Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing
Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis
2009-01-01
Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928
Ritz, Ludivine; Segobin, Shailendra; Le Berre, Anne Pascale; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Pitel, Anne Lise; Beaunieux, Hélène
2014-08-01
Procedural learning allows for the acquisition of new behavioral skills. Previous studies have shown that chronic alcoholism is characterized by impaired cognitive procedural learning and brain abnormalities affecting regions that are involved in the automation of new cognitive procedures in healthy individuals. The goal of the present study was to investigate the brain structural substrates of cognitive procedural learning in alcoholic patients (ALs) early in abstinence. Thirty-one ALs and 31 control participants (NCs) performed the Tower of Toronto task (4 daily learning sessions, each comprising 10 trials) to assess cognitive procedural learning. We also assessed episodic and working memory, executive functions, and visuospatial abilities. ALs underwent 1.5T structural magnetic resonance imaging. The initial cognitive phase was longer in the AL group than in the NC group, whereas the autonomous phase was shorter. In ALs, the longer cognitive phase was predicted by poorer planning and visuospatial working memory abilities, and by smaller gray matter (GM) volumes in the angular gyrus and caudate nucleus. ALs' planning abilities correlated with smaller GM volume in the angular gyrus. Cognitive procedural learning was impaired in ALs, with a delayed transition from the cognitive to the autonomous phase. This slowdown in the automation of the cognitive procedure was related to lower planning abilities, which may have hampered the initial generation of the procedure to be learned. In agreement with this neuropsychological finding, a persistent relationship was found between learning performance and the GM volumes of the angular gyrus and caudate nucleus, which are usually regarded as markers of planning and initial learning of the cognitive procedure. Copyright © 2014 by the Research Society on Alcoholism.
Ritz, Ludivine; Segobin, Shailendra; Le Berre, Anne Pascale; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Pitel, Anne Lise; Beaunieux, Hélène
2014-01-01
Background Procedural learning allows for the acquisition of new behavioral skills. Previous studies have shown that chronic alcoholism is characterized by impaired cognitive procedural learning and brain abnormalities affecting regions that are involved in the automation of new cognitive procedures in healthy individuals. The goal of the present study was to investigate the brain structural substrates of cognitive procedural learning in alcoholic patients (ALs) early in abstinence. Methods Thirty-one ALs and 31 control participants (NCs) performed the Tower of Toronto task (4 daily learning sessions, each comprising 10 trials) to assess cognitive procedural learning. We also assessed episodic and working memory, executive functions, and visuospatial abilities. ALs underwent 1.5T structural magnetic resonance imaging. Results The initial cognitive phase was longer in the AL group than in the NC group, whereas the autonomous phase was shorter. In ALs, the longer cognitive phase was predicted by poorer planning and visuospatial working memory abilities, and by smaller gray matter (GM) volumes in the angular gyrus and caudate nucleus. ALs’ planning abilities correlated with smaller GM volume in the angular gyrus. Conclusions Cognitive procedural learning was impaired in ALs, with a delayed transition from the cognitive to the autonomous phase. This slowdown in the automation of the cognitive procedure was related to lower planning abilities, which may have hampered the initial generation of the procedure to be learned. In agreement with this neuropsychological finding, a persistent relationship was found between learning performance and the GM volumes of the angular gyrus and caudate nucleus, which are usually regarded as markers of planning and initial learning of the cognitive procedure. PMID:25156613
Dynamics of the cognitive procedural learning in alcoholics with Korsakoff's syndrome.
Beaunieux, Hélène; Pitel, Anne L; Witkowski, Thomas; Vabret, François; Viader, Fausto; Eustache, Francis
2013-06-01
While procedures acquired before the development of amnesia are likely to be preserved in alcoholic patients with Korsakoff's syndrome, the ability of Korsakoff patients (KS) to learn new cognitive procedures is called in question. According to the Adaptive Control of Thoughts model, learning a new cognitive procedure requires highly controlled processes in the initial cognitive phase, which may be difficult for KS with episodic and working memory deficits. The goals of the present study were to examine the learning dynamics of KS compared with uncomplicated alcoholic patients (AL) and control subjects (CS) and to determine the contribution of episodic and working memory abilities in cognitive procedural learning performance. Fourteen KS, 15 AL, and 15 CS were submitted to 40 trials (4 daily learning sessions) of the Tower of Toronto task (disk-transfer task similar to the tower of Hanoi task) as well as episodic and working memory tasks. The 10 KS who were able to perform the cognitive procedural learning task obtained lower results than both CS and AL. The cognitive phase was longer in the Korsakoff's syndrome group than in the other 2 groups but did not differ between the 3 groups any more when episodic memory abilities were controlled. Our results indicate that KS have impaired cognitive procedural learning abilities compared with both AL and CS. Episodic memory deficits observed in KS result in a delayed transition from the cognitive learning phase to more advanced learning phases and, as a consequence, in an absence of automation of the procedure within 40 trials. Copyright © 2012 by the Research Society on Alcoholism.
Age-related changes in the cerebral substrates of cognitive procedural learning.
Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis
2009-04-01
Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. 2008 Wiley-Liss, Inc.
Pitel, Anne Lise; Witkowski, Thomas; Vabret, François; Guillery-Girard, Bérengère; Desgranges, Béatrice; Eustache, Francis; Beaunieux, Hélène
2007-02-01
Chronic alcoholism is known to impair the functioning of episodic and working memory, which may consequently reduce the ability to learn complex novel information. Nevertheless, semantic and cognitive procedural learning have not been properly explored at alcohol treatment entry, despite its potential clinical relevance. The goal of the present study was therefore to determine whether alcoholic patients, immediately after the weaning phase, are cognitively able to acquire complex new knowledge, given their episodic and working memory deficits. Twenty alcoholic inpatients with episodic memory and working memory deficits at alcohol treatment entry and a control group of 20 healthy subjects underwent a protocol of semantic acquisition and cognitive procedural learning. The semantic learning task consisted of the acquisition of 10 novel concepts, while subjects were administered the Tower of Toronto task to measure cognitive procedural learning. Analyses showed that although alcoholic subjects were able to acquire the category and features of the semantic concepts, albeit slowly, they presented impaired label learning. In the control group, executive functions and episodic memory predicted semantic learning in the first and second halves of the protocol, respectively. In addition to the cognitive processes involved in the learning strategies invoked by controls, alcoholic subjects seem to attempt to compensate for their impaired cognitive functions, invoking capacities of short-term passive storage. Regarding cognitive procedural learning, although the patients eventually achieved the same results as the controls, they failed to automate the procedure. Contrary to the control group, the alcoholic groups' learning performance was predicted by controlled cognitive functions throughout the protocol. At alcohol treatment entry, alcoholic patients with neuropsychological deficits have difficulty acquiring novel semantic and cognitive procedural knowledge. Compared with controls, they seem to use more costly learning strategies, which are nonetheless less efficient. These learning disabilities need to be considered when treatment requiring the acquisition of complex novel information is envisaged.
Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E
2014-01-01
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
Cognitive Fatigue Facilitates Procedural Sequence Learning.
Borragán, Guillermo; Slama, Hichem; Destrebecqz, Arnaud; Peigneux, Philippe
2016-01-01
Enhanced procedural learning has been evidenced in conditions where cognitive control is diminished, including hypnosis, disruption of prefrontal activity and non-optimal time of the day. Another condition depleting the availability of controlled resources is cognitive fatigue (CF). We tested the hypothesis that CF, eventually leading to diminished cognitive control, facilitates procedural sequence learning. In a two-day experiment, 23 young healthy adults were administered a serial reaction time task (SRTT) following the induction of high or low levels of CF, in a counterbalanced order. CF was induced using the Time load Dual-back (TloadDback) paradigm, a dual working memory task that allows tailoring cognitive load levels to the individual's optimal performance capacity. In line with our hypothesis, reaction times (RT) in the SRTT were faster in the high- than in the low-level fatigue condition, and performance improvement was higher for the sequential than the motor components. Altogether, our results suggest a paradoxical, facilitating impact of CF on procedural motor sequence learning. We propose that facilitated learning in the high-level fatigue condition stems from a reduction in the cognitive resources devoted to cognitive control processes that normally oppose automatic procedural acquisition mechanisms.
Gofer-Levi, M; Silberg, T; Brezner, A; Vakil, E
2014-09-01
Children learn to engage their surroundings skillfully, adopting implicit knowledge of complex regularities and associations. Probabilistic classification learning (PCL) is a type of cognitive procedural learning in which different cues are probabilistically associated with specific outcomes. Little is known about the effects of developmental disorders on cognitive skill acquisition. Twenty-four children and adolescents with cerebral palsy (CP) were compared to 24 typically developing (TD) youth in their ability to learn probabilistic associations. Performance was examined in relation to general cognitive abilities, level of motor impairment and age. Improvement in PCL was observed for all participants, with no relation to IQ. An age effect was found only among TD children. Learning curves of children with CP on a cognitive procedural learning task differ from those of TD peers and do not appear to be age sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visuo-motor and cognitive procedural learning in children with basal ganglia pathology.
Mayor-Dubois, C; Maeder, P; Zesiger, P; Roulet-Perez, E
2010-06-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage. Copyright 2010 Elsevier Ltd. All rights reserved.
Visuo-Motor and Cognitive Procedural Learning in Children with Basal Ganglia Pathology
ERIC Educational Resources Information Center
Mayor-Dubois, C.; Maeder, P.; Zesiger, P.; Roulet-Perez, E.
2010-01-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (less than 1 year old, n=9), later…
ERIC Educational Resources Information Center
Hong, Jianzhong; Pi, Zhongling; Yang, Jiumin
2018-01-01
Video lectures are being widely used in online and blended learning classes worldwide, and their learning effectiveness is becoming a focus of many educators and researchers. This study examined the cognitive load and learning effectiveness of video lectures in terms of the type of knowledge being taught (declarative or procedural) and instructor…
Using Classroom Assessment and Cognitive Scaffolding to Enhance the Power of Small-Group Learning
ERIC Educational Resources Information Center
Cooper, James L.; Robinson, Pamela
2014-01-01
The authors describe several types of classroom assessment techniques (CATs) and cognitive scaffolding procedures that they have developed over the years. They then bring the procedures together in a sample lecture/group learning class presentation.
[Proceeding memory in Alzheimer's disease].
Arroyo-Anlló, Eva Ma; Chamorro-Sánchez, Jorge; Díaz-Marta, Juan Poveda; Gil, Roger
2013-01-01
Procedural learning can acquire or develop skills through performance and repetition of a task unconsciously or unintentionally. Procedural skills are considered as the cornerstone in the neuropsychological rehabilitation to promote the autonomy of patients with brain damage, as those with Alzheimer's disease. This review presents data about procedural skills in Alzheimer's disease. Over the past three decades, we have found 40 articles studying various procedural skills in the Alzheimer's disease: motor, perceptual-motor, cognitive, perceptual-cognitive and those developed through serial reaction-time paradigm. We analyzed every study evaluating a procedural skill, indicating the used task and preservation or no preservation of procedural learning. Overall, most of the papers published describe conservation of learning procedures or relatively conserved in Alzheimer's disease, which could be used to promote patient autonomy.
Acquisition of Motor and Cognitive Skills through Repetition in Typically Developing Children
Magallón, Sara; Narbona, Juan; Crespo-Eguílaz, Nerea
2016-01-01
Background Procedural memory allows acquisition, consolidation and use of motor skills and cognitive routines. Automation of procedures is achieved through repeated practice. In children, improvement in procedural skills is a consequence of natural neurobiological development and experience. Methods The aim of the present research was to make a preliminary evaluation and description of repetition-based improvement of procedures in typically developing children (TDC). Ninety TDC children aged 6–12 years were asked to perform two procedural learning tasks. In an assembly learning task, which requires predominantly motor skills, we measured the number of assembled pieces in 60 seconds. In a mirror drawing learning task, which requires more cognitive functions, we measured time spent and efficiency. Participants were tested four times for each task: three trials were consecutive and the fourth trial was performed after a 10-minute nonverbal interference task. The influence of repeated practice on performance was evaluated by means of the analysis of variance with repeated measures and the paired-sample test. Correlation coefficients and simple linear regression test were used to examine the relationship between age and performance. Results TDC achieved higher scores in both tasks through repetition. Older children fitted more pieces than younger ones in assembling learning and they were faster and more efficient at the mirror drawing learning task. Conclusions These findings indicate that three consecutive trials at a procedural task increased speed and efficiency, and that age affected basal performance in motor-cognitive procedures. PMID:27384671
Acquisition of Motor and Cognitive Skills through Repetition in Typically Developing Children.
Magallón, Sara; Narbona, Juan; Crespo-Eguílaz, Nerea
2016-01-01
Procedural memory allows acquisition, consolidation and use of motor skills and cognitive routines. Automation of procedures is achieved through repeated practice. In children, improvement in procedural skills is a consequence of natural neurobiological development and experience. The aim of the present research was to make a preliminary evaluation and description of repetition-based improvement of procedures in typically developing children (TDC). Ninety TDC children aged 6-12 years were asked to perform two procedural learning tasks. In an assembly learning task, which requires predominantly motor skills, we measured the number of assembled pieces in 60 seconds. In a mirror drawing learning task, which requires more cognitive functions, we measured time spent and efficiency. Participants were tested four times for each task: three trials were consecutive and the fourth trial was performed after a 10-minute nonverbal interference task. The influence of repeated practice on performance was evaluated by means of the analysis of variance with repeated measures and the paired-sample test. Correlation coefficients and simple linear regression test were used to examine the relationship between age and performance. TDC achieved higher scores in both tasks through repetition. Older children fitted more pieces than younger ones in assembling learning and they were faster and more efficient at the mirror drawing learning task. These findings indicate that three consecutive trials at a procedural task increased speed and efficiency, and that age affected basal performance in motor-cognitive procedures.
A Schema Theory Account of Some Cognitive Processes in Complex Learning. Technical Report No. 81.
ERIC Educational Resources Information Center
Munro, Allen; Rigney, Joseph W.
Procedural semantics models have diminished the distinction between data structures and procedures in computer simulations of human intelligence. This development has theoretical consequences for models of cognition. One type of procedural semantics model, called schema theory, is presented, and a variety of cognitive processes are explained in…
Cognitive characteristics of learning Java, an object-oriented programming language
NASA Astrophysics Data System (ADS)
White, Garry Lynn
Industry and Academia are moving from procedural programming languages (e.g., COBOL) to object-oriented programming languages, such as Java for the Internet. Past studies in the cognitive aspects of programming have focused primarily on procedural programming languages. Some of the languages used have been Pascal, C, Basic, FORTAN, and COBOL. Object-oriented programming (OOP) represents a new paradigm for computing. Industry is finding that programmers are having difficulty shifting to this new programming paradigm. This instruction in OOP is currently starting in colleges and universities across the country. What are the cognitive aspects for this new OOP language Java? When is a student developmentally ready to handle the cognitive characteristics of the OOP language Java? Which cognitive teaching style is best for this OOP language Java? Questions such as the aforementioned are the focus of this research Such research is needed to improve understanding of the learning process and identify students' difficulties with OOP methods. This can enhance academic teaching and industry training (Scholtz, 1993; Sheetz, 1997; Rosson, 1990). Cognitive development as measured by the Propositional Logic Test, cognitive style as measured by the Hemispheric Mode Indicator, and physical hemispheric dominance as measured by a self-report survey were obtained from thirty-six university students studying Java programming. Findings reveal that physical hemispheric dominance is unrelated to cognitive and programming language variables. However, both procedural and object oriented programming require Piaget's formal operation cognitive level as indicated by the Propositional Logic Test. This is consistent with prior research A new finding is that object oriented programming also requires formal operation cognitive level. Another new finding is that object oriented programming appears to be unrelated to hemispheric cognitive style as indicated by the Hemispheric Mode Indicator (HMI). This research suggests that object oriented programming is hemispheric thinking style friendly, while procedural programming is left hemispheric cognitive style. The conclusion is that cognitive characteristics are not the cause for the difficulty in shifting from procedural to this new programming paradigm of object oriented programming. An alternative possibility to the difficulty is proactive interference. Prior learning of procedural programming makes it harder to learning object oriented programming. Further research is needed to determine if proactive interference is the cause for the difficulty in shifting from procedural programming to object oriented programming.
The dynamic network subserving the three phases of cognitive procedural learning.
Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Danion, Jean-Marie; Viader, Fausto; Desgranges, Béatrice
2007-12-01
Cognitive procedural learning is characterized by three phases (cognitive, associative, and autonomous), each involving distinct processes. We performed a behavioral study and a positron emission tomography (PET) activation study using the Tower of Toronto task. The aim of the behavioral study was to determine cognitive predictors for the length of each of the three learning phases, in order to preselect subjects for the PET study. The objective of the second study was to describe the cerebral substrates subtending these three phases. Contrasted with a reference (motor) task, the cognitive phase activated the prefrontal cortex, cerebellum, and parietal regions, all of which became less active as learning progressed. The associative phase was characterized by the activation of the occipital regions, right thalamus, and caudate nucleus. During the autonomous phase, new regions were involved, including the left thalamus and an anterior part of the cerebellum. These results, by employing a direct comparison between phases, provide the first evidence of the involvement and the time course of activation of different regions in each learning phase, in accordance with current models of cognitive procedural learning. The involvement of a frontoparietal network suggests the use of strategies in problem solving during the cognitive phase. The involvement of the occipital regions during the associative and autonomous phase suggests the intervention of mental imagery. Lastly, the activation of the cerebellum during the autonomous phase is consistent with the fact that performance in this phase is determined by psychomotor abilities. (copyright) 2007 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Ray, Arindam; Chakrabarti, Amlan
2016-01-01
Technology Enabled Learning is a cognitive, constructive, systematic, collaborative learning procedure, which transforms teaching-learning pedagogy where role of emotion is very often neglected. Emotion plays significant role in the cognitive process of human being, so the transformation is incomplete without capturing the learner's emotional…
Mayor-Dubois, Claire; Zesiger, Pascal; Van der Linden, Martial; Roulet-Perez, Eliane
2016-01-01
In this study, we investigated motor and cognitive procedural learning in typically developing children aged 8-12 years with a serial reaction time (SRT) task and a probabilistic classification learning (PCL) task. The aims were to replicate and extend the results of previous SRT studies, to investigate PCL in school-aged children, to explore the contribution of declarative knowledge to SRT and PCL performance, to explore the strategies used by children in the PCL task via a mathematical model, and to see whether performances obtained in motor and cognitive tasks correlated. The results showed similar learning effects in the three age groups in the SRT and in the first half of the PCL tasks. Participants did not develop explicit knowledge in the SRT task whereas declarative knowledge of the cue-outcome associations correlated with the performances in the second half of the PCL task, suggesting a participation of explicit knowledge after some time of exposure in PCL. An increasing proportion of the optimal strategy use with increasing age was observed in the PCL task. Finally, no correlation appeared between cognitive and motor performance. In conclusion, we extended the hypothesis of age invariance from motor to cognitive procedural learning, which had not been done previously. The ability to adopt more efficient learning strategies with age may rely on the maturation of the fronto-striatal loops. The lack of correlation between performance in the SRT task and the first part of the PCL task suggests dissociable developmental trajectories within the procedural memory system.
Locating Cognition in Second Language Interaction and Learning: Inside the Skull or in Public View?
ERIC Educational Resources Information Center
Kasper, Gabriele
2009-01-01
A key question in the debate on conversation analysis as an approach to SLA concerns the role of cognition in interaction and learning. Where is cognition located, and how is understanding in interaction achieved? For an empirically grounded answer, I will explore the procedural apparatus that sustains socially shared cognition. Following a brief…
Cognitive Learning Styles as Reflected in the Test Makeup of English Instructors
ERIC Educational Resources Information Center
Majid, Al-Quran
2007-01-01
The cognitive learning style is an indispensable variable in the composite of the teaching-learning process. Pedagogically, it can be useful if instructors explore what type of learners they are in addition to the mode of learning preference their students depict. This can bridge the gap between training and evaluating procedures. The study…
ERIC Educational Resources Information Center
Smith, Markley; Stowell, Mary Ellen
An experiment employed cognitive based teaching and learning procedures in an undergraduate educational psychology course. The procedures were strongly influenced by David Ausubel's theory on learning and related skills. Ausubel defines effective learning as a process by which humans understand the structure of knowledge and consciously make…
Task as a Heuristic for Understanding Student Learning and Motivation.
ERIC Educational Resources Information Center
Blumenfeld, Phyllis C.; And Others
1987-01-01
Describes the cognitive characteristics and procedural "forms" associated with common school learning tasks. Illustrates how variations in these can affect student motivation and learning. Concludes that simple task content and unvaried procedures tend to result in limited thinkers and alienated workers. (JDH)
ERIC Educational Resources Information Center
Karamaerouz, Mohamad Javad; Abdi, Ali; Laei, Soosan
2013-01-01
Cognitive learning styles are relatively fixed procedures using which individuals receive, process and organize information. This paper aims to examine academic achievement in English for both field dependence and field independence learning styles using educational multimedia. The sample of the study consisted of 40 second-grade female students…
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-01-01
Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.
ERIC Educational Resources Information Center
Hung, Wei-Chen; Smith, Thomas J.; Smith, M. Cecil
2015-01-01
Technology provides the means to create useful learning and practice environments for learners. Well-designed cognitive tutor systems, for example, can provide appropriate learning environments that feature cognitive supports (ie, scaffolding) for students to increase their procedural knowledge. The purpose of this study was to conduct a series of…
Evaluating the Stage Learning Hypothesis.
ERIC Educational Resources Information Center
Thomas, Hoben
1980-01-01
A procedure for evaluating the Genevan stage learning hypothesis is illustrated by analyzing Inhelder, Sinclair, and Bovet's guided learning experiments (in "Learning and the Development of Cognition." Cambridge: Harvard University Press, 1974). (Author/MP)
Clinical staff development: planning and teaching for desired outcomes.
Harton, Brenda B
2007-01-01
Nursing staff development educators facilitate learning activities to promote learner retention of knowledge: factual, conceptual, procedural, and meta-cognitive. The Revised Bloom's Taxonomy provides a modern framework for the cognitive process dimension of knowledge and guides the nursing educator in planning activities that will assure learner progress along the learning continuum.
Incidental learning of sound categories is impaired in developmental dyslexia.
Gabay, Yafit; Holt, Lori L
2015-12-01
Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Incidental Learning of Sound Categories is Impaired in Developmental Dyslexia
Gabay, Yafit; Holt, Lori L.
2015-01-01
Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. PMID:26409017
Cognitive Task Analysis of Experts in Designing Multimedia Learning Object Guideline (M-LOG)
ERIC Educational Resources Information Center
Razak, Rafiza Abdul; Palanisamy, Punithavathy
2013-01-01
The purpose of this study was to design and develop a set of guidelines for multimedia learning objects to inform instructional designers (IDs) about the procedures involved in the process of content analysis. This study was motivated by the absence of standardized procedures in the beginning phase of the multimedia learning object design which is…
Declarative and Procedural Memory as Individual Differences in Second Language Acquisition
ERIC Educational Resources Information Center
Morgan-Short, Kara; Faretta-Stutenberg, Mandy; Brill-Schuetz, Katherine A.; Carpenter, Helen; Wong, Patrick C. M.
2014-01-01
This study examined how individual differences in cognitive abilities account for variance in the attainment level of adult second language (L2) syntactic development. Participants completed assessments of declarative and procedural learning abilities. They subsequently learned an artificial L2 under implicit training conditions and received…
A Listening Laboratory Designed from Cognitive Learning Principles at Evergreen Valley College.
ERIC Educational Resources Information Center
Johnson, Tanya
A listening laboratory was developed at Evergreen Valley College (EVC) in accordance with procedures used at the college's individualized instruction laboratory. Steps taken in developing the laboratory included: (1) the director of the Learning Center Instructional Laboratory was interviewed to determine the procedure for establishing the…
Eiriksdottir, Elsa; Catrambone, Richard
2011-12-01
The goal of this article is to investigate how instructions can be constructed to enhance performance and learning of procedural tasks. Important determinants of the effectiveness of instructions are type of instructions (procedural information, principles, and examples) and pedagogical goal (initial performance, learning, and transfer). Procedural instructions describe how to complete tasks in a stepwise manner, principles describe rules governing the tasks, and examples demonstrate how instances of the task are carried out. The authors review the research literature associated with each type of instruction to identify factors determining effectiveness for different pedagogical goals. The results suggest a trade-off between usability and learnability. Specific instructions help initial performance, whereas more general instructions, requiring problem solving, help learning and transfer. Learning from instructions takes cognitive effort, and research suggests that learners typically opt for low effort. However, it is possible to meet both goals of good initial performance and learning with methods such as fading and by combining different types of instructions. How instructions are constructed influences their effectiveness for the goals of good initial performance, learning, and transfer, and it is therefore important for researchers and practitioners alike to define the pedagogical goal of instructions. If the goal is good initial performance, then instructions should highly resemble the task at hand (e.g., in the form of detailed procedural instructions and examples), but if the goal is good learning and transfer, then instructions should be more abstract, inducing learners to expend the necessary cognitive effort for learning.
ERIC Educational Resources Information Center
Myklebust, Helmer R.
1976-01-01
Minimal cerebral dysfunctions are noted as primary cause for learning disability in children. Although children have normal capacities for learning, it is stated that their cognitive processes have been altered and special instructional techniques and procedures are needed. The various types of learning disabilities are discussed. (EB)
Clinical case in digital technology for nursing students' learning: An integrative review.
Hara, Cristina Yuri Nakata; Aredes, Natália Del Angelo; Fonseca, Luciana Mara Monti; Silveira, Renata Cristina de Campos Pereira; Camargo, Rosangela Andrade Aukar; de Goes, Fernanda Santos Nogueira
2016-03-01
This review aimed to analyze the available evidences in literature about clinical case studies inserted in digital technologies for nursing education, characterizing the technology resources and cognitive, procedural and attitudinal learnings. Integrative review of literature with the following steps: development of the research problem, data collection, data extraction and critic evaluation, data analysis and interpretation and presentation of results. The research question was: how does the clinical case study inserted in educational digital technology collaborate for cognitive, attitudinal and procedural learning of nursing students? data bases LILACS, PUBMED, CINAHL and Scopus. the search resulted in 437 studies: 136 from LILACS, 122 from PUBMED, 104 from Scopus and 75 from CINAHL. Of these, 143 did not meet the including criteria, 93 were duplicated and four studies were unavailable. After analyzing all abstracts based on inclusion and exclusion criteria, there were selected 197 studies and after full text analysis the final sample resulted in 21 primary studies. Case study use in educational digital technologies allowed the students to build different types of learning: cognitive learning (n 16 studies), attitudinal learning (n=12 studies) and procedural learning (n=8 studies). It is possible to conclude that case studies can collaborate with the students to develop different learnings which can be built integrate, continuous, informative and formative, aiming integral formation and aligned to policies of formation in nursing, both national and international. Copyright © 2015 Elsevier Ltd. All rights reserved.
How to Optimize Learning from Animated Models: A Review of Guidelines Based on Cognitive Load
ERIC Educational Resources Information Center
Wouters, Pieter; Paas, Fred; van Merrienboer, Jeroen J. G.
2008-01-01
Animated models explicate the procedure to solve a problem, as well as the rationale behind this procedure. For abstract cognitive processes, animations might be beneficial, especially when a supportive pedagogical agent provides explanations. This article argues that animated models can be an effective instructional method, provided that they are…
Cognitive Activities in Solving Mathematical Tasks: The Role of a Cognitive Obstacle
ERIC Educational Resources Information Center
Antonijevic, Radovan
2016-01-01
In the process of learning mathematics, students practice various forms of thinking activities aimed to substantially contribute to the development of their different cognitive structures. In this paper, the subject matter is a "cognitive obstacle", a phenomenon that occurs in the procedures of solving mathematical tasks. Each task in…
Age-related differences in perceptuomotor procedural learning in children.
Lejeune, Caroline; Catale, Corinne; Schmitz, Xavier; Quertemont, Etienne; Meulemans, Thierry
2013-10-01
Procedural learning is generally considered to proceed in a series of phases, with cognitive resources playing an important role during the initial step. From a developmental perspective, little is known about the development of procedural learning or the role played by explicit cognitive processes during learning. The main objectives of this study were (a) to determine whether procedural learning performance improves with age by comparing groups of 7-year-old children, 10-year-old children, and adults and (b) to investigate the role played by executive functions during the acquisition in these three age groups. The 76 participants were assessed on a computerized adaptation of the mirror tracing paradigm. Results revealed that the youngest children had more difficulty in adapting to the task (they were slower and committed more errors at the beginning of the learning process) than 10-year-olds, but despite this age effect observed at the outset, all children improved performance across trials and transferred their skill to a different figure as well as adults. Correlational analyses showed that inhibition abilities play a key role in the performance of 10-year-olds and adults at the beginning of the learning but not in that of 7-year-olds. Overall, our results suggest that the age-related differences observed in our procedural learning task are at least partly due to the differential involvement of inhibition abilities, which may facilitate learning (so long as they are sufficiently developed) during the initial steps of the learning process; however, they would not be a necessary condition for skill learning to occur. Copyright © 2013 Elsevier Inc. All rights reserved.
Weber, H M; Rücker, S; Büttner, P; Petermann, F; Daseking, M
2015-10-01
General cognitive abilities are still considered as the most important predictor of school achievement and success. Whether the high correlation (r=0.50) can be explained by other variables has not yet been studied. Learning behavior can be discussed as one factor that influences the relationship between general cognitive abilities and school achievement. This study examined the relationship between intelligence, school achievement and learning behavior. Mediator analyses were conducted to check whether learning behavior would mediate the relationship between general cognitive abilities and school grades in mathematics and German. Statistical analyses confirmed that the relationship between general cognitive abilities and school achievement was fully mediated by learning behavior for German, whereas intelligence seemed to be the only predictor for achievement in mathematics. These results could be confirmed by non-parametric bootstrapping procedures. RESULTS indicate that special training of learning behavior may have a positive impact on school success, even for children and adolescents with low IQ. © Georg Thieme Verlag KG Stuttgart · New York.
Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-02-01
Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
The Effect of Procedural Guidance on Students' Skill Enhancement in a Virtual Chemistry Laboratory
ERIC Educational Resources Information Center
Ullah, Sehat; Ali, Numan; Rahman, Sami Ur
2016-01-01
Various cognitive aids (such as change of color, arrows, etc.) are provided in virtual environments to assist users in task realization. These aids increase users' performance but lead to reduced learning because there is less cognitive load on the users. In this paper we present a new concept of procedural guidance in which textual information…
Walker, Judith; von Bergmann, HsingChi
2015-03-01
The purpose of this study was to explore the use of cognitive task analysis to inform the teaching of psychomotor skills and cognitive strategies in clinical tasks in dental education. Methods used were observing and videotaping an expert at one dental school thinking aloud while performing a specific preclinical task (in a simulated environment), interviewing the expert to probe deeper into his thinking processes, and applying the same procedures to analyze the performance of three second-year dental students who had recently learned the analyzed task and who represented a spectrum of their cohort's ability to undertake the procedure. The investigators sought to understand how experts (clinical educators) and intermediates (trained students) overlapped and differed at points in the procedure that represented the highest cognitive load, known as "critical incidents." Findings from this study and previous research identified possible limitations of current clinical teaching as a result of expert blind spots. These findings coupled with the growing evidence of the effectiveness of peer teaching suggest the potential role of intermediates in helping novices learn preclinical dentistry tasks.
Learning Activities for the Young Handicapped Child.
ERIC Educational Resources Information Center
Bailey, Don; And Others
Presented is a collection of learning activities for the young handicapped child covering 295 individual learning objectives in six areas of development: gross motor skills, fine motor skills, social skills, self help skills, cognitive skills, and language skills. Provided for each learning activity are the teaching objective, teaching procedures,…
The transfer of category knowledge by macaques (Macaca mulatta) and humans (Homo sapiens).
Zakrzewski, Alexandria C; Church, Barbara A; Smith, J David
2018-02-01
Cognitive psychologists distinguish implicit, procedural category learning (stimulus-response associations learned outside declarative cognition) from explicit-declarative category learning (conscious category rules). These systems are dissociated by category learning tasks with either a multidimensional, information-integration (II) solution or a unidimensional, rule-based (RB) solution. In the present experiments, humans and two monkeys learned II and RB category tasks fostering implicit and explicit learning, respectively. Then they received occasional transfer trials-never directly reinforced-drawn from untrained regions of the stimulus space. We hypothesized that implicit-procedural category learning-allied to associative learning-would transfer weakly because it is yoked to the training stimuli. This result was confirmed for humans and monkeys. We hypothesized that explicit category learning-allied to abstract category rules-would transfer robustly. This result was confirmed only for humans. That is, humans displayed explicit category knowledge that transferred flawlessly. Monkeys did not. This result illuminates the distinctive abstractness, stimulus independence, and representational portability of humans' explicit category rules. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Ell, Shawn W; Cosley, Brandon; McCoy, Shannon K
2011-02-01
The way in which we respond to everyday stressors can have a profound impact on cognitive functioning. Maladaptive stress responses in particular are generally associated with impaired cognitive performance. We argue, however, that the cognitive system mediating task performance is also a critical determinant of the stress-cognition relationship. Consistent with this prediction, we observed that stress reactivity consistent with a maladaptive, threat response differentially predicted performance on two categorization tasks. Increased threat reactivity predicted enhanced performance on an information-integration task (i.e., learning is thought to depend upon a procedural-based memory system), and a (nonsignificant) trend for impaired performance on a rule-based task (i.e., learning is thought to depend upon a hypothesis-testing system). These data suggest that it is critical to consider both variability in the stress response and variability in the cognitive system mediating task performance in order to fully understand the stress-cognition relationship.
Adults' Perceptions of Concept Learning Outcomes: An Initial Study and Discussion.
ERIC Educational Resources Information Center
Wilson, Brent G.; Tessmer, Martin
This paper reports on an empirical study of educators' perceptions of learning concepts, reviews the cognitive learning literature, and argues for an expanded view of conceptual knowledge and its role in education and training. The report begins with discussions of changing views of concept learning and declarative and procedural components of…
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
ERIC Educational Resources Information Center
Leow, Ronald P.; Grey, Sarah; Marijuan, Silvia; Moorman, Colleen
2014-01-01
Given the current methodological interest in eliciting direct data on the cognitive processes L2 learners employ as they interact with L2 data during the early stages of the learning process, this article takes a critical and comparative look at three concurrent data elicitation procedures currently employed in the SLA literature: Think aloud (TA)…
Learning a Procedure from Multimedia Instructions: The Effects of Film and Practice.
1983-11-01
retaining information in the visuals and verbals of an educational movie. Educational Communication and Technology Journal, 31, 23-32, 1983. Baggett...ADA136 658 LEARNING 4 ROCEDUE FROM MULTMEDIA INSTRUCTIONS:R EFFE U F FIM AN U RD N A BUS E S U C AN , S ENE RA DO NUU8 CS R BOULD R OFCGIIVNCEC...INSTITUTE OF COGNITIVE S CIENCE Learning a Procedure from Multimedia Instructions: Iwo* The Effects of Film and Practice Deprtment of psyhology
Powell, Jane; Letson, Susan; Davidoff, Jules; Valentine, Tim; Greenwood, Richard
2008-04-01
Twenty patients with impairments of face recognition, in the context of a broader pattern of cognitive deficits, were administered three new training procedures derived from contemporary theories of face processing to enhance their learning of new faces: semantic association (being given additional verbal information about the to-be-learned faces); caricaturing (presentation of caricatured versions of the faces during training and veridical versions at recognition testing); and part recognition (focusing patients on distinctive features during the training phase). Using a within-subjects design, each training procedure was applied to a different set of 10 previously unfamiliar faces and entailed six presentations of each face. In a "simple exposure" control procedure (SE), participants were given six presentations of another set of faces using the same basic protocol but with no further elaboration. Order of the four procedures was counterbalanced, and each condition was administered on a different day. A control group of 12 patients with similar levels of face recognition impairment were trained on all four sets of faces under SE conditions. Compared to the SE condition, all three training procedures resulted in more accurate discrimination between the 10 studied faces and 10 distractor faces in a post-training recognition test. This did not reflect any intrinsic lesser memorability of the faces used in the SE condition, as evidenced by the comparable performance across face sets by the control group. At the group level, the three experimental procedures were of similar efficacy, and associated cognitive deficits did not predict which technique would be most beneficial to individual patients; however, there was limited power to detect such associations. Interestingly, a pure prosopagnosic patient who was tested separately showed benefit only from the part recognition technique. Possible mechanisms for the observed effects, and implications for rehabilitation, are discussed.
Cognitive rehabilitation in schizophrenia: a quantitative analysis of controlled studies.
Krabbendam, Lydia; Aleman, André
2003-09-01
Cognitive rehabilitation is now recognized as an important tool in the treatment of schizophrenia, and findings in this area are emerging rapidly. There is a need for a systematic review of the effects of the different training programs. To review quantitatively the controlled studies on cognitive rehabilitation in schizophrenia for the effect of training on performance on tasks other than those practiced in the training procedure. A meta-analysis was conducted on 12 controlled studies of cognitive rehabilitation in schizophrenia taking into account the effects of type of rehabilitation approach (rehearsal or strategy learning) and duration of training. The mean weighted effect size was 0.45, with a 95% confidence interval from 0.26 to 0.64. Effect sizes differed slightly, depending on rehabilitation approach, in favor of strategy learning, but this difference did not reach statistical significance. Duration of training did not influence effect size. Cognitive rehabilitation can improve task performance in patients with schizophrenia and this effect is apparent on tasks outside those practiced during the training procedure. Future studies should include more real-world outcomes and perform longitudinal evaluations.
Mnesic imbalance: a cognitive theory about autism spectrum disorders
Romero-Munguía, Miguel Ángel
2008-01-01
Autism is characterized by impairments in social interaction, communicative capacity and behavioral flexibility. Some cognitive theories can be useful for finding a relationship between these irregularities and the biological mechanisms that may give rise to this disorder. Among such theories are mentalizing deficit, weak central coherence and executive dysfunction, but none of them has been able to explain all three diagnostic symptoms of autism. These cognitive disorders may be related among themselves by faulty learning, since several research studies have shown that the brains of autistic individuals have abnormalities in the cerebellum, which plays a role in procedural learning. In keeping with this view, one may postulate the possibility that declarative memory replaces faulty procedural memory in some of its functions, which implies making conscious efforts in order to perform actions that are normally automatic. This may disturb cognitive development, resulting in autism symptoms. Furthermore, this mnesic imbalance is probably involved in all autism spectrum disorders. In the present work, this theory is expounded, including preliminary supporting evidence. PMID:18925971
Limitations of subjective cognitive load measures in simulation-based procedural training.
Naismith, Laura M; Cheung, Jeffrey J H; Ringsted, Charlotte; Cavalcanti, Rodrigo B
2015-08-01
The effective implementation of cognitive load theory (CLT) to optimise the instructional design of simulation-based training requires sensitive and reliable measures of cognitive load. This mixed-methods study assessed relationships between commonly used measures of total cognitive load and the extent to which these measures reflected participants' experiences of cognitive load in simulation-based procedural skills training. Two groups of medical residents (n = 38) completed three questionnaires after participating in simulation-based procedural skills training sessions: the Paas Cognitive Load Scale; the NASA Task Load Index (TLX), and a cognitive load component (CLC) questionnaire we developed to assess total cognitive load as the sum of intrinsic load (how complex the task is), extraneous load (how the task is presented) and germane load (how the learner processes the task for learning). We calculated Pearson's correlation coefficients to assess agreement among these instruments. Group interviews explored residents' perceptions about how the simulation sessions contributed to their total cognitive load. Interviews were audio-recorded, transcribed and subjected to qualitative content analysis. Total cognitive load scores differed significantly according to the instrument used to assess them. In particular, there was poor agreement between the Paas Scale and the TLX. Quantitative and qualitative findings supported intrinsic cognitive load as synonymous with mental effort (Paas Scale), mental demand (TLX) and task difficulty and complexity (CLC questionnaire). Additional qualitative themes relating to extraneous and germane cognitive loads were not reflected in any of the questionnaires. The Paas Scale, TLX and CLC questionnaire appear to be interchangeable as measures of intrinsic cognitive load, but not of total cognitive load. A more complete understanding of the sources of extraneous and germane cognitive loads in simulation-based training contexts is necessary to determine how best to measure and assess their effects on learning and performance outcomes. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hubacz, Frank, Jr.
The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was completed by comparing lab grade averages, final exam averages, and final course grade averages between the two groups. Participant mental effort survey results showed significant positive effects of technology in reducing cognitive load for two laboratory investigations. One investigation revealed a significant difference in achievement measured by lab grade average comparisons. Although results of this study are inconclusive as to the usefulness of technology-driven investigations to affect learning, recommendations for further study are discussed.
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher
2010-01-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word…
Montgomery, L D; Montgomery, R W; Guisado, R
1995-05-01
This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.
NASA Technical Reports Server (NTRS)
Montgomery, L. D.; Montgomery, R. W.; Guisado, R.
1995-01-01
This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.
Is Implicit Sequence Learning Impaired in Schizophrenia? A Meta-Analysis
ERIC Educational Resources Information Center
Siegert, Richard J.; Weatherall, Mark; Bell, Elliot M.
2008-01-01
Cognition in schizophrenia seems to be characterized by impaired performance on most tests of explicit or declarative learning contrasting with relatively intact performance on most tests of implicit or procedural learning. At the same time there have been conflicting results for studies that have used the Serial Reaction Time (SRT) task to…
Using a Knowledge Representations Approach to Cognitive Task Analysis.
ERIC Educational Resources Information Center
Black, John B.; And Others
Task analyses have traditionally been framed in terms of overt behaviors performed in accomplishing tasks and goals. Pioneering work at the Learning Research and Development Center looked at what contribution a cognitive analysis might make to current task analysis procedures, since traditional task analysis methods neither elicit nor capture…
ERIC Educational Resources Information Center
Beach, Pamela; Willows, Dale
2017-01-01
This study examined the effectiveness of three types of think aloud methods for understanding elementary teachers' cognitive processes as they used a professional development website. A methodology combining a retrospective think aloud procedure with screen capture technology (referred to as the virtual revisit) was compared with concurrent and…
Knol, Joep; Keller, Deborah S
2018-04-30
Surgical competence is a complex, multifactorial process, requiring ample time and training. Optimal training is based on acquiring knowledge and psychomotor and cognitive skills. Practicing surgical skills is one of the most crucial tasks for both the novice surgeon learning new procedures and surgeons already in practice learning new techniques. Focus is placed on teaching traditional technical skills, but the importance of cognitive skills cannot be underestimated. Cognitive skills allow recognizing environmental cues to improve technical performance including situational awareness, mental readiness, risk assessment, anticipating problems, decision-making, adaptation, and flexibility, and may also accelerate the trainee's understanding of a procedure, formalize the steps being practiced, and reduce the overall training time to become technically proficient. The introduction and implementation of the transanal total mesorectal excision (TaTME) into practice may be the best demonstration of this new model of teaching and training, including pre-training, course attendance, and post-course guidance on technical and cognitive skills. To date, the TaTME framework has been the ideal model for structured training to ensure safe implementation. Further development of metrics to grade successful learning and assessment of long term outcomes with the new pathway will confirm the success of this training model. Copyright © 2018 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. All rights reserved.
SimCenter Hawaii: Virtual Reality Applications for Health Care Education and Training
2008-12-01
systems can provide realistic, procedural skills training,(12) the scenarios developed for triage would primarily develop and assess cognitive skill...Education and Training Conclusions Simulator-based training has been shown to improve outcomes for both cognitive as well as motor-skills...training.(7) Cognitive modules can be distributed through advanced learning networks.(4) This has significant implications, because enterprise wide
Talboom, Joshua S; West, Stephen G; Engler-Chiurazzi, Elizabeth B; Enders, Craig K; Crain, Ian; Bimonte-Nelson, Heather A
2014-12-01
Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6 to 18 months old on the same T-maze; Group one received a version testing spatial reference memory, and Group two received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats, respectively. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. Group five of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects, since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which were related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. Published by Elsevier Inc.
Talboom, Joshua S.; West, Stephen G.; Engler-Chiurazzi, Elizabeth B.; Enders, Craig K.; Crain, Ian; Bimonte-Nelson, Heather A.
2014-01-01
Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6-18 months old on the same T-maze; one group received a version testing spatial reference memory, and the other group received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. The fifth group of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which was related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. PMID:25104561
Increased cognitive load enables unlearning in procedural category learning.
Crossley, Matthew J; Maddox, W Todd; Ashby, F Gregory
2018-04-19
Interventions for drug abuse and other maladaptive habitual behaviors may yield temporary success but are often fragile and relapse is common. This implies that current interventions do not erase or substantially modify the representations that support the underlying addictive behavior-that is, they do not cause true unlearning. One example of an intervention that fails to induce true unlearning comes from Crossley, Ashby, and Maddox (2013, Journal of Experimental Psychology: General), who reported that a sudden shift to random feedback did not cause unlearning of category knowledge obtained through procedural systems, and they also reported results suggesting that this failure is because random feedback is noncontingent on behavior. These results imply the existence of a mechanism that (a) estimates feedback contingency and (b) protects procedural learning from modification when feedback contingency is low (i.e., during random feedback). This article reports the results of an experiment in which increasing cognitive load via an explicit dual task during the random feedback period facilitated unlearning. This result is consistent with the hypothesis that the mechanism that protects procedural learning when feedback contingency is low depends on executive function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Implicit Memory in Korsakoff’s Syndrome: A Review of Procedural Learning and Priming Studies
Hayes, Scott M.; Fortier, Catherine B.; Levine, Andrea; Milberg, William P.; McGlinchey, Regina
2013-01-01
Korsakoff’s syndrome (KS) is characterized by dense anterograde amnesia resulting from damage to the diencephalon region, typically resulting from chronic alcohol abuse and thiamine deficiency. This review assesses the integrity of the implicit memory system in KS, focusing on studies of procedural learning and priming. KS patients are impaired on several measures of procedural memory, most likely due to impairment in cognitive functions associated with alcohol-related neural damage outside of the diencephalon. The pattern of performance on tasks of implicit priming suggests reliance on a residual, non-flexible memory operating more or less in an automatic fashion. Our review concludes that whether measures of implicit memory reveal intact or impaired performance in individuals with KS depends heavily on specific task parameters and demands, including timing between stimuli, the specific nature of the stimuli used in a task, and the integrity of supportive cognitive functions necessary for performance. PMID:22592661
Klooster, Nathaniel B.; Cook, Susan W.; Uc, Ergun Y.; Duff, Melissa C.
2015-01-01
Hand gesture, a ubiquitous feature of human interaction, facilitates communication. Gesture also facilitates new learning, benefiting speakers and listeners alike. Thus, gestures must impact cognition beyond simply supporting the expression of already-formed ideas. However, the cognitive and neural mechanisms supporting the effects of gesture on learning and memory are largely unknown. We hypothesized that gesture's ability to drive new learning is supported by procedural memory and that procedural memory deficits will disrupt gesture production and comprehension. We tested this proposal in patients with intact declarative memory, but impaired procedural memory as a consequence of Parkinson's disease (PD), and healthy comparison participants with intact declarative and procedural memory. In separate experiments, we manipulated the gestures participants saw and produced in a Tower of Hanoi (TOH) paradigm. In the first experiment, participants solved the task either on a physical board, requiring high arching movements to manipulate the discs from peg to peg, or on a computer, requiring only flat, sideways movements of the mouse. When explaining the task, healthy participants with intact procedural memory displayed evidence of their previous experience in their gestures, producing higher, more arching hand gestures after solving on a physical board, and smaller, flatter gestures after solving on a computer. In the second experiment, healthy participants who saw high arching hand gestures in an explanation prior to solving the task subsequently moved the mouse with significantly higher curvature than those who saw smaller, flatter gestures prior to solving the task. These patterns were absent in both gesture production and comprehension experiments in patients with procedural memory impairment. These findings suggest that the procedural memory system supports the ability of gesture to drive new learning. PMID:25628556
Macoir, Joël; Fossard, Marion; Nespoulous, Jean-Luc; Demonet, Jean-François; Bachoud-Lévi, Anne-Catherine
2010-08-01
Declarative memory is a long-term store for facts, concepts and words. Procedural memory subserves the learning and control of sensorimotor and cognitive skills, including the mental grammar. In this study, we report a single-case study of a mild aphasic patient who showed procedural deficits in the presence of preserved declarative memory abilities. We administered several experiments to explore rule application in morphology, syntax and number processing. Results partly support the differentiation between declarative and procedural memory. Moreover, the patient's performance varied according to the domain in which rules were to be applied, which underlines the need for more fine-grained distinctions in cognition between procedural rules.
Measuring cognitive load during procedural skills training with colonoscopy as an exemplar.
Sewell, Justin L; Boscardin, Christy K; Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S
2016-06-01
Few studies have investigated cognitive factors affecting learning of procedural skills in medical education. Cognitive load theory, which focuses on working memory, is highly relevant, but methods for measuring cognitive load during procedural training are not well understood. Using colonoscopy as an exemplar, we used cognitive load theory to develop a self-report instrument to measure three types of cognitive load (intrinsic, extraneous and germane load) and to provide evidence for instrument validity. We developed the instrument (the Cognitive Load Inventory for Colonoscopy [CLIC]) using a multi-step process. It included 19 items measuring three types of cognitive load, three global rating items and demographics. We then conducted a cross-sectional survey that was administered electronically to 1061 gastroenterology trainees in the USA. Participants completed the CLIC following a colonoscopy. The two study phases (exploratory and confirmatory) each lasted for 10 weeks during the 2014-2015 academic year. Exploratory factor analysis determined the most parsimonious factor structure; confirmatory factor analysis assessed model fit. Composite measures of intrinsic, extraneous and germane load were compared across years of training and with global rating items. A total of 477 (45.0%) invitees participated (116 in the exploratory study and 361 in the confirmatory study) in 154 (95.1%) training programmes. Demographics were similar to national data from the USA. The most parsimonious factor structure included three factors reflecting the three types of cognitive load. Confirmatory factor analysis verified that a three-factor model was the best fit. Intrinsic, extraneous and germane load items had high internal consistency (Cronbach's alpha 0.90, 0.87 and 0.96, respectively) and correlated as expected with year in training and global assessment of cognitive load. The CLIC measures three types of cognitive load during colonoscopy training. Evidence of validity is provided. Although CLIC items relate to colonoscopy, the development process we detail can be used to adapt the instrument for use in other learning settings in medical education. © 2016 John Wiley & Sons Ltd.
Dopamine Dependence in Aggregate Feedback Learning: A Computational Cognitive Neuroscience Approach
Valentin, Vivian V.; Maddox, W. Todd; Ashby, F. Gregory
2016-01-01
Procedural learning of skills depends on dopamine-mediated striatal plasticity. Most prior work investigated single stimulus-response procedural learning followed by feedback. However, many skills include several actions that must be performed before feedback is available. A new procedural-learning task is developed in which three independent and successive unsupervised categorization responses receive aggregate feedback indicating either that all three responses were correct, or at least one response was incorrect. Experiment 1 showed superior learning of stimuli in position 3, and that learning in the first two positions was initially compromised, and then recovered. An extensive theoretical analysis that used parameter space partitioning found that a large class of procedural-learning models, which predict propagation of dopamine release from feedback to stimuli, and/or an eligibility trace, fail to fully account for these data. The analysis also suggested that any dopamine released to the second or third stimulus impaired categorization learning in the first and second positions. A second experiment tested and confirmed a novel prediction of this large class of procedural-learning models that if the to-be-learned actions are introduced one-by-one in succession then learning is much better if training begins with the first action (and works forwards) than if it begins with the last action (and works backwards). PMID:27596541
The Role of Intuitive Heuristics in Students' Thinking: Ranking Chemical Substances
ERIC Educational Resources Information Center
Maeyer, Jenine; Talanquer, Vicente
2010-01-01
The characterization of students' cognitive biases is of central importance in the development of curriculum and teaching strategies that better support student learning in science. In particular, the identification of shortcut reasoning procedures (heuristics) used by students to reduce cognitive load can help us devise strategies to foster the…
A Cognitive Model for Exposition of Human Deception and Counterdeception
1987-10-01
for understanding deception and counterdeceptlon, for developing related tactics, and for stimulating research in cognitive processes. Further...Processing Resources; Attention) BUFFER MEMORY MANAGER (Local) (Problem Solving; Learning; Procedures) BUFFER MEMORY SENSORS Visual, Auditory ...Perception and Misperception in International Politics, Princeton University Press, Princeton, NJ, 1976. Key, W.B., Subliminal Seduction. New
Learning outdoors: male lizards show flexible spatial learning under semi-natural conditions
Noble, Daniel W. A.; Carazo, Pau; Whiting, Martin J.
2012-01-01
Spatial cognition is predicted to be a fundamental component of fitness in many lizard species, and yet some studies suggest that it is relatively slow and inflexible. However, such claims are based on work conducted using experimental designs or in artificial contexts that may underestimate their cognitive abilities. We used a biologically realistic experimental procedure (using simulated predatory attacks) to study spatial learning and its flexibility in the lizard Eulamprus quoyii in semi-natural outdoor enclosures under similar conditions to those experienced by lizards in the wild. To evaluate the flexibility of spatial learning, we conducted a reversal spatial-learning task in which positive and negative reinforcements of learnt spatial stimuli were switched. Nineteen (32%) male lizards learnt both tasks within 10 days (spatial task mean: 8.16 ± 0.69 (s.e.) and reversal spatial task mean: 10.74 ± 0.98 (s.e.) trials). We demonstrate that E. quoyii are capable of flexible spatial learning and suggest that future studies focus on a range of lizard species which differ in phylogeny and/or ecology, using biologically relevant cognitive tasks, in an effort to bridge the cognitive divide between ecto- and endotherms. PMID:23075525
Role of cognitive theory in the study of learning disability in mathematics.
Geary, David C
2005-01-01
Gersten, Jordan, and Flojo (in this issue) provide the beginnings of an essential bridge between basic research on mathematical disabilities (MD) in young children and the application of this research for the early identification and remediation of these forms of learning disability. As they acknowledge, the field of MD is in the early stages of development, and thus recommendations regarding identification measures and remedial techniques must be considered preliminary. I discuss the importance of maintaining a tight link between theoretical and empirical research on children's developing numerical, arithmetical, and mathematical competencies and future research on learning disabilities in mathematics. This link will provide the foundation for transforming experimental procedures into assessment measures, understanding the cognitive strengths and weaknesses of children with these forms of learning disability, and developing remedial approaches based on the pattern of cognitive strengths and weaknesses for individual children.
Mind racing: The influence of exercise on long-term memory consolidation.
McNerney, M Windy; Radvansky, Gabriel A
2015-01-01
Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.
ERIC Educational Resources Information Center
Peat, D.; And Others
1989-01-01
Describes an instructional model, Strategies Program for Effective Learning/Thinking (SPELT), that was developed to translate cognitive psychological theory and research into a practical instructional program. The extent to which SPELT conforms to current instructional design principles is examined, and macro versus micro instructional sequencing…
Procedural Learning in Children With Developmental Coordination, Reading, and Attention Disorders.
Magallón, Sara; Crespo-Eguílaz, Nerea; Narbona, Juan
2015-10-01
The aim is to assess repetition-based learning of procedures in children with developmental coordination disorder (DCD), reading disorder (RD) and attention-deficit hyperactivity disorder (ADHD). Participants included 187 children, studied in 4 groups: (a) DCD comorbid with RD and ADHD (DCD+RD+ADHD) (n = 30); (b) RD comorbid with ADHD (RD+ADHD) (n = 48); (c) ADHD (n = 19); and typically developing children (control group) (n = 90). Two procedural learning tasks were used: Assembly learning and Mirror drawing. Children were tested on 4 occasions for each task: 3 trials were consecutive and the fourth trial was performed after an interference task. Task performance by DCD+RD+ADHD children improved with training (P < .05); however, the improvement was significantly lower than that achieved by the other groups (RD+ADHD, ADHD and controls) (P < .05). In conclusion, children with DCD+RD+ADHD improve in their use of cognitive-motor procedures over a short training period. Aims of intervention in DCD+RD+ADHD should be based on individual learning abilities. © The Author(s) 2015.
Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher
2010-11-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.
[Detection and specific studies in procedural learning difficulties].
Magallón, S; Narbona, J
2009-02-27
The main disabilities in non-verbal learning disorder (NLD) are: the acquisition and automating of motor and cognitive processes, visual spatial integration, motor coordination, executive functions, difficulty in comprehension of the context, and social skills. AIMS. To review the research to date on NLD, and to discuss whether the term 'procedural learning disorder' (PLD) would be more suitable to refer to NLD. A considerable amount of research suggests a neurological correlate of PLD with dysfunctions in the 'posterior' attention system, or the right hemisphere, or the cerebellum. Even if it is said to be difficult the delimitation between NLD and other disorders or syndromes like Asperger syndrome, certain characteristics contribute to differential diagnosis. Intervention strategies for the PLD must lead to the development of motor automatisms and problem solving strategies, including social skills. The basic dysfunction in NLD affects to implicit learning of routines, automating of motor skills and cognitive strategies that spare conscious resources in daily behaviours. These limitations are partly due to a dysfunction in non-declarative procedural memory. Various dimensions of language are also involved: context comprehension, processing of the spatial and emotional indicators of verbal language, language inferences, prosody, organization of the inner speech, use of language and non-verbal communication; this is why the diagnostic label 'PLD' would be more appropriate, avoiding the euphemistic adjective 'non-verbal'.
Dopamine dependence in aggregate feedback learning: A computational cognitive neuroscience approach.
Valentin, Vivian V; Maddox, W Todd; Ashby, F Gregory
2016-11-01
Procedural learning of skills depends on dopamine-mediated striatal plasticity. Most prior work investigated single stimulus-response procedural learning followed by feedback. However, many skills include several actions that must be performed before feedback is available. A new procedural-learning task is developed in which three independent and successive unsupervised categorization responses receive aggregate feedback indicating either that all three responses were correct, or at least one response was incorrect. Experiment 1 showed superior learning of stimuli in position 3, and that learning in the first two positions was initially compromised, and then recovered. An extensive theoretical analysis that used parameter space partitioning found that a large class of procedural-learning models, which predict propagation of dopamine release from feedback to stimuli, and/or an eligibility trace, fail to fully account for these data. The analysis also suggested that any dopamine released to the second or third stimulus impaired categorization learning in the first and second positions. A second experiment tested and confirmed a novel prediction of this large class of procedural-learning models that if the to-be-learned actions are introduced one-by-one in succession then learning is much better if training begins with the first action (and works forwards) than if it begins with the last action (and works backwards). Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Eid, Chaker; Millham, Richard
2012-01-01
In this paper, we discuss the visual programming approach to teaching introductory programming courses and then compare this approach with that of procedural programming. The involved cognitive levels of students, as beginning students are introduced to different types of programming concepts, are correlated to the learning processes of…
The Effect of Context on Training: Is Learning Situated?
1994-09-13
not underlie the central processes of ordinary everyday cognition ? We think not." There are numerous examples where abstract instruction has been shown... instruction , concrete examples, and abstract rules and procedures. Claims made by proponents of Situated Learning Theory suggest that training must be... instruction . This argues against apprenticeship learning during early stages of acquisition for many skills. Further, too much fidelity in simulation may
Procedural Learning and Individual Differences in Language
Lee, Joanna C.; Tomblin, J. Bruce
2014-01-01
The aim of the current study was to examine different aspects of procedural memory in young adults who varied with regard to their language abilities. We selected a sample of procedural memory tasks, each of which represented a unique type of procedural learning, and has been linked, at least partially, to the functionality of the corticostriatal system. The findings showed that variance in language abilities is associated with performance on different domains of procedural memory, including the motor domain (as shown in the pursuit rotor task), the cognitive domain (as shown in the weather prediction task), and the linguistic domain (as shown in the nonword repetition priming task). These results implicate the corticostriatal system in individual differences in language. PMID:26190949
Striatal volume predicts level of video game skill acquisition.
Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F
2010-11-01
Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.
Defence of Foreign Language Teaching in Secondary Schools
ERIC Educational Resources Information Center
Van Passel, F. J. A.
1974-01-01
Shows the necessity of foreign language education for cognitive and attitudinal purposes as well as for utilitarian reasons. Foreign language learning/teaching can be of great educational value when it follows the thread of the logical and psychological steps in the creative/discovery procedure. A learning algorithm is mapped on page 61. See FL…
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Procedural learning and dyslexia.
Nicolson, R I; Fawcett, A J; Brookes, R L; Needle, J
2010-08-01
Three major 'neural systems', specialized for different types of information processing, are the sensory, declarative, and procedural systems. It has been proposed (Trends Neurosci., 30(4), 135-141) that dyslexia may be attributable to impaired function in the procedural system together with intact declarative function. We provide a brief overview of the increasing evidence relating to the hypothesis, noting that the framework involves two main claims: first that 'neural systems' provides a productive level of description avoiding the underspecificity of cognitive descriptions and the overspecificity of brain structural accounts; and second that a distinctive feature of procedural learning is its extended time course, covering from minutes to months. In this article, we focus on the second claim. Three studies-speeded single word reading, long-term response learning, and overnight skill consolidation-are reviewed which together provide clear evidence of difficulties in procedural learning for individuals with dyslexia, even when the tasks are outside the literacy domain. The educational implications of the results are then discussed, and in particular the potential difficulties that impaired overnight procedural consolidation would entail. It is proposed that response to intervention could be better predicted if diagnostic tests on the different forms of learning were first undertaken. 2010 John Wiley & Sons, Ltd.
Ye, Ai; Resnick, Ilyse; Hansen, Nicole; Rodrigues, Jessica; Rinne, Luke; Jordan, Nancy C
2016-12-01
The current study investigated the mediating role of number-related skills in the developmental relationship between early cognitive competencies and later fraction knowledge using structural equation modeling. Fifth-grade numerical skills (i.e., whole number line estimation, non-symbolic proportional reasoning, multiplication, and long division skills) mapped onto two distinct factors: magnitude reasoning and calculation. Controlling for participants' (N=536) demographic characteristics, these two factors fully mediated relationships between third-grade general cognitive competencies (attentive behavior, verbal and nonverbal intellectual abilities, and working memory) and sixth-grade fraction knowledge (concepts and procedures combined). However, specific developmental pathways differed by type of fraction knowledge. Magnitude reasoning ability fully mediated paths from all four cognitive competencies to knowledge of fraction concepts, whereas calculation ability fully mediated paths from attentive behavior and verbal ability to knowledge of fraction procedures (all with medium to large effect sizes). These findings suggest that there are partly overlapping, yet distinct, developmental pathways from cognitive competencies to general fraction knowledge, fraction concepts, and fraction procedures. Copyright © 2016 Elsevier Inc. All rights reserved.
Sewell, Justin L; Boscardin, Christy K; Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S
2017-11-01
Cognitive load theory, focusing on limits of the working memory, is relevant to medical education; however, factors associated with cognitive load during procedural skills training are not well characterized. The authors sought to determine how features of learners, patients/tasks, settings, and supervisors were associated with three types of cognitive load among learners performing a specific procedure, colonoscopy, to identify implications for procedural teaching. Data were collected through an electronically administered survey sent to 1,061 U.S. gastroenterology fellows during the 2014-2015 academic year; 477 (45.0%) participated. Participants completed the survey immediately following a colonoscopy. Using multivariable linear regression analyses, the authors identified sets of features associated with intrinsic, extraneous, and germane loads. Features associated with intrinsic load included learners (prior experience and year in training negatively associated, fatigue positively associated) and patient/tasks (procedural complexity positively associated, better patient tolerance negatively associated). Features associated with extraneous load included learners (fatigue positively associated), setting (queue order positively associated), and supervisors (supervisor engagement and confidence negatively associated). Only one feature, supervisor engagement, was (positively) associated with germane load. These data support practical recommendations for teaching procedural skills through the lens of cognitive load theory. To optimize intrinsic load, level of experience and competence of learners should be balanced with procedural complexity; part-task approaches and scaffolding may be beneficial. To reduce extraneous load, teachers should remain engaged, and factors within the procedural setting that may interfere with learning should be minimized. To optimize germane load, teachers should remain engaged.
Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P
2008-01-01
Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).
ERIC Educational Resources Information Center
Kester, Liesbeth; Kirschner, Paul A.; van Merrienboer, Jeroen J.G.
2005-01-01
This study compared the effects of two information presentation formats on learning to solve problems in electrical circuits. In one condition, the split-source format, information relating to procedural aspects of the functioning of an electrical circuit was not integrated in a circuit diagram, while information in the integrated format condition…
A Computer Based Cognitive Simulation of Cataract Surgery
2011-12-01
for zonular absence, assess for notable lenticular astigmatism ** How and when do you decide to use a capsular tension ring? (Expert) Zonular...INTRODUCTION The Virtual Mentor Cataract Surgery Trainer is a computer based, cognitive simulation of phacoemulsification cataract surgery. It is...the Cataract Trainer. BODY Phacoemulsification cataract surgery (phaco) is a difficult procedure to learn, with little margin for error. As in other
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-01-01
The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy. A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities. The national Danish temporal bone course. A total of 40 novice otorhinolaryngology residents. Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001). VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Cognitive learning and its future in urology: surgical skills teaching and assessment.
Shafiei, Somayeh B; Hussein, Ahmed A; Guru, Khurshid A
2017-07-01
The aim of this study is to provide an overview of the current status of novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education. Kinematics of end-effector trajectories, as well as cognitive state features of surgeon trainees and mentors have recently been studied as modalities to objectively evaluate the expertise level of trainees and to shorten the learning process. Virtual reality and haptics also have shown promising in research results in improving the surgical learning process by providing feedback to the trainee. 'Cognitive training' is a novel approach to enhance training and surgical performance. The utility of cognitive training in improving motor skills in other fields, including sports and rehabilitation, is promising enough to justify its utilization to improve surgical performance. However, some surgical procedures, especially ones performed during human-robot interaction in robot-assisted surgery, are much more complicated than sport and rehabilitation. Cognitive training has shown promising results in surgical skills-acquisition in complicated environments such as surgery. However, these methods are mostly developed in research groups using limited individuals. Transferring this research into the clinical applications is a demanding challenge. The aim of this review is to provide an overview of the current status of these novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education.
ERIC Educational Resources Information Center
Sideris, Georgios D.; Tsorbatzoudis, Charalambos
2003-01-01
The purpose of the present study was to profile, using a K-means cluster analysis, the cognitive, motivational, affective, and goal orientation characteristics of elementary school students with and without learning disabilities (LD). Participants were 58 fifth and 6 sixth graders (29 typical and 29 LD) selected using stratified random procedures.…
Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability.
Morè, Lorenzo; Künnecke, Basil; Yekhlef, Latefa; Bruns, Andreas; Marte, Antonella; Fedele, Ernesto; Bianchi, Veronica; Taverna, Stefano; Gatti, Silvia; D'Adamo, Patrizia
2017-03-06
RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Duchesne, C; Lungu, O; Nadeau, A; Robillard, M E; Boré, A; Bobeuf, F; Lafontaine, A L; Gheysen, F; Bherer, L; Doyon, J
2015-10-01
Aerobic exercise training (AET) has been shown to provide health benefits in individuals with Parkinson's disease (PD). However, it is yet unknown to what extent AET also improves cognitive and procedural learning capacities, which ensure an optimal daily functioning. In the current study, we assessed the effects of a 3-month AET program on executive functions (EF), implicit motor sequence learning (MSL) capacity, as well as on different health-related outcome indicators. Twenty healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike-training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after AET, EF tests assessed participants' inhibition and flexibility functions, whereas implicit MSL capacity was evaluated using a version of the Serial Reaction Time Task. The AET program was effective as indicated by significant improvement in aerobic capacity in all participants. Most importantly, AET improved inhibition but not flexibility, and motor learning skill, in both groups. Our results suggest that AET can be a valuable non-pharmacological intervention to promote physical fitness in early PD, but also better cognitive and procedural functioning. Copyright © 2015 Elsevier Inc. All rights reserved.
Automatic Multimodal Cognitive Load Measurement (AMCLM)
2011-06-01
Design and procedure A computer-based training application, running on a tablet monitor, was designed for basketball players to learn playing strategies... MRI ) and near-infrared (NIR) neuroimaging, have also been employed to detect changes in cognitive workload (Callicott et al., 1999; He et al., 2007...Physiological characteristics of capacity constraints in working memory as revealed by functional MRI , Cerebral Cortex, vol. 9, pp. 20-26, 1999
Klahr, David; Nigam, Milena
2004-10-01
In a study with 112 third- and fourth-grade children, we measured the relative effectiveness of discovery learning and direct instruction at two points in the learning process: (a) during the initial acquisition of the basic cognitive objective (a procedure for designing and interpreting simple, unconfounded experiments) and (b) during the subsequent transfer and application of this basic skill to more diffuse and authentic reasoning associated with the evaluation of science-fair posters. We found not only that many more children learned from direct instruction than from discovery learning, but also that when asked to make broader, richer scientific judgments, the many children who learned about experimental design from direct instruction performed as well as those few children who discovered the method on their own. These results challenge predictions derived from the presumed superiority of discovery approaches in teaching young children basic procedures for early scientific investigations.
Hand gestures support word learning in patients with hippocampal amnesia.
Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C
2018-06-01
Co-speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain-damaged comparison groups. Participants learned novel label-object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory. © 2018 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Rittle-Johnson, Bethany; Star, Jon R.
2009-01-01
Researchers in both cognitive science and mathematics education emphasize the importance of comparison for learning and transfer. However, surprisingly little is known about the advantages and disadvantages of what types of things are being compared. In this experimental study, 162 seventh- and eighth-grade students learned to solve equations (a)…
Cognitive and Neural Determinants of Response Strategy in the Dual-Solution Plus-Maze Task
ERIC Educational Resources Information Center
De Leonibus, Elvira; Costantini, Vivian J. A.; Massaro, Antonio; Mandolesi, Georgia; Vanni, Valentina; Luvisetto, Siro; Pavone, Flaminia; Oliverio, Alberto; Mele, Andrea
2011-01-01
Response strategy in the dual-solution plus maze is regarded as a form of stimulus-response learning. In this study, by using an outcome devaluation procedure, we show that it can be based on both action-outcome and stimulus-response habit learning, depending on the amount of training that the animals receive. Furthermore, we show that…
2014-01-01
Research with children has shown that vicarious learning can result in changes to 2 of Lang’s (1968) 3 anxiety response systems: subjective report and behavioral avoidance. The current study extended this research by exploring the effect of vicarious learning on physiological responses (Lang’s final response system) and attentional bias. The study used Askew and Field’s (2007) vicarious learning procedure and demonstrated fear-related increases in children’s cognitive, behavioral, and physiological responses. Cognitive and behavioral changes were retested 1 week and 1 month later, and remained elevated. In addition, a visual search task demonstrated that fear-related vicarious learning creates an attentional bias for novel animals, which is moderated by increases in fear beliefs during learning. The findings demonstrate that vicarious learning leads to lasting changes in all 3 of Lang’s anxiety response systems and is sufficient to create attentional bias to threat in children. PMID:25151521
Sawyer, Taylor; White, Marjorie; Zaveri, Pavan; Chang, Todd; Ades, Anne; French, Heather; Anderson, JoDee; Auerbach, Marc; Johnston, Lindsay; Kessler, David
2015-08-01
Acquisition of competency in procedural skills is a fundamental goal of medical training. In this Perspective, the authors propose an evidence-based pedagogical framework for procedural skill training. The framework was developed based on a review of the literature using a critical synthesis approach and builds on earlier models of procedural skill training in medicine. The authors begin by describing the fundamentals of procedural skill development. Then, a six-step pedagogical framework for procedural skills training is presented: Learn, See, Practice, Prove, Do, and Maintain. In this framework, procedural skill training begins with the learner acquiring requisite cognitive knowledge through didactic education (Learn) and observation of the procedure (See). The learner then progresses to the stage of psychomotor skill acquisition and is allowed to deliberately practice the procedure on a simulator (Practice). Simulation-based mastery learning is employed to allow the trainee to prove competency prior to performing the procedure on a patient (Prove). Once competency is demonstrated on a simulator, the trainee is allowed to perform the procedure on patients with direct supervision, until he or she can be entrusted to perform the procedure independently (Do). Maintenance of the skill is ensured through continued clinical practice, supplemented by simulation-based training as needed (Maintain). Evidence in support of each component of the framework is presented. Implementation of the proposed framework presents a paradigm shift in procedural skill training. However, the authors believe that adoption of the framework will improve procedural skill training and patient safety.
Hand rearing affects emotional responses but not basic cognitive performance in European starlings☆
Feenders, Gesa; Bateson, Melissa
2013-01-01
Hand rearing is a common procedure in behavioural research on birds. While likely to produce tamer experimental animals, there is a risk that it could induce pathological changes in brain and behaviour similar to those seen in mammals that have experienced maternal separation. We explored the effects of hand rearing on the cognitive and behavioural development of European starlings, Sturnus vulgaris, to assess the generality of results obtained from hand-reared animals. Two groups of age-matched birds were created from the same wild population: one hand-reared from 10 days posthatch and one brought into the laboratory as independent juveniles. These groups were compared on a battery of neuropsychological tasks designed to probe different aspects of cognitive function including learning, perseverative cognition, interval timing, neophobia and impulsivity. There was no evidence for cognitive impairment in the hand-reared birds. They did not have reduced learning speed, impairments in accuracy or precision of interval timing or pathological perseverative cognition compared to the wild-caught birds. Additionally, there was no evidence that birds that developed stereotypies in laboratory cages (predominantly the wild-caught birds) had any cognitive impairments, although this may be because no birds had severe, crystallized stereotypies. There was some evidence that hand-reared birds were less neophobic and less impulsive than wild-caught birds, suggesting that hand rearing might alter emotionally mediated decision making in a direction usually associated with reduced developmental stress in mammals. This study therefore supports the use of hand rearing as an experimental procedure in behavioural research on passerine birds. PMID:23888084
Gingins, Simon; Marcadier, Fanny; Wismer, Sharon; Krattinger, Océane; Quattrini, Fausto; Bshary, Redouan; Binning, Sandra A
2018-01-01
Testing performance in controlled laboratory experiments is a powerful tool for understanding the extent and evolution of cognitive abilities in non-human animals. However, cognitive testing is prone to a number of potential biases, which, if unnoticed or unaccounted for, may affect the conclusions drawn. We examined whether slight modifications to the experimental procedure and apparatus used in a spatial task and reversal learning task affected performance outcomes in the bluestreak cleaner wrasse, Labroides dimidiatus (hereafter "cleaners"). Using two-alternative forced-choice tests, fish had to learn to associate a food reward with a side (left or right) in their holding aquarium. Individuals were tested in one of four experimental treatments that differed slightly in procedure and/or physical set-up. Cleaners from all four treatment groups were equally able to solve the initial spatial task. However, groups differed in their ability to solve the reversal learning task: no individuals solved the reversal task when tested in small tanks with a transparent partition separating the two options, whereas over 50% of individuals solved the task when performed in a larger tank, or with an opaque partition. These results clearly show that seemingly insignificant details to the experimental set-up matter when testing performance in a spatial task and might significantly influence the outcome of experiments. These results echo previous calls for researchers to exercise caution when designing methodologies for cognition tasks to avoid misinterpretations.
NASA Astrophysics Data System (ADS)
Prismana, R. D. E.; Kusmayadi, T. A.; Pramudya, I.
2018-04-01
The ability of solving problem is a part of the mathematic curriculum that is very important. Problem solving prefers the process and strategy that is done by students in solving a problem rather than the result. This learning concept in accordance with the stages on the revised bloom’s taxonomy. The revised Bloom’s Taxonomy has two dimensions, namely the dimension of cognitive process and the dimension of knowledge. Dimension of knowledge has four categories, but this study only restricted on two knowledge, conceptual knowledge and procedural knowledge. Dimensions of cognitive processes are categorized into six kinds, namely remembering, understanding, applying, analyzing, evaluating, and creating. Implementation of learning more emphasis on the role of students. Students must have their own belief in completing tasks called self-efficacy. This research is a qualitative research. This research aims to know the site of the students’ difficulty based on revised Bloom’s Taxonomy viewed from high self-efficacy. The results of the study stated the students with high self efficacy have difficulties site. They are evaluating conceptual knowledge, evaluating procedural knowledge, creating conceptual knowledge, and creating procedural knowledge. It could be the consideration of teachers in the teaching, so as to reduce the difficulties of learning in students.
A Long-Term Retention Advantage for Spatial Information Learned Naturally and in the Laboratory
1989-06-09
study. Memory & Cognition, 10, 324-332. Tulving, E. (1972). Episodic and semantic memory . In E. Tulving & W. Donaldson (Eds.), Organization of memory ...the cognitive research literature. Some of the better known divisions include the distinction between semantic , episodic and procedural knowledge...the probe method by being more structured and more focused on specific memory episodes . In general, questionnaire studies simply involve formulating
Easy Words: Reference Resolution in a Malevolent Referent World.
Gleitman, Lila R; Trueswell, John C
2018-06-15
This article describes early stages in the acquisition of a first vocabulary by infants and young children. It distinguishes two major stages, the first of which operates by a stand-alone word-to-world pairing procedure and the second of which, using the evidence so acquired, builds a domain-specific syntax-sensitive structure-to-world pairing procedure. As we show, the first stage of learning is slow, restricted in character, and to some extent errorful, whereas the second procedure is determinative, rapid, and essentially errorless. Our central claim here is that the early, referentially based learning procedure succeeds at all because it is reined in by attention-focusing properties of word-to-world timing and related indicants of referential intent. Copyright © 2018 Cognitive Science Society, Inc.
[Functional neuroanatomy of implicit learning: associative, motor and habit].
Correa, M
The present review focuses on the neuroanatomy of aspects of implicit learning that involve stimulus-response associations, such as classical and instrumental conditioning, motor learning and habit formation. These types of learning all require a progression in the acquisition of procedural information about 'how to do things' instead of 'what things are'. These forms of implicit learning share the neural substrate formed mainly by brain circuits involving basal ganglia, prefrontal cortex and amygdala. The relationship between pavlovian and instrumental learning is shown in the transference and autoshaping studies. There has been a resurgence of interest in habit learning because of the suggestion that addiction is a process that progresses from a reinforced response to a habit in which the stimulus-response association is supraselected and becomes independent of voluntary cognitive control. Dopamine has demonstrated to be involved in the acquisition of these procedures. The different forms of procedural learning studied here all are characterized by stimulus-response-reinforcement associations, but there are differences between them in terms of the degree to which some of these associations or components are strengthened. These different patterns of association are partially regulated by the degree of involvement of the frontal-striatal-amygdala circuits.
Cognitive simulators for medical education and training.
Kahol, Kanav; Vankipuram, Mithra; Smith, Marshall L
2009-08-01
Simulators for honing procedural skills (such as surgical skills and central venous catheter placement) have proven to be valuable tools for medical educators and students. While such simulations represent an effective paradigm in surgical education, there is an opportunity to add a layer of cognitive exercises to these basic simulations that can facilitate robust skill learning in residents. This paper describes a controlled methodology, inspired by neuropsychological assessment tasks and embodied cognition, to develop cognitive simulators for laparoscopic surgery. These simulators provide psychomotor skill training and offer the additional challenge of accomplishing cognitive tasks in realistic environments. A generic framework for design, development and evaluation of such simulators is described. The presented framework is generalizable and can be applied to different task domains. It is independent of the types of sensors, simulation environment and feedback mechanisms that the simulators use. A proof of concept of the framework is provided through developing a simulator that includes cognitive variations to a basic psychomotor task. The results of two pilot studies are presented that show the validity of the methodology in providing an effective evaluation and learning environments for surgeons.
Geary, David C.
2011-01-01
Objective The goals of the review are threefold; a) to highlight the educational and employment consequences of poorly developed mathematical competencies; b) overview the characteristics of the children with persistently low achievement in mathematics; and c) provide a primer on cognitive science research that is aimed at identifying the cognitive mechanisms underlying these learning disabilities and associated cognitive interventions. Method Literatures on the educational and economic consequences of poor mathematics achievement were reviewed and integrated with reviews of epidemiological, behavioral genetic, and cognitive science studies of poor mathematics achievement. Results Poor mathematical competencies are common among adults and result in employment difficulties and difficulties in many common day-to-day activities. Among students, about 7% of children and adolescents have a mathematical learning disability (MLD) and another 10% show persistent low achievement (LA) in mathematics despite average abilities in most other areas. Children with MLD and their LA peers have deficits in understanding and representing numerical magnitude, difficulties retrieving basic arithmetic facts from long-term memory, and delays in learning mathematical procedures. These deficits and delays cannot be attributed to intelligence, but are related to working memory deficits for children with MLD, but not LA children. Interventions that target these cognitive deficits are in development and preliminary results are promising. Conclusion Mathematical learning disabilities and learning difficulties associated with persistent low achievement in mathematics are common and not attributable to intelligence. These individuals have identifiable number and memory delays and deficits that appear to be specific to mathematics learning. The most promising interventions are those that target these specific deficits and, in addition, for children with MLD interventions that target their low working memory capacity. PMID:21285895
Rannikko, Irina; Jääskeläinen, Erika; Miettunen, Jouko; Ahmed, Anthony O; Veijola, Juha; Remes, Anne M; Murray, Graham K; Husa, Anja P; Järvelin, Marjo-Riitta; Isohanni, Matti; Haapea, Marianne
2016-01-01
Several social life events and challenges have an impact on cognitive development. Our goal was to analyze the predictors of change in cognitive performance in early midlife in a general population sample. Additionally, systematic literature review was performed. The study sample was drawn from the Northern Finland Birth Cohort 1966 at the ages of 34 and 43 years. Primary school performance, sociodemographic factors and body mass index (BMI) were used to predict change in cognitive performance measured by the California Verbal Learning Test, Visual Object Learning Test, and Abstraction Inhibition and Working Memory task. Analyses were weighted by gender and education, and p-values were corrected for multiple comparisons using Benjamini-Hochberg procedure (B-H). Male gender predicted decrease in episodic memory. Poor school marks of practical subjects, having no children, and increase in BMI were associated with decrease in episodic memory, though non-significantly after B-H. Better school marks, and higher occupational class were associated with preserved performance in visual object learning. Higher vocational education predicted preserved performance in visual object learning test, though non-significantly after B-H. Likewise, having children predicted decreased performance in executive functioning but non-significantly after B-H. Adolescent cognitive ability, change in BMI and several sociodemographic factors appear to predict cognitive changes in early midlife. The key advantage of present study is the exploration of possible predictors of change in cognitive performance among general population in the early midlife, a developmental period that has been earlier overlooked.
Educational Attainment is not a Good Proxy for Cognitive Function in Methamphetamine Dependence
Dean, Andy C.; Hellemann, Gerhard; Sugar, Catherine A.; London, Edythe D.
2014-01-01
We sought to test the hypothesis that methamphetamine use interferes with both the quantity and quality of one's education, such that the years of education obtained by methamphetamine dependent individuals serves to underestimate general cognitive functioning and overestimate the quality of academic learning. Thirty-six methamphetamine-dependent participants and 42 healthy comparison subjects completed cognitive tests and self-report measures in Los Angeles, California. An overall cognitive battery score was used to assess general cognition, and vocabulary knowledge was used as a proxy for the quality of academic learning. Linear regression procedures were used for analyses. Supporting the hypothesis that methamphetamine use interferes with the quantity of education, we found that a) earlier onset of methamphetamine use was associated with fewer years of education (p < .01); b) using a normative model developed in healthy participants, methamphetamine-dependent participants had lower educational attainment than predicted from their demographics and performance on the cognitive battery score (p < .01); and c) greater differences between methamphetamine-dependent participants' predicted and actual educational attainment were associated with an earlier onset of MA use (p ≤ .01). Supporting the hypothesis that methamphetamine use interferes with the quality of education, years of education received prior to the onset of methamphetamine use was a better predictor of a proxy for academic learning, vocabulary knowledge, than was the total years of education obtained. Results support the hypothesis that methamphetamine use interferes with the quantity and quality of educational exposure, leading to under- and overestimation of cognitive function and academic learning, respectively. PMID:22206606
Educational attainment is not a good proxy for cognitive function in methamphetamine dependence.
Dean, Andy C; Hellemann, Gerhard; Sugar, Catherine A; London, Edythe D
2012-06-01
We sought to test the hypothesis that methamphetamine use interferes with both the quantity and quality of one's education, such that the years of education obtained by methamphetamine dependent individuals serves to underestimate general cognitive functioning and overestimate the quality of academic learning. Thirty-six methamphetamine-dependent participants and 42 healthy comparison subjects completed cognitive tests and self-report measures in Los Angeles, California. An overall cognitive battery score was used to assess general cognition, and vocabulary knowledge was used as a proxy for the quality of academic learning. Linear regression procedures were used for analyses. Supporting the hypothesis that methamphetamine use interferes with the quantity of education, we found that (a) earlier onset of methamphetamine use was associated with fewer years of education (p<.01); (b) using a normative model developed in healthy participants, methamphetamine-dependent participants had lower educational attainment than predicted from their demographics and performance on the cognitive battery score (p<.01); and (c) greater differences between methamphetamine-dependent participants' predicted and actual educational attainment were associated with an earlier onset of MA use (p≤.01). Supporting the hypothesis that methamphetamine use interferes with the quality of education, years of education received prior to the onset of methamphetamine use was a better predictor of a proxy for academic learning, vocabulary knowledge, than was the total years of education obtained. Results support the hypothesis that methamphetamine use interferes with the quantity and quality of educational exposure, leading to under- and overestimation of cognitive function and academic learning, respectively. Copyright © 2011. Published by Elsevier Ireland Ltd.
Amodeo, Dionisio A.; Grospe, Gena; Zang, Hui; Dwivedi, Yogesh; Ragozzino, Michael E.
2016-01-01
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced BDNF levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder. PMID:27267245
ERIC Educational Resources Information Center
Gebhardt, Markus; Krammer, Mathias; Schwab, Susanne; Rossmann, Peter; Klicpera, Barbara Gasteiger; Klatten, Susanne
2013-01-01
Every school system has to deal with children with Learning Disabilities (LD). However, the concepts of LD, the assessment procedures, the diagnostic criteria as well as their interpretation vary widely from country to country. What they usually seem to have in common is that general cognitive abilities, as measured by standardized IQ tests, are…
ERIC Educational Resources Information Center
Laru, Jari; Jarvela, Sanna; Clariana, Roy B.
2012-01-01
This study explores how collaborative inquiry learning can be supported with multiple scaffolding agents in a real-life field trip context. In practice, a mobile peer-to-peer messaging tool provided meta-cognitive and procedural support, while tutors and a nature guide provided more dynamic scaffolding in order to support argumentative discussions…
ERIC Educational Resources Information Center
Gebhardt, Markus; Krammer, Mathias; Schwab, Susanne; Rossmann, Peter; Gasteiger Klicpera, Barbara
2013-01-01
Every school system has to deal with children with Learning Disabilities (LD). However, the concepts of LD, the assessment procedures, the diagnostic criteria as well as their interpretation vary widely from country to country. What they usually have in common is that general cognitive abilities, as measured by standardized IQ tests, are seen as…
Markou, Athina; Salamone, John D; Bussey, Timothy J; Mar, Adam C; Brunner, Daniela; Gilmour, Gary; Balsam, Peter
2013-11-01
The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Markou, Athina; Salamone, John D.; Bussey, Timothy; Mar, Adam; Brunner, Daniela; Gilmour, Gary; Balsam, Peter
2013-01-01
The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu). A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. PMID:23994273
Sleep stages, memory and learning.
Dotto, L
1996-01-01
Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256
Gradations of awareness in a modified sequence learning task.
Norman, Elisabeth; Price, Mark C; Duff, Simon C; Mentzoni, Rune A
2007-12-01
We argue performance in the serial reaction time (SRT) task is associated with gradations of awareness that provide examples of fringe consciousness [Mangan, B. (1993b). Taking phenomenology seriously: the "fringe" and its implications for cognitive research. Consciousness and Cognition, 2, 89-108, Mangan, B. (2003). The conscious "fringe": Bringing William James up to date. In B. J. Baars, W. P. Banks & J. B. Newman (Eds.), Essential sources in the scientific study of consciousness (pp. 741-759). Cambridge, MA: The MIT Press.], and address limitations of the traditional SRT procedure, including criticism of exclusion generation tasks. Two experiments are conducted with a modified SRT procedure where irrelevant stimulus attributes obscure the sequence rule. Our modified paradigm, which includes a novel exclusion task, makes it easier to demonstrate a previously controversial influence of response stimulus interval (RSI) on awareness. It also allows identification of participants showing fringe consciousness rather than explicit sequence knowledge, as reflected by dissociations between different awareness measures. The NEO-PI-R variable Openness to Feelings influenced the diversity of subjective feelings reported during two awareness measures, but not the degree of learning and awareness as previously found with traditional SRT tasks [Norman, E., Price, M. C., & Duff, S. C. (2006). Fringe consciousness in sequence learning: the influence of individual differences. Consciousness and Cognition, 15(4), 723-760.]. This suggests possible distinctions between two components of fringe consciousness.
2011-01-01
either the CTA group (n 12) or the control group (n 14). The CTA group learned the open cricothyrotomy procedure using the CTA curriculum. The...completed a 6-item pretest that posed open - ended questions regarding actions and decisions required to conduct the procedure given a specific... posttest assessing their knowl- edge of the procedure. Parallel forms of the pretest and post- test instruments were developed using different case scenar
NASA Astrophysics Data System (ADS)
Laird, John E.
2009-05-01
Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.
Using Multiple Ways to Investigate Cognitive Load Theory in the Context of Physics Instruction
NASA Astrophysics Data System (ADS)
Zu, Tianlong
Cognitive load theory (CLT) (Sweller 1988, 1998, 2010) provides us a guiding framework for designing instructional materials. CLT differentiates three subtypes of cognitive load: intrinsic, extraneous, and germane cognitive load. The three cognitive loads are theorized based on the number of simultaneously processed elements in working memory. Intrinsic cognitive load depends upon the number of interacting elements in the instructional material that are related to the learning objective. Extraneous cognitive load is the mental resources allocated to processing unnecessary information which does not contribute to learning as caused by non- optimal instructional procedure. It is determined by the number of interacting elements which are not related to learning goal. Both intrinsic and extraneous load vary according to prior knowledge of learners. Germane cognitive load is indirectly related to interacting elements. It represents the cognitive resources deployed for processing intrinsic load, chunking information and constructing and automating schema. Germane cognitive load is related to level of motivation of the learner. Given this triarchic model of cognitive load and their different roles in learning activities, different learning outcomes can be expected depending upon the characteristics of the educational materials, learner characteristics, and instructional setting. In three experiments, we investigated cognitive load theory following different approaches. Given the triarchic nature of cognitive load construct, it is critical to find non- intrusive ways to measure cognitive load. In study one, we replicated and extended a previous landmark study to investigate the use of eye movements related metrics to measure the three kinds of cognitive load independently. We also collected working memory capacity of students using a cognitive operation-span task. Two of the three types of cognitive load (intrinsic and extraneous) were directly manipulated, and the third type of cognitive load (germane) was indirectly ascertained. We found that different eye-movement based parameters were most sensitive to different types of cognitive load. These results indicate that it is possible to monitor the three kinds of cognitive load separately using eye movement parameters. We also compared the up-to-date cognitive load theory model with an alternative model using a multi-level model analysis and we found that Sweller's (2010) up-to-date model is supported by our data. In educational settings, active learning based methodologies such as peer instruction have been shown to be effective in facilitating students' conceptual understanding. In study two, we discussed the effect of peer interaction on conceptual test performance of students from a cognitive load perspective. Based on the literature, a self-reported cognitive load survey was developed to measure each type of cognitive load. We found that a certain level of prior knowledge is necessary for peer interaction to work and that peer interaction is effective mainly through significantly decreasing the intrinsic load experienced by students, even though it may increase the extraneous load. In study three, we compared the effect of guided instruction in the form of worked examples using narrated-animated video solutions and semi-guided instruction using visual cues on students' performance, shift of visual attention during transfer, and extraneous cognitive load during learning. We found that multimedia video solutions can be more effective in promoting transfer performance of learners than visual cues. We also found evidence that guided instruction in the form of multimedia video solutions can decrease extraneous cognitive load of students during learning, more so than semi-guided instruction using visual cues.
Andersen, Steven Arild Wuyts; Konge, Lars; Sørensen, Mads Sølvsten
2018-05-07
Complex tasks such as surgical procedures can induce excessive cognitive load (CL), which can have a negative effect on learning, especially for novices. To investigate if repeated and distributed virtual reality (VR) simulation practice induces a lower CL and higher performance in subsequent cadaveric dissection training. In a prospective, controlled cohort study, 37 residents in otorhinolaryngology received VR simulation training either as additional distributed practice prior to course participation (intervention) (9 participants) or as standard practice during the course (control) (28 participants). Cognitive load was estimated as the relative change in secondary-task reaction time during VR simulation and cadaveric procedures. Structured distributed VR simulation practice resulted in lower mean reaction times (32% vs. 47% for the intervention and control group, respectively, p < 0.01) as well as a superior final-product performance during subsequent cadaveric dissection training. Repeated and distributed VR simulation causes a lower CL to be induced when the learning situation is increased in complexity. A suggested mechanism is the formation of mental schemas and reduction of the intrinsic CL. This has potential implications for surgical skills training and suggests that structured, distributed training be systematically implemented in surgical training curricula.
Student Goals: Psychological Perspectives
ERIC Educational Resources Information Center
Muirhead, Brent; Little, Jennifer
2008-01-01
The paper will discuss research insights into student academic goals. Cognitive psychologists have found that effective goal setting procedures involves establishing specific and challenging learning objectives. Students who set difficult goals must be persistent while facing the risk of potential failure that could diminish their intrinsic…
Navarrete, Jairo A; Dartnell, Pablo
2017-08-01
Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called "flexibility" whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena.
2017-01-01
Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called “flexibility” whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena. PMID:28841643
Social incentives improve deliberative but not procedural learning in older adults.
Gorlick, Marissa A; Maddox, W Todd
2015-01-01
Age-related deficits are seen across tasks where learning depends on asocial feedback processing, however plasticity has been observed in some of the same tasks in social contexts suggesting a novel way to attenuate deficits. Socioemotional selectivity theory suggests this plasticity is due to a deliberative motivational shift toward achieving well-being with age (positivity effect) that reverses when executive processes are limited (negativity effect). The present study examined the interaction of feedback valence (positive, negative) and social salience (emotional face feedback - happy; angry, asocial point feedback - gain; loss) on learning in a deliberative task that challenges executive processes and a procedural task that does not. We predict that angry face feedback will improve learning in a deliberative task when executive function is challenged. We tested two competing hypotheses regarding the interactive effects of deliberative emotional biases on automatic feedback processing: (1) If deliberative emotion regulation and automatic feedback are interactive we expect happy face feedback to improve learning and angry face feedback to impair learning in older adults because cognitive control is available. (2) If deliberative emotion regulation and automatic feedback are not interactive we predict that emotional face feedback will not improve procedural learning regardless of valence. Results demonstrate that older adults show persistent deficits relative to younger adults during procedural category learning suggesting that deliberative emotional biases do not interact with automatic feedback processing. Interestingly, a subgroup of older adults identified as potentially using deliberative strategies tended to learn as well as younger adults with angry relative to happy feedback, matching the pattern observed in the deliberative task. Results suggest that deliberative emotional biases can improve deliberative learning, but have no effect on procedural learning.
ERIC Educational Resources Information Center
Appalachia Educational Lab., Charleston, WV.
The goals of the QUILT program are to increase and sustain teacher use of classroom questioning techniques and procedures that produce higher levels of student learning and thinking, and to increase the incidence of student responses at higher levels of cognition. Educational research has established relationships between discrete questioning…
Delgado-García, José M; Gruart, Agnès
2008-12-01
The availability of transgenic mice mimicking selective human neurodegenerative and psychiatric disorders calls for new electrophysiological and microstimulation techniques capable of being applied in vivo in this species. In this article, we will concentrate on experiments and techniques developed in our laboratory during the past few years. Thus we have developed different techniques for the study of learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. These techniques include different trace (tone/SHOCK and shock/SHOCK) conditioning procedures ? that is, a classical conditioning task involving the cerebral cortex, including the hippocampus. We have also developed implantation and recording techniques for evoking long-term potentiation (LTP) in behaving mice and for recording the evolution of field excitatory postsynaptic potentials (fEPSP) evoked in the hippocampal CA1 area by the electrical stimulation of the commissural/Schaffer collateral pathway across conditioning sessions. Computer programs have also been developed to quantify the appearance and evolution of eyelid conditioned responses and the slope of evoked fEPSPs. According to the present results, the in vivo recording of the electrical activity of selected hippocampal sites during classical conditioning of eyelid responses appears to be a suitable experimental procedure for studying learning capabilities in genetically modified mice, and an excellent model for the study of selected neuropsychiatric disorders compromising cerebral cortex functioning.
Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y
Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.
Militello, L G
1998-01-01
The growing role of information technology in our society has changed the very nature of many of the tasks that workers are called on to perform. Technology has resulted in a dramatic reduction in the number of proceduralized, rote tasks that workers must face. The impact of technology on many tasks and functions has been to greatly increase demands on the cognitive skills of workers. More procedural or predictable tasks are now handled by smart machines, while workers are responsible for tasks that require inference, diagnosis, judgment, and decision making. The increase in the cognitive demands placed on workers and the redistribution of tasks have created a need for a better understanding of the cognitive components of many tasks. This need has been recognized by many in the health care domain, including the U.S. Food and Drug Administration (FDA). Recent FDA regulations encourage the use of human factors in the development of medical devices, instruments, and systems. One promising set of methods for filling this need is cognitive task analysis.
Measuring meaningful learning in the undergraduate chemistry laboratory
NASA Astrophysics Data System (ADS)
Galloway, Kelli R.
The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from these studies revealed students' narrow cognitive expectations for learning that go largely unmet by their experiences and diverse affective expectations and experiences. Concurrently, a qualitative study was carried out to describe and characterize students' cognitive and affective experiences in the undergraduate chemistry laboratory. Students were video recorded while performing one of their regular laboratory experiments and then interviewed about their experiences. The students' descriptions of their learning experiences were characterized by their overreliance on following the experimental procedure correctly rather than developing process-oriented problem solving skills. Future research could use the MLLI to intentionally compare different types of laboratory curricula or environments.
To Tell the Truth: A Classroom Gaming Procedure.
ERIC Educational Resources Information Center
Hisgen, Jon W.
1981-01-01
Gaming activities increase a student's motivation to learn cognitive material, develop a student's sensitivity to the way media works, and improve the student's decision making skills. The game presented is based on the television program "To Tell the Truth," and centers on questions concerning arthritis. (JN)
A Cognitive Analysis of Armor Procedural Task Training
1982-03-01
Verbal Behavior, 8, 323-343. Craik , F. I. M., & Lockhart , R. S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning...concep- tual or meaningful) coding of the task to be learned (e.g., Bjork, 1975; Craik & Lockhart , 1972; Melton & Martin, 1972). In order to remember a...were several serious problems with applying this approach in the context of entry- level military training. In particular, the soldier did not always
The effects of neurocognitive remediation on executive processing in patients with schizophrenia.
Wykes, T; Reeder, C; Corner, J; Williams, C; Everitt, B
1999-01-01
Approaches to cognitive remediation have differed across studies. Most of the larger studies have concentrated on group treatments designed without the benefit of recent laboratory-based studies. The current study describes a randomized trial of an intensive cognitive remediation program involving individual daily sessions of 1 hour for up to 3 months. It targets executive functioning deficits (cognitive flexibility, working memory, and planning) that are known to be problematic in people with schizophrenia. Procedural learning, as well as the principles of errorless learning, targeted reinforcement, and massed practice, was the basis of the intervention. The program was compared with an alternative therapy (intensive occupational therapy) to control for some of the effects of therapeutic contact. Some improvements in cognition followed both therapies. A differential effect in favor of cognitive remediation therapy was found for tests in the cognitive flexibility and the memory subgroups. There was a trend for those receiving atypical antipsychotic medication to benefit more from cognitive remediation for tests of cognitive flexibility. Although there were no consistent changes in symptoms or social functioning between groups, if improvement in cognitive flexibility tasks reached a threshold then there is some evidence that social functioning improved, even over the short duration of the trial. In addition, cognitive remediation differentially improved self-esteem. This study supports the view that cognitive remediation can reduce cognitive deficits and that this reduction may affect social outcome, at least in the short term.
Using cognitive task analysis to create a teaching protocol for bovine dystocia.
Read, Emma K; Baillie, Sarah
2013-01-01
When learning skilled techniques and procedures, students face many challenges. Learning is easier when detailed instructions are available, but experts often find it difficult to articulate all of the steps involved in a task or relate to the learner as a novice. This problem is further compounded when the technique is internal and unsighted (e.g., obstetrical procedures). Using expert bovine practitioners and a life-size model cow and calf, the steps and decision making involved in performing correction of two different dystocia presentations (anterior leg back and breech) were deconstructed using cognitive task analysis (CTA). Video cameras were positioned to capture movement inside and outside the cow model while the experts were asked to first perform the technique as they would in a real situation and then perform the procedure again as if articulating the steps to a novice learner. The audio segments were transcribed and, together with the video components, analyzed to create a list of steps for each expert. Consensus was achieved between experts during individual interviews followed by a group discussion. A "gold standard" list or teaching protocol was created for each malpresentation. CTA was useful in defining the technical and cognitive steps required to both perform and teach the tasks effectively. Differences between experts highlight the need for consensus before teaching the skill. In addition, the study identified several different, yet effective, techniques and provided information that could allow experts to consider other approaches they might use when their own technique fails.
Teaching and assessing procedural skills using simulation: metrics and methodology.
Lammers, Richard L; Davenport, Moira; Korley, Frederick; Griswold-Theodorson, Sharon; Fitch, Michael T; Narang, Aneesh T; Evans, Leigh V; Gross, Amy; Rodriguez, Elliot; Dodge, Kelly L; Hamann, Cara J; Robey, Walter C
2008-11-01
Simulation allows educators to develop learner-focused training and outcomes-based assessments. However, the effectiveness and validity of simulation-based training in emergency medicine (EM) requires further investigation. Teaching and testing technical skills require methods and assessment instruments that are somewhat different than those used for cognitive or team skills. Drawing from work published by other medical disciplines as well as educational, behavioral, and human factors research, the authors developed six research themes: measurement of procedural skills; development of performance standards; assessment and validation of training methods, simulator models, and assessment tools; optimization of training methods; transfer of skills learned on simulator models to patients; and prevention of skill decay over time. The article reviews relevant and established educational research methodologies and identifies gaps in our knowledge of how physicians learn procedures. The authors present questions requiring further research that, once answered, will advance understanding of simulation-based procedural training and assessment in EM.
2011-03-01
phraseology exists for the same procedures, pilots must learn to develop cognitive mapping strategies to connect one set of words/phrases with that of...effortless flow. Varies speech flow for stylistic effect, e.g. to emphasize a point. Uses appropriate discourse markers and connectors spontaneously...Navigate activities and 44% on Utilize More Cognitive Resources activities. One respon- dent made no comments, while two others said they would not do
Simulation for transthoracic echocardiography of aortic valve
Nanda, Navin C.; Kapur, K. K.; Kapoor, Poonam Malhotra
2016-01-01
Simulation allows interactive transthoracic echocardiography (TTE) learning using a virtual three-dimensional model of the heart and may aid in the acquisition of the cognitive and technical skills needed to perform TTE. The ability to link probe manipulation, cardiac anatomy, and echocardiographic images using a simulator has been shown to be an effective model for training anesthesiology residents in transesophageal echocardiography. A proposed alternative to real-time reality patient-based learning is simulation-based training that allows anesthesiologists to learn complex concepts and procedures, especially for specific structures such as aortic valve. PMID:27397455
Pavlovian to instrumental transfer of control in a human learning task.
Nadler, Natasha; Delgado, Mauricio R; Delamater, Andrew R
2011-10-01
Pavlovian learning tasks have been widely used as tools to understand basic cognitive and emotional processes in humans. The present studies investigated one particular task, Pavlovian-to-instrumental transfer (PIT), with human participants in an effort to examine potential cognitive and emotional effects of Pavlovian cues upon instrumentally trained performance. In two experiments, subjects first learned two separate instrumental response-outcome relationships (i.e., R1-O1 and R2-O2) and then were exposed to various stimulus-outcome relationships (i.e., S1-O1, S2-O2, S3-O3, and S4-) before the effects of the Pavlovian stimuli on instrumental responding were assessed during a non-reinforced test. In Experiment 1, instrumental responding was established using a positive-reinforcement procedure, whereas in Experiment 2, a quasi-avoidance learning task was used. In both cases, the Pavlovian stimuli exerted selective control over instrumental responding, whereby S1 and S2 selectively elevated the instrumental response with which it shared an outcome. In addition, in Experiment 2, S3 exerted a nonselective transfer of control effect, whereby both responses were elevated over baseline levels. These data identify two ways, one specific and one general, in which Pavlovian processes can exert control over instrumental responding in human learning paradigms, suggesting that this method may serve as a useful tool in the study of basic cognitive and emotional processes in human learning.
Pavlovian to Instrumental Transfer of Control in a Human Learning Task
Nadler, Natasha; Delgado, Mauricio R.; Delamater, Andrew R.
2011-01-01
Pavlovian learning tasks have been widely used as tools to understand basic cognitive and emotional processes in humans. The present studies investigated one particular task, Pavlovian-to-instrumental transfer (PIT), with human participants in an effort to examine potential cognitive and emotional effects of Pavlovian cues upon instrumentally-trained performance. In two experiments subjects first learned two separate instrumental response-outcome relationships (R1-O1, R2-O2) and then were exposed to various stimulus-outcome relationships (S1-O1, S2-O2, S3-O3, S4-) before the effects of the Pavlovian stimuli on instrumental responding were assessed during a nonreinforced test. In Experiment 1 instrumental responding was established using a positive reinforcement procedure whereas in Experiment 2 a quasi-avoidance learning task was used. In both cases the Pavlovian stimuli exerted selective control over instrumental responding, whereby S1 & S2 selectively elevated the instrumental response with which it shared an outcome. In addition, in Experiment 2, S3 exerted a nonselective transfer of control effect, whereby both responses were elevated over baseline levels. These data identify two ways, one specific and one general, in which Pavlovian processes can exert control over instrumental responding in human learning paradigms, and suggest that this method may serve as a useful tool in the study of basic cognitive and emotional processes in human learning. PMID:21534664
[Learning potential and cognitive remediation in schizophrenia].
Raffard, S; Gely-Nargeot, M-C; Capdevielle, D; Bayard, S; Boulenger, J-P
2009-09-01
Many studies have stressed the importance of neurocognitive deficits in schizophrenia that represent a core feature of the pathology. Cognitive dysfunctions are present in 80% of schizophrenic patients, including deficits in attention, memory, speed processing and executive functioning, with well-known functional consequences on daily life, social functioning and rehabilitation outcome. Recent studies have stressed that cognitive deficits, rather than the positive or negative symptoms of schizophrenia, predict poor performance in basic activities of daily living. If it is possible to reduce psychotic symptoms and to prevent relapses with antipsychotic medication, it is not yet possible to have the same convincing impact on cognitive or functional impairments. Cognitive remediation is a new psychological treatment which has proved its efficacy in reducing cognitive deficits. A growing literature on cognitive rehabilitation suggests possibilities that in schizophrenia, specific techniques are able to enhance an individual's cognitive functioning. Presently, two distinct and complementary cognitive remediation methods have been developed: the compensatory and the restorative approaches: (A) restorative approaches attempt to improve function by recruiting relatively intact cognitive processes to fill the role of those impaired, or by using prosthetic aids to compensate for the loss of function; (B) in contrast, in the restorative approach cognitive deficits are targeted directly through repeated practice training. However, results concerning cognitive remediation remain inconsistent. It is clear that not all individuals with schizophrenia display cognitive impairment, and even among those who do, the specific pattern of cognitive functioning varies. Moreover, traditional neurocognitive assessment, with a single or static administration of cognitive measures, provides moderately good prediction of skills acquisition in schizophrenia. Among other factors such as motivation, awareness of having a disease and acuteness of symptomatology, some studies have exposed that a cognitive variable, learning potential could mediate in part the effectiveness of cognitive remediation. The concept of learning potential is used to explain some of the observed variability in cognitive functioning. Learning potential is the ability to attain and utilize cognitive skills after cognitive training: it is assessed by individual variation in performance across three consecutive administrations of the Wisconsin Card Sorting Test (WCST): a pretest with standard instruction procedures, a training phase with expanded instruction and a post test with only standard instruction. Three learner subtypes can be identified: "learners" who perform poorly at the pretest but improve performance during the post-test, "non-retainers" who perform poorly at pre-test and do not improve at post-testing and "high achievers" who perform well in the initial pretest and maintain their good performance across the other two administrations. The assessment of learning potential could predict, with other psychological measures such as insight and motivation, the most effective neurocognitive rehabilitation program for an individual patient, and could help the clinician to optimize patient outcome through appropriate individual management. Indeed, learning potential could represent a good cognitive predictor and indicator for rehabilitation in schizophrenia for clinicians and should be used in cognitive assessment practice. However, the individuals most likely to benefit from cognitive remediation, and whether changes in cognitive function translate into functional improvements, are as yet unclear.
Heuristic Reasoning in Chemistry: Making Decisions about Acid Strength
ERIC Educational Resources Information Center
McClary, Lakeisha; Talanquer, Vicente
2011-01-01
The characterization of students' reasoning strategies is of central importance in the development of instructional strategies that foster meaningful learning. In particular, the identification of shortcut reasoning procedures (heuristics) used by students to reduce cognitive load can help us devise strategies to facilitate the development of more…
The Cognitive Profile of Chinese Children with Mathematics Difficulties
ERIC Educational Resources Information Center
Chan, Becky Mee-yin; Ho, Connie Suk-han
2010-01-01
This study examined how four domain-specific skills (arithmetic procedural skills, number fact retrieval, place value concept, and number sense) and two domain-general processing skills (working memory and processing speed) may account for Chinese children's mathematics learning difficulties. Children with mathematics difficulties (MD) of two age…
Early School Admissions Program: Staff Handbook. Revised Edition.
ERIC Educational Resources Information Center
Grant, Mabel; And Others
The descriptions and procedures in this handbook were developed and compiled at the request of staff members of the Early School Admissions Program. It was felt that specific information relating to the suggested use of classroom materials and equipment would assist in upgrading teaching techniques, planning cognitively based learning experiences,…
Dynamic Assessment: An Approach Toward Reducing Test Bias.
ERIC Educational Resources Information Center
Carlson, Jerry S.; Wiedl, Karl Heinz
Through dynamic testing (the notion that tailored testing can be extended to the use of a learning oriented approach to assessment), analysis were made of how motivational, personality, and cognitive style factors interact with assessment approaches to yield performance data. Testing procedures involving simple feedback, elaborated feedback, and…
Badiyepeymaie Jahromi, Zohreh; Mosalanejad, Leili
2015-01-14
Web Quest is one of the new ways of teaching and learning that is based on research, and includes the principles of learning and cognitive activities, such as collaborative learning, social and cognitive learning, and active learning, and increases motivation. The aim of this study is to evaluate the Web Quest influence on students' learning behaviors. In this quasi-experimental study, which was performed on undergraduates taking a psychiatric course at Jahrom University of Medical Sciences, simple sampling was used to select the cases to be studied; the students entered the study through census and were trained according to Web Quest methodology. The procedure was to present the course as a case study and team work. Each topic included discussing concepts and then patient's treatment and the communicative principles for two weeks. Active participation of the students in response to the scenario and introduced problem was equal to preparing scientific videos about the disease and collecting the latest medical treatment for the disease from the Internet.Three questionnaires, including the self-directed learning Questionnaire, teamwork evaluation Questionnaire (value of team), and Buffard self-regulated Questionnaire, were the data gathering tools. The results showed that the average of self-regulated learning and self-directed learning (SDL) increased after the educational intervention. However, the increase was not significant. On the other hand, problem solving (P=0.001) and the value of teamwork (P=0.002), apart from increasing the average, had significant statistical values. In view of Web Quest's positive impacts on students' learning behaviors, problem solving and teamwork, the effective use of active learning and teaching practices and use of technology in medical education are recommended.
Jahromi, Zohreh Badiyepeymaie; Mosalanejad, Leili
2015-01-01
Introduction: Web Quest is one of the new ways of teaching and learning that is based on research, and includes the principles of learning and cognitive activities, such as collaborative learning, social and cognitive learning, and active learning, and increases motivation. The aim of this study is to evaluate the Web Quest influence on students’ learning behaviors. Materials and Methods: In this quasi-experimental study, which was performed on undergraduates taking a psychiatric course at Jahrom University of Medical Sciences, simple sampling was used to select the cases to be studied; the students entered the study through census and were trained according toWeb Quest methodology. The procedure was to present the course as a case study and team work. Each topic included discussing concepts and then patient’s treatment and the communicative principles for two weeks. Active participation of the students in response to the scenario and introduced problem was equal to preparing scientific videos about the disease and collecting the latest medical treatment for the disease from the Internet. Three questionnaires, including the self-directed learning Questionnaire, teamwork evaluation Questionnaire (value of team), and Buffard self-regulated Questionnaire, were the data gathering tools. Results: The results showed that the average of self-regulated learning and self-directed learning (SDL) increased after the educational intervention. However, the increase was not significant. On the other hand, problem solving (P=0.001) and the value of teamwork (P=0.002), apart from increasing the average, had significant statistical values. Conclusions: In view of Web Quest’s positive impacts on students’ learning behaviors, problem solving and teamwork, the effective use of active learning and teaching practices and use of technology in medical education are recommended. PMID:25946931
NASA Astrophysics Data System (ADS)
Lebedev, A. A.; Ivanova, E. G.; Komleva, V. A.; Klokov, N. M.; Komlev, A. A.
2017-01-01
The considered method of learning the basics of microelectronic circuits and systems amplifier enables one to understand electrical processes deeper, to understand the relationship between static and dynamic characteristics and, finally, bring the learning process to the cognitive process. The scheme of problem-based learning can be represented by the following sequence of procedures: the contradiction is perceived and revealed; the cognitive motivation is provided by creating a problematic situation (the mental state of the student), moving the desire to solve the problem, to raise the question "why?", the hypothesis is made; searches for solutions are implemented; the answer is looked for. Due to the complexity of architectural schemes in the work the modern methods of computer analysis and synthesis are considered in the work. Examples of engineering by students in the framework of students' scientific and research work of analog circuits with improved performance based on standard software and software developed at the Department of Microelectronics MEPhI.
Lewon, Matthew; Peters, Christina M; Van Ry, Pam M; Burkin, Dean J; Hunter, Kenneth W; Hayes, Linda J
2017-09-01
The mdx mouse is an important nonhuman model for Duchenne muscular dystrophy (DMD) research. Characterizing the behavioral traits of the strain relative to congenic wild-type (WT) mice may enhance our understanding of the cognitive deficits observed in some humans with DMD and contribute to treatment development and evaluation. In this paper we report the results of a number of experiments comparing the behavior of mdx to WT mice in operant conditioning procedures designed to assess learning and memory. We found that mdx outperformed WT in all learning and memory tasks involving food reinforcement, and this appeared to be related to the differential effects of the food deprivation motivating operation on mdx mice. Conversely, WT outperformed mdx in an escape/avoidance learning task. These results suggest motivational differences between the strains and demonstrate the potential utility of operant conditioning procedures in the assessment of the behavioral characteristics of the mdx mouse. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantifying the cognitive cost of laparo-endoscopic single-site surgeries: Gaze-based indices.
Di Stasi, Leandro L; Díaz-Piedra, Carolina; Ruiz-Rabelo, Juan Francisco; Rieiro, Héctor; Sanchez Carrion, Jose M; Catena, Andrés
2017-11-01
Despite the growing interest concerning the laparo-endoscopic single-site surgery (LESS) procedure, LESS presents multiple difficulties and challenges that are likely to increase the surgeon's cognitive cost, in terms of both cognitive load and performance. Nevertheless, there is currently no objective index capable of assessing the surgeon cognitive cost while performing LESS. We assessed if gaze-based indices might offer unique and unbiased measures to quantify LESS complexity and its cognitive cost. We expect that the assessment of surgeon's cognitive cost to improve patient safety by measuring fitness-for-duty and reducing surgeons overload. Using a wearable eye tracker device, we measured gaze entropy and velocity of surgical trainees and attending surgeons during two surgical procedures (LESS vs. multiport laparoscopy surgery [MPS]). None of the participants had previous experience with LESS. They performed two exercises with different complexity levels (Low: Pattern Cut vs. High: Peg Transfer). We also collected performance and subjective data. LESS caused higher cognitive demand than MPS, as indicated by increased gaze entropy in both surgical trainees and attending surgeons (exploration pattern became more random). Furthermore, gaze velocity was higher (exploration pattern became more rapid) for the LESS procedure independently of the surgeon's expertise. Perceived task complexity and laparoscopic accuracy confirmed gaze-based results. Gaze-based indices have great potential as objective and non-intrusive measures to assess surgeons' cognitive cost and fitness-for-duty. Furthermore, gaze-based indices might play a relevant role in defining future guidelines on surgeons' examinations to mark their achievements during the entire training (e.g. analyzing surgical learning curves). Copyright © 2017 Elsevier Ltd. All rights reserved.
[Cognition, schizophrenia and the effect of antipsychotics].
Stip, E
2006-01-01
In this review, we conclude that cognitive impairments are as important as positive and negative symptoms in the clinical assessment and management of patients with schizophrenia. This is not a comprehensive review, considering that the new Measurement And Treatment Research to Improve Cognition in Schizophrenia (MATRICS) model will soon provide valuable data. It is however a product of the collective efforts of a French Canadian clinical research team that proposes a synthesis of data of pragmatic interest to clinicians. Medication with improved safety and cognition profile, gene-rally lead to better outcomes by facilitating compliance with drug regimens and rehabilitation programs. In addition, measures of attention and executive function (EF) appear to improve with novel antipsychotics when compared to traditional neuroleptics. Nevertheless, evaluating cognitive performance is not a routine procedure outside the domain of research. For example, procedural learning (PL) -- an important measure of cognitive function -- refers to cognitive and motor learning processes in which execution strategies cannot be explicitly described (ie learning by doing). These actions or procedures are then progressively learned through trial and error until automation of optimal performance is established. Procedural learning is rarely assessed in clinical practice. Inconsistent findings regarding the effects of neuroleptic drugs on PL have been reported. Trials using acute administration of chlorpromazine in normal subjects induced PL deficits, suggesting the direct effect of neuroleptics, presumably via a D(2) dopamine blockade in the striatum. In a recent study by our group, schizophrenia patients, divided into three groups according to their pharmacological treatment (haloperidol, clozapine and risperidone) were compared to normal controls on two PL tasks; a visuomotor learning task (mirror drawing) and a problem solving learning task (Tower of Toronto). No deficits were detected in patients receiving clozapine, while haloperidol was associated with deleterious effects in both tasks. Risperidone, however, produced different effects depending on the task performed. Another 6-month double-blind Canadian study confirmed the beneficial effect of olanzapine on PL compared to haloperidol and risperidone. The differential effects of drugs on the striatal D(2) receptors, -irrespective of their classification as conventional or atypical neuroleptics and the specific process implicated in each of these PL tasks may explain these results. Tracer studies using radioactive benzamides (IBZM) specific to striatal D receptors determined a relationship between striatal D(2) receptor occupancy and PL performance such as the mirror drawing task. Using this method, data obtained in Montreal on schizophrenia patients receiving olanzapine and haloperidol have shown that the coefficient of determination in a visuomotor PL task varied inversely with D2 receptor saturation. This review probes the effect of impaired cognitive functions on schizophrenia patients' quality of life. Cognitive deficits found in schizophrenia affect planning, along with the aptitude to initiate and -regulate a goal-directed behaviour. These impairments have been repeatedly, yet inconclusively, attributed to frontal lobe dysfunction. Morphological findings obtained from neuroimaging studies remain inconsistent, some noting no differences between patients and controls while others observing reduced prefrontal volumes in schizophrenia patients. Conversely, functional neuroimaging (fMRI) demonstrated reduced frontal blood flow relative to global cerebral perfusion in schizophrenia patients. Overall, neuroimaging literature provides reliable evidence of frontal impairments in schizophrenia, although the average magnitude of difference between patients and controls is insufficient to defend a frontal lobe dysfunction hypo-thesis, as far as brain volume, resting cerebral metabolism or blood flow are concerned. The only measurement clearly distinguishing between patients and controls is fMRI of the frontal lobe while performing an experimentally controlled task. Here, schizophrenia patients fail to activate their frontal cortex when required. Sensitive to frontal lobe dysfunction are Neuropsychological tests of executive function. A study conducted in Montreal assessed the relation between EF impairments and difficulties in planning daily activities in schizophrenia patients scoring more than 3 on at least 4 items of the PANSS negative subscale. Performances on EF, memory and script generation were measured and compared to controls. Script production task required that subjects recite 10-20 actions that would normally be carried out for during daily life activity (going to a restaurant, buying groceries, etc.). Patients' performances were significantly lower with higher perserveration and sequencing impairments. Routine activities such as the ability to cook a meal were similarly investigated. Patients were videotaped in a kitchen while preparing a specific meal. Optimal sequence of micro- and macro-steps necessary to prepare the meal in a minimal time were measured. Sequencing errors, repetitions and omissions were significantly higher compared to controls. In addition, temporal organization was positively correlated with negative symptoms and low EF performance on neuro-psychological tasks. Thus concluding that EF impairment interferes with basic routine activities in schizophrenia patients, notably those with negative symptoms. Last but not least, we assessed the progress of patients' subjective complaints with regards to their cognitive functions using tests such as the SSTICS, specifically developed to address subjective cognitive complaints and insight. This review concludes that from now on cognitive deficit should be recognized as a major element in social and professional integration of schizophrenia patients, and should become a standardized assessment approach in clinical practice.
Significance of the Feuerstein approach in neurocognitive rehabilitation.
Lebeer, Jo
2016-06-18
The theory of Structural Cognitive Modifiability and Mediated Learning Experience of Reuven Feuerstein states that individuals with brain impairment, because of congenital or acquired origin, may substantially and structurally improve their cognitive functioning, by a systematic intervention based on a specific, criteria-based type of interaction ("mediated learning"). Three application systems are based on it: a dynamic-interactive assessment of learning capacity and processes of learning, the LPAD (Learning Propensity Assessment Device); a cognitive intervention program called "Instrumental Enrichment Program", which trains cognitive, metacognitive and executive functions; and a program, which is oriented at working in context, Shaping Modifying Environments. These programs have been applied in widely different target groups: from children and young adults with learning and developmental disabilities, at risk of school failure, or having failed at school, because of socio-economic disadvantage or congenital neurological impairment; disadvantaged youngsters and adults in vocational training, to elderly people at the beginning of a dementia process. Experience with cognitive rehabilitation of children and adults with acquired brain damage, has been relatively recent, first in the Feuerstein Institute's Brain Injury Unit in Jerusalem, later in other centers in different parts of the world; therefore scientific data are scarce. The purpose of this paper is to examine how the Feuerstein-approach fits into the goals and proposed approaches of cognitive rehabilitation, and to explore its relevance for assessment and intervention in individuals with congenital or acquired brain damage. The methodology of the Feuerstein approach consists of four pillars: dynamic assessment, cognitive activation, mediated learning and shaping a modifying environment. The criteria of mediated learning experience are explained with specific reference to people with acquired brain injury. The procedure of learning propensity assessment device uses visuo-spatial and verbal tasks known from neuropsychological assessment (such as Rey's complex figure drawing), as well as a in a pre-test - brief intervention - post-test format. Cognitive activation is done in various ways: a paper-and-pencil relatively content-free program called "instrumental enrichment", with transfer of learned principles into daily life situations, followed by metacognitive feedback. Four case histories of acquired brain damage are analyzed: a 19 year old man with extensive post-astrocytoma frontotemporal brain lesions; a 19 year old man with bilateral frontal and right temporal and parieto-occipital parenchymatous destruction after a traumatic brain injury; a 24 year old man with hemispherectomy for intractable epilepsy because of Sturge-Weber syndrome; and a 30-year old man with left porencephalic cyst after cerebral hemorrhage. Structural cognitive improvement could be demonstrated in positive change scores in visuo-spatial memory, associative and verbal memory, abstract thinking, and organizing tasks, even more than 10 years post-TBI. In some cases a rise in IQ has been documented. Improvement in daily life functioning and academic skills (re)learning has also been seen. Though impossible to claim scientific evidence, the case histories nevertheless suggest the importance of interactive assessment in designing intervention programs which have sufficient intensity, frequency, duration and consistency of mediation; furthermore, an essential ingredient is the ecological approach which requires working with the patient and the whole network around; a firm "belief system" or that modifiability is possible even with severe brain damage and many years after the injury; a cognitive, metacognitive and executive approach, and a quality of interaction according to criteria of mediated learning. They suggest that Feuerstein approach may offer interesting perspectives to cognitive rehabilitation. More extensive research is needed to provide a broader scientific evidence base.
What does it take to show that a cognitive training procedure is useful? A critical evaluation.
Jacoby, Nori; Ahissar, Merav
2013-01-01
Individuals substantially improve with training, indicating that a large degree of plasticity is retained across ages. In the past 20 years, many studies explored the ability to boost cognitive skills (reasoning, linguistic abilities, working memory, and attention) by training with other tasks that exploit limited cognitive resources. Indeed, individuals with long-term training on challenging skills (musicians and action video gamers) show impressive behavior on related tasks (linguistic and visual attention, respectively). However, a critical evaluation of training studies that last weeks to months shows typically mild effects, mainly with respect to control groups that either did not practice or practiced with less challenging, rewarding, or exciting conditions. These findings suggest that future training studies should evaluate these factors carefully and assess whether they mainly impact the testing sessions or actual longer-term skills, and whether their impact can be further strengthened. The lack of a comprehensive theory of learning that integrates cognitive, motivational, and alertness aspects poses a bottleneck to improving current training procedures. © 2013 Elsevier B.V. All rights reserved.
Zenner, Hans P; Pfister, Markus; Birbaumer, Niels
2006-12-01
Acquired centralized tinnitus (ACT) is the most frequent form of chronic tinnitus. The proposed ACT sensitization (ACTS) assumes a peripheral initiation of tinnitus whereby sensitizing signals from the auditory system establish new neuronal connections in the brain. Consequently, permanent neurophysiological malfunction within the information-processing modules results. Successful treatment has to target these malfunctioning information processing. We present in this study the neurophysiological and psychophysiological aspects of a recently suggested neurophysiological model, which may explain the symptoms caused by central cognitive tinnitus sensitization. Although conditioned reflexes, as a causal agent of chronic tinnitus, respond to extinction procedures, sensitization may initiate a vicious circle of overexcitation of the auditory system, resisting extinction and habituation. We used the literature database as indicated under "References" covering English and German works. For the ACTS model we extracted neurophysiological hypotheses of the auditory stimulus processing and the neuronal connections of the central auditory system with other brain regions to explain the malfunctions of auditory information processing. The model does not assume information-processing changes specific for tinnitus but treats the processing of tinnitus signals comparable with the processing of other external stimuli. The model uses the extensive knowledge available on sensitization of perception and memory processes and highlights the similarities of tinnitus with central neuropathic pain. Quality, validity, and comparability of the extracted data were evaluated by peer reviewing. Statistical techniques were not used. According to the tinnitus sensitization model, a tinnitus signal originates (as a type I-IV tinnitus) in the cochlea. In the brain, concerned with perception and cognition, the 1) conditioned associations, as postulated by the tinnitus model of Jastreboff, and the 2) unconditioned sensitized stimulus responses, as postulated in the present ACTS model, are actively connected with and attributed to the tinnitus signal. Attention to the tinnitus constitutes a typical undesired sensitized response. Some of the tinnitus-associated attributes may be called essential, unconditioned sensitization attributes. By a process called facilitation, the tinnitus' essential attributes are suggested to activate the tinnitus response. The result is an undesired increase in responsivity, such as an increase in attentional focus to the eliciting tinnitus stimulus. The mechanisms underlying sensitization are known as a specific nonassociative learning process producing a structural fixation of long-term facilitation at the synaptic level. This sensitization model may be important for the development of a sensitization-specific treatment if extinction procedures alone do not lead to satisfactory outcome. Inasmuch as this model considers sensitization as a nonassociative learning process based on cortical plasticity, it is reasonable to assume that this learning process can be altered by counteracting learning procedures. These counteracting learning procedures may consist of tinnitus-specific cognitive and behavioral procedures.
Social cognition in schizophrenia and healthy aging: differences and similarities.
Silver, Henry; Bilker, Warren B
2014-12-01
Social cognition is impaired in schizophrenia but it is not clear whether this is specific for the illness and whether emotion perception is selectively affected. To study this we examined the perception of emotional and non-emotional clues in facial expressions, a key social cognitive skill, in schizophrenia patients and old healthy individuals using young healthy individuals as reference. Tests of object recognition, visual orientation, psychomotor speed, and working memory were included to allow multivariate analysis taking into account other cognitive functions Schizophrenia patients showed impairments in recognition of identity and emotional facial clues compared to young and old healthy groups. Severity was similar to that for object recognition and visuospatial processing. Older and younger healthy groups did not differ from each other on these tests. Schizophrenia patients and old healthy individuals were similarly impaired in the ability to automatically learn new faces during the testing procedure (measured by the CSTFAC index) compared to young healthy individuals. Social cognition is distinctly impaired in schizophrenia compared to healthy aging. Further study is needed to identify the mechanisms of automatic social cognitive learning impairment in schizophrenia patients and healthy aging individuals and determine whether similar neural systems are affected. Copyright © 2014 Elsevier B.V. All rights reserved.
Learning from Worked-Examples in Mathematics: Students Relate Procedures to Principles
ERIC Educational Resources Information Center
Renkl, Alexander
2017-01-01
This article discusses the relevance of the worked-example effect for mathematics education. This effect refers to the finding that, in initial cognitive skill acquisition, students profit more from studying worked examples as compared to solving problems. One reason for the effectiveness of worked examples is that the students get the opportunity…
The Impact of Non-Conscious Knowledge on Educational Technology Research and Design
ERIC Educational Resources Information Center
Clark, Richard E.
2011-01-01
There are at least three powerful insights for educational technology researchers and designers from recent neuroscience studies of the brain and from cognitive science research findings: First, our brains learn and process two very different types of knowledge; non-conscious, automated, procedural, or implicit knowledge, and conscious,…
ERIC Educational Resources Information Center
Bing, Wu; Ai-Ping, Teoh
2008-01-01
The authors conducted a comparative analysis to examine learners' interaction in the Web-based learning environment of 2 distance education institutions. The interaction was critically analyzed based on social, procedural, expository, explanatory, and cognitive dimensions, across 7 categories of exchanges between course coordinator to groups,…
Scott, Kelli; Klech, David; Lewis, Cara C; Simons, Anne D
2016-11-01
Knowledge gain has been identified as necessary but not sufficient for therapist behavior change. Declarative knowledge, or factual knowledge, is thought to serve as a prerequisite for procedural knowledge, the how to knowledge system, and reflective knowledge, the skill refinement system. The study aimed to examine how a 1-day workshop affected therapist cognitive behavioral therapy declarative knowledge. Participating community therapists completed a test before and after training that assessed cognitive behavioral therapy knowledge. Results suggest that the workshop significantly increased declarative knowledge. However, post-training total scores remained moderately low, with several questions answered incorrectly despite content coverage in the workshop. These findings may have important implications for structuring effective cognitive behavioral therapy training efforts and for the successful implementation of cognitive behavioral therapy in community settings.
Protocol for Short- and Longer-term Spatial Learning and Memory in Mice
Willis, Emily F.; Bartlett, Perry F.; Vukovic, Jana
2017-01-01
Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test—the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions. PMID:29089878
Significantly improved neurocognitive function in major depressive disorders 6 weeks after ECT.
Mohn, Christine; Rund, Bjørn Rishovd
2016-09-15
Cognitive side effects may occur after electroconvulsive treatment (ECT) in depressive disorder patients. Previous studies have been limited by small numbers of cognitive functions assessed. The present study reports the first results from a prospective project monitoring cognitive effects of ECT using a comprehensive neuropsychological test battery and subjective report of everyday cognitive function. Thirty-one patients with major depressive disorder were assessed with the MATRICS Consensus Cognitive Battery (MCCB). Subjective cognitive complaints were described with the Everyday Memory Questionnaire (EMQ). Severity of depression symptoms were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). These assessments were performed prior to and 6 weeks after non-standardized ECT. Compared to baseline, the mean depression severity level was nearly halved and there were significant improvements in mean levels of Speed of Processing, Attention/Vigilance, and Visual Learning 6 weeks after ECT. The other cognitive domains were not altered from baseline. There was no significant change in subjective cognitive complaints. At baseline, there were several significant correlations between the MADRS and MCCB scores. There was no strong association between the EMQ and MCCB scores at either assessment point, but the post-ECT EMQ score was significantly correlated with depression severity. Major limitations were low N and lack of uniform ECT procedure. There was significant improvement in Speed of Processing, Attention/Vigilance, and Visual Learning 6 weeks after ECT. Cognitive tests scores were related to severity of depression, but not to subjective memory complaints. Copyright © 2016 Elsevier B.V. All rights reserved.
Bublitz, Alexander; Weinhold, Severine R.; Strobel, Sophia; Dehnhardt, Guido; Hanke, Frederike D.
2017-01-01
Octopuses (Octopus vulgaris) are generally considered to possess extraordinary cognitive abilities including the ability to successfully perform in a serial reversal learning task. During reversal learning, an animal is presented with a discrimination problem and after reaching a learning criterion, the signs of the stimuli are reversed: the former positive becomes the negative stimulus and vice versa. If an animal improves its performance over reversals, it is ascribed advanced cognitive abilities. Reversal learning has been tested in octopus in a number of studies. However, the experimental procedures adopted in these studies involved pre-training on the new positive stimulus after a reversal, strong negative reinforcement or might have enabled secondary cueing by the experimenter. These procedures could have all affected the outcome of reversal learning. Thus, in this study, serial visual reversal learning was revisited in octopus. We trained four common octopuses (O. vulgaris) to discriminate between 2-dimensional stimuli presented on a monitor in a simultaneous visual discrimination task and reversed the signs of the stimuli each time the animals reached the learning criterion of ≥80% in two consecutive sessions. The animals were trained using operant conditioning techniques including a secondary reinforcer, a rod that was pushed up and down the feeding tube, which signaled the correctness of a response and preceded the subsequent primary reinforcement of food. The experimental protocol did not involve negative reinforcement. One animal completed four reversals and showed progressive improvement, i.e., it decreased its errors to criterion the more reversals it experienced. This animal developed a generalized response strategy. In contrast, another animal completed only one reversal, whereas two animals did not learn to reverse during the first reversal. In conclusion, some octopus individuals can learn to reverse in a visual task demonstrating behavioral flexibility even with a refined methodology. PMID:28223940
Woud, Marcella L; Blackwell, Simon E; Steudte-Schmiedgen, Susann; Browning, Michael; Holmes, Emily A; Harmer, Catherine J; Margraf, Jürgen; Reinecke, Andrea
2018-05-01
The partial N-methyl-D-aspartate receptor agonist d-cycloserine may enhance psychological therapies. However, its exact mechanism of action is still being investigated. Cognitive bias modification techniques allow isolation of cognitive processes and thus investigation of how they may be affected by d-cycloserine. We used a cognitive bias modification paradigm targeting appraisals of a stressful event, Cognitive Bias Modification-Appraisal, to investigate whether d-cycloserine enhanced the modification of appraisal, and whether it caused greater reduction in indices of psychopathology. Participants received either 250 mg of d-cycloserine ( n=19) or placebo ( n=19). As a stressor task, participants recalled a negative life event, followed by positive Cognitive Bias Modification-Appraisal training. Before and after Cognitive Bias Modification-Appraisal, appraisals and indices of psychopathology related to the stressor were assessed. Cognitive Bias Modification-Appraisal successfully modified appraisals, but d-cycloserine did not affect appraisals post-training. There were no post-training group differences in frequency of intrusions. Interestingly, d-cycloserine led to a greater reduction in distress and impact on state mood from recalling the event, and lower distress post-training was associated with fewer intrusions. Therefore, d-cycloserine may affect emotional reactivity to recalling a negative event when combined with induction of a positive appraisal style, but via a mechanism other than enhanced learning of the appraisal style.
Hu, Danqing; Flick, Randall P; Zaccariello, Michael J; Colligan, Robert C; Katusic, Slavica K; Schroeder, Darrell R; Hanson, Andrew C; Buenvenida, Shonie L; Gleich, Stephen J; Wilder, Robert T; Sprung, Juraj; Warner, David O
2017-08-01
Exposure of young animals to general anesthesia causes neurodegeneration and lasting behavioral abnormalities; whether these findings translate to children remains unclear. This study used a population-based birth cohort to test the hypothesis that multiple, but not single, exposures to procedures requiring general anesthesia before age 3 yr are associated with adverse neurodevelopmental outcomes. A retrospective study cohort was assembled from children born in Olmsted County, Minnesota, from 1996 to 2000 (inclusive). Propensity matching selected children exposed and not exposed to general anesthesia before age 3 yr. Outcomes ascertained via medical and school records included learning disabilities, attention-deficit/hyperactivity disorder, and group-administered ability and achievement tests. Analysis methods included proportional hazard regression models and mixed linear models. For the 116 multiply exposed, 457 singly exposed, and 463 unexposed children analyzed, multiple, but not single, exposures were associated with an increased frequency of both learning disabilities and attention-deficit/hyperactivity disorder (hazard ratio for learning disabilities = 2.17 [95% CI, 1.32 to 3.59], unexposed as reference). Multiple exposures were associated with decreases in both cognitive ability and academic achievement. Single exposures were associated with modest decreases in reading and language achievement but not cognitive ability. These findings in children anesthetized with modern techniques largely confirm those found in an older birth cohort and provide additional evidence that children with multiple exposures are more likely to develop adverse outcomes related to learning and attention. Although a robust association was observed, these data do not determine whether anesthesia per se is causal.
Ehlhardt, L A; Sohlberg, M M; Glang, A; Albin, R
2005-08-10
The purpose of this pilot study was to evaluate an instructional package that facilitates learning and retention of multi-step procedures for persons with severe memory and executive function impairments resulting from traumatic brain injury. The study used a multiple baseline across participants design. Four participants, two males and two females, ranging in age from 36-58 years, were taught a 7-step e-mail task. The instructional package (TEACH-M) was the experimental intervention and the number of correct e-mail steps learned was the dependent variable. Treatment effects were replicated across the four participants and maintained at 30 days post-treatment. Generalization and social validity data further supported the treatment programme. The results suggest that individuals with severe cognitive impairments are capable of learning new skills. Directions for future research include application of the instructional package to other multi-step procedures.
A Flipped Pedagogy for Expert Problem Solving
NASA Astrophysics Data System (ADS)
Pritchard, David
The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).
Complementing theory with practice to enhance Students' learning.
Suliman, Muhammad Imran; Imran, Faiqa; Ahmed, Syed Ahsanuddin; Rahim, Ikram Ur; Shafiq, Anser; Qayum, Iftikhar
2016-01-01
Combining cognitive skills teaching related to the techniques leads to better understanding in a skill training course; but still there a substantial disagreement in curriculum on such combinations. This study aims to help guide the designers in making the outline of instructional plan for a Clinical Skills Module (CSM) for the undergraduates. Objectives were to assess performance of students on a clinical skill after training by two different models of (hands-on only or with cognitive skills) instructions and explore their perception on the employment of educational strategies through Focus Group Discussions (FGD) through a Sequential mixed method study design: (1) Quantitative (Pre- and post-assessments and comparing their results (2) Qualitative (Exploration of perspectives through constructivist approach using qualitative phenomenological design) The study was conducted during the month of September, 2015 at Rabigh Medical College, King Abdul Aziz University, Jeddah. Students entering fourth year were randomized to two groups to participate in pre-post OSCE using global rating scale and their scores were compared. The examiners were kept blinded to the randomization of students undergoing two separate training methods. The test group (group A) was trained for both procedural as well as cognitive skills whereas the control group (Group-B) was trained only with hands-on practice. Later their perception about the addition of cognitive skills to improve of procedural skills was explored through focus group discussions. The recorded audio tapes of FGDs were transcribed and analysed thematically. Triangulation of themes and trends was achieved by relating the content analysis to the relevant frequency of quotes. Auditing of the data verification was done by all the authors separately.. A total of 42 students completed both pre- and post-tests. As a result, student performance in OSCE significantly increased from pre- to post-test (p<0.001) in both the groups; on the other hand no statistically significant difference was found in the pre- and posttest scores between groups A and B (p=0.108). Five themes (1) advantages, (2) disadvantages of combining theory with practice, (3) time balance in teaching a skill, (4) training on skills, (5) skillsassessment, were found prevalent on thematic analysis of the FGDs. Students' ability to grasp the procedural skills was not significantly different when they acquire the cognitive skills in addition to the practical sessions. Students were more convinced to adopt combination of the two in the learning of procedural skills.
Human simulations of vocabulary learning.
Gillette, J; Gleitman, H; Gleitman, L; Lederer, A
1999-12-07
The work reported here experimentally investigates a striking generalization about vocabulary acquisition: Noun learning is superior to verb learning in the earliest moments of child language development. The dominant explanation of this phenomenon in the literature invokes differing conceptual requirements for items in these lexical categories: Verbs are cognitively more complex than nouns and so their acquisition must await certain mental developments in the infant. In the present work, we investigate an alternative hypothesis; namely, that it is the information requirements of verb learning, not the conceptual requirements, that crucially determine the acquisition order. Efficient verb learning requires access to structural features of the exposure language and thus cannot take place until a scaffolding of noun knowledge enables the acquisition of clause-level syntax. More generally, we experimentally investigate the hypothesis that vocabulary acquisition takes place via an incremental constraint-satisfaction procedure that bootstraps itself into successively more sophisticated linguistic representations which, in turn, enable new kinds of vocabulary learning. If the experimental subjects were young children, it would be difficult to distinguish between this information-centered hypothesis and the conceptual change hypothesis. Therefore the experimental "learners" are adults. The items to be "acquired" in the experiments were the 24 most frequent nouns and 24 most frequent verbs from a sample of maternal speech to 18-24-month-old infants. The various experiments ask about the kinds of information that will support identification of these words as they occur in mother-to-child discourse. Both the proportion correctly identified and the type of word that is identifiable changes significantly as a function of information type. We discuss these results as consistent with the incremental construction of a highly lexicalized grammar by cognitively and pragmatically sophisticated human infants, but inconsistent with a procedure in which lexical acquisition is independent of and antecedent to syntax acquisition.
Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano
2013-11-15
Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.
Constraint-Based Modeling: From Cognitive Theory to Computer Tutoring--and Back Again
ERIC Educational Resources Information Center
Ohlsson, Stellan
2016-01-01
The ideas behind the constraint-based modeling (CBM) approach to the design of intelligent tutoring systems (ITSs) grew out of attempts in the 1980's to clarify how declarative and procedural knowledge interact during skill acquisition. The learning theory that underpins CBM was based on two conceptual innovations. The first innovation was to…
A Machine Learning Approach to Student Modeling. Technical Report No. 1. Annual Report, 11/82-11/83.
ERIC Educational Resources Information Center
Langley, Pat; And Others
The notion of buggy procedures has played an important role in recent cognitive models of mathematical skills. Some earlier work on student modeling used artificial intelligence methods to automatically construct buggy models of student behavior. An alternate approach, proposed here, draws on insights from the rapidly developing field of machine…
ERIC Educational Resources Information Center
Booth, Julie L.; Lange, Karin E.; Koedinger, Kenneth R.; Newton, Kristie J.
2013-01-01
In a series of two "in vivo" experiments, we examine whether correct and incorrect examples with prompts for self-explanation can be effective for improving students' conceptual understanding and procedural skill in Algebra when combined with guided practice. In Experiment 1, students working with the Algebra I Cognitive Tutor were randomly…
ERIC Educational Resources Information Center
Booth, Julie L.; Lange, Karin E.; Koedinger, Kenneth R.; Newton, Kristie J.
2013-01-01
In a series of two in vivo experiments, we examine whether correct and incorrect examples with prompts for self-explanation can be effective for improving students' conceptual understanding and procedural skill in Algebra when combined with guided practice. In Experiment 1, students working with the Algebra I Cognitive Tutor were randomly assigned…
ERIC Educational Resources Information Center
Cho, Soohyun; Ryali, Srikanth; Geary, David C.; Menon, Vinod
2011-01-01
Cognitive development and learning are characterized by diminished reliance on effortful procedures and increased use of memory-based problem solving. Here we identify the neural correlates of this strategy shift in 7-9-year-old children at an important developmental period for arithmetic skill acquisition. Univariate and multivariate approaches…
Sequential detection of learning in cognitive diagnosis.
Ye, Sangbeak; Fellouris, Georgios; Culpepper, Steven; Douglas, Jeff
2016-05-01
In order to look more closely at the many particular skills examinees utilize to answer items, cognitive diagnosis models have received much attention, and perhaps are preferable to item response models that ordinarily involve just one or a few broadly defined skills, when the objective is to hasten learning. If these fine-grained skills can be identified, a sharpened focus on learning and remediation can be achieved. The focus here is on how to detect when learning has taken place for a particular attribute and efficiently guide a student through a sequence of items to ultimately attain mastery of all attributes while administering as few items as possible. This can be seen as a problem in sequential change-point detection for which there is a long history and a well-developed literature. Though some ad hoc rules for determining learning may be used, such as stopping after M consecutive items have been successfully answered, more efficient methods that are optimal under various conditions are available. The CUSUM, Shiryaev-Roberts and Shiryaev procedures can dramatically reduce the time required to detect learning while maintaining rigorous Type I error control, and they are studied in this context through simulation. Future directions for modelling and detection of learning are discussed. © 2016 The British Psychological Society.
Nigam, Ravi; Schlosser, Ralf W; Lloyd, Lyle L
2006-09-01
Matrix strategies employing parts of speech arranged in systematic language matrices and milieu language teaching strategies have been successfully used to teach word combining skills to children who have cognitive disabilities and some functional speech. The present study investigated the acquisition and generalized production of two-term semantic relationships in a new population using new types of symbols. Three children with cognitive disabilities and little or no functional speech were taught to combine graphic symbols. The matrix strategy and the mand-model procedure were used concomitantly as intervention procedures. A multiple probe design across sets of action-object combinations with generalization probes of untrained combinations was used to teach the production of graphic symbol combinations. Results indicated that two of the three children learned the early syntactic-semantic rule of combining action-object symbols and demonstrated generalization to untrained action-object combinations and generalization across trainers. The results and future directions for research are discussed.
Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.
NASA Astrophysics Data System (ADS)
Salloum, Sara; BouJaoude, Saouma
2017-08-01
The purpose of this research is to better understand the uses and potential of triadic dialogue (initiation-response-feedback) as a dominant discourse pattern in test-driven environments. We used a Bakhtinian dialogic perspective to analyze interactions among high-stakes tests and triadic dialogue. Specifically, the study investigated (a) the global influence of high-stakes tests on knowledge types and cognitive processes presented and elicited by the science teacher in triadic dialogue and (b) the teacher's meaning making of her discourse patterns. The classroom talk occurred in a classroom where the teacher tried to balance conceptual learning with helping low-income public school students pass the national tests. Videos and transcripts of 20 grade 8 and 9 physical science sessions were analyzed qualitatively. Teacher utterances were categorized in terms of science knowledge types and cognitive processes. Explicitness and directionality of shifts among different knowledge types were analyzed. It was found that shifts between factual/conceptual/procedural-algorithmic and procedural inquiry were mostly dialectical and implicit, and dominated the body of concept development lessons. These shifts called for medium-level cognitive processes. Shifts between the different knowledge types and procedural-testing were more explicit and occurred mostly at the end of lessons. Moreover, the science teacher's focus on success and high expectations, her explicitness in dealing with high-stakes tests, and the relaxed atmosphere she created built a constructive partnership with the students toward a common goal of cracking the test. We discuss findings from a Bakhtinian dialogic perspective and the potential of triadic dialogue for teachers negotiating multiple goals and commitments.
Students' Involvement in Authentic Modelling Practices as Contexts in Chemistry Education
NASA Astrophysics Data System (ADS)
Prins, Gjalt T.; Bulte, Astrid M. W.; van Driel, Jan H.; Pilot, Albert
2009-11-01
In science education students should come to understand the nature and significance of models. A promising strategy to achieve this goal is using authentic modelling practices as contexts for meaningful learning of models and modelling. An authentic practice is defined as professionals working with common motives and purposes, pertaining to a similar type of procedure and applying relevant knowledge on the modelling issue they work on. In this study we evaluate whether the use of authentic practices initiates adequate students’ involvement. This was done by investigating students’ interests, ownership, familiarity and complexity. In addition, we evaluated students’ expressed modelling procedures in response to the modelling issues. We designed learning tasks which were enacted by a focus group of students. Three primary data sources were used to collect data. Firstly, a group discussion was organised in which students’ reflected on both authentic practices. Secondly, students filled in written questionnaires containing items on affective and cognitive aspects. Thirdly, the realised modelling procedures by students were analysed. The results show that students’ involvement was successfully initiated, evidenced by motivated students, willingness to continue and the completeness and quality of the realised modelling procedures. The design of the learning tasks proved to be successful in realising this involvement. The results obtained in this study support the strategy of using authentic modelling practices as contexts for meaningful learning of models and modelling.
Knowledge dimensions in hypothesis test problems
NASA Astrophysics Data System (ADS)
Krishnan, Saras; Idris, Noraini
2012-05-01
The reformation in statistics education over the past two decades has predominantly shifted the focus of statistical teaching and learning from procedural understanding to conceptual understanding. The emphasis of procedural understanding is on the formulas and calculation procedures. Meanwhile, conceptual understanding emphasizes students knowing why they are using a particular formula or executing a specific procedure. In addition, the Revised Bloom's Taxonomy offers a twodimensional framework to describe learning objectives comprising of the six revised cognition levels of original Bloom's taxonomy and four knowledge dimensions. Depending on the level of complexities, the four knowledge dimensions essentially distinguish basic understanding from the more connected understanding. This study identifiesthe factual, procedural and conceptual knowledgedimensions in hypothesis test problems. Hypothesis test being an important tool in making inferences about a population from sample informationis taught in many introductory statistics courses. However, researchers find that students in these courses still have difficulty in understanding the underlying concepts of hypothesis test. Past studies also show that even though students can perform the hypothesis testing procedure, they may not understand the rationale of executing these steps or know how to apply them in novel contexts. Besides knowing the procedural steps in conducting a hypothesis test, students must have fundamental statistical knowledge and deep understanding of the underlying inferential concepts such as sampling distribution and central limit theorem. By identifying the knowledge dimensions of hypothesis test problems in this study, suitable instructional and assessment strategies can be developed in future to enhance students' learning of hypothesis test as a valuable inferential tool.
Chatterji, Madhabi; Graham, Mark J; Wyer, Peter C
2009-12-01
The complex competency labeled practice-based learning and improvement (PBLI) by the Accreditation Council for Graduate Medical Education (ACGME) incorporates core knowledge in evidence-based medicine (EBM). The purpose of this study was to operationally define a "PBLI-EBM" domain for assessing resident physician competence. The authors used an iterative design process to first content analyze and map correspondences between ACGME and EBM literature sources. The project team, including content and measurement experts and residents/fellows, parsed, classified, and hierarchically organized embedded learning outcomes using a literature-supported cognitive taxonomy. A pool of 141 items was produced from the domain and assessment specifications. The PBLI-EBM domain and resulting items were content validated through formal reviews by a national panel of experts. The final domain represents overlapping PBLI and EBM cognitive dimensions measurable through written, multiple-choice assessments. It is organized as 4 subdomains of clinical action: Therapy, Prognosis, Diagnosis, and Harm. Four broad cognitive skill branches (Ask, Acquire, Appraise, and Apply) are subsumed under each subdomain. Each skill branch is defined by enabling skills that specify the cognitive processes, content, and conditions pertinent to demonstrable competence. Most items passed content validity screening criteria and were prepared for test form assembly and administration. The operational definition of PBLI-EBM competence is based on a rigorously developed and validated domain and item pool, and substantially expands conventional understandings of EBM. The domain, assessment specifications, and procedures outlined may be used to design written assessments to tap important cognitive dimensions of the overall PBLI competency, as given by ACGME. For more comprehensive coverage of the PBLI competency, such instruments need to be complemented with performance assessments.
Chatterji, Madhabi; Graham, Mark J.; Wyer, Peter C.
2009-01-01
Purpose The complex competency labeled practice-based learning and improvement (PBLI) by the Accreditation Council for Graduate Medical Education (ACGME) incorporates core knowledge in evidence-based medicine (EBM). The purpose of this study was to operationally define a “PBLI-EBM” domain for assessing resident physician competence. Method The authors used an iterative design process to first content analyze and map correspondences between ACGME and EBM literature sources. The project team, including content and measurement experts and residents/fellows, parsed, classified, and hierarchically organized embedded learning outcomes using a literature-supported cognitive taxonomy. A pool of 141 items was produced from the domain and assessment specifications. The PBLI-EBM domain and resulting items were content validated through formal reviews by a national panel of experts. Results The final domain represents overlapping PBLI and EBM cognitive dimensions measurable through written, multiple-choice assessments. It is organized as 4 subdomains of clinical action: Therapy, Prognosis, Diagnosis, and Harm. Four broad cognitive skill branches (Ask, Acquire, Appraise, and Apply) are subsumed under each subdomain. Each skill branch is defined by enabling skills that specify the cognitive processes, content, and conditions pertinent to demonstrable competence. Most items passed content validity screening criteria and were prepared for test form assembly and administration. Conclusions The operational definition of PBLI-EBM competence is based on a rigorously developed and validated domain and item pool, and substantially expands conventional understandings of EBM. The domain, assessment specifications, and procedures outlined may be used to design written assessments to tap important cognitive dimensions of the overall PBLI competency, as given by ACGME. For more comprehensive coverage of the PBLI competency, such instruments need to be complemented with performance assessments. PMID:21975994
The screening role of an introductory course in cognitive therapy training.
Pehlivanidis, Artemios; Papanikolaou, Katerina; Politis, Antonis; Liossi, Angeliki; Daskalopoulou, Evgenia; Gournellis, Rossetos; Soldatos, Marina; Papakosta, Vasiliki Maria; Zervas, Ioannis; Papakostas, Yiannis G
2006-01-01
This study examines the role of an introductory course in cognitive therapy and the relative importance of trainees' characteristics in the selection process for an advanced course in cognitive therapy. The authors assessed the files of all trainees who completed one academic year introductory course in cognitive therapy over the last seven consecutive years (N = 203). The authors examined variables such as previous training, overall involvement during the course, performance, and ability to relate to others, as well as the trainer's evaluations of their performance. Interaction skills in group situations and performance in written assignments were better predictors for admission into the advanced course. Trainees' abilities to learn and to successfully relate to others in group situations are critical for entering an advanced cognitive therapy training course. These findings question the policy of full-scale training in cognitive therapy based merely on the candidates' professional background, stressing instead the merits of an introductory course as an appropriate screening procedure.
Students' experiences of learning manual clinical skills through simulation.
Johannesson, Eva; Silén, Charlotte; Kvist, Joanna; Hult, Håkan
2013-03-01
Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and thoughts about their learning through simulation skills training. The study was designed for an educational setting at a clinical skills centre. Ten third-year undergraduate nursing students performed urethral catheterisation, using the virtual reality simulator UrecathVision™, which has haptic properties. The students practised in pairs. Each session was videotaped and the video was used to stimulate recall in subsequent interviews. The interviews were analysed using qualitative content analysis. The analysis from interviews resulted in three themes: what the students learn, how the students learn, and the simulator's contribution to the students' learning. Students learned manual skills, how to perform the procedure, and professional behaviour. They learned by preparing, watching, practising and reflecting. The simulator contributed by providing opportunities for students to prepare for the skills training, to see anatomical structures, to feel resistance, and to become aware of their own performance ability. The findings show that the students related the task to previous experiences, used sensory information, tested themselves and practised techniques in a hands-on fashion, and reflected in and on action. The simulator was seen as a facilitator to learning the manual skills. The study design, with students working in pairs combined with video recording, was found to enhance opportunities for reflection.
Perfetti, Charles; Cao, Fan; Booth, James
2014-01-01
Understanding Chinese reading is important for identifying the universal aspects of reading, separated from those aspects that are specific to alphabetic writing or to English in particular. Chinese and alphabetic writing make different demands on reading and learning to read, despite reading procedures and their supporting brain networks that are partly universal. Learning to read accommodates the demands of a writing system through the specialization of brain networks that support word identification. This specialization increases with reading development, leading to differences in the brain networks for alphabetic and Chinese reading. We suggest that beyond reading procedures that are partly universal and partly writing-system specific, functional reading universals arise across writing systems in their adaptation to human cognitive abilities. PMID:24744605
Maran, Thomas; Sachse, Pierre; Martini, Markus; Weber, Barbara; Pinggera, Jakob; Zuggal, Stefan; Furtner, Marco
2017-01-01
Biased cognition during high arousal states is a relevant phenomenon in a variety of topics: from the development of post-traumatic stress disorders or stress-triggered addictive behaviors to forensic considerations regarding crimes of passion. Recent evidence indicates that arousal modulates the engagement of a hippocampus-based “cognitive” system in favor of a striatum-based “habit” system in learning and memory, promoting a switch from flexible, contextualized to more rigid, reflexive responses. Existing findings appear inconsistent, therefore it is unclear whether and which type of context processing is disrupted by enhanced arousal. In this behavioral study, we investigated such arousal-triggered cognitive-state shifts in human subjects. We validated an arousal induction procedure (three experimental conditions: violent scene, erotic scene, neutral control scene) using pupillometry (Preliminary Experiment, n = 13) and randomly administered this method to healthy young adults to examine whether high arousal states affect performance in two core domains of contextual processing, the acquisition of spatial (spatial discrimination paradigm; Experiment 1, n = 66) and sequence information (learned irrelevance paradigm; Experiment 2, n = 84). In both paradigms, spatial location and sequences were encoded incidentally and both displacements when retrieving spatial position as well as the predictability of the target by a cue in sequence learning changed stepwise. Results showed that both implicit spatial and sequence learning were disrupted during high arousal states, regardless of valence. Compared to the control group, participants in the arousal conditions showed impaired discrimination of spatial positions and abolished learning of associative sequences. Furthermore, Bayesian analyses revealed evidence against the null models. In line with recent models of stress effects on cognition, both experiments provide evidence for decreased engagement of flexible, cognitive systems supporting encoding of context information in active cognition during acute arousal, promoting reduced sensitivity for contextual details. We argue that arousal fosters cognitive adaptation towards less demanding, more present-oriented information processing, which prioritizes a current behavioral response set at the cost of contextual cues. This transient state of behavioral perseverance might reduce reliance on context information in unpredictable environments and thus represent an adaptive response in certain situations. PMID:29170634
ERIC Educational Resources Information Center
Schoenfeld, Alan H.
1992-01-01
Reacts to Ohlsson, Ernst, and Rees' paper by initially discussing the costs of methodology that utilizes artificial intelligence (AI) to model cognitive processes. Raises three concerns with the paper: insufficient clarification of the meaning of conceptual versus procedural understanding of base-10 subtraction; realism of the learning model; and…
ERIC Educational Resources Information Center
Dorion, Kirk Robert
2009-01-01
Over 20 years of research into the use of cross-curricular drama in secondary science has indicated that this medium enables learning of affective, cognitive and procedural knowledge. To date, academic research has tended to frame successful drama pedagogy as resulting from a Drama-in-Education approach, incorporating extended role plays and…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing; Tobias, Stephen
2014-01-01
Eighth grade students in Australia (N = 60) participated in an experiment on learning how to solve percentage change problems in a regular classroom in three conditions: unitary, pictorial, and equation approaches. The procedure involved a pre-test, an acquisition phase, and a post-test. The main goal was to test the relative merits of the three…
ERIC Educational Resources Information Center
Nader, Rebecca S.; Smith, Carlyle T.; Nixon, Margaret R.
2004-01-01
Posttraining rapid eye movement (REM) sleep has been reported to be important for efficient memory consolidation. The present results demonstrate increases in the intensity of REM sleep during the night of sleep following cognitive procedural/implicit task acquisition. These REM increases manifest as increases in total number of rapid eye…
Kellman, Philip J; Massey, Christine M; Son, Ji Y
2010-04-01
Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.
Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory
Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo
2012-01-01
Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133
Teaching & Learning Tips 1: Teaching perspectives - an introduction.
Rana, Jasmine; Burgin, Susan
2017-11-01
Challenge: Clinical and research responsibilities often leave little or no time to plan thoughtful teaching encounters with trainees. This "Teaching & Learning Tips" series is designed to be an accessible guide for dermatologists who want to improve their teaching skills. It is comprised of 12 articles about how to enhance teaching in various settings informed by research about how people learn and expert-derived or data-driven best practices for teaching. The series begins with a review of principles to optimize learning in any setting, including cognitive load theory, active learning strategies, and the impact of motivation and emotion on learning. It transitions into a practical "how to" guide format for common teaching scenarios in dermatology, such as lecturing, case-based teaching, and teaching procedures, among others. Herein, we kickoff the series by unpacking assumptions about teaching and learning. What does it mean to teach and learn? © 2017 The International Society of Dermatology.
Leach, P T; Crawley, J N
2017-12-20
Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2 Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Darcet, Flavie; Gardier, Alain M.; Gaillard, Raphael; David, Denis J.; Guilloux, Jean-Philippe
2016-01-01
Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed. PMID:26901205
The Effects of Mood, Cognitive Style, and Cognitive Ability on Implicit Learning
ERIC Educational Resources Information Center
Pretz, Jean E.; Totz, Kathryn Sentman; Kaufman, Scott Barry
2010-01-01
In an experiment with 109 undergraduates, we examined the effect of mood, cognitive style, and cognitive ability on implicit learning in the Artificial Grammar (AG) and Serial Reaction Time (SRT) tasks. Negative mood facilitated AG learning, but had no significant effect on SRT learning. Rational cognitive style predicted greater learning on both…
Learning: from association to cognition.
Shanks, David R
2010-01-01
Since the very earliest experimental investigations of learning, tension has existed between association-based and cognitive theories. Associationism accounts for the phenomena of both conditioning and "higher" forms of learning via concepts such as excitation, inhibition, and reinforcement, whereas cognitive theories assume that learning depends on hypothesis testing, cognitive models, and propositional reasoning. Cognitive theories have received considerable impetus in regard to both human and animal learning from recent research suggesting that the key illustration of cue selection in learning, blocking, often arises from inferential reasoning. At the same time, a dichotomous view that separates noncognitive, unconscious (implicit) learning from cognitive, conscious (explicit) learning has gained favor. This review selectively describes key findings from this research, evaluates evidence for and against associative and cognitive explanatory constructs, and critically examines both the dichotomous view of learning as well as the claim that learning can occur unconsciously.
Tsiriotakis, Ioanna K.; Vassilaki, Eleni; Spantidakis, Ioannis; Stavrou, Nektarios A. M.
2017-01-01
Empirical studies have shown that anxiety and negative emotion can hinder language acquisition. The present study implemented a writing instructional model so as to investigate its effects on the writing anxiety levels of English Foreign Language learners. The study was conducted with 177 participants, who were administered the Second Language Writing Anxiety Inventory (SLWAI; Cheng, 2004) that assesses somatic, cognitive and behavioral anxiety, both at baseline and following the implementation of a writing instructional model. The hypothesis stated that the participant's writing anxiety levels would lessen following the provision of a writing strategy-based procedural facilitative environment that fosters cognitive apprenticeship. The initial hypothesis was supported by the findings. Specifically, in the final measurement statistical significant differences appeared where participants in the experimental group showed notable lower mean values of the three factors of anxiety, a factor that largely can be attributed to the content of the intervention program applied to this specific group. The findings validate that Foreign Language writing anxiety negatively effects Foreign Language learning and performance. The findings also support the effectiveness of strategy-based procedural facilitative writing environments that foster cognitive apprenticeship, so as to enhance language skill development and reduce feelings of Foreign Language writing anxiety. PMID:28119658
Tsiriotakis, Ioanna K; Vassilaki, Eleni; Spantidakis, Ioannis; Stavrou, Nektarios A M
2016-01-01
Empirical studies have shown that anxiety and negative emotion can hinder language acquisition. The present study implemented a writing instructional model so as to investigate its effects on the writing anxiety levels of English Foreign Language learners. The study was conducted with 177 participants, who were administered the Second Language Writing Anxiety Inventory (SLWAI; Cheng, 2004) that assesses somatic, cognitive and behavioral anxiety, both at baseline and following the implementation of a writing instructional model. The hypothesis stated that the participant's writing anxiety levels would lessen following the provision of a writing strategy-based procedural facilitative environment that fosters cognitive apprenticeship. The initial hypothesis was supported by the findings. Specifically, in the final measurement statistical significant differences appeared where participants in the experimental group showed notable lower mean values of the three factors of anxiety, a factor that largely can be attributed to the content of the intervention program applied to this specific group. The findings validate that Foreign Language writing anxiety negatively effects Foreign Language learning and performance. The findings also support the effectiveness of strategy-based procedural facilitative writing environments that foster cognitive apprenticeship, so as to enhance language skill development and reduce feelings of Foreign Language writing anxiety.
Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2014-12-01
Component cognitive and motor processes contributing to diminished visuomotor procedural learning in HIV infection with comorbid chronic alcoholism (HIV+ALC) include problems with attention and explicit memory processes. The neural correlates associated with this constellation of cognitive and motor processes in HIV infection and alcoholism have yet to be delineated. Frontostriatal regions are affected in HIV infection, frontothalamocerebellar regions are affected in chronic alcoholism, and frontolimbic regions are likely affected in both; all three of these systems have the potential of contributing to both visuomotor procedural learning and explicit memory processes. Here, we examined the neural correlates of implicit memory, explicit memory, attention, and motor tests in 26 HIV+ALC (5 with comorbidity for nonalcohol drug abuse/dependence) and 19 age-range matched healthy control men. Parcellated brain volumes, including cortical, subcortical, and allocortical regions, as well as cortical sulci and ventricles, were derived using the SRI24 brain atlas. Results indicated that smaller thalamic volumes were associated with poorer performance on tests of explicit (immediate and delayed) and implicit (visuomotor procedural) memory in HIV+ALC. By contrast, smaller hippocampal volumes were associated with lower scores on explicit, but not implicit memory. Multiple regression analyses revealed that volumes of both the thalamus and the hippocampus were each unique independent predictors of explicit memory scores. This study provides evidence of a dissociation between implicit and explicit memory tasks in HIV+ALC, with selective relationships observed between hippocampal volume and explicit but not implicit memory, and highlights the relevance of the thalamus to mnemonic processes.
Assessing the effect of cognitive styles with different learning modes on learning outcome.
Liao, Chechen; Chuang, Shu-Hui
2007-08-01
In this study, similarities and differences in learning outcome associated with individual differences in cognitive styles are examined using the traditional (face-to-face) and web-based learning modes. 140 undergraduate students were categorized as having analytic or holistic cognitive styles by their scores on the Style of Learning and Thinking questionnaire. Four different conditions were studies; students with analytic cognitive style in a traditional learning mode, analytic cognitive style in a web-based learning mode, holistic cognitive style in a traditional learning mode, and holistic cognitive style in a web-based learning mode. Analysis of the data show that analytic style in traditional mode lead to significantly higher performance and perceived satisfaction than in other conditions. Satisfaction did not differ significantly between students with analytic style in web-based learning and those with holistic style in traditional learning. This suggest that integrating different learning modes into the learning environment may be insufficient to improve learners' satisfaction.
ERIC Educational Resources Information Center
Klein, Davina C. D.; O'Neil, Harold F., Jr.; Dennis, Robert A.; Baker, Eva L.
A cognitive demands analysis of a learning technology, a term that includes the hardware and the computer software products that form learning environments, attempts to describe the types of cognitive learning expected of the individual by the technology. This paper explores the context of cognitive learning, suggesting five families of cognitive…
Designing a training tool for imaging mental models
NASA Technical Reports Server (NTRS)
Dede, Christopher J.; Jayaram, Geetha
1990-01-01
The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.
[New trends in the evaluation of mathematics learning disabilities. The role of metacognition].
Miranda-Casas, A; Acosta-Escareño, G; Tarraga-Minguez, R; Fernández, M I; Rosel-Remírez, J
2005-01-15
The current trends in the evaluation of mathematics learning disabilities (MLD), based on cognitive and empirical models, are oriented towards combining procedures involving the criteria and the evaluation of cognitive and metacognitive processes, associated to performance in mathematical tasks. The objective of this study is to analyse the metacognitive skills of prediction and evaluation in performing maths tasks and to compare metacognitive performance among pupils with MLD and younger pupils without MLD, who have the same level of mathematical performance. Likewise, we analyse these pupils' desire to learn. Subjects and methods. We compare a total of 44 pupils from the second cycle of primary education (8-10 years old) with and without mathematics learning disabilities. Significant differences are observed between pupils with and without mathematics learning disabilities in their capacity to predict and assess all of the tasks evaluated. As regards their 'desire to learn', no significant differences were found between pupils with and without MLD, which indicated that those with MLD assess their chances of successfully performing maths tasks in the same way as those without MLD. Finally, the findings reveal a similar metacognitive profile in pupils with MLD and the younger pupils with no mathematics learning disabilities. In future studies we consider it important to analyse the influence of the socio-affective belief system in the use of metacognitive skills.
[Surgical laboratory in pregraduate medicine.
Tapia-Jurado, Jesús
2011-01-01
Surgical laboratory in pregraduate students in medicine is beneficial and improves learning processes in cognitive aspects and skills acquisition. It is also an early initiation into scientific research. The laboratory is the introductory pathway into basic concepts of medical science (meaningful learning). It is also where students gain knowledge in procedures and abilities to obtain professional skills, an interactive teacher-student process. Medicine works rapidly to change from an art to a science. This fact compromises all schools and medical faculties to analyze their actual lesson plans. Simulators give students confidence and ability and save time, money and resources, eliminating at the same time the ethical factor of using live animals and the fear of patient safety. Multimedia programs may give a cognitive context evolving logically with an explanation based on written and visual animation followed by a clinical problem and its demonstration in a simulator, all before applying knowledge to the patient.
Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Phan, Huy Phuong
2016-01-01
We examined the use of balance and inverse methods in equation solving. The main difference between the balance and inverse methods lies in the operational line (e.g. +2 on both sides vs -2 becomes +2). Differential element interactivity favours the inverse method because the interaction between elements occurs on both sides of the equation for…
Behavioral Variability, Learning Processes, and Creativity
1990-09-01
Nursery Schools . ~ 9-10 y.o. subjects, at the concrete operative stage and coming from Primary Schools . - 14-15 y.o. subjects, at the formal thought...stage and coming from General Secondary Schools (no Technical School subject has been considered). - Adults, students at the University. Cognitive...classifications combine in a single situation, the operations of seiation and of classification, as approached in the classical Piaget’s procedures
Training-Based Requirements for Semi-Automated Forces
1999-03-01
ARI Research Note 99-18 Training-based Requirements for Semi-Automated Forces Jim Kornell Syukhtun Research, Inc. Research and Advanced Concepts ... Concepts , Inc.; Dr. Susan Fischer, of Anacapa Sciences, Inc.; and Lt. Col. Ken Bell, ret., of THETA Technologies, Inc. All conclusions and...construed) in terms of symbols and concepts , and/or the learning of procedural knowledge. • Cognitive strategies. Skills for governing thinking. This
The Influences of Cognitive Styles on Individual Learning and Collaborative Learning
ERIC Educational Resources Information Center
Chen, Sherry Y.; Chang, Li-Ping
2016-01-01
Both individual learning (IL) and collaborative learning (CL) provide students with different benefits. However, previous research indicates that cognitive styles affect students' learning preferences. Thus, it is necessary to examine how cognitive styles influence students' reactions to IL and CL. Among various cognitive styles, Pask's…
NASA Astrophysics Data System (ADS)
Blums, Angela
The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.
Our (Represented) World: A Quantum-Like Object
NASA Astrophysics Data System (ADS)
Lambert-Mogiliansky, Ariane; Dubois, François
It has been suggested that observed cognitive limitations may be an expression of the quantum-like structure of the mind. In this chapter we explore some implications of this hypothesis for learning i.e., for the construction of a representation of the world. For a quantum-like individual, there exists a multiplicity of mentally incompatible (Bohr complementary) but equally valid and complete representations (mental pictures) of the world. The process of learning i.e., of constructing a representation, involves two kinds of operations on the mental picture. The acquisition of new data which is modelled as a preparation procedure and the processing of data which is modelled as an introspective measurement operation. This process is shown not to converge to a single mental picture. Rather, it can evolve forever. We define a concept of entropy to capture relative intrinsic uncertainty. The analysis suggests a new perspective on learning. First, it implies that we must turn to double objectification as in Quantum Mechanics: the cognitive process is the primary object of learning. Second, it suggests that a representation of the world arises as the result of creative interplay between the mind and the environment.
The use of cognitive task analysis to improve the learning of percutaneous tracheostomy placement.
Sullivan, Maura E; Brown, Carlos V R; Peyre, Sarah E; Salim, Ali; Martin, Matthew; Towfigh, Shirin; Grunwald, Tiffany
2007-01-01
The purpose of the current study was to determine the effectiveness of using cognitive task analysis (CTA) to develop a curriculum to teach the behavioral skills and the cognitive strategies of a percutaneous tracheostomy (PT) placement. Postgraduate 2, 3, and 4 general surgery residents were randomly assigned to either the CTA group (N = 9) or the control group (N = 11). The CTA group was taught percutaneous tracheostomy placement using the CTA curriculum. The control group received the traditional curriculum. The CTA group performed significantly higher on the PT procedure at 1 month (CTA: 43.5 +/- 3.7, control 35.2 +/- 3.9, P = .001) and at 6 months post-instruction (CTA: 39.4 +/- 4.2, control: 31.8 +/- 5.8, P = .004). In addition, the CTA group demonstrated superior cognitive strategies than the control group (CTA: 25.4 +/- 5.3, control: 19.2 +/- 2.0, P = .004). The use of CTA was effective in improving the cognitive processes and technical skills of performing a PT for surgical residents.
Luker, Kali R; Sullivan, Maura E; Peyre, Sarah E; Sherman, Randy; Grunwald, Tiffany
2008-01-01
The aim of this study was to compare the surgical knowledge of residents before and after receiving a cognitive task analysis-based multimedia teaching module. Ten plastic surgery residents were evaluated performing flexor tendon repair on 3 occasions. Traditional learning occurred between the first and second trial and served as the control. A teaching module was introduced as an intervention between the second and third trial using cognitive task analysis to illustrate decision-making skills. All residents showed improvement in their decision-making ability when performing flexor tendon repair after each surgical procedure. The group improved through traditional methods as well as exposure to our talk-aloud protocol (P > .01). After being trained using the cognitive task analysis curriculum the group displayed a statistically significant knowledge expansion (P < .01). Residents receiving cognitive task analysis-based multimedia surgical curriculum instruction achieved greater command of problem solving and are better equipped to make correct decisions in flexor tendon repair.
ERIC Educational Resources Information Center
VanLehn, Kurt; Zhang, Lishan; Burleson, Winslow; Girard, Sylvie; Hidago-Pontet, Yoalli
2017-01-01
This project aimed to improve students' learning and task performance using a non-cognitive learning companion in the context of both a tutor and a meta-tutor. The tutor taught students how to construct models of dynamic systems and the meta-tutor taught students a learning strategy. The non-cognitive learning companion was designed to increase…
Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline
Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel
2016-01-01
The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186
NASA Astrophysics Data System (ADS)
Sliva, Yekaterina
The purpose of this study was to introduce an instructional technique for teaching complex tasks in physics, test its effectiveness and efficiency, and understand cognitive processes taking place in learners' minds while they are exposed to this technique. The study was based primarily on cognitive load theory (CLT). CLT determines the amount of total cognitive load imposed on a learner by a learning task as combined intrinsic (invested in comprehending task complexity) and extraneous (wasteful) cognitive load. Working memory resources associated with intrinsic cognitive load are defined as germane resources caused by element interactivity that lead to learning, in contrast to extraneous working memory resources that are devoted to dealing with extraneous cognitive load. However, the amount of learner's working memory resources actually devoted to a task depends on how well the learner is engaged in the learning environment. Since total cognitive load has to stay within limits of working memory capacity, both extraneous and intrinsic cognitive load need to be reduced. In order for effective learning to occur, the use of germane cognitive resources should be maximized. In this study, the use of germane resources was maximized for two experimental groups by providing a learning environment that combined problem-solving procedure with prompts to self-explain with and without completion problems. The study tested three hypotheses and answered two research questions. The first hypothesis predicting that experimental treatments would reduce total cognitive load was not supported. The second hypothesis predicting that experimental treatments would increase performance was supported for the self-explanation group only. The third hypothesis that tested efficiency measure as adopted from Paas and van Merrienboer (1993) was not supported. As for the research question of whether the quality of self-explanations would change with time for the two experimental conditions, it was determined that time had a positive effect on such quality. The research question that investigated learners' attitudes towards the instructions revealed that experimental groups understood the main idea behind the suggested technique and positively reacted to it. The results of the study support the conclusions that (a) prompting learners to self-explain while independently solving problems can increase performance, especially on far transfer questions; (b) better performance is achieved in combination with increased mental effort; (c) self-explanations do not increase time on task; and (d) quality of self-explanations can be improved with time. Results based on the analyses of learners' attitudes further support that learners in the experimental groups understood the main idea behind the suggested techniques and positively reacted to them. The study also raised concern about application of efficiency formula for instructional conditions that increase both performance and mental effort in CLT. As a result, an alternative model was suggested to explain the relationship between performance and mental effort based on Yerkes-Dodson law (1908). Keywords: instructional design, cognitive load, complex tasks, problem-solving, self-explanation.
Learning During Stressful Times
Shors, Tracey J.
2012-01-01
Stressful life events can have profound effects on our cognitive and motor abilities, from those that could be construed as adaptive to those not so. In this review, I discuss the general notion that acute stressful experience necessarily impairs our abilities to learn and remember. The effects of stress on operant conditioning, that is, learned helplessness, as well as those on classical conditioning procedures are discussed in the context of performance and adaptation. Studies indicating sex differences in learning during stressful times are discussed, as are those attributing different responses to the existence of multiple memory systems and nonlinear relationships. The intent of this review is to highlight the apparent plasticity of the stress response, how it might have evolved to affect both performance and learning processes, and the potential problems with interpreting stress effects on learning as either good or bad. An appreciation for its plasticity may provide new avenues for investigating its underlying neuronal mechanisms. PMID:15054128
Thrive or overload? The effect of task complexity on novices' simulation-based learning.
Haji, Faizal A; Cheung, Jeffrey J H; Woods, Nicole; Regehr, Glenn; de Ribaupierre, Sandrine; Dubrowski, Adam
2016-09-01
Fidelity is widely viewed as an important element of simulation instructional design based on its purported relationship with transfer of learning. However, higher levels of fidelity may increase task complexity to a point at which novices' cognitive resources become overloaded. In this experiment, we investigate the effects of variations in task complexity on novices' cognitive load and learning during simulation-based procedural skills training. Thirty-eight medical students were randomly assigned to simulation training on a simple or complex lumbar puncture (LP) task. Participants completed four practice trials on this task (skill acquisition). After 10 days of rest, all participants completed one additional trial on their assigned task (retention) and one trial on a 'very complex' simulation designed to be similar to the complex task (transfer). We assessed LP performance and cognitive load on each trial using multiple measures. In both groups, LP performance improved significantly during skill acquisition (p ≤ 0.047, f = 0.29-0.96) and was maintained at retention. The simple task group demonstrated superior performance compared with the complex task group throughout these phases (p ≤ 0.002, d = 1.13-2.31). Cognitive load declined significantly in the simple task group (p < 0.009, f = 0.48-0.76), but not in the complex task group during skill acquisition, and remained lower at retention (p ≤ 0.024, d = 0.78-1.39). Between retention and transfer, LP performance declined and cognitive load increased in the simple task group, whereas both remained stable in the complex task group. At transfer, no group differences were observed in LP performance and cognitive load, except that the simple task group made significantly fewer breaches of sterility (p = 0.023, d = 0.80). Reduced task complexity was associated with superior LP performance and lower cognitive load during skill acquisition and retention, but mixed results on transfer to a more complex task. These results indicate that task complexity is an important factor that may mediate (via cognitive overload) the relationship between instructional design elements (e.g. fidelity) and simulation-based learning outcomes. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
ERIC Educational Resources Information Center
Greer, Diana L.; Crutchfield, Stephen A.; Woods, Kari L.
2013-01-01
Struggling learners and students with Learning Disabilities often exhibit unique cognitive processing and working memory characteristics that may not align with instructional design principles developed with typically developing learners. This paper explains the Cognitive Theory of Multimedia Learning and underlying Cognitive Load Theory, and…
Tiger salamanders' (Ambystoma tigrinum) response learning and usage of visual cues.
Kundey, Shannon M A; Millar, Roberto; McPherson, Justin; Gonzalez, Maya; Fitz, Aleyna; Allen, Chadbourne
2016-05-01
We explored tiger salamanders' (Ambystoma tigrinum) learning to execute a response within a maze as proximal visual cue conditions varied. In Experiment 1, salamanders learned to turn consistently in a T-maze for reinforcement before the maze was rotated. All learned the initial task and executed the trained turn during test, suggesting that they learned to demonstrate the reinforced response during training and continued to perform it during test. In a second experiment utilizing a similar procedure, two visual cues were placed consistently at the maze junction. Salamanders were reinforced for turning towards one cue. Cue placement was reversed during test. All learned the initial task, but executed the trained turn rather than turning towards the visual cue during test, evidencing response learning. In Experiment 3, we investigated whether a compound visual cue could control salamanders' behaviour when it was the only cue predictive of reinforcement in a cross-maze by varying start position and cue placement. All learned to turn in the direction indicated by the compound visual cue, indicating that visual cues can come to control their behaviour. Following training, testing revealed that salamanders attended to stimuli foreground over background features. Overall, these results suggest that salamanders learn to execute responses over learning to use visual cues but can use visual cues if required. Our success with this paradigm offers the potential in future studies to explore salamanders' cognition further, as well as to shed light on how features of the tiger salamanders' life history (e.g. hibernation and metamorphosis) impact cognition.
ERIC Educational Resources Information Center
Keach, Everett T., Jr.; Pierfy, David A.
The research in this report was conducted to assess the cognitive impact of a simulation game designed to teach selected geographic data about wind and ocean currents to fifth graders. A two-group, post-test research design was used. A random procedure was used to assign 185 students to two treatment groups. The sample was divided by sex, ranked…
1981-01-01
errors more than twice that shown by the control group (32% versus 13%). The quantitative difference between training and control groups was further...could be enhanced (relative to control groups ) by means of brief training procedures. Educational implications of metaphor research were considered, with...instruction: It addresses itself to the kinds of research and instructional designs required for effective implementation of adaptive instruction ONR
Business Simulations and Cognitive Learning: Developments, Desires, and Future Directions
ERIC Educational Resources Information Center
Anderson, Philip H.; Lawton, Leigh
2009-01-01
This article focuses on the research associated with the assessment of the cognitive learning that occurs through participation in a simulation exercise. It summarizes the "objective" evidence regarding cognitive learning versus the "perceptions" of cognitive learning achieved as reported by participants and instructors. The authors also explain…
ERIC Educational Resources Information Center
Sadi, Özlem
2017-01-01
The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…
Zhou, Wei; Baughman, Brittanie D; Soman, Salil; Wintermark, Max; Lazzeroni, Laura C.; Hitchner, Elizabeth; Bhat, Jyoti; Rosen, Allyson
2016-01-01
OBJECTIVE Carotid intervention is safe and effective in stroke prevention in appropriately selected patients. Despite minimal neurologic complications, procedure-related subclinical microemboli are common and their cognitive effects are largely unknown. In this prospective longitudinal study, we sought to determine long-term cognitive effects of embolic infarcts. METHODS 119 patients including 46% symptomatic patients who underwent carotid revascularization were recruited. Neuropsychological testing was administered preoperatively and at 1, 6, and 12 months postoperatively. Rey Auditory Learning Test (RAVLT) was the primary cognitive measure with parallel forms to avoid practice effort. All patients also received 3T brain MRIs with a diffusion-weighted sequence (DWI) preoperatively and within 48 hours postoperatively to identify procedure-related new embolic lesions. Each DWI lesion was manually traced and input into a neuroimaging program to define volume. Embolic infarct volumes were correlated with cognitive measures. Regression models were used to identify relationships between infarct volumes and cognitive measures. RESULTS A total 587 DWI lesions were identified on 3T MRI in 81.7% of CAS and 36.4% of CEA patients with a total volume of 29327mm3. Among them, 54 DWI lesions were found in CEA patients and 533 in the CAS patients. Four patients had transient postoperative neurologic symptoms and one had a stroke. CAS was an independent predictor of embolic infarct (OR: 6.6 [2.1–20.4], p<.01) and infarct volume (P=.004). Diabetes and contralateral carotid severe stenosis/occlusion had a trend of positive association with infarct volume, while systolic blood pressure more or equal to 140mmHg had a negative association (P=.1, .09, and .1, respectively). There was a trend of improved RAVLT scores overall following carotid revascularization. Significantly higher infarct volumes were observed among those with RAVLT decline. Within the CAS cohort, infarct volume was negatively correlated with short and long-term RAVLT changes (P<0.05). CONCLUSIONS Cognitive assessment of procedure-related subclinical microemboli is challenging. Volumes of embolic infarct correlates with long-term cognitive changes, suggesting that micro-embolization should be considered as a surrogate measure for carotid disease management. PMID:28024850
A Cognitive Neural Architecture Able to Learn and Communicate through Natural Language.
Golosio, Bruno; Cangelosi, Angelo; Gamotina, Olesya; Masala, Giovanni Luca
2015-01-01
Communicative interactions involve a kind of procedural knowledge that is used by the human brain for processing verbal and nonverbal inputs and for language production. Although considerable work has been done on modeling human language abilities, it has been difficult to bring them together to a comprehensive tabula rasa system compatible with current knowledge of how verbal information is processed in the brain. This work presents a cognitive system, entirely based on a large-scale neural architecture, which was developed to shed light on the procedural knowledge involved in language elaboration. The main component of this system is the central executive, which is a supervising system that coordinates the other components of the working memory. In our model, the central executive is a neural network that takes as input the neural activation states of the short-term memory and yields as output mental actions, which control the flow of information among the working memory components through neural gating mechanisms. The proposed system is capable of learning to communicate through natural language starting from tabula rasa, without any a priori knowledge of the structure of phrases, meaning of words, role of the different classes of words, only by interacting with a human through a text-based interface, using an open-ended incremental learning process. It is able to learn nouns, verbs, adjectives, pronouns and other word classes, and to use them in expressive language. The model was validated on a corpus of 1587 input sentences, based on literature on early language assessment, at the level of about 4-years old child, and produced 521 output sentences, expressing a broad range of language processing functionalities.
[Procedural learning disorder: neuropsychological characteristics].
Crespo-Eguílaz, N; Narbona, J
This research aims at neurocognitive delineation of the core features of procedural learning disorder (PLD), otherwise labeled as motor coordination disorder or non-verbal learning disorder. A sample of 209 correlative outpatients (73% males), aged 6-12 years, all of them having QI ranging from 81 to 120, was clustered into the following neurobehavioural groups: PLD (n = 16), PLD plus attention deficit hyperactivity disorder (ADHD) (n = 37), ADHD combined type (n = 47), ADHD predominantly inattentive type (n = 23), specific language impairment (n = 68), and semantic-pragmatic language impairment (n = 18). Two additional groups of patients were included for some comparisons: children with periventricular leukomalacia (PVL) without learning disability (n = 8) or associating PLD (n = 17). A set of behavioural scales and neurocognitive tests was used to evaluate verbal and non-verbal IQ, attention, impulsivity control, visuo-motor coordination, declarative memory, procedural memory and learning, formal and functional dimensions of language, peer relationships and academic achievement. Parametric analysis were used to test the differences and similarities of neurobehavioural variables between groups. Our results allow us to conclude that PLD implies a difficult acquisition of automatized motor, cognitive and communicative abilities required in school work and peer social relationships. PLD is different from autistic spectrum disorders. It is frequently associated to inattentive ADHD. Operational criteria for diagnosis of PLD are proposed, according to our results. A bilateral posterior parietal dysfunction is a plausible explanation of its physiopathology. Preserved general intelligence and formal linguistic abilities are the clues for intervention designs.
Cardoso, Ariane F; Moreli, Lucimara; Braga, Fernanda T M M; Vasques, Christiane I; Santos, Claudia B; Carvalho, Emilia C
2012-08-01
Handling Totally Implantable Access Ports (TIAP) is a nursing procedure that requires skill and knowledge to avoid adverse events. No studies addressing this procedure with undergraduate students were identified prior to this study. Communication technologies, such as videos, have been increasingly adopted in the teaching of nursing and have contributed to the acquisition of competencies for clinical performance. To evaluate the effect of a video on the puncture and heparinization of TIAP in the development of cognitive and technical competencies of undergraduate nursing students. Quasi-experimental study with a pretest-posttest design. 24 individuals participated in the study. Anxiety scores were kept at levels 1 and 2 in the pretest and posttest. In relation to cognitive knowledge concerning the procedure, the proportion of correct answers in the pretest was 0.14 (SD=0.12) and 0.90 in the posttest (SD=0.05). After watching the video, the average score obtained by the participants in the mock session was 27.20. The use of an educational video with a simulation of puncture and heparinization of TIAP proved to be a strategy that increased both cognitive and technical knowledge. This strategy is viable in the teaching-learning process and is useful as a support tool for professors and for the development of undergraduate nursing students. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characteristics of implicit chaining in cotton-top tamarins (Saguinus oedipus).
Locurto, Charles; Gagne, Matthew; Nutile, Lauren
2010-07-01
In human cognition there has been considerable interest in observing the conditions under which subjects learn material without explicit instructions to learn. In the present experiments, we adapted this issue to nonhumans by asking what subjects learn in the absence of explicit reinforcement for correct responses. Two experiments examined the acquisition of sequence information by cotton-top tamarins (Saguinus oedipus) when such learning was not demanded by the experimental contingencies. An implicit chaining procedure was used in which visual stimuli were presented serially on a touchscreen. Subjects were required to touch one stimulus to advance to the next stimulus. Stimulus presentations followed a pattern, but learning the pattern was not necessary for reinforcement. In Experiment 1 the chain consisted of five different visual stimuli that were presented in the same order on each trial. Each stimulus could occur at any one of six touchscreen positions. In Experiment 2 the same visual element was presented serially in the same five locations on each trial, thereby allowing a behavioral pattern to be correlated with the visual pattern. In this experiment two new tests, a Wild-Card test and a Running-Start test, were used to assess what was learned in this procedure. Results from both experiments indicated that tamarins acquired more information from an implicit chain than was required by the contingencies of reinforcement. These results contribute to the developing literature on nonhuman analogs of implicit learning.
A Workbench for Discovering Task-Specific Theories of Learning
1989-03-03
mind (the cognitive architecture) will not be of much use to educators who wish to perform a cognitive task analysis of their subject matter before...analysis packages that can be added to a cognitive architecture, thus creating a ’workbench’ for performing cognitive task analysis . Such tools becomes...learning theories have been. Keywords: Cognitive task analysis , Instructional design, Cognitive modelling, Learning.
2013-01-01
Background To increase the ecological validity of neuropsychological instruments the use of virtual reality (VR) applications can be considered as an effective tool in the field of cognitive neurorehabilitation. Despite the growing use of VR programs, only few studies have considered the application of everyday activities like shopping or travelling in VR training devices. Methods We developed a novel 360°- VR supermarket, which is displayed on a circular arrangement of 8 touch-screens – the “OctaVis”. In this setting, healthy human adults had to memorize an auditorily presented shopping list (list A) and subsequently buy all remembered products of this list in the VR supermarket. This procedure was accomplished on three consecutive days. On day four, a new shopping list (list B) was introduced and participants had to memorize and buy only products of this list. On day five, participants had to buy all remembered items of list A again, but without new presentation of list A. Additionally, we obtained measures of participants’ presence, immersion and figural-spatial memory abilities. We also tested a sample of patients with focal epilepsy with an extended version of our shopping task, which consisted of eight days of training. Results We observed a comprehensive and stable effect of learning for the number of correct products, the required time for shopping, and the length of movement trajectories in the VR supermarket in the course of the training program. Task performance was significantly correlated with participants’ figural-spatial memory abilities and subjective level of immersion into the VR. Conclusions Learning effects in our paradigm extend beyond mere verbal learning of the shopping list as the data show evidence for multi-layered learning (at least visual-spatial, strategic, and verbal) on concordant measures. Importantly, learning also correlated with measures of figural-spatial memory and the degree of immersion into the VR. We propose that cognitive training with the VR supermarket program in the OctaVis will be efficient for the assessment and training of real-life cognitive abilities in healthy subjects and patients with epilepsy. It is most likely that our findings will also apply for patients with cognitive disabilities resulting from other neurological and psychiatric syndromes. PMID:23618596
Grewe, Philip; Kohsik, Agnes; Flentge, David; Dyck, Eugen; Botsch, Mario; Winter, York; Markowitsch, Hans J; Bien, Christian G; Piefke, Martina
2013-04-23
To increase the ecological validity of neuropsychological instruments the use of virtual reality (VR) applications can be considered as an effective tool in the field of cognitive neurorehabilitation. Despite the growing use of VR programs, only few studies have considered the application of everyday activities like shopping or travelling in VR training devices. We developed a novel 360°-VR supermarket, which is displayed on a circular arrangement of 8 touch-screens--the "OctaVis". In this setting, healthy human adults had to memorize an auditorily presented shopping list (list A) and subsequently buy all remembered products of this list in the VR supermarket. This procedure was accomplished on three consecutive days. On day four, a new shopping list (list B) was introduced and participants had to memorize and buy only products of this list. On day five, participants had to buy all remembered items of list A again, but without new presentation of list A. Additionally, we obtained measures of participants' presence, immersion and figural-spatial memory abilities. We also tested a sample of patients with focal epilepsy with an extended version of our shopping task, which consisted of eight days of training. We observed a comprehensive and stable effect of learning for the number of correct products, the required time for shopping, and the length of movement trajectories in the VR supermarket in the course of the training program. Task performance was significantly correlated with participants' figural-spatial memory abilities and subjective level of immersion into the VR. Learning effects in our paradigm extend beyond mere verbal learning of the shopping list as the data show evidence for multi-layered learning (at least visual-spatial, strategic, and verbal) on concordant measures. Importantly, learning also correlated with measures of figural-spatial memory and the degree of immersion into the VR. We propose that cognitive training with the VR supermarket program in the OctaVis will be efficient for the assessment and training of real-life cognitive abilities in healthy subjects and patients with epilepsy. It is most likely that our findings will also apply for patients with cognitive disabilities resulting from other neurological and psychiatric syndromes.
Cognitive theories and the design of e-learning environments.
Gillani, Bijan; O'Guinn, Christina
2004-01-01
Cognitive development refers to a mental process by which knowledge is acquired, stored, and retrieved to solve problems. Therefore, cognitive developmental theories attempt to explain cognitive activities that contribute to students' intellectual development and their capacity to learn and solve problems. Cognitive developmental research has had a great impact on the constructivism movement in education and educational technology. In order to appreciate how cognitive developmental theories have contributed to the design, process and development of constructive e-learning environments, we shall first present Piaget's cognitive theory and derive an inquiry training model from it that will support a constructivism approach to teaching and learning. Second, we will discuss an example developed by NASA that used the Web as an appropriate instructional delivery medium to apply Piaget's cognitive theory to create e-learning environments.
Acera, M; Molano, A; Tijero, B; Bilbao, G; Lambarri, I; Villoria, R; Somme, J; Ruiz de Gopegui, E; Gabilondo, I; Gomez-Esteban, J C
2017-07-13
The aim of this study was to evaluate the effects of deep brain stimulation of the subthalamic nucleus (DBS-SN) on cognitive function in patients with Parkinson's disease (PD) 5 years after surgery. We conducted a prospective study including 50 patients with PD who underwent DBS-SN (62.5% were men; mean age of 62.2±8.2 years; mean progression time of 14.1±6.3 years). All patients were assessed before the procedure and at one year after surgery; 40 patients were further followed up until the 5-year mark. Follow-up assessments included the following neuropsychological tests: Mini-Mental State Examination (MMSE), Mattis Dementia Rating Scale (MDRS), letter-number sequencing of the WAIS-III (WAIS-III-LN), clock-drawing test, Rey auditory verbal learning test (RAVLT), Benton Visual Retention Test (BVRT), Judgment of Line Orientation (JLO) test, FAS Phonemic Verbal Fluency Test, Stroop test, and the Montgomery-Asberg Depression Rating Scale (MADRS). Patients were found to score lower on the MMSE (-0.89%), clock-drawing test (-2.61%), MDRS (-1.72%), and especially phonemic (-13.28%) and sematic verbal fluency tests (-12.40%) at one year after surgery. Delayed recall on the RAVLT worsened one year after the procedure (-10.12%). At 5 years, impairment affected mainly verbal fluency; scores decreased an additional 16.10% and 16.60% in semantic and phonemic verbal fluency, respectively. Moderate decreases were observed in immediate recall (-16.87%), WAIS-III-LN (-16.67%), and JLO test (-11.56%). In our sample, DBS-SN did not result in global cognitive impairment 5 years after surgery. Verbal function was found to be significantly impaired one year after the procedure. Impaired learning and visuospatial function may be attributed to degeneration associated with PD. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei
2017-01-01
Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…
Impaired quality and efficiency of sleep impairs cognitive functioning in Addison's disease.
Henry, Michelle; Ross, Ian Louis; Wolf, Pedro Sofio Abril; Thomas, Kevin Garth Flusk
2017-04-01
Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. Periods of sub- and supra- physiological cortisol levels experienced by patients with AD likely induce disrupted sleep. Given that healthy sleep plays an important role in memory consolidation, the novelty of the current study was to characterise, using objective measures, the relationship between sleep and memory in patients with AD, and to examine the hypothesis that poor sleep is a biological mechanism underlying memory impairment in those patients. We used a within-subjects design. Ten patients with AD and 10 matched healthy controls completed standardised neuropsychological tests assessing declarative memory (Rey Auditory Verbal Learning Test) and procedural memory (Finger Tapping Task) before and after a period of actigraphy-measured sleep, and before and after a period of waking. Relative to healthy controls, patients with AD experienced disrupted sleep characterised by poorer sleep efficiency and more time spent awake. Patients also showed impaired verbal learning and memory relative to healthy controls (p=0.007). Furthermore, whereas healthy controls' declarative memory performance benefited from a period of sleep compared to waking (p=0.032), patients with AD derived no such benefit from sleep (p=0.448). Regarding the procedural memory task, analyses detected no significant between-group differences (all p's<0.065), and neither group showed significant sleep-enhanced performance. We demonstrated, using actigraphy and standardized measures of memory performance, an association between sleep disturbances and cognitive deficits in patients with AD. These results suggest that, in patients with AD, the source of memory deficits is, at least to some extent, disrupted sleep patterns that interfere with optimal consolidation of previously-learned declarative information. Hence, treating the sleep disturbances that are frequently experienced by patients with AD may improve their cognitive functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bradford, George R.
2011-01-01
This study sought to explore if a relationship exists between cognitive load and student satisfaction with learning online. The study separates academic performance (a.k.a., "learning") from cognitive load and satisfaction to better distinguish influences on cognition (from cognitive load) and motivation (from satisfaction). Considerations that…
ERIC Educational Resources Information Center
Choi, Hwan-Hee; van Merriënboer, Jeroen J. G.; Paas, Fred
2014-01-01
Although the theoretical framework of cognitive load theory has acknowledged a role for the learning environment, the specific characteristics of the physical learning environment that could affect cognitive load have never been considered, neither theoretically nor empirically. In this article, we argue that the physical learning environment, and…
Tjolleng, Amir; Jung, Kihyo; Hong, Wongi; Lee, Wonsup; Lee, Baekhee; You, Heecheon; Son, Joonwoo; Park, Seikwon
2017-03-01
An artificial neural network (ANN) model was developed in the present study to classify the level of a driver's cognitive workload based on electrocardiography (ECG). ECG signals were measured on 15 male participants while they performed a simulated driving task as a primary task with/without an N-back task as a secondary task. Three time-domain ECG measures (mean inter-beat interval (IBI), standard deviation of IBIs, and root mean squared difference of adjacent IBIs) and three frequencydomain ECG measures (power in low frequency, power in high frequency, and ratio of power in low and high frequencies) were calculated. To compensate for individual differences in heart response during the driving tasks, a three-step data processing procedure was performed to ECG signals of each participant: (1) selection of two most sensitive ECG measures, (2) definition of three (low, medium, and high) cognitive workload levels, and (3) normalization of the selected ECG measures. An ANN model was constructed using a feed-forward network and scaled conjugate gradient as a back-propagation learning rule. The accuracy of the ANN classification model was found satisfactory for learning data (95%) and testing data (82%). Copyright © 2016 Elsevier Ltd. All rights reserved.
1985-04-01
decision aids consider the cognitive skills of human operators. Data are required on the kinds of decision strategies they invoke, their limitations in...basic electronics, memory for procedural tasks, and career-role learning by officers. Computerized decision aids for surveillance tasks and opportunities...of Navy retention incentives. Computerized aids for plain English in military documents and for tactical action officer training were also developed in
Decreasing Cognitive Load for Learners: Strategy of Web-Based Foreign Language Learning
ERIC Educational Resources Information Center
Zhang, Jianfeng
2013-01-01
Cognitive load is one of the important factors that influence the effectiveness and efficiency of web-based foreign language learning. Cognitive load theory assumes that human's cognitive capacity in working memory is limited and if it overloads, learning will be hampered, so that high level of cognitive load can affect the performance of learning…
Pflueger, Marlon O; Stieglitz, Rolf-Dieter; Lemoine, Patrick; Leyhe, Thomas
2018-06-07
Since the advent of imaging techniques, the role of the neuropsychological assessment has changed. Questions concerning everyday functionality became primarily important and, thus, ecologically valid neuropsychological assessments are mandatory. Virtual reality (VR) environments might provide a way of implementing immersive cognitive assessments with a higher degree of everyday-life-related cognitive demands. We report on a VR-based episodic memory examination in N = 30 young and N = 18 healthy older adults (HOA) using a kitchen scene. The test procedure was designed to be structurally comparable to clinically used California Verbal Learning Test (CVLT) in terms of repeated learning trials as well as short and long delayed recall measures. The results showed that age-related learning and performance decrements were mainly evident in the CVLT but not in the VR-memory examination. The ecologically valid VR-memory examination might provide a more accurate "age-fair" estimation of everyday-life-related memory demands in HOA than the frequently and clinically used CVLT. We concluded this from our finding of context-related automatic and effortless activations of deeply experience based encoding and retrieval strategies with regard to everyday-life-related objects in the HOA, which might not be paralleled by learning arbitrary word associations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A
2013-01-15
Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory. Copyright © 2012 Elsevier B.V. All rights reserved.
A meta-cognitive learning algorithm for a Fully Complex-valued Relaxation Network.
Savitha, R; Suresh, S; Sundararajan, N
2012-08-01
This paper presents a meta-cognitive learning algorithm for a single hidden layer complex-valued neural network called "Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN)". McFCRN has two components: a cognitive component and a meta-cognitive component. A Fully Complex-valued Relaxation Network (FCRN) with a fully complex-valued Gaussian like activation function (sech) in the hidden layer and an exponential activation function in the output layer forms the cognitive component. The meta-cognitive component contains a self-regulatory learning mechanism which controls the learning ability of FCRN by deciding what-to-learn, when-to-learn and how-to-learn from a sequence of training data. The input parameters of cognitive components are chosen randomly and the output parameters are estimated by minimizing a logarithmic error function. The problem of explicit minimization of magnitude and phase errors in the logarithmic error function is converted to system of linear equations and output parameters of FCRN are computed analytically. McFCRN starts with zero hidden neuron and builds the number of neurons required to approximate the target function. The meta-cognitive component selects the best learning strategy for FCRN to acquire the knowledge from training data and also adapts the learning strategies to implement best human learning components. Performance studies on a function approximation and real-valued classification problems show that proposed McFCRN performs better than the existing results reported in the literature. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sedlack, Robert E; Coyle, Walter J
2016-03-01
The Mayo Colonoscopy Skills Assessment Tool (MCSAT) has previously been used to describe learning curves and competency benchmarks for colonoscopy; however, these data were limited to a single training center. The newer Assessment of Competency in Endoscopy (ACE) tool is a refinement of the MCSAT tool put forth by the Training Committee of the American Society for Gastrointestinal Endoscopy, intended to include additional important quality metrics. The goal of this study is to validate the changes made by updating this tool and establish more generalizable and reliable learning curves and competency benchmarks for colonoscopy by examining a larger national cohort of trainees. In a prospective, multicenter trial, gastroenterology fellows at all stages of training had their core cognitive and motor skills in colonoscopy assessed by staff. Evaluations occurred at set intervals of every 50 procedures throughout the 2013 to 2014 academic year. Skills were graded by using the ACE tool, which uses a 4-point grading scale defining the continuum from novice to competent. Average learning curves for each skill were established at each interval in training and competency benchmarks for each skill were established using the contrasting groups method. Ninety-three gastroenterology fellows at 10 U.S. academic institutions had 1061 colonoscopies assessed by using the ACE tool. Average scores of 3.5 were found to be inclusive of all minimal competency thresholds identified for each core skill. Cecal intubation times of less than 15 minutes and independent cecal intubation rates of 90% were also identified as additional competency thresholds during analysis. The average fellow achieved all cognitive and motor skill endpoints by 250 procedures, with >90% surpassing these thresholds by 300 procedures. Nationally generalizable learning curves for colonoscopy skills in gastroenterology fellows are described. Average ACE scores of 3.5, cecal intubation rates of 90%, and intubation times less than 15 minutes are recommended as minimal competency criteria. On average, it takes 250 procedures to achieve competence in colonoscopy. The thresholds found in this multicenter cohort by using the ACE tool are nearly identical to the previously established MCSAT benchmarks and are consistent with recent gastroenterology training recommendations but far higher than current training requirements in other specialties. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Measuring Cognitive Load in Embodied Learning Settings.
Skulmowski, Alexander; Rey, Günter Daniel
2017-01-01
In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education) in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1) Subjective measures must be appropriately phrased to be useful for embodied learning; (2) recent findings indicate potentials as well as problematic aspects of dual-task measures; (3) the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4) meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning.
Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.
Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria
2016-03-01
Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.
NASA Astrophysics Data System (ADS)
Patrick, Patricia; Mathews, Cathy; Tunnicliffe, Sue Dale
2013-10-01
This study investigated whether listening to spontaneous conversations of elementary students and their teachers/chaperones, while they were visiting a zoo, affected preservice elementary teachers' conceptions about planning a field trip to the zoo. One hundred five preservice elementary teachers designed field trips prior to and after listening to students' conversations during a field trip to the zoo. In order to analyze the preservice teachers' field trip designs, we conducted a review of the literature on field trips to develop the field trip inventory (FTI). The FTI focussed on three major components of field trips: cognitive, procedural, and social. Cognitive components were subdivided into pre-visit, during-visit, and post-visit activities and problem-solving. Procedural components included information about the informal science education facility (the zoo) and the zoo staff and included advanced organizers. Social components on student groups, fun, control during the zoo visit, and control of student learning. The results of the investigation showed that (a) the dominant topic in conversations among elementary school groups at the zoo was management, (b) procedural components were mentioned least often, (c) preservice teachers described during-visit activities more often than any other characteristic central to field trip design, (d) seven of the nine characteristics listed in the FTI were noted more frequently in the preservice teachers' field trip designs after they listened to students' conversations at the zoo, and (e) preservice teachers thought that students were not learning and that planning was important.
ERIC Educational Resources Information Center
Zhou, Ruojing; Mou, Weimin
2016-01-01
Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than striatum-dependent response learning. However, we proposed that either type of spatial learning, as long as it involves encoding metric relations between locations and reference points, could lead to a cognitive map. Furthermore, the fewer reference points…
2014-02-01
10 Cognitive Learning Strategies, Metacognitive Strategies, Scaffolding, and Cognitive Tutoring...culture, technology , and instructional practices. 11 7. Motivational and emotional influences on learning - What and how much is learned is...of learning and intangible skills. These resulting set of theories includes: 12 • Cognitive learning strategies, metacognitive strategies
NASA Astrophysics Data System (ADS)
Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei
2017-12-01
Based on the cognitive-affective theory, the present study designed a science inquiry learning model, predict-observe-explain (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning process, as well as the learning progress, a pretest and a posttest were given to 152 grade 5 elementary school students. The students practiced WhyWhy during six sessions over 6 weeks, and data related to interest in learning science (ILS), cognitive anxiety (CA), and extraneous cognitive load (ECL) were collected and analyzed through confirmatory factor analysis with structure equation modeling. The results showed that students with high ILS have low CA and ECL. In addition, the results also indicated that students with a high level of self-confidence enhancement showed significant improvement in the posttest. The implications of this study suggest that by using technology-enhanced science learning, the POE model is a practical approach to motivate students to learn.
Vasquez, Eduardo A; Howard-Field, Joanna
2016-11-01
Inhibitory information can be expected to reduce triggered displaced aggression by signaling the potential for negative consequences as a result of acting aggressively. We examined how cognitive load might interfere with these aggression-reducing effects of inhibitory cues. Participants (N = 80) were randomly assigned to a condition in a 2 (cognitive load: high/low) × 2 (inhibiting cues: yes/no) between-subjects design. Following procedures in the TDA paradigm, participants received an initial provocation from the experimenter and a subsequent triggering annoyance from another individual. In the inhibitory cue condition, participants were told, before they had the opportunity to aggress, that others would learn of their aggressive responses. In the high cognitive load condition, participants rehearsed a 10-digit number while aggressing. Those in the low cognitive load condition rehearsed a three digit number. We found significant main effects of cognitive load and inhibitory cue, which were qualified by the expected load × inhibitory cue interaction. Thus, inhibitory cues reduced displaced aggression under low-cognitive load. However, when participants in the inhibitory cue condition were under cognitive load, aggression increased, suggesting that mental busyness interfered with the full use of inhibitory information. Aggr. Behav. 42:598-604, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cognitive Function | Science Inventory | US EPA
Because chemicals can adversely affect cognitive function in humans, considerable effort has been made to characterize their effects using animal models. Information from such models will be necessary to: evaluate whether chemicals identified as potentially neurotoxic by screening methods actually do affect cognitive function; identify and characterize the mechanisms or pathways by which effects at these targets lead to cognitive dysfunction; address issues of susceptibility and variability, which require understanding the compensations and interactions that only a whole organism can engage; and improve our understanding of the neurobiological underpinnings of cognitive function.This chapter has several purposes. First, it provides working definitions of cognitive functions, such as learning, memory and attention, in terms frequently used by behavioral toxicologists. It is important to have a common vocabulary to assess methods used in this area of research. Second, it presents an overview of some of the procedures commonly used in behavioral toxicology to assess the effects of chemicals on cognitive function in animals. It should be noted that this overview is not intended to be comprehensive or complete, but is intended to illustrate specific points by discussing examples. Finally, this chapter discusses some critical experimental and conceptual variables that are important for studies on chemical-induced cognitive dysfunction, and touches on the potential p
Neurodegenerative disease and cognitive retest learning.
Wilson, Robert S; Capuano, Ana W; Yu, Lei; Yang, Jingyun; Kim, Namhee; Leurgans, Sue E; Lamar, Melissa; Schneider, Julie A; Bennett, David A; Boyle, Patricia A
2018-06-01
Retest learning impacts estimates of cognitive aging, but its bases are uncertain. Here, we test the hypothesis that dementia-related neurodegeneration impairs retest learning. Older persons without cognitive impairment at enrollment (n = 567) had annual cognitive testing for a mean of 11 years, died, and had a neuropathologic examination to quantify 5 neurodegenerative pathologies. Change point models were used to divide cognitive trajectories into an early retest sensitive component and a later component less sensitive to retest. Performance on a global cognitive measure (baseline mean = 0.227, standard deviation = 0.382) increased an estimated mean of 0.142-unit per year for a mean of 1.5 years and declined an estimated mean of 0.123-unit per year thereafter. No pathologic marker was related to cognitive change before the change point; each was related to cognitive decline after the change point. Results were comparable in analyses that used specific cognitive outcomes, included 220 individuals with mild cognitive impairment at enrollment, or allowed a longer retest learning period. The findings suggest that neurodegeneration does not impact cognitive retest learning. Copyright © 2018 Elsevier Inc. All rights reserved.
A study of the relationship between learning styles and cognitive abilities in engineering students
NASA Astrophysics Data System (ADS)
Hames, E.; Baker, M.
2015-03-01
Learning preferences have been indirectly linked to student success in engineering programmes, without a significant body of research to connect learning preferences with cognitive abilities. A better understanding of the relationship between learning styles and cognitive abilities will allow educators to optimise the classroom experience for students. The goal of this study was to determine whether relationships exist between student learning styles, as determined by the Felder-Soloman Inventory of Learning Styles (FSILS), and their cognitive performance. Three tests were used to assess student's cognitive abilities: a matrix reasoning task, a Tower of London task, and a mental rotation task. Statistical t-tests and correlation coefficients were used to quantify the results. Results indicated that the global-sequential, active-referential, and visual-verbal FSILS learning styles scales are related to performance on cognitive tasks. Most of these relationships were found in response times, not accuracy. Differences in task performance between gender groups (male and female) were more notable than differences between learning styles groups.
Bhattacharyya, Rahul; Davidson, Donald J; Sugand, Kapil; Bartlett, Matthew J; Bhattacharya, Rajarshi; Gupte, Chinmay M
2017-10-04
Virtual-reality and cadaveric simulations are expensive and not readily accessible. Innovative and accessible training adjuncts are required to help to meet training needs. Cognitive task analysis has been used extensively to train pilots and in other surgical specialties. However, the use of cognitive task analyses within orthopaedics is in its infancy. The purpose of this study was to evaluate the effectiveness of a novel cognitive task analysis tool to train novice surgeons in diagnostic knee arthroscopy in high-fidelity, phantom-limb simulation. Three expert knee surgeons were interviewed independently to generate a list of technical steps, decision points, and errors for diagnostic knee arthroscopy. A modified Delphi technique was used to generate the final cognitive task analysis. A video and a voiceover were recorded for each phase of this procedure. These were combined to produce the Imperial Knee Arthroscopy Cognitive Task Analysis (IKACTA) tool that utilizes written and audiovisual stimuli to describe each phase of a diagnostic knee arthroscopy. In this double-blinded, randomized controlled trial, a power calculation was performed prior to recruitment. Sixteen novice orthopaedic trainees who performed ≤10 diagnostic knee arthroscopies were randomized into 2 equal groups. The intervention group (IKACTA group) was given the IKACTA tool and the control group had no additional learning material. They were assessed objectively (validated Arthroscopic Surgical Skill Evaluation Tool [ASSET] global rating scale) on a high-fidelity, phantom-knee simulator. All participants, using the Likert rating scale, subjectively rated the tool. The mean ASSET score (and standard deviation) was 19.5 ± 3.7 points in the IKACTA group and 10.6 ± 2.3 points in the control group, resulting in an improvement of 8.9 points (95% confidence interval, 7.6 to 10.1 points; p = 0.002); the score was determined as 51.3% (19.5 of 38) for the IKACTA group, 27.9% (10.6 of 38) for the control group, and 23.4% (8.9 of 38) for the improvement. All participants agreed that the cognitive task analysis learning tool was a useful training adjunct to learning in the operating room. To our knowledge, this is the first cognitive task analysis in diagnostic knee arthroscopy that is user-friendly and inexpensive and has demonstrated significant benefits in training. The IKACTA will provide trainees with a demonstrably strong foundation in diagnostic knee arthroscopy that will flatten learning curves in both technical skills and decision-making.
Complex Mobile Learning That Adapts to Learners' Cognitive Load
ERIC Educational Resources Information Center
Deegan, Robin
2015-01-01
Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…
ERIC Educational Resources Information Center
Heikkila, Annamari; Lonka, Kirsti; Nieminen, Juha; Niemivirta, Markku
2012-01-01
Current theories of learning emphasize the role of motivational and affective aspects in university student learning. The aim of the present study was to examine the interrelations among approaches to learning, self-regulated learning, and cognitive strategies in the context of teacher education. Cognitive-motivational profiles were identified…
Learning in Structured Connectionist Networks
1988-04-01
the structure is too rigid and learning too difficult for cognitive modeling. Two algorithms for learning simple, feature-based concept descriptions...and learning too difficult for cognitive model- ing. Two algorithms for learning simple, feature-based concept descriptions were also implemented. The...Term Goals Recent progress in connectionist research has been encouraging; networks have success- fully modeled human performance for various cognitive
NASA Astrophysics Data System (ADS)
Setianingsih, R.
2018-01-01
The nature of interactions that occurs among teacher, students, learning sources, and learning environment creates different settings to enhance learning. Any setting created by a teacher is affected by 3 (three) types of cognitive load: intrinsic cognitive load, extraneous cognitive load, and germane cognitive load. This study is qualitative in nature, aims to analyse the patterns of interaction that are constituted in mathematics instructions by taking into account the cognitive load theory. The subjects of this study are 21 fifth-grade students who learn mathematics in small groups and whole-class interactive lessons. The data were collected through classroom observations which were videotaped, while field notes were also taken. The data analysis revealed that students engaged in productive interaction and inquiry while they were learning mathematics in small groups or in whole class setting, in which there was a different type of cognitive load that dominantly affecting the learning processes at each setting. During learning mathematics in whole class setting, the most frequently found interaction patterns were to discuss and compare solution based on self-developed models, followed by expressing opinions. This is consistent with the principles of mathematics learning, which gives students wide opportunities to construct mathematical knowledge through individual learning, learning in small groups as well as learning in whole class settings. It means that by participating in interactive learning, the students are habitually engaged in productive interactions and high level of mathematical thinking.
Cognitive Psychology and Design Paradigms in the Development of Multimedia Courseware
1993-09-01
Cognitive Apprenticeship : Teaching the Crafts of Reading, Writing, and Mathematics ". In Resnick, Lauren B. (Editor) Knowing, Learning , and Instruction , pp... thinking are cognitive processes the designers of interactive learning systems must consider the connection between cognition and the ability of an...should be based on instructional design theory, human factors, and cognitive learning theories. If these elements are not included in a
Krüger, Melanie; Hinder, Mark R; Puri, Rohan; Summers, Jeffery J
2017-01-01
Objectives: The aim of this study was to investigate how age-related performance differences in a visuospatial sequence learning task relate to age-related declines in cognitive functioning. Method: Cognitive functioning of 18 younger and 18 older participants was assessed using a standardized test battery. Participants then undertook a perceptual visuospatial sequence learning task. Various relationships between sequence learning and participants' cognitive functioning were examined through correlation and factor analysis. Results: Older participants exhibited significantly lower performance than their younger counterparts in the sequence learning task as well as in multiple cognitive functions. Factor analysis revealed two independent subsets of cognitive functions associated with performance in the sequence learning task, related to either the processing and storage of sequence information (first subset) or problem solving (second subset). Age-related declines were only found for the first subset of cognitive functions, which also explained a significant degree of the performance differences in the sequence learning task between age-groups. Discussion: The results suggest that age-related performance differences in perceptual visuospatial sequence learning can be explained by declines in the ability to process and store sequence information in older adults, while a set of cognitive functions related to problem solving mediates performance differences independent of age.
Cognitive styles and mental rotation ability in map learning.
Pazzaglia, Francesca; Moè, Angelica
2013-11-01
In inspecting, learning and reproducing a map, a wide range of abilities is potentially involved. This study examined the role of mental rotation (MR) and verbal ability, together with that of cognitive styles in map learning. As regards cognitive styles, the traditional distinction between verbalizers and visualizers has been taken into account, together with a more recent distinction between two styles of visualization: spatial and object. One hundred and seven participants filled in two questionnaires on cognitive styles: the Verbalizer-Visualizer Questionnaire (Richardson in J Ment Imag 1:109-125, 1977) and the Object-Spatial Imagery Questionnaire (Blajenkova et al. in Appl Cogn Psych 20:239-263, 2006), performed MR and verbal tests, learned two maps, and were then tested for their recall. It was found that MR ability and cognitive styles played a role in predicting map learning, with some distinctions within cognitive styles: verbal style favoured learning of one of the two maps (the one rich in verbal labels), which in turn was disadvantaged by the adoption of spatial style. Conversely, spatial style predicted learning of the other map, rich in visual features. The discussion focuses on implications for cognitive psychology and everyday cognition.
The skeletons in our closet: E-learning tools and what happens when one side does not fit all.
Van Nuland, Sonya E; Rogers, Kem A
2017-11-01
In the anatomical sciences, e-learning tools have become a critical component of teaching anatomy when physical space and cadaveric resources are limited. However, studies that use empirical evidence to compare their efficacy to visual-kinesthetic learning modalities are scarce. The study examined how a visual-kinesthetic experience, involving a physical skeleton, impacts learning when compared with virtual manipulation of a simple two-dimensional (2D) e-learning tool, A.D.A.M. Interactive Anatomy. Students from The University of Western Ontario, Canada (n = 77) participated in a dual-task study to: (1) investigate if a dual-task paradigm is an effective tool for measuring cognitive load across these different learning modalities; and (2) to assess the impact of knowledge recall and spatial ability when using them. Students were assessed using knowledge scores, Stroop task reaction times, and mental rotation test scores. Results demonstrated that the dual-task paradigm was not an effective tool for measuring cognitive load across different learning modalities with respect to kinesthetic learning. However, our study highlighted that handing physical specimens yielded major, positive impacts on performance that a simple commercial e-learning tool failed to deliver (P < 0.001). Furthermore, students with low spatial ability were significantly disadvantaged when they studied the bony joint and were tested on contralateral images (P = 0.046, R = 0.326). This suggests that, despite limbs being mirror images, students should be taught the anatomy of, as well as procedures on, both sides of the human body, enhancing the ability of all students, regardless of spatial ability, to take anatomical knowledge into the clinic and perform successfully. Anat Sci Educ 10: 570-588. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Yulianti, D.
2017-04-01
The purpose of this study is to explore the application of Problem Based Learning(PBL) model aided withscientific approach and character integrated physics worksheets (LKS). Another purpose is to investigate the increase in cognitive and psychomotor learning outcomes and to know the character development of students. The method used in this study was the quasi-experiment. The instruments were observation and cognitive test. Worksheets can improve students’ cognitive, psychomotor learning outcomes. Improvements in cognitive learning results of students who have learned using worksheets are higher than students who received learning without worksheets. LKS can also develop the students’ character.
Digital Game-Based Learning Supports Student Motivation, Cognitive Success, and Performance Outcomes
ERIC Educational Resources Information Center
Woo, Jeng-Chung
2014-01-01
Traditional multimedia learning is primarily based on the cognitive load concept of information processing theory. Recent digital game-based learning (DGBL) studies have focused on exploring content support for learning motivation and related game characteristics. Motivation, volition, and performance (MVP) theory indicates that cognitive load and…
Can Cognitive Neuroscience Ground a Science of Learning?
ERIC Educational Resources Information Center
Kelly, Anthony E.
2011-01-01
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
Antal, Holly; Bunnell, H Timothy; McCahan, Suzanne M; Pennington, Chris; Wysocki, Tim; Blake, Kathryn V
2017-02-01
Poor participant comprehension of research procedures following the conventional face-to-face consent process for biomedical research is common. We describe the development of a multimedia informed consent video and website that incorporates cognitive strategies to enhance comprehension of study related material directed to parents and adolescents. A multidisciplinary team was assembled for development of the video and website that included human subjects professionals; psychologist researchers; institutional video and web developers; bioinformaticians and programmers; and parent and adolescent stakeholders. Five learning strategies that included Sensory-Modality view, Coherence, Signaling, Redundancy, and Personalization were integrated into a 15-min video and website material that describes a clinical research trial. A diverse team collaborated extensively over 15months to design and build a multimedia platform for obtaining parental permission and adolescent assent for participant in as asthma clinical trial. Examples of the learning principles included, having a narrator describe what was being viewed on the video (sensory-modality); eliminating unnecessary text and graphics (coherence); having the initial portion of the video explain the sections of the video to be viewed (signaling); avoiding simultaneous presentation of text and graphics (redundancy); and having a consistent narrator throughout the video (personalization). Existing conventional and multimedia processes for obtaining research informed consent have not actively incorporated basic principles of human cognition and learning in the design and implementation of these processes. The present paper illustrates how this can be achieved, setting the stage for rigorous evaluation of potential benefits such as improved comprehension, satisfaction with the consent process, and completion of research objectives. New consent strategies that have an integrated cognitive approach need to be developed and tested in controlled trials. Copyright © 2017 Elsevier Inc. All rights reserved.
Epistemic cognition in medical education: a literature review.
Eastwood, Jennifer L; Koppelman-White, Elysa; Mi, Misa; Wasserman, Jason Adam; Krug Iii, Ernest F; Joyce, Barbara
2017-01-07
To review the research literature on epistemic cognition in medical education. We conducted database searches using keywords related to epistemic cognition and medical education or practice. In duplicate, authors selected and reviewed empirical studies with a central focus on epistemic cognition and participant samples including medical students or physicians. Independent thematic analysis and consensus procedures were used to identify major findings about epistemic cognition and implications for research and medical education. Twenty-seven articles were selected. Themes from the findings of selected studies included developmental frameworks of epistemic cognition revealing simple epistemological positions of medical learners, increasing epistemological sophistication with experience, relationships between epistemic cognition and context, patterns in epistemic orientations to clinical practice, and reactions to ambiguity and uncertainty. Many studies identified the need for new instruments and methodologies to study epistemic cognition in medical education settings and its relationship to clinical outcomes. Relationships between epistemological beliefs and humanistic patient care and influences of medical education practices were commonly cited implications for medical education. Epistemic cognition is conceptualized and operationalized in a variety of ways in the medical research literature. Advancing theoretical frameworks and developing new methodological approaches to examine epistemic cognition are important areas for future research. Also, examination of the relationship between the contexts of medical learning and practice and epistemic cognition has potential for improving medical education. This work also establishes a need for further investigation into the implications of epistemic cognition for humanistic orientations and ultimately for patient care.
Epistemic cognition in medical education: a literature review
Koppelman-White, Elysa; Mi, Misa; Wasserman, Jason Adam; Krug III, Ernest F.; Joyce, Barbara
2017-01-01
Objective To review the research literature on epistemic cognition in medical education. Methods We conducted database searches using keywords related to epistemic cognition and medical education or practice. In duplicate, authors selected and reviewed empirical studies with a central focus on epistemic cognition and participant samples including medical students or physicians. Independent thematic analysis and consensus procedures were used to identify major findings about epistemic cognition and implications for research and medical education. Results Twenty-seven articles were selected. Themes from the findings of selected studies included developmental frameworks of epistemic cognition revealing simple epistemological positions of medical learners, increasing epistemological sophistication with experience, relationships between epistemic cognition and context, patterns in epistemic orientations to clinical practice, and reactions to ambiguity and uncertainty. Many studies identified the need for new instruments and methodologies to study epistemic cognition in medical education settings and its relationship to clinical outcomes. Relationships between epistemological beliefs and humanistic patient care and influences of medical education practices were commonly cited implications for medical education. Conclusions Epistemic cognition is conceptualized and operationalized in a variety of ways in the medical research literature. Advancing theoretical frameworks and developing new methodological approaches to examine epistemic cognition are important areas for future research. Also, examination of the relationship between the contexts of medical learning and practice and epistemic cognition has potential for improving medical education. This work also establishes a need for further investigation into the implications of epistemic cognition for humanistic orientations and ultimately for patient care. PMID:28064257
Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System
ERIC Educational Resources Information Center
Deegan, Robin
2013-01-01
Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…
Grounding cognitive control in associative learning.
Abrahamse, Elger; Braem, Senne; Notebaert, Wim; Verguts, Tom
2016-07-01
Cognitive control covers a broad range of cognitive functions, but its research and theories typically remain tied to a single domain. Here we outline and review an associative learning perspective on cognitive control in which control emerges from associative networks containing perceptual, motor, and goal representations. Our review identifies 3 trending research themes that are shared between the domains of conflict adaptation, task switching, response inhibition, and attentional control: Cognitive control is context-specific, can operate in the absence of awareness, and is modulated by reward. As these research themes can be envisaged as key characteristics of learning, we propose that their joint emergence across domains is not coincidental but rather reflects a (latent) growth of interest in learning-based control. Associative learning has the potential for providing broad-scaled integration to cognitive control theory, and offers a promising avenue for understanding cognitive control as a self-regulating system without postulating an ill-defined set of homunculi. We discuss novel predictions, theoretical implications, and immediate challenges that accompany an associative learning perspective on cognitive control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Measuring Cognitive Load in Embodied Learning Settings
Skulmowski, Alexander; Rey, Günter Daniel
2017-01-01
In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education) in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1) Subjective measures must be appropriately phrased to be useful for embodied learning; (2) recent findings indicate potentials as well as problematic aspects of dual-task measures; (3) the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4) meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning. PMID:28824473
Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.
O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I
2013-01-01
Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.
ERIC Educational Resources Information Center
Barton, James M.
2016-01-01
Carnegie Learning's Cognitive Tutor®The purpose of this study is to determine whether there is a statistically significant difference between pre-test and post-test achievement scores when Compass Learning's Odyssey Math® is used together with Carnegie Learning's Math Cognitive Tutor® in a mathematics intervention program at ABC Middle School. The…
Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Herrero, Maria-Trinidad; Bezerianos, Anastasios; Thakor, Nitish V.; Babiloni, Fabio
2017-01-01
Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity (neurometric) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs. PMID:28659751
Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Herrero, Maria-Trinidad; Bezerianos, Anastasios; Thakor, Nitish V; Babiloni, Fabio
2017-01-01
Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity ( neurometric ) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs.
On the necessity of U-shaped learning.
Carlucci, Lorenzo; Case, John
2013-01-01
A U-shaped curve in a cognitive-developmental trajectory refers to a three-step process: good performance followed by bad performance followed by good performance once again. U-shaped curves have been observed in a wide variety of cognitive-developmental and learning contexts. U-shaped learning seems to contradict the idea that learning is a monotonic, cumulative process and thus constitutes a challenge for competing theories of cognitive development and learning. U-shaped behavior in language learning (in particular in learning English past tense) has become a central topic in the Cognitive Science debate about learning models. Antagonist models (e.g., connectionism versus nativism) are often judged on their ability of modeling or accounting for U-shaped behavior. The prior literature is mostly occupied with explaining how U-shaped behavior occurs. Instead, we are interested in the necessity of this kind of apparently inefficient strategy. We present and discuss a body of results in the abstract mathematical setting of (extensions of) Gold-style computational learning theory addressing a mathematically precise version of the following question: Are there learning tasks that require U-shaped behavior? All notions considered are learning in the limit from positive data. We present results about the necessity of U-shaped learning in classical models of learning as well as in models with bounds on the memory of the learner. The pattern emerges that, for parameterized, cognitively relevant learning criteria, beyond very few initial parameter values, U-shapes are necessary for full learning power! We discuss the possible relevance of the above results for the Cognitive Science debate about learning models as well as directions for future research. Copyright © 2013 Cognitive Science Society, Inc.
1998-08-07
cognitive flexibility theory and generative learning theory which focus primarily on the individual student’s cognitive development , collaborative... develop "Handling Transfusion Hazards," a computer program based upon cognitive flexibility theory principles. The Program: Handling Transfusion Hazards...computer program was developed according to cognitive flexibility theory principles. A generative version was then developed by embedding
Evidence for online processing during causal learning.
Liu, Pei-Pei; Luhmann, Christian C
2015-03-01
Many models of learning describe both the end product of learning (e.g., causal judgments) and the cognitive mechanisms that unfold on a trial-by-trial basis. However, the methods employed in the literature typically provide only indirect evidence about the unfolding cognitive processes. Here, we utilized a simultaneous secondary task to measure cognitive processing during a straightforward causal-learning task. The results from three experiments demonstrated that covariation information is not subject to uniform cognitive processing. Instead, we observed systematic variation in the processing dedicated to individual pieces of covariation information. In particular, observations that are inconsistent with previously presented covariation information appear to elicit greater cognitive processing than do observations that are consistent with previously presented covariation information. In addition, the degree of cognitive processing appears to be driven by learning per se, rather than by nonlearning processes such as memory and attention. Overall, these findings suggest that monitoring learning processes at a finer level may provide useful psychological insights into the nature of learning.
The development and validation of Science Learning Inventory (SLI): A conceptual change framework
NASA Astrophysics Data System (ADS)
Seyedmonir, Mehdi
2000-12-01
A multidimensional theoretical model, Conceptual Change Science Learning (CCSL), was developed based on Standard Model of Conceptual Change and Cognitive Reconstruction of Knowledge Model. The model addresses three main components of science learning, namely the learner's conceptual ecology, the message along with its social context, and the cognitive engagement. A learner's conceptual ecology is organized around three clusters, including epistemological beliefs, existing conceptions, and motivation. Learner's cognitive engagement is represented by a continuum from peripheral processing involving shallow cognitive engagement to central processing involving deep cognitive engagement. Through reciprocal, non-sequential interactions of such constructs, the learners' conceptual change is achieved. Using a quantitative empirical approach, three studies were conducted to investigate the theoretical constructs based on the CCSL Model. The first study reports the development and validation of the hypothesized and factor-analytic scales comprising the instrument, Science Learning Inventory (SLI) intended for college students. The self-report instrument was designed in two parts, SLI-A (conceptual ecology and cognitive engagement) with 48 initial items, and SLI-B (science epistemology) with 49 initial items. The items for SLI-B were based on the tenets of Nature of Science as reflected in the recent reform documents, Science for All Americans (Project 2061) and National Science Education Standards. The results of factor analysis indicated seven factors for SLI-A and four factors for SLI-B. The second study investigated the criterion-related (conceptual change) predictive validity of the SLI in an instructional setting (a college-level physics course). The findings suggested the possibility of different interplay of factors and dynamics depending on the nature of the criterion (gain scores from a three-week intervention versus final course grade). Gain scores were predicted by "self-reflective study behavior" and "science self-efficacy" scales of SLI, whereas the course grade was predicted by "metacognitive engagement" and "dynamic scientific truth," (a factor from science epistemology). The third study investigated the effects of text-based conceptual-change strategy (Enhanced Refutational Text; ERT) on Newtonian Laws of Motion, and the efficacy of the SLI scales in a controlled setting. Also, initial divergent and convergent validity procedures are reported in the study. The results provided partial support for the superiority of ERT over expository text. The ERT was an effective intervention for students with no prior physics background but not for students with prior physics background.
ERIC Educational Resources Information Center
Harrell, Kyleigh Blackwell
2017-01-01
The quantitative study examined how blended learning influences high school learners' social presence, cognitive presence, teacher presence, and perceived learning in comparison to online instruction. The study answered the following research questions: (a) Do differences exist among the social presence, cognitive presence, and teaching presence…
ERIC Educational Resources Information Center
Austin, Katherine A.
2009-01-01
In the wake of the information explosion and rapidly progressing technology [Mayer, R. E. (2001). "Multimedia learning". Cambridge: University Press] formulated a theory that focused on human cognition, rather than technology capacity and features. By measuring the effect of cognitive individual differences and display design manipulations on…
The Implications of Cognitive Psychology for Computer-Based Learning Tools.
ERIC Educational Resources Information Center
Kozma, Robert B.
1987-01-01
Defines cognitive computer tools as software programs that use the control capabilities of computers to amplify, extend, or enhance human cognition; suggests seven ways in which computers can aid learning; and describes the "Learning Tool," a software package for the Apple Macintosh microcomputer that is designed to aid learning of…
ERIC Educational Resources Information Center
Heikkila, Annamari; Niemivirta, Markku; Nieminen, Juha; Lonka, Kirsti
2011-01-01
This study investigated the relationships among approaches to learning, regulation of learning, cognitive and attributional strategies, stress, exhaustion, and study success. University students (N = 437) from three faculties filled in a questionnaire concerning their self-reported study behaviour, cognitive strategies, and well-being. Their…
ERIC Educational Resources Information Center
Wei, Fang-Yi Flora; Wang, Y. Ken; Klausner, Michael
2012-01-01
This study investigated whether texting during class influences students' cognitive learning. A theoretical model was proposed to study the relationships among college students' self-regulation, texting during class, sustained attention to classroom learning, and cognitive learning (i.e., grade-oriented academic performance and experience-oriented…
Moreira, Eduardo Luiz Gasnhar; de Oliveira, Jade; Nunes, Jean Costa; Santos, Danúbia Bonfanti; Nunes, Fernanda Costa; Vieira, Daniella Serafim Couto; Ribeiro-do-Valle, Rosa Maria; Pamplona, Fabrício Alano; de Bem, Andreza Fabro; Farina, Marcelo; Walz, Roger; Prediger, Rui Daniel
2012-01-01
There is increasing evidence that hypercholesterolemia during midlife may represent a predictor of subsequent mild cognitive impairments and dementia decades later. However, the exact mechanism underlying this phenomenon remains unknown since plasmatic cholesterol is not able to cross the blood-brain barrier. In the present study, we evaluated the hypothesis that cognitive impairments triggered by hypercholesterolemia during aging may be related to brain oxidative stress and altered brain acetylcholinesterase (AChE) activity. We also performed a neuropathological investigation in order to analyze whether the cognitive impairments may be associated with stroke-related features. To address these questions we used three- and fourteen-month-old low-density lipoprotein receptor-deficient mice (LDLr-/-). The current findings provide new evidence that aged LDLr-/- mice, exposed to over three-fold cholesterol levels from early life, show working, spatial reference, and procedural memory impairments, without alterations in motor function. Antioxidant imbalance and oxidative damage were evidenced by a marked increase in lipid peroxidation (thiobarbituric acid reactive substances levels) and glutathione metabolism (increase in glutathione levels, glutathione reductase, and glutathione peroxidase activities) together with a significant increase in the AChE activity in the prefrontal cortex of aged hypercholesterolemic LDLr-/- mice. Notably, hypercholesterolemia was not related to brain infarcts and neurodegeneration in mice, independent of their age. These observations provide new evidence that hypercholesterolemia during aging triggers cognitive impairments on different types of learning and memory, accompanied by antioxidant imbalance, oxidative damage, and alterations of cholinergic signaling in brain areas associated with learning and memory processes, particularly in the prefrontal cortex.
Zhou, Ruojing; Mou, Weimin
2016-08-01
Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than striatum-dependent response learning. However, we proposed that either type of spatial learning, as long as it involves encoding metric relations between locations and reference points, could lead to a cognitive map. Furthermore, the fewer reference points to specify individual locations, the more accurate a cognitive map of these locations will be. We demonstrated that participants have more accurate representations of vectors between 2 locations and of configurations among 3 locations when locations are individually encoded in terms of a single landmark than when locations are encoded in terms of a boundary. Previous findings have shown that learning locations relative to a boundary involve stronger place learning and higher hippocampal activation whereas learning relative to a single landmark involves stronger response learning and higher striatal activation. Recognizing this, we have provided evidence challenging the cognitive map theory but favoring our proposal. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Harris, Yvette R; Almutairi, Seham
2016-01-01
The role of family influences on preschool and school age cognitive development has received considerable empirical attention from cognitive developmental psychology researchers in the last few decades. As a result of the interest, investigators have focused their attention on developing coding/observational systems to capture the interactions occurring between mothers and their young children. This paper reviews a select body of research on parent-child cognitive learning interactions with the goal of determining how the researchers have operationalized the behaviors that occur within learning interactions. The paper concludes with a discussion of the suggestions on next steps for conducting parent-child cognitive learning interaction research in the future.
Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective
Jacobs, Arthur M.
2017-01-01
In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials. PMID:29311877
Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective.
Jacobs, Arthur M
2017-01-01
In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials.
Cognitive rehabilitation of amnesia after virus encephalitis: a case report.
Miotto, Eliane Correa
2007-01-01
A number of memory rehabilitation techniques have targeted people with various degrees of memory impairments. However, few studies have shown the contribution of preserved non-declarative memory capacity and errorless learning in the treatment of amnesic patients. The current case report describes the memory rehabilitation of a 44-year-old man with amnesia following viral encephalitis. The patient's procedural memory capacity had an important role in the use of a motor imagery strategy to remember people's names. It was further demonstrated that the application of a verbal learning technique was helpful in recalling new verbal information. These different memory rehabilitation techniques are discussed in terms of alternative possibilities in the rehabilitation of amnesic patients.
NASA Astrophysics Data System (ADS)
Wardono; Mariani, S.; Hendikawati, P.; Ikayani
2017-04-01
Mathematizing process (MP) is the process of modeling a phenomenon mathematically or establish the concept of a phenomenon. There are two mathematizing that is Mathematizing Horizontal (MH) and Mathematizing Vertical (MV). MH as events changes contextual problems into mathematical problems, while MV is the process of formulation of the problem into a variety of settlement mathematics by using some appropriate rules. Mathematics Literacy (ML) is the ability to formulate, implement and interpret mathematics in various contexts, including the capacity to perform reasoning mathematically and using the concepts, procedures, and facts to describe, explain or predict phenomena incident. If junior high school students are conditioned continuously to conduct mathematizing activities on RCP (RME-Card Problem) learning, it will be able to improve ML that refers PISA. The purpose of this research is to know the capability of the MP grade VIII on ML content shape and space with the matter of the cube and beams with RCP learning better than the scientific learning, upgrade MP grade VIII in the issue of the cube and beams with RCP learning better than the scientific learning in terms of cognitive styles reflective and impulsive the MP grade VIII with the approach of the RCP learning in terms of cognitive styles reflective and impulsive This research is the mixed methods model concurrent embedded. The population in this study, i.e., class VIII SMPN 1 Batang with sample two class. Data were taken with the observation, interviews, and tests and analyzed with a different test average of one party the right qualitative and descriptive. The results of this study demonstrate the capability of the MP student with RCP learning better than the scientific learning, upgrade MP with RCP learning better compare with scientific learning in term cognitive style of reflective and impulsive. The subject of the reflective group top, middle, and bottom can meet all the process of MH indicators are then the subject of the reflective upper and intermediate group can meet all the MV indicators but to lower groups can only fulfill some MV indicators. The subject is impulsive upper and middle group can meet all the MH indicators but to lower groups can only meet some MH indicator, then the subject is impulsive group can meet all the MV indicators but for middle and the bottom group can only fulfill some MV indicators.
Socio-cognitive profiles for visual learning in young and older adults
Christian, Julie; Goldstone, Aimee; Kuai, Shu-Guang; Chin, Wynne; Abrams, Dominic; Kourtzi, Zoe
2015-01-01
It is common wisdom that practice makes perfect; but why do some adults learn better than others? Here, we investigate individuals’ cognitive and social profiles to test which variables account for variability in learning ability across the lifespan. In particular, we focused on visual learning using tasks that test the ability to inhibit distractors and select task-relevant features. We tested the ability of young and older adults to improve through training in the discrimination of visual global forms embedded in a cluttered background. Further, we used a battery of cognitive tasks and psycho-social measures to examine which of these variables predict training-induced improvement in perceptual tasks and may account for individual variability in learning ability. Using partial least squares regression modeling, we show that visual learning is influenced by cognitive (i.e., cognitive inhibition, attention) and social (strategic and deep learning) factors rather than an individual’s age alone. Further, our results show that independent of age, strong learners rely on cognitive factors such as attention, while weaker learners use more general cognitive strategies. Our findings suggest an important role for higher-cognitive circuits involving executive functions that contribute to our ability to improve in perceptual tasks after training across the lifespan. PMID:26113820
Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents.
Cumin, R; Bandle, E F; Gamzu, E; Haefely, W E
1982-01-01
The effect of aniracetam (Ro 13-5057, 1-anisoyl-2-pyrrolidinone) was studied on various forms of experimentally impaired cognitive functions (learning and memory) in rodents and produced the following effects: (1) almost complete prevention of the incapacity to learn a discrete escape response in rats exposed to sublethal hypercapnia immediately before the acquisition session; (2) partial (rats) or complete (mice) prevention of the scopolamine-induced short-term amnesia for a passive avoidance task; (3) complete protection against amnesia for a passive avoidance task in rats submitted to electroconvulsive shock immediately after avoidance acquisition; (4) prevention of the long-term retention- or retrieval-deficit for a passive avoidance task induced in rats and mice by chloramphenicol or cycloheximide administered immediately after acquisition; (5) reversal, when administered as late as 1 h before the retention test, of the deficit in retention or retrieval of a passive avoidance task induced by cycloheximide injected 2 days previously; (6) prevention of the deficit in the retrieval of an active avoidance task induced in mice by subconvulsant electroshock or hypercapnia applied immediately before retrieval testing (24 h after acquisition). These improvements or normalizations of impaired cognitive functions were seen at oral aniracetam doses of 10-100 mg/kg. Generally, the dose-response curves were bell-shaped. The mechanisms underlying the activity of aniracetam and its 'therapeutic window' are unknown. Piracetam, another pyrrolidinone derivative was used for comparison. It was active only in six of nine tests and had about one-tenth the potency of aniracetam. The results indicate that aniracetam improves cognitive functions which are impaired by different procedure and in different phases of the learning and memory process.
Kolata, Stefan; Light, Kenneth; Wass, Christopher D.; Colas-Zelin, Danielle; Roy, Debasri; Matzel, Louis D.
2010-01-01
Background Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals' performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks). Methodology/Principal Findings Animals' general cognitive abilities were first determined based on their aggregate performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive identifications, analysis of gene expression microarrays (comprised of ≈25,000 genes) identified a small number (<20) of genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminegic genes plus one vascular gene (Nudt6) were significantly correlated with individual animal's general cognitive performance. Conclusions/Significance These results indicate that D1-mediated dopamine signaling in the PFC, possibly through its modulation of working memory, is predictive of general cognitive abilities. Furthermore, these results provide the first direct evidence of specific molecular pathways that might potentially regulate general intelligence. PMID:21103339
ERIC Educational Resources Information Center
Gr ver Aukrust, Vibeke, Ed.
2011-01-01
This collection of 58 articles from the recently-published third edition of the International Encyclopedia of Education focuses on learning, memory, attention, problem solving, concept formation, and language. Learning and cognition is the foundation of cognitive psychology and encompasses many topics including attention, memory, categorization,…
The Cognitive Spectrum of Transformative Learning
ERIC Educational Resources Information Center
Dix, Michael
2016-01-01
Although different transformative learning theories have been described in the literature, a detailed integrative theory is yet to emerge. I argue that unduly intellectualist assumptions regarding cognition have hampered current understandings and have obscured transformative learning's cognitive and metacognitive essence. Firstly, Mezirow's…
Mathematics, anxiety, and the brain.
Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer
2017-05-24
Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.
ERIC Educational Resources Information Center
Banfield, Sara R.
2009-01-01
The purpose of this research was to examine the relationship between teacher misbehaviors and a variety of outcome variables, including cognitive learning, motivation, curiosity, and academic self-efficacy. Research has yet to directly address how teacher misbehaviors affect cognitive learning. It is important to assess actual learning as opposed…
ERIC Educational Resources Information Center
Baas, Diana; Castelijns, Jos; Vermeulen, Marjan; Martens, Rob; Segers, Mien
2015-01-01
Background: Assessment for Learning (AfL) is believed to create a rich learning environment in which students develop their cognitive and metacognitive strategies. Monitoring student growth and providing scaffolds that shed light on the next step in the learning process are hypothesized to be essential elements of AfL that enhance cognitive and…
Web-Based Learning Programs: Use by Learners with Various Cognitive Styles
ERIC Educational Resources Information Center
Chen, Ling-Hsiu
2010-01-01
To consider how Web-based learning program is utilized by learners with different cognitive styles, this study presents a Web-based learning system (WBLS) and analyzes learners' browsing data recorded in the log file to identify how learners' cognitive styles and learning behavior are related. In order to develop an adapted WBLS, this study also…
ERIC Educational Resources Information Center
Wu, Sheng-Yi; Hou, Huei-Tse
2015-01-01
Cognitive styles play an important role in influencing the learning process, but to date no relevant study has been conducted using lag sequential analysis to assess knowledge construction learning patterns based on different cognitive styles in computer-supported collaborative learning activities in online collaborative discussions. This study…
ERIC Educational Resources Information Center
Li, Rui; Liu, Min
2007-01-01
The purpose of this study is to examine the potential of using computer databases as cognitive tools to share learners' cognitive load and facilitate learning in a multimedia problem-based learning (PBL) environment designed for sixth graders. Two research questions were: (a) can the computer database tool share sixth-graders' cognitive load? and…
Information Processing Approaches to Cognitive Development
1989-08-04
O’Connor (Eds.), Intelligence and learning . New York: Plenum Press. Deloache, J.S. (1988). The development of representation in young chidren . In H.W...Klahr, D., & Carver, S.M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction, Learning , and Transfer. Cognitive Psychology, 20...Production system models of learning and development. Cambridge, MA: MIT Press. TWO KINDS OF INFORMATION PROCESSING APPROACHES TO COGNITIVE DEVELOPMENT
Cognitive Styles in Admission Procedures for Assessing Candidates of Architecture
ERIC Educational Resources Information Center
Casakin, Hernan; Gigi, Ariela
2016-01-01
Cognitive style has a strong predictive power in academic and professional success. This study investigated the cognitive profile of candidates studying architecture. Specifically, it explored the relation between visual and verbal cognitive styles, and the performance of candidates in admission procedures. The cognitive styles of candidates who…
Early handling effect on female rat spatial and non-spatial learning and memory.
Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla
2014-03-01
This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.
Understanding the cognitive processes involved in writing to learn.
Arnold, Kathleen M; Umanath, Sharda; Thio, Kara; Reilly, Walter B; McDaniel, Mark A; Marsh, Elizabeth J
2017-06-01
Writing is often used as a tool for learning. However, empirical support for the benefits of writing-to-learn is mixed, likely because the literature conflates diverse activities (e.g., summaries, term papers) under the single umbrella of writing-to-learn. Following recent trends in the writing-to-learn literature, the authors focus on the underlying cognitive processes. They draw on the largely independent writing-to-learn and cognitive psychology learning literatures to identify important cognitive processes. The current experiment examines learning from 3 writing tasks (and 1 nonwriting control), with an emphasis on whether or not the tasks engaged retrieval. Tasks that engaged retrieval (essay writing and free recall) led to better final test performance than those that did not (note taking and highlighting). Individual differences in structure building (the ability to construct mental representations of narratives; Gernsbacher, Varner, & Faust, 1990) modified this effect; skilled structure builders benefited more from essay writing and free recall than did less skilled structure builders. Further, more essay-like responses led to better performance, implicating the importance of additional cognitive processes such as reorganization and elaboration. The results highlight how both task instructions and individual differences affect the cognitive processes involved when writing-to-learn, with consequences for the effectiveness of the learning strategy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Tan, Huan; Liang, Chen
2011-01-01
This paper proposes a conceptual hybrid cognitive architecture for cognitive robots to learn behaviors from demonstrations in robotic aid situations. Unlike the current cognitive architectures, this architecture puts concentration on the requirements of the safety, the interaction, and the non-centralized processing in robotic aid situations. Imitation learning technologies for cognitive robots have been integrated into this architecture for rapidly transferring the knowledge and skills between human teachers and robots.
2012-04-24
One example of this disconnect is learning to ride a bicycle by using training wheels. People do not use the training wheels so well that they...become an ingrained part of the bicycle riding experience; they outgrew the need for training wheels. “Presenting procedures to trainees gives them a...TERMS pilot training; military flight training; flight school; cognitive task analysis; CTA 16. SECURITY CLASSIFICATION OF: 17
Miller, Paul; Hazan-Liran, Batel; Cohen, Danielle
2018-06-01
Previous studies have shown that task-irrelevant information impedes learning by creating extraneous cognitive load. But still open is whether such intrusion reflects a purely semantic phenomenon or whether it also stands for sheer perceptual interference. Using Cognitive Load Theory as a framework, this study aimed to answer this question by examining whether and how task-irrelevant colour information modifies extraneous cognitive load in relation to a new code-learning paradigm. For this purpose, university students were asked to learn, based on an example, associations between colour-related and colour-unrelated words and digits presented in black or in a mismatched ink colour. Evident costs in learning efficacy were found in learning the associations between words and digits for colour-related, but not for colour-unrelated, word stimuli. This suggests that interference by task-irrelevant information in learning stands for a mere semantic conflict. Implications of the findings for extraneous cognitive load on learning efficacy are discussed.
Salajan, Florin D; Mount, Greg J
2012-04-01
This article presents the development and implementation of a wiki-based application for the delivery of educational content in dentistry. The Dental Procedure Education System (DPES) is a new web application that uses SharePoint to combine online collaborative authoring characteristic of wiki spaces with instructional video documentaries. Harnessing the wiki's versatility, DPES offers faculty members an avenue to develop an authoritative source of information for both students, through DPES Pro, and the public at large, through DPES Public. Principles of cognitive theory of multimedia learning, constructivist theory, and collaborative writing were employed in the development of DPES. An authoring protocol, with a clearly defined sequence of steps, was established in order to keep the production of the DPES procedures consistent and predictable. Initial, anecdotal user reports indicate that DPES is well received among dental students and faculty members. Expected outcomes and benefits of DPES use are discussed, and directions for research are proposed.
Mindful movement and skilled attention
Clark, Dav; Schumann, Frank; Mostofsky, Stewart H.
2015-01-01
Bodily movement has long been employed as a foundation for cultivating mental skills such as attention, self-control or mindfulness, with recent studies documenting the positive impacts of mindful movement training, such as yoga and tai chi. A parallel “mind-body connection” has also been observed in many developmental disorders. We elaborate a spectrum of mindfulness by considering ADHD, in which deficient motor control correlates with impaired (disinhibited) behavioral control contributing to defining features of excessive distractibility and impulsivity. These data provide evidence for an important axis of variation for wellbeing, in which skillful cognitive control covaries with a capacity for skillful movement. We review empirical and theoretical literature on attention, cognitive control, mind wandering, mindfulness and skill learning, endorsing a model of skilled attention in which motor plans, attention, and executive goals are seen as mutually co-defining aspects of skilled behavior that are linked by reciprocal inhibitory and excitatory connections. Thus, any movement training should engage “higher-order” inhibition and selection and develop a repertoire of rehearsed procedures that coordinate goals, attention and motor plans. However, we propose that mindful movement practice may improve the functional quality of rehearsed procedures, cultivating a transferrable skill of attention. We adopt Langer’s spectrum of mindful learning that spans from “mindlessness” to engagement with the details of the present task and contrast this with the mental attitudes cultivated in standard mindfulness meditation. We particularly follow Feldenkrais’ suggestion that mindful learning of skills for organizing the body in movement might transfer to other forms of mental activity. The results of mindful movement training should be observed in multiple complementary measures, and may have tremendous potential benefit for individuals with ADHD and other populations. PMID:26190986
Tecwyn, Emma C; Thorpe, Susannah K S; Chappell, Jackie
2012-01-01
Apparently sophisticated behaviour during problem-solving is often the product of simple underlying mechanisms, such as associative learning or the use of procedural rules. These and other more parsimonious explanations need to be eliminated before higher-level cognitive processes such as causal reasoning or planning can be inferred. We presented three Bornean orangutans with 64 trial-unique configurations of a puzzle-tube to investigate whether they were able to consider multiple obstacles in two alternative paths, and subsequently choose the correct direction in which to move a reward in order to retrieve it. We were particularly interested in how subjects attempted to solve the task, namely which behavioural strategies they could have been using, as this is how we may begin to elucidate the cognitive mechanisms underpinning their choices. To explore this, we simulated performance outcomes across the 64 trials for various procedural rules and rule combinations that subjects may have been using based on the configuration of different obstacles. Two of the three subjects solved the task, suggesting that they were able to consider at least some of the obstacles in the puzzle-tube before executing action to retrieve the reward. This is impressive compared with the past performances of great apes on similar, arguably less complex tasks. Successful subjects may have been using a heuristic rule combination based on what they deemed to be the most relevant cue (the configuration of the puzzle-tube ends), which may be a cognitively economical strategy.
Gelbart, Hadas; Ben-Dor, Shifra; Yarden, Anat
2017-01-01
Despite the central place held by bioinformatics in modern life sciences and related areas, it has only recently been integrated to a limited extent into high-school teaching and learning programs. Here we describe the assessment of a learning environment entitled ‘Bioinformatics in the Service of Biotechnology’. Students’ learning outcomes and attitudes toward the bioinformatics learning environment were measured by analyzing their answers to questions embedded within the activities, questionnaires, interviews and observations. Students’ difficulties and knowledge acquisition were characterized based on four categories: the required domain-specific knowledge (declarative, procedural, strategic or situational), the scientific field that each question stems from (biology, bioinformatics or their combination), the associated cognitive-process dimension (remember, understand, apply, analyze, evaluate, create) and the type of question (open-ended or multiple choice). Analysis of students’ cognitive outcomes revealed learning gains in bioinformatics and related scientific fields, as well as appropriation of the bioinformatics approach as part of the students’ scientific ‘toolbox’. For students, questions stemming from the ‘old world’ biology field and requiring declarative or strategic knowledge were harder to deal with. This stands in contrast to their teachers’ prediction. Analysis of students’ affective outcomes revealed positive attitudes toward bioinformatics and the learning environment, as well as their perception of the teacher’s role. Insights from this analysis yielded implications and recommendations for curriculum design, classroom enactment, teacher education and research. For example, we recommend teaching bioinformatics in an integrative and comprehensive manner, through an inquiry process, and linking it to the wider science curriculum. PMID:26801769
Machluf, Yossy; Gelbart, Hadas; Ben-Dor, Shifra; Yarden, Anat
2017-01-01
Despite the central place held by bioinformatics in modern life sciences and related areas, it has only recently been integrated to a limited extent into high-school teaching and learning programs. Here we describe the assessment of a learning environment entitled 'Bioinformatics in the Service of Biotechnology'. Students' learning outcomes and attitudes toward the bioinformatics learning environment were measured by analyzing their answers to questions embedded within the activities, questionnaires, interviews and observations. Students' difficulties and knowledge acquisition were characterized based on four categories: the required domain-specific knowledge (declarative, procedural, strategic or situational), the scientific field that each question stems from (biology, bioinformatics or their combination), the associated cognitive-process dimension (remember, understand, apply, analyze, evaluate, create) and the type of question (open-ended or multiple choice). Analysis of students' cognitive outcomes revealed learning gains in bioinformatics and related scientific fields, as well as appropriation of the bioinformatics approach as part of the students' scientific 'toolbox'. For students, questions stemming from the 'old world' biology field and requiring declarative or strategic knowledge were harder to deal with. This stands in contrast to their teachers' prediction. Analysis of students' affective outcomes revealed positive attitudes toward bioinformatics and the learning environment, as well as their perception of the teacher's role. Insights from this analysis yielded implications and recommendations for curriculum design, classroom enactment, teacher education and research. For example, we recommend teaching bioinformatics in an integrative and comprehensive manner, through an inquiry process, and linking it to the wider science curriculum. © The Author 2016. Published by Oxford University Press.
Individualized Special Education with Cognitive Skill Assessment.
ERIC Educational Resources Information Center
Kurhila, Jaakko; Laine, Tei
2000-01-01
Describes AHMED (Adaptive and Assistive Hypermedia in Education), a computer learning environment which supports the evaluation of disabled children's cognitive skills in addition to supporting openness in learning materials and adaptivity in learning events. Discusses cognitive modeling and compares it to previous intelligent tutoring systems.…
Cognitive culture: theoretical and empirical insights into social learning strategies.
Rendell, Luke; Fogarty, Laurel; Hoppitt, William J E; Morgan, Thomas J H; Webster, Mike M; Laland, Kevin N
2011-02-01
Research into social learning (learning from others) has expanded significantly in recent years, not least because of productive interactions between theoretical and empirical approaches. This has been coupled with a new emphasis on learning strategies, which places social learning within a cognitive decision-making framework. Understanding when, how and why individuals learn from others is a significant challenge, but one that is critical to numerous fields in multiple academic disciplines, including the study of social cognition. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli
2013-03-01
Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.
ERIC Educational Resources Information Center
Zheng, Robert Z.; Flygare, Jill A.; Dahl, Laura B.
2009-01-01
The present study investigated (1) the impact of cognitive styles on learner performance in well-structured and ill-structured learning, and (2) scaffolding as a cognitive tool to improve learners' cognitive abilities, especially field dependent (FD) learners' ability to thrive in an ill-structured learning environment. Two experiments were…
ERIC Educational Resources Information Center
Schweppe, Judith; Rummer, Ralf
2014-01-01
Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…
Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding
NASA Astrophysics Data System (ADS)
Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.
2018-04-01
The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.
Brain enhancement through cognitive training: a new insight from brain connectome.
Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios
2015-01-01
Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions.
Brain enhancement through cognitive training: a new insight from brain connectome
Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios
2015-01-01
Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners’ learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals’ cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions. PMID:25883555
Situating cognitive/socio-cognitive approaches to student learning in genetics
NASA Astrophysics Data System (ADS)
Kindfield, Ann C. H.
2009-03-01
In this volume, Furberg and Arnseth report on a study of genetics learning from a socio-cultural perspective, focusing on students' meaning making as they engage in collaborative problem solving. Throughout the paper, they criticize research on student understanding and conceptual change conducted from a cognitive/socio-cognitive perspective on several reasonable grounds. However, their characterization of work undertaken from this perspective sometimes borders on caricature, failing to acknowledge the complexities of the research and the contexts within which it has been carried out. In this commentary, I expand their characterization of the cognitive/socio-cognitive perspective in general and situate my own work on genetics learning so as to provide a richer view of the enterprise. From this richer, more situated view, I conclude that research from both perspectives and collaboration between those looking at learning from different perspectives will ultimately provide a more complete picture of science learning.
Dynamical Systems Theory: Application to Pedagogy
NASA Astrophysics Data System (ADS)
Abraham, Jane L.
Theories of learning affect how cognition is viewed, and this subsequently leads to the style of pedagogical practice that is used in education. Traditionally, educators have relied on a variety of theories on which to base pedagogy. Behavioral learning theories influenced the teaching/learning process for over 50 years. In the 1960s, the information processing approach brought the mind back into the learning process. The current emphasis on constructivism integrates the views of Piaget, Vygotsky, and cognitive psychology. Additionally, recent scientific advances have allowed researchers to shift attention to biological processes in cognition. The problem is that these theories do not provide an integrated approach to understanding principles responsible for differences among students in cognitive development and learning ability. Dynamical systems theory offers a unifying theoretical framework to explain the wider context in which learning takes place and the processes involved in individual learning. This paper describes how principles of Dynamic Systems Theory can be applied to cognitive processes of students, the classroom community, motivation to learn, and the teaching/learning dynamic giving educational psychologists a framework for research and pedagogy.
A factor analytic investigation of the Mercy Evaluation of Multiple Sclerosis.
Merz, Zachary C; Wright, John D; Vander Wal, Jillon S; Gfeller, Jeffrey D
2018-01-23
Neurocognitive deficits commonly are an accompanying feature of Multiple Sclerosis (MS). A brief, yet comprehensive neuropsychological battery is desirable for assessing the extent of these deficits. Therefore, the present study examined the validity of the Mercy Evaluation of Multiple Sclerosis (MEMS) for use with the MS population. Archival data from individuals diagnosed with MS (N = 378) by independent neurologists was examined. Cognitive domains assessed included processing speed and attention, learning, and memory, visuospatial, language, and executive functioning. A mean battery index was calculated to provide a general indicator of cognitive impairment within the current sample. Overall performance across participants was found to be in the lower limits of the average range. Results of factor analytic statistical procedures yielded a four-factor solution, accounting for 67% of total variance within the MEMS. Four neurocognitive measures exhibited the highest sensitivity in detecting cognitive impairment, constituting a psychometrically established brief cognitive screening battery, which accounted for 83% of total variance within the mean battery index score. Overall, the results of the current study suggest appropriate construct validity of the MEMS for use with individuals with MS, as well as provide support for previously established cognitive batteries.
Visuospatial Cognition in Electronic Learning
ERIC Educational Resources Information Center
Shah, Priti; Freedman, Eric G.
2003-01-01
Static, animated, and interactive visualizations are frequently used in electronic learning environments. In this article, we provide a brief review of research on visuospatial cognition relevant to designing e-learning tools that use these displays. In the first section, we discuss the possible cognitive benefits of visualizations consider used…
Cognitive Psychology--An Educational Insight
ERIC Educational Resources Information Center
Muirhead, Brent
2007-01-01
Cognitive psychology offers relevant insights into improving the teaching and learning process. The author has selected ten questions from a graduate class in cognition and learning taken at The Teachers College, Columbia University. The questions will be used to examine the most effective ways to learn and recall information.
Forming Positive Identities to Enhance Mathematics Learning among Adolescents
ERIC Educational Resources Information Center
Mkhize, Duduzile Rosemary
2017-01-01
Learners' participation in mathematics decreases during their transition from primary to high school. This is despite adolescents' cognitive growth equipping them with enhanced cognitive ability; to learn mathematics. Hence low participation in mathematics does not result from cognitive deficiency. Rather, lack of motivation to learn mathematics…
Key Cognitive Issues in the Design of Electronic Displays of Instrument Approach Procedure Charts
DOT National Transportation Integrated Search
1993-11-01
This report provides a general introduction to the field of cognitive psychology and the application of well researched cognitive issues to the design of electronic instrument approach procedures (EIAP) displays. It presents 46 cognitive issues and 1...
The Role of Motivation, Cognition, and Conscientiousness for Academic Achievement
ERIC Educational Resources Information Center
Imhof, Margarete; Spaeth-Hilbert, Tatjana
2013-01-01
Based on a cognitive motivational process model of learning, the impact of studying behavior on learning outcome is investigated. First-year students (N = 488) participated in the study. Two research questions were addressed: (1) Can cognitive-motivational variables and objective study behavior predict individual learning? (2) Which factors drive…
Cognitive Styles, Dynamic Geometry and Measurement Performance
ERIC Educational Resources Information Center
Pitta-Pantazi, Demetra; Christou, Constantinos
2009-01-01
This paper reports the outcomes of an empirical study undertaken to investigate the effect of students' cognitive styles on achievement in measurement tasks in a dynamic geometry learning environment, and to explore the ability of dynamic geometry learning in accommodating different cognitive styles and enhancing students' learning. A total of 49…
Cognitive Issues in Learning Advanced Physics: An Example from Quantum Mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Zhu, Guangtian
2009-11-01
We are investigating cognitive issues in learning quantum mechanics in order to develop effective teaching and learning tools. The analysis of cognitive issues is particularly important for bridging the gap between the quantitative and conceptual aspects of quantum mechanics and for ensuring that the learning tools help students build a robust knowledge structure. We discuss the cognitive aspects of quantum mechanics that are similar or different from those of introductory physics and their implications for developing strategies to help students develop a good grasp of quantum mechanics.
Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher
2010-01-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (n=280; 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations (PCs), and word problems (WPs) in fall and then reassessed on PCs and WPs in spring. Development was indexed via latent change scores, and the interplay between numerical and domain-general abilities was analyzed via multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of PC and WP development. Yet, for PC development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for WP development, the set of domain- general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive. PMID:20822213
The mental cost of cognitive enhancement.
Iuculano, Teresa; Cohen Kadosh, Roi
2013-03-06
Noninvasive brain stimulation provides a potential tool for affecting brain functions in the typical and atypical brain and offers in several cases an alternative to pharmaceutical intervention. Some studies have suggested that transcranial electrical stimulation (TES), a form of noninvasive brain stimulation, can also be used to enhance cognitive performance. Critically, research so far has primarily focused on optimizing protocols for effective stimulation, or assessing potential physical side effects of TES while neglecting the possibility of cognitive side effects. We assessed this possibility by targeting the high-level cognitive abilities of learning and automaticity in the mathematical domain. Notably, learning and automaticity represent critical abilities for potential cognitive enhancement in typical and atypical populations. Over 6 d, healthy human adults underwent cognitive training on a new numerical notation while receiving TES to the posterior parietal cortex or the dorsolateral prefrontal cortex. Stimulation to the the posterior parietal cortex facilitated numerical learning, whereas automaticity for the learned material was impaired. In contrast, stimulation to the dorsolateral prefrontal cortex impaired the learning process, whereas automaticity for the learned material was enhanced. The observed double dissociation indicates that cognitive enhancement through TES can occur at the expense of other cognitive functions. These findings have important implications for the future use of enhancement technologies for neurointervention and performance improvement in healthy populations.
ERIC Educational Resources Information Center
Cheng, Hong-Yu; Guan, Shu-Yi
2015-01-01
This study was designed to investigate how cognitive style affects Chinese students' learning behaviours in the classroom. A concept labelled as the structure-oriented vs. depth-oriented learning approach was constructed, and its mediating effects in the link between cognitive style and learning behaviour were proposed and examined in this study.…
ERIC Educational Resources Information Center
Liu, Ming-Tsung; Yu, Pao-Ta
2011-01-01
A personalized e-learning service provides learning content to fit learners' individual differences. Learning achievements are influenced by cognitive as well as non-cognitive factors such as mood, motivation, interest, and personal styles. This paper proposes the Learning Caution Indexes (LCI) to detect aberrant learning patterns. The philosophy…
Díaz, Estrella; Vargas, Juan Pedro; Quintero, Esperanza; Gonzalo de la Casa, Luis; O'Donnell, Patricio; Lopez, Juan Carlos
2014-05-01
The dorsal striatum has been ascribed to different behavioral roles. While the lateral area (dls) is implicated in habitual actions, its medial part (dms) is linked to goal expectancy. According to this model, dls function includes representation of stimulus-response associations, but not of goals. Dls function has been typically analyzed with regard to movement, and there is no data indicating whether this region could processes specific stimulus-outcome associations. To test this possibility, we analyzed the effects of dls and dms inactivation on the retrieval phase, and dms lesion on the acquisition phase of a latent inhibition procedure using two conditions, long and short presentations of the future conditioned stimulus. Contrary to current theories of basal ganglia function, we report evidence in favor of the dls involvement in cognitive processes of learning and retrieval. Moreover, we provide data about the sequential relationship between dms and dls, in which the dms could be involved, but it would not be critical, in new learning and the dls could be subsequently involved in consolidating cognitive routines. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Leasa, Marleny; Duran Corebima, Aloysius
2017-01-01
Learning models and academic ability may affect students’ achievement in science. This study, thus aimed to investigate the effect of numbered heads together (NHT) cooperative learning model on elementary students’ cognitive achievement in natural science. This study employed a quasi-experimental design with pretest-posttest non-equivalent control group with 2 x 2 factorial. There were two learning models compared NHT and the conventional, and two academic ability high and low. The results of ana Cova test confirmed the difference in the students’ cognitive achievement based on learning models and general academic ability. However, the interaction between learning models and academic ability did not affect the students’ cognitive achievement. In conclusion, teachers are strongly recommended to be more creative in designing learning using other types of cooperative learning models. Also, schools are required to create a better learning environment which is more cooperative to avoid unfair competition among students in the classroom and as a result improve the students’ academic ability. Further research needs to be conducted to explore the contribution of other aspects in cooperative learning toward cognitive achievement of students with different academic ability.
Compensatory processing during rule-based category learning in older adults.
Bharani, Krishna L; Paller, Ken A; Reber, Paul J; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G
2016-01-01
Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex.
Compensatory Processing During Rule-Based Category Learning in Older Adults
Bharani, Krishna L.; Paller, Ken A.; Reber, Paul J.; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G.
2016-01-01
Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex. PMID:26422522
Erasing the engram: the unlearning of procedural skills.
Crossley, Matthew J; Ashby, F Gregory; Maddox, W Todd
2013-08-01
Huge amounts of money are spent every year on unlearning programs--in drug-treatment facilities, prisons, psychotherapy clinics, and schools. Yet almost all of these programs fail, since recidivism rates are high in each of these fields. Progress on this problem requires a better understanding of the mechanisms that make unlearning so difficult. Much cognitive neuroscience evidence suggests that an important component of these mechanisms also dictates success on categorization tasks that recruit procedural learning and depend on synaptic plasticity within the striatum. A biologically detailed computational model of this striatal-dependent learning is described (based on Ashby & Crossley, 2011). The model assumes that a key component of striatal-dependent learning is provided by interneurons in the striatum called the tonically active neurons (TANs), which act as a gate for the learning and expression of striatal-dependent behaviors. In their tonically active state, the TANs prevent the expression of any striatal-dependent behavior. However, they learn to pause in rewarding environments and thereby permit the learning and expression of striatal-dependent behaviors. The model predicts that when rewards are no longer contingent on behavior, the TANs cease to pause, which protects striatal learning from decay and prevents unlearning. In addition, the model predicts that when rewards are partially contingent on behavior, the TANs remain partially paused, leaving the striatum available for unlearning. The results from 3 human behavioral studies support the model predictions and suggest a novel unlearning protocol that shows promising initial signs of success. PsycINFO Database Record (c) 2013 APA, all rights reserved.
ERIC Educational Resources Information Center
Brandi, Ulrik; Iannone, Rosa Lisa
2016-01-01
The article examines learning strategies at the enterprise level, conceptualising them into three main dimensions: learning systems and incentives, connecting to the affective dimension of learning which behavioural learning addresses effectively; skills' development, chiefly addressing the cognitive dimension of learning to which cognitive and…
Cognitive Architectures for Multimedia Learning
ERIC Educational Resources Information Center
Reed, Stephen K.
2006-01-01
This article provides a tutorial overview of cognitive architectures that can form a theoretical foundation for designing multimedia instruction. Cognitive architectures include a description of memory stores, memory codes, and cognitive operations. Architectures that are relevant to multimedia learning include Paivio's dual coding theory,…
Rasmussen, Sebastian R; Konge, Lars; Mikkelsen, Peter T; Sørensen, Mads S; Andersen, Steven A W
2016-03-01
Cognitive load (CL) theory suggests that working memory can be overloaded in complex learning tasks such as surgical technical skills training, which can impair learning. Valid and feasible methods for estimating the CL in specific learning contexts are necessary before the efficacy of CL-lowering instructional interventions can be established. This study aims to explore secondary task precision for the estimation of CL in virtual reality (VR) surgical simulation and also investigate the effects of CL-modifying factors such as simulator-integrated tutoring and repeated practice. Twenty-four participants were randomized for visual assistance by a simulator-integrated tutor function during the first 5 of 12 repeated mastoidectomy procedures on a VR temporal bone simulator. Secondary task precision was found to be significantly lower during simulation compared with nonsimulation baseline, p < .001. Contrary to expectations, simulator-integrated tutoring and repeated practice did not have an impact on secondary task precision. This finding suggests that even though considerable changes in CL are reflected in secondary task precision, it lacks sensitivity. In contrast, secondary task reaction time could be more sensitive, but requires substantial postprocessing of data. Therefore, future studies on the effect of CL modifying interventions should weigh the pros and cons of the various secondary task measurements. © The Author(s) 2015.
Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies
López, Julio
2018-01-01
We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections. PMID:29670667
Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies.
Bosch, Paul; Herrera, Mauricio; López, Julio; Maldonado, Sebastián
2018-01-01
We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.
People with Parkinson Disease and Normal MMSE Score Have a Broad Range of Cognitive Performance
Burdick, DJ; Cholerton, B; Watson, GS; Siderowf, A; Trojanowski, JQ; Weintraub, D; Ritz, B; Rhodes, SL; Rausch, R; Factor, SA; Wood-Siverio, C; Quinn, JF; Chung, KA; Srivatsal, S; Edwards, KL; Montine, TJ; Zabetian, CP; Leverenz, JB
2014-01-01
Background Cognitive impairment, including dementia, is common in Parkinson disease (PD). The Mini-Mental State Examination (MMSE) has been recommended as a screening tool for PDD, with values below 26 indicative of possible dementia. Using a detailed neuropsychological battery, we examined the range of cognitive impairment in PD patients with a MMSE score ≥ 26. Methods In this multi-center, cross-sectional, observational study, we performed neuropsychological testing in a sample of 788 PD patients with MMSE ≥ 26. Evaluation included tests of global cognition, executive function, language, memory, and visuospatial skills. A consensus panel reviewed results for 342 subjects and assigned a diagnosis of no cognitive impairment, mild cognitive impairment, or dementia. Results 67% of the 788 subjects performed 1.5 standard deviations below the normative mean on at least one test. On eight of the 15 tests, more than 20% of subjects scored 1.5 standard deviations or more below the normative mean. Greatest impairments were found on Hopkins Verbal Learning and Digit Symbol Coding tests. The sensitivity of the MMSE to detect dementia was 45% in a subset of participants who underwent clinical diagnostic procedures. Conclusions A remarkably wide range of cognitive impairment can be found in PD patients with a relatively high score on the MMSE, including a level of cognitive impairment consistent with dementia. Given these findings, clinicians must be aware of the limitations of the MMSE in detecting cognitive impairment, including dementia, in PD. PMID:25073717
Gilleen, J; Michalopoulou, P G; Reichenberg, A; Drake, R; Wykes, T; Lewis, S W; Kapur, S
2014-04-01
Improving cognition in people with neuropsychiatric disorders remains a major clinical target. By themselves pharmacological and non-pharmacological approaches have shown only modest effects in improving cognition. In the present study we tested a recently-proposed methodology to combine CT with a 'cognitive-enhancing' drug to improve cognitive test scores and expanded on previous approaches by delivering combination drug and CT, over a long intervention of repeated sessions, and used multiple tasks to reveal the cognitive processes being enhanced. We also aimed to determine whether gains from this combination approach generalised to untrained tests. In this proof of principle randomised-controlled trial thirty-three healthy volunteers were randomised to receive either modafinil or placebo combined with daily cognitive training over two weeks. Volunteers were trained on tasks of new-language learning, working memory and verbal learning following 200 mg modafinil or placebo for ten days. Improvements in trained and untrained tasks were measured. Rate of new-language learning was significantly enhanced with modafinil, and effects were greatest over the first five sessions. Modafinil improved within-day learning rather than between-day retention. No enhancement of gains with modafinil was observed in working memory nor rate of verbal learning. Gains in all tasks were retained post drug-administration, but transfer effects to broad cognitive abilities were not seen. This study shows that combining CT with modafinil specifically elevates learning over early training sessions compared to CT with placebo and provides a proof of principle experimental paradigm for pharmacological enhancement of cognitive remediation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
NASA Astrophysics Data System (ADS)
Spelt, Elisabeth Jacoba Hendrika; Luning, Pieternelleke Arianne; van Boekel, Martinus A. J. S.; Mulder, Martin
2017-11-01
Preparing science and engineering students to work in interdisciplinary teams necessitates research on teaching and learning of interdisciplinary thinking. A multidimensional approach was taken to examine student interdisciplinary learning in a master course on food quality management. The collected 615 student experiences were analysed for the cognitive, emotional, and social learning dimensions using the learning theory of Illeris. Of these 615 experiences, the analysis showed that students reported 214, 194, and 207 times on, respectively, the emotional, the cognitive, and the social dimension. Per learning dimension, key learning experiences featuring interdisciplinary learning were identified such as 'frustrations in selecting and matching disciplinary knowledge to complex problems' (emotional), 'understanding how to apply theoretical models or concepts to real-world situations' (cognitive), and 'socially engaging with peers to recognise similarities in perceptions and experiences' (social). Furthermore, the results showed that students appreciated the cognitive dimension relatively more than the emotional and social dimensions.
Bloom's taxonomy of cognitive learning objectives.
Adams, Nancy E
2015-07-01
Information professionals who train or instruct others can use Bloom's taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom's taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.
"Assessment Drives Learning": Do Assessments Promote High-Level Cognitive Processing?
ERIC Educational Resources Information Center
Bezuidenhout, M. J.; Alt, H.
2011-01-01
Students tend to learn in the way they know, or think, they will be assessed. Therefore, to ensure deep, meaningful learning, assessments must be geared to promote cognitive processing that requires complex, contextualised thinking to construct meaning and create knowledge. Bloom's taxonomy of cognitive levels is used worldwide to assist in…
Student Motivations as Predictors of High-Level Cognitions in Project-Based Classrooms
ERIC Educational Resources Information Center
Stolk, Jonathan; Harari, Janie
2014-01-01
It is well established that active learning helps students engage in high-level thinking strategies and develop improved cognitive skills. Motivation and self-regulated learning research, however, illustrates that cognitive engagement is an effortful process that is related to students' valuing of the learning tasks, adoption of internalized goal…
Contributions of Associative Learning to Age and Individual Differences in Fluid Intelligence
ERIC Educational Resources Information Center
Tamez, Elaine; Myerson, Joel; Hale, Sandra
2012-01-01
According to the cognitive cascade hypothesis, age-related slowing results in decreased working memory, which in turn affects higher-order cognition. Because recent studies show complex associative learning correlates highly with fluid intelligence, the present study examined the role of complex associative learning in cognitive cascade models of…
Measurement of Cognitive Load in Multimedia Learning: A Comparison of Different Objective Measures
ERIC Educational Resources Information Center
Korbach, Andreas; Brünken, Roland; Park, Babette
2017-01-01
Different indicators are interesting for analyzing human learning processes. Recent studies analyze learning performance in combination with cognitive load, as an indicator for learners' invested mental effort. In order to compare different measures of cognitive load research, the present study uses three different objective methods and one…
ERIC Educational Resources Information Center
Jamniczky, Heather A.; Cotton, Darrel; Paget, Michael; Ramji, Qahir; Lenz, Ryan; McLaughlin, Kevin; Coderre, Sylvain; Ma, Irene W. Y.
2017-01-01
Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using…
Anderson, Caitlin L; Kasumovic, Michael M
2017-01-01
Cognitive functioning is vital for enabling animals of all taxa to optimise their chances of survival and reproductive success. Learning and memory in particular are drivers of many evolutionary processes. In this study, we examine how developmental plasticity can affect cognitive ability by exploring the role the early social environment has on problem solving ability and learning of female black field crickets, Teleogryllus commodus. We used two learning paradigms, an analog of the Morris water maze and a novel linear maze, to examine cognitive differences between individuals reared in two acoustic treatments: silence or calling. Although there was no evidence of learning or memory, individuals that took longer to mature solved the Morris water maze more quickly. Our results suggest that increased investment into cognitive development is likely associated with increased development time during immature stages. Inconsistent individual performance and motivation during the novel linear maze task highlights the difficulties of designing ecologically relevant learning tasks within a lab setting. The role of experimental design in understanding cognitive ability and learning in more natural circumstances is discussed.
Get the picture? The effects of iconicity on toddlers' reenactment from picture books.
Simcock, Gabrielle; DeLoache, Judy
2006-11-01
What do toddlers learn from everyday picture-book reading interactions? To date, there has been scant research exploring this question. In this study, the authors adapted a standard imitation procedure to examine 18- to 30-month-olds' ability to learn how to reenact a novel action sequence from a picture book. The results provide evidence that toddlers can imitate specific target actions on novel real-world objects on the basis of a picture-book interaction. Children's imitative performance after the reading interaction varied both as a function of age and the level of iconicity of the pictures in the book. These findings are discussed in terms of children's emerging symbolic capacity and the flexibility of the cognitive representation.
Factors Influencing the Use of Cognitive Tools in Web-Based Learning Environments: A Case Study
ERIC Educational Resources Information Center
Ozcelik, Erol; Yildirim, Soner
2005-01-01
High demands on learners in Web-based learning environments and constraints of the human cognitive system cause disorientation and cognitive overload. These problems could be inhibited if appropriate cognitive tools are provided to support learners' cognitive processes. The purpose of this study was to explore the factors influencing the use of…
Addressing Cognitive Processes in e-learning: TSOI Hybrid Learning Model
ERIC Educational Resources Information Center
Tsoi, Mun Fie; Goh, Ngoh Khang
2008-01-01
The development of e-learning materials for teaching and learning often needs to be guided by appropriate educational theories or models. As such, this paper provides alternative e-learning design pedagogy, the TSOI Hybrid Learning Model as a pedagogic model for the design of e-learning cognitively in science and chemistry education. This model is…
NASA Astrophysics Data System (ADS)
Alias, Maizam; Lashari, Tahira Anwar; Abidin Akasah, Zainal; Jahaya Kesot, Mohd.
2014-03-01
Learning in the cognitive domain is highly emphasised and has been widely investigated in engineering education. Lesser emphasis is placed on the affective dimension although the role of affects has been supported by research. The lack of understanding on learning theories and how they may be translated into classroom application of teaching and learning is one factor that contributes to this situation. This paper proposes a working framework for integrating the affective dimension of learning into engineering education that is expected to promote better learning within the cognitive domain. Four major learning theories namely behaviourism, cognitivism, socio-culturalism, and constructivism were analysed and how affects are postulated to influence cognition are identified. The affective domain constructs identified to be important are self-efficacy, attitude and locus of control. Based on the results of the analysis, a framework that integrates methodologies for achieving learning in the cognitive domain with the support of the affective dimension of learning is proposed. It is expected that integrated approach can be used as a guideline to engineering educators in designing effective and sustainable instructional material that would result in the effective engineers for future development.
Multiple memory systems as substrates for multiple decision systems
Doll, Bradley B.; Shohamy, Daphna; Daw, Nathaniel D.
2014-01-01
It has recently become widely appreciated that value-based decision making is supported by multiple computational strategies. In particular, animal and human behavior in learning tasks appears to include habitual responses described by prominent model-free reinforcement learning (RL) theories, but also more deliberative or goal-directed actions that can be characterized by a different class of theories, model-based RL. The latter theories evaluate actions by using a representation of the contingencies of the task (as with a learned map of a spatial maze), called an “internal model.” Given the evidence of behavioral and neural dissociations between these approaches, they are often characterized as dissociable learning systems, though they likely interact and share common mechanisms. In many respects, this division parallels a longstanding dissociation in cognitive neuroscience between multiple memory systems, describing, at the broadest level, separate systems for declarative and procedural learning. Procedural learning has notable parallels with model-free RL: both involve learning of habits and both are known to depend on parts of the striatum. Declarative memory, by contrast, supports memory for single events or episodes and depends on the hippocampus. The hippocampus is thought to support declarative memory by encoding temporal and spatial relations among stimuli and thus is often referred to as a relational memory system. Such relational encoding is likely to play an important role in learning an internal model, the representation that is central to model-based RL. Thus, insofar as the memory systems represent more general-purpose cognitive mechanisms that might subserve performance on many sorts of tasks including decision making, these parallels raise the question whether the multiple decision systems are served by multiple memory systems, such that one dissociation is grounded in the other. Here we investigated the relationship between model-based RL and relational memory by comparing individual differences across behavioral tasks designed to measure either capacity. Human subjects performed two tasks, a learning and generalization task (acquired equivalence) which involves relational encoding and depends on the hippocampus; and a sequential RL task that could be solved by either a model-based or model-free strategy. We assessed the correlation between subjects’ use of flexible, relational memory, as measured by generalization in the acquired equivalence task, and their differential reliance on either RL strategy in the decision task. We observed a significant positive relationship between generalization and model-based, but not model-free, choice strategies. These results are consistent with the hypothesis that model-based RL, like acquired equivalence, relies on a more general-purpose relational memory system. PMID:24846190
Two Meta-Analyses Exploring the Relationship between Teacher Clarity and Student Learning
ERIC Educational Resources Information Center
Titsworth, Scott; Mazer, Joseph P.; Goodboy, Alan K.; Bolkan, San; Myers, Scott A.
2015-01-01
This article reports the findings of two meta-analyses that explored the relationship between teacher clarity and student learning. Combined, the results suggest that teacher clarity has a larger effect for student affective learning than for cognitive learning. However, neither the effects for cognitive learning nor affective learning were…
Stroop-like effects in a new-code learning task: A cognitive load theory perspective.
Hazan-Liran, Batel; Miller, Paul
2017-09-01
To determine whether and how learning is biased by competing task-irrelevant information that creates extraneous cognitive load, we assessed the efficiency of university students with a learning paradigm in two experiments. The paradigm asked participants to learn associations between eight words and eight digits. We manipulated congruity of the digits' ink colour with the words' semantics. In Experiment 1 word stimuli were colour words (e.g., blue, yellow) and in Experiment 2 colour-related word concepts (e.g., sky, banana). Marked benefits and costs on learning due to variation in extraneous cognitive load originating from processing task-irrelevant information were evident. Implications for cognitive load theory and schooling are discussed.
Hippocampal-neocortical functional reorganization underlies children's cognitive development
Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C.; Menon, Vinod
2014-01-01
The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development – the transition from procedure-based to memory-based problem solving strategies – are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use continued to improve through adolescence into adulthood, and was associated with decreased activation but more stable inter-problem representations in the hippocampus. Our findings provide novel insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving, and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development. PMID:25129076
Hippocampal-neocortical functional reorganization underlies children's cognitive development.
Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod
2014-09-01
The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.
Springer, Craig I; Colorado, Giselle; Misurell, Justin R
2015-01-01
Game-based cognitive-behavioral therapy group model for nonoffending caregivers utilizes structured therapeutic games to assist parents following child sexual abuse. Game-based cognitive-behavioral therapy group model is a manualized group treatment approach that integrates evidence-based cognitive-behavioral therapy components with structured play therapy to teach parenting and coping skills, provide psychoeducation, and process trauma. Structured therapeutic games were designed to allow nonoffending caregivers to process their children's abuse experiences and learn skills necessary to overcome trauma in a nonthreatening, fun, and engaging manner. The implementation of these techniques allow clinicians to address a variety of psychosocial difficulties that are commonly found among nonoffending caregivers of children who have experienced sexual abuse. In addition, structured therapeutic games help caregivers develop strengths and abilities that they can use to help their children cope with abuse and trauma and facilitates the development of positive posttraumatic growth. Techniques and procedures for treatment delivery along with a description of core components and therapeutic modules are discussed. An illustrative case study is provided.
ERIC Educational Resources Information Center
Crossland, John
2015-01-01
Learning depends on the effective use of basic cognitive processes such as memory and attention, but for optimal learning, learners also need to have awareness of, and control over, these cognitive processes. The literal meaning of metacognition is cognition about cognition or, more informally, thinking about your thinking: a good starting point…
Song learning and cognitive ability are not consistently related in a songbird.
Anderson, Rindy C; Searcy, William A; Peters, Susan; Hughes, Melissa; DuBois, Adrienne L; Nowicki, Stephen
2017-03-01
Learned aspects of song have been hypothesized to signal cognitive ability in songbirds. We tested this hypothesis in hand-reared song sparrows (Melospiza melodia) that were tutored with playback of adult songs during the critical period for song learning. The songs developed by the 19 male subjects were compared to the model songs to produce two measures of song learning: the proportion of notes copied from models and the average spectrogram cross-correlation between copied notes and model notes. Song repertoire size, which reflects song complexity, was also measured. At 1 year of age, subjects were given a battery of five cognitive tests that measured speed of learning in the context of a novel foraging task, color association, color reversal, detour-reaching, and spatial learning. Bivariate correlations between the three song measures and the five cognitive measures revealed no significant associations. As in other studies of avian cognition, different cognitive measures were for the most part not correlated with each other, and this result remained true when 22 hand-reared female song sparrows were added to the analysis. General linear mixed models controlling for effects of neophobia and nest of origin indicated that all three song measures were associated with better performance on color reversal and spatial learning but were associated with worse performance on novel foraging and detour-reaching. Overall, the results do not support the hypothesis that learned aspects of song signal cognitive ability.
Mackenzie, Corey S; Wiprzycka, Ursula J; Hasher, Lynn; Goldstein, David
2009-11-01
Family caregivers of older adults experience high levels of chronic stress and psychological distress, which are known to impair cognition. Very little research, however, has assessed the impact of caregiving on key cognitive outcomes such as learning and memory. This study compared 16 spouse caregivers with 16 matched controls using standardized neuropsychological measures of learning, episodic memory, and working memory. Analyses compared groups on these cognitive outcomes and examined whether psychological distress mediated group differences in cognition. Results indicated that caregivers were significantly more distressed than non-caregivers and exhibited deficits in learning, recall of episodic information after short and long delays, and working memory. Furthermore, the majority of group differences in cognitive outcomes were mediated by psychological distress. This study adds to a small body of literature demonstrating impaired cognitive functioning among family caregivers. It also suggests that distress is one of a number of possible underlying mechanisms leading to disruptions in learning and memory in this population.
Holtzer, Roee; Foley, Frederick; D'Orio, Vanessa; Spat, Jessica; Shuman, Melissa; Wang, Cuiling
2013-10-01
Compromised learning and cognitive fatigue are critical clinical features in multiple sclerosis. This study was designed to determine the effect of repeated exposures within and across study visits on performance measures of learning and cognitive fatigue in relapsing-remitting multiple sclerosis (RRMS). Thirty patients with RRMS and 30 controls were recruited. Using a burst measurement design (i.e. repeated assessments within and across study visits) the oral version of the Symbol Digit Modalities Test (SDMT) was administered three times during the baseline and two consecutive monthly follow-up visits for a total of nine test administrations. Learning was assessed within and across study visits whereas cognitive fatigue was assessed during the course of each test administration that was divided into three 30-second intervals. Linear mixed-effect models revealed compromised learning within (95% CI: 2.6355 to 3.9867) and across (95% CI: 1.3250 to 3.1861) visits and worse cognitive fatigue (95% CI: -2.1761 to -0.1720) in patients with RRMS compared with controls. Among patients with RRMS, worse self-rated cognitive dysfunction predicted poor learning within (95% CI: -0.1112 to -0.0020) and across (95% CI: -0.0724 to -0.0106) visits. Burst design is optimal to study learning and cognitive fatigue. This methodology, using the SDMT or other time-efficient tests as outcome measures, can be successfully implemented in longitudinal studies and clinical trials.
Ray, Nicholas R; O'Connell, Margaret A; Nashiro, Kaoru; Smith, Evan T; Qin, Shuo; Basak, Chandramallika
2017-01-01
Many studies are currently researching the effects of video games, particularly in the domain of cognitive training. Great variability exists among video games however, and few studies have attempted to compare different types of video games. Little is known, for instance, about the cognitive processes or brain structures that underlie learning of different genres of video games. To examine the cognitive and neural underpinnings of two different types of game learning in order to evaluate their common and separate correlates, with the hopes of informing future intervention research. Participants (31 younger adults and 31 older adults) completed an extensive cognitive battery and played two different genres of video games, one action game and one strategy game, for 1.5 hours each. DTI scans were acquired for each participant, and regional fractional anisotropy (FA) values were extracted using the JHU atlas. Behavioral results indicated that better performance on tasks of working memory and perceptual discrimination was related to enhanced learning in both games, even after controlling for age, whereas better performance on a perceptual speed task was uniquely related with enhanced learning of the strategy game. DTI results indicated that white matter FA in the right fornix/stria terminalis was correlated with action game learning, whereas white matter FA in the left cingulum/hippocampus was correlated with strategy game learning, even after controlling for age. Although cognition, to a large extent, was a common predictor of both types of game learning, regional white matter FA could separately predict action and strategy game learning. Given the neural and cognitive correlates of strategy game learning, strategy games may provide a more beneficial training tool for adults suffering from memory-related disorders or declines in processing speed, particularly older adults.
Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus
2017-01-01
Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.
2010-05-01
mind, (ii) forms of mental self-government, and (iii) stylistic preferences. Importantly, Sternberg does not think that cognitive style...summarizes a study examining suitable cognitive and learning styles for intelligent tutoring technologies to improve the Canadian Forces (CF) distance...are the appropriate tool to address CF learning needs, as e-learning systems: • Cater to all individuals in the CF regardless of their cognitive or
2014-11-04
learning by robots as well as video image understanding by accumulated learning of the exemplars are discussed. 15. SUBJECT TERMS Cognitive ...learning to predict perceptual streams or encountering events by acquiring internal models is indispensable for intelligent or cognitive systems because...various cognitive functions are based on this compentency including goal-directed planning, mental simulation and recognition of the current situation
Errors in Multi-Digit Arithmetic and Behavioral Inattention in Children With Math Difficulties
Raghubar, Kimberly; Cirino, Paul; Barnes, Marcia; Ewing-Cobbs, Linda; Fletcher, Jack; Fuchs, Lynn
2009-01-01
Errors in written multi-digit computation were investigated in children with math difficulties. Third-and fourth-grade children (n = 291) with coexisting math and reading difficulties, math difficulties, reading difficulties, or no learning difficulties were compared. A second analysis compared those with severe math learning difficulties, low average achievement in math, and no learning difficulties. Math fact errors were related to the severity of the math difficulties, not to reading status. Contrary to predictions, children with poorer reading, regardless of math achievement, committed more visually based errors. Operation switch errors were not systematically related to group membership. Teacher ratings of behavioral inattention were related to accuracy, math fact errors, and procedural bugs. The findings are discussed with respect to hypotheses about the cognitive origins of arithmetic errors and in relation to current discussions about how to conceptualize math disabilities. PMID:19380494
The Learning Way: Meta-Cognitive Aspects of Experiential Learning
ERIC Educational Resources Information Center
Kolb, Alice Y.; Kolb, David A.
2009-01-01
Contemporary research on meta-cognition has reintroduced conscious experience into psychological research on learning and stimulated a fresh look at classical experiential learning scholars who gave experience a central role in the learning process--William James, John Dewey, Kurt Lewin, Carl Rogers, and Paulo Freire. In particular James's…
Cognitive Pruning and Second Language Acquisition.
ERIC Educational Resources Information Center
Brown, H. Douglas
Ausubel distinguishes two kinds of human learning: (1) rote learning, relevant only to a small fraction of human learning, is the mechanistic formation of discrete, isolated traces in cognitive structure, usually through a process of conditioning; (2) meaningful learning, characteristic of most human learning, is a process of "subsuming" material…
Examining Hypermedia Learning: The Role of Cognitive Load and Self-Regulated Learning
ERIC Educational Resources Information Center
Moos, Daniel
2013-01-01
Distinct theoretical perspectives, Cognitive Load Theory and Self-Regulated Learning (SRL) theory, have been used to examine individual differences the challenges faced with hypermedia learning. However, research has tended to use these theories independently, resulting in less robust explanations of hypermedia learning. This study examined the…
Cognition in Counseling: Integrating Two Theoretical Approaches.
ERIC Educational Resources Information Center
Harris, Jeff E.; Heesacker, Martin
Learning and attitude change are two cognitive processes essential to therapeutic change in counseling. Recently two cognitive models that reflect current research and theory, one focusing on learning and the other on attitude change, have each been applied to counseling with promising results. Martin's cognitive instructional counseling (CIC) is…
Learning a Foreign Language: A New Path to Enhancement of Cognitive Functions
ERIC Educational Resources Information Center
Shoghi Javan, Sara; Ghonsooly, Behzad
2018-01-01
The complicated cognitive processes involved in natural (primary) bilingualism lead to significant cognitive development. Executive functions as a fundamental component of human cognition are deemed to be affected by language learning. To date, a large number of studies have investigated how natural (primary) bilingualism influences executive…
Teachers' Awareness of the Semio-Cognitive Dimension of Learning Mathematics
ERIC Educational Resources Information Center
Iori, Maura
2018-01-01
While many semiotic and cognitive studies on learning mathematics have focused primarily on students, this study focuses mainly on teachers, by seeking to bring to light their awareness of the semiotic and cognitive aspects of learning mathematics. The aim is to highlight the degree of awareness that teachers show about: (1) the distinction…
ERIC Educational Resources Information Center
Lee, Hyunjeong
2014-01-01
This study investigated a reliable and valid method for measuring cognitive load during learning through comparing various types of cognitive load measurements: electroencephalography (EEG), self-reporting, and learning outcome. A total of 43 college-level students underwent watching a documentary delivered in English or in Korean. EEG was…
ERIC Educational Resources Information Center
Gebre, Engida
2018-01-01
This paper presents a descriptive case study where infographics--visual representation of data and ideas--have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students' science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools…
Brain-Based Aspects of Cognitive Learning Approaches in Second Language Learning
ERIC Educational Resources Information Center
Moghaddam, Alireza Navid; Araghi, Seyed Mahdi
2013-01-01
Language learning process is one of the complicated behaviors of human beings which has called many scholars and experts' attention especially after the middle of last century by the advent of cognitive psychology that later on we see its implication to education. Unlike previous thought of schools, cognitive psychology deals with the way in which…
ERIC Educational Resources Information Center
Rogers, Leslie Cohen
2012-01-01
This qualitative, insider account of student civic development in a university service-learning course has two primary goals. One is to propose frameworks for describing the process of civic development of service-learning students that are situated in theories of civic identity, cognitive development, and cognitive dissonance. The other is to…
ERIC Educational Resources Information Center
Banisaeid, Maryam
2013-01-01
The present study was conducted to compare the effect of memory and cognitive strategies training on vocabulary learning of intermediate proficiency group of Iranian learners of English as a foreign language. It is to check how memory and cognitive strategies training affect word learning of EFL intermediate learners (N = 60) who were homogenized…
The Impact of Cognitive Assessment on the Identity of People with Learning Disabilities
ERIC Educational Resources Information Center
Davidson, Terence; Smith, Hilary; Burns, Jan
2014-01-01
Researchers and clinicians have hypothesised that cognitive assessments have the power to influence the self-identity of people with learning disabilities. This research aimed to explore the experience of a sample of people who had been given a cognitive assessment by a psychologist based in a team for people with learning disabilities. Five…
The Positive Effects of Cognitive Learning Styles in ELT Classes
ERIC Educational Resources Information Center
Yagcioglu, Ozlem
2016-01-01
In the EFL, ESL, ESP and in the ELT classes, students are taught their courses with different kinds of methods and approaches. Cognitive learning styles are the most essential styles in foreign language education. In this paper, the positive effects of cognitive learning styles will be handled. The benefits of these styles will be highlighted.…
ERIC Educational Resources Information Center
Otwinowska, Agnieszka; Forys, Malgorzata
2017-01-01
CLIL (Content and Language Integrated Learning) is a teaching method in which learners develop linguistic competence and problem-solving abilities by learning content subjects in another language. However, learners' cognitive gains may depend on their affectivity. Negative affect hampers complex cognitive processing essential for problem-solving,…
ERIC Educational Resources Information Center
Sutherland, Peter, Ed.
This book on adult learning is divided into six sections. Section 1, Cognitive Processes, includes the following chapters: "Cognitive Processes: Contemporary Paradigms of Learning" (Jack Mezirow); "Information Processing, Memory, Age and Adult Learning" (Gillian Boulton-Lewis); "Adult Learners' Metacognitive Behaviour in Higher Education" (Barry…
Aids to Computer-Based Multimedia Learning.
ERIC Educational Resources Information Center
Mayer, Richard E.; Moreno, Roxana
2002-01-01
Presents a cognitive theory of multimedia learning that draws on dual coding theory, cognitive load theory, and constructivist learning theory and derives some principles of instructional design for fostering multimedia learning. These include principles of multiple representation, contiguity, coherence, modality, and redundancy. (SLD)
Learning Disabilities: A Piagetian Perspective.
ERIC Educational Resources Information Center
Fakouri, M. E.
1991-01-01
Superimposes findings of research in learning disabilities on Piagetian stages of cognitive development. Results suggest that during sensorimotor stage, diagnosis of learning disabilities is difficult. Findings suggest delay exists in cognitive development of learning-disabled children during elementary school years, which corresponds to…
Social learning by imitation in a reptile (Pogona vitticeps).
Kis, Anna; Huber, Ludwig; Wilkinson, Anna
2015-01-01
The ability to learn through imitation is thought to be the basis of cultural transmission and was long considered a distinctive characteristic of humans. There is now evidence that both mammals and birds are capable of imitation. However, nothing is known about these abilities in the third amniotic class-reptiles. Here, we use a bidirectional control procedure to show that a reptile species, the bearded dragon (Pogona vitticeps), is capable of social learning that cannot be explained by simple mechanisms such as local enhancement or goal emulation. Subjects in the experimental group opened a trap door to the side that had been demonstrated, while subjects in the ghost control group, who observed the door move without the intervention of a conspecific, were unsuccessful. This, together with differences in behaviour between experimental and control groups, provides compelling evidence that reptiles possess cognitive abilities that are comparable to those observed in mammals and birds and suggests that learning by imitation is likely to be based on ancient mechanisms.
Gómez-Moya, Rosinna; Díaz, Rosalinda; Fernandez-Ruiz, Juan
2016-04-01
Different processes are involved during visuomotor learning, including an error-based procedural and a strategy based cognitive mechanism. Our objective was to analyze if the changes in the adaptation or the aftereffect components of visuomotor learning measured across development, reflected different maturation rates of the aforementioned mechanisms. Ninety-five healthy children aged 4-12years and a group of young adults participated in a wedge prism and a dove prism throwing task, which laterally displace or horizontally reverse the visual field respectively. The results show that despite the age-related differences in motor control, all children groups adapted in the error-based wedge prisms condition. However, when removing the prism, small children showed a slower aftereffects extinction rate. On the strategy-based visual reversing task only the older children group reached adult-like levels. These results are consistent with the idea of different mechanisms with asynchronous maturation rates participating during visuomotor learning. Copyright © 2016 Elsevier B.V. All rights reserved.
Chapman, Sandra B.; Rackley, Audette; Eroh, Justin; Chiang, Hsueh‐Sheng; Perez, Alison; Venza, Erin; Spence, Jeffrey S.
2016-01-01
Objective Cognitive training offers a promising way to mitigate cognitive deterioration in individuals with mild cognitive impairment (MCI). This randomized control pilot trial examined the effects of Gist Reasoning Training on cognition as compared with a training involving New Learning in a well‐characterized MCI group. Methods Fifty participants with amnestic MCI were randomly assigned to the experimental Gist Training group or an active control New Learning group. Both groups received 8 h of training over a 4‐week period. We compared pre‐training with post‐training changes in cognitive functions between the two training groups. Results The Gist Training group showed higher performance in executive function (strategic control and concept abstraction) and memory span compared with the New Learning group. Conversely, the New Learning group showed gains in memory for details. Conclusion These findings suggest that cognitive training in general yields benefits, and more specifically, training programs that target top–down cognitive functions such as gist reasoning may have a broad impact on improving cognition in MCI. © 2016 The Authors. International Journal of Geriatric Psychiatry Published by John Wiley & Sons Ltd. PMID:27112124
Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter
2016-01-01
Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.
2012-01-01
Background Almost all cognitive functions decline with age. Results of previous studies have shown that cognitive training related to everyday life (reading aloud and solving simple arithmetic calculations), namely learning therapy, can improve two cognitive function (executive functions and processing speed) in elderly people. However, it remains unclear whether learning therapy engenders improvement of various cognitive functions or not. We investigate the impact of learning therapy on various cognitive functions (executive functions, episodic memory, short-term memory, working memory, attention, reading ability, and processing speed) in healthy older adults. Methods We use a single-blinded intervention with two parallel groups (a learning therapy group and a waiting list control group). Testers are blind to the study hypothesis and the group membership of participants. Through an advertisement in local newspaper, 64 healthy older adults are recruited. They will be assigned randomly to a learning therapy group or a waiting list control group. In the learning therapy group, participants are required to perform two cognitive tasks for 6 months: reading Japanese aloud and solving simple calculations. The waiting list group does not participate in the intervention. The primary outcome measure is the Stroop test score: a measure of executive function. Secondary outcome measures are assessments including the following: verbal fluency task, logical memory, first and second names, digit span forward, digit span backward, Japanese reading test, digit cancellation task, digit symbol coding, and symbol search. We assess these outcome measures before and after the intervention. Discussion This report is the first study which investigates the beneficial effects of learning therapy on a wide range of cognitive functions of elderly people. Our study provides sufficient evidence of learning therapy effectiveness. Most cognitive functions, which are correlated strongly with daily life activities, decrease with age. These study results can elucidate effects of cognitive training on elderly people. Trial registration This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry (No. UMIN000006998). PMID:22483196
Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Sekiguchi, Atsushi; Nouchi, Haruka; Kawashima, Ryuta
2012-04-06
Almost all cognitive functions decline with age. Results of previous studies have shown that cognitive training related to everyday life (reading aloud and solving simple arithmetic calculations), namely learning therapy, can improve two cognitive function (executive functions and processing speed) in elderly people. However, it remains unclear whether learning therapy engenders improvement of various cognitive functions or not. We investigate the impact of learning therapy on various cognitive functions (executive functions, episodic memory, short-term memory, working memory, attention, reading ability, and processing speed) in healthy older adults. We use a single-blinded intervention with two parallel groups (a learning therapy group and a waiting list control group). Testers are blind to the study hypothesis and the group membership of participants. Through an advertisement in local newspaper, 64 healthy older adults are recruited. They will be assigned randomly to a learning therapy group or a waiting list control group. In the learning therapy group, participants are required to perform two cognitive tasks for 6 months: reading Japanese aloud and solving simple calculations. The waiting list group does not participate in the intervention. The primary outcome measure is the Stroop test score: a measure of executive function. Secondary outcome measures are assessments including the following: verbal fluency task, logical memory, first and second names, digit span forward, digit span backward, Japanese reading test, digit cancellation task, digit symbol coding, and symbol search. We assess these outcome measures before and after the intervention. This report is the first study which investigates the beneficial effects of learning therapy on a wide range of cognitive functions of elderly people. Our study provides sufficient evidence of learning therapy effectiveness. Most cognitive functions, which are correlated strongly with daily life activities, decrease with age. These study results can elucidate effects of cognitive training on elderly people. This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry (No. UMIN000006998).
Five Faces of Cognition: Theoretical Influences on Approaches to Learning Disabilities.
ERIC Educational Resources Information Center
Hresko, Wayne P.; Reid, D. Kim
1981-01-01
The label "cognitive" has been used to designate five substantially different approaches to the study of learning disabilities: information processing, metacognition, genetic epistemology, cognitive behavior modification, and the specific abilities model. (Author)
From task characteristics to learning: A systematic review.
Wielenga-Meijer, Etty G A; Taris, Toon W; Kompier, Michiel A J; Wigboldus, Daniël H J
2010-10-01
Although many theoretical approaches propose that job characteristics affect employee learning, the question is why and how job characteristics influence learning. The present study reviews the evidence on the relationships among learning antecedents (i.e., job characteristics: demands, variety, autonomy and feedback), learning processes (including motivational, meta-cognitive, cognitive and behavioral processes) and learning consequences. Building on an integrative heuristic model, we quantitatively reviewed 85 studies published between 1969 and 2005. Our analyses revealed strong evidence for a positive relation between job demands and autonomy on the one hand and motivational and meta-cognitive learning processes on the other. Furthermore, these learning processes were positively related to learning consequences. © 2010 The Authors. Scandinavian Journal of Psychology © 2010 The Scandinavian Psychological Associations.
Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro
2018-05-09
Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.
A Cognitive Task Analysis for an Emergency Management Serious Game.
Dass, Susan; Barnieu, Joanne; Cummings, Paul; Cid, Victor
2016-01-01
The Bethesda Hospitals' Emergency Preparedness Partnership identified a need to design training systems for hospital emergency management scenarios that included incident command situations. As part of this partnership, the National Library of Medicine (NLM) was challenged to develop an engaging, learner-centered simulation to specifically address hospital procedures for highly infectious diseases (HIDs) for multiple hospital roles. A serious game approach was selected for the simulation because collaborative (multiplayer) immersive, game-based simulations have been proven to generate realistic and engaging learning experiences and, when properly designed, can enhance training while minimizing cost compared to full-scale disaster exercises (Spain et al., 2013). Although substantial research effort has been put into design and evaluation of serious games, less time has been spent on developing sound instructional design methodologies to support serious game development. So how does one collect the appropriate, relevant, contextualized content and then align with serious game design elements? This paper describes how a cognitive task approach supported by a live demonstration with a think-aloud protocol was used to collect the rich psychomotor, procedural, and cognitive data necessary for the design of a serious game for handling HIDs. Furthermore, the paper presents a process to translate the collected data into meaningful content to support rapid prototyping. Recommendations for data collection and translation for a serious game close the paper.
A Cognitive Task Analysis for an Emergency Management Serious Game
Dass, Susan; Barnieu, Joanne; Cummings, Paul; Cid, Victor
2017-01-01
The Bethesda Hospitals' Emergency Preparedness Partnership identified a need to design training systems for hospital emergency management scenarios that included incident command situations. As part of this partnership, the National Library of Medicine (NLM) was challenged to develop an engaging, learner-centered simulation to specifically address hospital procedures for highly infectious diseases (HIDs) for multiple hospital roles. A serious game approach was selected for the simulation because collaborative (multiplayer) immersive, game-based simulations have been proven to generate realistic and engaging learning experiences and, when properly designed, can enhance training while minimizing cost compared to full-scale disaster exercises (Spain et al., 2013). Although substantial research effort has been put into design and evaluation of serious games, less time has been spent on developing sound instructional design methodologies to support serious game development. So how does one collect the appropriate, relevant, contextualized content and then align with serious game design elements? This paper describes how a cognitive task approach supported by a live demonstration with a think-aloud protocol was used to collect the rich psychomotor, procedural, and cognitive data necessary for the design of a serious game for handling HIDs. Furthermore, the paper presents a process to translate the collected data into meaningful content to support rapid prototyping. Recommendations for data collection and translation for a serious game close the paper. PMID:29629430
Huertas, E; Bühler, K-M; Echeverry-Alzate, V; Giménez, T; López-Moreno, J A
2012-08-01
Genetic variants that are related to the dopaminergic system have been frequently found to be associated with various neurological and mental disorders. Here, we studied the relationships between some of these genetic variants and some cognitive and psychophysiological processes that are implicated in such disorders. Two single nucleotide polymorphisms were chosen: one in the dopamine D2 receptor gene (rs6277-C957T) and one in the catechol-O-methyltransferase gene (rs4680-Val158Met), which is involved in the metabolic degradation of dopamine. The performance of participants on two long-term memory tasks was assessed: free recall (declarative memory) and mirror drawing (procedural motor learning). Heart rate (HR) was also monitored during the initial trials of the mirror-drawing task, which is considered to be a laboratory middle-stress generator (moderate stress), and during a rest period (low stress). Data were collected from 213 healthy Caucasian university students. The C957T C homozygous participants showed more rapid learning than the T allele carriers in the procedural motor learning task and smaller differences in HR between the moderate- and the low-stress conditions. These results provide useful information regarding phenotypic variance in both healthy individuals and patients. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Hunt, Pamela S; Barnet, Robert C
2015-09-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5g/kg/day ethanol on postnatal days (PD) 4-9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as 'gap filling' completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. Copyright © 2014 Elsevier Inc. All rights reserved.
Hunt, Pamela S.; Barnet, Robert C.
2014-01-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5 g/kg/day ethanol on postnatal days (PD) 4–9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as ‘gap filling’ completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. PMID:25477227
E-learning, dual-task, and cognitive load: The anatomy of a failed experiment.
Van Nuland, Sonya E; Rogers, Kem A
2016-01-01
The rising popularity of commercial anatomy e-learning tools has been sustained, in part, due to increased annual enrollment and a reduction in laboratory hours across educational institutions. While e-learning tools continue to gain popularity, the research methodologies used to investigate their impact on learning remain imprecise. As new user interfaces are introduced, it is critical to understand how functionality can influence the load placed on a student's memory resources, also known as cognitive load. To study cognitive load, a dual-task paradigm wherein a learner performs two tasks simultaneously is often used, however, its application within educational research remains uncommon. Using previous paradigms as a guide, a dual-task methodology was developed to assess the cognitive load imposed by two commercial anatomical e-learning tools. Results indicate that the standard dual-task paradigm, as described in the literature, is insensitive to the cognitive load disparities across e-learning tool interfaces. Confounding variables included automation of responses, task performance tradeoff, and poor understanding of primary task cognitive load requirements, leading to unreliable quantitative results. By modifying the secondary task from a basic visual response to a more cognitively demanding task, such as a modified Stroop test, the automation of secondary task responses can be reduced. Furthermore, by recording baseline measures for the primary task as well as the secondary task, it is possible for task performance tradeoff to be detected. Lastly, it is imperative that the cognitive load of the primary task be designed such that it does not overwhelm the individual's ability to learn new material. © 2015 American Association of Anatomists.
den Brok, W L J E; Sterkenburg, P S
2015-01-01
Persons with an autism spectrum disorder and/or intellectual disability have difficulties in processing information, which impedes the learning of daily living skills and cognitive concepts. Technological aids support learning, and if used temporarily and in a self-controlled manner, they may contribute to independent societal participation. This systematic review examines the studies that applied self-controlled technologies. The 28 relevant studies showed that skills and concepts are learned through prompting, interaction with devices, and practicing in (realistic) virtual environments. For attaining cognitive concepts, advanced technologies such as virtual reality are effective. Five studies focussed on cognitive concepts and two on emotion concepts. More research is necessary to examine the generalization of results and effect of using technology for learning cognitive and emotional concepts. Implications for Rehabilitation Persons with a moderate to mild intellectual disability and/or with autism can use self-controlled technology to learn new activities of daily living and cognitive concepts (e.g. time perception and imagination). Specific kinds of technologies can be used to learn specific kinds of skills (e.g. videos on computers or handheld devices for daily living skills; Virtual Reality for time perception and emotions of others). For learning new cognitive concepts it is advisable to use more advanced technologies as they have the potential to offer more features to support learning.
Voss, Michelle W; Prakash, Ruchika Shaurya; Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F
2012-01-02
We used the Space Fortress videogame, originally developed by cognitive psychologists to study skill acquisition, as a platform to examine learning-induced plasticity of interacting brain networks. Novice videogame players learned Space Fortress using one of two training strategies: (a) focus on all aspects of the game during learning (fixed priority), or (b) focus on improving separate game components in the context of the whole game (variable priority). Participants were scanned during game play using functional magnetic resonance imaging (fMRI), both before and after 20 h of training. As expected, variable priority training enhanced learning, particularly for individuals who initially performed poorly. Functional connectivity analysis revealed changes in brain network interaction reflective of more flexible skill learning and retrieval with variable priority training, compared to procedural learning and skill implementation with fixed priority training. These results provide the first evidence for differences in the interaction of large-scale brain networks when learning with different training strategies. Our approach and findings also provide a foundation for exploring the brain plasticity involved in transfer of trained abilities to novel real-world tasks such as driving, sport, or neurorehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Brownell, Judi; Jameson, Daphne A.
2004-01-01
This article develops a model of problem-based learning (PBL) and shows how PBL has been used for a decade in one graduate management program. PBL capitalizes on synergies among cognitive, affective, and behavioral learning. Although management education usually privileges cognitive learning, affective learning is equally important. By focusing on…
ERIC Educational Resources Information Center
Bradshaw, Vicki
2012-01-01
This action research study is the culmination of several action cycles investigating cognitive information processing and learning strategies based on students approach to learning theory and assessing students' meta-cognitive learning, motivation, and reflective development suggestive of deep learning. The study introduces a reading…
ERIC Educational Resources Information Center
Likourezos, Vicki; Kalyuga, Slava
2017-01-01
According to cognitive load theory, using worked examples is an effective and efficient instructional strategy for initial cognitive skill acquisition for novice learners, as it reduces cognitive load and frees up cognitive resources to build task competence. Contrary to this, productive failure (as well as invention learning, desirable…
Understanding the Technology Enhanced Learning Environments from a Cognitive Perspective
ERIC Educational Resources Information Center
Kok, Ayse
2009-01-01
This conceptual paper discusses some principles for powerful learning environments based on a cognitive perspective. Throughout the paper, it is argued that the accommodation of different individual cognitive preferences is crucial for its alignment with the human cognitive architecture. The paper concludes that in order to be aligned with the…
Relations between Cognitive Resources and Two Types of Germane Load for Learning
ERIC Educational Resources Information Center
Miwa, Kazuhisa; Terai, Hitoshi; Mizuno, Yosuke
2017-01-01
Cognitive load theory (CLT) distinguishes three types of cognitive loads: intrinsic, extraneous, and germane, of which the latter is generally imposed in learning activities. To examine the nature of germane cognitive load, the participants engaged in 8-by-8 Reversi games against computerized opponents. The experimental results indicated that…
ERIC Educational Resources Information Center
Pruitt, Richard A.
2011-01-01
This research article explores the active use of cognitive-developmental or mediated cognitive learning strategies in undergraduate online courses. Examples and applications are drawn from two online sessions integrating online interaction, essay and discussion assignments, as well as a variety of multimedia components conducted during the spring…
ERIC Educational Resources Information Center
Tamaoka, Katsuo
The historical development of learning style inventories is examined from the dichotomous concepts of cognitive styles to multidimensional assessment. Based on a series of experiments on vertical perception, H. A. Witkin formed the concepts of field-dependent and field-independent cognitive styles. Using the term "learning styles"…
ERIC Educational Resources Information Center
Johnson, Evelyn S.
2014-01-01
Learning disabilities (LDs) have long been presumed to be a neurological disorder resulting from a deficit in 1 or more cognitive processes. Although the emphasis on cognitive processing disorders has been included in the definition since the term was coined, and although it arguably represents the key distinguishing characteristic of LDs, it also…
ERIC Educational Resources Information Center
Gomez, Kimberley; Lee, Ung-Sang
2015-01-01
John Seely Brown suggested that learning environments should be spaces in which all work is public, is subject to iterative critique by instructors and peers, and in which social interaction is primary. In such spaces, students and teachers engage in a situated cognition approach to teaching and learning where "cognitive accomplishments rely…
NASA Astrophysics Data System (ADS)
Priyanto, A.; Linuwih, S.; Aji, M. P.; Bich, D. D.
2018-03-01
Scientific learning material is still needed by students at Nguyen Tat Thanh High School (NTT), Hanoi Vietnam in order to enhance the students’ cognitive skill. Cognitive skill represents the level of students’ understanding to the particular material. Students’ cognitive skill can be improved by applying the learning material based on scientific approach as a treatment. The enhancement of students’ cognitive skill can be measured by analyzing the students’ test result collected before and after treatment. The analysis is focused to measure the enhancement or the sifted of cognitive aspects including remembering aspect (C1), understanding aspect (C2), applying aspect (C3), analyzing aspect (C4), and evaluating aspect (C5). According to the analysis the enhancement of cognitive aspects are 8.26% of remembering, 3.26% of understanding, 32.94% of applying, 21.74% of analyzing, and 21.74% of evaluating. The major enhancements are occured at applying, analyzing, and evaluating aspects. Therefore it can be concluded that students’ cognitive skill is enhanced by applying scientific learning material of static electricity.
NASA Astrophysics Data System (ADS)
Dicker, R. J.
The main objective of this thesis is to describe the effect on cognition of the structure of CAL simulation programs used, in science teaching. Four programs simulating a pond ecosystem were written so as to present a simulation model and to assist in cognition in different ways. Various clinically detailed methods of describing learning were developed and tried including concept maps which were found to be sammative rather than formative descriptions of learning, and to be ambiguous) and hierarchical structures (which were found to be difficult to produce). Fran these concept maps and hierarchical structures I developed my Interaction Model of Learning which can be used to describe the chronological events concerned with cognition. Using the Interaction Model, the nature of cognition and the effect that CAL program structure has on this process is described. Various scenarios are presented as a means of showing the possible effects of program structure on learning. Four forms of concept learning activity and their relationship to learning valid and alternative conceptions are described. The findings from the study are particularly related to the work of Driver (1983), Marton (1976) and Entwistle (1981).
Cognitive Load Theory: implications for medical education: AMEE Guide No. 86.
Young, John Q; Van Merrienboer, Jeroen; Durning, Steve; Ten Cate, Olle
2014-05-01
Cognitive Load Theory (CLT) builds upon established models of human memory that include the subsystems of sensory, working and long-term memory. Working memory (WM) can only process a limited number of information elements at any given time. This constraint creates a "bottleneck" for learning. CLT identifies three types of cognitive load that impact WM: intrinsic load (associated with performing essential aspects of the task), extraneous load (associated with non-essential aspects of the task) and germane load (associated with the deliberate use of cognitive strategies that facilitate learning). When the cognitive load associated with a task exceeds the learner's WM capacity, performance and learning is impaired. To facilitate learning, CLT researchers have developed instructional techniques that decrease extraneous load (e.g. worked examples), titrate intrinsic load to the developmental stage of the learner (e.g. simplify task without decontextualizing) and ensure that unused WM capacity is dedicated to germane load, i.e. cognitive learning strategies. A number of instructional techniques have been empirically tested. As learners' progress, curricula must also attend to the expertise-reversal effect. Instructional techniques that facilitate learning among early learners may not help and may even interfere with learning among more advanced learners. CLT has particular relevance to medical education because many of the professional activities to be learned require the simultaneous integration of multiple and varied sets of knowledge, skills and behaviors at a specific time and place. These activities possess high "element interactivity" and therefore impose a cognitive load that may surpass the WM capacity of the learner. Applications to various medical education settings (classroom, workplace and self-directed learning) are explored.
Cognitive Learning Styles of EFL Students
ERIC Educational Resources Information Center
Srichanyachon, Napaporn
2011-01-01
This study aimed to study cognitive learning styles of EFL students, compare language learning styles among students categorized by their background, and investigate the relationship between English background knowledge and language learning styles. The samples were 210 undergraduate students enrolled in Fundamental English course at Bangkok…
Sumowski, James F; Wylie, Glenn R; Chiaravalloti, Nancy; DeLuca, John
2010-06-15
Learning and memory impairments are prevalent among persons with multiple sclerosis (MS); however, such deficits are only weakly associated with MS disease severity (brain atrophy). The cognitive reserve hypothesis states that greater lifetime intellectual enrichment lessens the negative impact of brain disease on cognition, thereby helping to explain the incomplete relationship between brain disease and cognitive status in neurologic populations. The literature on cognitive reserve has focused mainly on Alzheimer disease. The current research examines whether greater intellectual enrichment lessens the negative effect of brain atrophy on learning and memory in patients with MS. Forty-four persons with MS completed neuropsychological measures of verbal learning and memory, and a vocabulary-based estimate of lifetime intellectual enrichment. Brain atrophy was estimated with third ventricle width measured from 3-T magnetization-prepared rapid gradient echo MRIs. Hierarchical regression was used to predict learning and memory with brain atrophy, intellectual enrichment, and the interaction between brain atrophy and intellectual enrichment. Brain atrophy predicted worse learning and memory, and intellectual enrichment predicted better learning; however, these effects were moderated by interactions between brain atrophy and intellectual enrichment. Specifically, higher intellectual enrichment lessened the negative impact of brain atrophy on both learning and memory. These findings help to explain the incomplete relationship between multiple sclerosis disease severity and cognition, as the effect of disease on cognition is attenuated among patients with higher intellectual enrichment. As such, intellectual enrichment is supported as a protective factor against disease-related cognitive impairment in persons with multiple sclerosis.
Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.
Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco
2013-01-01
Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.
Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists
Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco
2013-01-01
Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617
Faded-example as a Tool to Acquire and Automate Mathematics Knowledge
NASA Astrophysics Data System (ADS)
Retnowati, E.
2017-04-01
Students themselves accomplish Knowledge acquisition and automation. The teacher plays a role as the facilitator by creating mathematics tasks that assist students in building knowledge efficiently and effectively. Cognitive load caused by learning material presented by teachers should be considered as a critical factor. While the intrinsic cognitive load is related to the degree of complexity of the material learning ones can handle, the extraneous cognitive load is directly caused by how the material is presented. Strategies to present a learning material in computational learning domains like mathematics are a namely worked example (fully-guided task) or problem-solving (discovery task with no guidance). According to the empirical evidence, learning based on problem-solving may cause high-extraneous cognitive load for students who have limited prior knowledge, conversely learn based on worked example may cause high-extraneous cognitive load for students who have mastered the knowledge base. An alternative is a faded example consisting of the partly-completed task. Learning from faded-example can facilitate students who already acquire some knowledge about the to-be-learned material but still need more practice to automate the knowledge further. This instructional strategy provides a smooth transition from a fully-guided into an independent problem solver. Designs of faded examples for learning trigonometry are discussed.
Learning potential and cognitive abilities in preschool boys with fragile X and Down syndrome.
Valencia-Naranjo, Nieves; Robles-Bello, Mª Auxiliadora
2017-01-01
Enhancing cognitive abilities is relevant when devising treatment plans. This study examined the performance of preschool boys with Down syndrome and fragile X syndrome in cognitive tasks (e.g., nonverbal reasoning and short-term memory), as well as in improving cognitive functions by means of a learning potential methodology. The basic scales corresponding to the Skills and Learning Potential Preschool Scale were administered to children with Down syndrome and others with fragile X syndrome, matched for chronological age and nonverbal cognitive development level. The fragile X syndrome group showed stronger performance on short-term memory tasks than the Down syndrome group prior to intervention, with no differences recorded in nonverbal reasoning tasks. In addition, both groups' cognitive performance improved significantly between pre- and post-intervention. However, learning potential relative to auditory memory was limited in both groups, and for rule-based categorization in Down syndrome children. The scale offered the opportunity to assess young children's abilities and identify the degree of cognitive modifiability. Furthermore, factors that may potentially affect the children's performance before and during learning potential assessment are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sun Lin, Hong-Zheng; Chiou, Guey-Fa
2017-01-01
This study examined the effects of comparison and game-challenge strategies on sixth graders' learning achievement of algebra variable, learning attitude towards algebra variable learning, and meta-cognitive awareness of algebra variable learning. A 2 × 2 factorial design was used, and 86 students were invited to participate in the experimental…
Associative learning and animal cognition.
Dickinson, Anthony
2012-10-05
Associative learning plays a variety of roles in the study of animal cognition from a core theoretical component to a null hypothesis against which the contribution of cognitive processes is assessed. Two developments in contemporary associative learning have enhanced its relevance to animal cognition. The first concerns the role of associatively activated representations, whereas the second is the development of hybrid theories in which learning is determined by prediction errors, both directly and indirectly through associability processes. However, it remains unclear whether these developments allow associative theory to capture the psychological rationality of cognition. I argue that embodying associative processes within specific processing architectures provides mechanisms that can mediate psychological rationality and illustrate such embodiment by discussing the relationship between practical reasoning and the associative-cybernetic model of goal-directed action.
Why formal learning theory matters for cognitive science.
Fulop, Sean; Chater, Nick
2013-01-01
This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.
Effect of Cognitive Style on Learning and Retrieval of Navigational Environments.
Boccia, Maddalena; Vecchione, Francesca; Piccardi, Laura; Guariglia, Cecilia
2017-01-01
Field independence (FI) has been found to correlate with a wide range of cognitive processes requiring cognitive restructuring. Cognitive restructuring, that is going beyond the information given by the setting, is pivotal in creating stable mental representations of the environment, the so-called "cognitive maps," and it affects visuo-spatial abilities underpinning environmental navigation. Here we evaluated whether FI, by fostering cognitive restructuring of environmental cues on the basis of an internal frame of reference, affects the learning and retrieval of a novel environment. Fifty-four participants were submitted to the Embedded Figure Test (EFT) for assessing their Cognitive Style (CS) and to the Perspective Taking/Spatial Orientation Test (PTSOT) and the Santa Barbara Sense of Direction Scale (SBSOD) for assessing their spatial perspective taking and orientation skills. They were also required to learn a path in a novel, real environment (route learning, RL), to recognize landmarks of this path among distracters (landmark recognition, LR), to order them (landmark ordering, LO) and to draw the learned path on a map (map drawing, MD). Retrieval tasks were performed both immediately after learning (immediate-retrieval) and the day after (24 h-retrieval). Performances on EFT significantly correlated with the time needed to learn the path, with MD (both in the immediate- and in the 24 h- retrievals), results on LR (in 24-retrieval) and performances on PTSOT. Interestingly, we found that gender interacted with CS on RL (time of learning) and MD. Females performed significantly worse than males only if they were classified as FD, but did not differ from males if they were classified as FI. These results suggest that CS affects learning and retrieval of navigational environment, especially when a map-like representation is required. We propose that CS may be pivotal in forming the cognitive map of the environment, likely due to the higher ability of FI individuals in restructuring environmental cues in a global and flexible long-term representation of the environment.
Learning Potential and Cognitive Modifiability
ERIC Educational Resources Information Center
Kozulin, Alex
2011-01-01
The relationship between thinking and learning constitutes one of the fundamental problems of cognitive psychology. Though there is an obvious overlap between the domains of thinking and learning, it seems more productive to consider learning as being predominantly acquisition while considering thinking as the application of the existent concepts…
Pointing and tracing gestures may enhance anatomy and physiology learning.
Macken, Lucy; Ginns, Paul
2014-07-01
Currently, instructional effects generated by Cognitive load theory (CLT) are limited to visual and auditory cognitive processing. In contrast, "embodied cognition" perspectives suggest a range of gestures, including pointing, may act to support communication and learning, but there is relatively little research showing benefits of such "embodied learning" in the health sciences. This study investigated whether explicit instructions to gesture enhance learning through its cognitive effects. Forty-two university-educated adults were randomly assigned to conditions in which they were instructed to gesture, or not gesture, as they learnt from novel, paper-based materials about the structure and function of the human heart. Subjective ratings were used to measure levels of intrinsic, extraneous and germane cognitive load. Participants who were instructed to gesture performed better on a knowledge test of terminology and a test of comprehension; however, instructions to gesture had no effect on subjective ratings of cognitive load. This very simple instructional re-design has the potential to markedly enhance student learning of typical topics and materials in the health sciences and medicine.
Witt, Karsten; Daniels, Christine; Daniel, Victoria; Schmitt-Eliassen, Julia; Volkmann, Jens; Deuschl, Günther
2006-01-01
Implicit memory and learning mechanisms are composed of multiple processes and systems. Previous studies demonstrated a basal ganglia involvement in purely cognitive tasks that form stimulus response habits by reinforcement learning such as implicit classification learning. We will test the basal ganglia influence on two cognitive implicit tasks previously described by Berry and Broadbent, the sugar production task and the personal interaction task. Furthermore, we will investigate the relationship between certain aspects of an executive dysfunction and implicit learning. To this end, we have tested 22 Parkinsonian patients and 22 age-matched controls on two implicit cognitive tasks, in which participants learned to control a complex system. They interacted with the system by choosing an input value and obtaining an output that was related in a complex manner to the input. The objective was to reach and maintain a specific target value across trials (dynamic system learning). The two tasks followed the same underlying complex rule but had different surface appearances. Subsequently, participants performed an executive test battery including the Stroop test, verbal fluency and the Wisconsin card sorting test (WCST). The results demonstrate intact implicit learning in patients, despite an executive dysfunction in the Parkinsonian group. They lead to the conclusion that the basal ganglia system affected in Parkinson's disease does not contribute to the implicit acquisition of a new cognitive skill. Furthermore, the Parkinsonian patients were able to reach a specific goal in an implicit learning context despite impaired goal directed behaviour in the WCST, a classic test of executive functions. These results demonstrate a functional independence of implicit cognitive skill learning and certain aspects of executive functions.
Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi
2016-01-01
Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition. PMID:26902664
Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi
2016-02-23
Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.
Halpern, Casey H; Rick, Jacqueline H; Danish, Shabbar F; Grossman, Murray; Baltuch, Gordon H
2009-05-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by significant motor dysfunction and various non-motor disturbances, including cognitive alterations. Deep brain stimulation (DBS) is an increasingly utilized therapeutic option for patients with PD that yields remarkable success in alleviating disabling motor symptoms. DBS has additionally been associated with changes in cognition, yet the evidence is not consistent across studies. The following review sought to provide a clearer understanding of the various cognitive sequelae of bilateral subthalamic nucleus (STN) DBS while taking into account corresponding neuroanatomy and potential confounding variables. A literature search was performed using the following inclusion criteria: (1) at least five subjects followed for a mean of at least 3 months after surgery; (2) pre- and postoperative cognitive data using at least one standardized measure; (3) adequate report of study results using means and standard deviations. Two recent meta-analyses found mild post-operative impairments in verbal learning and executive function in patients who underwent DBS surgery. However, studies have revealed improved working memory and psychomotor speed in the 'on' vs 'off' stimulation state. A deficit in language may be a consequence of the surgical procedure. While cognitive decline has been observed in some domains, our review of the data suggests that STN DBS is a worthwhile and safe method to treat PD. (c) 2008 John Wiley & Sons, Ltd.
Applying the Science of Learning to the Learning of Science: Newton's Second Law of Motion
ERIC Educational Resources Information Center
Lemmer, Miriam
2018-01-01
Science teaching and learning require knowledge about how learning takes place (cognition) and how learners interact with their surroundings (affective and sociocultural factors). The study reported on focussed on learning for understanding of Newton's second law of motion from a cognitive perspective that takes social factors into account. A…
ERIC Educational Resources Information Center
Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa
2013-01-01
In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…
Cognitive Learning Strategy of BIPA Students in Learning the Indonesian Language
ERIC Educational Resources Information Center
Suyitno, Imam; Susanto, Gatut; Kamal, Musthofa; Fawzi, Ary
2017-01-01
The study outlined in this article aims to describe and explain the cognitive learning strategies used by foreign students in learning the Indonesian language. The research was designed as a qualitative study. The research participants are foreign students who were learning the Indonesian language in the BIPA program. The data sources of the…
ERIC Educational Resources Information Center
Mitee, Telimoye Leesi; Obaitan, Georgina N.
2015-01-01
The cognitive learning outcome of Senior Secondary School chemistry students has been poor over the years in Nigeria. Poor mathematical skills and inefficient teaching methods have been identified as some of the major reasons for this. Bloom's theory of school learning and philosophy of mastery learning assert that virtually all students are…
ERIC Educational Resources Information Center
McArthur, John A.
2015-01-01
This study examined the extent to which instructional proxemics--the physical space of the learning environment--impacts student behavioral, affective, and cognitive learning. Participants included 234 college students enrolled in 15 sections of public speaking. Each section was assigned to a study learning environment and an instructor, ensuring…
ERIC Educational Resources Information Center
Avtzon, Sarah Abitbol
2012-01-01
Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…
ERIC Educational Resources Information Center
López-Vargas, Omar; Ibáñez-Ibáñez, Jaime; Racines-Prada, Oswaldo
2017-01-01
The present research's objective is to examine the effects of metacognitive scaffolding and cognitive style in the Field Dependence-Independence (FDI) dimension on cognitive load (CL) and learning achievement (LA) in high school students, when they interact with a hypermedia environment on philosophy (logic). Fifty-four students belonging to two…
Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought
ERIC Educational Resources Information Center
de Jong, Ton
2010-01-01
Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems…
ERIC Educational Resources Information Center
Grizzle-Martin, Tamieka
2014-01-01
Children who struggle in mathematics may also lack cognitive awareness in mathematical problem solving. The cognitively-driven program IMPROVE, a multidimensional method for teaching mathematics, has been shown to be helpful for students with mathematical learning difficulties (MLD). Guided by cognitive theory, the purpose of this…
Saadati, Farzaneh; Ahmad Tarmizi, Rohani; Mohd Ayub, Ahmad Fauzi; Abu Bakar, Kamariah
2015-01-01
Because students' ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is 'value added' because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM) in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students' problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students.
A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives
NASA Astrophysics Data System (ADS)
Tytler, Russell; Prain, Vaughan
2010-10-01
Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.
Theories of willpower affect sustained learning.
Miller, Eric M; Walton, Gregory M; Dweck, Carol S; Job, Veronika; Trzesniewski, Kali H; McClure, Samuel M
2012-01-01
Building cognitive abilities often requires sustained engagement with effortful tasks. We demonstrate that beliefs about willpower-whether willpower is viewed as a limited or non-limited resource-impact sustained learning on a strenuous mental task. As predicted, beliefs about willpower did not affect accuracy or improvement during the initial phases of learning; however, participants who were led to view willpower as non-limited showed greater sustained learning over the full duration of the task. These findings highlight the interactive nature of motivational and cognitive processes: motivational factors can substantially affect people's ability to recruit their cognitive resources to sustain learning over time.
Theories of Willpower Affect Sustained Learning
Miller, Eric M.; Walton, Gregory M.; Dweck, Carol S.; Job, Veronika; Trzesniewski, Kali H.; McClure, Samuel M.
2012-01-01
Building cognitive abilities often requires sustained engagement with effortful tasks. We demonstrate that beliefs about willpower–whether willpower is viewed as a limited or non-limited resource–impact sustained learning on a strenuous mental task. As predicted, beliefs about willpower did not affect accuracy or improvement during the initial phases of learning; however, participants who were led to view willpower as non-limited showed greater sustained learning over the full duration of the task. These findings highlight the interactive nature of motivational and cognitive processes: motivational factors can substantially affect people’s ability to recruit their cognitive resources to sustain learning over time. PMID:22745675
Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Demuth, Katherine; Arciuli, Joanne
2016-12-01
It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18). Musicians had significantly better performance than non-musicians on frequency discrimination, and backward digit span. A key finding was that musicians had better auditory, but not visual, statistical learning than non-musicians. Performance on the statistical learning tasks was not correlated with performance on auditory and cognitive measures. Musicians' superior performance on auditory (but not visual) statistical learning suggests that musical expertise is associated with an enhanced ability to detect statistical regularities in auditory stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.
Cognitive Tools for Assessment and Learning in a High Information Flow Environment.
ERIC Educational Resources Information Center
Lajoie, Susanne P.; Azevedo, Roger; Fleiszer, David M.
1998-01-01
Describes the development of a simulation-based intelligent tutoring system for nurses working in a surgical intensive care unit. Highlights include situative learning theories and models of instruction, modeling expertise, complex decision making, linking theories of learning to the design of computer-based learning environments, cognitive task…
ERIC Educational Resources Information Center
Spector, J. Michael; Ifenthaler, Dirk; Sampson, Demetrios G.
2016-01-01
Digital systems and digital technologies are globally investigated for their potential to transform learning, teaching and assessment towards offering unique learning experiences to the twenty-first century learners. This Special Issue on "Digital systems supporting cognition and exploratory learning in twenty-first century" aims to…
Cognitive Control over Learning: Creating, Clustering, and Generalizing Task-Set Structure
ERIC Educational Resources Information Center
Collins, Anne G. E.; Frank, Michael J.
2013-01-01
Learning and executive functions such as task-switching share common neural substrates, notably prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for…
Personalization vs. How People Learn
ERIC Educational Resources Information Center
Riley, Benjamin
2017-01-01
Riley asserts that some findings of cognitive science conflict with key principles of personalized learning--that students should control the content of their learning and that they should control the pace of their learning. A personalized approach is in conflict with the cognitive science principle that committing key facts in a discipline to…
Students' Experiences of Learning Manual Clinical Skills through Simulation
ERIC Educational Resources Information Center
Johannesson, Eva; Silen, Charlotte; Kvist, Joanna; Hult, Hakan
2013-01-01
Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and…
ERIC Educational Resources Information Center
Chang, Chi-Cheng; Warden, Clyde A.; Liang, Chaoyun; Chou, Pao-Nan
2018-01-01
This study examines differences in English listening comprehension, cognitive load, and learning behaviour between outdoor ubiquitous learning and indoor computer-assisted learning. An experimental design, employing a pretest-posttest control group is employed. Randomly assigned foreign language university majors joined either the experimental…
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.
Cognitive Function Before and After Left Heart Catheterization.
Scott, David A; Evered, Lisbeth; Maruff, Paul; MacIsaac, Andrew; Maher, Sarah; Silbert, Brendan S
2018-03-10
Hospital procedures have been associated with cognitive change in older patients. This study aimed to document the prevalence of mild cognitive impairment in individuals undergoing left heart catheterization (LHC) before the procedure and the incidence of cognitive decline to 3 months afterwards. We conducted a prospective, observational, clinical investigation of elderly participants undergoing elective LHC. Cognition was assessed using a battery of written tests and a computerized cognitive battery before the LHC and then at 3 months afterwards. The computerized tests were also administered at 24 hours (or discharge) and 7 days after LHC. A control group of 51 community participants was recruited to calculate cognitive decline using the Reliable Change Index. Of 437 participants, mild cognitive impairment was identified in 226 (51.7%) before the procedure. Computerized tests detected an incidence of cognitive decline of 10.0% at 24 hours and 7.5% at 7 days. At 3 months, written tests detected an incidence of cognitive decline of 13.1% and computerized tests detected an incidence of 8.5%. Cognitive decline at 3 months using written tests was associated with increasing age, whereas computerized tests showed cognitive decline was associated with baseline amnestic mild cognitive impairment, diabetes mellitus, and prior coronary stenting. More than half the patients aged >60 years presenting for LHC have mild cognitive impairment. LHC is followed by cognitive decline in 8% to 13% of individuals at 3 months after the procedure. Subtle cognitive decline both before and after LHC is common and may have important clinical implications. URL: www.anzctr.org.au. Unique identifier: ACTRN12607000051448. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Psychotherapy Augmentation through Preconscious Priming
Borgeat, François; O’Connor, Kieron; Amado, Danielle; St-Pierre-Delorme, Marie-Ève
2013-01-01
Objective: To test the hypothesis that repeated preconscious (masked) priming of personalized positive cognitions could augment cognitive change and facilitate achievement of patients’ goals following a therapy. Methods: Twenty social phobic patients (13 women) completed a 36-weeks study beginning by 12 weeks of group behavioral therapy. After the therapy, they received 6 weeks of preconscious priming and 6 weeks of a control procedure in a randomized cross-over design. The Priming condition involved listening twice daily with a passive attitude to a recording of individualized formulations of appropriate cognitions and attitudes masked by music. The Control condition involved listening to an indistinguishable recording where the formulations had been replaced by random numbers. Changes in social cognitions were measured by the Social Interaction Self Statements Test (SISST). Results: Patients improved following therapy. The Priming procedure was associated with increased positive cognitions and decreased negative cognitions on the SISST while the Control procedure was not. The Priming procedure induced more cognitive change when applied immediately after the group therapy. Conclusion: An effect of priming was observed on social phobia related cognitions in the expected direction. This self administered addition to a therapy could be seen as an augmentation strategy. PMID:23508724
Marley, Christopher J; Sinnott, Andrew; Hall, Judith E; Morris-Stiff, Gareth; Woodsford, Paul V; Lewis, Michael H; Bailey, Damian M
2017-06-01
Carotid endarterectomy (CEA) is a surgical procedure to remove stenotic atherosclerotic plaque from the origin of the carotid artery to reduce the risk of major stroke. Its impact on postoperative cognitive function (POCF) remains controversial; complicated, in part, by a traditional failure to account for practice effects incurred during consecutive psychometric testing. To address this for the first time, we performed psychometric testing (learning and memory, working memory, attention and information processing, and visuomotor coordination) in 15 male patients aged 68 ± 8 years with symptomatic carotid stenosis the day before and 24 h following elective CEA (two consecutive tests, 48 h apart). Multiple baselining was also performed in a separate cohort of 13 educationally, anthropometrically and age-matched controls (63 ± 9 years) not undergoing revascularization at identical time points with additional measures performed over a further 96 h (four consecutive tests, each 48 h apart). A single consecutive test in the control group resulted in progressive improvements in learning and memory, working memory, and attention and information ( P < 0.05 vs. Test 1), with three tests required before cognitive performance stabilized. Following correction for practice effects in the patient group, CEA was associated with a deterioration rather than an improvement in learning and memory as originally observed ( P < 0.05). These findings highlight the potential for the clinical misinterpretation of POCF unless practice effects are taken into account and provide practical recommendations for implementation within the clinical setting. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Cognitive biases, linguistic universals, and constraint-based grammar learning.
Culbertson, Jennifer; Smolensky, Paul; Wilson, Colin
2013-07-01
According to classical arguments, language learning is both facilitated and constrained by cognitive biases. These biases are reflected in linguistic typology-the distribution of linguistic patterns across the world's languages-and can be probed with artificial grammar experiments on child and adult learners. Beginning with a widely successful approach to typology (Optimality Theory), and adapting techniques from computational approaches to statistical learning, we develop a Bayesian model of cognitive biases and show that it accounts for the detailed pattern of results of artificial grammar experiments on noun-phrase word order (Culbertson, Smolensky, & Legendre, 2012). Our proposal has several novel properties that distinguish it from prior work in the domains of linguistic theory, computational cognitive science, and machine learning. This study illustrates how ideas from these domains can be synthesized into a model of language learning in which biases range in strength from hard (absolute) to soft (statistical), and in which language-specific and domain-general biases combine to account for data from the macro-level scale of typological distribution to the micro-level scale of learning by individuals. Copyright © 2013 Cognitive Science Society, Inc.
Kump, Barbara; Moskaliuk, Johannes; Cress, Ulrike; Kimmerle, Joachim
2015-01-01
Contemporary research into socio-cognitive foundations of organizational learning tends to disregard the distinction between declarative and non-declarative knowledge. By reviewing the literature from organizational learning research and cognitive psychology we explain that this distinction is crucial. We describe the foundations of organizational learning by referring to models that consider the interplay between individual and collective knowledge-related processes in organizations. We highlight the existence of a research gap resulting from the finding that these approaches have widely neglected the existence of different types of knowledge. We then elaborate on characteristics of declarative and non-declarative knowledge in general, consider organizations as structures of distributed cognition, and discuss the relationship between organizational knowledge and practice. Subsequently, we examine the role of declarative and non-declarative knowledge in the context of organizational learning. Here, we analyze (1) the cognitive and social mechanisms underlying the development of declarative and non-declarative knowledge within structures of distributed cognition; and (2) the relationship between alterations in declarative and non-declarative types of knowledge on the one hand and changes in organizational practice on the other. Concluding, we discuss implications of our analysis for organizational learning research. We explain how our integrative perspective may offer starting points for a refined understanding of the sub-processes involved in organizational learning and unlearning and may support a better understanding of practical problems related to organizational learning and change. PMID:26483739
Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian
2015-12-01
Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Holt, Emily A.; Young, Craig; Keetch, Jared; Larsen, Skylar; Mollner, Brayden
2015-01-01
Critical thinking is often considered an essential learning outcome of institutions in higher education. Previous work has proposed three pedagogical strategies to address this goal: more active, student-centered in-class instruction, assessments which contain higher-order cognitive questions, and greater alignment within a classroom (i.e., high agreement of the cognitive level of learning objectives, assessments, and in-class instruction). Our goals were to determine which of these factors, individually or the interactions therein, contributed most to improvements in university students’ critical thinking. We assessed students’ higher-order cognitive skills in introductory non-majors biology courses the first and last week of instruction. For each of the fifteen sections observed, we also measured the cognitive level of assessments and learning objectives, evaluated the learner-centeredness of each classroom, and calculated an alignment score for each class. The best model to explain improvements in students’ high-order cognitive skills contained the measure of learner-centeredness of the class and pre-quiz scores as a covariate. The cognitive level of assessments, learning objectives, nor alignment explained improvements in students’ critical thinking. In accordance with much of the current literature, our findings support that more student-centered classes had greater improvements in student learning. However, more research is needed to clarify the role of assessment and alignment in student learning. PMID:26340659
Holt, Emily A; Young, Craig; Keetch, Jared; Larsen, Skylar; Mollner, Brayden
2015-01-01
Critical thinking is often considered an essential learning outcome of institutions in higher education. Previous work has proposed three pedagogical strategies to address this goal: more active, student-centered in-class instruction, assessments which contain higher-order cognitive questions, and greater alignment within a classroom (i.e., high agreement of the cognitive level of learning objectives, assessments, and in-class instruction). Our goals were to determine which of these factors, individually or the interactions therein, contributed most to improvements in university students' critical thinking. We assessed students' higher-order cognitive skills in introductory non-majors biology courses the first and last week of instruction. For each of the fifteen sections observed, we also measured the cognitive level of assessments and learning objectives, evaluated the learner-centeredness of each classroom, and calculated an alignment score for each class. The best model to explain improvements in students' high-order cognitive skills contained the measure of learner-centeredness of the class and pre-quiz scores as a covariate. The cognitive level of assessments, learning objectives, nor alignment explained improvements in students' critical thinking. In accordance with much of the current literature, our findings support that more student-centered classes had greater improvements in student learning. However, more research is needed to clarify the role of assessment and alignment in student learning.
Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano
2015-01-01
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.
Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano
2016-01-01
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine. PMID:26834535
Tolsgaard, Martin G; Kulasegaram, Kulamakan M; Ringsted, Charlotte V
2016-01-01
This study is designed to provide an overview of why, how, when and for whom collaborative learning of clinical skills may work in health professions education. Collaborative learning of clinical skills may influence learning positively according to the non-medical literature. Training efficiency may therefore be improved if the outcomes of collaborative learning of clinical skills are superior or equivalent to those attained through individual learning. According to a social interaction perspective, collaborative learning of clinical skills mediates its effects through social interaction, motivation, accountability and positive interdependence between learners. Motor skills learning theory suggests that positive effects rely on observational learning and action imitation, and negative effects may include decreased hands-on experience. Finally, a cognitive perspective suggests that learning is dependent on cognitive co-construction, shared knowledge and reduced cognitive load. The literature on the collaborative learning of clinical skills in health science education is reviewed to support or contradict the hypotheses provided by the theories outlined above. Collaborative learning of clinical skills leads to improvements in self-efficacy, confidence and performance when task processing is observable or communicable. However, the effects of collaborative learning of clinical skills may decrease over time as benefits in terms of shared cognition, scaffolding and cognitive co-construction are outweighed by reductions in hands-on experience and time on task. Collaborative learning of clinical skills has demonstrated promising results in the simulated setting. However, further research into how collaborative learning of clinical skills may work in clinical settings, as well as into the role of social dynamics between learners, is required. © 2015 John Wiley & Sons Ltd.
Rational and mechanistic perspectives on reinforcement learning.
Chater, Nick
2009-12-01
This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: mechanistic and rational. Reinforcement learning is often viewed in mechanistic terms--as describing the operation of aspects of an agent's cognitive and neural machinery. Yet it can also be viewed as a rational level of description, specifically, as describing a class of methods for learning from experience, using minimal background knowledge. This paper considers how rational and mechanistic perspectives differ, and what types of evidence distinguish between them. Reinforcement learning research in the cognitive and brain sciences is often implicitly committed to the mechanistic interpretation. Here the opposite view is put forward: that accounts of reinforcement learning should apply at the rational level, unless there is strong evidence for a mechanistic interpretation. Implications of this viewpoint for reinforcement-based theories in the cognitive and brain sciences are discussed.
Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise.
Stevens, David J; Arciuli, Joanne; Anderson, David I
2016-05-01
This study examined the effect of a prior bout of exercise on implicit cognition. Specifically, we examined whether a prior bout of moderate intensity exercise affected performance on a statistical learning task in healthy adults. A total of 42 participants were allocated to one of three conditions-a control group, a group that exercised for 15 min prior to the statistical learning task, and a group that exercised for 30 min prior to the statistical learning task. The participants in the exercise groups cycled at 60% of their respective V˙O2 max. Each group demonstrated significant statistical learning, with similar levels of learning among the three groups. Contrary to previous research that has shown that a prior bout of exercise can affect performance on explicit cognitive tasks, the results of the current study suggest that the physiological stress induced by moderate-intensity exercise does not affect implicit cognition as measured by statistical learning. Copyright © 2015 Cognitive Science Society, Inc.
Learning Science in the 21st century - a shared experience between schools
NASA Astrophysics Data System (ADS)
Pinto, Tânia; Soares, Rosa; Ruas, Fátima
2015-04-01
Problem Based Learning is considered an innovative teaching and learning inquiry methodology that is student centered, focused in the resolution of an authentic problem and in which the teacher acts like a facilitator of the work in small groups. In this process, it is expected that students develop attitudinal, procedural and communication skills, in addition to the cognitive typically valued. PBL implementation also allows the use of multiple educational strategies, like laboratorial experiments, analogue modeling or ICT (video animations, electronic presentations or software simulations, for instance), which can potentiate a more interactive environment in the classroom. In this study, taken in three schools in the north of Portugal, which resulted from the cooperation between three science teachers, with a 75 individuals sample, were examined students' opinions about the main difficulties and strengths concerning the PBL methodology, having as a common denominator the use of a laboratorial experiment followed by an adequate digital software as educational resource to interpret the obtained results and to make predictions (e.g. EarthQuake, Virtual Quake, Stellarium). The data collection methods were based on direct observation and questionnaires. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life and that the use of software was relevant, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.
Sumowski, James F.; Wylie, Glenn R.; Chiaravalloti, Nancy; DeLuca, John
2010-01-01
Objective: Learning and memory impairments are prevalent among persons with multiple sclerosis (MS); however, such deficits are only weakly associated with MS disease severity (brain atrophy). The cognitive reserve hypothesis states that greater lifetime intellectual enrichment lessens the negative impact of brain disease on cognition, thereby helping to explain the incomplete relationship between brain disease and cognitive status in neurologic populations. The literature on cognitive reserve has focused mainly on Alzheimer disease. The current research examines whether greater intellectual enrichment lessens the negative effect of brain atrophy on learning and memory in patients with MS. Methods: Forty-four persons with MS completed neuropsychological measures of verbal learning and memory, and a vocabulary-based estimate of lifetime intellectual enrichment. Brain atrophy was estimated with third ventricle width measured from 3-T magnetization-prepared rapid gradient echo MRIs. Hierarchical regression was used to predict learning and memory with brain atrophy, intellectual enrichment, and the interaction between brain atrophy and intellectual enrichment. Results: Brain atrophy predicted worse learning and memory, and intellectual enrichment predicted better learning; however, these effects were moderated by interactions between brain atrophy and intellectual enrichment. Specifically, higher intellectual enrichment lessened the negative impact of brain atrophy on both learning and memory. Conclusion: These findings help to explain the incomplete relationship between multiple sclerosis disease severity and cognition, as the effect of disease on cognition is attenuated among patients with higher intellectual enrichment. As such, intellectual enrichment is supported as a protective factor against disease-related cognitive impairment in persons with multiple sclerosis. GLOSSARY AD = Alzheimer disease; ANOVA = analysis of variance; MPRAGE = magnetization-prepared rapid gradient echo; MS = multiple sclerosis; SRT = Selective Reminding Test; TVW = third ventricle width; WASI = Wechsler Abbreviated Scale of Intelligence. PMID:20548040
Gacek, Michał; Smoleń, Tomasz; Pilecka, Władysława
2017-01-01
Persons with intellectual disability are a group at risk of being exposed to overly demanding problem-solving situations, which may produce learned helplessness. The research was based on the informational model of learned helplessness. The consequences of exposure to an unsolvable task and the ability to recognize the symptoms of cognitive exhaustion were tested in 120 students with mild intellectual disability. After the exposure to the unsolvable task, persons in the experimental group obtained lower results than the control group in the escape/avoidance learning task, but a similar result was found in the divergent thinking fluency task. Also, participants in the experimental group had difficulties recognizing the symptoms of the cognitive exhaustion state. After a week’s time, the difference in escape/avoidance learning performance was still observed. The results indicate that exposure to unsolvable tasks may negatively influence the cognitive performance in persons with intellectual disability, although those persons may not identify the cognitive state related to lowered performance. PMID:28479937
Gacek, Michał; Smoleń, Tomasz; Pilecka, Władysława
2017-01-01
Persons with intellectual disability are a group at risk of being exposed to overly demanding problem-solving situations, which may produce learned helplessness . The research was based on the informational model of learned helplessness. The consequences of exposure to an unsolvable task and the ability to recognize the symptoms of cognitive exhaustion were tested in 120 students with mild intellectual disability. After the exposure to the unsolvable task, persons in the experimental group obtained lower results than the control group in the escape/avoidance learning task, but a similar result was found in the divergent thinking fluency task. Also, participants in the experimental group had difficulties recognizing the symptoms of the cognitive exhaustion state. After a week's time, the difference in escape/avoidance learning performance was still observed. The results indicate that exposure to unsolvable tasks may negatively influence the cognitive performance in persons with intellectual disability, although those persons may not identify the cognitive state related to lowered performance.
Korol, Donna L; Pisani, Samantha L
2015-08-01
This article is part of a Special Issue "Estradiol and cognition". Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.
Cognitive markers of psychotic unipolar depression: a meta-analytic study.
Zaninotto, Leonardo; Guglielmo, Riccardo; Calati, Raffaella; Ioime, Lucia; Camardese, Giovanni; Janiri, Luigi; Bria, Pietro; Serretti, Alessandro
2015-03-15
The goal of the current meta-analysis was to review and examine in detail the features of cognitive performance in psychotic (MDDP) versus non-psychotic (MDD) major depressive disorder. An electronic literature search was performed to find studies comparing cognitive performance in MDDP versus MDD. A meta-analysis of broad cognitive domains (processing speed, reasoning/problem solving, verbal learning, visual learning, attention/working memory) and individual cognitive tasks was conducted on all included studies (n=12). Demographic and clinical features were investigated via meta-regression analysis as moderators of cognitive performance. No difference in socio-demographic and clinical variables was detected between groups. In general, a poorer cognitive performance was detected in MDDP versus MDD subjects (ES=0.38), with a greater effect size in drug-free patients (ES=0.69). MDDP patients were more impaired in verbal learning (ES=0.67), visual learning (ES=0.62) and processing speed (ES=0.71) tasks. A significantly poorer performance was also detected in MDDP patients for individual tasks as Trail Making Test A, WAIS-R digit span backward and WAIS-R digit symbol. Age resulted to have a negative effect on tasks involved in working memory performance. In line with previous meta-analyses, our findings seem to support an association between psychosis and cognitive deficits in the context of affective disorders. Psychosis during the course of MDD is associated with poorer cognitive performance in some specific cognitive domains, such as visual and verbal learning and executive functions. Copyright © 2014 Elsevier B.V. All rights reserved.
Crocco, Elizabeth; Curiel, Rosie E; Acevedo, Amarilis; Czaja, Sara J; Loewenstein, David A
2014-09-01
To determine the degree to which susceptibility to different types of semantic interference may reflect the initial manifestations of early Alzheimer's disease (AD) beyond the effects of global memory impairment. Normal elderly (NE) subjects (n = 47), subjects with amnestic mild cognitive impairment (aMCI; n = 34), and subjects with probable AD (n = 40) were evaluated by using a unique cued recall paradigm that allowed for evaluation of both proactive and retroactive interference effects while controlling for global memory impairment (i.e., Loewenstein-Acevedo Scales of Semantic Interference and Learning [LASSI-L] procedure). Controlling for overall memory impairment, aMCI subjects had much greater proactive and retroactive interference effects than NE subjects. LASSI-L indices of learning by using cued recall revealed high levels of sensitivity and specificity, with an overall correct classification rate of 90%. These measures provided better discrimination than traditional neuropsychological measures of memory function. The LASSI-L paradigm is unique and unlike other assessments of memory in that items posed for cued recall are explicitly presented, and semantic interference and cueing effects can be assessed while controlling for initial level of memory impairment. This is a powerful procedure that allows the participant to serve as his or her own control. The high levels of discrimination between subjects with aMCI and normal cognition that exceeded traditional neuropsychological measures makes the LASSI-L worthy of further research in the detection of early AD. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
1987-09-01
of Intensive Cognitive Diagnosis and Its Implications for Testing Stellan Ohisson Learning Research and Development Center, University of Pittsburgh...7a. NAME OF MONITORING ORGANIZATION Learning Research & Development (if applicable) Cognitive Science Program Center, University of Pittsburg Office of...GAGE All other eaitions are obolSete. UN CLASS " UNLASSI FIED Ohlsson 1 Trace Analysis Knowledge and Understanding in Human Learning Knowledge and
Learning and cognition in insects.
Giurfa, Martin
2015-01-01
Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing. © 2015 John Wiley & Sons, Ltd.
Engh, John A; Sundet, Kjetil; Simonsen, Carmen; Vaskinn, Anja; Lagerberg, Trine V; Opjordsmoen, Stein; Friis, Svein; Andreassen, Ole A
2011-06-01
Patients with schizophrenia exhibit distorted beliefs and experiences, and their own evaluation of this is labeled cognitive insight. We examined the relationship between cognitive insight and neurocognition, as well as the contribution of neurocognition in explaining cognitive insight. Clinically characterized patients with schizophrenia (n=102) were assessed with a measure of cognitive insight, Beck Cognitive Insight Scale (BCIS) and a neuropsychological test battery. The contribution of neurocognition to the explained variance in BCIS components self-reflectiveness (i.e. objectivity and reflectiveness) and self-certainty (i.e. overconfidence in own beliefs) was examined controlling for current affective and psychotic symptoms. A significant negative correlation was found between self-certainty and verbal learning, whereas no associations were found between self-reflectiveness and any of the neuropsychological tests. Verbal learning was added significantly to the explained variance in self-certainty after controlling for potential confounders. High self-certainty was associated with poor verbal learning. This suggests that overconfidence in own beliefs is associated with cognitive dysfunction in schizophrenia. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Scheiter, Katharina; Schubert, Carina; Schüler, Anne
2018-01-01
Background: When learning with text and pictures, learners often fail to adequately process the materials, which can be explained as a failure to self-regulate one's learning by choosing adequate cognitive learning processes. Eye movement modelling examples (EMME) showing how to process multimedia instruction have improved elementary school…
ERIC Educational Resources Information Center
Venkatachary, Ranga; Kumar, Muthu
2005-01-01
One of the key arguments for problem-based learning as a holistic, learner centred pedagogical method rests on the premise it addresses multiple facets of learner development rather than decontextualised, content related learning outcomes. Fostering meta-cognitive ability in an attempt to develop self regulatory, autonomous learning habits is an…
ERIC Educational Resources Information Center
Yen, Cheng-Huang; Chen, I-Chuan; Lai, Su-Chun; Chuang, Yea-Ru
2015-01-01
Traces of learning behaviors generally provide insights into learners and the learning processes that they employ. In this article, a learning-analytics-based approach is proposed for managing cognitive load by adjusting the instructional strategies used in online courses. The technology-based learning environment examined in this study involved a…
ERIC Educational Resources Information Center
Hsieh, Sheng-Wen; Wu, Min-Ping
2013-01-01
This paper used a Virtual Companion System (VCS) to examine how specific design variables within virtual learning companion affect the learning process of learners as defined by the cognitive continuum of field-dependent, field-independent and field-mixed learners in LINE app for m-learning. The data were collected from 198 participants in a…
ERIC Educational Resources Information Center
Yamada, Masanori; Goda, Yoshiko; Matsukawa, Hideya; Hata, Kojiro; Yasunami, Seisuke
2013-01-01
This research aims to develop collaborative language learning systems based on social and cognitive presence for learning settings out of class, and evaluate their effects on learning attitude and performance. The main purpose of this system is focusing on the building of a learning community, therefore the Community of Inquiry (CoI) framework…
An Examination of Game-Based Learning from Theories of Flow Experience and Cognitive Load
ERIC Educational Resources Information Center
Lai, Chih-Hung; Chu, Chih-Ming; Liu, Hsiang-Hsuan; Yang, Shun-Bo; Chen, Wei-Hsuan
2013-01-01
This study aims to discuss whether game-based learning with the integration of games and digital learning could enhance not only the flow experience in learning but achieve the same flow experience in pure games. In addition, the authors discovered that whether the game-based learning could make learners to reveal higher cognitive load. The…
Dror, Itiel; Schmidt, Pascal; O'connor, Lanty
2011-01-01
As new technology becomes available and is used for educational purposes, educators often take existing training and simply transcribe it into the new technological medium. However, when technology drives e-learning rather than the learner and the learning, and when it uses designs and approaches that were not originally built for e-learning, then often technology does not enhance the learning (it may even be detrimental to it). The success of e-learning depends on it being 'brain friendly', on engaging the learners from an understanding of how the cognitive system works. This enables educators to optimize learning by achieving correct mental representations that will be remembered and applied in practice. Such technology enhanced learning (TEL) involves developing and using novel approaches grounded in cognitive neuroscience; for example, gaming and simulations that distort realism rather than emphasizing visual fidelity and realism, making videos interactive, training for 'error recovery' rather than for 'error reduction', and a whole range of practical ways that result in effective TEL. These are a result of e-learning that is built to fit and support the cognitive system, and therefore optimize the learning.
Integrating advice and experience: learning and decision making with social and nonsocial cues.
Collins, Elizabeth C; Percy, Elise J; Smith, Eliot R; Kruschke, John K
2011-06-01
When making decisions, people typically gather information from both social and nonsocial sources, such as advice from others and direct experience. This research adapted a cognitive learning paradigm to examine the process by which people learn what sources of information are credible. When participants relied on advice alone to make decisions, their learning of source reliability proceeded in a manner analogous to traditional cue learning processes and replicated the established learning phenomena. However, when advice and nonsocial cues were encountered together as an established phenomenon, blocking (ignoring redundant information) did not occur. Our results suggest that extant cognitive learning models can accommodate either advice or nonsocial cues in isolation. However, the combination of advice and nonsocial cues (a context more typically encountered in daily life) leads to different patterns of learning, in which mutually supportive information from different types of sources is not regarded as redundant and may be particularly compelling. For these situations, cognitive learning models still constitute a promising explanatory tool but one that must be expanded. As such, these findings have important implications for social psychological theory and for cognitive models of learning. 2011 APA, all rights reserved