understanding of self and others. Hence, there is evidence to suggest that patients with anorexia nervosa have a specific neuropsychological performance style across tasks in three domains of functioning. Some current controversies and areas for future development are identified.

  4. Perceptual category learning and visual processing: An exercise in computational cognitive neuroscience.

    PubMed

    Cantwell, George; Riesenhuber, Maximilian; Roeder, Jessica L; Ashby, F Gregory

    2017-05-01

    The field of computational cognitive neuroscience (CCN) builds and tests neurobiologically detailed computational models that account for both behavioral and neuroscience data. This article leverages a key advantage of CCN-namely, that it should be possible to interface different CCN models in a plug-and-play fashion-to produce a new and biologically detailed model of perceptual category learning. The new model was created from two existing CCN models: the HMAX model of visual object processing and the COVIS model of category learning. Using bitmap images as inputs and by adjusting only a couple of learning-rate parameters, the new HMAX/COVIS model provides impressively good fits to human category-learning data from two qualitatively different experiments that used different types of category structures and different types of visual stimuli. Overall, the model provides a comprehensive neural and behavioral account of basal ganglia-mediated learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. How neuroscience can inform the study of individual differences in cognitive abilities.

    PubMed

    McFarland, Dennis J

    2017-02-14

    Theories of human mental abilities should be consistent with what is known in neuroscience. Currently, tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However, brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such as perception, attention, decision, and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly, these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control.

  6. Empiricists are from Venus, modelers are from Mars: Reconciling experimental and computational approaches in cognitive neuroscience.

    PubMed

    Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M

    2012-11-01

    We describe how computational models can be useful to cognitive and behavioral neuroscience, and discuss some guidelines for deciding whether a model is useful. We emphasize that because instantiating a cognitive theory as a computational model requires specification of an explicit mechanism for the function in question, it often produces clear and novel behavioral predictions to guide empirical research. However, computational modeling in cognitive and behavioral neuroscience remains somewhat rare, perhaps because of misconceptions concerning the use of computational models (in particular, connectionist models) in these fields. We highlight some common misconceptions, each of which relates to an aspect of computational models: the problem space of the model, the level of biological organization at which the model is formulated, and the importance (or not) of biological plausibility, parsimony, and model parameters. Careful consideration of these aspects of a model by empiricists, along with careful delineation of them by modelers, may facilitate communication between the two disciplines and promote the use of computational models for guiding cognitive and behavioral experiments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Link between cognitive neuroscience and education: the case of clinical assessment of developmental dyscalculia.

    PubMed

    Rubinsten, Orly

    2015-01-01

    In recent years, cognitive neuroscience research has identified several biological and cognitive features of number processing deficits that may now make it possible to diagnose mental or educational impairments in arithmetic, even earlier and more precisely than is possible using traditional assessment tools. We provide two sets of recommendations for improving cognitive assessment tools, using the important case of mathematics as an example. (1) neurocognitive tests would benefit substantially from incorporating assessments (based on findings from cognitive neuroscience) that entail systematic manipulation of fundamental aspects of number processing. Tests that focus on evaluating networks of core neurocognitive deficits have considerable potential to lead to more precise diagnosis and to provide the basis for designing specific intervention programs tailored to the deficits exhibited by the individual child. (2) implicit knowledge, derived from inspection of variables that are irrelevant to the task at hand, can also provide a useful assessment tool. Implicit knowledge is powerful and plays an important role in human development, especially in cases of psychiatric or neurological deficiencies (such as math learning disabilities or math anxiety).

  8. Cognitive neuroscience of cognitive retraining for addiction medicine: From mediating mechanisms to questions of efficacy.

    PubMed

    Gladwin, Thomas E; Wiers, Corinde E; Wiers, Reinout W

    2016-01-01

    Cognitive retraining or cognitive bias modification (CBM) involves having subjects repeatedly perform a computerized task designed to reduce the impact of automatic processes that lead to harmful behavior. We first discuss the theory underlying CBM and provide a brief overview of important research progress in its application to addiction. We then focus on cognitive- and neural-mediating mechanisms. We consider recent criticism of both CBM and its theoretical foundations. Evaluations of CBM could benefit from considering theory-driven factors that may determine variations in efficacy, such as motivation. Concerning theory, while there is certainly room for fundamental advances in current models, we argue that the basic view of impulsive behavior and its control remains a useful and productive heuristic. Finally, we briefly discuss some interesting new directions for CBM research: enhancement of training via transcranial direct current stimulation, online training, and gamification, i.e., the use of gameplay elements to increase motivation. © 2016 Elsevier B.V. All rights reserved.

  9. Using Brain–Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience

    PubMed Central

    Jensen, Ole; Bahramisharif, Ali; Oostenveld, Robert; Klanke, Stefan; Hadjipapas, Avgis; Okazaki, Yuka O.; van Gerven, Marcel A. J.

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work. PMID:21687463

  10. Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models.

    PubMed

    Helie, Sebastien; Chakravarthy, Srinivasa; Moustafa, Ahmed A

    2013-12-06

    Many computational models of the basal ganglia (BG) have been proposed over the past twenty-five years. While computational neuroscience models have focused on closely matching the neurobiology of the BG, computational cognitive neuroscience (CCN) models have focused on how the BG can be used to implement cognitive and motor functions. This review article focuses on CCN models of the BG and how they use the neuroanatomy of the BG to account for cognitive and motor functions such as categorization, instrumental conditioning, probabilistic learning, working memory, sequence learning, automaticity, reaching, handwriting, and eye saccades. A total of 19 BG models accounting for one or more of these functions are reviewed and compared. The review concludes with a discussion of the limitations of existing CCN models of the BG and prescriptions for future modeling, including the need for computational models of the BG that can simultaneously account for cognitive and motor functions, and the need for a more complete specification of the role of the BG in behavioral functions.

  11. Modularity and the Cultural Mind: Contributions of Cultural Neuroscience to Cognitive Theory

    PubMed Central

    Chiao, Joan Y.; Immordino-Yang, Mary Helen

    2013-01-01

    A central question in the study of the mind is how cognitive functions are shaped by a complex interplay of genetic and experiential processes. Recent evidence from cultural neuroscience indicates that cultural values, practices, and beliefs influence brain function across a variety of cognitive processes from vision to social cognition. This evidence extends to low-level perceptual systems comprised of domain-specific mechanisms, suggesting the importance of ecological and cultural variation in the evolutionary and developmental processes that give rise to the human mind and brain. In this article, we argue that investigating the architecture of the human mind will require understanding how the human mind and brain shape and are shaped by culture–gene coevolutionary processes. PMID:23710245

  12. A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction

    PubMed Central

    Kiehl, Kent A.

    2009-01-01

    Psychopathy is a complex personality disorder that includes interpersonal and affective traits such as glibness, lack of empathy, guilt or remorse, shallow affect, and irresponsibility, and behavioral characteristics such as impulsivity, poor behavioral control, and promiscuity. Much is known about the assessment of psychopathy; however, relatively little is understood about the relevant brain disturbances. The present review integrates data from studies of behavioral and cognitive changes associated with focal brain lesions or insults and results from psychophysiology, cognitive psychology and cognitive and affective neuroscience in health and psychopathy. The review illustrates that the brain regions implicated in psychopathy include the orbital frontal cortex, insula, anterior and posterior cingulate, amygdala, parahippocampal gyrus, and anterior superior temporal gyrus. The relevant functional neuroanatomy of psychopathy thus includes limbic and paralimbic structures that may be collectively termed ‘the paralimbic system’. The paralimbic system dysfunction model of psychopathy is discussed as it relates to the extant literature on psychopathy. PMID:16712954

  13. Tracking the dynamics of the social brain: ERP approaches for social cognitive and affective neuroscience

    PubMed Central

    Amodio, David M.; Ito, Tiffany A.

    2014-01-01

    Event-related potential (ERP) approaches to social cognitive and affective neuroscience (SCAN) are not as widely used as other neuroimaging techniques, yet they offer several unique advantages. In particular, the high temporal resolution of ERP measures of neural activity make them ideally suited for studying the dynamic interplay of rapidly unfolding cognitive and affective processes. In this article, we highlight the utility of ERP methods for scientists investigating questions of SCAN. We begin with a brief description of the physiological basis of ERPs and discussion of methodological practices. We then discuss how ERPs may be used to address a range of questions concerning social perception, social cognition, attitudes, affect and self-regulation, with examples of research that has used the ERP approach to contribute important theoretical advances in these areas. Whether used alone or in combination with other techniques, the ERP is an indispensable part of the social and affective neuroscientist’s methodological toolkit. PMID:24319116

  14. Modularity and the Cultural Mind: Contributions of Cultural Neuroscience to Cognitive Theory.

    PubMed

    Chiao, Joan Y; Immordino-Yang, Mary Helen

    2013-01-01

    A central question in the study of the mind is how cognitive functions are shaped by a complex interplay of genetic and experiential processes. Recent evidence from cultural neuroscience indicates that cultural values, practices, and beliefs influence brain function across a variety of cognitive processes from vision to social cognition. This evidence extends to low-level perceptual systems comprised of domain-specific mechanisms, suggesting the importance of ecological and cultural variation in the evolutionary and developmental processes that give rise to the human mind and brain. In this article, we argue that investigating the architecture of the human mind will require understanding how the human mind and brain shape and are shaped by culture-gene coevolutionary processes. © The Author(s) 2013.

  15. From commonsense to science, and back: the use of cognitive concepts in neuroscience.

    PubMed

    Francken, Jolien C; Slors, Marc

    2014-10-01

    Commonsense cognitive concepts (CCCs) are the concepts used in daily life to explain, predict and interpret behaviour. CCCs are also used to convey neuroscientific results, not only to wider audiences but also to the scientific inner circle. We show that translations from CCCs to brain activity, and from brain data to CCCs are made in implicit, loose and unsystematic ways. This results in hard to connect data as well as possibly unwarranted extrapolations. We argue that the cause of these problems is a covert adherence to a position known in philosophy of mind as 'mental realism'. The most fruitful way forward to a clearer and more systematic employment of CCCs in cognitive neuroscience, we argue, is to explicitly adopt interpretivism as an alternative for mental realism. An interpretative stance will help to avoid conceptual confusion in cognitive science and implies caution when it comes to big conclusions about CCCs.

  16. Learning as Problem Design versus Problem Solving: Making the Connection between Cognitive Neuroscience Research and Educational Practice

    ERIC Educational Resources Information Center

    Ablin, Jason L.

    2008-01-01

    How can current findings in neuroscience help educators identify particular cognitive strengths in students? In this commentary on Immordino-Yang's research regarding Nico and Brooke, I make 3 primary assertions: (a) the cognitive science community needs to develop an accessible language and mode of communicating applicable research to educators,…

  17. How Should Educational Neuroscience Conceptualise the Relation between Cognition and Brain Function? Mathematical Reasoning as a Network Process

    ERIC Educational Resources Information Center

    Varma, Sashank; Schwartz, Daniel L.

    2008-01-01

    Background: There is increasing interest in applying neuroscience findings to topics in education. Purpose: This application requires a proper conceptualization of the relation between cognition and brain function. This paper considers two such conceptualizations. The area focus understands each cognitive competency as the product of one (and only…

  18. How Should Educational Neuroscience Conceptualise the Relation between Cognition and Brain Function? Mathematical Reasoning as a Network Process

    ERIC Educational Resources Information Center

    Varma, Sashank; Schwartz, Daniel L.

    2008-01-01

    Background: There is increasing interest in applying neuroscience findings to topics in education. Purpose: This application requires a proper conceptualization of the relation between cognition and brain function. This paper considers two such conceptualizations. The area focus understands each cognitive competency as the product of one (and only…

  19. Thoughts for food in cognitive neuroscience: An introduction to the special issue.

    PubMed

    Rumiati, Raffaella I; di Pellegrino, Giuseppe

    2016-12-01

    Food is essential to our survival. It is also one of the greatest pleasures of life. Over the last decade, our understanding about how the brain responds to food cues and guides food search and intake has greatly increased. This special issue brings together various perspectives and research approaches on food cognitive neuroscience, encompassing a wide variety of techniques and methods. As these studies will add substantially to the ever-growing research on food cognitive neuroscience, we hope that they will also inspire new and useful ideas to fill the gaps that remain in this critical area of inquiry. By providing nutrients to generate energy and sustain life, food is an essential fuel for our survival and a pervasive element of our daily environment. Food also represents one of the greatest pleasures that we experience in life. More recently, numerous cognitive neuroscientific studies about how the brain responds to food cues and guides food search and consumption have been published. Evidence points to several and closely interrelated neural circuits underlying the homeostatic and hedonic mechanisms that regulate food intake. Copyright © 2016. Published by Elsevier Inc.

  20. Radical embodied cognitive neuroscience: addressing “grand challenges” of the mind sciences

    PubMed Central

    Favela, Luis H.

    2014-01-01

    It is becoming ever more accepted that investigations of mind span the brain, body, and environment. To broaden the scope of what is relevant in such investigations is to increase the amount of data scientists must reckon with. Thus, a major challenge facing scientists who study the mind is how to make big data intelligible both within and between fields. One way to face this challenge is to structure the data within a framework and to make it intelligible by means of a common theory. Radical embodied cognitive neuroscience can function as such a framework, with dynamical systems theory as its methodology, and self-organized criticality as its theory. PMID:25339891

  1. Development of Mentalizing and Communication: From Viewpoint of Developmental Cybernetics and Developmental Cognitive Neuroscience

    NASA Astrophysics Data System (ADS)

    Itakura, Shoji

    The ability to mentalize is essential for human socialization. Such ability is strongly related to communication. In this paper, I discuss the development of mentalizing and communication from the perspectives of a new idea, Developmental Cybernetics, and developmental cognitive neuroscience. Children only attributed intention to a robot when they saw it behaving as a human and displaying social signals such as eye gaze. The emergence of powerful new methods and tools, such as neuroimaging, now allows questions about mentalizing to resolved more directly than before.

  2. Of the Helmholtz Club, South-Californian seedbed for visual and cognitive neuroscience, and its patron Francis Crick.

    PubMed

    Aicardi, Christine

    2014-03-01

    Taking up the view that semi-institutional gatherings such as clubs, societies, research schools, have been instrumental in creating sheltered spaces from which many a 20th-century project-driven interdisciplinary research programme could develop and become established within the institutions of science, the paper explores the history of one such gathering from its inception in the early 1980s into the 2000s, the Helmholtz Club, which brought together scientists from such various research fields as neuroanatomy, neurophysiology, psychophysics, computer science and engineering, who all had an interest in the study of the visual system and of higher cognitive functions relying on visual perception such as visual consciousness. It argues that British molecular biologist turned South Californian neuroscientist Francis Crick had an early and lasting influence over the Helmholtz Club of which he was a founding pillar, and that from its inception, the club served as a constitutive element in his long-term plans for a neuroscience of vision and of cognition. Further, it argues that in this role, the Helmholtz Club served many purposes, the primary of which was to be a social forum for interdisciplinary discussion, where 'discussion' was not mere talk but was imbued with an epistemic value and as such, carefully cultivated. Finally, it questions what counts as 'doing science' and in turn, definitions of success and failure-and provides some material evidence towards re-appraising the successfulness of Crick's contribution to the neurosciences. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. Anomalous Experiences, Trauma, and Symbolization Processes at the Frontiers between Psychoanalysis and Cognitive Neurosciences

    PubMed Central

    Rabeyron, Thomas; Loose, Tianna

    2015-01-01

    Anomalous or exceptional experiences are uncommon experiences which are usually interpreted as being paranormal by those who report them. These experiences have long remained difficult to explain, but current progress in cognitive neuroscience and psychoanalysis sheds light on the contexts in which they emerge, as well as on their underlying processes. Following a brief description of the different types of anomalous experiences, we underline how they can be better understood at the frontiers between psychoanalysis and cognitive neurosciences. In this regard, three main lines of research are discussed and illustrated, alongside clinical cases which come from a clinical service specializing in anomalous experiences. First, we study the links between anomalous experiences and hallucinatory processes, by showing that anomalous experiences frequently occur as a specific reaction to negative life events, in which case they mainly take the form of non-pathological hallucinations. Next, we propose to analyze these experiences from the perspective of their traumatic aspects and the altered states of consciousness they often imply. Finally, these experiences are considered to be the consequence of a hypersensitivity that can be linked to an increase in psychic permeability. In conclusion, these different processes lead us to consider anomalous experiences as primary forms of symbolization and transformation of the subjective experience, especially during, or after traumatic situations. PMID:26732646

  4. Ghosts in machine learning for cognitive neuroscience: Moving from data to theory.

    PubMed

    Carlson, Thomas; Goddard, Erin; Kaplan, David M; Klein, Colin; Ritchie, J Brendan

    2017-08-06

    The application of machine learning methods to neuroimaging data has fundamentally altered the field of cognitive neuroscience. Future progress in understanding brain function using these methods will require addressing a number of key methodological and interpretive challenges. Because these challenges often remain unseen and metaphorically "haunt" our efforts to use these methods to understand the brain, we refer to them as "ghosts". In this paper, we describe three such ghosts, situate them within a more general framework from philosophy of science, and then describe steps to address them. The first ghost arises from difficulties in determining what information machine learning classifiers use for decoding. The second ghost arises from the interplay of experimental design and the structure of information in the brain - that is, our methods embody implicit assumptions about information processing in the brain, and it is often difficult to determine if those assumptions are satisfied. The third ghost emerges from our limited ability to distinguish information that is merely decodable from the brain from information that is represented and used by the brain. Each of the three ghosts place limits on the interpretability of decoding research in cognitive neuroscience. There are no easy solutions, but facing these issues squarely will provide a clearer path to understanding the nature of representation and computation in the human brain. Copyright © 2017. Published by Elsevier Inc.

  5. Side effects of transcranial magnetic stimulation biased task performance in a cognitive neuroscience study.

    PubMed

    Abler, Birgit; Walter, Henrik; Wunderlich, Arthur; Grothe, Jo; Schönfeldt-Lecuona, Carlos; Spitzer, Manfred; Herwig, Uwe

    2005-01-01

    Transcranial magnetic stimulation (TMS) is increasingly used as a research tool for functional brain mapping in cognitive neuroscience. Despite being mostly tolerable, side effects of TMS could influence task performance in behavioural TMS studies. In order to test this issue, healthy subjects assessed the discomfort caused by the stimulation during a verbal working memory task. We investigated the relation between subjective disturbance and task performance. Subjects were stimulated during the delay period of a delayed-match-to-sample task above cortical areas that had been identified before to be involved in working memory. Task performance and subjective disturbance due to side effects were monitored. The subjects' grade of discomfort correlated with the error rates: the higher the discomfort, the more errors were made. Conclusively, TMS side effects may bias task performance in cognitive neuroscience studies and may thereby lead to misinterpretation of results. We emphasize the importance of controlling side effects of the stimulation as a source of biasing effects in TMS studies.

  6. [Movement from the social cognitive neuroscience: The case of Parkinson's disease].

    PubMed

    Bacigalupe, María de Los Ángeles; Pujol, Silvana

    2014-01-01

    Parkinson's disease is a multisystemic disorder that affects movement in its different levels of integration from the simplest motor act to the complexity of communication and social inclusion. The study of movement from the social cognitive neuroscience can contribute elements to the development of better rehabilitation treatments for Parkinson's disease patients. As a cognitive and social phenomenon, movement involves perception and action; paradoxical kinesia, as a property of motor system, is shown in this perception-action dialogue. We introduce the internal-external control hypothesis as a possible explanatory model of movement in Parkinson's disease patients. This model can explain the occurrence of paradoxical kinesia and, combined with the mirror neurons theory, accounts for the capability of people with Parkinson's disease to move like healthy controls do when there is a given sensorial space with emotional and ludic languages. Eventually, we highlight the utility of paradoxical kinesia as a rehabilitation tool for movement in people with Parkinson's disease.

  7. Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach.

    PubMed

    Salzer, Yael; de Hollander, Gilles; Forstmann, Birte U

    2017-02-24

    The Simon task is one of the most prominent interference tasks and has been extensively studied in experimental psychology and cognitive neuroscience. Despite years of research, the underlying mechanism driving the phenomenon and its temporal dynamics are still disputed. Within the framework of the review, we adopt a model-based cognitive neuroscience approach. We first go over key findings in the literature of the Simon task, discuss competing qualitative cognitive theories and the difficulty of testing them empirically. We then introduce sequential sampling models, a particular class of mathematical cognitive process models. Finally, we argue that the brain architecture accountable for the processing of spatial ('where') and non-spatial ('what') information, could constrain these models. We conclude that there is a clear need to bridge neural and behavioral measures, and that mathematical cognitive models may facilitate the construction of this bridge and work towards revealing the underlying mechanisms of the Simon effect.

  8. How to achieve synergy between medical education and cognitive neuroscience? An exercise on prior knowledge in understanding.

    PubMed

    Ruiter, Dirk J; van Kesteren, Marlieke T R; Fernandez, Guillen

    2012-05-01

    A major challenge in contemporary research is how to connect medical education and cognitive neuroscience and achieve synergy between these domains. Based on this starting point we discuss how this may result in a common language about learning, more educationally focused scientific inquiry, and multidisciplinary research projects. As the topic of prior knowledge in understanding plays a strategic role in both medical education and cognitive neuroscience it is used as a central element in our discussion. A critical condition for the acquisition of new knowledge is the existence of prior knowledge, which can be built in a mental model or schema. Formation of schemas is a central event in student-centered active learning, by which mental models are constructed and reconstructed. These theoretical considerations from cognitive psychology foster scientific discussions that may lead to salient issues and questions for research with cognitive neuroscience. Cognitive neuroscience attempts to understand how knowledge, insight and experience are established in the brain and to clarify their neural correlates. Recently, evidence has been obtained that new information processed by the hippocampus can be consolidated into a stable, neocortical network more rapidly if this new information fits readily into a schema. Opportunities for medical education and medical education research can be created in a fruitful dialogue within an educational multidisciplinary platform. In this synergetic setting many questions can be raised by educational scholars interested in evidence-based education that may be highly relevant for integrative research and the further development of medical education.

  9. The functional-cognitive framework as a tool for accelerating progress in cognitive neuroscience: On the benefits of bridging rather than reducing levels of analyses.

    PubMed

    Vahey, Nigel; Whelan, Robert

    2016-02-01

    The subject matter of neuroscience research is complex, and synthesising the wealth of data from this research to better understand mental processes is challenging. A useful strategy, therefore, may be to distinguish explicitly between the causal effects of the environment on behaviour (i.e. functional analyses) and the mental processes that mediate these effects (i.e. cognitive analyses). In this article, we describe how the functional-cognitive (F-C) framework can accelerate cognitive neuroscience and also advance a functional treatment of brain activity. We first highlight that cognitive neuroscience can particularly benefit from the F-C approach by providing an alternative to the problematic practice of reducing cognitive constructs to behavioural and/or neural proxies. Next, we outline how functional (behaviour-environment) relations can serve as a bridge between cognitive and neural processes by restoring mental constructs to their original role as heuristic tools. Finally, we give some examples of how both cognitive neuroscience and traditional functional approaches can mutually benefit from the F-C framework.

  10. Educators' Views on the Role of Neuroscience in Education: Findings from a Study of UK and International Perspectives

    ERIC Educational Resources Information Center

    Pickering, Susan J.; Howard-Jones, Paul

    2007-01-01

    This report summarizes findings from a study of educators' views on the role of the brain in education. Responses were sought using questionnaires (n= 189), followed by a smaller number of in-depth interviews (n= 11). Results show a high level of enthusiasm for attempts to interrelate neuroscience and education, although conceptualizations about…

  11. Educators' Views on the Role of Neuroscience in Education: Findings from a Study of UK and International Perspectives

    ERIC Educational Resources Information Center

    Pickering, Susan J.; Howard-Jones, Paul

    2007-01-01

    This report summarizes findings from a study of educators' views on the role of the brain in education. Responses were sought using questionnaires (n= 189), followed by a smaller number of in-depth interviews (n= 11). Results show a high level of enthusiasm for attempts to interrelate neuroscience and education, although conceptualizations about…

  12. Cultural Neuroscience

    PubMed Central

    Ames, Daniel L.; Fiske, Susan T.

    2013-01-01

    Cultural neuroscience issues from the apparently incompatible combination of neuroscience and cultural psychology. A brief literature sampling suggests, instead, several preliminary topics that demonstrate proof of possibilities: cultural differences in both lower-level processes (e.g. perception, number representation) and higher-order processes (e.g. inferring others’ emotions, contemplating the self) are beginning to shed new light on both culture and cognition. Candidates for future cultural neuroscience research include cultural variations in the default (resting) network, which may be social; regulation and inhibition of feelings, thoughts, and actions; prejudice and dehumanization; and neural signatures of fundamental warmth and competence judgments. PMID:23874143

  13. The state of the art in organizational cognitive neuroscience: the therapeutic gap and possible implications for clinical practice.

    PubMed

    Senior, Carl; Lee, Nick

    2013-01-01

    In the last decade, researchers in the social sciences have increasingly adopted neuroscientific techniques, with the consequent rise of research inspired by neuroscience in disciplines such as economics, marketing, decision sciences, and leadership. In 2007, we introduced the term organizational cognitive neuroscience (OCN), in an attempt to clearly demarcate research carried out in these many areas, and provide an overarching paradigm for research utilizing cognitive neuroscientific methods, theories, and concepts, within the organizational and business research fields. Here we will revisit and further refine the OCN paradigm, and define an approach where we feel the marriage of organizational theory and neuroscience will return even greater dividends in the future and that is within the field of clinical practice.

  14. The state of the art in organizational cognitive neuroscience: the therapeutic gap and possible implications for clinical practice

    PubMed Central

    Senior, Carl; Lee, Nick

    2013-01-01

    In the last decade, researchers in the social sciences have increasingly adopted neuroscientific techniques, with the consequent rise of research inspired by neuroscience in disciplines such as economics, marketing, decision sciences, and leadership. In 2007, we introduced the term organizational cognitive neuroscience (OCN), in an attempt to clearly demarcate research carried out in these many areas, and provide an overarching paradigm for research utilizing cognitive neuroscientific methods, theories, and concepts, within the organizational and business research fields. Here we will revisit and further refine the OCN paradigm, and define an approach where we feel the marriage of organizational theory and neuroscience will return even greater dividends in the future and that is within the field of clinical practice. PMID:24367310

  15. Behaviorism and Neuroscience.

    ERIC Educational Resources Information Center

    Thompson, Richard F.

    1994-01-01

    The influence of behaviorism's methods and theories on theory and research in the neurosciences is examined, partly in light of John B. Watson's 1913 essay. An attempt is made to reconcile classical behaviorism and modern cognitive psychology and neuroscience. (SLD)

  16. Behaviorism and Neuroscience.

    ERIC Educational Resources Information Center

    Thompson, Richard F.

    1994-01-01

    The influence of behaviorism's methods and theories on theory and research in the neurosciences is examined, partly in light of John B. Watson's 1913 essay. An attempt is made to reconcile classical behaviorism and modern cognitive psychology and neuroscience. (SLD)

  17. The Influence of Prior Knowledge on Memory: A Developmental Cognitive Neuroscience Perspective

    PubMed Central

    Brod, Garvin; Werkle-Bergner, Markus; Shing, Yee Lee

    2013-01-01

    Across ontogenetic development, individuals gather manifold experiences during which they detect regularities in their environment and thereby accumulate knowledge. This knowledge is used to guide behavior, make predictions, and acquire further new knowledge. In this review, we discuss the influence of prior knowledge on memory from both the psychology and the emerging cognitive neuroscience literature and provide a developmental perspective on this topic. Recent neuroscience findings point to a prominent role of the medial prefrontal cortex (mPFC) and of the hippocampus (HC) in the emergence of prior knowledge and in its application during the processes of successful memory encoding, consolidation, and retrieval. We take the lateral PFC into consideration as well and discuss changes in both medial and lateral PFC and HC across development and postulate how these may be related to the development of the use of prior knowledge for remembering. For future direction, we argue that, to measure age differential effects of prior knowledge on memory, it is necessary to distinguish the availability of prior knowledge from its accessibility and use. PMID:24115923

  18. The influence of prior knowledge on memory: a developmental cognitive neuroscience perspective.

    PubMed

    Brod, Garvin; Werkle-Bergner, Markus; Shing, Yee Lee

    2013-10-08

    Across ontogenetic development, individuals gather manifold experiences during which they detect regularities in their environment and thereby accumulate knowledge. This knowledge is used to guide behavior, make predictions, and acquire further new knowledge. In this review, we discuss the influence of prior knowledge on memory from both the psychology and the emerging cognitive neuroscience literature and provide a developmental perspective on this topic. Recent neuroscience findings point to a prominent role of the medial prefrontal cortex (mPFC) and of the hippocampus (HC) in the emergence of prior knowledge and in its application during the processes of successful memory encoding, consolidation, and retrieval. We take the lateral PFC into consideration as well and discuss changes in both medial and lateral PFC and HC across development and postulate how these may be related to the development of the use of prior knowledge for remembering. For future direction, we argue that, to measure age differential effects of prior knowledge on memory, it is necessary to distinguish the availability of prior knowledge from its accessibility and use.

  19. How to Achieve Synergy between Medical Education and Cognitive Neuroscience? An Exercise on Prior Knowledge in Understanding

    ERIC Educational Resources Information Center

    Ruiter, Dirk J.; van Kesteren, Marlieke T. R.; Fernandez, Guillen

    2012-01-01

    A major challenge in contemporary research is how to connect medical education and cognitive neuroscience and achieve synergy between these domains. Based on this starting point we discuss how this may result in a common language about learning, more educationally focused scientific inquiry, and multidisciplinary research projects. As the topic of…

  20. How to Achieve Synergy between Medical Education and Cognitive Neuroscience? An Exercise on Prior Knowledge in Understanding

    ERIC Educational Resources Information Center

    Ruiter, Dirk J.; van Kesteren, Marlieke T. R.; Fernandez, Guillen

    2012-01-01

    A major challenge in contemporary research is how to connect medical education and cognitive neuroscience and achieve synergy between these domains. Based on this starting point we discuss how this may result in a common language about learning, more educationally focused scientific inquiry, and multidisciplinary research projects. As the topic of…

  1. The cart before the horse: When cognitive neuroscience precedes cognitive neuropsychology.

    PubMed

    Agis, Daniel; Hillis, Argye E

    2017-05-31

    Cognitive neuropsychology (CN) has had an immense impact on the understanding of the normal cognitive processes underlying reading, spelling, spoken language comprehension and production, spatial attention, memory, visual perception, and orchestration of actions, through detailed analysis of behavioural performance by neurologically impaired individuals. However, there are other domains of cognition and communication that have rarely been investigated with this approach. Many cognitive neuropsychologists have extended their work in language, perception, or attention by turning to functional neuroimaging or lesion-symptom mapping to identify the neural mechanisms underlying the cognitive mechanisms they have identified. Another approach to extending one's research in CN is to apply the methodology to other cognitive functions. We briefly review the domains evaluated using methods of CN to develop cognitive architectures and computational models and the domains that have used functional neuroimaging and other brain mapping approaches in healthy controls to identify the neural substrates involved in cognitive tasks over the past 20 years. We argue that in some domains, neuroimaging studies have preceded the careful analysis of the cognitive processes underlying tasks that are studied, with the consequence that results are difficult to interpret. We use this analysis as the basis for discussing opportunities for expanding the field.

  2. Cognitive neuroscience in forensic science: understanding and utilizing the human element

    PubMed Central

    Dror, Itiel E.

    2015-01-01

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour. PMID:26101281

  3. A cognitive neuroscience framework for understanding causal reasoning and the law.

    PubMed

    Fugelsang, Jonathan A; Dunbar, Kevin N

    2004-11-29

    Over the past couple of decades, there have been great developments in the fields of psychology and cognitive neuroscience that have allowed the advancement of our understanding of how people make judgements about causality in several domains. We provide a review of some of the contemporary psychological models of causal thinking that are directly relevant to legal reasoning. In addition, we cover some exciting new research using advanced neuroimaging techniques that have helped to uncover the underlying neural signatures of complex causal reasoning. Through the use of functional imaging, we provide a first-hand look at how the brain responds to evidence that is either consistent or inconsistent with one's beliefs and expectations. Based on the data covered in this review, we propose some ideas for how the effectiveness of causal reasoning, especially as it pertains to legal decision-making, may be facilitated.

  4. A cognitive neuroscience framework for understanding causal reasoning and the law.

    PubMed Central

    Fugelsang, Jonathan A; Dunbar, Kevin N

    2004-01-01

    Over the past couple of decades, there have been great developments in the fields of psychology and cognitive neuroscience that have allowed the advancement of our understanding of how people make judgements about causality in several domains. We provide a review of some of the contemporary psychological models of causal thinking that are directly relevant to legal reasoning. In addition, we cover some exciting new research using advanced neuroimaging techniques that have helped to uncover the underlying neural signatures of complex causal reasoning. Through the use of functional imaging, we provide a first-hand look at how the brain responds to evidence that is either consistent or inconsistent with one's beliefs and expectations. Based on the data covered in this review, we propose some ideas for how the effectiveness of causal reasoning, especially as it pertains to legal decision-making, may be facilitated. PMID:15590615

  5. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience.

    PubMed

    Gabrieli, John D E; Ghosh, Satrajit S; Whitfield-Gabrieli, Susan

    2015-01-07

    Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain and its variation across individuals (neurodiversity) in both health and disease. Such progress has not yet, however, propelled changes in educational or medical practices that improve people's lives. We review neuroimaging findings in which initial brain measures (neuromarkers) are correlated with or predict future education, learning, and performance in children and adults; criminality; health-related behaviors; and responses to pharmacological or behavioral treatments. Neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures. With further advances in study designs and analyses, neuromarkers may offer opportunities to personalize educational and clinical practices that lead to better outcomes for people.

  6. Reconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experience.

    PubMed

    Panksepp, Jaak; Lane, Richard D; Solms, Mark; Smith, Ryan

    2016-09-15

    The "affective" and "cognitive" neuroscience approaches to understanding emotion (AN and CN, respectively) represent potentially synergistic, but as yet unreconciled, theoretical perspectives, which may in part stem from the methods that these distinct perspectives routinely employ-one focusing on animal brain emotional systems (AN) and one on diverse human experimental approaches (CN). Here we present an exchange in which each approach (1) describes its own theoretical perspective, (2) offers a critique of the other perspective, and then (3) responds to each other's critique. We end with a summary of points of agreement and disagreement, and describe possible future experiments that could help resolve the remaining controversies. Future work should (i) further characterize the structure/function of subcortical circuitry with respect to its role in generating emotion, and (ii) further investigate whether sub-neocortical activations alone are sufficient (as opposed to merely necessary) for affective experiences, or whether subsequent cortical representation of an emotional response is also required.

  7. Cognitive neuroscience in forensic science: understanding and utilizing the human element.

    PubMed

    Dror, Itiel E

    2015-08-05

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour.

  8. Prediction as a Humanitarian and Pragmatic Contribution from Human Cognitive Neuroscience

    PubMed Central

    Gabrieli, John D.E.; Ghosh, Satrajit S.; Whitfield-Gabrieli, Susan

    2014-01-01

    Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain and its variation across individuals (neurodiversity) in both health and disease. Such progress has not yet, however, propelled changes in educational or medical practices that improve people’s lives. We review neuroimaging findings in which initial brain measures (neuromarkers) are correlated with or predict future (1) education, learning, and performance in children and adults; (2) criminality; (3) health-related behaviors; and (4) responses to pharmacological or behavioral treatments. Neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures. With further advances in study designs and analyses, neuromarkers may offer opportunities to personalize educational and clinical practices that lead to better outcomes for people. PMID:25569345

  9. Xenomelia: A Social Neuroscience View of Altered Bodily Self-Consciousness

    PubMed Central

    Brugger, Peter; Lenggenhager, Bigna; Giummarra, Melita J.

    2013-01-01

    Xenomelia, the “foreign limb syndrome,” is characterized by the non-acceptance of one or more of one’s own extremities and the resulting desire for elective limb amputation or paralysis. Formerly labeled “body integrity identity disorder” (BIID), the condition was originally considered a psychological or psychiatric disorder, but a brain-centered Zeitgeist and a rapidly growing interest in the neural underpinnings of bodily self-consciousness has shifted the focus toward dysfunctional central nervous system circuits. The present article outlays both mind-based and brain-based views highlighting their shortcomings. We propose that full insight into what should be conceived a “xenomelia spectrum disorder” will require interpretation of individual symptomatology in a social context. A proper social neuroscience of xenomelia respects the functional neuroanatomy of corporeal awareness, but also acknowledges the brain’s plasticity in response to an individual’s history, which is lived against a cultural background. This integrated view of xenomelia will promote the subfield of consciousness research concerned with the unity of body and self. PMID:23630513

  10. Xenomelia: a social neuroscience view of altered bodily self-consciousness.

    PubMed

    Brugger, Peter; Lenggenhager, Bigna; Giummarra, Melita J

    2013-01-01

    Xenomelia, the "foreign limb syndrome," is characterized by the non-acceptance of one or more of one's own extremities and the resulting desire for elective limb amputation or paralysis. Formerly labeled "body integrity identity disorder" (BIID), the condition was originally considered a psychological or psychiatric disorder, but a brain-centered Zeitgeist and a rapidly growing interest in the neural underpinnings of bodily self-consciousness has shifted the focus toward dysfunctional central nervous system circuits. The present article outlays both mind-based and brain-based views highlighting their shortcomings. We propose that full insight into what should be conceived a "xenomelia spectrum disorder" will require interpretation of individual symptomatology in a social context. A proper social neuroscience of xenomelia respects the functional neuroanatomy of corporeal awareness, but also acknowledges the brain's plasticity in response to an individual's history, which is lived against a cultural background. This integrated view of xenomelia will promote the subfield of consciousness research concerned with the unity of body and self.

  11. Facial Affect Processing and Depression Susceptibility: Cognitive Biases and Cognitive Neuroscience

    ERIC Educational Resources Information Center

    Bistricky, Steven L.; Ingram, Rick E.; Atchley, Ruth Ann

    2011-01-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal…

  12. Facial Affect Processing and Depression Susceptibility: Cognitive Biases and Cognitive Neuroscience

    ERIC Educational Resources Information Center

    Bistricky, Steven L.; Ingram, Rick E.; Atchley, Ruth Ann

    2011-01-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal…

  13. Insights into the origins of knowledge from the cognitive neuroscience of blindness.

    PubMed

    Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Children learn about the world through senses such as touch, smell, vision, and audition, but they conceive of the world in terms of objects, events, agents, and their mental states. A fundamental question in cognitive science is how nature and nurture contribute to the development of such conceptual categories. What innate mechanisms do children bring to the learning problem? How does experience contribute to development? In this article we discuss insights into these longstanding questions from cognitive neuroscience studies of blindness. Despite drastically different sensory experiences, behavioural and neuroscientific work suggests that blind children acquire typical concepts of objects, actions, and mental states. Blind people think and talk about these categories in ways that are similar to sighted people. Neuroimaging reveals that blind people make such judgements relying on the same neural mechanisms as sighted people. One way to interpret these findings is that neurocognitive development is largely hardwired, and so differences in experience have little consequence. Contrary to this interpretation, neuroimaging studies also show that blindness profoundly reorganizes the visual system. Most strikingly, developmental blindness enables "visual" circuits to participate in high-level cognitive functions, including language processing. Thus, blindness qualitatively changes sensory representations, but leaves conceptual representations largely unchanged. The effect of sensory experience on concepts is modest, despite the brain's potential for neuroplasticity.

  14. Explicit and implicit issues in the developmental cognitive neuroscience of social inequality.

    PubMed

    D'Angiulli, Amedeo; Lipina, Sebastian J; Olesinska, Alice

    2012-01-01

    The appearance of developmental cognitive neuroscience (DCN) in the socioeconomic status (SES) research arena is hugely transformative, but challenging. We review challenges rooted in the implicit and explicit assumptions informing this newborn field. We provide balanced theoretical alternatives on how hypothesized psychological processes map onto the brain (e.g., problem of localization) and how experimental phenomena at multiple levels of analysis (e.g., behavior, cognition and the brain) could be related. We therefore examine unclear issues regarding the existing perspectives on poverty and their relationships with low SES, the evidence of low-SES adaptive functioning, historical precedents of the "alternate pathways" (neuroplasticity) interpretation of learning disabilities related to low-SES and the notion of deficit, issues of "normativity" and validity in findings of neurocognitive differences between children from different SES, and finally alternative interpretations of the complex relationship between IQ and SES. Particularly, we examine the extent to which the available laboratory results may be interpreted as showing that cognitive performance in low-SES children reflects cognitive and behavioral deficits as a result of growing up in specific environmental or cultural contexts, and how the experimental findings should be interpreted for the design of different types of interventions-particularly those related to educational practices-or translated to the public-especially the media. Although a cautionary tone permeates many studies, still, a potential deficit attribution-i.e., low-SES is associated with cognitive and behavioral developmental deficits-seems almost an inevitable implicit issue with ethical implications. Finally, we sketch the agenda for an ecological DCN, suggesting recommendations to advance the field, specifically, to minimize equivocal divulgation and maximize ethically responsible translation.

  15. Explicit and implicit issues in the developmental cognitive neuroscience of social inequality

    PubMed Central

    D'Angiulli, Amedeo; Lipina, Sebastian J.; Olesinska, Alice

    2012-01-01

    The appearance of developmental cognitive neuroscience (DCN) in the socioeconomic status (SES) research arena is hugely transformative, but challenging. We review challenges rooted in the implicit and explicit assumptions informing this newborn field. We provide balanced theoretical alternatives on how hypothesized psychological processes map onto the brain (e.g., problem of localization) and how experimental phenomena at multiple levels of analysis (e.g., behavior, cognition and the brain) could be related. We therefore examine unclear issues regarding the existing perspectives on poverty and their relationships with low SES, the evidence of low-SES adaptive functioning, historical precedents of the “alternate pathways” (neuroplasticity) interpretation of learning disabilities related to low-SES and the notion of deficit, issues of “normativity” and validity in findings of neurocognitive differences between children from different SES, and finally alternative interpretations of the complex relationship between IQ and SES. Particularly, we examine the extent to which the available laboratory results may be interpreted as showing that cognitive performance in low-SES children reflects cognitive and behavioral deficits as a result of growing up in specific environmental or cultural contexts, and how the experimental findings should be interpreted for the design of different types of interventions—particularly those related to educational practices—or translated to the public—especially the media. Although a cautionary tone permeates many studies, still, a potential deficit attribution—i.e., low-SES is associated with cognitive and behavioral developmental deficits—seems almost an inevitable implicit issue with ethical implications. Finally, we sketch the agenda for an ecological DCN, suggesting recommendations to advance the field, specifically, to minimize equivocal divulgation and maximize ethically responsible translation. PMID:22973216

  16. Games people play—toward an enactive view of cooperation in social neuroscience

    PubMed Central

    Engemann, Denis A.; Bzdok, Danilo; Eickhoff, Simon B.; Vogeley, Kai; Schilbach, Leonhard

    2012-01-01

    The field of social neuroscience has made considerable progress in unraveling the neural correlates of human cooperation by making use of brain imaging methods. Within this field, neuroeconomic research has drawn on paradigms from experimental economics, such as the Prisoner's Dilemma (PD) and the Trust Game. These paradigms capture the topic of conflict in cooperation, while focusing strongly on outcome-related decision processes. Cooperation, however, does not equate with that perspective, but relies on additional psychological processes and events, including shared intentions and mutually coordinated joint action. These additional facets of cooperation have been successfully addressed by research in developmental psychology, cognitive science, and social philosophy. Corresponding neuroimaging data, however, is still sparse. Therefore, in this paper, we present a juxtaposition of these mutually related but mostly independent trends in cooperation research. We propose that the neuroscientific study of cooperation could benefit from paradigms and concepts employed in developmental psychology and social philosophy. Bringing both to a neuroimaging environment might allow studying the neural correlates of cooperation by using formal models of decision-making as well as capturing the neural responses that underlie joint action scenarios, thus, promising to advance our understanding of the nature of human cooperation. PMID:22675293

  17. Cognitive development, memory, trauma, treatment: An integration of psychoanalytic and behavioral concepts in light of current neuroscience research.

    PubMed

    Hutterer, Jeffrey; Liss, Miriam

    2006-01-01

    The goal of Freud's Project was to place all psychological functioning on a neurological foundation; however, the resources of his time were inadequate for the task. This article attempts to link basic psychoanalytic and behavioral constructs to current neuroscience, specifically the memory paradigm of multiple trace theory. We propose that Freud's theory of early cognitive development, in which primary process is succeeded by secondary process, corresponds to the progression from a noncontextual taxon-based memory system to a locale system (mediated by hippocampal and cortical structures) in which memories are formed within space/time contexts. The effects of trauma within these models is then examined by noting how Freud's views of repression and regression parallel neuropsychological hypotheses about the ways in which traumatic experience impacts specific brain areas. Finally, the treatment implications of this theoretical synthesis are explored. We posit that transference resembles the learning theory construct of generalization, and the non-contextualized coding of the taxon system. In conclusion, we suggest that orthodox psychoanalytic approaches may have overestimated the efficacy of words and intellectual vectors in effecting therapeutic change. Nonverbal strategies may be required to reach material that is stored in early developing brain areas that may be inaccessible to words.

  18. Are prescription stimulants "smart pills"? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals.

    PubMed

    Smith, M Elizabeth; Farah, Martha J

    2011-09-01

    Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  19. [On the necessity to distinguishing judgment from subjective choice in the cognitive neuroscience of morality].

    PubMed

    Tassy, Sébastien

    2011-10-01

    Recently, cognitive neuroscience has shed new light on our understanding of the neural underpinning of humans' morality. These findings allow for a fundamental questioning and rethinking of the alleged dichotomy between reason and emotion, that has profoundly shaped both moral philosophy and moral psychology. Functional neuroimaging and neuropsychology studies have provided strong arguments favoring a dynamic and interdependent interaction between rational and emotional processes in the brain. Yet another fundamental issue remains largely unexplored: the dissociation between certain behaviours and the moral judgments that seem to precede them. The importance of this dissociation was highlighted in a study of psychopathic patients during which they preserved their moral judgments while frequently engaging in completely non moral behaviour. Such dissociation could result from the cognitive difference between an objective moral judgement with no personal consequence, and a subjective behavioural choice that has effective or potential personal consequences. Consequently, the results of moral dilemma experiments would differ widely depending whether they explore objective or subjective moral evaluations. That these evaluations involve two distinct neural processes should be taken into account when exploring the neural bases of human morality. © 2011 médecine/sciences – Inserm / SRMS.

  20. Neuroethics: a modern context for ethics in neuroscience

    PubMed Central

    Illes, Judy; Bird, Stephanie J.

    2006-01-01

    Neuroethics, a recently modernized field at the intersection of bioethics and neuroscience, is founded on centuries of discussion of the ethical issues associated with mind and behavior. Broadly defined, neuroethics is concerned with ethical, legal and social policy implications of neuroscience, and with aspects of neuroscience research itself. Advances in neuroscience increasingly challenge long-held views of the self and the individual's relationship to society. Neuroscience also has led to innovations in clinical medicine that have not only therapeutic but also non-therapeutic dimensions that extend well beyond previously charted boundaries. The exponential increase in cross-disciplinary research, the commercialization of cognitive neuroscience, the impetus for training in ethics, and the increased attention being paid to public understanding of science all illuminate the important role of neuroethics in neuroscience. PMID:16859760

  1. Neuroethics: a modern context for ethics in neuroscience.

    PubMed

    Illes, Judy; Bird, Stephanie J

    2006-09-01

    Neuroethics, a recently modernized field at the intersection of bioethics and neuroscience, is founded on centuries of discussion of the ethical issues associated with mind and behavior. Broadly defined, neuroethics is concerned with ethical, legal and social policy implications of neuroscience, and with aspects of neuroscience research itself. Advances in neuroscience increasingly challenge long-held views of the self and the individual's relationship to society. Neuroscience also has led to innovations in clinical medicine that have not only therapeutic but also non-therapeutic dimensions that extend well beyond previously charted boundaries. The exponential increase in cross-disciplinary research, the commercialization of cognitive neuroscience, the impetus for training in ethics, and the increased attention being paid to public understanding of science all illuminate the important role of neuroethics in neuroscience.

  2. Characterizing neurocognitive late effects in childhood leukemia survivors using a combination of neuropsychological and cognitive neuroscience measures.

    PubMed

    Van Der Plas, Ellen; Erdman, Lauren; Nieman, Brian J; Weksberg, Rosanna; Butcher, Darci T; O'connor, Deborah L; Aufreiter, Susanne; Hitzler, Johann; Guger, Sharon L; Schachar, Russell J; Ito, Shinya; Spiegler, Brenda J

    2017-10-10

    Knowledge about cognitive late effects in survivors of childhood acute lymphoblastic leukemia (ALL) is largely based on standardized neuropsychological measures and parent reports. To examine whether cognitive neuroscience paradigms provided additional insights into neurocognitive and behavioral late effects in ALL survivors, we assessed cognition and behavior using a selection of cognitive neuroscience tasks and standardized measures probing domains previously demonstrated to be affected by chemotherapy. 130 ALL survivors and 158 control subjects, between 8 and 18 years old at time of testing, completed the n-back (working memory) and stop-signal (response inhibition) tasks. ALL survivors also completed standardized measures of intelligence (Wechsler Intelligence Scales [WISC-IV]), motor skills (Grooved Pegboard), math abilities (WIAT-III), and executive functions (Delis-Kaplan Executive Function System). Parents completed behavioral measures of executive functions (Behavior Rating Inventory of Executive Function [BRIEF]) and attention (Conners-3). ALL survivors exhibited deficiencies in working memory and response inhibition compared with controls. ALL survivors also exhibited deficits on WISC-IV working memory and processing speed, Grooved Pegboard, WIAT-III addition and subtraction fluency, and numerical operations, as well as DKEFS number-letter switching. Parent reports suggested more attention deficits (Conners-3) and behavioral difficulties (BRIEF) in ALL survivors compared with referenced norms. Low correspondence between standardized and experimental measures of working memory and response inhibition was noted. The use of cognitive neuroscience paradigms complements our understanding of the cognitive deficits evident after treatment of ALL. These measures could further delineate cognitive processes involved in neurocognitive late effects, providing opportunities to explore their underlying mechanisms.

  3. Point of View: The Importance of Teaching Neuroscience Research at Historically Black Colleges and Universities

    ERIC Educational Resources Information Center

    Cohen, Jeremy

    2016-01-01

    This column shares reflections or thoughtful opinions on issues of broad interest to the community. This month's issue discusses the importance of the insights that are gained through neuroscience research.

  4. Point of View: The Importance of Teaching Neuroscience Research at Historically Black Colleges and Universities

    ERIC Educational Resources Information Center

    Cohen, Jeremy

    2016-01-01

    This column shares reflections or thoughtful opinions on issues of broad interest to the community. This month's issue discusses the importance of the insights that are gained through neuroscience research.

  5. Views on Careers in Clinical Neurosciences Among Neurosurgeons and Neurologists in China.

    PubMed

    Lukas, Rimas V; Ma, Chao; Chen, Jingcao; Dong, Hongmei; Li, Jinxin; Wang, Zefen; Jiang, Ivy; Fu, Kai; Satnarayan, Samita; Albert, Dara V F; Sherer, Renslow

    2017-02-01

    China has a large and aging population. The need for physicians with training in clinical neurosciences will grow. There is little known regarding the factors that lead physicians in China to pursue careers in clinical neurosciences. The objective of this study was to garner a clearer understanding of factors that influence physicians to pursue careers in neurosurgery and neurology in China. We surveyed attendees at a national neuroscience conference on the factors that influence their pursuit of careers in clinical neurosciences. Responses were quantified on a Likert scale. One-way analysis of variance was used to compare different groups of respondents. Factors associated with the intellectual elements of the specialties were rated most highly. Differences were noted between respondents, with trainees rating lifestyle-related factors more highly compared with attending physicians. The intellectual challenges are important factors for physicians in China influencing the pursuit of careers in the clinical neurosciences. This finding echoes results found elsewhere in the world. However, differences with trainees elsewhere in the world emerge when evaluating additional factors influencing trainees pursuing careers in the clinical neurosciences. Trainees in China rate educational experiences and mentorship more highly, whereas U.S. trainees rate altruistic goals more highly. This study provides a clearer understanding of factors influencing career choice among clinical neuroscientists in China. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability.

    PubMed

    Blair, Clancy

    2006-04-01

    This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.

  7. The deeper sources of political conflict: evidence from the psychological, cognitive, and neuro-sciences.

    PubMed

    Hibbing, John R; Smith, Kevin B; Peterson, Johnathan C; Feher, Balazs

    2014-03-01

    Political disputes ruin family reunions, scuttle policy initiatives, and spur violence and even terrorism. We summarize recent research indicating that the source of political differences can be found in biologically instantiated and often subthreshold predispositions as reflected in physiological, cognitive, and neural patterns that incline some people toward innovation and others toward conservatism. These findings suggest the need to revise traditional views that maintain that political opinions are the product of rational, conscious, socialized thought.

  8. Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model.

    PubMed

    Mangels, Jennifer A; Butterfield, Brady; Lamb, Justin; Good, Catherine; Dweck, Carol S

    2006-09-01

    Students' beliefs and goals can powerfully influence their learning success. Those who believe intelligence is a fixed entity (entity theorists) tend to emphasize 'performance goals,' leaving them vulnerable to negative feedback and likely to disengage from challenging learning opportunities. In contrast, students who believe intelligence is malleable (incremental theorists) tend to emphasize 'learning goals' and rebound better from occasional failures. Guided by cognitive neuroscience models of top-down, goal-directed behavior, we use event-related potentials (ERPs) to understand how these beliefs influence attention to information associated with successful error correction. Focusing on waveforms associated with conflict detection and error correction in a test of general knowledge, we found evidence indicating that entity theorists oriented differently toward negative performance feedback, as indicated by an enhanced anterior frontal P3 that was also positively correlated with concerns about proving ability relative to others. Yet, following negative feedback, entity theorists demonstrated less sustained memory-related activity (left temporal negativity) to corrective information, suggesting reduced effortful conceptual encoding of this material-a strategic approach that may have contributed to their reduced error correction on a subsequent surprise retest. These results suggest that beliefs can influence learning success through top-down biasing of attention and conceptual processing toward goal-congruent information.

  9. [Research domain criteria (RDoC) : Psychiatric research as applied cognitive neuroscience].

    PubMed

    Walter, H

    2017-05-01

    Just before the official launch of the DSM-5 in 2013, the Research Domain Criteria (RDoC) initiative of the National Institute of Mental Health was made public and is becoming increasingly more important in psychiatric research. The aim of this paper is to clarify the conceptual approach of RDoC, to systematically discuss limitations, to present exemplary RDoC-based studies and to consider the relevance of the RDoC concepts for clinicians and scientists. The is a qualitative introduction and review article with a critical discussion. The RDoC initiative was not conceived as an alternative diagnostic manual to DSM-5 or IDC-10/11 for use in clinical practice. It is a new systematic framework for psychiatric research based on the most recent results of cognitive neuroscience and aims to map mental disorders dimensionally and transdiagnostically. Despite some weaknesses, it is currently the most elaborated and scientifically grounded approach for multidisciplinary research on mental disorders. In contrast to the purely symptom-based DSM and ICD approaches, which are agnostic with respect to the pathogenesis of mental diseases, the explicit aim of the RDoC initiative is to systematize biological knowledge about risk factors and causes of mental disorders; therefore, it has a much greater potential to develop new and individualized therapeutic strategies based on disease mechanisms.

  10. Alcoholics Anonymous and twelve-step recovery: a model based on social and cognitive neuroscience.

    PubMed

    Galanter, Marc

    2014-01-01

    In the course of achieving abstinence from alcohol, longstanding members of Alcoholics Anonymous (AA) typically experience a change in their addiction-related attitudes and behaviors. These changes are reflective of physiologically grounded mechanisms which can be investigated within the disciplines of social and cognitive neuroscience. This article is designed to examine recent findings associated with these disciplines that may shed light on the mechanisms underlying this change. Literature review and hypothesis development. Pertinent aspects of the neural impact of drugs of abuse are summarized. After this, research regarding specific brain sites, elucidated primarily by imaging techniques, is reviewed relative to the following: Mirroring and mentalizing are described in relation to experimentally modeled studies on empathy and mutuality, which may parallel the experiences of social interaction and influence on AA members. Integration and retrieval of memories acquired in a setting like AA are described, and are related to studies on storytelling, models of self-schema development, and value formation. A model for ascription to a Higher Power is presented. The phenomena associated with AA reflect greater complexity than the empirical studies on which this article is based, and certainly require further elucidation. Despite this substantial limitation in currently available findings, there is heuristic value in considering the relationship between the brain-based and clinical phenomena described here. There are opportunities for the study of neuroscientific correlates of Twelve-Step-based recovery, and these can potentially enhance our understanding of related clinical phenomena. © American Academy of Addiction Psychiatry.

  11. Network neuroscience

    PubMed Central

    Bassett, Danielle S; Sporns, Olaf

    2017-01-01

    Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844

  12. Network neuroscience.

    PubMed

    Bassett, Danielle S; Sporns, Olaf

    2017-02-23

    Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.

  13. Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field.

    PubMed

    Raizada, Rajeev D S; Kishiyama, Mark M

    2010-01-01

    THE STUDY OF SOCIOECONOMIC STATUS (SES) AND THE BRAIN FINDS ITSELF IN A CIRCUMSTANCE UNUSUAL FOR COGNITIVE NEUROSCIENCE: large numbers of questions with both practical and scientific importance exist, but they are currently under-researched and ripe for investigation. This review aims to highlight these questions, to outline their potential significance, and to suggest routes by which they might be approached. Although remarkably few neural studies have been carried out so far, there exists a large literature of previous behavioural work. This behavioural research provides an invaluable guide for future neuroimaging work, but also poses an important challenge for it: how can we ensure that the neural data contributes predictive or diagnostic power over and above what can be derived from behaviour alone? We discuss some of the open mechanistic questions which Cognitive Neuroscience may have the power to illuminate, spanning areas including language, numerical cognition, stress, memory, and social influences on learning. These questions have obvious practical and societal significance, but they also bear directly on a set of longstanding questions in basic science: what are the environmental and neural factors which affect the acquisition and retention of declarative and nondeclarative skills? Perhaps the best opportunity for practical and theoretical interests to converge is in the study of interventions. Many interventions aimed at improving the cognitive development of low SES children are currently underway, but almost all are operating without either input from, or study by, the Cognitive Neuroscience community. Given that longitudinal intervention studies are very hard to set up, but can, with proper designs, be ideal tests of causal mechanisms, this area promises exciting opportunities for future research.

  14. Effects of Socioeconomic Status on Brain Development, and How Cognitive Neuroscience May Contribute to Levelling the Playing Field

    PubMed Central

    Raizada, Rajeev D.S.; Kishiyama, Mark M.

    2009-01-01

    The study of socioeconomic status (SES) and the brain finds itself in a circumstance unusual for Cognitive Neuroscience: large numbers of questions with both practical and scientific importance exist, but they are currently under-researched and ripe for investigation. This review aims to highlight these questions, to outline their potential significance, and to suggest routes by which they might be approached. Although remarkably few neural studies have been carried out so far, there exists a large literature of previous behavioural work. This behavioural research provides an invaluable guide for future neuroimaging work, but also poses an important challenge for it: how can we ensure that the neural data contributes predictive or diagnostic power over and above what can be derived from behaviour alone? We discuss some of the open mechanistic questions which Cognitive Neuroscience may have the power to illuminate, spanning areas including language, numerical cognition, stress, memory, and social influences on learning. These questions have obvious practical and societal significance, but they also bear directly on a set of longstanding questions in basic science: what are the environmental and neural factors which affect the acquisition and retention of declarative and nondeclarative skills? Perhaps the best opportunity for practical and theoretical interests to converge is in the study of interventions. Many interventions aimed at improving the cognitive development of low SES children are currently underway, but almost all are operating without either input from, or study by, the Cognitive Neuroscience community. Given that longitudinal intervention studies are very hard to set up, but can, with proper designs, be ideal tests of causal mechanisms, this area promises exciting opportunities for future research. PMID:20161995

  15. Decomposing dendrophilia. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Honing, Henkjan; Zuidema, Willem

    2014-09-01

    The future of cognitive science will be about bridging neuroscience and behavioral studies, with essential roles played by comparative biology, formal modeling, and the theory of computation. Nowhere will this integration be more strongly needed than in understanding the biological basis of language and music. We thus strongly sympathize with the general framework that Fitch [1] proposes, and welcome the remarkably broad and readable review he presents to support it.

  16. Mind the gap: bridging economic and naturalistic risk-taking with cognitive neuroscience.

    PubMed

    Schonberg, Tom; Fox, Craig R; Poldrack, Russell A

    2011-01-01

    Economists define risk in terms of the variability of possible outcomes, whereas clinicians and laypeople generally view risk as exposure to possible loss or harm. Neuroeconomic studies using relatively simple behavioral tasks have identified a network of brain regions that respond to economic risk, but these studies have had limited success predicting naturalistic risk-taking. By contrast, more complex behavioral tasks developed by clinicians (e.g. Balloon Analogue Risk Task and Iowa Gambling Task) correlate with naturalistic risk-taking but resist decomposition into distinct cognitive constructs. We propose here that to bridge this gap and better understand neural substrates of naturalistic risk-taking, new tasks are needed that: are decomposable into basic cognitive and/or economic constructs; predict naturalistic risk-taking; and engender dynamic, affective engagement. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. A proposed solution to integrating cognitive-affective neuroscience and neuropsychiatry in psychiatry residency training: The time is now.

    PubMed

    Torous, John; Stern, Adam P; Padmanabhan, Jaya L; Keshavan, Matcheri S; Perez, David L

    2015-10-01

    Despite increasing recognition of the importance of a strong neuroscience and neuropsychiatry education in the training of psychiatry residents, achieving this competency has proven challenging. In this perspective article, we selectively discuss the current state of these educational efforts and outline how using brain-symptom relationships from a systems-level neural circuit approach in clinical formulations may help residents value, understand, and apply cognitive-affective neuroscience based principles towards the care of psychiatric patients. To demonstrate the utility of this model, we present a case of major depressive disorder and discuss suspected abnormal neural circuits and therapeutic implications. A clinical neural systems-level, symptom-based approach to conceptualize mental illness can complement and expand residents' existing psychiatric knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A cage-based training, cognitive testing and enrichment system optimized for rhesus macaques in neuroscience research.

    PubMed

    Calapai, A; Berger, M; Niessing, M; Heisig, K; Brockhausen, R; Treue, S; Gail, A

    2017-02-01

    In neurophysiological studies with awake non-human primates (NHP), it is typically necessary to train the animals over a prolonged period of time on a behavioral paradigm before the actual data collection takes place. Rhesus monkeys (Macaca mulatta) are the most widely used primate animal models in system neuroscience. Inspired by existing joystick- or touch-screen-based systems designed for a variety of monkey species, we built and successfully employed a stand-alone cage-based training and testing system for rhesus monkeys (eXperimental Behavioral Intrument, XBI). The XBI is mobile and easy to handle by both experts and non-experts; animals can work with only minimal physical restraints, yet the ergonomic design successfully encourages stereotypical postures with a consistent positioning of the head relative to the screen. The XBI allows computer-controlled training of the monkeys with a large variety of behavioral tasks and reward protocols typically used in systems and cognitive neuroscience research.

  19. Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: proceedings of the third CNTRICS meeting.

    PubMed

    Barch, Deanna M; Carter, Cameron S; Arnsten, Amy; Buchanan, Robert W; Cohen, Jonathan D; Geyer, Mark; Green, Michael F; Krystal, John H; Nuechterlein, Keith; Robbins, Trevor; Silverstein, Steven; Smith, Edward E; Strauss, Milton; Wykes, Til; Heinssen, Robert

    2009-01-01

    This overview describes the goals and objectives of the third conference conducted as part of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative. This third conference was focused on selecting specific paradigms from cognitive neuroscience that measured the constructs identified in the first CNTRICS meeting, with the goal of facilitating the translation of these paradigms into use in clinical trials contexts. To identify such paradigms, we had an open nomination process in which the field was asked to nominate potentially relevant paradigms and to provide information on several domains relevant to selecting the most promising tasks for each construct (eg, construct validity, neural bases, psychometrics, availability of animal models). Our goal was to identify 1-2 promising tasks for each of the 11 constructs identified at the first CNTRICS meeting. In this overview article, we describe the on-line survey used to generate nominations for promising tasks, the criteria that were used to select the tasks, the rationale behind the criteria, and the ways in which breakout groups worked together to identify the most promising tasks from among those nominated. This article serves as an introduction to the set of 6 articles included in this special issue that provide information about the specific tasks discussed and selected for the constructs from each of 6 broad domains (working memory, executive control, attention, long-term memory, perception, and social cognition).

  20. The Cognitive Neuroscience of Sign Language: Engaging Undergraduate Students’ Critical Thinking Skills Using the Primary Literature

    PubMed Central

    Stevens, Courtney

    2015-01-01

    This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience. PMID:26557797

  1. How cognitive neuroscience could be more biological—and what it might learn from clinical neuropsychology

    PubMed Central

    Frisch, Stefan

    2014-01-01

    Three widespread assumptions of Cognitive-affective Neuroscience are discussed: first, mental functions are assumed to be localized in circumscribed brain areas which can be exactly determined, at least in principle (localizationism). Second, this assumption is associated with the more general claim that these functions (and dysfunctions, such as in neurological or mental diseases) are somehow generated inside the brain (internalism). Third, these functions are seen to be “biological” in the sense that they can be decomposed and finally explained on the basis of elementary biological causes (i.e., genetic, molecular, neurophysiological etc.), causes that can be identified by experimental methods as the gold standard (isolationism). Clinical neuropsychology is widely assumed to support these tenets. However, by making reference to the ideas of Kurt Goldstein (1878–1965), one of its most important founders, I argue that none of these assumptions is sufficiently supported. From the perspective of a clinical-neuropsychological practitioner, assessing and treating brain damage sequelae reveals a quite different picture of the brain as well as of us “brain carriers”, making the organism (or person) in its specific environment the crucial reference point. This conclusion can be further elaborated: all experimental and clinical research on humans presupposes the notion of a situated, reflecting, and interacting subject, which precedes all kinds of scientific decomposition, however useful. These implications support the core assumptions of the embodiment approach to brain and mind, and, as I argue, Goldstein and his clinical-neuropsychological observations are part of its very origin, for both theoretical and historical reasons. PMID:25100981

  2. The Cognitive Neuroscience of Sign Language: Engaging Undergraduate Students' Critical Thinking Skills Using the Primary Literature.

    PubMed

    Stevens, Courtney

    2015-01-01

    This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience.

  3. Ethics in Neuroscience Graduate Training Programs: Views and Models from Canada

    ERIC Educational Resources Information Center

    Lombera, Sofia; Fine, Alan; Grunau, Ruth E.; Illes, Judy

    2010-01-01

    Consideration of the ethical, social, and policy implications of research has become increasingly important to scientists and scholars whose work focuses on brain and mind, but limited empirical data exist on the education in ethics available to them. We examined the current landscape of ethics training in neuroscience programs, beginning with the…

  4. Ethics in Neuroscience Graduate Training Programs: Views and Models from Canada

    ERIC Educational Resources Information Center

    Lombera, Sofia; Fine, Alan; Grunau, Ruth E.; Illes, Judy

    2010-01-01

    Consideration of the ethical, social, and policy implications of research has become increasingly important to scientists and scholars whose work focuses on brain and mind, but limited empirical data exist on the education in ethics available to them. We examined the current landscape of ethics training in neuroscience programs, beginning with the…

  5. Criminal law as it pertains to 'mentally incompetent defendants': a McNaughton rule in the light of cognitive neuroscience.

    PubMed

    Bennett A O, Maxwell

    2009-04-01

    The McNaughton rules for determining whether a person can be successfully defended on the grounds of mental incompetence were determined by a committee of the House of Lords in 1843. They arose as a consequence of the trial of Daniel McNaughton for the killing of Prime Minister Sir Robert Peel's secretary. In retrospect it is clear that McNaughton suffered from schizophrenia. The successful defence of McNaughton on the grounds of mental incompetence by his advocate Sir Alexander Cockburn involved a profound shift in the criteria for such a defence, and was largely based on the then recently published 'scientific' thesis of the great US psychiatrist Isaac Ray, entitled 'A treatise on the medical jurisprudence of insanity'. Subsequent discussion of this defence in the House of Lords led to the McNaughton rules, still the basis of the defence of mental incompetence in the courts of much of the English-speaking world. This essay argues that the rules need to be reconsidered in the light of the discoveries of cognitive neuroscience made during the 160 years since Ray's treatise. It is shown, for instance, how the conflation of 'the power of self-control' with 'irresistible impulse' by Cockburn is not supported by cognitive neuroscience because these are separate capacities requiring normal activity in distinct brain structures for their expression. In this way cognitive neuroscience assists in distinguishing between different capacities. It is further shown that failure of appropriate restraint in the expression of a capacity can be related to failure of synapses in particular parts of the brain. This raises the question as to what level of synaptic loss will the legislature and the courts rule as sufficient for a subject to be no longer held responsible for their lack of restraint.

  6. A Personal View of the Early Development of Computational Neuroscience in the USA

    PubMed Central

    Moore, John W.

    2010-01-01

    In the half-century since the seminal Hodgkin–Huxley papers were published, computational neuroscience has become an established discipline, evolving from computer modeling of neurons to attempts to understand the computational functions of the brain. Here, I narrate my experience of the early steps and sense of excitement in this field, with its promise of rapid development, paralleling that of computers. PMID:20725511

  7. Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.

    PubMed

    Brainerd, C J; Reyna, V F

    2001-01-01

    reasoning. More explicitly, in childhood reasoning tasks, it is assumed that both verbatim and gist traces of problem information are stored. Responding accurately to memory tests for presented problem information depends primarily on verbatim memory abilities (preserving traces of that information and accessing them when the appropriate memory probes are administered). However, accurate solutions to reasoning problems depend primarily on gist-memory abilities (extracting the correct gist from problem information, focusing on that gist during reasoning, and accessing reasoning operations that process that gist). Because verbatim and gist memories exhibit considerable dissociation, both during storage and when they are subsequently accessed on memory tests, dissociations of verbatim-based memory performance from gist-based reasoning are predictable. Conversely, associations are predicted in situations in which memory and reasoning are based on the same verbatim traces (Brainerd & Reyna, 1988) and in situations in which memory and reasoning are based on the same gist traces (Reyna & Kiernan, 1994). Fuzzy-trace theory's memory and reasoning principles have been applied in other research domains. Four such domains are developmental cognitive neuroscience studies of false memory, studies of false memory in brain-damaged patients, studies of reasoning errors in judgment and decision making, and studies of retrieval mechanisms in recall. In the first domain, the principles of parallel verbatim-gist storage, dissociated verbatim-gist retrieval, and identity/similarity processes have been used to explain both spontaneous and implanted false reports in children and in the elderly. These explanations have produced some surprising predictions that have been verified: false reports do not merely decline with age during childhood but increase under theoretically specified conditions; reports of events that were not experienced can nevertheless be highly persistent over time; and false

  8. What Can Neuroscience Bring to Education?

    ERIC Educational Resources Information Center

    Ferrari, Michel

    2011-01-01

    Educational neuroscience promises to incorporate emerging insights from neuroscience into education, and is an exiting renovation of cognitive science in education. But unlike cognitive neuroscience--which aims to explain how the mind is embodied--educational neuroscience necessarily incorporates values that reflect the kind of citizen and the…

  9. What Can Neuroscience Bring to Education?

    ERIC Educational Resources Information Center

    Ferrari, Michel

    2011-01-01

    Educational neuroscience promises to incorporate emerging insights from neuroscience into education, and is an exiting renovation of cognitive science in education. But unlike cognitive neuroscience--which aims to explain how the mind is embodied--educational neuroscience necessarily incorporates values that reflect the kind of citizen and the…

  10. Attribution and social cognitive neuroscience: a new approach for the "online-assessment" of causality ascriptions and their emotional consequences.

    PubMed

    Terbeck, Sylvia; Chesterman, Paul; Fischmeister, Florian Ph S; Leodolter, Ulrich; Bauer, Herbert

    2008-08-15

    Attribution theory plays a central role in understanding cognitive processes that have emotional consequences; however, there has been very limited attention to its neural basis. After reviewing classical studies in social psychology in which attribution has been experimentally manipulated we developed a new approach that allows the investigation of state attributions and emotional consequences using neuroscience methodologies. Participants responded to the Erikson Flanker Task, but, in order to maintain the participant's beliefs about the nature of the task and to produce a significant number of error responses, an adaptive algorithm tuned the available time to respond such that, dependent on the subject's current performance, the negative feedback rate was held at chance level. In order to initiate variation in attribution participants were informed that one and the same task was either easy or difficult. As a result of these two different instructions the two groups differed significantly in error attribution only on the locus of causality dimension. Additionally, attributions were found to be stable over a large number of trials, while accuracy and reaction time remained the same. Thus, the new paradigm is particularly suitable for cognitive neuroscience research that evaluates brain behaviour relationships of higher order processes in 'simulated achievement settings'.

  11. Introduction to the special section on theory and data in categorization: Integrating computational, behavioral, and cognitive neuroscience approaches.

    PubMed

    Lewandowsky, Stephan; Palmeri, Thomas J; Waldmann, Michael R

    2012-07-01

    This special section brings together behavioral, computational, mathematical, and neuroimaging approaches to understand the processes underlying category learning. Over the past decade, there has been growing convergence in research on categorization, with computational-mathematical models influencing the interpretation of brain imaging and neuropsychological data, and with cognitive neuroscience findings influencing the development and refinement of models. Classic debates between single-system and multiple-memory-system theories have become more nuanced and focused. Multiple brain areas and cognitive processes contribute to categorization, but theories differ markedly in whether and when those neurocognitive components are recruited for different aspects of categorization. The articles in this special section approach this issue from several diverse angles. 2012 APA, all rights reserved

  12. An 'integrative neuroscience' perspective on ADHD: linking cognition, emotion, brain and genetic measures with implications for clinical support.

    PubMed

    Williams, Leanne M; Tsang, Tracey W; Clarke, Simon; Kohn, Michael

    2010-10-01

    There remains a translational gap between research findings and their implementation in clinical practice that applies to attention-deficit/hyperactivity disorder (ADHD), as well as to other major disorders of brain health in childhood, adolescence and adulthood. Research studies have identified potential 'markers' to support diagnostic, functional assessment and treatment decisions, but there is little consensus about these markers. Of these potential markers, cognitive measures of thinking functions, such as sustaining attention and associated electrical brain activity, show promise in complementing the clinical management process. Emerging evidence highlights the relevance of emotional, as well as thinking, functions to ADHD. Here, we outline an integrative neuroscience framework for ADHD that offers one means to bring together cognitive measures of thinking functions with measures of emotion, and their brain and genetic correlates. Understanding these measures and the relationships between them is a first step towards the development of tools that will help to assess the heterogeneity of ADHD, and aid in tailoring treatment choices.

  13. Can Developmental Cognitive Neuroscience Inform Intervention for Social, Emotional and Behavioural Difficulties (SEBD)?

    ERIC Educational Resources Information Center

    Frederickson, Norah; Jones, Alice P.; Warren, Laura; Deakes, Tara; Allen, Geoff

    2013-01-01

    An initial evaluation of the utility of designing an intervention to address neuroscience-based subtyping of children who have conduct problems was undertaken in this pilot study. Drawing on the literature on callous-unemotional traits, a novel intervention programme, "Let's Get Smart", was implemented in a school for children with…

  14. Can Developmental Cognitive Neuroscience Inform Intervention for Social, Emotional and Behavioural Difficulties (SEBD)?

    ERIC Educational Resources Information Center

    Frederickson, Norah; Jones, Alice P.; Warren, Laura; Deakes, Tara; Allen, Geoff

    2013-01-01

    An initial evaluation of the utility of designing an intervention to address neuroscience-based subtyping of children who have conduct problems was undertaken in this pilot study. Drawing on the literature on callous-unemotional traits, a novel intervention programme, "Let's Get Smart", was implemented in a school for children with…

  15. Conceptual challenges and directions for social neuroscience.

    PubMed

    Adolphs, Ralph

    2010-03-25

    Social neuroscience has been enormously successful and is making major contributions to fields ranging from psychiatry to economics. Yet deep and interesting conceptual challenges abound. Is social information processing domain specific? Is it universal or susceptible to individual differences and effects of culture? Are there uniquely human social cognitive abilities? What is the "social brain," and how do we map social psychological processes onto it? Animal models together with fMRI and other cognitive neuroscience approaches in humans are providing an unprecedented level of detail and many surprising results. It may well be that social neuroscience in the near future will give us an entirely new view of who we are, how we evolved, and what might be in store for the future of our species. (c) 2010 Elsevier Inc. All rights reserved.

  16. Conceptual Challenges and Directions for Social Neuroscience

    PubMed Central

    Adolphs, Ralph

    2010-01-01

    Social neuroscience has been enormously successful and is making major contributions to fields ranging from psychiatry to economics. Yet deep and interesting conceptual challenges abound. Is social information processing domain specific? Is it universal or susceptible to individual differences and effects of culture? Are there uniquely human social cognitive abilities? What is the “social brain,” and how do we map social psychological processes onto it? Animal models together with fMRI and other cognitive neuroscience approaches in humans are providing an unprecedented level of detail and many surprising results. It may well be that social neuroscience in the near future will give us an entirely new view of who we are, how we evolved, and what might be in store for the future of our species. PMID:20346753

  17. What does the interactive brain hypothesis mean for social neuroscience? A dialogue.

    PubMed

    De Jaegher, Hanne; Di Paolo, Ezequiel; Adolphs, Ralph

    2016-05-05

    A recent framework inspired by phenomenological philosophy, dynamical systems theory, embodied cognition and robotics has proposed the interactive brain hypothesis (IBH). Whereas mainstream social neuroscience views social cognition as arising solely from events in the brain, the IBH argues that social cognition requires, in addition, causal relations between the brain and the social environment. We discuss, in turn, the foundational claims for the IBH in its strongest form; classical views of cognition that can be raised against the IBH; a defence of the IBH in the light of these arguments; and a response to this. Our goal is to initiate a dialogue between cognitive neuroscience and enactive views of social cognition. We conclude by suggesting some new directions and emphases that social neuroscience might take.

  18. What does the interactive brain hypothesis mean for social neuroscience? A dialogue

    PubMed Central

    Di Paolo, Ezequiel; Adolphs, Ralph

    2016-01-01

    A recent framework inspired by phenomenological philosophy, dynamical systems theory, embodied cognition and robotics has proposed the interactive brain hypothesis (IBH). Whereas mainstream social neuroscience views social cognition as arising solely from events in the brain, the IBH argues that social cognition requires, in addition, causal relations between the brain and the social environment. We discuss, in turn, the foundational claims for the IBH in its strongest form; classical views of cognition that can be raised against the IBH; a defence of the IBH in the light of these arguments; and a response to this. Our goal is to initiate a dialogue between cognitive neuroscience and enactive views of social cognition. We conclude by suggesting some new directions and emphases that social neuroscience might take. PMID:27069056

  19. What changes in neural oscillations can reveal about developmental cognitive neuroscience: language development as a case in point.

    PubMed

    Maguire, Mandy J; Abel, Alyson D

    2013-10-01

    EEG is a primary method for studying temporally precise neuronal processes across the lifespan. Most of this work focuses on event related potentials (ERPs); however, using time-locked time frequency analysis to decompose the EEG signal can identify and distinguish multiple changes in brain oscillations underlying cognition (Bastiaansen et al., 2010). Further this measure is thought to reflect changes in inter-neuronal communication more directly than ERPs (Nunez and Srinivasan, 2006). Although time frequency has elucidated cognitive processes in adults, applying it to cognitive development is still rare. Here, we review the basics of neuronal oscillations, some of what they reveal about adult cognitive function, and what little is known relating to children. We focus on language because it develops early and engages complex cortical networks. Additionally, because time frequency analysis of the EEG related to adult language comprehension has been incredibly informative, using similar methods with children will shed new light on current theories of language development and increase our understanding of how neural processes change over the lifespan. Our goal is to emphasize the power of this methodology and encourage its use throughout developmental cognitive neuroscience. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Educational Neuroscience: Neuroethical Considerations

    ERIC Educational Resources Information Center

    Lalancette, Helene; Campbell, Stephen R.

    2012-01-01

    Research design and methods in educational neuroscience involve using neuroscientific tools such as brain image technologies to investigate cognitive functions and inform educational practices. The ethical challenges raised by research in social neuroscience have become the focus of neuroethics, a sub-discipline of bioethics. More specifically…

  1. Cognitive theory and brain fact: Insights for the future of cognitive neuroscience. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Bowling, Daniel

    2014-09-01

    A central challenge in neuroscience is to understand the relationship between the mechanistic operation of the nervous system and the psychological phenomena we experience everyday (e.g., perception, memory, attention, emotion, and consciousness). Supported by revolutionary advances in technology, knowledge of neural mechanisms has grown dramatically over recent decades, but with few exceptions our understanding of how these mechanisms relate to psychological phenomena remains poor.

  2. Tracking social motivation systems deficits: the affective neuroscience view of autism.

    PubMed

    Carré, Arnaud; Chevallier, Coralie; Robel, Laurence; Barry, Caroline; Maria, Anne-Solène; Pouga, Lydia; Philippe, Anne; Pinabel, François; Berthoz, Sylvie

    2015-10-01

    Abnormal functioning of primary brain systems that express and modulate basic emotional drives are increasingly considered to underlie mental disorders including autism spectrum disorders. We hypothesized that ASD are characterized by disruptions in the primary systems involved in the motivation for social bonding. Twenty adults with ASD were compared to 20 neurotypical participants on the basis of self-reports and clinical assessments, including the Social Anhedonia Scale (SAS) and the Affective Neuroscience Personality Scales (ANPS). ASD diagnosis was related to SAS, as well as to positive (PLAYFULNESS) and negative (FEAR) ANPS-traits. In the overall sample, levels of autistic traits (AQ) were related to SAS and PLAYFULNESS. We argue that PLAYFULNESS could be at the root of social bonding impairments in ASD.

  3. Affect and Cognition: An Examination of Zajonc's Views.

    ERIC Educational Resources Information Center

    Thompson, Anne E.

    In a recent controversial article, "Feeling and Thinking: Preferences Need No Inferences" (l980), R. B. Zajonc argues in support of the independence of affect and cognition. Examination of the structure and assumptions of Zajonc's arguments suggests that they do not support the view that affect is non-cognitive. Zajonc appears to leap…

  4. Affect and Cognition: An Examination of Zajonc's Views.

    ERIC Educational Resources Information Center

    Thompson, Anne E.

    In a recent controversial article, "Feeling and Thinking: Preferences Need No Inferences" (l980), R. B. Zajonc argues in support of the independence of affect and cognition. Examination of the structure and assumptions of Zajonc's arguments suggests that they do not support the view that affect is non-cognitive. Zajonc appears to leap…

  5. Fish cognition: a primate's eye view.

    PubMed

    Bshary, Redouan; Wickler, Wolfgang; Fricke, Hans

    2002-03-01

    We provide selected examples from the fish literature of phenomena found in fish that are currently being examined in discussions of cognitive abilities and evolution of neocortex size in primates. In the context of social intelligence, we looked at living in individualized groups and corresponding social strategies, social learning and tradition, and co-operative hunting. Regarding environmental intelligence, we searched for examples concerning special foraging skills, tool use, cognitive maps, memory, anti-predator behaviour, and the manipulation of the environment. Most phenomena of interest for primatologists are found in fish as well. We therefore conclude that more detailed studies on decision rules and mechanisms are necessary to test for differences between the cognitive abilities of primates and other taxa. Cognitive research can benefit from future fish studies in three ways: first, as fish are highly variable in their ecology, they can be used to determine the specific ecological factors that select for the evolution of specific cognitive abilities. Second, for the same reason they can be used to investigate the link between cognitive abilities and the enlargement of specific brain areas. Third, decision rules used by fish could be used as 'null-hypotheses' for primatologists looking at how monkeys might make their decisions. Finally, we propose a variety of fish species that we think are most promising as study objects.

  6. On the Brain Basis of Digital Daze in Millennial Minds: Rejoinder to "Digital Technology and Student Cognitive Development: The Neuroscience of the University Classroom"

    ERIC Educational Resources Information Center

    Brown, Timothy T.

    2016-01-01

    In this issue, Cavanaugh, Giapponi, and Golden (2016) have discussed the new prominent role of digital devices in the lives of students; the possible impact of these widely-used technologies on developing, learning minds; and the relevance of new cognitive neuroscience research and technologies for better understanding the potential effects of…

  7. On the Brain Basis of Digital Daze in Millennial Minds: Rejoinder to "Digital Technology and Student Cognitive Development: The Neuroscience of the University Classroom"

    ERIC Educational Resources Information Center

    Brown, Timothy T.

    2016-01-01

    In this issue, Cavanaugh, Giapponi, and Golden (2016) have discussed the new prominent role of digital devices in the lives of students; the possible impact of these widely-used technologies on developing, learning minds; and the relevance of new cognitive neuroscience research and technologies for better understanding the potential effects of…

  8. Cognitive-affective neuroscience of somatization disorder and functional somatic syndromes: reconceptualizing the triad of depression-anxiety-somatic symptoms.

    PubMed

    Stein, Dan J; Muller, Jacqueline

    2008-05-01

    Somatization disorder is a somatoform disorder that overlaps with a number of functional somatic syndromes and has high comorbidity with major depression and anxiety disorders. Proposals have been made for revising the category of somatoform disorders, for simplifying the criteria for somatization disorder, and for emphasizing the unitary nature of the functional somatic syndromes in future classifications. A review of the cognitive-affective neuroscience of somatization disorder and related conditions suggests that overlapping psychobiological mechanisms mediate depression, anxiety, and somatization symptoms. Particular genes and environments may contribute to determining whether symptoms are predominantly depressive, anxious, or somatic, and there are perhaps also overlaps and distinctions in the distal evolutionary mechanisms that produce these symptoms.

  9. The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people.

    PubMed

    Sahakian, Barbara J; Bruhl, Annette B; Cook, Jennifer; Killikelly, Clare; Savulich, George; Piercy, Thomas; Hafizi, Sepehr; Perez, Jesus; Fernandez-Egea, Emilio; Suckling, John; Jones, Peter B

    2015-09-19

    In addition to causing distress and disability to the individual, neuropsychiatric disorders are also extremely expensive to society and governments. These disorders are both common and debilitating and impact on cognition, functionality and wellbeing. Cognitive enhancing drugs, such as cholinesterase inhibitors and methylphenidate, are used to treat cognitive dysfunction in Alzheimer's disease and attention deficit hyperactivity disorder, respectively. Other cognitive enhancers include specific computerized cognitive training and devices. An example of a novel form of cognitive enhancement using the technological advancement of a game on an iPad that also acts to increase motivation is presented. Cognitive enhancing drugs, such as methylphenidate and modafinil, which were developed as treatments, are increasingly being used by healthy people. Modafinil not only affects 'cold' cognition, but also improves 'hot' cognition, such as emotion recognition and task-related motivation. The lifestyle use of 'smart drugs' raises both safety concerns as well as ethical issues, including coercion and increasing disparity in society. As a society, we need to consider which forms of cognitive enhancement (e.g. pharmacological, exercise, lifelong learning) are acceptable and for which groups (e.g. military, doctors) under what conditions (e.g. war, shift work) and by what methods we would wish to improve and flourish.

  10. The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people

    PubMed Central

    Sahakian, Barbara J.; Bruhl, Annette B.; Cook, Jennifer; Killikelly, Clare; Savulich, George; Piercy, Thomas; Hafizi, Sepehr; Perez, Jesus; Fernandez-Egea, Emilio; Suckling, John; Jones, Peter B.

    2015-01-01

    In addition to causing distress and disability to the individual, neuropsychiatric disorders are also extremely expensive to society and governments. These disorders are both common and debilitating and impact on cognition, functionality and wellbeing. Cognitive enhancing drugs, such as cholinesterase inhibitors and methylphenidate, are used to treat cognitive dysfunction in Alzheimer's disease and attention deficit hyperactivity disorder, respectively. Other cognitive enhancers include specific computerized cognitive training and devices. An example of a novel form of cognitive enhancement using the technological advancement of a game on an iPad that also acts to increase motivation is presented. Cognitive enhancing drugs, such as methylphenidate and modafinil, which were developed as treatments, are increasingly being used by healthy people. Modafinil not only affects ‘cold’ cognition, but also improves ‘hot’ cognition, such as emotion recognition and task-related motivation. The lifestyle use of ‘smart drugs' raises both safety concerns as well as ethical issues, including coercion and increasing disparity in society. As a society, we need to consider which forms of cognitive enhancement (e.g. pharmacological, exercise, lifelong learning) are acceptable and for which groups (e.g. military, doctors) under what conditions (e.g. war, shift work) and by what methods we would wish to improve and flourish. PMID:26240429

  11. What affective neuroscience means for science of consciousness.

    PubMed

    Almada, Leonardo Ferreira; Pereira, Alfredo; Carrara-Augustenborg, Claudia

    2013-01-01

    The field of affective neuroscience has emerged from the efforts of Jaak Panksepp in the 1990s and reinforced by the work of, among others, Joseph LeDoux in the 2000s. It is based on the ideas that affective processes are supported by brain structures that appeared earlier in the phylogenetic scale (as the periaqueductal gray area), they run in parallel with cognitive processes, and can influence behaviour independently of cognitive judgements. This kind of approach contrasts with the hegemonic concept of conscious processing in cognitive neurosciences, which is based on the identification of brain circuits responsible for the processing of (cognitive) representations. Within cognitive neurosciences, the frontal lobes are assigned the role of coordinators in maintaining affective states and their emotional expressions under cognitive control. An intermediary view is the Damasio-Bechara Somatic Marker model, which puts cognition under partial somatic-affective control. We present here our efforts to make a synthesis of these views, by proposing the existence of two interacting brain circuits; the first one in charge of cognitive processes and the second mediating feelings about cognitive contents. The coupling of the two circuits promotes an endogenous feedback that supports conscious processes. Within this framework, we present the defence that detailed study of both affective and cognitive processes, their interactions, as well of their respective brain networks, is necessary for a science of consciousness.

  12. What Affective Neuroscience Means for Science Of Consciousness

    PubMed Central

    Almada, Leonardo Ferreira; Pereira, Alfredo; Carrara-Augustenborg, Claudia

    2013-01-01

    The field of affective neuroscience has emerged from the efforts of Jaak Panksepp in the 1990s and reinforced by the work of, among others, Joseph LeDoux in the 2000s. It is based on the ideas that affective processes are supported by brain structures that appeared earlier in the phylogenetic scale (as the periaqueductal gray area), they run in parallel with cognitive processes, and can influence behaviour independently of cognitive judgements. This kind of approach contrasts with the hegemonic concept of conscious processing in cognitive neurosciences, which is based on the identification of brain circuits responsible for the processing of (cognitive) representations. Within cognitive neurosciences, the frontal lobes are assigned the role of coordinators in maintaining affective states and their emotional expressions under cognitive control. An intermediary view is the Damasio-Bechara Somatic Marker model, which puts cognition under partial somatic-affective control. We present here our efforts to make a synthesis of these views, by proposing the existence of two interacting brain circuits; the first one in charge of cognitive processes and the second mediating feelings about cognitive contents. The coupling of the two circuits promotes an endogenous feedback that supports conscious processes. Within this framework, we present the defence that detailed study of both affective and cognitive processes, their interactions, as well of their respective brain networks, is necessary for a science of consciousness. PMID:23678246

  13. Cognitive Behavioral Therapy and the Treatment of Posttraumatic Stress Disorder: Where Counseling and Neuroscience Meet

    ERIC Educational Resources Information Center

    Makinson, Ryan A.; Young, J. Scott

    2012-01-01

    There is increasing evidence to support the biological basis of mental disorders. Subsequently, understanding the neurobiological context from which mental distress arises can help counselors appropriately apply cognitive behavioral therapy and other well-researched cognitive interventions. The purpose of this article is to describe the…

  14. Insights from Cognitive Neuroscience: The Importance of Executive Function for Early Reading Development and Education

    ERIC Educational Resources Information Center

    Cartwright, Kelly B.

    2012-01-01

    Research Findings: Executive function begins to develop in infancy and involves an array of processes, such as attention, inhibition, working memory, and cognitive flexibility, which provide the means by which individuals control their own behavior, work toward goals, and manage complex cognitive processes. Thus, executive function plays a…

  15. Insights from Cognitive Neuroscience: The Importance of Executive Function for Early Reading Development and Education

    ERIC Educational Resources Information Center

    Cartwright, Kelly B.

    2012-01-01

    Research Findings: Executive function begins to develop in infancy and involves an array of processes, such as attention, inhibition, working memory, and cognitive flexibility, which provide the means by which individuals control their own behavior, work toward goals, and manage complex cognitive processes. Thus, executive function plays a…

  16. Cognitive Behavioral Therapy and the Treatment of Posttraumatic Stress Disorder: Where Counseling and Neuroscience Meet

    ERIC Educational Resources Information Center

    Makinson, Ryan A.; Young, J. Scott

    2012-01-01

    There is increasing evidence to support the biological basis of mental disorders. Subsequently, understanding the neurobiological context from which mental distress arises can help counselors appropriately apply cognitive behavioral therapy and other well-researched cognitive interventions. The purpose of this article is to describe the…

  17. What Does Neuroscience and Cognitive Psychology Tell Us about Multiple Intelligence

    ERIC Educational Resources Information Center

    Bauer, Richard H.

    2009-01-01

    Studies that have used noninvasive brain imaging techniques to record neocortical activity while individuals were performing cognitive intelligence tests (traditional intelligence) and social intelligence tests were reviewed. In cognitive intelligence tests 16 neocortical areas were active, whereas in social intelligence 10 areas were active.…

  18. Integrating Levels of Analysis in Systems and Cognitive Neurosciences: Selective Attention as a Case Study.

    PubMed

    Itthipuripat, Sirawaj; Serences, John T

    2016-06-01

    Neuroscience is inherently interdisciplinary, rapidly expanding beyond its roots in biological sciences to many areas of the social and physical sciences. This expansion has led to more sophisticated ways of thinking about the links between brains and behavior and has inspired the development of increasingly advanced tools to characterize the activity of large populations of neurons. However, along with these advances comes a heightened risk of fostering confusion unless efforts are made to better integrate findings across different model systems and to develop a better understanding about how different measurement techniques provide mutually constraining information. Here we use selective visuospatial attention as a case study to highlight the importance of these issues, and we suggest that exploiting multiple measures can better constrain models that relate neural activity to animal behavior. © The Author(s) 2015.

  19. Role of the dorsal anterior cingulate cortex in obsessive-compulsive disorder: converging evidence from cognitive neuroscience and psychiatric neurosurgery.

    PubMed

    McGovern, Robert A; Sheth, Sameer A

    2017-01-01

    OBJECTIVE Advances in understanding the neurobiological basis of psychiatric disorders will improve the ability to refine neuromodulatory procedures for treatment-refractory patients. One of the core dysfunctions in obsessive-compulsive disorder (OCD) is a deficit in cognitive control, especially involving the dorsal anterior cingulate cortex (dACC). The authors' aim was to derive a neurobiological understanding of the successful treatment of refractory OCD with psychiatric neurosurgical procedures targeting the dACC. METHODS First, the authors systematically conducted a review of the literature on the role of the dACC in OCD by using the search terms "obsessive compulsive disorder" and "anterior cingulate." The neuroscience literature on cognitive control mechanisms in the dACC was then combined with the literature on psychiatric neurosurgical procedures targeting the dACC for the treatment of refractory OCD. RESULTS The authors reviewed 89 studies covering topics that included structural and functional neuroimaging and electrophysiology. The majority of resting-state functional neuroimaging studies demonstrated dACC hyperactivity in patients with OCD relative to that in controls, while task-based studies were more variable. Electrophysiological studies showed altered dACC-related biomarkers of cognitive control, such as error-related negativity in OCD patients. These studies were combined with the cognitive control neurophysiology literature, including the recently elaborated expected value of control theory of dACC function. The authors suggest that a central feature of OCD pathophysiology involves the generation of mis-specified cognitive control signals by the dACC, and they elaborate on this theory and provide suggestions for further study. CONCLUSIONS Although abnormalities in brain structure and function in OCD are distributed across a wide network, the dACC plays a central role. The authors propose a theory of cognitive control dysfunction in OCD that

  20. Live face-to-face interaction during fMRI: a new tool for social cognitive neuroscience.

    PubMed

    Redcay, Elizabeth; Dodell-Feder, David; Pearrow, Mark J; Mavros, Penelope L; Kleiner, Mario; Gabrieli, John D E; Saxe, Rebecca

    2010-05-01

    Cooperative social interaction is critical for human social development and learning. Despite the importance of social interaction, previous neuroimaging studies lack two fundamental components of everyday face-to-face interactions: contingent responding and joint attention. In the current studies, functional MRI data were collected while participants interacted with a human experimenter face-to-face via live video feed as they engaged in simple cooperative games. In Experiment 1, participants engaged in a live interaction with the experimenter ("Live") or watched a video of the same interaction ("Recorded"). During the "Live" interaction, as compared to the Recorded conditions, greater activation was seen in brain regions involved in social cognition and reward, including the right temporoparietal junction (rTPJ), anterior cingulate cortex (ACC), right superior temporal sulcus (rSTS), ventral striatum, and amygdala. Experiment 2 isolated joint attention, a critical component of social interaction. Participants either followed the gaze of the live experimenter to a shared target of attention ("Joint Attention") or found the target of attention alone while the experimenter was visible but not sharing attention ("Solo Attention"). The right temporoparietal junction and right posterior STS were differentially recruited during Joint, as compared to Solo, attention. These findings suggest the rpSTS and rTPJ are key regions for both social interaction and joint attention. This method of allowing online, contingent social interactions in the scanner could open up new avenues of research in social cognitive neuroscience, both in typical and atypical populations.

  1. Towards an Integration of the Non-Invasive Methodologies of Cognitive Neuroscience: The Eleventh Carmel Workshop

    DTIC Science & Technology

    1990-09-18

    10:00 David LaBerge , University of California, Irvine "Why Should Cognitive Science Bother with the Brain?" This lecture will focus on those aspects...PA 19104 Bronx, N Y 10461 Earle Heffley David LaBerge University of Illinois University of California Department of Psychology Department of Cognitive...Science 603 East Daniel St. Irvine, CA 92717 Champaign, IL 61820 Paul C. Lauterbur Steven A. Hillyard University of Illinois U. of California, San

  2. Annual research review: Towards a developmental neuroscience of atypical social cognition.

    PubMed

    Happé, Francesca; Frith, Uta

    2014-06-01

    As a starting point for our review we use a developmental timeline, starting from birth and divided into major developmental epochs defined by key milestones of social cognition in typical development. For each epoch, we highlight those developmental disorders that diverge from the normal developmental pattern, what is known about these key milestones in the major disorders affecting social cognition, and any available research on the neural basis of these differences. We relate behavioural observations to four major networks of the social brain, that is, Amygdala, Mentalizing, Emotion and Mirror networks. We focus on those developmental disorders that are characterized primarily by social atypicality, such as autism spectrum disorder, social anxiety and a variety of genetically defined syndromes. The processes and aspects of social cognition we highlight are sketched in a putative network diagram, and include: agent identification, emotion processing and empathy, mental state attribution, self-processing and social hierarchy mapping involving social ‘policing’ and in-group/out-group categorization. Developmental disorders reveal some dissociable deficits in different components of this map of social cognition. This broad review across disorders, ages and aspects of social cognition leads us to some key questions: How can we best distinguish primary from secondary social disorders? Is social cognition especially vulnerable to developmental disorder, or surprisingly robust? Are cascading notions of social development, in which early functions are essential stepping stones or building bricks for later abilities, necessarily correct?

  3. From Augustine of Hippo's Memory Systems to Our Modern Taxonomy in Cognitive Psychology and Neuroscience of Memory: A 16-Century Nap of Intuition before Light of Evidence.

    PubMed

    Cassel, Jean-Christophe; Cassel, Daniel; Manning, Lilianne

    2013-03-01

    Over the last half century, neuropsychologists, cognitive psychologists and cognitive neuroscientists interested in human memory have accumulated evidence showing that there is not one general memory function but a variety of memory systems deserving distinct (but for an organism, complementary) functional entities. The first attempts to organize memory systems within a taxonomic construct are often traced back to the French philosopher Maine de Biran (1766-1824), who, in his book first published in 1803, distinguished mechanical memory, sensitive memory and representative memory, without, however, providing any experimental evidence in support of his view. It turns out, however, that what might be regarded as the first elaborated taxonomic proposal is 14 centuries older and is due to Augustine of Hippo (354-430), also named St Augustine, who, in Book 10 of his Confessions, by means of an introspective process that did not aim at organizing memory systems, nevertheless distinguished and commented on sensible memory, intellectual memory, memory of memories, memory of feelings and passion, and memory of forgetting. These memories were envisaged as different and complementary instances. In the current study, after a short biographical synopsis of St Augustine, we provide an outline of the philosopher's contribution, both in terms of questions and answers, and focus on how this contribution almost perfectly fits with several viewpoints of modern psychology and neuroscience of memory about human memory functions, including the notion that episodic autobiographical memory stores events of our personal history in their what, where and when dimensions, and from there enables our mental time travel. It is not at all meant that St Augustine's elaboration was the basis for the modern taxonomy, but just that the similarity is striking, and that the architecture of our current viewpoints about memory systems might have preexisted as an outstanding intuition in the philosopher

  4. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation.

    PubMed

    Gur, Ruben C; Richard, Jan; Hughett, Paul; Calkins, Monica E; Macy, Larry; Bilker, Warren B; Brensinger, Colleen; Gur, Raquel E

    2010-03-30

    There is increased need for efficient computerized methods to collect reliable data on a range of cognitive domains that can be linked to specific brain systems. Such need arises in functional neuroimaging studies, where individual differences in cognitive performance are variables of interest or serve as confounds. In genetic studies of complex behavior, which require particularly large samples, such trait measures can serve as endophenotypes. Traditional neuropsychological tests, based on clinical pathological correlations, are protracted, require extensive training in administration and scoring, and leave lengthy paper trails (double-entry for analysis). We present a computerized battery that takes an average of 1h and provides measures of accuracy and speed on 9 neurocognitive domains. They are cognitive neuroscience-based in that they have been linked experimentally to specific brain systems with functional neuroimaging studies. We describe the process of translating tasks used in functional neuroimaging to tests for assessing individual differences. Data are presented on each test with samples ranging from 139 (81 female) to 536 (311 female) of carefully screened healthy individuals ranging in age from 18 to 84. Item consistency was established with acceptable to high Cronbach alpha coefficients. Inter-item correlations were moderate to high within domain and low to nil across domains, indicating construct validity. Initial criterion validity was demonstrated by sensitivity to sex differences and the effects of age, education and parental education. These results encourage the use of this battery in studies needing an efficient assessment of major neurocognitive domains such as multi-site genetic studies and clinical trials.

  5. Categorization: The View from Animal Cognition

    PubMed Central

    Smith, J. David; Zakrzewski, Alexandria C.; Johnson, Jennifer M.; Valleau, Jeanette C.; Church, Barbara A.

    2016-01-01

    Exemplar, prototype, and rule theory have organized much of the enormous literature on categorization. From this theoretical foundation have arisen the two primary debates in the literature—the prototype-exemplar debate and the single system-multiple systems debate. We review these theories and debates. Then, we examine the contribution that animal-cognition studies have made to them. Animals have been crucial behavioral ambassadors to the literature on categorization. They reveal the roots of human categorization, the basic assumptions of vertebrates entering category tasks, the surprising weakness of exemplar memory as a category-learning strategy. They show that a unitary exemplar theory of categorization is insufficient to explain human and animal categorization. They show that a multiple-systems theoretical account—encompassing exemplars, prototypes, and rules—will be required for a complete explanation. They show the value of a fitness perspective in understanding categorization, and the value of giving categorization an evolutionary depth and phylogenetic breadth. They raise important questions about the internal similarity structure of natural kinds and categories. They demonstrate strong continuities with humans in categorization, but discontinuities, too. Categorization’s great debates are resolving themselves, and to these resolutions animals have made crucial contributions. PMID:27314392

  6. Mountain View College's Cognitive Style Program: A Description.

    ERIC Educational Resources Information Center

    Ehrhardt, Harryette B.

    Several issues are discussed related to the administration and operation of Mountain View College's (MVC) Cognitive Style Program, an assessment system based on the Modified Hill Model, which determines preferred learning styles for each student and thus aids the student in selecting appropriate classroom environments. After introductory material…

  7. A Cognitive View of Reading Comprehension: Implications for Reading Difficulties

    ERIC Educational Resources Information Center

    Kendeou, Panayiota; Broek, Paul; Helder, Anne; Karlsson, Josefine

    2014-01-01

    Our aim in the present paper is to discuss a "cognitive view" of reading comprehension, with particular attention to research findings that have the potential to improve our understanding of difficulties in reading comprehension. We provide an overview of how specific sources of difficulties in inference making, executive functions, and…

  8. A Cognitive Neuroscience Perspective on Embodied Language for Human-Robot Cooperation

    ERIC Educational Resources Information Center

    Madden, Carol; Hoen, Michel; Dominey, Peter Ford

    2010-01-01

    This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the…

  9. High Abilities at Fluid Analogizing: A Cognitive Neuroscience Construct of Giftedness

    ERIC Educational Resources Information Center

    Geake, John G.

    2008-01-01

    Gifted intelligence is underpinned by those aspects of neural function that enable an enhanced facility to engage in fluid analogizing: a cognitive-level construct that describes intermodule information articulation within the brain. Evidence for this claim comes from a program of neuroimaging investigations of the neural underpinnings and IQ…

  10. Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future.

    PubMed

    Bestmann, Sven; Feredoes, Eva

    2013-08-01

    Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure-function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure-function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. © 2013 New York Academy of Sciences.

  11. High Abilities at Fluid Analogizing: A Cognitive Neuroscience Construct of Giftedness

    ERIC Educational Resources Information Center

    Geake, John G.

    2008-01-01

    Gifted intelligence is underpinned by those aspects of neural function that enable an enhanced facility to engage in fluid analogizing: a cognitive-level construct that describes intermodule information articulation within the brain. Evidence for this claim comes from a program of neuroimaging investigations of the neural underpinnings and IQ…

  12. A Cognitive Neuroscience Perspective on Embodied Language for Human-Robot Cooperation

    ERIC Educational Resources Information Center

    Madden, Carol; Hoen, Michel; Dominey, Peter Ford

    2010-01-01

    This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the…

  13. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience.

    PubMed

    Baars, Bernard J

    2005-01-01

    Global workspace (GW) theory emerged from the cognitive architecture tradition in cognitive science. Newell and co-workers were the first to show the utility of a GW or "blackboard" architecture in a distributed set of knowledge sources, which could cooperatively solve problems that no single constituent could solve alone. The empirical connection with conscious cognition was made by Baars (1988, 2002). GW theory generates explicit predictions for conscious aspects of perception, emotion, motivation, learning, working memory, voluntary control, and self systems in the brain. It has similarities to biological theories such as Neural Darwinism and dynamical theories of brain functioning. Functional brain imaging now shows that conscious cognition is distinctively associated with wide spread of cortical activity, notably toward frontoparietal and medial temporal regions. Unconscious comparison conditions tend to activate only local regions, such as visual projection areas. Frontoparietal hypometabolism is also implicated in unconscious states, including deep sleep, coma, vegetative states, epileptic loss of consciousness, and general anesthesia. These findings are consistent with the GW hypothesis, which is now favored by a number of scientists and philosophers.

  14. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics.

    PubMed

    Urry, Emily; Landolt, Hans-Peter

    2015-01-01

    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention in rested and sleep-deprived states. Caffeine--the most often consumed stimulant in the world--blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction.

  15. Understanding cognitive dysfunction in multiple sclerosis: integrating a first-person perspective with neuropsychological testing, neuroimaging, and cognitive neuroscience research.

    PubMed

    Courtney, Susan M

    2011-12-01

    This paper gives perspectives on a companion article, the case history of a professional writer who has multiple sclerosis. The patient's first-person account of her illness is combined with clinical summaries about her care. The discussion of this case illustrates the value of combining such subjective and objective reports in evaluating a patient. Furthermore, considering these reports in the context of current research findings on the organization and function of cognitive neural systems can shed light on patients' seemingly contradictory clinical findings. For this patient, a deficit in the ability to select the most important information to achieve her current goals reflected her neuropsychological test results and neuroradiologic findings, and helped to explain her difficulties with her job and her activities of daily living. Because the patient's cognitive impairments have been her primary manifestations of multiple sclerosis, she illustrates the importance of physicians attending to and helping patients manage their cognitive deficits.

  16. A room with a view of integrity and professionalism: personal reflections on teaching responsible conduct of research in the neurosciences.

    PubMed

    Bell, Emily

    2015-04-01

    Neuroscientists are increasingly put into situations which demand critical reflection about the ethical and appropriate use of research tools and scientific knowledge. Students or trainees also have to know how to navigate the ethical domains of this context. At a time when neuroscience is expected to advance policy and practice outcomes, in the face of academic pressures and complex environments, the importance of scientific integrity comes into focus and with it the need for training at the graduate level in the responsible conduct of research (RCR). I describe my experience teaching RCR in a graduate neuroscience program and identify three personal reflections where further dialogue could be warranted: (1) mobilizing a common set of competencies and virtues standing for professionalism in the neurosciences; (2) tailoring RCR for the neurosciences and empowering students through the active engagement of mentors; (3) soliciting shared responsibility for RCR training between disciplines, institutions and governmental or funding agencies.

  17. [Looking at the self under the microscope of cognitive neurosciences: from self-consciousness to consciousness of others].

    PubMed

    Duval, Céline; Desgranges, Béatrice; Eustache, Francis; Piolino, Pascale

    2009-03-01

    Cognitive neurosciences are interested in the concept of self, resulting from two muddled aspects. This concept relates to both a set of personal complex and multidimensional mental representations about ourselves and the flow of self-consciousness which is associated. It grounds individual identity and is related to the subjectivity of the personal experiences, at the core of continuity over the time. The existence of others seems essential in the construction of self mental representations; that is why the concept of self is strongly related to the theory of mind (ToM). ToM corresponds to the capacity to infer representations or mental states to others. Even if self and ToM researches are often carried out in two distinct fields, it seems like these two concepts share common processes. Recent imaging studies comfort this idea. Activations in a common neuronal network (principally median prefrontal cortex and precuneus) were found during the realization of self or ToM tasks. Thus, our capacity to represent our thoughts and others' one coud have a similar cerebral origin. Self-consciousness and consciousness of others could then be considered as a bidirectional interaction at the very bases of both individual identity and the other's knowledge, which regulate behavior and social interactions.

  18. Live face-to-face interaction during fMRI: a new tool for social cognitive neuroscience

    PubMed Central

    Redcay, Elizabeth; Dodell-Feder, David; Pearrow, Mark J.; Mavros, Penelope L.; Kleiner, Mario; Gabrieli, John D.E.; Saxe, Rebecca

    2010-01-01

    Cooperative social interaction is critical for human social development and learning. Despite the importance of social interaction, previous neuroimaging studies lack two fundamental components of everyday face-to-face interactions: contingent responding and joint attention. In the current studies, functional MRI data were collected while participants interacted with a human experimenter face-to-face via live video feed as they engaged in simple cooperative games. In Experiment 1, participants engaged in a live interaction with the experimenter (“Live”) or watched a video of the same interaction (“Recorded”). During the “Live” interaction, as compared to the Recorded conditions, greater activation was seen in brain regions involved in social cognition and reward, including the right temporo-parietal junction (rTPJ), anterior cingulate cortex (ACC), right superior temporal sulcus (rSTS), ventral striatum, and amygdala. Experiment 2 isolated joint attention, a critical component of social interaction. Participants either followed the gaze of the live experimenter to a shared target of attention (“Joint Attention”) or found the target of attention alone while the experimenter was visible but not sharing attention (“Solo Attention”). The right temporo-parietal junction and right posterior STS were differentially recruited during Joint, as compared to Solo, attention. These findings suggest the rpSTS and rTPJ are key regions for both social interaction and joint attention. This method of allowing online, contingent social interactions in the scanner could open up new avenues of research in social cognitive neuroscience, both in typical and atypical populations. PMID:20096792

  19. Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term 'cognition' and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind.

    PubMed

    Cromwell, Howard Casey; Panksepp, Jaak

    2011-10-01

    Words such as cognition, motivation and emotion powerfully guide theory development and the overall aims and goals of behavioral neuroscience research. Once such concepts are accepted generally as natural aspects of the brain, their influence can be pervasive and long lasting. Importantly, the choice of conceptual terms used to describe and study mental/neural functions can also constrain research by forcing the results into seemingly useful 'conceptual' categories that have no discrete reality in the brain. Since the popularly named 'cognitive revolution' in psychological science came to fruition in the early 1970s, the term cognitive or cognition has been perhaps the most widely used conceptual term in behavioral neuroscience. These terms, similar to other conceptual terms, have potential value if utilized appropriately. We argue that recently the term cognition has been both overused and misused. This has led to problems in developing a usable shared definition for the term and to promotion of possible misdirections in research within behavioral neuroscience. In addition, we argue that cognitive-guided research influenced primarily by top-down (cortical toward subcortical) perspectives without concurrent non-cognitive modes of bottom-up developmental thinking, could hinder progress in the search for new treatments and medications for psychiatric illnesses and neurobehavioral disorders. Overall, linkages of animal research insights to human psychology may be better served by bottom-up (subcortical to cortical) affective and motivational 'state-control' perspectives, simply because the lower networks of the brain are foundational for the construction of higher 'information-processing' aspects of mind. Moving forward, rapidly expanding new techniques and creative methods in neuroscience along with more accurate brain concepts, may help guide the development of new therapeutics and hopefully more accurate ways to describe and explain brain-behavior relationships

  20. BACS: The Brussels Artificial Character Sets for studies in cognitive psychology and neuroscience.

    PubMed

    Vidal, Camille; Content, Alain; Chetail, Fabienne

    2017-01-27

    Written symbols such as letters have been used extensively in cognitive psychology, whether to understand their contributions to written word recognition or to examine the processes involved in other mental functions. Sometimes, however, researchers want to manipulate letters while removing their associated characteristics. A powerful solution to do so is to use new characters, devised to be highly similar to letters, but without the associated sound or name. Given the growing use of artificial characters in experimental paradigms, the aim of the present study was to make available the Brussels Artificial Character Sets (BACS): two full, strictly controlled, and portable sets of artificial characters for a broad range of experimental situations.

  1. Drawing cartoon faces--a functional imaging study of the cognitive neuroscience of drawing.

    PubMed

    Miall, R Chris; Gowen, Emma; Tchalenko, John

    2009-03-01

    We report a functional imaging study of drawing cartoon faces. Normal, untrained participants were scanned while viewing simple black and white cartoon line drawings of human faces, retaining them for a short memory interval, and then drawing them without vision of their hand or the paper. Specific encoding and retention of information about the faces were tested for by contrasting these two stages (with display of cartoon faces) against the exploration and retention of random dot stimuli. Drawing was contrasted between conditions in which only memory of a previously viewed face was available versus a condition in which both memory and simultaneous viewing of the cartoon were possible, and versus drawing of a new, previously unseen, face. We show that the encoding of cartoon faces powerfully activates the face-sensitive areas of the lateral occipital cortex and the fusiform gyrus, but there is no significant activation in these areas during the retention interval. Activity in both areas was also high when drawing the displayed cartoons. Drawing from memory activates areas in posterior parietal cortex and frontal areas. This activity is consistent with the encoding and retention of the spatial information about the face to be drawn as a visuo-motor action plan, either representing a series of targets for ocular fixation or as spatial targets for the drawing action.

  2. Translational clinical neuroscience perspectives on the cognitive and neurobiological mechanisms underlying alcohol-related aggression.

    PubMed

    Beck, Anne; Heinz, Adrienne J; Heinz, Andreas

    2014-01-01

    Alcohol-related violence, a longstanding, serious, and pervasive social problem, has provided researchers from diverse disciplines with a model to study individual differences in aggressive and violent behavior. Of course, not all alcohol consumers will become aggressive after drinking and similarly, not all individuals with alcohol use disorders will exhibit such untoward behavior. Rather, the relationship is best conceptualized as complex and indirect and is influenced by a constellation of social, cognitive, and biological factors that differ greatly from one person to the next. Animal experiments and human studies have elucidated how these mechanisms and processes explain (i.e., mediate) the relation between acute and chronic alcohol consumption and aggressive behavior. Further, the rich body of literature on alcohol-related aggression has allowed for identification of several potential high-yield targets for clinical intervention, e.g., cognitive training for executive dysfunction; psychopharmacology targeting affect and threat perception, which may also generalize to other psychiatric conditions characterized by aggressive behavior. Here we aim to integrate pertinent findings, derived from different methodological approaches and theoretical models, which explain heterogeneity in aggressive responses to alcohol. A translational platform is provided, highlighting common factors linking alcohol and aggression that warrant further, interdisciplinary study in order to reduce the devastating social impact of this phenomenon.

  3. Cognitive neuroscience of social emotions and implications for psychopathology: examining embarrassment, guilt, envy, and schadenfreude.

    PubMed

    Jankowski, Kathryn F; Takahashi, Hidehiko

    2014-05-01

    Social emotions are affective states elicited during social interactions and integral for promoting socially appropriate behaviors and discouraging socially inappropriate ones. Social emotion-processing deficits significantly impair interpersonal relationships, and play distinct roles in the manifestation and maintenance of clinical symptomatology. Elucidating the neural correlates of discrete social emotions can serve as a window to better understanding and treating neuropsychiatric disorders. Moral cognition and social emotion-processing broadly recruit a fronto-temporo-subcortical network, supporting empathy, perspective-taking, self-processing, and reward-processing. The present review specifically examines the neural correlates of embarrassment, guilt, envy, and schadenfreude. Embarrassment and guilt are self-conscious emotions, evoked during negative evaluation following norm violations and supported by a fronto-temporo-posterior network. Embarrassment is evoked by social transgressions and recruits greater anterior temporal regions, representing conceptual social knowledge. Guilt is evoked by moral transgressions and recruits greater prefrontal regions, representing perspective-taking and behavioral change demands. Envy and schadenfreude are fortune-of-other emotions, evoked during social comparison and supported by a prefronto-striatal network. Envy represents displeasure in others' fortunes, and recruits increased dorsal anterior cingulate cortex, representing cognitive dissonance, and decreased reward-related striatal regions. Schadenfreude represents pleasure in others' misfortunes, and recruits reduced empathy-related insular regions and increased reward-related striatal regions. Implications for psychopathology and treatment design are discussed.

  4. Word classes in the brain: implications of linguistic typology for cognitive neuroscience.

    PubMed

    Kemmerer, David

    2014-09-01

    Although recent research on the neural substrates of word classes has generated some valuable findings, significant progress has been hindered by insufficient attention to theoretical issues involving the nature of the lexical phenomena under investigation. This paper shows how insights from linguistic typology can provide cognitive neuroscientists with well-motivated guidelines for interpreting the extant data and charting a future course. At the outset, a fundamental distinction is made between universal and language-particular aspects of word classes. Regarding universals, prototypical nouns involve reference to objects, and their meanings rely primarily on the ventral temporal lobes, which represent the shape features of entities; in contrast, prototypical verbs involve predication of actions, and their meanings rely primarily on posterior middle temporal regions and frontoparietal regions, which represent the visual motion features and somatomotor features of events. Some researchers maintain that focusing on object nouns and action verbs is inappropriate because it conflates the semantic and grammatical properties of each word class. However, this criticism not only ignores the importance of the universal prototypes, but also mistakenly assumes that there are straightforward morphological and/or syntactic criteria for identifying nouns and verbs in particular languages. In fact, at the level of individual languages, the classic method of distributional analysis leads to a proliferation of constructionally based entity-denoting and event-denoting word classes with mismatching memberships, and all of this variation must be taken seriously, not only by linguists, but also by cognitive neuroscientists. Many of these word classes involve remarkably close correspondences between grammar and meaning and hence are highly relevant to the neurobiology of conceptual knowledge, but so far hardly any of them have been investigated from a neurolinguistic perspective.

  5. A cognitive neuroscience perspective on embodied language for human-robot cooperation.

    PubMed

    Madden, Carol; Hoen, Michel; Dominey, Peter Ford

    2010-03-01

    This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the context of human-robot cooperative interaction. We propose a Hybrid Comprehension Model that links compact propositional representations of sentences and discourse with their temporal unfolding in situated simulations, under the control of grammar. The starting point is a model of grammatical construction processing which specifies the neural mechanisms by which language is a structured inventory of mappings from sentence to meaning. This model is then "embodied" in a perceptual-motor system (robot) which allows it access to sentence-perceptual representation pairs, and interaction with the world providing the basis for language acquisition. We then introduce a "simulation" capability, such that the robot has an internal representation of its interaction with the world. The control of this simulator and the associated representations present a number of interesting "neuro-technical" issues. First, the "simulator" has been liberated from real-time. It can run without being connected to current sensory motor experience. Second, "simulations" appear to be represented at different levels of detail. Our paper provides a framework for beginning to address the questions: how does language and its grammar control these aspects of simulation, what are the neurophysiological bases, and how can this be demonstrated in an artificial yet embodied cognitive system. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Are multitasking abilities impaired in welders exposed to manganese? Translating cognitive neuroscience to neurotoxicology.

    PubMed

    van Thriel, Christoph; Quetscher, Clara; Pesch, Beate; Lotz, Anne; Lehnert, Martin; Casjens, Swaantje; Weiss, Tobias; Van Gelder, Rainer; Plitzke, Katrin; Brüning, Thomas; Beste, Christian

    2017-02-03

    Manganese (Mn) is an essential trace element with well characterized neurotoxic effects in high concentrations. Neurochemically, the initial neurotoxic effect of Mn is the perturbation of striatal γ-aminobutyric acid levels. Specific tasks for the assessment of cognitive functions subserved by fronto-striatal loops are available as the stop-change task (SCT) assessing control of multi-component behavior and action cascading. In a cross-sectional study, fifty male welders and 28 age-matched controls completed the SCT during a whole day examination. Reaction times, responses accuracy, and event-related potentials (ERPs) from electroencephalogram (EEG) recordings were analyzed. The shift exposure of the welders to respirable Mn was stratified by 20 µg/m(3) in 23 low-exposed (median = 4.7 µg/m(3)) and 27 high-exposed welders (median = 86.0 µg/m(3)). Welders graduation was lower and was therefore included in the analyses. The task-related factor (stop-change delay, SCD) modified the responses as expected; however, the lack of an interaction "SCD × group" revealed no differences between welders and controls. EEG data showed that the "SCD" modulated the amplitude of the P3 ERP in controls stronger than in welders. There was no difference between the two groups of welders and no association between airborne or systemic Mn and the P3 ERP. Moreover, the P3 amplitude was smaller in subjects with lower education. These results showed that multitasking performance and cognitive flexibility are not impaired in welders. The electrophysiological results gave a weak hint that relevant neurobiological processes were different in welders as compared to controls but this may be related to lower education.

  7. Sexual cognition guides viewing strategies to human figures.

    PubMed

    Hall, Charlotte L; Hogue, Todd; Guo, Kun

    2014-01-01

    Gaze patterns to figure images have been proposed to reflect the observer's sexual interest, particularly for men. This eye-tracking study investigated how individual differences in sexual motivation tendencies are manifested in naturalistic gaze patterns. Heterosexual men and women (M = 21.0 years, SD = 2.1) free-viewed plain-clothed male and female figures, aged 10, 20, and 40 years old, while their eye movements were recorded. Questionnaires were used to measure sexual cognitions, including sensation seeking and sexual compulsivity, sexual inhibition and excitation, and approach and avoidance responses to sexual stimuli. Our analysis showed a clear role of sexual cognitions in influencing gaze strategies for men. Specifically, men who scored higher on sexual compulsivity dedicated more gaze to the waist-hip region when viewing figures of their preferred sexual partners than men who scored lower on sexual compulsivity. Women's sexual cognitions showed no clear effect on the gaze pattern in viewing figures of their preferred age and gender of sexual partners, suggesting women's gaze is unlikely to be a straightforward reflection of their sexual preferences. The findings further suggest that men's gaze allocation is driven by sexual preferences and supports the utility of eye tracking in the assessment of male sexual interest.

  8. Epistemology and the Socio-Cognitive Perspective in Information Science.

    ERIC Educational Resources Information Center

    Hjorland, Birger

    2002-01-01

    Presents a socio-cognitive perspective in relation to information science and information retrieval. Topics include differences between traditional cognitive views and socio-cognitive views; a comparison of behaviorism, cognitivism, psychoanalysis, and neuroscience as approaches in psychology; information needs; relevance criteria; and…

  9. Epistemology and the Socio-Cognitive Perspective in Information Science.

    ERIC Educational Resources Information Center

    Hjorland, Birger

    2002-01-01

    Presents a socio-cognitive perspective in relation to information science and information retrieval. Topics include differences between traditional cognitive views and socio-cognitive views; a comparison of behaviorism, cognitivism, psychoanalysis, and neuroscience as approaches in psychology; information needs; relevance criteria; and…

  10. From data processing to mental organs: an interdisciplinary path to cognitive neuroscience.

    PubMed

    Patharkar, Manoj

    2011-01-01

    Human brain is a highly evolved coordinating mechanism in the species Homo sapiens. It is only in the last 100 years that extensive knowledge of the intricate structure and complex functioning of the human brain has been acquired, though a lot is yet to be known. However, from the beginning of civilisation, people have been conscious of a 'mind' which has been considered the origin of all scientific and cultural development. Philosophers have discussed at length the various attributes of consciousness. At the same time, most of the philosophical or scientific frameworks have directly or indirectly implied mind-body duality. It is now imperative that we develop an integrated approach to understand the interconnection between mind and consciousness on one hand and brain on the other. This paper begins with the proposition that the structure of the brain is analogous, at least to certain extent, to that of the computer system. Of course, it is much more sophisticated and complex. The second proposition is that the Chomskyean concept of 'mental organs' is a good working hypothesis that tries to characterise this complexity in terms of an innate cognitive framework. By following this dual approach, brain as a data processing system and brain as a superstructure of intricately linked mental organs, we can move toward a better understanding of 'mind' within the framework of empirical science. The one 'mental organ' studied extensively in Chomskyean terms is 'language faculty' which is unique in its relation to brain, mind and consciousness.

  11. Attending, learning, and socioeconomic disadvantage: developmental cognitive and social neuroscience of resilience and vulnerability.

    PubMed

    Schibli, Kylie; Wong, Kyle; Hedayati, Nina; D'Angiulli, Amedeo

    2017-05-01

    We review current findings associating socioeconomic status (SES), development of neurocognitive functions, and neurobiological pathways. A sizeable interdisciplinary literature was organized through a bifurcated developmental trajectory (BiDeT) framework, an account of the external and internal variables associated with low SES that may lead to difficulties with attention and learning, along with buffers that may protect against negative outcomes. A consistent neurocognitive finding is that low-SES children attend to information nonselectively, and engage in late filtering out of task-irrelevant information. Attentional preferences influence the development of latent inhibition (LI), an aspect of learning that involves reassigning meaningful associations to previously learned but irrelevant stimuli. LI reflects learning processes clarifying the relationship between neurobiological mechanisms related to attention and socioeconomic disadvantage during child development. Notably, changes in both selective attention and typical LI development may occur via the mesocorticolimbic dopamine (MsCL-DA) system. Chaotic environments, social isolation, and deprivation associated with low SES trigger stress responses implicating imbalances in the MsCL-DA and consolidating anxiety traits. BiDeT describes plausible interactions between socioemotional traits and low-SES environments that modify selective attention and LI, predisposing individuals to vulnerability in cognitive development and academic achievement. However, positive role models, parental style, and self-regulation training are proposed as potential promoters of resilience. © 2017 New York Academy of Sciences.

  12. Measuring Software Timing Errors in the Presentation of Visual Stimuli in Cognitive Neuroscience Experiments

    PubMed Central

    Garaizar, Pablo; Vadillo, Miguel A.; López-de-Ipiña, Diego; Matute, Helena

    2014-01-01

    Because of the features provided by an abundance of specialized experimental software packages, personal computers have become prominent and powerful tools in cognitive research. Most of these programs have mechanisms to control the precision and accuracy with which visual stimuli are presented as well as the response times. However, external factors, often related to the technology used to display the visual information, can have a noticeable impact on the actual performance and may be easily overlooked by researchers. The aim of this study is to measure the precision and accuracy of the timing mechanisms of some of the most popular software packages used in a typical laboratory scenario in order to assess whether presentation times configured by researchers do not differ from measured times more than what is expected due to the hardware limitations. Despite the apparent precision and accuracy of the results, important issues related to timing setups in the presentation of visual stimuli were found, and they should be taken into account by researchers in their experiments. PMID:24409318

  13. Gaining insight into adolescent vulnerability for social anxiety from developmental cognitive neuroscience.

    PubMed

    Caouette, Justin D; Guyer, Amanda E

    2014-04-01

    Social anxiety disorder (SAD) markedly impairs daily functioning. For adolescents, SAD can constrain typical development precisely when social experiences broaden, peers' opinions are highly salient, and social approval is actively sought. Individuals with extreme, impairing social anxiety fear evaluation from others, avoid social interactions, and interpret ambiguous social cues as threatening. Yet some degree of social anxiety can be normative and non-impairing. Furthermore, a temperament of behavioral inhibition increases risk for SAD for some, but not all adolescents with this temperament. One fruitful approach taken to understand the mechanisms of social anxiety has been to use neuroimaging to link affect and cognition with neural networks implicated in the neurodevelopmental social reorientation of adolescence. Although initial neuroimaging studies of adolescent SAD and risk for SAD underscored the role of fear-processing circuits (e.g., the amygdala and ventral prefrontal cortex), recent work has expanded these circuits to include reward-processing structures in the basal ganglia. A growing focus on reward-related neural circuitry holds promise for innovative translational research needed to differentiate impairing from normative social anxiety and for novel ways to treat adolescent SAD that focus on both social avoidance and social approach.

  14. From Data Processing to Mental Organs: An Interdisciplinary Path to Cognitive Neuroscience**

    PubMed Central

    Patharkar, Manoj

    2011-01-01

    Human brain is a highly evolved coordinating mechanism in the species Homo sapiens. It is only in the last 100 years that extensive knowledge of the intricate structure and complex functioning of the human brain has been acquired, though a lot is yet to be known. However, from the beginning of civilisation, people have been conscious of a ‘mind’ which has been considered the origin of all scientific and cultural development. Philosophers have discussed at length the various attributes of consciousness. At the same time, most of the philosophical or scientific frameworks have directly or indirectly implied mind-body duality. It is now imperative that we develop an integrated approach to understand the interconnection between mind and consciousness on one hand and brain on the other. This paper begins with the proposition that the structure of the brain is analogous, at least to certain extent, to that of the computer system. Of course, it is much more sophisticated and complex. The second proposition is that the Chomskyean concept of ‘mental organs’ is a good working hypothesis that tries to characterise this complexity in terms of an innate cognitive framework. By following this dual approach, brain as a data processing system and brain as a superstructure of intricately linked mental organs, we can move toward a better understanding of ‘mind’ within the framework of empirical science. The one ‘mental organ’ studied extensively in Chomskyean terms is ‘language faculty’ which is unique in its relation to brain, mind and consciousness. PMID:21694973

  15. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective

    PubMed Central

    de Borst, Aline W.; de Gelder, Beatrice

    2015-01-01

    Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations. PMID:26029133

  16. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective.

    PubMed

    de Borst, Aline W; de Gelder, Beatrice

    2015-01-01

    Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations.

  17. Measurement issues in the use of cognitive neuroscience tasks in drug development for impaired cognition in schizophrenia: a report of the second consensus building conference of the CNTRICS initiative.

    PubMed

    Barch, Deanna M; Carter, Cameron S

    2008-07-01

    This overview describes the goals and objectives of the second conference conducted as part of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative. This second conference was informed by a series of online surveys and brought together basic and clinical scientists from academia and industry to address the concerns central to each field of research. Our goal was to develop recommendations for future research addressing the psychometric and practical challenges involved in translating paradigms from cognitive neuroscience into tasks that are feasible for use in the treatment discovery and development process. In this overview article, we describe the series of talks that were presentations at the conference. This article serves as an introduction to the set of articles included in this special issue that provide overviews and discussions of the issues raised and the recommendations made in these talks and in the subsequent discussions at the meeting. In addition, we describe the online surveys conducted in the month before the conference that were used to obtain suggestions from the field as to important task selection criteria and to generate initial benchmark goals for psychometric development for cognitive neuroscience tasks.

  18. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction.

    PubMed

    Drnec, Kim; Marathe, Amar R; Lukos, Jamie R; Metcalfe, Jason S

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  19. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction

    PubMed Central

    Drnec, Kim; Marathe, Amar R.; Lukos, Jamie R.; Metcalfe, Jason S.

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  20. Contemplative Neuroscience as an Approach to Volitional Consciousness

    NASA Astrophysics Data System (ADS)

    Thompson, Evan

    This chapter presents a methodological approach to volitional consciousness for cognitive neuroscience based on studying the voluntary self-generation and self-regulation of mental states in meditation. Called contemplative neuroscience, this approach views attention, awareness, and emotion regulation as flexible and trainable skills, and works with experimental participants who have undergone training in contemplative practices designed to hone these skills. Drawing from research on the dynamical neural correlates of contemplative mental states and theories of large-scale neural coordination dynamics, I argue for the importance of global system causation in brain activity and present an "interventionist" approach to intentional causation.

  1. Neuroscience and Education

    ERIC Educational Resources Information Center

    Goswami, U.

    2004-01-01

    Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional,…

  2. Neuroscience and Education

    ERIC Educational Resources Information Center

    Goswami, U.

    2004-01-01

    Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional,…

  3. Interactionist Neuroscience.

    PubMed

    Badre, David; Frank, Michael J; Moore, Christopher I

    2015-12-02

    We argue that bidirectional interaction between animal and human studies is essential for understanding the human brain. The revolution in meso-scale study of circuits in non-human species provides a historical opportunity. However, to fully realize its potential requires integration with human neuroscience. We describe three strategies for successful interactionist neuroscience.

  4. Approaches to neuroscience data integration

    PubMed Central

    Lim, Ernest; Samwald, Matthias; Chen, Huajun; Marenco, Luis; Holford, Matthew E.; Morse, Thomas M.; Mutalik, Pradeep; Shepherd, Gordon M.; Miller, Perry L.

    2009-01-01

    As the number of neuroscience databases increases, the need for neuroscience data integration grows. This paper reviews and compares several approaches, including the Neuroscience Database Gateway (NDG), Neuroscience Information Framework (NIF) and Entrez Neuron, which enable neuroscience database annotation and integration. These approaches cover a range of activities spanning from registry, discovery and integration of a wide variety of neuroscience data sources. They also provide different user interfaces for browsing, querying and displaying query results. In Entrez Neuron, for example, four different facets or tree views (neuron, neuronal property, gene and drug) are used to hierarchically organize concepts that can be used for querying a collection of ontologies. The facets are also used to define the structure of the query results. PMID:19505888

  5. Neuroscience and everyday life: Facing the translation problem.

    PubMed

    Francken, Jolien C; Slors, Marc

    2017-09-10

    To enable the impact of neuroscientific insights on our daily lives, careful translation of research findings is required. However, neuroscientific terminology and common-sense concepts are often hard to square. For example, when neuroscientists study lying to allow the use of brain scans for lie-detection purposes, the concept of lying in the scientific case differs considerably from the concept in court. Furthermore, lying and other cognitive concepts are used unsystematically and have an indirect and divergent mapping onto brain activity. Therefore, scientific findings cannot inform our practical concerns in a straightforward way. How then can neuroscience ultimately help determine if a defendant is legally responsible, or help someone understand their addiction better? Since the above-mentioned problems provide serious obstacles to move from science to common-sense, we call this the 'translation problem'. Here, we describe three promising approaches for neuroscience to face this translation problem. First, neuroscience could propose new 'folk-neuroscience' concepts, beyond the traditional folk-psychological array, which might inform and alter our phenomenology. Second, neuroscience can modify our current array of common-sense concepts by refining and validating scientific concepts. Third, neuroscience can change our views on the application criteria of concepts such as responsibility and consciousness. We believe that these strategies to deal with the translation problem should guide the practice of neuroscientific research to be able to contribute to our day-to-day life more effectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Neuroscience and education.

    PubMed

    Goswami, Usha

    2004-03-01

    Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional, emotional and mnemonic functions is also making progress, particularly since the advent of the cognitive neurosciences, which focus specifically on understanding higher level processes of cognition via imaging technology. Neuroimaging has enabled scientists to study the human brain at work in vivo, deepening our understanding of the very complex processes underpinning speech and language, thinking and reasoning, reading and mathematics. It seems timely, therefore, to consider how we might implement our increased understanding of brain development and brain function to explore educational questions.

  7. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample.

    PubMed

    Taylor, Jason R; Williams, Nitin; Cusack, Rhodri; Auer, Tibor; Shafto, Meredith A; Dixon, Marie; Tyler, Lorraine K; Cam-Can; Henson, Richard N

    2017-01-01

    This paper describes the data repository for the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) initial study cohort. The Cam-CAN Stage 2 repository contains multi-modal (MRI, MEG, and cognitive-behavioural) data from a large (approximately N=700), cross-sectional adult lifespan (18-87years old) population-based sample. The study is designed to characterise age-related changes in cognition and brain structure and function, and to uncover the neurocognitive mechanisms that support healthy cognitive ageing. The database contains raw and preprocessed structural MRI, functional MRI (active tasks and resting state), and MEG data (active tasks and resting state), as well as derived scores from cognitive behavioural experiments spanning five broad domains (attention, emotion, action, language, and memory), and demographic and neuropsychological data. The dataset thus provides a depth of neurocognitive phenotyping that is currently unparalleled, enabling integrative analyses of age-related changes in brain structure, brain function, and cognition, and providing a testbed for novel analyses of multi-modal neuroimaging data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Optimising, generalising and integrating educational practice using neuroscience

    NASA Astrophysics Data System (ADS)

    Colvin, Robert

    2016-07-01

    Practical collaboration at the intersection of education and neuroscience research is difficult because the combined discipline encompasses both the activity of microscopic neurons and the complex social interactions of teachers and students in a classroom. Taking a pragmatic view, this paper discusses three education objectives to which neuroscience can be effectively applied: optimising, generalising and integrating instructional techniques. These objectives are characterised by: (1) being of practical importance; (2) building on existing education and cognitive research; and (3) being infeasible to address based on behavioural experiments alone. The focus of the neuroscientific aspect of collaborative research should be on the activity of the brain before, during and after learning a task, as opposed to performance of a task. The objectives are informed by literature that highlights possible pitfalls with educational neuroscience research, and are described with respect to the static and dynamic aspects of brain physiology that can be measured by current technology.

  9. Are Prescription Stimulants "Smart Pills"? The Epidemiology and Cognitive Neuroscience of Prescription Stimulant Use by Normal Healthy Individuals

    ERIC Educational Resources Information Center

    Smith, M. Elizabeth; Farah, Martha J.

    2011-01-01

    Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience…

  10. Cerebellum and cognition: viewed from philosophy of mind.

    PubMed

    Frings, M; Maschke, M; Timmann, D

    2007-01-01

    Traditionally, it is believed, that the primary function of the cerebellum is to coordinate movement. During the past three decades, it has been controversially discussed, whether the cerebellum may also contribute to cognition and mental states like emotions. In this paper, no position relating to this controversy will be taken. Instead, the hypothesis of non-motor functions of the cerebellum will be viewed from the position of the philosophy of mind. The remarkably uniform microscopic structure and neuronal networks of the cerebellum have led to computer analogies by several authors. The main idea of functionalism, i.e., a theory within the philosophy of mind, is that the mental relates to the physical as computer software does to hardware. This raises the question, whether a cerebellar contribution to cognition and mental states would support functionalism in the philosophy of mind. No support of functionalism could be found in this study, investigating the classical philosophical arguments pro and con functionalism such as those of multiple realizability, the Chinese room and the explanatory gap, while taking the results of cerebellar research into account. On the other hand, philosophical reflection suggests a careful use of the phrases "cognitive dysmetria" (Andreasen et al. Proc Natl Acad Sci USA. 1996;93:9985-90) in the context of mental illness and of "dysmetria of thought" (Schmahmann Arch Neurol. 1991;48:1178-87). According to the argument of the explanatory gap there is at present little support for the assumption that the phenomenal experiencing of an altered emotion can be reduced to the dysmetria of movement.

  11. Neuroscience, Education and Special Education

    ERIC Educational Resources Information Center

    Goswami, Usha

    2004-01-01

    The discipline of neuroscience draws from the fields of neurology, psychology, physiology and biology, but is best understood in the wider world as brain science. Of particular interest for education is the development of techniques for imaging the brain as it performs different cognitive functions. Cognitive neuroimaging has already led to…

  12. Neuroscience, Education and Special Education

    ERIC Educational Resources Information Center

    Goswami, Usha

    2004-01-01

    The discipline of neuroscience draws from the fields of neurology, psychology, physiology and biology, but is best understood in the wider world as brain science. Of particular interest for education is the development of techniques for imaging the brain as it performs different cognitive functions. Cognitive neuroimaging has already led to…

  13. Motivation concepts in behavioral neuroscience.

    PubMed

    Berridge, Kent C

    2004-04-01

    Concepts of motivation are vital to progress in behavioral neuroscience. Motivational concepts help us to understand what limbic brain systems are chiefly evolved to do, i.e., to mediate psychological processes that guide real behavior. This article evaluates some major motivation concepts that have historic importance or have influenced the interpretation of behavioral neuroscience research. These concepts include homeostasis, setpoints and settling points, intervening variables, hydraulic drives, drive reduction, appetitive and consummatory behavior, opponent processes, hedonic reactions, incentive motivation, drive centers, dedicated drive neurons (and drive neuropeptides and receptors), neural hierarchies, and new concepts from affective neuroscience such as allostasis, cognitive incentives, and reward 'liking' versus 'wanting'. Copyright 2004 Elsevier Inc.

  14. Disembodying cognition

    PubMed Central

    Chatterjee, Anjan

    2010-01-01

    The idea that concepts are embodied by our motor and sensory systems is popular in current theorizing about cognition. Embodied cognition accounts come in different versions and are often contrasted with a purely symbolic amodal view of cognition. Simulation, or the hypothesis that concepts simulate the sensory and motor experience of real world encounters with instances of those concepts, has been prominent in psychology and cognitive neuroscience. Here, with a focus on spatial thought and language, I review some of the evidence cited in support of simulation versions of embodied cognition accounts. While these data are extremely interesting and many of the experiments are elegant, knowing how to best interpret the results is often far from clear. I point out that a quick acceptance of embodied accounts runs the danger of ignoring alternate hypotheses and not scrutinizing neuroscience data critically. I also review recent work from my lab that raises questions about the nature of sensory motor grounding in spatial thought and language. In my view, the question of whether or not cognition is grounded is more fruitfully replaced by questions about gradations in this grounding. A focus on disembodying cognition, or on graded grounding, opens the way to think about how humans abstract. Within neuroscience, I propose that three functional anatomic axes help frame questions about the graded nature of grounded cognition. First, are questions of laterality differences. Do association cortices in both hemispheres instantiate the same kind of sensory or motor information? Second, are questions about ventral dorsal axes. Do neuronal ensembles along this axis shift from conceptual representations of objects to the relationships between objects? Third, are questions about gradients centripetally from sensory and motor cortices towards and within perisylvian cortices. How does sensory and perceptual information become more language-like and then get transformed into language

  15. Decision Neuroscience: Neuroeconomics

    PubMed Central

    Smith, David V.; Huettel, Scott A.

    2012-01-01

    Few aspects of human cognition are more personal than the choices we make. Our decisions – from the mundane to the impossibly complex – continually shape the courses of our lives. In recent years, researchers have applied the tools of neuroscience to understand the mechanisms that underlie decision making, as part of the new discipline of decision neuroscience. A primary goal of this emerging field has been to identify the processes that underlie specific decision variables, including the value of rewards, the uncertainty associated with particular outcomes, and the consequences of social interactions. Recent work suggests potential neural substrates that integrate these variables, potentially reflecting a common neural currency for value, to facilitate value comparisons. Despite the successes of decision neuroscience research for elucidating brain mechanisms, significant challenges remain. These include building new conceptual frameworks for decision making, integrating research findings across disparate techniques and species, and extending results from neuroscience to shape economic theory. To overcome these challenges, future research will likely focus on interpersonal variability in decision making, with the eventual goal of creating biologically plausible models for individual choice. PMID:22754602

  16. Implementation is crucial but must be neurobiologically grounded. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L.

    2014-09-01

    From the perspective of language, Fitch's [1] claim that theories of cognitive computation should not be separated from those of implementation surely deserves applauding. Recent developments in the Cognitive Neuroscience of Language, leading to the new field of the Neurobiology of Language [2-4], emphasise precisely this point: rather than attempting to simply map cognitive theories of language onto the brain, we should aspire to understand how the brain implements language. This perspective resonates with many of the points raised by Fitch in his review, such as the discussion of unhelpful dichotomies (e.g., Nature versus Nurture). Cognitive dichotomies and debates have repeatedly turned out to be of limited usefulness when it comes to understanding language in the brain. The famous modularity-versus-interactivity and dual route-versus-connectionist debates are cases in point: in spite of hundreds of experiments using neuroimaging (or other techniques), or the construction of myriad computer models, little progress has been made in their resolution. This suggests that dichotomies proposed at a purely cognitive (or computational) level without consideration of biological grounding appear to be "asking the wrong questions" about the neurobiology of language. In accordance with these developments, several recent proposals explicitly consider neurobiological constraints while seeking to explain language processing at a cognitive level (e.g. [5-7]).

  17. [Neurosciences and philosophy of mind].

    PubMed

    Saal, Aarón

    2005-01-01

    In this paper we argue that the interaction between neurosciences and philosophy of the mind is on the way to understand consciousness, and to solve the mind-body or mind-brain problem. Naturalism is the view that mental processes are just brain processes and that consciousness is a natural phenomenon. It is possible to construct a theory about its nature by blending insights from neuroscience, philosophy of the mind, phenomenology, psychology and evolutionary biology.

  18. Viewing brain processes as Critical State Transitions across levels of organization: Neural events in Cognition and Consciousness, and general principles.

    PubMed

    Werner, Gerhard

    2009-04-01

    In this theoretical and speculative essay, I propose that insights into certain aspects of neural system functions can be gained from viewing brain function in terms of the branch of Statistical Mechanics currently referred to as "Modern Critical Theory" [Stanley, H.E., 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press; Marro, J., Dickman, R., 1999. Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge, UK]. The application of this framework is here explored in two stages: in the first place, its principles are applied to state transitions in global brain dynamics, with benchmarks of Cognitive Neuroscience providing the relevant empirical reference points. The second stage generalizes to suggest in more detail how the same principles could also apply to the relation between other levels of the structural-functional hierarchy of the nervous system and between neural assemblies. In this view, state transitions resulting from the processing at one level are the input to the next, in the image of a 'bucket brigade', with the content of each bucket being passed on along the chain, after having undergone a state transition. The unique features of a process of this kind will be discussed and illustrated.

  19. Learning, epigenetics, and computation: An extension on Fitch's proposal. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Okanoya, Kazuo

    2014-09-01

    The comparative computational approach of Fitch [1] attempts to renew the classical David Marr paradigm of computation, algorithm, and implementation, by introducing evolutionary view of the relationship between neural architecture and cognition. This comparative evolutionary view provides constraints useful in narrowing down the problem space for both cognition and neural mechanisms. I will provide two examples from our own studies that reinforce and extend Fitch's proposal.

  20. Population neuroscience: why and how.

    PubMed

    Paus, Tomás

    2010-06-01

    Population neuroscience endeavours to identify environmental and genetic factors that shape the function and structure of the human brain; it uses tools and knowledge of genetics, epidemiology, and cognitive neuroscience. Here, I focus on the application of population neuroscience in studies of brain development. By describing in some detail four existing large-scale magnetic resonance (MR) imaging studies of typically developing children and adolescents, I provide an overview of their design, including population sampling and recruitment, assessments of environmental and genetic "exposures," and measurements of brain and behavior "outcomes." I then discuss challenges faced by investigators carrying out such MR-based studies, including quality assurance, quality control and intersite coordination, and provide a brief overview of the achievements made so far. I conclude by outlining future directions vis-à-vis population neuroscience, such as design strategies that can be used to evaluate the presence of absence of causality in associations discovered by observational studies. (c) 2010 Wiley-Liss, Inc.

  1. How understanding the neurobiology of complex post-traumatic stress disorder can inform clinical practice: a social cognitive and affective neuroscience approach.

    PubMed

    Lanius, R A; Bluhm, R L; Frewen, P A

    2011-11-01

    In this review, we examine the relevance of the social cognitive and affective neuroscience (SCAN) paradigm for an understanding of the psychology and neurobiology of complex post-traumatic stress disorder (PTSD) and its effective treatment. The relevant literature pertaining to SCAN and PTSD was reviewed. We suggest that SCAN offers a novel theoretical paradigm for understanding psychological trauma and its numerous clinical outcomes, most notably problems in emotional/self-awareness, emotion regulation, social emotional processing and self-referential processing. A core set of brain regions appear to mediate these collective psychological functions, most notably the cortical midline structures, the amygdala, the insula, posterior parietal cortex and temporal poles, suggesting that problems in one area (e.g. emotional awareness) may relate to difficulties in another (e.g. self-referential processing). We further propose, drawing on clinical research, that the experiences of individuals with PTSD related to chronic trauma often reflect impairments in multiple social cognitive and affective functions. It is important that the assessment and treatment of individuals with complex PTSD not only addresses traumatic memories but also takes a SCAN-informed approach that focuses on the underlying deficits in emotional/self-awareness, emotion regulation, social emotional processing and self-referential processing. © 2011 John Wiley & Sons A/S.

  2. From Augustine of Hippo’s Memory Systems to Our Modern Taxonomy in Cognitive Psychology and Neuroscience of Memory: A 16-Century Nap of Intuition before Light of Evidence

    PubMed Central

    Cassel, Jean-Christophe; Cassel, Daniel; Manning, Lilianne

    2012-01-01

    Over the last half century, neuropsychologists, cognitive psychologists and cognitive neuroscientists interested in human memory have accumulated evidence showing that there is not one general memory function but a variety of memory systems deserving distinct (but for an organism, complementary) functional entities. The first attempts to organize memory systems within a taxonomic construct are often traced back to the French philosopher Maine de Biran (1766–1824), who, in his book first published in 1803, distinguished mechanical memory, sensitive memory and representative memory, without, however, providing any experimental evidence in support of his view. It turns out, however, that what might be regarded as the first elaborated taxonomic proposal is 14 centuries older and is due to Augustine of Hippo (354–430), also named St Augustine, who, in Book 10 of his Confessions, by means of an introspective process that did not aim at organizing memory systems, nevertheless distinguished and commented on sensible memory, intellectual memory, memory of memories, memory of feelings and passion, and memory of forgetting. These memories were envisaged as different and complementary instances. In the current study, after a short biographical synopsis of St Augustine, we provide an outline of the philosopher’s contribution, both in terms of questions and answers, and focus on how this contribution almost perfectly fits with several viewpoints of modern psychology and neuroscience of memory about human memory functions, including the notion that episodic autobiographical memory stores events of our personal history in their what, where and when dimensions, and from there enables our mental time travel. It is not at all meant that St Augustine’s elaboration was the basis for the modern taxonomy, but just that the similarity is striking, and that the architecture of our current viewpoints about memory systems might have preexisted as an outstanding intuition in the

  3. Bayesian just-so stories in psychology and neuroscience.

    PubMed

    Bowers, Jeffrey S; Davis, Colin J

    2012-05-01

    According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak. This weakness relates to the many arbitrary ways that priors, likelihoods, and utility functions can be altered in order to account for the data that are obtained, making the models unfalsifiable. It further relates to the fact that Bayesian theories are rarely better at predicting data compared with alternative (and simpler) non-Bayesian theories. Second, we show that the empirical evidence for Bayesian theories in neuroscience is weaker still. There are impressive mathematical analyses showing how populations of neurons could compute in a Bayesian manner but little or no evidence that they do. Third, we challenge the general scientific approach that characterizes Bayesian theorizing in cognitive science. A common premise is that theories in psychology should largely be constrained by a rational analysis of what the mind ought to do. We question this claim and argue that many of the important constraints come from biological, evolutionary, and processing (algorithmic) considerations that have no adaptive relevance to the problem per se. In our view, these factors have contributed to the development of many Bayesian "just so" stories in psychology and neuroscience; that is, mathematical analyses of cognition that can be used to explain almost any behavior as optimal.

  4. Dreaming, waking conscious experience, and the resting brain: report of subjective experience as a tool in the cognitive neurosciences

    PubMed Central

    Wamsley, Erin J.

    2013-01-01

    Even when we are ostensibly doing “nothing”—as during states of rest, sleep, and reverie—the brain continues to process information. In resting wakefulness, the mind generates thoughts, plans for the future, and imagines fictitious scenarios. In sleep, when the demands of sensory input are reduced, our experience turns to the thoughts and images we call “dreaming.” Far from being a meaningless distraction, the content of these subjective experiences provides an important and unique source of information about the activities of the resting mind and brain. In both wakefulness and sleep, spontaneous experience combines recent and remote memory fragments into novel scenarios. These conscious experiences may reflect the consolidation of recent memory into long-term storage, an adaptive process that functions to extract general knowledge about the world and adaptively respond to future events. Recent examples from psychology and neuroscience demonstrate that the use of subjective report can provide clues to the function(s) of rest and sleep. PMID:24065940

  5. The Future of Educational Neuroscience

    ERIC Educational Resources Information Center

    Fischer, Kurt W.; Goswami, Usha; Geake, John

    2010-01-01

    The primary goal of the emerging field of educational neuroscience and the broader movement called Mind, Brain, and Education is to join biology with cognitive science, development, and education so that education can be grounded more solidly in research on learning and teaching. To avoid misdirection, the growing worldwide movement needs to avoid…

  6. The Future of Educational Neuroscience

    ERIC Educational Resources Information Center

    Fischer, Kurt W.; Goswami, Usha; Geake, John

    2010-01-01

    The primary goal of the emerging field of educational neuroscience and the broader movement called Mind, Brain, and Education is to join biology with cognitive science, development, and education so that education can be grounded more solidly in research on learning and teaching. To avoid misdirection, the growing worldwide movement needs to avoid…

  7. The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language

    PubMed Central

    Poeppel, David

    2012-01-01

    Research on the brain basis of speech and language faces theoretical and empirical challenges. The majority of current research, dominated by imaging, deficit-lesion, and electrophysiological techniques, seeks to identify regions that underpin aspects of language processing such as phonology, syntax, or semantics. The emphasis lies on localization and spatial characterization of function. The first part of the paper deals with a practical challenge that arises in the context of such a research program. This maps problem concerns the extent to which spatial information and localization can satisfy the explanatory needs for perception and cognition. Several areas of investigation exemplify how the neural basis of speech and language is discussed in those terms (regions, streams, hemispheres, networks). The second part of the paper turns to a more troublesome challenge, namely how to formulate the formal links between neurobiology and cognition. This principled problem thus addresses the relation between the primitives of cognition (here speech, language) and neurobiology. Dealing with this mapping problem invites the development of linking hypotheses between the domains. The cognitive sciences provide granular, theoretically motivated claims about the structure of various domains (the ‘cognome’); neurobiology, similarly, provides a list of the available neural structures. However, explanatory connections will require crafting computationally explicit linking hypotheses at the right level of abstraction. For both the practical maps problem and the principled mapping problem, developmental approaches and evidence can play a central role in the resolution. PMID:23017085

  8. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  9. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  10. Teaching undergraduate neuroscience with brain teaser experiments.

    PubMed

    Goldreich, Daniel

    2004-01-01

    SUMMARY Neuroscience knowledge is of fundamental importance to the occupational therapist and other health care professionals, but neuroscience courses are often viewed in schools of health sciences as among the most arduous of the curriculum. To enhance student learning, the author has developed a series of in-class activities, "brainteasers," that are integrated into each subject module of a semester-long undergraduate neuroscience course. In the brain teaser activities, students experience intriguing sensory and motor phenomena, then use inductive reasoning to generate plausible hypotheses concerning the underlying neural mechanisms. Students profit doubly from these activities, learning neuroscience while practicing critical thinking.

  11. A tale of three blind men on the proper subject matter of clinical science and practice: commentary on Plaud's behaviorism vs. Ilardi and Feldman's cognitive neuroscience.

    PubMed

    Forsyth, J P; Kelly, M M

    2001-09-01

    Plaud (J Clin Psychol 57, 1089-1102, 1109-1111, 1119-1120) and Ilardi and Feldman (J Clin Psychol 57, 1067-1088, 1103-1107, 1113-1117, 1121-1124) argue for two very different approaches to clinical science and practice (i.e., behavior analysis and cognitive neuroscience, respectively). We comment on the assets and liabilities of both perspectives as presented and attempt to achieve some semblance of balance between the three protagonists embroiled in this current debate. The vision of clinical science we articulate is more ecumenical and evolutionary, rather than paradigmatic and revolutionary. As we see it, the problem clinical psychology faces is much larger than the authors let on; namely, how best to make clinical science meaningful and relevant to practitioners, consumers, the general public, and the behavioral health-care community. Clinical psychology's immediate internal problem is not pluralism with regard to subject matter, worldview, methodology, or school of thought, but pluralism in clinical psychologists' adherence to a scientific epistemology as the only legitimate form of clinical psychology. On this latter point, we still have a very long way to go.

  12. Culture in social neuroscience: a review.

    PubMed

    Rule, Nicholas O; Freeman, Jonathan B; Ambady, Nalini

    2013-01-01

    The aim of this review is to highlight an emerging field: the neuroscience of culture. This new field links cross-cultural psychology with cognitive neuroscience across fundamental domains of cognitive and social psychology. We present a summary of studies on emotion, perspective-taking, memory, object perception, attention, language, and the self, showing cultural differences in behavior as well as in neural activation. Although it is still nascent, the broad impact of merging the study of culture with cognitive neuroscience holds mutual distributed benefits for multiple related fields. Thus, cultural neuroscience may be uniquely poised to provide insights and breakthroughs for longstanding questions and problems in the study of behavior and thought, and its capacity for integration across multiple levels of analysis is especially high. These findings attest to the plasticity of the brain and its adaptation to cultural contexts.

  13. A Cognitive View of Three Selected Online Search Facilities.

    ERIC Educational Resources Information Center

    Ingwersen, Peter

    1984-01-01

    Discusses impact of three selected command language facilities (positional or free text operations, crossfile searching, term frequency analysis--ZOOM) on the man-system interface in relation to operational online information retrieval (IR). A cognitive IR model, searchers' knowledge structures, and searching with different types of command…

  14. Training the brain: practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science.

    PubMed

    Bryck, Richard L; Fisher, Philip A

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this article, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  15. The Allocation of Attention to Learning of Goal-Directed Actions: A Cognitive Neuroscience Framework Focusing on the Basal Ganglia

    PubMed Central

    Franz, E. A.

    2012-01-01

    The present paper builds on the idea that attention is largely in service of our actions. A framework and model which captures the allocation of attention for learning of goal-directed actions is proposed and developed. This framework highlights an evolutionary model based on the notion that rudimentary functions of the basal ganglia have become embedded into increasingly higher levels of networks which all contribute to adaptive learning. Supporting the proposed model, background literature is presented alongside key evidence based on experimental studies in the so-called “split-brain” (surgically divided cerebral hemispheres), and selected evidence from related areas of research. Although overlap with other existing findings and models is acknowledged, the proposed framework is an original synthesis of cognitive experimental findings with supporting evidence of a neural system and a carefully formulated model of attention. It is the hope that this new synthesis will be informative in fields of cognition and other fields of brain sciences and will lead to new avenues for experimentation across domains. PMID:23267335

  16. Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework.

    PubMed

    De Raedt, Rudi; Koster, Ernst H W

    2010-03-01

    We propose a framework to understand increases in vulnerability for depression after recurrent episodes that links attention processes and schema activation to negative mood states, by integrating cognitive and neurobiological findings. Depression is characterized by a mood-congruent attentional bias at later stages of information processing. The basic idea of our framework is that decreased activity in prefrontal areas, mediated by the serotonin metabolism which the HPA axis controls, is associated with an impaired attenuation of subcortical regions, resulting in prolonged activation of the amygdala in response to stressors in the environment. Reduced prefrontal control in interaction with depressogenic schemas leads to impaired ability to exert attentional inhibitory control over negative elaborative processes such as rumination, leading in turn to sustained negative affect. These elaborative processes are triggered by the activation of negative schemas after confrontation with stressors. In our framework, attentional impairments are postulated as a crucial process in explaining the increasing vulnerability after depressive episodes, linking cognitive and biological vulnerability factors. We review the empirical data on the biological factors associated with the attentional impairments and detail how they are associated with rumination and mood regulation. The aim of our framework is to stimulate translational research.

  17. Towards an Understanding of Neuroscience for Science Educators

    ERIC Educational Resources Information Center

    Oliver, Mary

    2011-01-01

    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief…

  18. Towards an Understanding of Neuroscience for Science Educators

    ERIC Educational Resources Information Center

    Oliver, Mary

    2011-01-01

    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief…

  19. Cognitive Determinants of Fixation Location during Picture Viewing.

    ERIC Educational Resources Information Center

    Loftus, Geoffrey R.; Mackworth, Norman H.

    1978-01-01

    Adult subjects viewed pictures at brief intervals, testing their reactions to informative objects--those not redundant with or predictive of the rest of the picture, such as a tractor in an underwater scene. Results indicated that observers fixate earlier, more often, and longer on informative objects. (Author/SJL)

  20. Cognitive Contributions to Plurilithic Views of English and Other Languages

    ERIC Educational Resources Information Center

    Hall, Christopher J.

    2013-01-01

    Monolithic views of languages predominate in linguistics, applied linguistics, and everyday discourse. The World Englishes, English as a Lingua Franca, and Critical Applied Linguistics frameworks have gone some way to counter the myth, highlighting the iniquities it gives rise to for global users and learners of English. Here, I propose that…

  1. Do infants retain the statistics of a statistical learning experience? Insights from a developmental cognitive neuroscience perspective.

    PubMed

    Gómez, Rebecca L

    2017-01-05

    Statistical structure abounds in language. Human infants show a striking capacity for using statistical learning (SL) to extract regularities in their linguistic environments, a process thought to bootstrap their knowledge of language. Critically, studies of SL test infants in the minutes immediately following familiarization, but long-term retention unfolds over hours and days, with almost no work investigating retention of SL. This creates a critical gap in the literature given that we know little about how single or multiple SL experiences translate into permanent knowledge. Furthermore, different memory systems with vastly different encoding and retention profiles emerge at different points in development, with the underlying memory system dictating the fidelity of the memory trace hours later. I describe the scant literature on retention of SL, the learning and retention properties of memory systems as they apply to SL, and the development of these memory systems. I propose that different memory systems support retention of SL in infant and adult learners, suggesting an explanation for the slow pace of natural language acquisition in infancy. I discuss the implications of developing memory systems for SL and suggest that we exercise caution in extrapolating from adult to infant properties of SL.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'.

  2. Cognitive determinants of fixation location during picture viewing.

    PubMed

    Loftus, G R; Mackworth, N H

    1978-11-01

    This experiment involved the question of where human observers look in a picture. The results indicated that observers fixate earlier, more often, and with longer durations on objects that have a low probability of appearing in a scene (e.g., an octopus in a farm scene) than on objects that have a high probability of appearing (e.g., a tractor in a farm scene). These findings (a) imply a role of cognitive factors in peripheral visual processing and (b) suggest a possible relationship between the nature of information initially acquired from a picture and subsequent recognition memory for that picture.

  3. The software/wetware distinction. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Dennett, Daniel

    2014-09-01

    Fitch [5] has not only articulated a growing consensus, after decades of ideological quarreling, about how to put cognitive science together, but in the process has attempted to advance the unification process with some bold strokes of his own. His proposal [4] that we take seriously the perspective which replaces "spherical neurons" (McCulloch Pitts logical neurons and their close kin) with neurons that are micro-agents with agendas and computational talents of their own, has been taken up by a variety of theorists, including myself [2,3]. Now his dendrophilia hypothesis promises to distill the core truths energizing the heated debates about the innate equipment that distinguishes the cognitive competences of our species from all others. Whether this promise can be kept is a wide-open empirical question, but Fitch has given us enough specification to justify a serious investment in answering it.

  4. Viewing Cognitive Conflicts as Dilemmas: Implications for Mental Health

    PubMed Central

    Feixas, Guillem; Saúl, Luis Angel; Ávila-Espada, Alejandro

    2009-01-01

    The idea that internal conflicts play a significant role in mental health has been extensively addressed in various psychological traditions, including personal construct theory. In the context of the latter, several measures of conflict have been operationalized using the Repertory Grid Technique (RGT). All of them capture the notion that change, although desirable from the viewpoint of a given set of constructs, becomes undesirable from the perspective of other constructs. The goal of this study is to explore the presence of cognitive conflicts in a clinical sample (n = 284) and compare it to a control sample (n = 322). It is also meant to clarify which among the different types of conflict studied provides a greater clinical value and to investigate its relationship to symptom severity (SCL-90-R). Of the types of cognitive conflict studied, implicative dilemmas were the only ones to discriminate between clinical and nonclinical samples. These dilemmas were found in 34% of the nonclinical sample and in 53% of the clinical sample. Participants with implicative dilemmas showed higher symptom severity, and those from the clinical sample displayed a higher frequency of dilemmas than those from the nonclinical sample. PMID:22629109

  5. Viewing Cognitive Conflicts as Dilemmas: Implications for Mental Health.

    PubMed

    Feixas, Guillem; Saúl, Luis Angel; Avila-Espada, Alejandro

    2009-04-01

    The idea that internal conflicts play a significant role in mental health has been extensively addressed in various psychological traditions, including personal construct theory. In the context of the latter, several measures of conflict have been operationalized using the Repertory Grid Technique (RGT). All of them capture the notion that change, although desirable from the viewpoint of a given set of constructs, becomes undesirable from the perspective of other constructs. The goal of this study is to explore the presence of cognitive conflicts in a clinical sample (n = 284) and compare it to a control sample (n = 322). It is also meant to clarify which among the different types of conflict studied provides a greater clinical value and to investigate its relationship to symptom severity (SCL-90-R). Of the types of cognitive conflict studied, implicative dilemmas were the only ones to discriminate between clinical and nonclinical samples. These dilemmas were found in 34% of the nonclinical sample and in 53% of the clinical sample. Participants with implicative dilemmas showed higher symptom severity, and those from the clinical sample displayed a higher frequency of dilemmas than those from the nonclinical sample.

  6. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  7. A neuroscience agenda for counseling psychology research.

    PubMed

    Gonçalves, Oscar F; Perrone-McGovern, Kristin M

    2014-10-01

    Recent advances in the field of neuroscience have dramatically changed our understanding of brain-behavior relationships. In this article, we illustrate how neuroscience can provide a conceptual and methodological framework to understand our clients within a transdiagnostic developmental perspective. We provide directions for integrating neuroscience into future process and outcome research. We present examples on how neuroscience can be integrated into researching the effects of contextual counseling interventions. We posit that interpersonal and environmental factors, such as neurotoxic factors (e.g., emotional neglect, stress), positive neurodevelopmental factors (e.g., nurturing and caring, environmental enrichment), and therapeutic interventions influence psychological processes (executive control, behavioral flexibility, reinforcement learning and approach motivation, emotional expression and regulation, self-representation and theory of mind). These psychological processes influence brain networks (attention, motivational, emotional regulation, social cognition), which influence cognitive, social, emotional, identity, and vocational development. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Toward a second-person neuroscience.

    PubMed

    Schilbach, Leonhard; Timmermans, Bert; Reddy, Vasudevi; Costall, Alan; Bente, Gary; Schlicht, Tobias; Vogeley, Kai

    2013-08-01

    In spite of the remarkable progress made in the burgeoning field of social neuroscience, the neural mechanisms that underlie social encounters are only beginning to be studied and could - paradoxically - be seen as representing the "dark matter" of social neuroscience. Recent conceptual and empirical developments consistently indicate the need for investigations that allow the study of real-time social encounters in a truly interactive manner. This suggestion is based on the premise that social cognition is fundamentally different when we are in interaction with others rather than merely observing them. In this article, we outline the theoretical conception of a second-person approach to other minds and review evidence from neuroimaging, psychophysiological studies, and related fields to argue for the development of a second-person neuroscience, which will help neuroscience to really "go social"; this may also be relevant for our understanding of psychiatric disorders construed as disorders of social cognition.

  9. [Numbers, counting and calculating problems in view of cognitive neurology].

    PubMed

    Márkus, Attila

    2010-03-30

    The ability to count and calculate is a human-specific skill comprised of understanding numeric values and categories and performing numerical operations; it is an acoustic-verbal symbolic activity that may be expressed in writing and understood by reading. The neuronal bases and precursors of cognitive systems have been supplied to mankind by the process of evolution. Abilities to create symbols (speech, visual letter and number symbols) must have played a decisive role in the emergence of man from the world of primates. Although counting and calculating problems are classified into numerous types, two main forms of dyscalculia have practical importance: the acquired one (the loss of learned knowledge) and the developmental one (the disturbance of the acquisition of arithmetical knowledge).

  10. Cognitive and emotional processes during dreaming: a neuroimaging view.

    PubMed

    Desseilles, Martin; Dang-Vu, Thien Thanh; Sterpenich, Virginie; Schwartz, Sophie

    2011-12-01

    Dream is a state of consciousness characterized by internally-generated sensory, cognitive and emotional experiences occurring during sleep. Dream reports tend to be particularly abundant, with complex, emotional, and perceptually vivid experiences after awakenings from rapid eye movement (REM) sleep. This is why our current knowledge of the cerebral correlates of dreaming, mainly derives from studies of REM sleep. Neuroimaging results show that REM sleep is characterized by a specific pattern of regional brain activity. We demonstrate that this heterogeneous distribution of brain activity during sleep explains many typical features in dreams. Reciprocally, specific dream characteristics suggest the activation of selective brain regions during sleep. Such an integration of neuroimaging data of human sleep, mental imagery, and the content of dreams is critical for current models of dreaming; it also provides neurobiological support for an implication of sleep and dreaming in some important functions such as emotional regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Predicting US Infants' and Toddlers' TV/Video Viewing Rates: Mothers' Cognitions and Structural Life Circumstances

    PubMed Central

    Vaala, Sarah E.; Hornik, Robert C.

    2014-01-01

    There has been rising international concern over media use with children under two. As little is known about the factors associated with more or less viewing among very young children, this study examines maternal factors predictive of TV/video viewing rates among American infants and toddlers. Guided by the Integrative Model of Behavioral Prediction, this survey study examines relationships between children's rates of TV/video viewing and their mothers' structural life circumstances (e.g., number of children in the home; mother's screen use), and cognitions (e.g., attitudes; norms). Results suggest that mothers' structural circumstances and cognitions respectively contribute independent explanatory power to the prediction of children's TV/video viewing. Influence of structural circumstances is partially mediated through cognitions. Mothers' attitudes as well as their own TV/video viewing behavior were particularly predictive of children's viewing. Implications of these findings for international efforts to understand and reduce infant/toddler TV/video exposure are discussed. PMID:25489335

  12. The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    PubMed Central

    Akil, Huda; Ascoli, Giorgio A.; Bowden, Douglas M.; Bug, William; Donohue, Duncan E.; Goldberg, David H.; Grafstein, Bernice; Grethe, Jeffrey S.; Gupta, Amarnath; Halavi, Maryam; Kennedy, David N.; Marenco, Luis; Martone, Maryann E.; Miller, Perry L.; Müller, Hans-Michael; Robert, Adrian; Shepherd, Gordon M.; Sternberg, Paul W.; Van Essen, David C.; Williams, Robert W.

    2009-01-01

    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line. PMID:18946742

  13. The “Id” Knows More than the “Ego” Admits: Neuropsychoanalytic and Primal Consciousness Perspectives on the Interface Between Affective and Cognitive Neuroscience

    PubMed Central

    Solms, Mark; Panksepp, Jaak

    2012-01-01

    It is commonly believed that consciousness is a higher brain function. Here we consider the likelihood, based on abundant neuroevolutionary data that lower brain affective phenomenal experiences provide the “energy” for the developmental construction of higher forms of cognitive consciousness. This view is concordant with many of the theoretical formulations of Sigmund Freud. In this reconceptualization, all of consciousness may be dependent on the original evolution of affective phenomenal experiences that coded survival values. These subcortical energies provided a foundation that could be used for the epigenetic construction of perceptual and other higher forms of consciousness. From this perspective, perceptual experiences were initially affective at the primary-process brainstem level, but capable of being elaborated by secondary learning and memory processes into tertiary-cognitive forms of consciousness. Within this view, although all individual neural activities are unconscious, perhaps along with secondary-process learning and memory mechanisms, the primal sub-neocortical networks of emotions and other primal affects may have served as the sentient scaffolding for the construction of resolved perceptual and higher mental activities within the neocortex. The data supporting this neuro-psycho-evolutionary vision of the emergence of mind is discussed in relation to classical psychoanalytical models. PMID:24962770

  14. Gender Differences in Views about Cognitive Health and Healthy Lifestyle Behaviors among Rural Older Adults

    ERIC Educational Resources Information Center

    Wu, Bei; Goins, R. Turner; Laditka, James N.; Ignatenko, Valerie; Goedereis, Eric

    2009-01-01

    Purpose: Research suggests that men and women often differ in knowledge and beliefs about causes and treatments of a variety of diseases. This study examines gender differences in views about cognitive health and behaviors that have been associated with its maintenance, focusing on older adults living in rural areas. Design and Methods: We…

  15. A Social Cognitive View of Self-Regulated Learning about Health

    ERIC Educational Resources Information Center

    Clark, Noreen M.; Zimmerman, Barry J.

    2014-01-01

    Researchers interested in health-related learning have recently begun to study processes people use to self-regulate their health and their ability to prevent or control chronic disease. This paper represents a social cognitive view of self-regulation that involves three classes of influence on self-regulating behavior: personal, behavioral, and…

  16. A Social Cognitive View of Self-Regulated Learning about Health

    ERIC Educational Resources Information Center

    Clark, Noreen M.; Zimmerman, Barry J.

    2014-01-01

    Researchers interested in health-related learning have recently begun to study processes people use to self-regulate their health and their ability to prevent or control chronic disease. This paper represents a social cognitive view of self-regulation that involves three classes of influence on self-regulating behavior: personal, behavioral, and…

  17. Gender Differences in Views about Cognitive Health and Healthy Lifestyle Behaviors among Rural Older Adults

    ERIC Educational Resources Information Center

    Wu, Bei; Goins, R. Turner; Laditka, James N.; Ignatenko, Valerie; Goedereis, Eric

    2009-01-01

    Purpose: Research suggests that men and women often differ in knowledge and beliefs about causes and treatments of a variety of diseases. This study examines gender differences in views about cognitive health and behaviors that have been associated with its maintenance, focusing on older adults living in rural areas. Design and Methods: We…

  18. Staff Expectations and Views of Cognitive Behaviour Therapy (CBT) for Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Kroese, Biza Stenfert; Jahoda, Andrew; Pert, Carol; Trower, Peter; Dagnan, Dave; Selkirk, Mhairi

    2014-01-01

    Background: The role of support workers and other professionals in the psychotherapeutic process has been commented upon but not as yet been systematically investigated. Method: To explore their views and expectations of cognitive behaviour therapy (CBT) for adults with intellectual disabilities, eleven paid support workers and professionals were…

  19. Constructivist developmental theory is needed in developmental neuroscience

    NASA Astrophysics Data System (ADS)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  20. Revolutions in Neuroscience: Tool Development

    PubMed Central

    Bickle, John

    2016-01-01

    Thomas Kuhn’s famous model of the components and dynamics of scientific revolutions is still dominant to this day across science, philosophy, and history. The guiding philosophical theme of this article is that, concerning actual revolutions in neuroscience over the past 60 years, Kuhn’s account is wrong. There have been revolutions, and new ones are brewing, but they do not turn on competing paradigms, anomalies, or the like. Instead, they turn exclusively on the development of new experimental tools. I adopt a metascientific approach and examine in detail the development of two recent neuroscience revolutions: the impact of engineered genetically mutated mammals in the search for causal mechanisms of “higher” cognitive functions; and the more recent impact of optogenetics and designer receptors exclusively activated by designer drugs (DREADDs). The two key metascientific concepts, I derive from these case studies are a revolutionary new tool’s motivating problem, and its initial and second-phase hook experiments. These concepts hardly exhaust a detailed metascience of tool development experiments in neuroscience, but they get that project off to a useful start and distinguish the subsequent account of neuroscience revolutions clearly from Kuhn’s famous model. I close with a brief remark about the general importance of molecular biology for a current philosophical understanding of science, as comparable to the place physics occupied when Kuhn formulated his famous theory of scientific revolutions. PMID:27013992

  1. Compassion, ethics, and neuroscience: neuroethics through Buddhist eyes.

    PubMed

    Tsomo, Karma Lekshe

    2012-09-01

    As scientists advance knowledge of the brain and develop technologies to measure, evaluate, and manipulate brain function, numerous questions arise for religious adherents. If neuroscientists can conclusively establish that there is a functional network between neural impulses and an individual's capacity for moral evaluation of situations, this will naturally lead to questions about the relationship between such a network and constructions of moral value and ethical human behavior. For example, if cognitive neuroscience can show that there is a neurophysiological basis for the moral appraisal of situations, it may be argued that the world's religions, which have traditionally been the keepers and purveyors of ethical values, are rendered either spurious or irrelevant. The questions point up broader dilemmas in the interface between science and religion, and raise concerns about the ethics of neurological research and experimentation. Since human beings will still arbitrate what is "moral" or "ethical," how can religious perspectives enrich the dialogue on neuroethical issues and how can neuroscience enrich dialogue on religion? Buddhist views on the nature of consciousness and methods of practice, especially meditation practice, may contribute to discussions on neuroscience and theories about the interrelationship between consciousness and ethical awareness by exploring the role that karma, intentionality, and compassion play in Buddhist understandings of the interrelationship between consciousness and ethics.

  2. Effect of early adult patterns of physical activity and television viewing on midlife cognitive function

    PubMed Central

    Hoang, Tina D.; Reis, Jared; Zhu, Na; Jacobs, David R.; Launer, Lenore J.; Whitmer, Rachel A.; Sidney, Stephen; Yaffe, Kristine

    2015-01-01

    Importance Sedentary behaviors and physical inactivity are not only increasing worldwide but also are critical risk factors for adverse health outcomes. Yet few studies have examined the effects of sedentary behavior on cognition or the long-term role of either behavior in early-to-middle adulthood. Objective To investigate the association between 25-year patterns of television viewing and physical activity and mid-life cognition. Design, Setting, and Participants Prospective study of 3,247 adults (black and white race, aged 18-30 years) enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) Study (March 25, 1985 to August 31, 2011). Main Outcome and Measures We assessed television viewing and physical activity at repeated visits (≥3 assessments) over 25 years using a validated questionnaire. A 25-year pattern of high television viewing was defined as watching TV above the upper baseline quartile (>3 hours/day) for more than two-thirds of the visits, and a 25-year pattern of low physical activity was defined as activity levels below the lower, sex-specific baseline quartile for more than two-thirds of the visits. We evaluated cognitive function at Year 25 using the Digit Symbol Substitution Test (DSST), Stroop Test, and Rey Auditory Verbal Learning Test. Results Compared with participants with low television viewing, those with high television viewing during 25 years (323 of 3247 [10.9%]) were more likely to have poor cognitive performance (<1 SD below the race-specific mean) on the DSST and Stroop test, with findings reported as adjusted odds ratio (95% CI): DSST, 1.64 (1.21-2.23); Stroop, 1.56 (1.13-2.14) but not the Rey Auditory Verbal Learning Test adjusted for age, race, sex, educational level, smoking, alcohol, body mass index, and hypertension. Low physical activity during 25 years in 528 of 3247 participants (16.3%) was significantly associated with poor performance on the DSST, (1.47 1.14-1.90). Compared with participants with low

  3. The Year in Cognitive Neuroscience

    PubMed Central

    Fitch, W Tecumseh; Martins, Mauricio D

    2014-01-01

    Sixty years ago, Karl Lashley suggested that complex action sequences, from simple motor acts to language and music, are a fundamental but neglected aspect of neural function. Lashley demonstrated the inadequacy of then-standard models of associative chaining, positing a more flexible and generalized “syntax of action” necessary to encompass key aspects of language and music. He suggested that hierarchy in language and music builds upon a more basic sequential action system, and provided several concrete hypotheses about the nature of this system. Here, we review a diverse set of modern data concerning musical, linguistic, and other action processing, finding them largely consistent with an updated neuroanatomical version of Lashley's hypotheses. In particular, the lateral premotor cortex, including Broca's area, plays important roles in hierarchical processing in language, music, and at least some action sequences. Although the precise computational function of the lateral prefrontal regions in action syntax remains debated, Lashley's notion—that this cortical region implements a working-memory buffer or stack scannable by posterior and subcortical brain regions—is consistent with considerable experimental data. PMID:24697242

  4. Feasibility of PRIME: A Cognitive Neuroscience-Informed Mobile App Intervention to Enhance Motivated Behavior and Improve Quality of Life in Recent Onset Schizophrenia.

    PubMed

    Schlosser, Danielle; Campellone, Timothy; Kim, Daniel; Truong, Brandy; Vergani, Silvia; Ward, Charlie; Vinogradov, Sophia

    2016-04-28

    Despite improvements in treating psychosis, schizophrenia remains a chronic and debilitating disorder that affects approximately 1% of the US population and costs society more than depression, dementia, and other medical illnesses across most of the lifespan. Improving functioning early in the course of illness could have significant implications for long-term outcome of individuals with schizophrenia. Yet, current gold-standard treatments do not lead to clinically meaningful improvements in outcome, partly due to the inherent challenges of treating a population with significant cognitive and motivational impairments. The rise of technology presents an opportunity to develop novel treatments that may circumvent the motivational and cognitive challenges observed in schizophrenia. The purpose of this study was two-fold: (1) to evaluate the feasibility and acceptability of implementing a Personalized Real-Time Intervention for Motivation Enhancement (PRIME), a mobile app intervention designed to target reward-processing impairments, enhance motivation, and thereby improve quality of life in recent onset schizophrenia, and (2) evaluate the empirical benefits of using an iterative, user-centered design (UCD) process. We conducted two design workshops with 15 key stakeholders, followed by a series of in-depth interviews in collaboration with IDEO, a design and innovation firm. The UCD approach ultimately resulted in the first iteration of PRIME, which was evaluated by 10 RO participants. Results from the Stage 1 participants were then used to guide the next iteration that is currently being evaluated in an ongoing RCT. Participants in both phases were encouraged to use the app daily with a minimum frequency of 1/week over a 12-week period. The UCD process resulted in the following feature set: (1) delivery of text message (short message service, SMS)-based motivational coaching from trained therapists, (2) individualized goal setting in prognostically important

  5. Feasibility of PRIME: A Cognitive Neuroscience-Informed Mobile App Intervention to Enhance Motivated Behavior and Improve Quality of Life in Recent Onset Schizophrenia

    PubMed Central

    Campellone, Timothy; Kim, Daniel; Truong, Brandy; Vergani, Silvia; Ward, Charlie; Vinogradov, Sophia

    2016-01-01

    Background Despite improvements in treating psychosis, schizophrenia remains a chronic and debilitating disorder that affects approximately 1% of the US population and costs society more than depression, dementia, and other medical illnesses across most of the lifespan. Improving functioning early in the course of illness could have significant implications for long-term outcome of individuals with schizophrenia. Yet, current gold-standard treatments do not lead to clinically meaningful improvements in outcome, partly due to the inherent challenges of treating a population with significant cognitive and motivational impairments. The rise of technology presents an opportunity to develop novel treatments that may circumvent the motivational and cognitive challenges observed in schizophrenia. Objective The purpose of this study was two-fold: (1) to evaluate the feasibility and acceptability of implementing a Personalized Real-Time Intervention for Motivation Enhancement (PRIME), a mobile app intervention designed to target reward-processing impairments, enhance motivation, and thereby improve quality of life in recent onset schizophrenia, and (2) evaluate the empirical benefits of using an iterative, user-centered design (UCD) process. Methods We conducted two design workshops with 15 key stakeholders, followed by a series of in-depth interviews in collaboration with IDEO, a design and innovation firm. The UCD approach ultimately resulted in the first iteration of PRIME, which was evaluated by 10 RO participants. Results from the Stage 1 participants were then used to guide the next iteration that is currently being evaluated in an ongoing RCT. Participants in both phases were encouraged to use the app daily with a minimum frequency of 1/week over a 12-week period. Results The UCD process resulted in the following feature set: (1) delivery of text message (short message service, SMS)-based motivational coaching from trained therapists, (2) individualized goal setting

  6. Dyscalculia: neuroscience and education

    PubMed Central

    Kaufmann, Liane

    2010-01-01

    Background Developmental dyscalculia is a heterogeneous disorder with largely dissociable performance profiles. Though our current understanding of the neurofunctional foundations of (adult) numerical cognition has increased considerably during the past two decades, there are still many unanswered questions regarding the developmental pathways of numerical cognition. Most studies on developmental dyscalculia are based upon adult calculation models which may not provide an adequate theoretical framework for understanding and investigating developing calculation systems. Furthermore, the applicability of neuroscience research to pedagogy has, so far, been limited. Purpose After providing an overview of current conceptualisations of numerical cognition and developmental dyscalculia, the present paper (1) reviews recent research findings that are suggestive of a neurofunctional link between fingers (finger gnosis, finger-based counting and calculation) and number processing, and (2) takes the latter findings as an example to discuss how neuroscience findings may impact on educational understanding and classroom interventions. Sources of evidence Finger-based number representations and finger-based calculation have deep roots in human ontology and phylogeny. Recently, accumulating empirical evidence supporting the hypothesis of a neurofunctional link between fingers and numbers has emerged from both behavioural and brain imaging studies. Main argument Preliminary but converging research supports the notion that finger gnosis and finger use seem to be related to calculation proficiency in elementary school children. Finger-based counting and calculation may facilitate the establishment of mental number representations (possibly by fostering the mapping from concrete non-symbolic to abstract symbolic number magnitudes), which in turn seem to be the foundations for successful arithmetic achievement. Conclusions Based on the findings illustrated here, it is plausible to

  7. Dyscalculia: neuroscience and education.

    PubMed

    Kaufmann, Liane

    2008-06-01

    BACKGROUND: Developmental dyscalculia is a heterogeneous disorder with largely dissociable performance profiles. Though our current understanding of the neurofunctional foundations of (adult) numerical cognition has increased considerably during the past two decades, there are still many unanswered questions regarding the developmental pathways of numerical cognition. Most studies on developmental dyscalculia are based upon adult calculation models which may not provide an adequate theoretical framework for understanding and investigating developing calculation systems. Furthermore, the applicability of neuroscience research to pedagogy has, so far, been limited. PURPOSE: After providing an overview of current conceptualisations of numerical cognition and developmental dyscalculia, the present paper (1) reviews recent research findings that are suggestive of a neurofunctional link between fingers (finger gnosis, finger-based counting and calculation) and number processing, and (2) takes the latter findings as an example to discuss how neuroscience findings may impact on educational understanding and classroom interventions. SOURCES OF EVIDENCE: Finger-based number representations and finger-based calculation have deep roots in human ontology and phylogeny. Recently, accumulating empirical evidence supporting the hypothesis of a neurofunctional link between fingers and numbers has emerged from both behavioural and brain imaging studies. MAIN ARGUMENT: Preliminary but converging research supports the notion that finger gnosis and finger use seem to be related to calculation proficiency in elementary school children. Finger-based counting and calculation may facilitate the establishment of mental number representations (possibly by fostering the mapping from concrete non-symbolic to abstract symbolic number magnitudes), which in turn seem to be the foundations for successful arithmetic achievement. CONCLUSIONS: Based on the findings illustrated here, it is plausible

  8. Neuroscience research on aging and implications for counseling psychology.

    PubMed

    Wright, Stephen L; Díaz, Fernando

    2014-10-01

    The advances in neuroscience have led to an increase in scientific understanding of the aging process, and counseling psychologists can benefit from familiarity with the research on the neuroscience of aging. In this article, we have focused on the cognitive neuroscience of aging, and we describe the progression of healthy aging to Alzheimer's disease, given its high prevalence rate among older adults (Alzheimer's Association, 2013). Common techniques used to study the cognitive neuroscience of aging are explained in regards to measuring age-related changes in the brain and the role of biomarkers in identifying cognitive decline related to Alzheimer's disease. Using this information and in collaboration with cognitive neuroscientists, it is our hope that counseling psychologists may further pursue research areas on aging as well as design appropriate interventions for older individuals who may be experiencing cognitive impairment. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Neuroscience in recession?

    PubMed

    Amara, Susan G; Grillner, Sten; Insel, Tom; Nutt, David; Tsumoto, Tadaharu

    2011-05-01

    As the global financial downturn continues, its impact on neuroscientists - both on an individual level and at the level of their research institute - becomes increasingly apparent. How is the economic crisis affecting neuroscience funding, career prospects, international collaborations and scientists' morale in different parts of the world? Nature Reviews Neuroscience gauged the opinions of a number of leading neuroscientists: the President of the Society for Neuroscience, the President Elect of the British Neuroscience Association, the former President of the Japan Neuroscience Society, the President of the Federation of European Neuroscience Societies and the Director of the US National Institute of Mental Health. Their responses provide interesting and important insights into the regional impact of the global financial downturn, with some causes for optimism for the future of neuroscience research.

  10. The Aristotelian conception of habit and its contribution to human neuroscience.

    PubMed

    Bernacer, Javier; Murillo, Jose Ignacio

    2014-01-01

    The notion of habit used in neuroscience is an inheritance from a particular theoretical origin, whose main source is William James. Thus, habits have been characterized as rigid, automatic, unconscious, and opposed to goal-directed actions. This analysis leaves unexplained several aspects of human behavior and cognition where habits are of great importance. We intend to demonstrate the utility that another philosophical conception of habit, the Aristotelian, may have for neuroscientific research. We first summarize the current notion of habit in neuroscience, its philosophical inspiration and the problems that arise from it, mostly centered on the sharp distinction between goal-directed actions and habitual behavior. We then introduce the Aristotelian view and we compare it with that of William James. For Aristotle, a habit is an acquired disposition to perform certain types of action. If this disposition involves an enhanced cognitive control of actions, it can be considered a "habit-as-learning". The current view of habit in neuroscience, which lacks cognitive control and we term "habit-as-routine", is also covered by the Aristotelian conception. He classifies habits into three categories: (1) theoretical, or the retention of learning understood as "knowing that x is so"; (2) behavioral, through which the agent achieves a rational control of emotion-permeated behavior ("knowing how to behave"); and (3) technical or learned skills ("knowing how to make or to do"). Finally, we propose new areas of research where this "novel" conception of habit could serve as a framework concept, from the cognitive enrichment of actions to the role of habits in pathological conditions. In all, this contribution may shed light on the understanding of habits as an important feature of human action. Habits, viewed as a cognitive enrichment of behavior, are a crucial resource for understanding human learning and behavioral plasticity.

  11. The Aristotelian conception of habit and its contribution to human neuroscience

    PubMed Central

    Bernacer, Javier; Murillo, Jose Ignacio

    2014-01-01

    The notion of habit used in neuroscience is an inheritance from a particular theoretical origin, whose main source is William James. Thus, habits have been characterized as rigid, automatic, unconscious, and opposed to goal-directed actions. This analysis leaves unexplained several aspects of human behavior and cognition where habits are of great importance. We intend to demonstrate the utility that another philosophical conception of habit, the Aristotelian, may have for neuroscientific research. We first summarize the current notion of habit in neuroscience, its philosophical inspiration and the problems that arise from it, mostly centered on the sharp distinction between goal-directed actions and habitual behavior. We then introduce the Aristotelian view and we compare it with that of William James. For Aristotle, a habit is an acquired disposition to perform certain types of action. If this disposition involves an enhanced cognitive control of actions, it can be considered a “habit-as-learning”. The current view of habit in neuroscience, which lacks cognitive control and we term “habit-as-routine”, is also covered by the Aristotelian conception. He classifies habits into three categories: (1) theoretical, or the retention of learning understood as “knowing that x is so”; (2) behavioral, through which the agent achieves a rational control of emotion-permeated behavior (“knowing how to behave”); and (3) technical or learned skills (“knowing how to make or to do”). Finally, we propose new areas of research where this “novel” conception of habit could serve as a framework concept, from the cognitive enrichment of actions to the role of habits in pathological conditions. In all, this contribution may shed light on the understanding of habits as an important feature of human action. Habits, viewed as a cognitive enrichment of behavior, are a crucial resource for understanding human learning and behavioral plasticity. PMID:25404908

  12. The Neuroscience of Consumer Choice.

    PubMed

    Hsu, Ming; Yoon, Carolyn

    2015-10-01

    We review progress and challenges relating to scientific and applied goals of the nascent field of consumer neuroscience. Scientifically, substantial progress has been made in understanding the neurobiology of choice processes. Further advances, however, require researchers to begin clarifying the set of developmental and cognitive processes that shape and constrain choices. First, despite the centrality of preferences in theories of consumer choice, we still know little about where preferences come from and the underlying developmental processes. Second, the role of attention and memory processes in consumer choice remains poorly understood, despite importance ascribed to them in interpreting data from the field. The applied goal of consumer neuroscience concerns our ability to translate this understanding to augment prediction at the population level. Although the use of neuroscientific data for market-level predictions remains speculative, there is growing evidence of superiority in specific cases over existing market research techniques.

  13. The Neuroscience of Consumer Choice

    PubMed Central

    Hsu, Ming; Yoon, Carolyn

    2015-01-01

    We review progress and challenges relating to scientific and applied goals of the nascent field of consumer neuroscience. Scientifically, substantial progress has been made in understanding the neurobiology of choice processes. Further advances, however, require researchers to begin clarifying the set of developmental and cognitive processes that shape and constrain choices. First, despite the centrality of preferences in theories of consumer choice, we still know little about where preferences come from and the underlying developmental processes. Second, the role of attention and memory processes in consumer choice remains poorly understood, despite importance ascribed to them in interpreting data from the field. The applied goal of consumer neuroscience concerns our ability to translate this understanding to augment prediction at the population level. Although the use of neuroscientific data for market-level predictions remains speculative, there is growing evidence of superiority in specific cases over existing market research techniques. PMID:26665152

  14. Insight in schizophrenia: from conceptualization to neuroscience.

    PubMed

    Ouzir, Mounir; Azorin, Jean Michel; Adida, Marc; Boussaoud, Driss; Battas, Omar

    2012-04-01

    Lack of insight into illness is a prevalent and distinguishing feature of schizophrenia, which has a complex history and has been given a variety of definitions. Currently, insight is measured and treated as a multidimensional phenomenon, because it is believed to result from psychological, neuropsychological and organic factors. Thus, schizophrenia patients may display dramatic disorders including demoralization, depression and a higher risk of suicide, all of which are directly or indirectly related to a lack of insight into their illness, and make the treatment difficult. To improve the treatment of people with schizophrenia, it is thus crucial to advance research on insight into their illness. Insight is studied in a variety of ways. Studies may focus on the relationship between insight and psychopathology, may view behavioral outcomes or look discretely at the cognitive dysfunction versus anatomy level of insight. All have merit but they are dispersed across a wide body of literature and rarely are the findings integrated and synthesized in a meaningful way. The aim of this study was to synthesize findings across the large body of literature dealing with insight, to highlight its multidimensional nature, measurement, neuropsychology and social impact in schizophrenia. The extensive literature on the cognitive consequences of lack of insight and the contribution of neuroimaging techniques to elucidating neurological etiology of insight deficits, is also reviewed. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  15. Implications of Affective and Social Neuroscience for Educational Theory

    ERIC Educational Resources Information Center

    Immordino-Yang, Mary Helen

    2011-01-01

    The past decade has seen major advances in cognitive, affective and social neuroscience that have the potential to revolutionize educational theories about learning. The importance of emotion and social learning has long been recognized in education, but due to technological limitations in neuroscience research techniques, treatment of these…

  16. No Brain Left Behind: Consequences of Neuroscience Discourse for Education

    ERIC Educational Resources Information Center

    Busso, Daniel S.; Pollack, Courtney

    2015-01-01

    Educational neuroscience represents a concerted interdisciplinary effort to bring the fields of cognitive science, neuroscience and education to bear on classroom practice. This article draws attention to the current and potential implications of importing biological ideas, language and imagery into education. By analysing examples of brain-based…

  17. Implications of Affective and Social Neuroscience for Educational Theory

    ERIC Educational Resources Information Center

    Immordino-Yang, Mary Helen

    2011-01-01

    The past decade has seen major advances in cognitive, affective and social neuroscience that have the potential to revolutionize educational theories about learning. The importance of emotion and social learning has long been recognized in education, but due to technological limitations in neuroscience research techniques, treatment of these…

  18. No Brain Left Behind: Consequences of Neuroscience Discourse for Education

    ERIC Educational Resources Information Center

    Busso, Daniel S.; Pollack, Courtney

    2015-01-01

    Educational neuroscience represents a concerted interdisciplinary effort to bring the fields of cognitive science, neuroscience and education to bear on classroom practice. This article draws attention to the current and potential implications of importing biological ideas, language and imagery into education. By analysing examples of brain-based…

  19. Testing Cognitive Behavior With Emphasis on Analytical Propensity of Service Members

    DTIC Science & Technology

    2012-04-01

    driven cognitive/IP research, as well as recent advances in cognitive neuroscience research related to electroencephalogram (EEG) mapping. The most...Brown, S.; Serences, J. T. Reciprocal Relations Between Cognitive Neuroscience and Formal Cognitive Models: Opposites Attract? Trends in...T. Reciprocal Relations Between Cognitive Neuroscience and Formal Cognitive Models: Opposites Attract? Trends in Cognitive Sciences 2011, 15 (6

  20. Neuroscience and humanistic psychiatry: a residency curriculum.

    PubMed

    Griffith, James L

    2014-04-01

    Psychiatry residencies with a commitment to humanism commonly prioritize training in psychotherapy, cultural psychiatry, mental health policy, promotion of human rights, and similar areas reliant upon dialogue and collaborative therapeutic relationships. The advent of neuroscience as a defining paradigm for psychiatry has challenged residencies with a humanistic focus due to common perceptions that it would entail constriction of psychiatric practice to diagnostic and psychopharmacology roles. The author describes a neuroscience curriculum that has taught psychopharmacology effectively, while also advancing effectiveness of language-based and relationship-based therapeutics. In 2000, the George Washington University psychiatry residency initiated a neuroscience curriculum consisting of (1) a foundational postgraduate year 2 seminar teaching cognitive and social neuroscience and its integration into clinical psychopharmacology, (2) advanced seminars that utilized a neuroscience perspective in teaching specific psychotherapeutic skill sets, and (3) case-based teaching in outpatient clinical supervisions that incorporated a neuroscience perspective into traditional psychotherapy supervisions. Curricular assessment was conducted by (1) RRC reaccreditation site visit feedback, (2) examining career trajectories of residency graduates, (3) comparing PRITE exam Somatic Treatments subscale scores for 2010-2012 residents with pre-implementation residents, and (4) postresidency survey assessment by 2010-2012 graduates. The 2011 RRC site visit report recommended a "notable practice" citation for "innovative neurosciences curriculum." Three of twenty 2010-2012 graduates entered neuroscience research fellowships, as compared to none before the new curriculum. PRITE Somatic Treatments subscale scores improved from the 23rd percentile to the 62nd percentile in pre- to post-implementation of curriculum (p < .001). Recent graduates rated effectiveness of clinical

  1. Attitudes Toward Neuroscience Education Among Psychiatry Residents and Fellows

    PubMed Central

    Fung, Lawrence K.; Akil, Mayada; Widge, Alik; Roberts, Laura Weiss

    2017-01-01

    Objective The purpose of this study is to assess the attitudes of psychiatry trainees toward neuroscience education in psychiatry residency and subsequent training in order to inform neuroscience education approaches in the future. Methods This online survey was designed to capture demographic information, self-assessed neuroscience knowledge, attitudes toward neuroscience education, preferences in learning modalities, and interest in specific neuroscience topics. Volunteers were identified through the American Psychiatric Association, which invited 2,563 psychiatry trainees among their members. Results Four hundred thirty-six trainees completed the survey. Nearly all agreed that there is a need for more neuroscience education in psychiatry residency training (94 %) and that neuroscience education could help destigmatize mental illness (91 %). Nearly all (94 %) expressed interest in attending a 3-day course on neuroscience. Many neuroscience topics and modes of learning were viewed favorably by participants. Residents in their first 2 years of training expressed attitudes similar to those of more advanced residents and fellows. Some differences were found based on the level of interest in a future academic role. Conclusions This web-based study demonstrates that psychiatry residents see neuroscience education as important in their training and worthy of greater attention. Our results suggest potential opportunities for advancing neuroscience education. PMID:24493359

  2. Attitudes toward neuroscience education among psychiatry residents and fellows.

    PubMed

    Fung, Lawrence K; Akil, Mayada; Widge, Alik; Roberts, Laura Weiss; Etkin, Amit

    2014-04-01

    The purpose of this study is to assess the attitudes of psychiatry trainees toward neuroscience education in psychiatry residency and subsequent training in order to inform neuroscience education approaches in the future. This online survey was designed to capture demographic information, self-assessed neuroscience knowledge, attitudes toward neuroscience education, preferences in learning modalities, and interest in specific neuroscience topics. Volunteers were identified through the American Psychiatric Association, which invited 2,563 psychiatry trainees among their members. Four hundred thirty-six trainees completed the survey. Nearly all agreed that there is a need for more neuroscience education in psychiatry residency training (94%) and that neuroscience education could help destigmatize mental illness (91%). Nearly all (94%) expressed interest in attending a 3-day course on neuroscience. Many neuroscience topics and modes of learning were viewed favorably by participants. Residents in their first 2 years of training expressed attitudes similar to those of more advanced residents and fellows. Some differences were found based on the level of interest in a future academic role. This web-based study demonstrates that psychiatry residents see neuroscience education as important in their training and worthy of greater attention. Our results suggest potential opportunities for advancing neuroscience education.

  3. Neuroethics: the ethical, legal, and societal impact of neuroscience.

    PubMed

    Farah, Martha J

    2012-01-01

    Advances in cognitive, affective, and social neuroscience raise a host of new questions concerning the ways in which neuroscience can and should be used. These advances also challenge our intuitions about the nature of humans as moral and spiritual beings. Neuroethics is the new field that grapples with these issues. The present article surveys a number of applications of neuroscience to such diverse arenas as marketing, criminal justice, the military, and worker productivity. The ethical, legal, and societal effects of these applications are discussed. Less practical, but perhaps ultimately more consequential, is the impact of neuroscience on our worldview and our understanding of the human person.

  4. Contributions of neuroscience to the study of socioeconomic health disparities.

    PubMed

    Gianaros, Peter J; Hackman, Daniel A

    2013-09-01

    Socioeconomic disadvantage confers risk for ill health. Historically, the pathways by which socioeconomic disadvantage may affect health have been viewed from epidemiological perspectives emphasizing environmental, behavioral, and biopsychosocial risk factors. Such perspectives, however, have yet to integrate findings from emerging neuroscience studies demonstrating that indicators of socioeconomic disadvantage relate to patterns of brain morphology and functionality that have been associated with aspects of mental, physical, and cognitive health over the lifecourse. This commentary considers findings from one such study appearing in the current issue of Psychosomatic Medicine. It reports that an area-level indicator of socioeconomic disadvantage relates to cortical morphology in brain regions important for language, executive control, and other cognitive and behavioral functions-possibly via a systemic inflammatory pathway. These findings are put into context by discussing broader questions and challenges that need to be addressed in order for neuroscience approaches to a) become better integrated with existing epidemiological perspectives and b) more fully advance our understanding of the pathways by which socioeconomic disadvantage becomes embodied by the brain in relation to health.

  5. Two views of brain function.

    PubMed

    Raichle, Marcus E

    2010-04-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature, such experiments tacitly encourage a reflexive view of brain function. Although such an approach has been remarkably productive, it ignores the alternative possibility that brain functions are mainly intrinsic, involving information processing for interpreting, responding to and predicting environmental demands. Here I argue that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources. Recognizing the importance of intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux.

  6. Criminal Responsibility, Free Will, and Neuroscience

    NASA Astrophysics Data System (ADS)

    Hodgson, David

    This chapter identifies retributive and consequentialist purposes of the criminal law, and it outlines arguments that retribution should be abandoned, in cluding arguments, based on philosophy and neuroscience, that free will and re sponsibility are illusions. The author suggests that there are good reasons to retain retribution, and identifies ways in which this might be supported, including com patibilist and libertarian views of free will. The author gives reasons for preferring libertarian views, and concludes by considering the role that neuroscience may be expected to play in the future development of the law.

  7. Foundationalism and Neuroscience; Silence and Language

    ERIC Educational Resources Information Center

    Keestra, Machiel; Cowley, Stephen J.

    2009-01-01

    Neuroscience offers more than new empirical evidence about the details of cognitive functions such as language, perception and action. Since it also shows many functions to be highly distributed, interconnected and dependent on mechanisms at different levels of processing, it challenges concepts that are traditionally used to describe these…

  8. Foundationalism and Neuroscience; Silence and Language

    ERIC Educational Resources Information Center

    Keestra, Machiel; Cowley, Stephen J.

    2009-01-01

    Neuroscience offers more than new empirical evidence about the details of cognitive functions such as language, perception and action. Since it also shows many functions to be highly distributed, interconnected and dependent on mechanisms at different levels of processing, it challenges concepts that are traditionally used to describe these…

  9. The social neuroscience of reputation.

    PubMed

    Izuma, Keise

    2012-04-01

    Human behavior is strongly influenced by the presence of others. Obtaining a good reputation or avoiding a bad one is a powerful incentive for a plethora of human actions. Theoretical considerations suggest that reputation may be a key mediator of aspects of altruistic behavior that are uniquely human. Despite its considerable influence on human social behavior and the growing interest in social neuroscience, investigations of the neural basis of reputation-based decision-making are still in their infancy. Here, I argue that reputation is an important aspect of human social cognition and present some of the candidate neural mechanisms.

  10. Using a Cognition-Motivation-Control View to Assess the Adoption Intention for Web-Based Learning

    ERIC Educational Resources Information Center

    Shih, Hung-Pin

    2008-01-01

    People expect Web technology to facilitate learning, particularly in higher education. A key issue involves the factors motivating the adoption of the Web for learning. Drawing upon social cognitive theory (SCT) and the theory of planned behavior (TPB), this study adopts a cognition-motivation-control view to assess learner adoption intentions for…

  11. Neuroscience and education: prime time to build the bridge.

    PubMed

    Sigman, Mariano; Peña, Marcela; Goldin, Andrea P; Ribeiro, Sidarta

    2014-04-01

    As neuroscience gains social traction and entices media attention, the notion that education has much to benefit from brain research becomes increasingly popular. However, it has been argued that the fundamental bridge toward education is cognitive psychology, not neuroscience. We discuss four specific cases in which neuroscience synergizes with other disciplines to serve education, ranging from very general physiological aspects of human learning such as nutrition, exercise and sleep, to brain architectures that shape the way we acquire language and reading, and neuroscience tools that increasingly allow the early detection of cognitive deficits, especially in preverbal infants. Neuroscience methods, tools and theoretical frameworks have broadened our understanding of the mind in a way that is highly relevant to educational practice. Although the bridge's cement is still fresh, we argue why it is prime time to march over it.

  12. Culture and neuroscience: additive or synergistic?

    PubMed

    Losin, Elizabeth A Reynolds; Dapretto, Mirella; Iacoboni, Marco

    2010-06-01

    The investigation of cultural phenomena using neuroscientific methods-cultural neuroscience (CN)-is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings.

  13. Culture and neuroscience: additive or synergistic?

    PubMed Central

    Dapretto, Mirella; Iacoboni, Marco

    2010-01-01

    The investigation of cultural phenomena using neuroscientific methods—cultural neuroscience (CN)—is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings. PMID:20083533

  14. Effect of Early Adult Patterns of Physical Activity and Television Viewing on Midlife Cognitive Function.

    PubMed

    Hoang, Tina D; Reis, Jared; Zhu, Na; Jacobs, David R; Launer, Lenore J; Whitmer, Rachel A; Sidney, Stephen; Yaffe, Kristine

    2016-01-01

    Sedentary behaviors and physical inactivity are not only increasing worldwide but also are critical risk factors for adverse health outcomes. Yet, few studies have examined the effects of sedentary behavior on cognition or the long-term role of either behavior in early to middle adulthood. To investigate the association between 25-year patterns of television viewing and physical activity and midlife cognition. Prospective study of 3247 adults (black and white races; aged 18-30 years) enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) Study (March 25, 1985, to August 31, 2011). Data analysis was performed June 1, 2014, through April 15, 2015. We assessed television viewing and physical activity at repeated visits (≥3 assessments) over 25 years using a validated questionnaire. A 25-year pattern of high television viewing was defined as watching TV above the upper baseline quartile (>3 hours/d) for more than two-thirds of the visits, and a 25-year pattern of low physical activity was defined as activity levels below the lower, sex-specific baseline quartile for more than two-thirds of the of the visits. We evaluated cognitive function at year 25 using the Digit Symbol Substitution Test (DSST), Stroop test, and Rey Auditory Verbal Learning Test. At baseline, the mean (SD) age of the 3247 study participants was 25.1 (3.6) years, 1836 (56.5%) were female, 1771 (54.5%) were white, and 3015 (92.9%) had completed at least high school. Compared with participants with low television viewing, those with high television viewing during 25 years (353 of 3247 [10.9%]) were more likely to have poor cognitive performance (<1 SD below the race-specific mean) on the DSST and Stroop test, with findings reported as adjusted odds ratio (95% CI): DSST, 1.64 (1.21-2.23) and Stroop test, 1.56 (1.13-2.14), but not the Rey Auditory Verbal Learning Test, adjusted for age, race, sex, educational level, smoking, alcohol use, body mass index, and hypertension. Low

  15. A Model for Bridging the Gap between Neuroscience and Education

    ERIC Educational Resources Information Center

    Tommerdahl, Jodi

    2010-01-01

    As the brain sciences make advances in our understanding of how the human brain functions, many educators are looking to findings from the neurosciences to inform classroom teaching methodologies. This paper takes the view that the neurosciences are an excellent source of knowledge regarding learning processes, but also provides a warning…

  16. A Model for Bridging the Gap between Neuroscience and Education

    ERIC Educational Resources Information Center

    Tommerdahl, Jodi

    2010-01-01

    As the brain sciences make advances in our understanding of how the human brain functions, many educators are looking to findings from the neurosciences to inform classroom teaching methodologies. This paper takes the view that the neurosciences are an excellent source of knowledge regarding learning processes, but also provides a warning…

  17. Edutainment's Impact on Health Promotion: Viewing The Biggest Loser Through the Social Cognitive Theory.

    PubMed

    Mocarski, Richard; Bissell, Kimberly

    2016-01-01

    Through a critical rhetorical analysis using Bandura's social cognitive theory as a lens to view The Biggest Loser (TBL), this article illustrates the contradictions between the show's health promotional aims and its entertainment aims, which show the problems the show creates for health promotion practitioners working on obesity. The social cognitive theory constructs of observational learning, psychological determinants, and environmental determinants emerged from this reading of TBL as central to how the show masquerades as a health promotion tool. This reading reveals that TBL promotes a neoliberal construction of health and obesity that challenges the worldview that many health promotion campaigns take and, therefore, complicates our own efforts to combat obesity. With this revealed, it is suggested that TBL be incorporated into health promotion campaigns only as a foil.

  18. Perceptual and cognitive neural correlates of the useful field of view test in older adults.

    PubMed

    O'Brien, Jennifer L; Lister, Jennifer J; Peronto, Carol L; Edwards, Jerri D

    2015-10-22

    The Useful Field of View Test (UFOV) is often used as a behavioral assessment of age-related decline in visual perception and cognition. Poor performance may reflect slowed processing speed, difficulty dividing attention, and difficulty ignoring irrelevant information. However, the underlying neural correlates of UFOV performance have not been identified. The relationship between older adults' UFOV performance and event-related potential (ERP) components reflecting visual processing was examined. P1 amplitude increased with better UFOV performance involving object identification (subtest 1), suggesting that this task is associated with stimulus processing at an early perceptual level. Better performance in all UFOV subtests was associated with faster speed of processing, as reflected by decreases in P3b latency. Current evidence supports the hypothesis that the UFOV recruits both early perceptual and later cognitive processing involved in attentional control. The implications of these results are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Associations of dietary habits, physical activity and cognitive views with gestational diabetes mellitus among Chinese women.

    PubMed

    Li, Qing; Xiong, Ribo; Wang, Liang; Cui, Junying; Shi, Linna; Liu, Yungang; Luo, Bingde

    2014-08-01

    To evaluate the relationship between dietary habits, physical activity and cognitive views and the risk of gestational diabetes mellitus (GDM) in Chinese women. A cross-sectional study to explore the potential risk factors of GMD through the International Physical Activity Questionnaire, an FFQ and a self-designed structured questionnaire, respectively. Guangzhou, Guangdong Province, China. Chinese pregnant women (n 571) who underwent a 75-g oral glucose tolerance test at their 24th to 28th gestational week. Thirteen per cent of the investigated women were identified as having GDM, and an increased intake of local featured foods and lower physical activity were observed in the GDM-positive group v. the GDM-negative group. Women who regarded early-pregnancy morning sickness as relevant to fetal abnormalities and those with unlimited dietary intake after the ending of morning sickness both had an increased risk for GDM (P = 0·018 and P = 0·038, respectively). After multiple logistic regression analysis, cognitive views for unlimited food intake subsequent to morning sickness, increased consumption of energy-dense snack foods and high-glycaemic-index fruits were strongly associated with the risk of GDM (OR = 1·911, P = 0·032; OR = 1·050, P = 0·001; and OR = 1·002, P = 0·017, respectively). Local featured foods and incorrect cognitive views on pregnancy-related health were closely related to the risk of GDM in Chinese women. Intensive health education about pregnancy physiology and reasonable dietary and physical exercise behaviours should be strengthened for the control of GDM.

  20. Addressing Literacy through Neuroscience

    ERIC Educational Resources Information Center

    Miller, Steve; Tallal, Paula A.

    2006-01-01

    Brain is the source of all human thoughts, feelings and emotions. Now the mysteries of the human brain are rapidly being elucidated by neuroscience research. For more than 150 years, neuroscience has held that most of the brain's functionality develops during critical periods in early childhood and that once past these critical periods, the window…

  1. Applying neuroscience to architecture.

    PubMed

    Eberhard, John P

    2009-06-25

    Architectural practice and neuroscience research use our brains and minds in much the same way. However, the link between neuroscience knowledge and architectural design--with rare exceptions--has yet to be made. The concept of linking these two fields is a challenge worth considering.

  2. Addressing Literacy through Neuroscience

    ERIC Educational Resources Information Center

    Miller, Steve; Tallal, Paula A.

    2006-01-01

    Brain is the source of all human thoughts, feelings and emotions. Now the mysteries of the human brain are rapidly being elucidated by neuroscience research. For more than 150 years, neuroscience has held that most of the brain's functionality develops during critical periods in early childhood and that once past these critical periods, the window…

  3. Viewing artworks: contributions of cognitive control and perceptual facilitation to aesthetic experience.

    PubMed

    Cupchik, Gerald C; Vartanian, Oshin; Crawley, Adrian; Mikulis, David J

    2009-06-01

    When we view visual images in everyday life, our perception is oriented toward object identification. In contrast, when viewing visual images as artworks, we also tend to experience subjective reactions to their stylistic and structural properties. This experiment sought to determine how cognitive control and perceptual facilitation contribute to aesthetic perception along with the experience of emotion. Using functional MRI, we show that aesthetic perception activated bilateral insula which we attribute to the experience of emotion. Moreover, while adopting the aesthetic orientation activated the left lateral prefrontal cortex, paintings that facilitated visuospatial exploration activated the left superior parietal lobule. The results suggest that aesthetic experience is a function of the interaction between top-down orienting of attention and bottom-up perceptual facilitation.

  4. Virtual reality in behavioral neuroscience and beyond.

    PubMed

    Tarr, Michael J; Warren, William H

    2002-11-01

    Virtual reality (VR) has finally come of age for serious applications in the behavioral neurosciences. After capturing the public imagination a decade ago, enthusiasm for VR flagged due to hardware limitations, an absent commercial market and manufacturers who dropped the mass-market products that normally drive technological development. Recently, however, improvements in computer speed, quality of head-mounted displays and wide-area tracking systems have made VR attractive for both research and real-world applications in neuroscience, cognitive science and psychology. New and exciting applications for VR have emerged in research, training, rehabilitation, teleoperation, virtual archeology and tele-immersion.

  5. Probabilistic Thinking Ability of Students Viewed from Their Field Independent and Field Dependent Cognitive Style

    NASA Astrophysics Data System (ADS)

    Taram, A.

    2017-04-01

    The aims of this research are to study: (1) probabilistic thinking ability of mathematics education students, (2) classification of the students’ cognitive style, (3) levelling of the students’ probabilistic thinking ability viewed from their cognitive styles. This research used the qualitative descriptive method and involved 74 subjects. The measured subjects were Group 1 with “fixed FD” classification consisted of 7 students, Group 2 with “mobile FD and mobile FI” classification consisted of 9 students, and Group 3 with “fixed FI” classification consisted of 5 students. The classification of cognitive styles into three groups revealed that there was suitability between cognitive style and probabilistic thinking ability from low to high level. These results could be analysed from the classification of cognitive style and an average of their value of probabilistic thinking ability. The average of probabilistic thinking ability of Group 1 was 42.58; the average of probabilistic thinking ability of Group 2 was 54.44, and the average of probabilistic thinking ability of Group 3 was 68.6. Group 1 and 3 had small standard deviation for the value of probabilistic thinking ability, respectively are 11.36 and 12.30. Thus the data was relatively homogeneous. Meanwhile, Group 2 had a huge standard deviation for the value of probabilistic thinking ability, namely 19.36 which means that the data was relatively heterogeneous. Most of the probabilistic thinking ability level for Group 1 and 2 was Level 2, which is Transitional level, while the most of the probabilistic thinking ability level for Group 3 was Level 4, which is Numeric level.

  6. Why language really is not a communication system: a cognitive view of language evolution

    PubMed Central

    Reboul, Anne C.

    2015-01-01

    While most evolutionary scenarios for language see it as a communication system with consequences on the language-ready brain, there are major difficulties for such a view. First, language has a core combination of features—semanticity, discrete infinity, and decoupling—that makes it unique among communication systems and that raise deep problems for the view that it evolved for communication. Second, extant models of communication systems—the code model of communication (Millikan, 2005) and the ostensive model of communication (Scott-Phillips, 2015) cannot account for language evolution. I propose an alternative view, according to which language first evolved as a cognitive tool, following Fodor’s (1975, 2008) Language of Thought Hypothesis, and was then exapted (externalized) for communication. On this view, a language-ready brain is a brain profoundly reorganized in terms of connectivity, allowing the human conceptual system to emerge, triggering the emergence of syntax. Language as used in communication inherited its core combination of features from the Language of Thought. PMID:26441802

  7. Why language really is not a communication system: a cognitive view of language evolution.

    PubMed

    Reboul, Anne C

    2015-01-01

    While most evolutionary scenarios for language see it as a communication system with consequences on the language-ready brain, there are major difficulties for such a view. First, language has a core combination of features-semanticity, discrete infinity, and decoupling-that makes it unique among communication systems and that raise deep problems for the view that it evolved for communication. Second, extant models of communication systems-the code model of communication (Millikan, 2005) and the ostensive model of communication (Scott-Phillips, 2015) cannot account for language evolution. I propose an alternative view, according to which language first evolved as a cognitive tool, following Fodor's (1975, 2008) Language of Thought Hypothesis, and was then exapted (externalized) for communication. On this view, a language-ready brain is a brain profoundly reorganized in terms of connectivity, allowing the human conceptual system to emerge, triggering the emergence of syntax. Language as used in communication inherited its core combination of features from the Language of Thought.

  8. "Me & my brain": exposing neuroscience's closet dualism.

    PubMed

    Mudrik, Liad; Maoz, Uri

    2015-02-01

    Our intuitive concept of the relations between brain and mind is increasingly challenged by the scientific world view. Yet, although few neuroscientists openly endorse Cartesian dualism, careful reading reveals dualistic intuitions in prominent neuroscientific texts. Here, we present the "double-subject fallacy": treating the brain and the entire person as two independent subjects who can simultaneously occupy divergent psychological states and even have complex interactions with each other-as in "my brain knew before I did." Although at first, such writing may appear like harmless, or even cute, shorthand, a closer look suggests that it can be seriously misleading. Surprisingly, this confused writing appears in various cognitive-neuroscience texts, from prominent peer-reviewed articles to books intended for lay audience. Far from being merely metaphorical or figurative, this type of writing demonstrates that dualistic intuitions are still deeply rooted in contemporary thought, affecting even the most rigorous practitioners of the neuroscientific method. We discuss the origins of such writing and its effects on the scientific arena as well as demonstrate its relevance to the debate on legal and moral responsibility.

  9. Representations, approximations, and limitations within a computational framework for cognitive science. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Perfors, Amy

    2014-09-01

    There is much to approve of in this provocative and interesting paper. I strongly agree in many parts, especially the point that dichotomies like nature/nurture are actively detrimental to the field. I also appreciate the idea that cognitive scientists should take the "biological wetware" of the cell (rather than the network) more seriously.

  10. Integrating community outreach into the undergraduate neuroscience classroom.

    PubMed

    Stevens, Courtney

    2011-01-01

    While both federal agencies and professional associations emphasize the importance of neuroscience outreach, this goal seldom reaches the undergraduate neuroscience classroom. However, incorporating outreach into undergraduate neuroscience classes is an efficient means to reach not only future scientists, but also the future practitioners (K-12 teachers, social service workers, etc.) with whom neuroscientists hope to communicate. It also provides a vehicle for faculty members to engage in outreach activities that are typically un- or under-rewarded in faculty reviews. In this article, a Neuroscience Community Outreach Project (NCOP) is described. The project has been used in three offerings of a Cognitive Neuroscience course at a small liberal arts college, shared and applied at a large state university, and presented at a regional Society for Neuroscience meeting as an example of outreach opportunities for faculty. The NCOP assignment is a student-driven, modular activity that can be easily incorporated into existing neuroscience course frameworks. The assignment builds on student interests and connections in the community, providing a way for faculty at institutions without formal outreach programs to incorporate neuroscience outreach into the classroom and connect students to online resources. Several sample student projects are described across three broad domains (K-12 outreach, presentations to social service organizations, and media / popular press presentations). The article ends with a set of suggestions addressing common faculty concerns about incorporating community outreach into the undergraduate neuroscience classroom.

  11. Integrating Community Outreach into the Undergraduate Neuroscience Classroom

    PubMed Central

    Stevens, Courtney

    2011-01-01

    While both federal agencies and professional associations emphasize the importance of neuroscience outreach, this goal seldom reaches the undergraduate neuroscience classroom. However, incorporating outreach into undergraduate neuroscience classes is an efficient means to reach not only future scientists, but also the future practitioners (K-12 teachers, social service workers, etc.) with whom neuroscientists hope to communicate. It also provides a vehicle for faculty members to engage in outreach activities that are typically un- or under-rewarded in faculty reviews. In this article, a Neuroscience Community Outreach Project (NCOP) is described. The project has been used in three offerings of a Cognitive Neuroscience course at a small liberal arts college, shared and applied at a large state university, and presented at a regional Society for Neuroscience meeting as an example of outreach opportunities for faculty. The NCOP assignment is a student-driven, modular activity that can be easily incorporated into existing neuroscience course frameworks. The assignment builds on student interests and connections in the community, providing a way for faculty at institutions without formal outreach programs to incorporate neuroscience outreach into the classroom and connect students to online resources. Several sample student projects are described across three broad domains (K-12 outreach, presentations to social service organizations, and media / popular press presentations). The article ends with a set of suggestions addressing common faculty concerns about incorporating community outreach into the undergraduate neuroscience classroom. PMID:23626492

  12. Neuroscience and the fallacies of functionalism.

    PubMed

    Reddy, William M

    2010-01-01

    Smail's "On Deep History and the Brain" is rightly critical of the functionalist fallacies that have plagued evolutionary theory, sociobiology, and evolutionary psychology. However, his attempt to improve on these efforts relies on functional explanations that themselves oversimplify the lessons of neuroscience. In addition, like explanations in evolutionary psychology, they are highly speculative and cannot be confirmed or disproved by evidence. Neuroscience research is too diverse to yield a single picture of brain functioning. Some recent developments in neuroscience research, however, do suggest that cognitive processing provides a kind of “operating system” that can support a great diversity of cultural material. These developments include evidence of “top-down” processing in motor control, in visual processing, in speech recognition, and in “emotion regulation.” The constraints that such a system may place on cultural learning and transmission are worth investigating. At the same time, historians are well advised to remain wary of the pitfalls of functionalism.

  13. From naturalistic neuroscience to modeling radical embodiment with narrative enactive systems

    PubMed Central

    Tikka, Pia; Kaipainen, Mauri Ylermi

    2014-01-01

    Mainstream cognitive neuroscience has begun to accept the idea of embodied mind, which assumes that the human mind is fundamentally constituted by the dynamical interactions of the brain, body, and the environment. In today’s paradigm of naturalistic neurosciences, subjects are exposed to rich contexts, such as video sequences or entire films, under relatively controlled conditions, against which researchers can interpret changes in neural responses within a time window. However, from the point of view of radical embodied cognitive neuroscience, the increasing complexity alone will not suffice as the explanatory apparatus for dynamical embodiment and situatedness of the mind. We suggest that narrative enactive systems with dynamically adaptive content as stimuli, may serve better to account for the embodied mind engaged with the surrounding world. Among the ensuing challenges for neuroimaging studies is how to interpret brain data against broad temporal contexts of previous experiences that condition the unfolding experience of nowness. We propose means to tackle this issue, as well as ways to limit the exponentially growing combinatoria of narrative paths to a controllable number. PMID:25339890

  14. Advancing Ethical Neuroscience Research.

    PubMed

    Borah, B Rashmi; Strand, Nicolle K; Chillag, Kata L

    2016-12-01

    As neuroscience research advances, researchers, clinicians, and other stakeholders will face a host of ethical challenges. The Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) has published two reports that provide recommendations on how to advance research endeavors ethically. The commission addressed, among other issues, how to prioritize different types of neuroscience research and how to include research participants who have impaired consent capacity. The Bioethics Commission's recommendations provide a foundation for ethical guidelines as neuroscience research advances and progresses. © 2016 American Medical Association. All Rights Reserved.

  15. Goals reconfigure cognition by modulating predictive processes in the brain.

    PubMed

    Pezzulo, Giovanni

    2014-04-01

    I applaud Huang & Bargh's (H&B's) theory that places goals at the center of cognition, and I discuss two ingredients missing from that theory. First, I argue that the brains of organisms much simpler than those of humans are already configured for goal achievement in situated interactions. Second, I propose a mechanistic view of the "reconfiguration principle" that links the theory with current views in computational neuroscience.

  16. Advances in the Use of Neuroscience Methods in Research on Learning and Instruction

    ERIC Educational Resources Information Center

    De Smedt, Bert

    2014-01-01

    Cognitive neuroscience offers a series of tools and methodologies that allow researchers in the field of learning and instruction to complement and extend the knowledge they have accumulated through decades of behavioral research. The appropriateness of these methods depends on the research question at hand. Cognitive neuroscience methods allow…

  17. The Brain Goes to School: Strengthening the Education-Neuroscience Connection

    ERIC Educational Resources Information Center

    Ansari, Daniel

    2008-01-01

    Investigations on the brain processes using a technology such as functional magnetic resonance imaging (fMRI) have led to the creation of a new field of research that bridges the gap between cognitive psychology and neuroscience: "cognitive neuroscience." Within this new field, studies examining the processes of learning and developing are…

  18. The Brain Goes to School: Strengthening the Education-Neuroscience Connection

    ERIC Educational Resources Information Center

    Ansari, Daniel

    2008-01-01

    Investigations on the brain processes using a technology such as functional magnetic resonance imaging (fMRI) have led to the creation of a new field of research that bridges the gap between cognitive psychology and neuroscience: "cognitive neuroscience." Within this new field, studies examining the processes of learning and developing are…

  19. [Philosophy within the context of neurosciences].

    PubMed

    Estany, Anna

    2013-03-16

    Based on the interrelation between science and philosophy, this article addresses the impact of neurosciences on the philosophical issues posed by today's society, especially those related with epistemology and the philosophy of science. To do so, the different approaches in the cognitive sciences are taken into account, with special attention paid to those that have to do with social, embodied and situated cognition versus a more individual, rational and abstract cognition. This initial framework is taken as the starting point with which to analyse the ways of representing knowledge and the characteristics of the cognoscente agent.

  20. Philosophy, Neuroscience and Education

    ERIC Educational Resources Information Center

    Clark, John

    2015-01-01

    This short note takes two quotations from Snooks' recent editorial on neuroeducation and teases out some further details on the philosophy of neuroscience and neurophilosophy along with consideration of the implications of both for philosophy of education.

  1. Philosophy, Neuroscience and Education

    ERIC Educational Resources Information Center

    Clark, John

    2015-01-01

    This short note takes two quotations from Snooks' recent editorial on neuroeducation and teases out some further details on the philosophy of neuroscience and neurophilosophy along with consideration of the implications of both for philosophy of education.

  2. What event-related potentials (ERPs) bring to social neuroscience?

    PubMed

    Ibanez, Agustin; Melloni, Margherita; Huepe, David; Helgiu, Elena; Rivera-Rei, Alvaro; Canales-Johnson, Andrés; Baker, Phil; Moya, Alvaro

    2012-01-01

    Social cognitive neuroscience is a recent interdisciplinary field that studies the neural basis of the social mind. Event-related potentials (ERPs) provide precise information about the time dynamics of the brain. In this study, we assess the role of ERPs in cognitive neuroscience, particularly in the emerging area of social neuroscience. First, we briefly introduce the technique of ERPs. Subsequently, we describe several ERP components (P1, N1, N170, vertex positive potential, early posterior negativity, N2, P2, P3, N400, N400-like, late positive complex, late positive potential, P600, error-related negativity, feedback error-related negativity, contingent negative variation, readiness potential, lateralized readiness potential, motor potential, re-afferent potential) that assess perceptual, cognitive, and motor processing. Then, we introduce ERP studies in social neuroscience on contextual effects on speech, emotional processing, empathy, and decision making. We provide an outline of ERPs' relevance and applications in the field of social cognitive neuroscience. We also introduce important methodological issues that extend classical ERP research, such as intracranial recordings (iERP) and source location in dense arrays and simultaneous functional magnetic resonance imaging recordings. Further, this review discusses possible caveats of the ERP question assessment on neuroanatomical areas, biophysical origin, and methodological problems, and their relevance to explanatory pluralism and multilevel, contextual, and situated approaches to social neuroscience.

  3. Telemedicine in neurosciences.

    PubMed

    Ganapathy, K; Ravindra, Aditi

    2008-01-01

    It is well known that in most countries, there is a perennial shortage of specialists in neurosciences. Even the few available neurologists and neurosurgeons are clustered in the metros and urban areas. Those living in suburban and rural areas have limited or no access to neurological care. At the same time there has been an unprecedented growth in ICT (Information and Communication Technology). In this article, the authors review the increasing use of telemedicine in neurosciences.

  4. The neuroscience of musical improvisation.

    PubMed

    Beaty, Roger E

    2015-04-01

    Researchers have recently begun to examine the neural basis of musical improvisation, one of the most complex forms of creative behavior. The emerging field of improvisation neuroscience has implications not only for the study of artistic expertise, but also for understanding the neural underpinnings of domain-general processes such as motor control and language production. This review synthesizes functional magnetic resonance imagining (fMRI) studies of musical improvisation, including vocal and instrumental improvisation, with samples of jazz pianists, classical musicians, freestyle rap artists, and non-musicians. A network of prefrontal brain regions commonly linked to improvisatory behavior is highlighted, including the pre-supplementary motor area, medial prefrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex, and dorsal premotor cortex. Activation of premotor and lateral prefrontal regions suggests that a seemingly unconstrained behavior may actually benefit from motor planning and cognitive control. Yet activation of cortical midline regions points to a role of spontaneous cognition characteristic of the default network. Together, such results may reflect cooperation between large-scale brain networks associated with cognitive control and spontaneous thought. The improvisation literature is integrated with Pressing's theoretical model, and discussed within the broader context of research on the brain basis of creative cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Center for Behavioral Neuroscience: a prototype multi-institutional collaborative research center

    PubMed Central

    Powell, Kelly R; Albers, H Elliott

    2006-01-01

    The Center for Behavioral Neuroscience was launched in the fall of 1999 with support from the National Science Foundation, the Georgia Research Alliance, and our eight participating institutions (Georgia State University, Emory University, Georgia Institute of Technology, Morehouse School of Medicine, Clark-Atlanta University, Spelman College, Morehouse College, Morris Brown College). The CBN provides the resources to foster innovative research in behavioral neuroscience, with a specific focus on the neurobiology of social behavior. Center faculty working in collaboratories use diverse model systems from invertebrates to humans to investigate fear, aggression, affiliation, and reproductive behaviors. The addition of new research foci in reward and reinforcement, memory and cognition, and sex differences has expanded the potential for collaborations among Center investigators. Technology core laboratories develop the molecular, cellular, systems, behavioral, and imaging tools essential for investigating how the brain influences complex social behavior and, in turn, how social experience influences brain function. In addition to scientific discovery, a major goal of the CBN is to train the next generation of behavioral neuroscientists and to increase the number of women and under-represented minorities in neuroscience. Educational programs are offered for K-12 students to spark an interest in science. Undergraduate and graduate initiatives encourage students to participate in interdisciplinary and inter-institutional programs, while postdoctoral programs provide a bridge between laboratories and allow the interdisciplinary research and educational ventures to flourish. Finally, the CBN is committed to knowledge transfer, partnering with community organizations to bring neuroscience to the public. This multifaceted approach through research, education, and knowledge transfer will have a major impact on how we study interactions between the brain and behavior, as well

  6. Integrating translational neuroscience to improve drug abuse treatment for adolescents.

    PubMed

    Boyce, Cheryl Anne; Lynne-Landsman, Sarah D

    2013-06-01

    Adolescence is an exciting and challenging period of maturation, rapid brain development, and developmental changes in neurobiological, neurocognitive, and neurobehavioral processes. Although behavioral therapies available for adolescent substance abuse have increased, effectiveness research in this area lags considerably behind that of clinical research on treatment for drug-abusing adults. Behavioral treatment approaches show significant promise for treating drug-abusing adolescents, but many have not incorporated innovations in neuroscience on brain development, cognitive processes, and neuroimaging. Linking developmental neuroscience with behavioral treatments can create novel drug abuse interventions and increase the effectiveness of existing interventions for substance-abusing adolescents. Contemporary research on brain development, cognition, and neuroscience is ripe for translation to inform developmentally sensitive drug abuse treatments for adolescents. Neuroscientists and interventionists are challenged to build mutual collaborations for integration of neuroscience and drug abuse treatment for adolescents. 2013 APA, all rights reserved

  7. From ancient Greece to the cognitive revolution: A comprehensive view of physical rehabilitation sciences.

    PubMed

    Martínez-Pernía, David; González-Castán, Óscar; Huepe, David

    2017-02-01

    The development of rehabilitation has traditionally focused on measurements of motor disorders and measurements of the improvements produced during the therapeutic process; however, physical rehabilitation sciences have not focused on understanding the philosophical and scientific principles in clinical intervention and how they are interrelated. The main aim of this paper is to explain the foundation stones of the disciplines of physical therapy, occupational therapy, and speech/language therapy in recovery from motor disorder. To reach our goals, the mechanistic view and how it is integrated into physical rehabilitation will first be explained. Next, a classification into mechanistic therapy based on an old version (automaton model) and a technological version (cyborg model) will be shown. Then, it will be shown how physical rehabilitation sciences found a new perspective in motor recovery, which is based on functionalism, during the cognitive revolution in the 1960s. Through this cognitive theory, physical rehabilitation incorporated into motor recovery of those therapeutic strategies that solicit the activation of the brain and/or symbolic processing; aspects that were not taken into account in mechanistic therapy. In addition, a classification into functionalist rehabilitation based on a computational therapy and a brain therapy will be shown. At the end of the article, the methodological principles in physical rehabilitation sciences will be explained. It will allow us to go deeper into the differences and similarities between therapeutic mechanism and therapeutic functionalism.

  8. The cognitive implications of virtual locomotion with a restricted field of view

    NASA Astrophysics Data System (ADS)

    Marsh, William E.; Kelly, Jonathan W.; Dark, Veronica J.; Oliver, James H.

    2012-03-01

    A study was conducted to examine the impact, in terms of cognitive demands, of a restricted field of view (FOV) on semi-natural locomotion in virtual reality (VR). Participants were divided into two groups: high-FOV and low-FOV. They were asked to perform basic movements using a locomotion interface while simultaneously performing one of two memory tasks (spatial or verbal) or no memory task. The memory tasks were intended to simulate the competing demands when a user has primary tasks to perform while using an unnatural interface to move through the virtual world. Results show that participants remembered fewer spatial or verbal items when performing locomotion movements with a low FOV than with a high FOV. This equivalent verbal and spatial detriment may indicate that locomotion movements with a restricted FOV require additional general cognitive resources as opposed to spatial or verbal resource pools. This also emphasizes the importance of this research, as users of a system may allow primary task performance to suffer when performing locomotion. Movement start and completion times were also measured to examine resource requirements of specific aspects of movements. Understanding specific performance problems resulting from concurrent tasks can inform the design of systems.

  9. A social cognitive view of self-regulated learning about health.

    PubMed

    Clark, Noreen M; Zimmerman, Barry J

    2014-10-01

    Researchers interested in health-related learning have recently begun to study processes people use to self-regulate their health and their ability to prevent or control chronic disease. This paper represents a social cognitive view of self-regulation that involves three classes of influence on self-regulating behavior: personal, behavioral, and environmental. This triadic model assumes that people self-regulate their health through the use of self-care strategies, setting reasonable health goals, and monitoring feedback concerning the effectiveness of strategies in meeting their goals. People's perceptions of self-efficacy are also assumed to play a major role in motivating them to self-regulate their health functioning. According to social cognitive theory, processes entailed in regulating one's health can be taught through social modeling, supports, and feedback; gradually these external supports are withdrawn as one is able to self-regulate. This paper will analyze self-regulation processes related to controlling or preventing lung disease, specifically management of asthma and eliminating smoking. The educational implications of the triadic model of self-regulation for promoting health and related behavioral functioning will be discussed. © 2014 Society for Public Health Education.

  10. For the law, neuroscience changes nothing and everything.

    PubMed Central

    Greene, Joshua; Cohen, Jonathan

    2004-01-01

    The rapidly growing field of cognitive neuroscience holds the promise of explaining the operations of the mind in terms of the physical operations of the brain. Some suggest that our emerging understanding of the physical causes of human (mis)behaviour will have a transformative effect on the law. Others argue that new neuroscience will provide only new details and that existing legal doctrine can accommodate whatever new information neuroscience will provide. We argue that neuroscience will probably have a transformative effect on the law, despite the fact that existing legal doctrine can, in principle, accommodate whatever neuroscience will tell us. New neuroscience will change the law, not by undermining its current assumptions, but by transforming people's moral intuitions about free will and responsibility. This change in moral outlook will result not from the discovery of crucial new facts or clever new arguments, but from a new appreciation of old arguments, bolstered by vivid new illustrations provided by cognitive neuroscience. We foresee, and recommend, a shift away from punishment aimed at retribution in favour of a more progressive, consequentialist approach to the criminal law. PMID:15590618

  11. Classics in Chemical Neuroscience: Xanomeline.

    PubMed

    Bender, Aaron M; Jones, Carrie K; Lindsley, Craig W

    2017-01-31

    Xanomeline (1) is an orthosteric muscarinic acetylcholine receptor (mAChR) agonist, often referred to as M1/M4-preferring that received widespread attention for its clinical efficacy in schizophrenia and Alzheimer's disease (AD) patients. Despite the compound's promising initial clinical results, dose-limiting side effects limited further clinical development. While xanomeline, and related orthosteric muscarinic agonists, have yet to receive approval from the FDA for the treatment of these CNS disorders, interest in the compound's unique M1/M4-preferring mechanism of action is ongoing in the field of chemical neuroscience. Specifically, the promising cognitive and behavioral effects of xanomeline in both schizophrenia and AD have spurred a renewed interest in the development of safer muscarinic ligands with improved subtype selectivity for either M1 or M4. This Review will address xanomeline's overall importance in the field of neuroscience, with a specific focus on its chemical structure and synthesis, pharmacology, drug metabolism and pharmacokinetics (DMPK), and adverse effects.

  12. Applying the neuroscience of creativity to creativity training

    PubMed Central

    Onarheim, Balder; Friis-Olivarius, Morten

    2013-01-01

    This article investigates how neuroscience in general, and neuroscience of creativity in particular, can be used in teaching “applied creativity” and the usefulness of this approach to creativity training. The article is based on empirical data and our experiences from the Applied NeuroCreativity (ANC) program, taught at business schools in Denmark and Canada. In line with previous studies of successful creativity training programs the ANC participants are first introduced to cognitive concepts of creativity, before applying these concepts to a relevant real world creative problem. The novelty in the ANC program is that the conceptualization of creativity is built on neuroscience, and a crucial aspect of the course is giving the students a thorough understanding of the neuroscience of creativity. Previous studies have reported that the conceptualization of creativity used in such training is of major importance for the success of the training, and we believe that the neuroscience of creativity offers a novel conceptualization for creativity training. Here we present pre/post-training tests showing that ANC students gained more fluency in divergent thinking (a traditional measure of trait creativity) than those in highly similar courses without the neuroscience component, suggesting that principles from neuroscience can contribute effectively to creativity training and produce measurable results on creativity tests. The evidence presented indicates that the inclusion of neuroscience principles in a creativity course can in 8 weeks increase divergent thinking skills with an individual relative average of 28.5%. PMID:24137120

  13. Applying the neuroscience of creativity to creativity training.

    PubMed

    Onarheim, Balder; Friis-Olivarius, Morten

    2013-01-01

    This article investigates how neuroscience in general, and neuroscience of creativity in particular, can be used in teaching "applied creativity" and the usefulness of this approach to creativity training. The article is based on empirical data and our experiences from the Applied NeuroCreativity (ANC) program, taught at business schools in Denmark and Canada. In line with previous studies of successful creativity training programs the ANC participants are first introduced to cognitive concepts of creativity, before applying these concepts to a relevant real world creative problem. The novelty in the ANC program is that the conceptualization of creativity is built on neuroscience, and a crucial aspect of the course is giving the students a thorough understanding of the neuroscience of creativity. Previous studies have reported that the conceptualization of creativity used in such training is of major importance for the success of the training, and we believe that the neuroscience of creativity offers a novel conceptualization for creativity training. Here we present pre/post-training tests showing that ANC students gained more fluency in divergent thinking (a traditional measure of trait creativity) than those in highly similar courses without the neuroscience component, suggesting that principles from neuroscience can contribute effectively to creativity training and produce measurable results on creativity tests. The evidence presented indicates that the inclusion of neuroscience principles in a creativity course can in 8 weeks increase divergent thinking skills with an individual relative average of 28.5%.

  14. Metacognition, Theory of Mind, and Self-Control: The Relevance of High-Level Cognitive Processes in Development, Neuroscience, and Education

    ERIC Educational Resources Information Center

    Sodian, Beate; Frith, Uta

    2008-01-01

    The cognitive control of behavior is critical for success in school. The emergence of self-control in development has been linked to the ability to represent one's own and others' mental states (theory of mind and metacognition). Despite rapid progress in exploring the neural correlates of both mind reading and executive function in recent years,…

  15. Metacognition, Theory of Mind, and Self-Control: The Relevance of High-Level Cognitive Processes in Development, Neuroscience, and Education

    ERIC Educational Resources Information Center

    Sodian, Beate; Frith, Uta

    2008-01-01

    The cognitive control of behavior is critical for success in school. The emergence of self-control in development has been linked to the ability to represent one's own and others' mental states (theory of mind and metacognition). Despite rapid progress in exploring the neural correlates of both mind reading and executive function in recent years,…

  16. "Scientific roots" of dualism in neuroscience.

    PubMed

    Arshavsky, Yuri I

    2006-07-01

    Although the dualistic concept is unpopular among neuroscientists involved in experimental studies of the brain, neurophysiological literature is full of covert dualistic statements on the possibility of understanding neural mechanisms of human consciousness. Particularly, the covert dualistic attitude is exhibited in the unwillingness to discuss neural mechanisms of consciousness, leaving the problem of consciousness to psychologists and philosophers. This covert dualism seems to be rooted in the main paradigm of neuroscience that suggests that cognitive functions, such as language production and comprehension, face recognition, declarative memory, emotions, etc., are performed by neural networks consisting of simple elements. I argue that neural networks of any complexity consisting of neurons whose function is limited to the generation of electrical potentials and the transmission of signals to other neurons are hardly capable of producing human mental activity, including consciousness. Based on results obtained in physiological, morphological, clinical, and genetic studies of cognitive functions (mainly linguistic ones), I advocate the hypothesis that the performance of cognitive functions is based on complex cooperative activity of "complex" neurons that are carriers of "elementary cognition." The uniqueness of human cognitive functions, which has a genetic basis, is determined by the specificity of genes expressed by these "complex" neurons. The main goal of the review is to show that the identification of the genes implicated in cognitive functions and the understanding of a functional role of their products is a possible way to overcome covert dualism in neuroscience.

  17. Operational neuroscience: neurophysiological measures in applied environments.

    PubMed

    Kruse, Amy A

    2007-05-01

    There is, without question, an interest within the military services to understand, account for, and adapt to the cognitive state of the individual warfighter. As the field of neuroscience has matured through investments from numerous government agencies, we are on the cusp of being able to move confidently from the lab into the field--and deepen our understanding of the cognitive issues embedded in the warfighting environment. However, as we edge closer to this integration--it is critical for researchers in this arena to understand the landscape they are entering-reflected not only in the challenges of each task or operational environment but also in the individual differences intrinsic to each warfighter. The research papers in this section cover this spectrum, including individual differences and their prediction of adaptability to high-stress environments, the influence of sleep-deprivation on neurophysiological measures of stimulus categorization, neurophysiological measures of stress in the training environment and, finally, real-time neural measures of task engagement, mental workload and vigilance. It is clear from this research, and other work detailed in this supplement, that the judicious use of neuroscience, cognitive psychology, and physiology in the applied environment is desirable for both researchers and operators. In fact, we suggest that these investigations merit a field designation unto their own: Operational Neuroscience. It is our hope that the discussion of this new field of study will galvanize others to increase the confidence and utility of this research through their own investigations.

  18. Robotics and neuroscience.

    PubMed

    Floreano, Dario; Ijspeert, Auke Jan; Schaal, Stefan

    2014-09-22

    In the attempt to build adaptive and intelligent machines, roboticists have looked at neuroscience for more than half a century as a source of inspiration for perception and control. More recently, neuroscientists have resorted to robots for testing hypotheses and validating models of biological nervous systems. Here, we give an overview of the work at the intersection of robotics and neuroscience and highlight the most promising approaches and areas where interactions between the two fields have generated significant new insights. We articulate the work in three sections, invertebrate, vertebrate and primate neuroscience. We argue that robots generate valuable insight into the function of nervous systems, which is intimately linked to behaviour and embodiment, and that brain-inspired algorithms and devices give robots life-like capabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Neurosciences in Bordeaux].

    PubMed

    Le Moal, Michel; Battin, Jacques; Bioulac, Bernard; Bourgeois, Marc Louis; Henry, Patrick; Vital, Claude; Vincent, Jean-Didier

    2008-04-01

    The Bordeaux Neuroscience Institute brings together all the disciplines that constitute the clinical and experimental neurosciences. Outside of the Paris region, the Institute represents the largest community of researchers working on the nervous system. The aim of this brief historical piece is to describe how neuroscientists in Bordeaux are the heirs to a long neuropsychiatric tradition established by pioneers of national and international renown. This tradition has been maintained, without interruption, through many generations. The careers and scientific work of these great neurologists and psychiatrists are briefly evoked, and particularly those of A. Pitres, E. Régis and E. Azam in the 19th century; and, in the 20th century, J. Abadie, H. Verger and R. Cruchet. The determining influence of P Delmas-Marsalet (1898-1977), Professor of Neuropsychiatry, on the development of modern neurosciences in Bordeaux is recalled through his work, his teachings, and his numerous students.

  20. The practical and principled problems with educational neuroscience.

    PubMed

    Bowers, Jeffrey S

    2016-10-01

    The core claim of educational neuroscience is that neuroscience can improve teaching in the classroom. Many strong claims are made about the successes and the promise of this new discipline. By contrast, I show that there are no current examples of neuroscience motivating new and effective teaching methods, and argue that neuroscience is unlikely to improve teaching in the future. The reasons are twofold. First, in practice, it is easier to characterize the cognitive capacities of children on the basis of behavioral measures than on the basis of brain measures. As a consequence, neuroscience rarely offers insights into instruction above and beyond psychology. Second, in principle, the theoretical motivations underpinning educational neuroscience are misguided, and this makes it difficult to design or assess new teaching methods on the basis of neuroscience. Regarding the design of instruction, it is widely assumed that remedial instruction should target the underlying deficits associated with learning disorders, and neuroscience is used to characterize the deficit. However, the most effective forms of instruction may often rely on developing compensatory (nonimpaired) skills. Neuroscience cannot determine whether instruction should target impaired or nonimpaired skills. More importantly, regarding the assessment of instruction, the only relevant issue is whether the child learns, as reflected in behavior. Evidence that the brain changed in response to instruction is irrelevant. At the same time, an important goal for neuroscience is to characterize how the brain changes in response to learning, and this includes learning in the classroom. Neuroscientists cannot help educators, but educators can help neuroscientists. (PsycINFO Database Record (c) 2016 APA, all rights reserved).