DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, A.S.; Cauble, R.; Da Silva, L.B.
1996-02-01
This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less
Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator
NASA Astrophysics Data System (ADS)
Aharonovich, Igal; Pe'er, Avi
2016-02-01
Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.
Coherent quantum depletion of an interacting atom condensate
Kira, M.
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
Rosenfeld, Philip J.
2016-01-01
Purpose To explain the pivotal role optical coherence tomography (OCT) imaging had in the development of antiangiogenic therapies for the treatment of neovascular age-related macular degeneration (nvAMD). Methods A historical literature review was combined with personal perspectives from the introduction of OCT imaging and the early clinical use of vascular endothelial growth factor (VEGF) inhibitors. Results At the time that OCT emerged, the gold standard for imaging of nvAMD was fluorescein angiography (FA), a time-consuming, dye-based, invasive technique that provided en face images of the retina and was used to characterize leakage, perfusion status, and the types of macular neovascularization (MNV). In comparison, OCT imaging was a fast, safe, noninvasive technique that complemented FA imaging by providing cross-sectional images of the macula. OCT was able to visualize and quantify the macular fluid that was associated with the presence of excess VEGF, which was identified by intraretinal fluid, subretinal fluid, and fluid under the retinal pigment epithelium (RPE). Clinicians quickly appreciated the benefits of OCT imaging for following macular fluid after anti-VEGF therapy. By observing the qualitative and quantitative changes in macular fluid depicted by OCT imaging, clinicians were empowered to compare anti-VEGF drugs and move from fixed-dosing regimens to patient-specific dosing strategies requiring fewer injections. Conclusions Optical coherence tomography imaging was adopted as a VEGF-meter, a method to detect excess VEGF, and evolved to become the gold standard imaging strategy for diagnosing nvAMD, assessing treatment responses to anti-VEGF drugs, deciding when to re-treat, and evaluating disease progression. PMID:27409464
Fast generation of spin-squeezed states in bosonic Josephson junctions
NASA Astrophysics Data System (ADS)
Juliá-Díaz, B.; Torrontegui, E.; Martorell, J.; Muga, J. G.; Polls, A.
2012-12-01
We describe methods for the fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions. We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schrödinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. A comparison with current experiments shows that our methods allow for an important reduction in the preparation times of highly squeezed spin states.
Turbulence experiments on the PKU Plasma Test (PPT) device
NASA Astrophysics Data System (ADS)
Xu, Tianchao; Xiao, Chijie; Yang, Xiaoyi; Chen, Yihang; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The PKU Plasma Test (PPT) device is a linear plasma device in Peking University, China. It has a vacuum chamber with 1000mm length and 500mm diameter. A pair of Helmholtz coils can generate toroidal magnetic field up to 2000 Gauss, and plasma was generated by a helicon source. Probes and fast camera were used to diagnose the parameters and got the turbulence spectrums, coherent structure, etc. The dynamics of turbulence, coherent structure and parameter profiles have been analyzed, and it has been found that the turbulence states are related to the equilibrium profiles; Some coherent structures exist and show strongly interactions with the background turbulences; The spatial and temporal evolutions of these coherent structures are related to the amplitude of the density gradient and electric field. These results will help on further studies of plasma transport. This work was supported by the National Natural Science Foundation of China under 11575014 and 11375053, CHINA MOST under 2012YQ030142 and ITER-CHINA program 2015GB120001.
Fast and slowly evolving vector solitons in mode-locked fibre lasers.
Sergeyev, Sergey V
2014-10-28
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The Development, Commercialization, and Impact of Optical Coherence Tomography.
Fujimoto, James; Swanson, Eric
2016-07-01
This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.
The Neuropsychology of Starvation: Set-Shifting and Central Coherence in a Fasted Nonclinical Sample
Pender, Sarah; Gilbert, Sam J.; Serpell, Lucy
2014-01-01
Objectives Recent research suggests certain neuropsychological deficits occur in anorexia nervosa (AN). The role of starvation in these deficits remains unclear. Studies of individuals without AN can elucidate our understanding of the effect of short-term starvation on neuropsychological performance. Methods Using a within-subjects repeated measures design, 60 healthy female participants were tested once after fasting for 18 hours, and once when satiated. Measures included two tasks to measure central coherence and a set-shifting task. Results Fasting exacerbated set-shifting difficulties on a rule-change task. Fasting was associated with stronger local and impaired global processing, indicating weaker central coherence. Conclusions Models of AN that propose a central role for set-shifting difficulties or weak central coherence should also consider the impact of short-term fasting on these processes. PMID:25338075
The Development, Commercialization, and Impact of Optical Coherence Tomography
Fujimoto, James; Swanson, Eric
2016-01-01
This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459
Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan
2015-11-20
The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations.
Resolvent analysis of shear flows using One-Way Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim
2017-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).
NASA Technical Reports Server (NTRS)
Denman, Kenneth L.; Abbott, Mark R.
1994-01-01
We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the mesoscale and that growth, death, and sinking of phytoplankton collectively play at most a mariginal role in determining the spectral statistics of the pigment patterns.
Coherent curvature radiation and fast radio bursts
NASA Astrophysics Data System (ADS)
Ghisellini, Gabriele; Locatelli, Nicola
2018-06-01
Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a Jy flux at 1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism. We study for which sets of parameters the emission can fulfil the observational constraints. Even if the emission is coherent, we find that self-absorption can limit the produced luminosities at low radio frequencies and that an efficient re-acceleration process is needed to balance the dramatic energy losses of the emitting particles. Self-absorption limits the luminosities at low radio frequency, while coherence favours steep optically thin spectra. Furthermore, the magnetic geometry must have a high degree of order to obtain coherent curvature emission. Particles emit photons along their velocity vectors, thereby greatly reducing the inverse Compton mechanism. In this case we predict that fast radio bursts emit most of their luminosities in the radio band and have no strong counterpart in any other frequency bands.
FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores
Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.
2002-01-01
Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405
Coherence and incoherence collective behavior in financial market
NASA Astrophysics Data System (ADS)
Zhao, Shangmei; Xie, Qiuchao; Lu, Qing; Jiang, Xin; Chen, Wei
2015-10-01
Financial markets have been extensively studied as highly complex evolving systems. In this paper, we quantify financial price fluctuations through a coupled dynamical system composed of phase oscillators. We find that a Financial Coherence and Incoherence (FCI) coexistence collective behavior emerges as the system evolves into the stable state, in which the stocks split into two groups: one is represented by coherent, phase-locked oscillators, the other is composed of incoherent, drifting oscillators. It is demonstrated that the size of the coherent stock groups fluctuates during the economic periods according to real-world financial instabilities or shocks. Further, we introduce the coherent characteristic matrix to characterize the involvement dynamics of stocks in the coherent groups. Clustering results on the matrix provides a novel manifestation of the correlations among stocks in the economic periods. Our analysis for components of the groups is consistent with the Global Industry Classification Standard (GICS) classification and can also figure out features for newly developed industries. These results can provide potentially implications on characterizing the inner dynamical structure of financial markets and making optimal investment into tragedies.
Fast interaction of atoms with crystal surfaces: coherent lighting
NASA Astrophysics Data System (ADS)
Gravielle, M. S.
2017-11-01
Quantum coherence of incident waves results essential for the observation of interference patterns in grazing incidence fast atom diffraction (FAD). In this work we investigate the influence of the impact energy and projectile mass on the transversal length of the surface area that is coherently illuminated by the atomic beam, after passing through a collimating aperture. Such a transversal coherence length controls the general features of the interference structures, being here derived by means of the Van Cittert-Zernike theorem. The coherence length is then used to build the initial coherent wave packet within the Surface Initial Value Representation (SIVR) approximation. The SIVR approach is applied to fast He and Ne atoms impinging grazingly on a LiF(001) surface along a low-indexed crystallographic direction. We found that with the same collimating setup, by varying the impact energy we would be able to control the interference mechanism that prevails in FAD patterns, switching between inter-cell and unit-cell interferences. These findings are relevant to use FAD spectra adequately as a surface analysis tool, as well as to choose the appropriate collimating scheme for the observation of interference effects in a given collision system.
Fast algorithm for bilinear transforms in optics
NASA Astrophysics Data System (ADS)
Ostrovsky, Andrey S.; Martinez-Niconoff, Gabriel C.; Ramos Romero, Obdulio; Cortes, Liliana
2000-10-01
The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is partially coherent. Numerical examples are studied and compared with the theoretical results.
Disgust: Evolved Function and Structure
ERIC Educational Resources Information Center
Tybur, Joshua M.; Lieberman, Debra; Kurzban, Robert; DeScioli, Peter
2013-01-01
Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and that of information processing. Although there is…
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
The Use of Optical Coherence Tomography for the Detection of Early Diabetic Retinopathy.
Somfai, Gabor Mark; Gerding, Heinrich; DeBuc, Delia Cabrera
2018-04-01
Diabetic retinopathy (DR) is one of the leading causes of vision loss globally with a severe burden on all societies due to its high treatment and rehabilitation costs. The early diagnosis of DR may provide preventive steps (including retinal laser therapy and tight carbohydrate, blood pressure, and cholesterol control) that could in turn help to avoid progression of the pathology with the resultant vision loss. Optical coherence tomography (OCT) enables the in vivo structural imaging of the retina, providing both qualitative (structure) and quantitative (thickness) information. In the past decades, extensive OCT research has been done in the field of DR. In the present review, we are focusing on those that were aiming at detection of the earliest retinal changes before DR could be diagnosed funduscopically. The latest, widely available technology of spectral-domain (SD-)OCT comes with a fast and reliable retinal imaging, which, together with the most recent developments in image processing and artificial intelligence, holds the promise of developing a quick and efficient, state-of-the-art screening tool for DR. Georg Thieme Verlag KG Stuttgart · New York.
Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.
Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan
2017-11-01
The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.
New insights in diagnosis and treatment for Retinopathy of Prematurity.
Cernichiaro-Espinosa, Linda A; Olguin-Manriquez, Francisco J; Henaine-Berra, Andree; Garcia-Aguirre, Gerardo; Quiroz-Mercado, Hugo; Martinez-Castellanos, Maria A
2016-10-01
The purpose of this study was to review current perspectives on diagnosis and treatment of Retinopathy of Prematurity (ROP). We performed a systematic review of how much has been produced in research published online and on print regarding ROP in different settings around the world. Early Treatment for ROP (ETROP) classification is the currently accepted classification of ROP. Fluorescein angiography and spectral domain optical coherence tomography (SD-OCT) may eventually lead to changes in the definition of ROP, and as a consequence, they will serve as a guide for treatment. Intravitreal anti-VEGF therapy has proven to be more effective in terms of lowering recurrence, allowing growth of the peripheral retina, and diminishing the incidence of retinal detachment when proliferative ROP is diagnosed. Whether anti-VEGF plus laser are better than any of these therapies separately remains a subject of discussion. Telemedicine is evolving everyday to allow access to remote areas that do not count with a retina specialist for treatment. A management algorithm is proposed according to our reference center experience. ROP is an evolving subject, with a vulnerable population of study that, once treated with good results, leads to a reduction in visual disability and in consequence, in a lifetime improvement.
Fast sparse recovery and coherence factor weighting in optoacoustic tomography
NASA Astrophysics Data System (ADS)
He, Hailong; Prakash, Jaya; Buehler, Andreas; Ntziachristos, Vasilis
2017-03-01
Sparse recovery algorithms have shown great potential to reconstruct images with limited view datasets in optoacoustic tomography, with a disadvantage of being computational expensive. In this paper, we improve the fast convergent Split Augmented Lagrangian Shrinkage Algorithm (SALSA) method based on least square QR (LSQR) formulation for performing accelerated reconstructions. Further, coherence factor is calculated to weight the final reconstruction result, which can further reduce artifacts arising in limited-view scenarios and acoustically heterogeneous mediums. Several phantom and biological experiments indicate that the accelerated SALSA method with coherence factor (ASALSA-CF) can provide improved reconstructions and much faster convergence compared to existing sparse recovery methods.
Spectral optical coherence tomography for ophthalmologic applications
NASA Astrophysics Data System (ADS)
Targowski, Piotr; Bajraszewski, Tomasz; Gorczyńska, Iwona; Szkulmowska, Anna; Szkulmowski, Maciej; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kaluzny, Jakub J.; Kaluzny, Bartłomiej J.
2006-09-01
The overview of the Spectral Optical Coherence Tomography an alternative method to more popular Time domain modality is given. Examples from medical practice utilizing high resolution, ultra fast SOCT device are presented.
Advantages of phase retrieval for fast x-ray tomographic microscopy
NASA Astrophysics Data System (ADS)
Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.
2013-12-01
In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.
Learning Progressions as Evolving Tools in Joint Enterprises for Educational Improvement
ERIC Educational Resources Information Center
Penuel, William R.
2015-01-01
In their article, "Using Learning Progressions to Design Vertical Scales that Support Coherent Inferences about Student Growth," Briggs and Peck (this issue) argue that an important goal of assessment should be "to support coherent and actionable inferences of growth." They suggest that current approaches to test design rely on…
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Scully, Marlan
2007-06-01
In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].
Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes
USDA-ARS?s Scientific Manuscript database
The role of increased gluconeogenesis as an important contributor to fasting hyperglycaemia at diabetes onset is not known. We evaluated the contribution of gluconeogenesis and glycogenolysis to fasting hyperglycaemia in newly diagnosed youths with type 2 diabetes following an overnight fast. Basal ...
2007-04-01
input signal with the conjugate of a delayed copy of itself, i.e., )exp(2* kjAzz knn ϕ=− , has a phase argument independent of n. As a result, the...Signal Processing (Elseivier), 2005. S.M. Kay, “A Fast and Accurate Single Frequency Estimator,” IEEE Trans. Acous. Speech Signal Proc., 37(12), 1987
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contributemore » to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.« less
A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corynen, G.C.
1987-11-01
An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less
A novel scheme to aid coherent detection of GMSK signals in fast Rayleigh fading channels
NASA Technical Reports Server (NTRS)
Leung, Patrick S. K.; Feher, Kamilo
1990-01-01
A novel scheme to insert carrier pilot to Gaussian Minimum Shift Keying (GMSK) signal using Binary Block Code (BBC) and a highpass filter in baseband is proposed. This allows the signal to be coherently demodulated even in a fast Rayleigh fading environment. As an illustrative example, the scheme is applied to a 16 kb/s GMSK signal, and its performance over a fast Rayleigh fading channel is investigated using computer simulation. This modem's 'irreducible error rate' is found to be Pe = 5.5 x 10(exp -5) which is more than that of differential detection. The modem's performance in Rician fading channel is currently under investigation.
Fu, Songnian; Xu, Zuying; Lu, Jianing; Jiang, Hexun; Wu, Qiong; Hu, Zhouyi; Tang, Ming; Liu, Deming; Chan, Calvin Chun-Kit
2018-03-19
We propose a blind and fast modulation format identification (MFI) enabled by the digital frequency-offset (FO) loading technique for hitless coherent transceiver. Since modulation format information is encoded to the FO distribution during digital signal processing (DSP) at the transmitter side (Tx), we can use the fast Fourier transformation based FO estimation (FFT-FOE) method to obtain the FO distribution of individual data block after constant modulus algorithm (CMA) pre-equalization at the receiver side, in order to realize non-data-aided (NDA) and fast MFI. The obtained FO can be also used for subsequent FO compensation (FOC), without additional complexity. We numerically investigate and experimentally verify the proposed MFI with high accuracy and fast format switching among 28 Gbaud dual-polarization (DP)-4/8/16/64QAM, time domain hybrid-4/16QAM, and set partitioning (SP)-128QAM. In particular, the proposed MFI brings no performance degradation, in term of tolerance of amplified spontaneous emission (ASE) noise, laser linewidth, and fiber nonlinearity. Finally, a hitless coherent transceiver enabled by the proposed MFI with switching-block of only 2048 symbols is demonstrated over 1500 km standard single mode fiber (SSMF) transmission.
Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho
2015-06-18
Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.
Luo, Liang; Men, Long; Liu, Zhaoyu; ...
2017-06-01
How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Liang; Men, Long; Liu, Zhaoyu
How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less
Surface-enhanced FAST CARS: en route to quantum nano-biophotonics
NASA Astrophysics Data System (ADS)
Voronine, Dmitri V.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.
2018-02-01
Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced Raman scattering (SERS) spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS) were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS) and tip-enhanced coherent anti-Stokes Raman scattering (TECARS) and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.
Direct measurement of fast transients by using boot-strapped waveform averaging
NASA Astrophysics Data System (ADS)
Olsson, Mattias; Edman, Fredrik; Karki, Khadga Jung
2018-03-01
An approximation to coherent sampling, also known as boot-strapped waveform averaging, is presented. The method uses digital cavities to determine the condition for coherent sampling. It can be used to increase the effective sampling rate of a repetitive signal and the signal to noise ratio simultaneously. The method is demonstrated by using it to directly measure the fluorescence lifetime from Rhodamine 6G by digitizing the signal from a fast avalanche photodiode. The obtained lifetime of 4.0 ns is in agreement with the known values.
Time efficient Gabor fused master slave optical coherence tomography
NASA Astrophysics Data System (ADS)
Cernat, Ramona; Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian
2018-02-01
In this paper the benefits in terms of operation time that Master/Slave (MS) implementation of optical coherence tomography can bring in comparison to Gabor fused (GF) employing conventional fast Fourier transform based OCT are presented. The Gabor Fusion/Master Slave Optical Coherence Tomography architecture proposed here does not need any data stitching. Instead, a subset of en-face images is produced for each focus position inside the sample to be imaged, using a reduced number of theoretically inferred Master masks. These en-face images are then assembled into a final volume. When the channelled spectra are digitized into 1024 sampling points, and more than 4 focus positions are required to produce the final volume, the Master Slave implementation of the instrument is faster than the conventional fast Fourier transform based procedure.
The potential of optical coherence tomography for diagnosing meniscal pathology
NASA Astrophysics Data System (ADS)
Hang-Yin Ling, Carrie; Pozzi, Antonio; Thieman, Kelley M.; Tonks, Catherine A.; Guo, Shuguang; Xie, Huikai; Horodyski, MaryBeth
2010-04-01
Meniscal tears are often associated with anterior cruciate ligament (ACL) injury and may lead to pain and discomfort in humans. Maximal preservation of meniscal tissue is highly desirable to mitigate the progression of osteoarthritis. Guidelines of which meniscal tears are amenable to repair and what part of damaged tissues should be removed are elusive and lacking consensus. Images of microstructural changes in meniscus would potentially guide the surgeons to manage the meniscal tears better, but the resolution of current diagnostic techniques is limited for this application. In this study, we demonstrated the feasibility of using optical coherence tomography (OCT) for the diagnosis of meniscal pathology. Torn medial menisci were collected from dogs with ACL insufficiency. The torn meniscus was divided into three tissue samples and scanned by OCT and scanning electron microscopy (SEM). OCT and SEM images of torn menisci were compared. Each sample was evaluated for gross and microstructural abnormalities and reduction or loss of birefringence from the OCT images. The abnormalities detected with OCT were described for each type of tear. OCT holds promise in non-destructive and fast assessment of microstructural changes and tissue birefringence of meniscal tears. Future development of intraoperative OCT may help surgeons in the decision making of meniscal treatment.
Kamali, Tschackad; Považay, Boris; Kumar, Sunil; Silberberg, Yaron; Hermann, Boris; Werkmeister, René; Drexler, Wolfgang; Unterhuber, Angelika
2014-10-01
We demonstrate a multimodal optical coherence tomography (OCT) and online Fourier transform coherent anti-Stokes Raman scattering (FTCARS) platform using a single sub-12 femtosecond (fs) Ti:sapphire laser enabling simultaneous extraction of structural and chemical ("morphomolecular") information of biological samples. Spectral domain OCT prescreens the specimen providing a fast ultrahigh (4×12 μm axial and transverse) resolution wide field morphologic overview. Additional complementary intrinsic molecular information is obtained by zooming into regions of interest for fast label-free chemical mapping with online FTCARS spectroscopy. Background-free CARS is based on a Michelson interferometer in combination with a highly linear piezo stage, which allows for quick point-to-point extraction of CARS spectra in the fingerprint region in less than 125 ms with a resolution better than 4 cm(-1) without the need for averaging. OCT morphology and CARS spectral maps indicating phosphate and carbonate bond vibrations from human bone samples are extracted to demonstrate the performance of this hybrid imaging platform.
ERIC Educational Resources Information Center
Jablonka, Eva
2015-01-01
This contribution briefly sketches the evolvement of numeracy or mathematical literacy as models for mathematics curricula, which will be described as driven by a weakening of the insulation between discourses, that is, as a process of "declassification". The question then arises as to whether and how coherence of new forms of initially…
Photovoltaic concepts inspired by coherence effects in photosynthetic systems
NASA Astrophysics Data System (ADS)
Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.
2017-01-01
The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.
MOEMS optical delay line for optical coherence tomography
NASA Astrophysics Data System (ADS)
Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.
2014-09-01
Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.
Complete Quantum Control of a Single Silicon-Vacancy Center in a Diamond Nanopillar
NASA Astrophysics Data System (ADS)
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan-Kai; Dory, Constantin; Radulaski, Marina; Kelaita, Yousif; Shen, Zhi-Xun; Melosh, Nicholas A.; Chu, Steven; Vuckovic, Jelena
Coherent quantum control of a quantum bit (qubit) is an important step towards its use in a quantum network. SiV- center in diamond offers excellent physical qualities such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the fast spin manipulation and techniques to extend the spin coherence time are under active investigation. Here, we demonstrate full coherent control over the state of a single SiV- center in a diamond nanopillar using ultrafast optical pulses. The high quality of the chemical vapor deposition grown SiV- centers allows us to coherently manipulate and quasi-resonantly read out the state of the single SiV- center. Moreover, the SiV- centers being coherently controlled are integrated into diamond nanopillar arrays in a site-controlled, individually addressable manner with high yield, low strain, and high spectral stability, which paves the way for scalable on chip optically accessible quantum system in a quantum photonic network. Financial support is provided by the DOE Office of Basic Energy Sciences, Division of Materials Sciences through Stanford Institute for Materials and Energy Sciences (SIMES) under contract DE-AC02-76SF00515.
Dolz-Marco, Rosa; Sarraf, David; Giovinazzo, Vincent; Freund, K Bailey
2017-01-01
To describe multimodal imaging findings of an evolving case of acute posterior multifocal placoid pigment epitheliopathy occurring in a young healthy male. Case report of a patient with acute posterior multifocal placoid pigment epitheliopathy including comprehensive systemic and ocular examinations. Ultra-widefield autofluorescence, fluorescein angiography, indocyanine green angiography, and serial optical coherence tomography angiography were performed. A 34-year-old male presented with acute vision loss in his left eye for 2 weeks. His best-corrected visual acuity was 20/20 in his right eye and 20/200 in his left eye. Dilated funduscopic examination revealed multiple creamy white deep retinal lesions showing macular involvement of the left eye with a diffuse area of pigmentary changes. The presence of multiple areas of hypoperfusion of the inner choroid were demonstrated with fluorescein and indocyanine green angiography. Serial optical coherence tomography angiography showed multiple evolving areas of decreased flow at the level of the inner choroid. Although the pathogenesis of acute posterior multifocal placoid pigment epitheliopathy remains unknown, there is growing evidence of a primary choroidal involvement with secondary damage to the overlying retinal pigment epithelium and the outer retinal layers. Optical coherence tomography angiography may provide valuable information for the diagnosis and follow-up of this condition avoiding invasive angiographic procedures.
Darwish, Dana; Chee, Ru-Ik; Patel, Samir N; Jonas, Karyn; Ostmo, Susan; Campbell, J Peter; Chiang, Michael F; Chan, R V Paul
2018-05-29
Diagnosis and management of pediatric retinal conditions such as retinopathy of prematurity (ROP) have been evolving significantly with the availability of new technology and treatments. New imaging systems, telemedicine, tele-education, and anti‒vascular endothelial growth factor (VEGF) intravitreal pharmacotherapy are all changing the way we diagnose and deliver care to children with pediatric retinal disease. Fluorescein angiography and optical coherence tomography have the potential to improve our diagnosis and management of disease, and with improvements in retinal imaging, telemedicine is becoming more feasible. Telemedicine, tele-education, and computer-based image analysis may overcome many of the challenges we face in providing adequate care and access for children with pediatric retinal disease. Treatment options have also expanded with the use of anti-VEGF therapy. Although the use of intravitreal anti-VEGF for ROP has been documented in the literature for more than a decade, many questions still remain about its safety in the pediatric patient population. Several ongoing prospective studies are exploring the utility of anti-VEGF agents for ROP, with attention to the optimal dose of drug, systemic safety, and our understanding of recurrence of disease. This review aims to provide an update on current diagnostic and therapeutic modalities, focusing predominantly on the role of anti-VEGF therapy, for the management of ROP and other pediatric retinal vascular diseases. Copyright 2018 Asia-Pacific Academy of Ophthalmology.
High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform
Chan, Kenny K. H.; Tang, Shuo
2010-01-01
The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551
Lateral Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders
2011-09-30
Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders R. Kipp Shearman Jonathan D. Nash James N. Moum John A. Barth College of...These structures evolve yet are often persistent on O (3 day) timescales, so are ideally suited to be adaptively sampled by autonomous gliders that...processes driving lateral dispersion, we plan to deploy 4 AUV gliders to perform intensive, adaptive surveys. Newly-enhanced to measure turbulent mixing
[EEG-markers of vertical postural organization in healthy persons].
Zhavoronkova, L A; Zharikova, A V; Kushnir, E M; Mikhalkova, A A
2012-01-01
In 10 healthy persons (22.8 +/- 0.67 years) spectral-coherence parameters of EEG were analyzed in different steps of verticalizations--from gorizontal position to seat and stand one. Maximal changes of all EEG parameters were observed in state with absence of visual control. We observed an increase of power for fast spectral bands of EEG (beta- and gamma-bands) in all conditions and additional increase of these EEG parameters was observed at situation of complication of conditions of vertical pose supporting. Results of EEG coherent analysis in conditions of human verticalization showed specific increase of coherence for the majority of rhythm ranges in the right hemisphere especially in the central-frontal and in occipital-parietal areas and for interhemispheric pairs for these leads. This fact can reflect participation of cortical as well as subcortical structures in these processes. In conditions of complicate conditions of vertical pose supporting the additional increase of EEG coherence in fast bands (beta-rhythm) was observed at the frontal areas. This fact can testify about increasing of executive functions in this conditions.
The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae
NASA Astrophysics Data System (ADS)
Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra
2012-11-01
The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.
Fast and error-resilient coherent control in an atomic vapor
NASA Astrophysics Data System (ADS)
He, Yizun; Wang, Mengbing; Zhao, Jian; Qiu, Liyang; Wang, Yuzhuo; Fang, Yami; Zhao, Kaifeng; Wu, Saijun
2017-04-01
Nanosecond chirped pulses from an optical arbitrary waveform generator is applied to both invert and coherently split the D1 line population of potassium vapor within a laser focal volume of 2X105 μ m3. The inversion fidelity of f>96%, mainly limited by spontaneous emission during the nanosecond pulse, is inferred from both probe light transmission and superfluorescence emission. The nearly perfect inversion is uniformly achieved for laser intensity varying over an order of magnitude, and is tolerant to detuning error of more than 1000 times the D1 transition linewidth. We further demonstrate enhanced intensity error resilience with multiple chirped pulses and ``universal composite pulses''. This fast and robust coherent control technique should find wide applications in the field of quantum optics, laser cooling, and atom interferometry. This work is supported by National Key Research Program of China under Grant No. 2016YFA0302000, and NNSFC under Grant No. 11574053.
NASA Astrophysics Data System (ADS)
Hameed, M.; Demirel, M. C.; Moradkhani, H.
2015-12-01
Global Sensitivity Analysis (GSA) approach helps identify the effectiveness of model parameters or inputs and thus provides essential information about the model performance. In this study, the effects of the Sacramento Soil Moisture Accounting (SAC-SMA) model parameters, forcing data, and initial conditions are analysed by using two GSA methods: Sobol' and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out over five sub-basins within the Columbia River Basin (CRB) for three different periods: one-year, four-year, and seven-year. Four factors are considered and evaluated by using the two sensitivity analysis methods: the simulation length, parameter range, model initial conditions, and the reliability of the global sensitivity analysis methods. The reliability of the sensitivity analysis results is compared based on 1) the agreement between the two sensitivity analysis methods (Sobol' and FAST) in terms of highlighting the same parameters or input as the most influential parameters or input and 2) how the methods are cohered in ranking these sensitive parameters under the same conditions (sub-basins and simulation length). The results show the coherence between the Sobol' and FAST sensitivity analysis methods. Additionally, it is found that FAST method is sufficient to evaluate the main effects of the model parameters and inputs. Another conclusion of this study is that the smaller parameter or initial condition ranges, the more consistency and coherence between the sensitivity analysis methods results.
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil Tanyer
2008-02-01
We formulate and evaluate in terms of graphical outputs, source and receiver plane expressions, the complex degree of coherence, beam size variation and power in bucket performance for higher order partially coherent dark hollow beams propagating in turbulent atmosphere. Our formulation is able to cover square, rectangular, circular, elliptical geometries for dark hollow and flat-topped beams in one single expression. From the graphical outputs of the receiver plane, it is observed that higher order partially coherent dark hollow beams will initially develop an outer ring around a central lobe, but will eventually evolve towards a Gaussian shape as the propagation distance is extended. It is further observed that stronger turbulence levels and greater partial coherence have similar effects on beam profile. During propagation, modulus of complex degree of coherence of partially coherent dark hollow beams appears to rise above that of the source plane values, reaching as high as near unity. Beam size analysis shows that, among the types examined, (nearly) flat-topped beam experiences the least beam expansion. Power in bucket analysis indicates that lowest order square fully coherent dark beam offers the best power capturing.
Fast Coherent Differential Imaging for Exoplanet Imaging
NASA Astrophysics Data System (ADS)
Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.
2018-06-01
Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.
Quantification of skin wrinkles using low coherence interferometry
NASA Astrophysics Data System (ADS)
Oh, Jung-Taek; Kim, Beop-Min; Son, Sang-Ryoon; Lee, Sang-Won; Kim, Dong-Yoon; Kim, Youn-Soo
2004-07-01
We measure the skin wrinkle topology by means of low coherence interferometry (LCI), which forms the basis of the optical coherence tomography (OCT). The skin topology obtained using LCI and corresponding 2-D fast Fourier transform allow quantification of skin wrinkles. It took approximately 2 minutes to obtain 2.1 mm x 2.1 mm topological image with 4 um and 16 um resolutions in axial and transverse directions, respectively. Measurement examples show the particular case of skin contour change after-wrinkle cosmeceutical treatments and atopic dermatitis
Optical coherence tomography for diagnosing periodontal disease
NASA Astrophysics Data System (ADS)
Colston, Bill W., Jr.; Everett, Matthew J.; Da Silva, Luiz B.; Otis, Linda L.; Nathel, Howard
1997-05-01
We have, in this preliminary study, investigated the use of optical coherence tomography for diagnosis of periodontal disease. We took in vitro OCT images of the dental and periodontal tissues from a young pig and compared them to histological sections. These images distinguish tooth and soft tissue relationships that are important in diagnosing and assessing periodontal disease. We have imaged the attachment of gingiva to the tooth surface and located the cemento-enamel junction. This junction is an important reference point for defining attachment level in the diagnosis of periodontal disease. the boundary between enamel and dentin is also visible for most of the length of the anatomical crown, allowing quantitation of enamel thickness and character.
NASA Astrophysics Data System (ADS)
Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.
2017-11-01
In many fields of study, from coherent Raman microscopy on living cells to time-resolved coherent Raman spectroscopy of gas-phase turbulence and combustion reaction dynamics, the need for the capability to time-resolve fast dynamical and nonrepetitive processes has led to the continued development of high-speed coherent Raman methods and new high-repetition rate laser sources, such as pulse-burst laser systems. However, much less emphasis has been placed on our ability to detect shot to shot coherent Raman spectra at equivalently high scan rates, across the kilohertz to megahertz regime. This is beyond the capability of modern scientific charge coupled device (CCD) cameras, for instance, as would be employed with a Czerny-Turner type spectrograph. As an alternative detection strategy with megahertz spectral detection rate, we demonstrate dispersive Fourier transformation detection of pulsed (∼90 ps) coherent Raman signals in the time-domain. Instead of reading the frequency domain signal out using a spectrometer and CCD, the signal is transformed into a time-domain waveform through dispersive Fourier transformation in a long single-mode fiber and read-out with a fast sampling photodiode and oscilloscope. Molecular O- and S-branch rotational sideband spectra from both N2 and H2 were acquired employing this scheme, and the waveform is fitted to show highly quantitative agreement with a molecular model. The total detection time for the rotational spectrum was 20 ns, indicating an upper limit to the detection frequency of ∼50 MHz, significantly faster than any other reported spectrally-resolved coherent anti-Stokes Raman detection strategy to date.
ERIC Educational Resources Information Center
Boets, Bart; Vandermosten, Maaike; Cornelissen, Piers; Wouters, Jan; Ghesquiere, Pol
2011-01-01
Evidence suggests that sensitivity to coherent motion (CM) is related to reading, but its role in the etiology of developmental dyslexia remains unclear. In this longitudinal study, CM sensitivity was measured in 31 children at family risk for dyslexia and 31 low-risk controls. Children, diagnosed with dyslexia in third grade (mean age = 8 years 3…
Apparatus for generating partially coherent radiation
Naulleau, Patrick P.
2004-09-28
The effective coherence of an undulator beamline can be tailored to projection lithography requirements by using a simple single moving element and a simple stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (i) source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence; (ii) a reflective surface that receives incident radiation from said source; (iii) means for moving the reflective surface through a desired range of angles in two dimensions wherein the rate of the motion is fast relative to integration time of said image processing system; and (iv) a condenser optic that re-images the moving reflective surface to the entrance plane of said image processing system, thereby, making the illumination spot in said entrance plane essentially stationary.
Aftab, H; Ambreen, A; Jamil, M; Garred, P; Petersen, J H; Nielsen, S D; Bygbjerg, I C; Christensen, D L
2017-06-01
To compare HbA 1c and fasting plasma glucose assessment, with the 2-h oral glucose tolerance test as reference, in screening for diabetes in people with turberculosis. Individuals (N=268) with newly diagnosed smear-positive tuberculosis were screened for diabetes at a tertiary hospital in Lahore, Pakistan. Diabetes diagnosis was based on WHO criteria: thresholds were ≥48 mmol/mol (≥6.5%) for HbA 1c and ≥7.0mmol/l for fasting plasma glucose. The proportion of participants diagnosed with diabetes was 4.9% (n =13) by oral glucose tolerance test, while 11.9% (n =32) and 14.6% (n =39) were diagnosed with diabetes using HbA 1c and fasting plasma glucose criteria, respectively. The area under the receiver-operating characteristic curve was 0.79 (95% CI 0.64 to 0.94) for HbA 1c and 0.61 (95% CI 0.50 to 0.73) for fasting plasma glucose, with a borderline significant difference between the two tests (P=0.07). HbA 1c and fasting plasma glucose performed equally in terms of diagnosing new diabetes cases in individuals with tuberculosis, but the proportion of participants falsely classified as positive was higher for fasting plasma glucose. This may be explained by acute blood glucose fluctuations when using fasting plasma glucose. HbA 1c may be a more reliable test in individuals with transient hyperglycaemia. © 2017 Diabetes UK.
Kokame, Gregg T; Shantha, Jessica G; Hirai, Kelsi; Ayabe, Julia
2016-08-01
To evaluate the diagnostic capability of en face spectral-domain optical coherence tomography (SD-OCT) in patients with polypoidal choroidal vasculopathy (PCV) diagnosed by indocyanine green angiography (ICGA). A retrospective, consecutive case series of 100 eyes diagnosed with PCV by ICGA were imaged with en face SD-OCT. Evaluation of the PCV complex on en face SD-OCT was performed on the ability to diagnose PCV by the characteristic configuration of the PCV complex and the extent and size of the PCV lesion. The PCV complex was better visualized on ICGA in 45 eyes, on en face SD-OCT in 44 eyes, and equally well in 11 eyes. The extent of the PCV complex was larger on en face SD-OCT in 65 eyes, larger on ICGA in 23 eyes, and equal in size in 12 eyes. En face SD-OCT images the characteristic findings of PCV and provides a noninvasive way to diagnose and treat PCV when ICGA is not available. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:737-744.]. Copyright 2016, SLACK Incorporated.
Biocular vehicle display optical designs
NASA Astrophysics Data System (ADS)
Chu, H.; Carter, Tom
2012-06-01
Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.
Alexandrou, Anna Maria; Saarinen, Timo; Kujala, Jan; Salmelin, Riitta
2018-06-19
During natural speech perception, listeners must track the global speaking rate, that is, the overall rate of incoming linguistic information, as well as transient, local speaking rate variations occurring within the global speaking rate. Here, we address the hypothesis that this tracking mechanism is achieved through coupling of cortical signals to the amplitude envelope of the perceived acoustic speech signals. Cortical signals were recorded with magnetoencephalography (MEG) while participants perceived spontaneously produced speech stimuli at three global speaking rates (slow, normal/habitual, and fast). Inherently to spontaneously produced speech, these stimuli also featured local variations in speaking rate. The coupling between cortical and acoustic speech signals was evaluated using audio-MEG coherence. Modulations in audio-MEG coherence spatially differentiated between tracking of global speaking rate, highlighting the temporal cortex bilaterally and the right parietal cortex, and sensitivity to local speaking rate variations, emphasizing the left parietal cortex. Cortical tuning to the temporal structure of natural connected speech thus seems to require the joint contribution of both auditory and parietal regions. These findings suggest that cortical tuning to speech rhythm operates on two functionally distinct levels: one encoding the global rhythmic structure of speech and the other associated with online, rapidly evolving temporal predictions. Thus, it may be proposed that speech perception is shaped by evolutionary tuning, a preference for certain speaking rates, and predictive tuning, associated with cortical tracking of the constantly changing rate of linguistic information in a speech stream.
Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F.; de Ridder, Dick; Pronk, Jack T.; van Maris, Antonius J. A.; Daran, Jean-Marc
2013-01-01
Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments. PMID:24145419
Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography
Shirazi, Muhammad Faizan; Park, Kibeom; Wijesinghe, Ruchire Eranga; Jeong, Hyosang; Han, Sangyeob; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun
2016-01-01
An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products. PMID:27690043
Construction of even and odd combinations of Morse-like coherent states
NASA Astrophysics Data System (ADS)
Récamier, José; Jáuregui, Rocio
2003-06-01
In this work we construct approximate coherent states for the Morse potential using a method inspired by the f-oscillator formalism (Man'ko et al 1996 Proc. 4th Wigner Symp. ed M Natig, Atakishiyev, T H Seligman and K B Wolf (Singapore: World Scientific) p 421). We make even and odd combinations of these states and evaluate the temporal evolution of the position operator and its dispersion as a function of time when the states evolve under a nonlinear Morse Hamiltonian.
Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.
Madsen, M J; Moehring, D L; Maunz, P; Kohn, R N; Duan, L-M; Monroe, C
2006-07-28
We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.
A Jurassic stem pleurodire sheds light on the functional origin of neck retraction in turtles
Anquetin, Jérémy; Tong, Haiyan; Claude, Julien
2017-01-01
Modern turtles are composed of two monophyletic groups, notably diagnosed by divergent neck retraction mechanisms. Pleurodires (side-necked turtles) bend their neck sideways and protect their head under the anterior margin of the carapace. Cryptodires (hidden-necked turtles) withdraw their neck and head in the vertical plane between the shoulder girdles. These two mechanisms of neck retraction appeared independently in the two lineages and are usually assumed to have evolved for protective reasons. Here we describe the neck of Platychelys oberndorferi, a Late Jurassic early stem pleurodire, and find remarkable convergent morphological and functional similarities with modern cryptodires. Partial vertical neck retraction in this taxon is interpreted to have enabled fast forward projection of the head during underwater prey capture and offers a likely explanation to the functional origin of neck retraction in modern cryptodires. Complete head withdrawal for protection may therefore have resulted from an exaptation in that group. PMID:28206991
Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru
2013-09-01
We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5 cm-1 in the Raman spectral region around 2850 cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850 cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.
Berke, J D
2009-09-01
Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The approximately 50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas approximately 80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in approximately 50 Hz power and increase in approximately 80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for < 1 s following reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.
Holographic illuminator for synchrotron-based projection lithography systems
Naulleau, Patrick P.
2005-08-09
The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena
2014-06-01
We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.
Coherent active polarization control without loss
NASA Astrophysics Data System (ADS)
Ye, Yuqian; Hay, Darrick; Shi, Zhimin
2017-11-01
We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.
Thrashings and Death Gasps--or Revolutionary Beginnings? A Sociology of Today's Music.
ERIC Educational Resources Information Center
Ehle, Robert C.
1980-01-01
The author proposes that the entire history of Western, serious, classical music can be seen as a coherent, single development with a single evolving characteristic--that of aurally perceptible clarity and order. (Author/SJL)
Generalized Lagrangian coherent structures
NASA Astrophysics Data System (ADS)
Balasuriya, Sanjeeva; Ouellette, Nicholas T.; Rypina, Irina I.
2018-06-01
The notion of a Lagrangian Coherent Structure (LCS) is by now well established as a way to capture transient coherent transport dynamics in unsteady and aperiodic fluid flows that are known over finite time. We show that the concept of an LCS can be generalized to capture coherence in other quantities of interest that are transported by, but not fully locked to, the fluid. Such quantities include those with dynamic, biological, chemical, or thermodynamic relevance, such as temperature, pollutant concentration, vorticity, kinetic energy, plankton density, and so on. We provide a conceptual framework for identifying the Generalized Lagrangian Coherent Structures (GLCSs) associated with such evolving quantities. We show how LCSs can be seen as a special case within this framework, and provide an overarching discussion of various methods for identifying LCSs. The utility of this more general viewpoint is highlighted through a variety of examples. We also show that although LCSs approximate GLCSs in certain limiting situations under restrictive assumptions on how the velocity field affects the additional quantities of interest, LCSs are not in general sufficient to describe their coherent transport.
NASA Astrophysics Data System (ADS)
Shen, Jian Qi; Gu, Jing
2018-04-01
Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.
Fast and slow light property improvement in erbium-doped amplifier
NASA Astrophysics Data System (ADS)
Peng, P. C.; Wu, F. K.; Kao, W. C.; Chen, J.; Lin, C. T.; Chi, S.
2013-01-01
This work experimentally demonstrates improvement of the fast light property in erbium-doped amplifiers at room temperature. The difference between the signal power and the pump power associated with bending loss is used to control the signal power at the different positions of the erbium-doped fiber (EDF) to improve the fast light property. Periodic bending of the EDF increases the time advance of the probe signal by over 288%. Additionally, this concept also could improve the fast light property using coherent population oscillations in semiconductor optical amplifiers.
Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays.
Zhang, Gufei; Samuely, Tomas; Du, Hongchu; Xu, Zheng; Liu, Liwang; Onufriienko, Oleksandr; May, Paul W; Vanacken, Johan; Szabó, Pavol; Kačmarčík, Jozef; Yuan, Haifeng; Samuely, Peter; Dunin-Borkowski, Rafal E; Hofkens, Johan; Moshchalkov, Victor V
2017-11-28
In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.
Stimulated Raman adiabatic control of a nuclear spin in diamond
NASA Astrophysics Data System (ADS)
Coto, Raul; Jacques, Vincent; Hétet, Gabriel; Maze, Jerónimo R.
2017-08-01
Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology and quantum computation. However, most of the current techniques to control nuclear spins lack fast speed, impairing their robustness against decoherence. Here, based on stimulated Raman adiabatic passage, and its modification including shortcuts to adiabaticity, we present a fast protocol for the coherent manipulation of nuclear spins. Our proposed Λ scheme is implemented in the microwave domain and its excited-state relaxation can be optically controlled through an external laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to measure the dynamical and geometric phases acquired by nuclear spins.
Venhuizen, Freerk G; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I
2018-04-01
We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies.
Venhuizen, Freerk G.; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.
2018-01-01
We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies. PMID:29675301
The Role of Coherent Detection
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.
2004-01-01
Many interesting astronomical objects, such as galaxies, molecular clouds, PDRs, star - forming regions, protostars, evolved stars, planets, and comets, have rich submillimeter spectra. In order to avoid line blending, and to be able to resolve the line shape, it is often necessary to measure these spectra at high resolution. This paper discusses the relative advantages and limitations of coherent and direct detection for high resolution spectroscopy in the submillimeter and far - infrared. In principle, direct detection has a fundamental sensitivity advantage. In practice, it is di.cult to realize this advantage given the sensitivities of existing detectors and reasonable constraints on the instrument volume. Thus, coherent detection can be expected to play an important role in submillimeter and far - infrared astrophysics well into the future.
Ultrafast Coherent Dynamics of a Photonic Crystal All-Optical Switch.
Colman, Pierre; Lunnemann, Per; Yu, Yi; Mørk, Jesper
2016-12-02
We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse and more than 10 dB parametric gain. The measurements are in good agreement with a theoretical model that ascribes the observation to oscillations of the free-carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.
Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.
Badiey, Mohsen; Song, Aijun; Smith, Kevin B
2012-10-01
During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.
The whistle and the rattle: the design of sound producing muscles.
Rome, L C; Syme, D A; Hollingworth, S; Lindstedt, S L; Baylor, S M
1996-01-01
Vertebrate sound producing muscles often operate at frequencies exceeding 100 Hz, making them the fastest vertebrate muscles. Like other vertebrate muscle, these sonic muscles are "synchronous," necessitating that calcium be released and resequestered by the sarcoplasmic reticulum during each contraction cycle. Thus to operate at such high frequencies, vertebrate sonic muscles require extreme adaptations. We have found that to generate the "boatwhistle" mating call (approximately 200 Hz), the swimbladder muscle fibers of toadfish have evolved (i) a large and very fast calcium transient, (ii) a fast crossbridge detachment rate, and (iii) probably a fast kinetic off-rate of Ca2+ from troponin. The fibers of the shaker muscle of rattlesnakes have independently evolved similar traits, permitting tail rattling at approximately 90 Hz. PMID:8755609
Numerical Simulation of Ultra-Fast Pulse Propagation in Two-Photon Absorbing Medium
2011-08-01
physical problems including coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, soliton formation etc. It can be also...coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, electromagnetically induced transparency, soliton formation etc...experimental data ( dark blue); Upper panel - 1PA spectrum; Lower panel - 2PA cross section spectrum. The parameter values used are shown in Table 1. 10
Wind turbine wake visualization and characteristics analysis by Doppler lidar.
Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel
2016-05-16
Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.
Formation mechanism of shock-induced particle jetting.
Xue, K; Sun, L; Bai, C
2016-08-01
The shock dissemination of granular rings or shells is characterized by the formation of coherent particle jets that have different dimensions from those associated with the constituent grains. In order to identify the mechanisms governing the formation of particle jets, we carry out the simulations of the shock dispersal of quasi-two-dimensional particle rings based on the discrete-element method. The evolution of the particle velocities and contact forces on the time scales ranging from microseconds to milliseconds reveals a two-stage development of particle jets before they are expelled from the outer surface. Much effort is made to understand the particle agglomeration around the inner surface that initiates the jet formation. The shock interaction with the innermost particle layers generates a heterogeneous network of force chains with clusters of strong contacts regularly spaced around the inner surface. Momentum alongside the stresses is primarily transmitted along the strong force chains. Therefore, the clustering of strong force chains renders the agglomeration of fast-moving particles connected by strong force chains. The fast-moving particle clusters subsequently evolve into the incipient particle jets. The following competition among the incipient jets that undergo unbalanced growth leads to substantial elimination of the minor jets and the significant multiplication of the major jets, the number of jets thus varying with time. Moreover, the number of jets is found to increase with the strength of the shock loading due to an increased number of jets surviving the retarding effect of major jets.
Chen, Xi; Heidbrink, William W.; Kramer, Gerrit J.; ...
2014-08-04
Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred frommore » the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. Finally, an analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; General Atomics, P.O. Box 85608, San Diego, California 92186; Heidbrink, W. W.
2014-08-15
Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred frommore » the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.« less
Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul
2016-02-09
We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.
Coherent-fields, their responsive colloids, and life's origins.
NASA Astrophysics Data System (ADS)
Mitra-Delmotte, G.; Mitra, A. N.
2015-10-01
In living systems, evolvable sequence-encoded constraints control the incoming energy-matter flows, and are also sustained by their embedded flows/ processes. What's more, in such dynamic-organized liquid-state media, the flows can also produce novel materials/mechanisms. Thus, embedded processes of such media enable its spatiotemporal resilience via turnovers, as well as functional 'takeovers'. Further, the responsiveness of such constrained media to their environment enables adaptations, as they can mediate feedback between the changing environment & their embedded flows/processes. Now, the complexity of the constituent functional materials, make it very likely that they themselves emerged/got selected thanks to the creative properties of such dynamically constrained media. We have asked if such Maxwelldemon- like scenario could not be mimicked using other plausible ingredients to achieve similar ways of dissipative sustenance and coherent functioning. In particular, the potential of organizing coherent fields and their responsive anisotropic colloids to enhance the probability of life's emergence—akin to an adaptive transition—to a new way of evolving, seems promising. Note that pattern-sustenance in liquid state requires presence of the specific source that enabled it (c.f. spontaneously formed patterns). For example, external coherent heterogeneous fields (e.g. magnetic rocks) can act as sources both of 1) aperiodic information, and 2) useful energy, for inducing and sustaining (specific) structures of superparamagnetic mineral colloids (via their Brownianrotation) away-from-equilibrium, to access 3-way coupling between energy-information-matter in liquid-medium. Such dynamic functioning structures seem ideal for stable containment of bottom-up chemical systems; and similar scenario in the nanoscience engineering area can help in design/tests.
NASA Astrophysics Data System (ADS)
George, Russ
2005-03-01
Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.
Margaret, Murnane [University of Colorado, Boulder and NIST
2017-12-09
Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources at very short wavelengths, even in the hard x-ray region of the spectrum at wavelengths < 1nm, have brightened considerably. This advance is possible by taking nonlinear optics techniques to an extreme - physics that is the direct result of a new ability to manipulate electrons on the fastest, attosecond, time-scales of our natural world. Several applications have already been demonstrated, including making a movie of how electrons rearrange in a chemical bond changes shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. Nature 460, 1088 (2009); Science 317, 775 (2007); Physical Review Letters 103, 257402 (2009); Nature Materials 9, 26 (2010); Nature 463, 214 (2010); Science 322, 1207 (2008).
Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration
2014-06-01
Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE
Endoscopic spectral-domain polarization-sensitive optical coherence tomography system
NASA Astrophysics Data System (ADS)
Wang, Yi; Chen, Xiaodong; Hu, Zhiqiang; Li, Qiao; Yu, Daoyin
2008-02-01
In this paper, we introduced a fiber-based endoscopic Spectral-domain Polarization-sensitive OCT (SD-PS-OCT) experimental scheme for detecting the internal organ disease, which is based on low-coherence interferometer and two spectrometers. The SD-PS-OCT has the advantages of both Spectral-domain OCT (SD-OCT) and Polarization-sensitive OCT (PS-OCT). It is able to get the real-time image of reflectivity and birefringence distribution of tissue at the same time. The usage of SD-PS-OCT in endoscopic diagnosing system provides it the possibility to detect the internal organ disease. Since SD-PS-OCT can image the pathological changes of biological tissue below surface (1-3mm) with high resolution (1-15μm), it is able to help diagnosing early diseases of internal organs, which makes it a biomedical technology with bright future.
A model for diagnosing and explaining multiple disorders.
Jamieson, P W
1991-08-01
The ability to diagnose multiple interacting disorders and explain them in a coherent causal framework has only partially been achieved in medical expert systems. This paper proposes a causal model for diagnosing and explaining multiple disorders whose key elements are: physician-directed hypotheses generation, object-oriented knowledge representation, and novel explanation heuristics. The heuristics modify and link the explanations to make the physician aware of diagnostic complexities. A computer program incorporating the model currently is in use for diagnosing peripheral nerve and muscle disorders. The program successfully diagnoses and explains interactions between diseases in terms of underlying pathophysiologic concepts. The model offers a new architecture for medical domains where reasoning from first principles is difficult but explanation of disease interactions is crucial for the system's operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Hozumi, E-mail: fkdhzmrad@mitsuihosp.or.jp; Ibukuro, Kenji; Tsukiyama, Toshitaka
We evaluated the value of CT-guided transthoracic core biopsy for the diagnosis of mycobacterial pulmonary nodules. The 30 subjects in this study had pulmonary nodules that had been either diagnosed histopathologically as tuberculosis or were suspected as tuberculosis based on a specimen obtained by CT-guided transthoracic core biopsy. The histopathological findings, the existence of acid-fast bacilli in the biopsy specimens, and the clinical course of the patients after the biopsy were reviewed retrospectively. Two of the three histological findings for tuberculosis that included epithelioid cells, multinucleated giant cells and caseous necrosis were observed in 21 of the nodules which weremore » therefore diagnosed as histological tuberculosis. Six of these 21 nodules were positive for acid-fast bacilli, confirming the diagnosis of tuberculosis. Thirteen of the 21 nodules did not contain acid-fast bacilli but decreased in size in response to antituberculous treatment and were therefore diagnosed as clinical tuberculosis. Seven nodules with only caseous necrosis were diagnosed as suspected tuberculosis, with a final diagnosis of tuberculosis being made in 4 of the nodules and a diagnosis of old tuberculosis in 2 nodules. Two nodules with only multinucleated giant cells were diagnosed as suspected tuberculosis with 1 of these nodules being diagnosed finally as tuberculosis and the other nodule as a nonspecific granuloma. When any two of the three following histopathological findings - epithelioid cells, multinucleated giant cells or caseous necrosis - are observed in a specimen obtained by CT-guided transthoracic core biopsy, the diagnosis of tuberculosis can be established without the detection of acid-fast bacilli or Mycobacterium tuberculosis.« less
Effect of Reduced Meal Frequency during Ramadan Fasting on Retinal and Choroidal Thickness.
Ersan, Ismail; Tufan, Hasan Ali; Arikan, Sedat; Kara, Selcuk; Gencer, Baran; Hondur, Ahmet Murat
2017-01-01
To evaluate the effects of Ramadan fasting on central foveal thickness (CFT) and subfoveal choroidal thickness (SFCT) in healthy individuals using enhanced depth imaging optical coherence tomography (EDI-OCT). The EDI-OCT scans of 42 healthy individuals obtained after about 12 hours of fasting on at least the twenty-first consecutive day of fasting were compared to scans of the same patients taken one month after the last day they had fasted. CFT values were similar for both time periods (p > 0.05). The SFCT was significantly higher after consecutive fasting days towards the end of Ramadan, compared to the SFCT after one month of no fasting (one month after Ramadan ended) (p < 0.001). Ramadan fasting may lead to a significant increase in subfoveal choroidal thickness without affecting the central foveal thickness.
The Integrated Business Curriculum: An Examination of Perceptions and Practices
ERIC Educational Resources Information Center
Athavale, Manoj; Davis, Rod; Myring, Mark
2008-01-01
Constituents often criticize business schools for failing to provide students with a comprehensive understanding of how business organizations function. Business schools have responded to the mandate with attempts to integrate discipline-specific functional knowledge into a coherent understanding of the evolving business organization. Successful…
Venkataraman, Charulatha
2011-11-28
The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.
Adaptation to fluctuations in temperature by nine species of bacteria.
Saarinen, Kati; Laakso, Jouni; Lindström, Leena; Ketola, Tarmo
2018-03-01
Rapid environmental fluctuations are ubiquitous in the wild, yet majority of experimental studies mostly consider effects of slow fluctuations on organism. To test the evolutionary consequences of fast fluctuations, we conducted nine independent experimental evolution experiments with bacteria. Experimental conditions were same for all species, and we allowed them to evolve either in fluctuating temperature alternating rapidly between 20°C and 40°C or at constant 30°C temperature. After experimental evolution, we tested the performance of the clones in both rapid fluctuation and in constant environments (20°C, 30°C and 40°C). Results from experiments on these nine species were combined meta-analytically. We found that overall the clones evolved in the fluctuating environment had evolved better efficiency in tolerating fluctuations (i.e., they had higher yield in fluctuating conditions) than the clones evolved in the constant environment. However, we did not find any evidence that fluctuation-adapted clones would have evolved better tolerance to any measured constant environments (20°C, 30°C, and 40°C). Our results back up recent empirical findings reporting that it is hard to predict adaptations to fast fluctuations using tolerance curves.
The Diagnosis of Spontaneous Coronary Artery Dissection by Optical Coherence Tomography.
Kanda, Takahiro; Tawarahara, Kei; Matsukura, Gaku; Matsunari, Masayoshi; Takabayashi, Rumi; Tamura, Jun; Ozeki, Mariko; Ukigai, Hiroshi
2018-02-15
Spontaneous coronary artery dissection (SCAD) is rare, but it frequently presents as acute myocardial infarction. It is frequently fatal and most cases are diagnosed at autopsy. We herein present the case of a 65-year-old woman with ST-elevation and myocardial infarction due to SCAD. Optical coherence tomography (OCT) helped us to confirm the diagnosis. The information on the intravascular morphology provided by OCT imaging is much more detailed in comparison to that provided by coronary angiography (CAG) and intravascular ultrasound (IVUS).
Veltman-Verhulst, Susanne M; Goverde, Angelique J; van Haeften, Timon W; Fauser, Bart C J M
2013-08-01
Is routine screening by oral glucose tolerance test (OGTT) needed for all women with polycystic ovary syndrome (PCOS)? Screening for glucose metabolism abnormalities of PCOS patients by an OGTT could potentially be limited to patients who present with a fasting glucose concentration between 6.1 and 7.0 mmol/l only. Women with PCOS are at increased risk of developing diabetes. This study proposes a stepwise screening strategy for (pre)diabetes for PCOS patients based on risk stratification by fasting plasma glucose. A cross-sectional study of 226 women diagnosed with anovulatory PCOS. A consecutive series of 226 patients, diagnosed with PCOS at the University Medical Centre Utrecht, the Netherlands, were screened for glucose metabolism abnormalities by OGTT (75 g glucose load). The majority of the 226 women (mean age: 29.6 ± 4.3 years; BMI: 27.3 ± 6.7 kg/m(2); 81% Caucasian) presented with a normal OGTT (169 women (75%)). Of the 57 (25%) women presenting with mild to moderate glucose abnormalities, 53 (93%) could be identified by fasting glucose concentrations only. Diabetes was diagnosed in a total of eight women (3.5%). In six women, the diagnosis was based on fasting glucose >7.0 mmol/l. The other two cases of diabetes initially presented with fasting glucose between 6.1 and 7.0 mmol/l and were diagnosed by OGTT assessment. No women diagnosed with diabetes presented with fasting glucose levels below 6.1 mmol/l. We therefore conclude that all diabetes patients could potentially be found by initial fasting glucose assessment followed by OGTT only in patients with fasting glucose between 6.1 and 7.0 mmol/l. Before general implementation can be advised, this screening algorithm should be validated in a prospective study of a similar or greater number of PCOS women. Our study comprised of a mostly Caucasian (81%) population, therefore generalization to other ethnic populations should be done with caution. No external finance was involved in this study. B.C.J.M.F. has received fees and grant support from the following companies (in alphabetic order); Andromed, Ardana, Ferring, Genovum, Merck Serono, MSD, Organon, Pantharei Bioscience, PregLem, Schering, Schering Plough, Serono and Wyeth. A.J.G. has received fees from Abbott, Bayer Schering and IBSA. T.W.H. has received fees from Merck, Sharpe & Dohme, GlaxoSmithKline, NovoNordisk and Eli Lilly. The authors declare complete independence from funders. NCT00821379.
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...
2016-10-03
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
Coherent strong field interactions between a nanomagnet and a photonic cavity
NASA Astrophysics Data System (ADS)
Soykal, Oney Orhunc
Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.
Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen
2016-06-13
The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.
von Olshausen, Philipp; Rohrbach, Alexander
2013-10-15
Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.
Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions
Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...
2015-11-01
Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutronsmore » in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.« less
Single-shot hyperspectral coherent Raman planar imaging in the range 0–4200 cm⁻¹
Bohlin, Alexis; Kliewer, Christopher J.
2014-10-23
We propose a technique for ultrabroadband planar coherent Raman spectroscopy that enables wideband chemically selective mapping of molecular partition functions in the gas-phase within a single-laser-shot. A spectral region spanning 0–4200 cm⁻¹ is excited simultaneously, in principle allowing for coherent planar imaging of most all fundamental Raman-active modes. This unique instantaneous and spatially correlated assessment enables multiplexed studies of transient dynamical systems in a two-dimensional (2D) field. Here, we demonstrate single-laser-shot high temperature diagnostics of H₂, with spatially resolved 2D measurement of transitions of both the pure-rotational H₂ S-branch and the vibrational H₂ Q-branch, analyzing the temperature contour of amore » reacting fuel-species as it evolves at a flame-front.« less
Park, Su Mi; Lee, Ji Yoon; Kim, Yeon Jin; Lee, Jun-Young; Jung, Hee Yeon; Sohn, Bo Kyung; Kim, Dai Jin; Choi, Jung-Seok
2017-05-02
The present study compared neural connectivity and the level of phasic synchronization between neural populations in patients with Internet gaming disorder (IGD), patients with alcohol use disorder (AUD), and healthy controls (HCs) using resting-state electroencephalography (EEG) coherence analyses. For this study, 92 adult males were categorized into three groups: IGD (n = 30), AUD (n = 30), and HC (n = 32). The IGD group exhibited increased intrahemispheric gamma (30-40 Hz) coherence compared to the AUD and HC groups regardless of psychological features (e.g., depression, anxiety, and impulsivity) and right fronto-central gamma coherence positively predicted the scores of the Internet addiction test in all groups. In contrast, the AUD group showed marginal tendency of increased intrahemispheric theta (4-8 Hz) coherence relative to the HC group and this was dependent on the psychological features. The present findings indicate that patients with IGD and AUD exhibit different neurophysiological patterns of brain connectivity and that an increase in the fast phasic synchrony of gamma coherence might be a core neurophysiological feature of IGD.
ERIC Educational Resources Information Center
Ryser, Gail R.; Campbell, Hilary L.; Miller, Brian K.
2010-01-01
The diagnostic criteria for attention deficit hyperactivity disorder have evolved over time with current versions of the "Diagnostic and Statistical Manual", (4th edition), text revision, ("DSM-IV-TR") suggesting that two constellations of symptoms may be present alone or in combination. The SCALES instrument for diagnosing attention deficit…
Qubit Architecture with High Coherence and Fast Tunable Coupling.
Chen, Yu; Neill, C; Roushan, P; Leung, N; Fang, M; Barends, R; Kelly, J; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Megrant, A; Mutus, J Y; O'Malley, P J J; Quintana, C M; Sank, D; Vainsencher, A; Wenner, J; White, T C; Geller, Michael R; Cleland, A N; Martinis, John M
2014-11-28
We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamical coupling by implementing a novel adiabatic controlled-z gate, with a speed approaching that of single-qubit gates. Integrating coherence and scalable control, the introduced qubit architecture provides a promising path towards large-scale quantum computation and simulation.
Fast alternative Monte Carlo formalism for a class of problems in biophotonics
NASA Astrophysics Data System (ADS)
Miller, Steven D.
1997-12-01
A practical and effective, alternative Monte Carlo formalism is presented that rapidly finds flux solutions to the radiative transport equation for a class of problems in biophotonics; namely, wide-beam irradiance of finite, optically anisotropic homogeneous or heterogeneous biomedias, which both strongly scatter and absorb light. Such biomedias include liver, tumors, blood, or highly blood perfused tissues. As Fermat rays comprising a wide coherent (laser) beam enter the tissue, they evolve into a bundle of random optical paths or trajectories due to scattering. Overall, this can be physically interpreted as a bundle of Markov trajectories traced out by a 'gas' of Brownian-like point photons being successively scattered and absorbed. By considering the cumulative flow of a statistical bundle of trajectories through interior data planes, the effective equivalent information of the (generally unknown) analytical flux solutions of the transfer equation rapidly emerges. Unlike the standard Monte Carlo techniques, which evaluate scalar fluence, this technique is faster, more efficient, and simpler to apply for this specific class of optical situations. Other analytical or numerical techniques can either become unwieldy or lack viability or are simply more difficult to apply. Illustrative flux calculations are presented for liver, blood, and tissue-tumor-tissue systems.
Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...
2017-07-31
We present that fast nanosecond timescale neutron and gamma-ray counting can be performed with a (liquid) scintillator array. Fission chains in metal evolve over a timescale of tens of nanoseconds. If the metal is surrounded by moderator, neutrons leaking from the metal can thermalize and diffuse in the moderator. With finite probability, the diffusing neutrons can return to the metal and restart the fast fission chain. The timescale for this restart process is microseconds. A theory describing time evolving fission chains for metal surrounded by moderator, including this restart process, is presented. Finally, this theory is sufficiently simple for itmore » to be implemented for real-time analysis.« less
Marks, Daniel L; Oldenburg, Amy L; Reynolds, J Joshua; Boppart, Stephen A
2003-01-10
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
NASA Astrophysics Data System (ADS)
Marks, Daniel L.; Oldenburg, Amy L.; Reynolds, J. Joshua; Boppart, Stephen A.
2003-01-01
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography
Risi, Matthew D.; Makhlouf, Houssine; Rouse, Andrew R.; Gmitro, Arthur F.
2016-01-01
A theoretical analysis of the use of a fiber bundle in spectral-domain optical coherence tomography (OCT) systems is presented. The fiber bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the OCT data. However, the multimode characteristic of the fibers in the fiber bundle affects the depth sensitivity of the imaging system. A description of light interference in a multimode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis. PMID:25967012
NASA Technical Reports Server (NTRS)
Murphy, Andrew G.; Browne, David J.; Mirihanage, Wajira U.; Mathiesen, Ragnvald H.
2012-01-01
In the last decade synchrotron X-ray sources have fast become the tool of choice for performing in-situ high resolution imaging during alloy solidification. This paper presents the results of an experimental campaign carried out at the European Synchrotron Radiation Facility, using a Bridgman furnace, to monitor phenomena during solidification of Al-Cu alloys - specifically the onset of equiaxed dendrite coherency. Conventional experimental methods for determining coherency involve measuring the change in viscosity or measuring the change in thermal conductivity across the solidifying melt Conflicts arise when comparing the results of these experimental techniques to find a relationship between cooling rate and coherency fraction. It has been shown that the ratio of average velocity to the average grain diameter has an inversely proportional relationship to coherency fraction. In-situ observation therefore makes it possible to measure these values directly from acquired images sequences and make comparisons with published results.
Majid, Hafsa; Masood, Qamar; Khan, Aysha Habib
2017-03-01
To assess the utility of HOMA-IR in assessing insulin resistance in patients with polycystic ovary syndrome (PCOS) and compare it with fasting insulin for assessing insulin resistance (IR). Observational study. Section of Clinical Chemistry, Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Karachi, from January 2009 to September 2012. Medical chart review of all women diagnosed with PCOS was performed. Of the 400 PCOS women reviewed, 91 met the inclusion criteria. Insulin resistance was assessed by calculating HOMA-IR using the formula (fasting glucose x fasting insulin)/405, taking normal value <2 in adults and hyperinsulinemia based on fasting insulin levels ≥12 µIU/ml. A total of 91 premenopausal women diagnosed with PCOS were included. Mean age was 30 ±5.5 years. Mean HOMA-IR of women was 3.1 ±1.7, respectively with IR in 69% (n=63) women, while hyperinsulinemia was present in 60% (n=55) women (fasting Insulin 18.5 ±5.8 µIU/ml). Hyperandrogenism was present in 53.8% (n=49), whereas 38.5% (n=35) women had primary infertility or subfertility, while 65.9% (n=60) had menstrual irregularities; and higher frequencies were observed in women with IR. Eight subjects with IR and endocrine abnormalities were missed by fasting insulin. Insulin resistance is common in PCOS and it is likely a pathogenic factor for development of PCOS. HOMAIR model performed better than hyperinsulinemia alone for diagnosing IR.
... this? Submit What's this? Submit Button NCHS Home Heart Disease Recommend on Facebook Tweet Share Compartir Data are ... the U.S. Morbidity Number of adults with diagnosed heart disease: 28.1 million Percent of adults with diagnosed ...
COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan
2015-09-20
Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.
Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...
2015-05-15
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less
Hot Electrons Regain Coherence in Semiconducting Nanowires
NASA Astrophysics Data System (ADS)
Reiner, Jonathan; Nayak, Abhay Kumar; Avraham, Nurit; Norris, Andrew; Yan, Binghai; Fulga, Ion Cosma; Kang, Jung-Hyun; Karzig, Toesten; Shtrikman, Hadas; Beidenkopf, Haim
2017-04-01
The higher the energy of a particle is above equilibrium, the faster it relaxes because of the growing phase space of available electronic states it can interact with. In the relaxation process, phase coherence is lost, thus limiting high-energy quantum control and manipulation. In one-dimensional systems, high relaxation rates are expected to destabilize electronic quasiparticles. Here, we show that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves nonmonotonically with energy such that above a certain threshold hot electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing, for the first time, the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Pèrot resonators. A remarkable agreement with a theoretical model reveals that the nonmonotonic behavior is driven by the unique manner in which one-dimensional hot electrons interact with the cold electrons occupying the Fermi sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension.
NASA Astrophysics Data System (ADS)
Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping
2012-07-01
We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.
NASA Technical Reports Server (NTRS)
Klauder, John R.
1993-01-01
For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.
The Role of Dialogic Pedagogy in Teaching Grammar
ERIC Educational Resources Information Center
Jones, Pauline; Chen, Honglin
2016-01-01
The inclusion of the Knowledge about Language strand in the recently introduced Australian Curriculum: English (AC:E) is both promising and challenging. For the first time, students across primary and secondary years of schooling are expected to develop "a coherent, dynamic, and evolving body of knowledge about the English language and how it…
Coping With Nuclear Weapons Policy: How Expert Do You Have To Be?
ERIC Educational Resources Information Center
Ruina, Jack
1983-01-01
Points out that policy decisions about nuclear weapons evolve from politics, bureaucracy, and technology, indicating that intelligent people can learn enough about technology to make judgments about policy issues. Suggests, however, that much more thinking is necessary to arrive at a coherent perspective about what constitutes nuclear weapons…
Li, Jian; Harris, R. Alan; Cheung, Sau Wai; Coarfa, Cristian; Jeong, Mira; Goodell, Margaret A.; White, Lisa D.; Patel, Ankita; Kang, Sung-Hae; Shaw, Chad; Chinault, A. Craig; Gambin, Tomasz; Gambin, Anna; Lupski, James R.; Milosavljevic, Aleksandar
2012-01-01
The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease. PMID:22615578
Quantum Kinetics and the Zeno Ansatz: Sterile Neutrino Dark Matter in the Early Universe
NASA Astrophysics Data System (ADS)
Dvornikov, Olexiy V.
We solved the quantum kinetic equations for the evolution of neutrino states in the early universe. Starting at high temperatures, we evolve neutrino states to observe the resonant conversion of active-to-sterile neutrinos in a lepton asymmetric (more neutrinos than anti-neutrinos) universe. We find that at high temperatures, the high neutrino scattering and oscillation rates enforce a local equilibrium that balances the growth of coherence at the oscillation rate and the damping of coherence through scattering. This equilibrium, which we call a "quantum kinetic equilibrium," appears to approximately hold throughout the neutrino evolution, from the initial conditions through resonances that may be non adiabatic. Using this quantum kinetic equilibrium informs a proper choice of the initial conditions of the neutrino state and the relaxation process that occurs to this equilibrium when the initial conditions (as are typically chosen in the literature) are not coincident with the equilibrium values. We also discuss how to use this equilibrium to reduce the computational expense of solving the full quantum kinetic equations for neutrino states evolving in the early universe.
NASA Astrophysics Data System (ADS)
Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi
2013-12-01
Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing (-54 mV). When FS-BCs were activated by biologically based dendritic synaptic inputs, enhancing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting and increased average FS-BC firing when EGABA was depolarizing. Shifting EGABA from shunting to depolarizing potentials consistently increased network frequency to and above high gamma frequencies (>80 Hz). Since gamma oscillations may contribute to learning and memory processing [Fell et al., Nat. Neurosci. 4, 1259 (2001); Jutras et al., J. Neurosci. 29, 12521 (2009); Wang, Physiol. Rev. 90, 1195 (2010)], our demonstration that network oscillations are modulated by extrasynaptic inhibition in FS-BCs suggests that neuroactive compounds that act on extrasynaptic GABA receptors could impact memory formation by modulating hippocampal gamma oscillations. The simulation results indicate that the depolarized FS-BC GABA reversal, observed after experimental seizures, together with enhanced spillover extrasynaptic GABA currents are likely to promote generation of focal high frequency activity associated with epileptic networks.
Workshop on Coherent Structure of Turbulent Boundary Layers.
1978-11-01
indicate the occurrence of "internal fronts" of ejected parcels of slightly heated fluid from the region near the wall out to the intermit - tent region...doesn’t lift very fast . Which indicates that the vorticity lifting it up is rather weak after that. Blackwelder: What would you call weak, in terms of...developed to handle nonlinear wall boundary conditions using techniques for fast conformal transformation recently developed by the author.] It follows
Fast coarse-fine locating method for φ-OTDR.
Mei, Xuanwei; Pang, Fufei; Liu, Huanhuan; Yu, Guoqin; Shao, Yuying; Qian, Tianyu; Mou, Chengbo; Lv, Longbao; Wang, Tingyun
2018-02-05
We proposed and demonstrated a coarse-fine method to achieve fast locating of external vibration for the phase-sensitive optical time-domain reflectometer (φ-OTDR) sensing system. Firstly, the acquired backscattered traces from heterodyne coherent φ-OTDR systems are spatially divided into a few segments along a sensing fiber for coarse locating, and most of the acquired data can be excluded by comparing the phase difference between the endpoints in adjacent segments. Secondly, the amplitude-based locating is implemented within the target segments for fine locating. By using the proposed coarse-fine locating method, we have numerically and experimentally investigated a distributed vibration sensor based on the heterodyne coherent φ-OTDR system with a 50-km-long sensing fiber. We find that the computation cost of signal processing for locating is significantly reduced in the long-haul sensing fiber, showing a potential application in real-time locating of external vibration.
Wolf, M. S.; Badea, R.; Berezovsky, J.
2016-01-01
The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550
Wolf, M. S.; Badea, R.; Berezovsky, J.
2016-06-14
The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancymore » spins, resulting in enhanced coherent rotation of the spin state. Lastly, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~ 100 ns timescales.« less
Oscillating fluid lens in coherent retinal projection displays for extending depth of focus
NASA Astrophysics Data System (ADS)
von Waldkirch, extending depth of focus M.; Lukowicz, P.; Troster, G.
2005-09-01
See-through head-mounted displays, which allow to overlay virtual information over the user's real view, suffer normally from a limited depth of focus (DOF). To overcome this problem we discuss in this paper the use of a fast oscillating, variable-focus lens in a retinal projection display. The evaluation is based on a schematic eye model and on the partial coherence simulation tool SPLAT which allows us to calculate the projected retinal images of a text target. Objective image quality criteria demonstrate that the use of an oscillating lens is promising provided that partially coherent illumination light is used. In this case, psychometric measurements reveal that the depth of focus for reading text can be extended by a factor of up to 2.2. For fully coherent and incoherent illumination, however, the retinal images suffer from structural and contrast degradation effects, respectively.
Coherent control of optical polarization effects in metamaterials
Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.
2015-01-01
Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071
De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine
2018-03-01
To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.
Kim, Minjoo; Kim, Minkyung; Huang, Limin; Jee, Sun Ha; Lee, Jong Ho
2018-05-18
We tested the hypothesis that the cumulative effects of common genetic variants related to elevated fasting glucose are collectively associated with oxidative stress. Using 25 single nucleotide polymorphisms (SNPs), a weighted genetic risk score (wGRS) was constructed by summing nine risk alleles based on nominal significance and a consistent effect direction in 1,395 controls and 718 patients with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes. All the participants were divided into the following three groups: low-wGRS, middle-wGRS, and high-wGRS groups. Among the nine SNPs, five SNPs were significantly associated with IFG and type 2 diabetes in this Korean population. wGRS was significantly associated with increased IFG and newly diagnosed type 2 diabetes (p = 6.83 × 10 -14 , odds ratio = 1.839) after adjusting for confounding factors. Among the IFG and type 2 diabetes patients, the fasting serum glucose and HbA 1c levels were significantly higher in the high-wGRS group than in the other groups. The urinary 8-epi-PGF 2α and malondialdehyde concentrations were significantly higher in the high-wGRS group than in the other groups. Moreover, general population-level instrumental variable estimation (using wGRS as an instrument) strengthened the causal effect regarding the largely adverse influence of high levels of fasting serum glucose on markers of oxidative stress in the Korean population. Thus, the combination of common genetic variants with small effects on IFG and newly diagnosed type 2 diabetes are significantly associated with oxidative stress.
Ares, Jessica; Martín-Nieto, Alicia; Díaz-Naya, Lucía; Tartón, Teresa; Menéndez-Prada, Teresa; Ragnarsson, Cecilia S; Delgado-Álvarez, Elías; Menéndez-Torre, Edelmiro
2017-07-01
Objectives To study if there is any relationship about higher cutoff values for 100 g oral glucose tolerance test and the need for insulin in women diagnosed with gestational diabetes. Materials and Methods This is a retrospective population-based study of 201 women diagnosed with Gestational Diabetes Mellitus (GDM) between January 2012 and June 2014 in the area of Oviedo, Asturias, Spain. According to diagnostic criteria recommended by GEDE, NDDG, gestational diabetes is diagnosed if two or more plasma glucose levels meet or exceed the following threshold: fasting glucose of 105 mg/dl, 1-h 190 mg/dl, 2-h 165 mg/dl, or 3-h 145 mg/dl. We aim to know if there is any relationship between higher cutoffs and insulin requirement. Results 36 out of 201 patients (17.91%) needed insulin to achieve the targets of blood glucose control. There were no differences in mean maternal age and birthweights. Fasting blood glucose levels were significantly higher in women with further need for insulin than those who only needed diet and exercise (p < 0.001). Also, blood glucose levels 2 h after the oral glucose intake were statistically different between the two groups (p 0.032). AUC for fasting glucose value was the highest according to ROC curve. Conclusions Fasting cutoff vales for 100 g oral glucose tolerance test are consistently higher in women diagnosed with Gestational Diabetes that further needed insulin to achieve adequate blood glucose control. The positive predictive value of fasting glucose value 105 mg/dl on OGTT was 81.1%, whereas for the cut-off 95 mg/dl it was 54.0%.
Tests That Can Help Protect Your Heart Health
... if you have high blood pressure or prehypertension. Fasting Plasma Glucose What: The preferred test for diagnosing ... diabetes or are likely to develop the disease. Fasting plasma glucose levels of more than 126 mg/ ...
2010-01-01
Background The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters. Results We describe the ectodermal parts of the female reproductive tract for 41 species representing 21 of the 37 described genera and define 19 morphological characters with discontinuous variation found in eight structures that are part of the reproductive tract. Using a well-resolved molecular phylogeny based on 10 genes, we reconstruct the evolution of these characters across the family [120 steps; Consistency Index (CI): 0.41]. Two structures, in particular, evolve faster than the rest. The first is the ventral receptacle, which is a secondary sperm storage organ. It accounts for more than half of all the evolutionary changes observed (7 characters; 61 steps; CI: 0.46). It is morphologically diverse across genera, can be bi-lobed or multi-chambered (up to 80 chambers), and is strongly sclerotized in one clade. The second structure is the dorsal sclerite, which is present in all sepsids except Orygma luctuosum and Ortalischema albitarse. It is associated with the opening of the spermathecal ducts and is often distinct even among sister species (4 characters; 16 steps; CI: 0.56). Conclusions We find the internal female genitalia are diverse in Sepsidae and diagnostic for all species. In particular, fast-evolving structures like the ventral receptacle and dorsal sclerite are likely involved in post-copulatory sexual selection. In comparison to behavioral and molecular data, the female structures are evolving 2/3 as fast as the non-constant third positions of the COI barcoding gene. They display less convergent evolution in characters (CI = 0.54) than the third positions or sepsid mating behavior (CICOI = 0.36; CIBEHAV = 0.45). PMID:20831809
NASA Astrophysics Data System (ADS)
Moshammer, R.; Ullrich, J.
2009-07-01
Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is investigated bridging the gap from atoms and molecules to solids introduced to intense FEL radiation. Beyond the basic interest in many-particle dynamics in finite systems, these studies are of enormous practical relevance for upcoming research at X-ray FELs. Here, realizing the dream of coherent imaging of the structure of single bio-molecules in the gas phase with atomic resolution is critically dependent on ultra-fast dynamics initiated by the pulse. In other words, it is reduced to the simple question of whether the molecule is first imaged and then destroyed or vice versa! During the preparation of this Editorial, the first lasing at the Stanford Linac Coherent Light Source (LCLS) was achieved at a photon energy of about 8 keV - a further milestone in this exciting revolution in the science related to light.
Cowie, Catherine C; Rust, Keith F; Byrd-Holt, Danita D; Eberhardt, Mark S; Flegal, Katherine M; Engelgau, Michael M; Saydah, Sharon H; Williams, Desmond E; Geiss, Linda S; Gregg, Edward W
2006-06-01
The purpose of this study was to examine the prevalences of diagnosed and undiagnosed diabetes, and impaired fasting glucose (IFG) in U.S. adults during 1999-2002, and compare prevalences to those in 1988-1994. The National Health and Nutrition Examination Survey (NHANES) contains a probability sample of adults aged > or =20 years. In the NHANES 1999-2002, 4,761 adults were classified on glycemic status using standard criteria, based on an interview for diagnosed diabetes and fasting plasma glucose measured in a subsample. The crude prevalence of total diabetes in 1999-2002 was 9.3% (19.3 million, 2002 U.S. population), consisting of 6.5% diagnosed and 2.8% undiagnosed. An additional 26.0% had IFG, totaling 35.3% (73.3 million) with either diabetes or IFG. The prevalence of total diabetes rose with age, reaching 21.6% for those aged > or =65 years. The prevalence of diagnosed diabetes was twice as high in non-Hispanic blacks and Mexican Americans compared with non-Hispanic whites (both P < 0.00001), whereas the prevalence of undiagnosed diabetes was similar by race/ethnicity, adjusted for age and sex. The prevalence of diagnosed diabetes was similar by sex, but prevalences of undiagnosed diabetes and IFG were significantly higher in men. The crude prevalence of diagnosed diabetes rose significantly from 5.1% in 1988-1994 to 6.5% in 1999-2002, but the crude prevalences were stable for undiagnosed diabetes (from 2.7 to 2.8%) and IFG (from 24.7 to 26.0%). Results were similar after adjustment for age and sex. Although the prevalence of diagnosed diabetes has increased significantly over the last decade, the prevalences of undiagnosed diabetes and IFG have remained relatively stable. Minority groups remain disproportionately affected.
NASA Astrophysics Data System (ADS)
Lopez, J. P.; de Almeida, A. J. F.; Tabosa, J. W. R.
2018-03-01
We report on the observation of subharmonic resonances in high-order wave mixing associated with the quantized vibrational levels of atoms trapped in a one-dimensional optical lattice created by two intense nearly counterpropagating coupling beams. These subharmonic resonances, occurring at ±1 /2 and ±1 /3 of the frequency separation between adjacent vibrational levels, are observed through phase-match angularly resolved six- and eight-wave mixing processes. We investigate how these resonances evolve with the intensity of the incident probe beam, which couples with one of the coupling beams to create anharmonic coherence gratings between adjacent vibrational levels. Our experimental results also show evidence of high-order processes associated with coherence involving nonadjacent vibrational levels. Moreover, we also demonstrate that these induced high-order coherences can be stored in the medium and the associated optical information retrieved after a controlled storage time.
Lee, Jong Yoon; Jang, Mijung; Kim, Sun Mi; Yun, Bo La; Jang, Ja Yoon; Ahn, Hye Shin
2018-05-01
The aim of this study was to investigate the follow-up results and characteristics of oval circumscribed lesions with fast initial enhancement on preoperative magnetic resonance imaging (MRI) in patients with newly diagnosed breast cancer.Preoperative data from consecutive patients newly diagnosed with breast cancer between 2010 and 2013 were retrospectively reviewed. Only MRI reports containing, "oval shape, circumscribed margin, and fast initial enhancement," were extracted and analyzed. Follow-up results and clinical and pathological findings were evaluated.A total of 430 oval circumscribed lesions with fast initial enhancement were included. Forty-eight lesions were pathologically confirmed at initial workup and 382 were followed up. Among the 48 lesions, 14 were found to have additional malignancy and 34 were benign. Among the 382 followed-up lesions, only 1 was subsequently confirmed to be malignant. There were no evident changes in any of the remaining lesions during follow-up. The overall rate of malignancy was 3.5% (15/430). When lesions exhibited delayed washout enhancing kinetics (P < .001), were located ipsilaterally (P = .007), and closer to the primary tumor (P = .012), the possibility of malignancy was high. High T2-weighted imaging signal intensity suggested benignity (P = .043).Although the probability of being diagnosed with malignancy during follow-up in this study was low (0.3%), this investigation revealed several preoperative MRI characteristics that should alert clinicians to the possibility of malignancy.
Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.
Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan
2017-05-01
Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.
Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I
2014-07-01
Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.
Demonstration of an ac Josephson junction laser
NASA Astrophysics Data System (ADS)
Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.
2017-03-01
Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
Software Coherence in Multiprocessor Memory Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bolosky, William Joseph
1993-01-01
Processors are becoming faster and multiprocessor memory interconnection systems are not keeping up. Therefore, it is necessary to have threads and the memory they access as near one another as possible. Typically, this involves putting memory or caches with the processors, which gives rise to the problem of coherence: if one processor writes an address, any other processor reading that address must see the new value. This coherence can be maintained by the hardware or with software intervention. Systems of both types have been built in the past; the hardware-based systems tended to outperform the software ones. However, the ratio of processor to interconnect speed is now so high that the extra overhead of the software systems may no longer be significant. This issue is explored both by implementing a software maintained system and by introducing and using the technique of offline optimal analysis of memory reference traces. It finds that in properly built systems, software maintained coherence can perform comparably to or even better than hardware maintained coherence. The architectural features necessary for efficient software coherence to be profitable include a small page size, a fast trap mechanism, and the ability to execute instructions while remote memory references are outstanding.
NASA Astrophysics Data System (ADS)
Solovev, I. A.; Poltavtsev, S. V.; Kapitonov, Yu. V.; Akimov, I. A.; Sadofev, S.; Puls, J.; Yakovlev, D. R.; Bayer, M.
2018-06-01
We study optically the coherent evolution of trions and excitons in a δ -doped 3.5-nm-thick ZnO/Zn0.91Mg0.09O multiple quantum well by means of time-resolved four-wave mixing at a temperature of 1.5 K. Employing spectrally narrow picosecond laser pulses in the χ(3 ) regime allows us to address differently localized trion and exciton states, thereby avoiding many-body interactions and excitation-induced dephasing. The signal in the form of photon echoes from the negatively charged A excitons (TA, trions) decays with coherence times varying from 8 up to 60 ps, depending on the trion energy: more strongly localized trions reveal longer coherence dynamics. The localized neutral excitons decay on the picosecond time scale with coherence times up to T2=4.5 ps. The coherent dynamics of the XB exciton and TB trion are very short (T2<1 ps), which is attributed to the fast energy relaxation from the trion and exciton B states to the respective A states. The trion population dynamics is characterized by the decay time T1, rising from 30 to 100 ps with decreasing trion energy.
Xu, Daguang; Huang, Yong; Kang, Jin U
2014-06-16
We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs
Burghoff, David; Yang, Yang; Hayton, Darren J.; ...
2015-01-01
Recently, much attention has been focused on the generation of optical frequency combs from quantum cascade lasers. We discuss how fast detectors can be used to demonstrate the mutual coherence of such combs, and present an inequality that can be used to quantitatively evaluate their performance. We discuss several technical issues related to shifted wave interference Fourier Transform spectroscopy (SWIFTS), and show how such measurements can be used to elucidate the time-domain properties of such combs, showing that they can possess signatures of both frequency-modulation and amplitude-modulation.
Wang, S F; Cheng, H C; Chang, C Y
1999-01-01
Fast fat-suppressed (FS) three-dimensional (3D) spoiled gradient-recalled echo (SPGR) imaging of 64 articular cartilage regions in 16 patellofemoral joints was evaluated to assess its feasibility in diagnosing patellofemoral chondromalacia. It demonstrated good correlation with arthroscopic reports and took about half of the examination time that FS 3D SPGR did. This modified, faster technique has the potential to diagnose patellofemoral chondromalacia with shorter examination time than FS 3D SPGR did.
Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators
NASA Technical Reports Server (NTRS)
Smith, David D.; Chang, Hongrok
2007-01-01
Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.
Coherent distributions for the rigid rotator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigorescu, Marius
2016-06-15
Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödingermore » equation.« less
Lagrangian coherent structures along atmospheric rivers.
Garaboa-Paz, Daniel; Eiras-Barca, Jorge; Huhn, Florian; Pérez-Muñuzuri, Vicente
2015-06-01
We show that filamentous Atmospheric Rivers (ARs) over the Northern Atlantic Ocean are closely linked to attracting Lagrangian Coherent Structures (LCSs) in the large scale wind field. The detected LCSs represent lines of attraction in the evolving flow with a significant impact on all passive tracers. Using Finite-Time Lyapunov Exponents, we extract LCSs from a two-dimensional flow derived from water vapor flux of atmospheric reanalysis data and compare them to the three-dimensional LCS obtained from the wind flow. We correlate the typical filamentous water vapor patterns of ARs with LCSs and find that LCSs bound the filaments on the back side. Passive advective transport of water vapor in the AR from tropical latitudes is potentially possible.
Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.
Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos
2017-01-01
This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.
Miniature real-time intraoperative forward-imaging optical coherence tomography probe
Joos, Karen M.; Shen, Jin-Hui
2013-01-01
Optical coherence tomography (OCT) has a tremendous global impact upon the ability to diagnose, treat, and monitor eye diseases. A miniature 25-gauge forward-imaging OCT probe with a disposable tip was developed for real-time intraoperative ocular imaging of posterior pole and peripheral structures to improve vitreoretinal surgery. The scanning range was 2 mm when the probe tip was held 3-4 mm from the tissue surface. The axial resolution was 4-6 µm and the lateral resolution was 25-35 µm. The probe was used to image cellophane tape and multiple ocular structures. PMID:24009997
NASA Astrophysics Data System (ADS)
Gao, Simon S.; Liu, Li; Bailey, Steven T.; Flaxel, Christina J.; Huang, David; Li, Dengwang; Jia, Yali
2016-07-01
Quantification of choroidal neovascularization (CNV) as visualized by optical coherence tomography angiography (OCTA) may have importance clinically when diagnosing or tracking disease. Here, we present an automated algorithm to quantify the vessel skeleton of CNV as vessel length. Initial segmentation of the CNV on en face angiograms was achieved using saliency-based detection and thresholding. A level set method was then used to refine vessel edges. Finally, a skeleton algorithm was applied to identify vessel centerlines. The algorithm was tested on nine OCTA scans from participants with CNV and comparisons of the algorithm's output to manual delineation showed good agreement.
Real-time terahertz imaging through self-mixing in a quantum-cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W.
2016-07-04
We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.
Fast-dynamo action in unsteady flows and maps in three dimensions
NASA Technical Reports Server (NTRS)
Bayly, B. J.; Childress, S.
1987-01-01
Unsteady fast-dynamo action is obtained in a family of stretch-fold-shear maps applied to a spatially periodic magnetic field in three dimensions. Exponential growth of a mean field in the limit of vanishing diffusivity is demonstrated by a numerical method which alternates instantaneous deformations with molecular diffusion over a finite time interval. Analysis indicates that the dynamo is a coherent feature of the large scales, essentially independent of the cascade of structure to small scales.
Blind ICA detection based on second-order cone programming for MC-CDMA systems
NASA Astrophysics Data System (ADS)
Jen, Chih-Wei; Jou, Shyh-Jye
2014-12-01
The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.
Roling, S.; Zacharias, H.; Samoylova, L.; ...
2014-11-18
For the European x-ray free electron laser (XFEL) a split-and-delay unit based on geometrical wavefront beam splitting and multilayer mirrors is built which covers the range of photon energies from 5 keV up to 20 keV. Maximum delays between Δτ = ±2.5 ps at hν=20 keV and up to Δτ = ±23 ps at hν = 5 keV will be possible. Time-dependent wave-optics simulations have been performed by means of Synchrotron Radiation Workshop software for XFEL pulses at hν = 5 keV. The XFEL radiation was simulated using results of time-dependent simulations applying the self-amplified spontaneous emission code FAST. Mainmore » features of the optical layout, including diffraction on the beam splitter edge and optics imperfections measured with a nanometer optic component measuring machine slope measuring profiler, were taken into account. The impact of these effects on the characterization of the temporal properties of XFEL pulses is analyzed. An approach based on fast Fourier transformation allows for the evaluation of the temporal coherence despite large wavefront distortions caused by the optics imperfections. In this manner, the fringes resulting from time-dependent two-beam interference can be filtered and evaluated yielding a coherence time of τ c = 0.187 fs (HWHM) for real, nonperfect mirrors, while for ideal mirrors a coherence time of τ c = 0.191 fs (HWHM) is expected.« less
Ultra-low noise optical phase-locked loop
NASA Astrophysics Data System (ADS)
Ayotte, Simon; Babin, André; Costin, François
2014-03-01
The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.
Time domain analysis of coherent terahertz synchrotron radiation
NASA Astrophysics Data System (ADS)
Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol'tsman, G.
2005-10-01
The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ˜1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (˜5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.
Coherent radio-frequency detection for narrowband direct comb spectroscopy.
Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N
2016-02-22
We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.
O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C
2015-05-06
The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.
2013-12-15
Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shiftmore » in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average FS-BC frequency when E{sub GABA} was depolarizing (−54 mV). When FS-BCs were activated by biologically based dendritic synaptic inputs, enhancing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting and increased average FS-BC firing when E{sub GABA} was depolarizing. Shifting E{sub GABA} from shunting to depolarizing potentials consistently increased network frequency to and above high gamma frequencies (>80 Hz). Since gamma oscillations may contribute to learning and memory processing [Fell et al., Nat. Neurosci. 4, 1259 (2001); Jutras et al., J. Neurosci. 29, 12521 (2009); Wang, Physiol. Rev. 90, 1195 (2010)], our demonstration that network oscillations are modulated by extrasynaptic inhibition in FS-BCs suggests that neuroactive compounds that act on extrasynaptic GABA receptors could impact memory formation by modulating hippocampal gamma oscillations. The simulation results indicate that the depolarized FS-BC GABA reversal, observed after experimental seizures, together with enhanced spillover extrasynaptic GABA currents are likely to promote generation of focal high frequency activity associated with epileptic networks.« less
NASA Technical Reports Server (NTRS)
Halverson, Jeffrey B.; Roy, Biswadev; O'CStarr, David (Technical Monitor)
2002-01-01
An overview of mean convective thermodynamic and wind profiles for the Tropical Rainfall Measuring Mission (TRMM) Large Scale Biosphere-Atmosphere Experiment (LBA) and Kwajalein Experiment (KWAJEX) field campaigns will be presented, highlighting the diverse continental and marine tropical environments in which rain clouds and mesoscale convective systems evolved. An assessment of ongoing sounding quality control procedures will be shown. Additionally, we will present preliminary budgets of sensible heat source (Q1) and apparent moisture sink (Q2), which have been diagnosed from the various sounding networks.
Maintaining research traditions on place: diversity of thought and scientific progress
Michael E. Patterson; Daniel R. Williams
2005-01-01
Since the 1990s, numerous authors have expressed concerns about lack of conceptual clarity in research on place. Some authors suggest that place research has failed to evolve into a systematic and coherent body of knowledge. We believe recent critiques do not adequately characterize the state of knowledge in place research, but responding to the issues raised requires...
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-01
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-20
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.
Huang, Xianwei; Deng, Zhixiang; Shi, Xiaohui; Bai, Yanfeng; Fu, Xiquan
2018-02-19
Based on the extended Huygens-Fresnel principle, we have derived the analytical expression of the average intensity of optical coherence lattices (OCLs) in oceanic turbulence with anisotropy, and then the beam quality parameters including the Strehl ratio (SR) and the power-in-the-bucket (PIB) are obtained. One can find that the OCLs will eventually evolve into Gaussian shape with the periodicity reciprocity gradually breaking down when propagating through the anisotropic ocean water, and that the trend of evolving into Gaussian can be accelerated for increasing the ratio of temperature and salinity contributions to the refractive index spectrum ω, the lattice constant a and the rate of dissipation of mean square temperature χT or decreasing the anisotropic factor ξ and the rate of dissipation of turbulent kinetic energy per unit mass of fluid ε. Further, the SR and PIB in the target plane under the effects of oceanic parameters are discussed in detail, and the SR and PIB can be increased for the larger ξ and ε or the smaller χT and ω, namely, the beam quality becomes better. Our results can find potential application in the future optical communication system in an oceanic environment.
Vortex scaling ranges in two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Burgess, B. H.; Dritschel, D. G.; Scott, R. K.
2017-11-01
We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.
Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.
Wu, Gaofeng; Cai, Yangjian
2011-04-25
Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.
Encoding of Olfactory Information with Oscillating Neural Assemblies
NASA Astrophysics Data System (ADS)
Laurent, Gilles; Davidowitz, Hananel
1994-09-01
In the brain, fast oscillations of local field potentials, which are thought to arise from the coherent and rhythmic activity of large numbers of neurons, were observed first in the olfactory system and have since been described in many neocortical areas. The importance of these oscillations in information coding, however, is controversial. Here, local field potential and intracellular recordings were obtained from the antennal lobe and mushroom body of the locust Schistocerca americana. Different odors evoked coherent oscillations in different, but usually overlapping, ensembles of neurons. The phase of firing of individual neurons relative to the population was not dependent on the odor. The components of a coherently oscillating ensemble of neurons changed over the duration of a single exposure to an odor. It is thus proposed that odors are encoded by specific but dynamic assemblies of coherently oscillating neurons. Such distributed and temporal representation of complex sensory signals may facilitate combinatorial coding and associative learning in these, and possibly other, sensory networks.
Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu
2018-01-22
As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.
Patchwork diagnoses: the production of coherence, uncertainty, and manageable bodies.
Gardner, John; Dew, Kevin; Stubbe, Maria; Dowell, Tony; Macdonald, Lindsay
2011-09-01
Using a material semiotics methodology, this paper explores the link between diagnostic practices, patient awareness of the body, and biopolitical governance. We collected video and audio recordings of a patient with chest pain involved in three medical interactions (a general practitioner [GP] consultation, an electrocardiogram stress test and a consultation with a cardiologist) in Wellington, New Zealand. Following the work of Annemarie Mol, we argue that each of these diagnostics interactions bring together a range of material and non-material entities that enact the body and disease. Consequently, we note how the diagnostic practices associated with cardiovascular medicine enable and prompt an awareness of the body based on uncertainty, and thus promotes the self-management of cardiac health and risk. This paper illustrates that a material semiotics methodology makes important contributions to the sociology of diagnosis. Firstly, it draws attention to the relationship between humans and material entities in rendering the body intelligible. Secondly, it illustrates that different diagnostic procedures can produce multiple, potentially conflicting, forms of self-awareness. Alongside these practices generating multiplicity, however, are those that presuppose and produce singularity and coherence. We illustrate how the cardiologist "patches" two potentially conflicting diagnoses together in order to provide a sense of coherence to the interactions. Thirdly, material semiotics illustrates how various diagnostic practices can reify risk, and produce bodies that lend themselves to particular forms of governance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Source technology as the foundation for modern infra-red counter measures (IRCM)
NASA Astrophysics Data System (ADS)
Grasso, Robert J.
2010-10-01
Protection of military aircraft from IR guided threats is paramount to ensure the survivability of aircrews, platforms, and to ensure mission success. At the foundation of all IRCM systems is the source; that component that provides the in-band radiant energy required for threat defeat. As such, source technology has evolved with IRCM technology to encompass the evolving systems architectures that encompass IRCM: 1) "Hot Brick" omni-directional sources; 2) arc lamps, and; 3) lasers. Lasers, as IRCM sources continue to evolve to meet the challenges of ever-evolving threats, superior techniques, economy of installation, and superior source technology. Lasers represent the single greatest advance in IRCM source technology and continue to evolve to meet ever more sophisticated threats. And have been used with great effect in all modern IRCM systems; evolving from frequency doubled CO2 lasers, to solid state lasers with OPOs, to semiconductor lasers including Quantum Cascade Lasers (QCLs); these last devices represent the latest advance in IRCM source technology offering all-band coverage, architectural simplicity, and economy of scale. While QCLs represent the latest advance in IRCM laser technology, fiber lasers show much promise in addressing multi-band operation as well as the ability to be coherently combined to achieve even greater output capability. Also, ultra-short pulse lasers are evolving to become practical for IRCM applications. Stay tuned ......
Advances in the Surface Renewal Flux Measurement Method
NASA Astrophysics Data System (ADS)
Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.
2011-12-01
The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments underestimate the sensible heat flux, yielding results that are less than 50% of the sensible heat flux measured with finer sensors. We present the methodology for correcting the thermocouple signal to avoid underestimating the heat flux at both the smallest and the second smallest coherent structure scale.
Principal Component Analysis in the Spectral Analysis of the Dynamic Laser Speckle Patterns
NASA Astrophysics Data System (ADS)
Ribeiro, K. M.; Braga, R. A., Jr.; Horgan, G. W.; Ferreira, D. D.; Safadi, T.
2014-02-01
Dynamic laser speckle is a phenomenon that interprets an optical patterns formed by illuminating a surface under changes with coherent light. Therefore, the dynamic change of the speckle patterns caused by biological material is known as biospeckle. Usually, these patterns of optical interference evolving in time are analyzed by graphical or numerical methods, and the analysis in frequency domain has also been an option, however involving large computational requirements which demands new approaches to filter the images in time. Principal component analysis (PCA) works with the statistical decorrelation of data and it can be used as a data filtering. In this context, the present work evaluated the PCA technique to filter in time the data from the biospeckle images aiming the reduction of time computer consuming and improving the robustness of the filtering. It was used 64 images of biospeckle in time observed in a maize seed. The images were arranged in a data matrix and statistically uncorrelated by PCA technique, and the reconstructed signals were analyzed using the routine graphical and numerical methods to analyze the biospeckle. Results showed the potential of the PCA tool in filtering the dynamic laser speckle data, with the definition of markers of principal components related to the biological phenomena and with the advantage of fast computational processing.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.
Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus
2015-05-14
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope
NASA Astrophysics Data System (ADS)
Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus
2015-05-01
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
NASA Astrophysics Data System (ADS)
Froyland, Gary
2015-10-01
The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation.
Recent Themes in Social Networking Service Research.
Liu, John S; Ho, Mei Hsiu-Ching; Lu, Louis Y Y
2017-01-01
The body of literature addressing the phenomenon related to social networking services (SNSs) has grown rather fast recently. Through a systematic and quantitative approach, this study identifies the recent SNS research themes, which are the issues discussed by a coherent and growing subset of this literature. A set of academic articles retrieved from the Web of Science database is used as the basis for uncovering the recent themes. We begin the analysis by constructing a citation network which is further separated into groups after applying a widely used clustering method. The resulting clusters all consist of articles coherent in citation relationships. This study suggests eight fast growing recent themes. They span widely encompassing politics, romantic relationships, public relations, journalism, and health. Among them, four focus their issues largely on Twitter, three on Facebook, and one generally on both. While discussions on traditional issues in SNSs such as personality, motivations, self-disclosure, narcissism, etc. continue to lead the pack, the proliferation of the highlighted recent themes in the near future is very likely to happen.
Tang, Dawei; Gao, Feng; Jiang, X
2014-08-20
We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.
Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography
Wang, Tianshi; Pfeiffer, Tom; Regar, Evelyn; Wieser, Wolfgang; van Beusekom, Heleen; Lancee, Charles T.; Springeling, Geert; Krabbendam, Ilona; van der Steen, Antonius F.W.; Huber, Robert; van Soest, Gijs
2015-01-01
Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called “Heartbeat OCT”, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology. PMID:26713214
A new coherent demodulation technique for land-mobile satellite communications
NASA Technical Reports Server (NTRS)
Yoshida, Shousei; Tomita, Hideho
1990-01-01
An advanced coherent demodulation technique is described for land mobile satellite (LMS) communications. The proposed technique features a combined narrow/wind band dual open loop carrier phase estimator, which is effectively able to compensate the fast carrier phase fluctuation by fading with sacrificing a phase slip rate. Also included is the realization of quick carrier and clock reacquisition after shadowing by taking open loop structure. Its bit error rate (BER) performance is superior to that of existing detection schemes, showing a BER of 1 x 10(exp -2) at 6.3 dB E sub b/N sub o over the Rician channel with 10 dB C/M and 200 Hz (1/16 modulation rate) fading pitch f sub d for QPSK. The proposed scheme consists of a fast response carrier recovery and a quick bit timing recovery with an interpolation. An experimental terminal model was developed to evaluate its performance at fading conditions. The results are quite satisfactory, giving prospects for future LMS applications.
Recent Themes in Social Networking Service Research
Liu, John S.; Ho, Mei Hsiu-Ching; Lu, Louis Y. Y.
2017-01-01
The body of literature addressing the phenomenon related to social networking services (SNSs) has grown rather fast recently. Through a systematic and quantitative approach, this study identifies the recent SNS research themes, which are the issues discussed by a coherent and growing subset of this literature. A set of academic articles retrieved from the Web of Science database is used as the basis for uncovering the recent themes. We begin the analysis by constructing a citation network which is further separated into groups after applying a widely used clustering method. The resulting clusters all consist of articles coherent in citation relationships. This study suggests eight fast growing recent themes. They span widely encompassing politics, romantic relationships, public relations, journalism, and health. Among them, four focus their issues largely on Twitter, three on Facebook, and one generally on both. While discussions on traditional issues in SNSs such as personality, motivations, self-disclosure, narcissism, etc. continue to lead the pack, the proliferation of the highlighted recent themes in the near future is very likely to happen. PMID:28107541
Dual Beam Doppler Optical Coherence Angiography
NASA Astrophysics Data System (ADS)
Yasuno, Yoshiaki; Makita, Shuichi; Jaillon, Franck
The ocular vasculature and circulation play a crucial role in the development of several eye diseases including glaucoma [1], diabetic retinopathy [2], and exudative macular diseases [3]. Modalities that are capable of investigating the ocular vasculature and circulation are important for both understanding the mechanisms of the diseases and diagnosing these diseases.
Würthwein, Thomas; Brinkmann, Maximilian; Hellwig, Tim; Fallnich, Carsten
2017-11-21
We present the simultaneous detection of the spectrum and the complete polarization state of a multiplex coherent anti-Stokes Raman scattering signal with a fast division-of-amplitude spectro-polarimeter. The spectro-polarimeter is based on a commercial imaging spectrograph, a birefringent wedge prism, and a segmented polarizer. Compared to the standard rotating-retarder fixed-analyzer spectro-polarimeter, only a single measurement is required and an up to 21-fold reduced acquisition time is shown. The measured Stokes parameters allow us to differentiate between vibrational symmetries and to determine the depolarization ratio ρ by data post-processing.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond.
Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D
2017-10-06
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
Science at the Time-scale of the Electron
NASA Astrophysics Data System (ADS)
Murnane, Margaret
2010-03-01
Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths < 1nm, have brightened considerably. These advances are possible by taking nonlinear optics techniques to an extreme, and are the direct result of a new ability to manipulate electrons on the fastest, attosecond, time-scales of our natural world. My talk will discuss new experimental data that demonstrates high harmonic generation of laser-like, fully coherent, 10 attosecond duration, soft x-ray beams at photon energies around 0.5keV. Several applications will also be discussed, including making a movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).
Fast wavefront optimization for focusing through biological tissue (Conference Presentation)
NASA Astrophysics Data System (ADS)
Blochet, Baptiste; Bourdieu, Laurent; Gigan, Sylvain
2017-02-01
The propagation of light in biological tissues is rapidly dominated by multiple scattering: ballistic light is exponentially attenuated, which limits the penetration depth of conventional microscopy techniques. For coherent light, the recombination of the different scattered paths creates a complex interference: speckle. Recently, different wavefront shaping techniques have been developed to coherently manipulate the speckle. It opens the possibility to focus light through complex media and ultimately to image in them, provided however that the medium can be considered as stationary. We have studied the possibility to focus in and through time-varying biological tissues. Their intrinsic temporal dynamics creates a fast decorrelation of the speckle pattern. Therefore, focusing through biological tissues requires fast wavefront shaping devices, sensors and algorithms. We have investigated the use of a MEMS-based spatial light modulator (SLM) and a fast photodetector, combined with FPGA electronics to implement a closed-loop optimization. Our optimization process is just limited by the temporal dynamics of the SLM (200µs) and the computation time (45µs), thus corresponding to a rate of 4 kHz. To our knowledge, it's the fastest closed loop optimization using phase modulators. We have studied the focusing through colloidal solutions of TiO2 particles in glycerol, allowing tunable temporal stability, and scattering properties similar to biological tissues. We have shown that our set-up fulfills the required characteristics (speed, enhancement) to focus through biological tissues. We are currently investigating the focusing through acute rat brain slices and the memory effect in dynamic scattering media.
Near midplane scintillator-based fast ion loss detector on DIII-D.
Chen, X; Fisher, R K; Pace, D C; García-Muñoz, M; Chavez, J A; Heidbrink, W W; Van Zeeland, M A
2012-10-01
A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ∼45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r(L) ∼ [1.5-8] cm and pitch angle α ∼ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.
Vita, Maria Gabriella; Tiple, Dorina; Bizzarro, Alessandra; Ladogana, Anna; Colaizzo, Elisa; Capellari, Sabina; Rossi, Marcello; Parchi, Piero; Masullo, Carlo; Pocchiari, Maurizio
2017-04-01
We report a case of rapidly evolving neurological disease in a patient with neuropathological lesions of Creutzfeldt-Jakob disease (CJD), Lewy body dementia (LBD), chronic subcortical vascular encephalopathy and meningothelial meningioma. The coexistence of severe multiple pathologies in a single patient strengthens the need to perform accurate clinical differential diagnoses in rapidly progressive dementias. © 2016 Japanese Society of Neuropathology.
Open quantum dots—probing the quantum to classical transition
NASA Astrophysics Data System (ADS)
Ferry, D. K.; Burke, A. M.; Akis, R.; Brunner, R.; Day, T. E.; Meisels, R.; Kuchar, F.; Bird, J. P.; Bennett, B. R.
2011-04-01
Quantum dots provide a natural system in which to study both quantum and classical features of transport. As a closed testbed, they provide a natural system with a very rich set of eigenstates. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which classically would compose a mixed phase space. The manner of this breakup is governed strongly by Zurek's decoherence theory, and the remaining coherent states possess all the properties of his pointer states. These states are naturally studied via traditional magnetotransport at low temperatures. More recently, we have used scanning gate (conductance) microscopy to probe the nature of the coherent states, and have shown that families of states exist through the spectrum in a manner consistent with quantum Darwinism. In this review, we discuss the nature of the various states, how they are formed, and the signatures that appear in magnetotransport and general conductance studies.
Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point
NASA Astrophysics Data System (ADS)
Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng
2018-03-01
Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yue; Reeves, Geoffrey D.; Cunningham, Gregory S.
Our study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. Furthermore, we first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons—observed by satellites with very different altitudes—with correlation coefficients as high as ≳ 0.85. We then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward, based on the coherence. Reliability of thesemore » predictive filters is quantified by the performance efficiency with values as high as 0.74 when driven merely by LEO observations (or up to 0.94 with the inclusion of in situ MeV electron measurements). Finally, a hypothesis based upon the wave-particle resonance theory is proposed to explain the coherence, and a first-principle electron tracing model yields supporting evidence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboiro, M., E-mail: reboiro@fisica.unlp.edu.ar; Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar; Ramírez, R.
2017-03-15
The degree of coherence in a hybrid system composed of superconducting flux-qubits and an electron ensemble is analysed. Both, the interactions among the electrons and among the superconducting flux-qubits are taken into account. The time evolution of the hybrid system is solved exactly, and discussed in terms of the reduced density matrix of each subsystem. It is seen that the inclusion of a line width, for the electrons and for the superconducting flux-qubits, influences the pattern of spin-squeezing and the coherence of the superconducting flux qubits. - Highlights: • The degree of coherence in a hybrid system, composed of superconductingmore » flux qubits and an electron ensemble, is analysed. • The time evolution of the hybrid system is solved exactly and discussed in terms of the reduced density matrix of each subsystem. • It is shown that the initial state of the system evolves to a stationary squeezed state.« less
Lee, Eun Young; Lee, Yong-Ho; Yi, Sang-Wook; Shin, Soon-Ae; Yi, Jee-Jeon
2017-08-01
This study examined associations between BMI and mortality in individuals with normoglycemia, impaired fasting glucose (IFG), newly diagnosed diabetes, and prevalent diabetes and identified BMI ranges associated with the lowest mortality in each group. A total of 12,815,006 adults were prospectively monitored until 2013. Diabetes status was defined as follows: normoglycemia (fasting glucose <100 mg/dL), IFG (100-125 mg/dL), newly diagnosed diabetes (≥126 mg/dL), and prevalent diabetes (self-reported). BMI (kg/m 2 ) was measured. Cox proportional hazards model hazard ratios were calculated after adjusting for confounders. During a mean follow-up period of 10.5 years, 454,546 men and 239,877 women died. U-shaped associations were observed regardless of diabetes status, sex, age, and smoking history. Optimal BMI (kg/m 2 ) for the lowest mortality by group was 23.5-27.9 (normoglycemia), 25-27.9 (IFG), 25-29.4 (newly diagnosed diabetes), and 26.5-29.4 (prevalent diabetes). Higher optimal BMI by worsening diabetes status was more prominent in younger ages, especially in women. The relationship between worsening diabetes status and higher mortality was stronger with lower BMI, especially at younger ages. Given the same BMI, people with prevalent diabetes had higher mortality compared with those with newly diagnosed diabetes, and this was more striking in women than men. U-curve relationships existed regardless of diabetes status. Optimal BMI for lowest mortality became gradually higher with worsening diabetes for each sex and each age-group. © 2017 by the American Diabetes Association.
Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy
NASA Astrophysics Data System (ADS)
Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.
2015-09-01
Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.
Are Fast Radio Bursts the Birthmark of Magnetars?
NASA Astrophysics Data System (ADS)
Lieu, Richard
2017-01-01
A model of fast radio bursts, which enlists young, short period extragalactic magnetars satisfying B/P > 2 × 1016 G s-1 (1 G = 1 statvolt cm-1) as the source, is proposed. When the parallel component {{\\boldsymbol{E}}}\\parallel of the surface electric field (under the scenario of a vacuum magnetosphere) of such pulsars approaches 5% of the critical field {E}c={m}e2{c}3/(e{\\hslash }), in strength, the field can readily decay via the Schwinger mechanism into electron-positron pairs, the back reaction of which causes {{\\boldsymbol{E}}}\\parallel to oscillate on a characteristic timescale smaller than the development of a spark gap. Thus, under this scenario, the open field line region of the pulsar magnetosphere is controlled by Schwinger pairs, and their large creation and acceleration rates enable the escaping pairs to coherently emit radio waves directly from the polar cap. The majority of the energy is emitted at frequencies ≲ 1 {GHz} where the coherent radiation has the highest yield, at a rate large enough to cause the magnetar to lose spin significantly over a timescale ≈ a few × {10}-3 s, the duration of a fast radio burst. Owing to the circumstellar environment of a young magnetar, however, the ≲1 GHz radiation is likely to be absorbed or reflected by the overlying matter. It is shown that the brightness of the remaining (observable) frequencies of ≈ 1 {GHz} and above are on a par with a typical fast radio burst. Unless some spin-up mechanism is available to recover the original high rotation rate that triggered the Schwinger mechanism, the fast radio burst will not be repeated again in the same magnetar.
Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems.
Zanardi, Paolo; Campos Venuti, Lorenzo
2014-12-12
Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.
Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.
2016-07-25
The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Santanu, E-mail: sbanerje@ipr.res.in; Mishra, K.; Zushi, H.
Fluctuations are measured in the edge and scrape-off layer (SOL) of QUEST using fast visible imaging diagnostic. Electron cyclotron wave injection in the Ohmic plasma features excitation of low frequency coherent fluctuations near the separatrix and enhanced cross-field transport. Plasma shifts from initial high field side limiter bound (inboard limited, IL) towards inboard poloidal null (IPN) configuration with steepening of the density profile at the edge. This may have facilitated the increased edge and SOL fluctuation activities. Observation of the coherent mode, associated plasma flow, and particle out-flux, for the first time in the IPN plasma configuration in a sphericalmore » tokamak may provide further impetus to the edge and SOL turbulence studies in tokamaks.« less
Coagulation monitoring based on blood elastic measurement using optical coherence tomography
NASA Astrophysics Data System (ADS)
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2017-02-01
Blood coagulation monitoring is important to diagnose hematological diseases and cardiovascular diseases and to predict the risk of bleeding and excessive clotting. In this study, we developed a system to dynamically monitor blood coagulation and quantitatively determine the coagulation function by blood elastic measurement. When blood forms a clot from a liquid, ultrasonic force induces a shear wave, which is detected by optical coherence tomography (OCT). The coagulation of porcine whole blood recalcified by calcium chloride is assessed using the metrics of reaction time, clot formation kinetics and maximum shear modulus. The OCE system can noninvasively monitor the blood coagulation and quantitatively determine the coagulation function.
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor; Peterson, Gary; Chang, Ernest W.; Maguluri, Gopi; Fox, William; Rajadhyaksha, Milind
2016-01-01
We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins. While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ˜1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ˜7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ˜600 μm, and agreement with histology was within about ±50 μm.
The diagnosis of nasopharyngeal carcinoma by optical coherence tomography (OCT)
NASA Astrophysics Data System (ADS)
Li, J. H.; Du, Y.
2016-06-01
We have attempted to explore the intrinsic differences in the optical properties of the nasopharyngeal carcinoma (NPC) and normal tissue by optical coherence tomography (OCT). OCT imaging of normal tissue provided three layers of epithelium, lamina propria, and the brighter interface of basement membrane; while carcinomas disrupted the layered construction embedded in signal-poor images. The morphologies were consistent with histological findings. Sensitivity and specificity were 90% and 100%, respectively. This pilot study demonstrates that NPC could be diagnosed by visualization, which implies that OCT might be potentially used to differentiate normal from NPC tissue in the early stage as an invasive biopsy.
On the radiation mechanism of repeating fast radio bursts
NASA Astrophysics Data System (ADS)
Lu, Wenbin; Kumar, Pawan
2018-06-01
Recent observations show that fast radio bursts (FRBs) are energetic but probably non-catastrophic events occurring at cosmological distances. The properties of their progenitors are largely unknown in spite of many attempts to determine them using the event rate, duration, and energetics. Understanding the radiation mechanism for FRBs should provide the missing insights regarding their progenitors, which is investigated in this paper. The high brightness temperatures (≳1035 K) of FRBs mean that the emission process must be coherent. Two general classes of coherent radiation mechanisms are considered - maser and the antenna mechanism. We use the observed properties of the repeater FRB 121102 to constrain the plasma conditions needed for these two mechanisms. We have looked into a wide variety of maser mechanisms operating in either vacuum or plasma and find that none of them can explain the high luminosity of FRBs without invoking unrealistic or fine-tuned plasma conditions. The most favourable mechanism is antenna curvature emission by coherent charge bunches where the burst is powered by magnetic reconnection near the surface of a magnetar (B ≳ 1014 G). We show that the plasma in the twisted magnetosphere of a magnetar may be clumpy due to two-stream instability. When magnetic reconnection occurs, the pre-existing density clumps may provide charge bunches for the antenna mechanism to operate. This model should be applicable to all FRBs that have multiple outbursts like FRB 121102.
Spectral-domain optical coherence tomography of roth spots.
Giovinazzo, Jerome; Mrejen, Sarah; Freund, K Bailey
2013-01-01
To describe the retinal findings of subacute bacterial endocarditis, their evolution after treatment, and analysis with spectral-domain optical coherence tomography. Retrospective chart review. A 21-year-old man presented with the sudden onset of a central scotoma in his left eye because of a sub-internal limiting membrane hemorrhage overlying the left fovea. When examined 2 weeks later, Roth spots were noted in his right eye. The patient was immediately referred to his internist and diagnosed with subacute bacterial endocarditis with cultures positive for Streptococcus viridans. He subsequently underwent aortic valve replacement surgery after 4 weeks of intravenous antibiotic therapy. When examined 4 weeks after valve replacement surgery, there was regression of the Roth spots. The present case demonstrates the importance of a funduscopic examination in the early diagnosis and management of subacute bacterial endocarditis. The analysis of Roth spots with spectral-domain optical coherence tomography suggested that they were septic emboli.
Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter
2016-01-01
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks. PMID:26745498
Evaluating the Diagnostic Validity of the Facet-Based Formative Assessment System
ERIC Educational Resources Information Center
DeBarger, Angela H.; DiBello, Louis; Minstrell, Jim; Stout, William; Pellegrino, James; Haertel, Geneva; Feng, Mingyu
2011-01-01
The research design and team constitute a multidisciplinary attack on problems of educational and assessment design in physics instruction. Components of the research include: (a) an Evidence-Centered Design analysis of Diagnoser instructional materials and assessments that provides a view of the evidentiary coherence of the existing system; (b)…
Zhang, H; Xu, W; Dahl, A K; Xu, Z; Wang, H-X; Qi, X
2013-05-01
Studies on the relationship between socio-economic status and Type 2 diabetes mellitus in the Chinese population are sparse. We aimed to examine the relation of socio-economic status as represented by income, education and occupation to impaired fasting glucose, Type 2 diabetes, and the control of Type 2 diabetes in a large Chinese population. This study included 7315 individuals who were aged 20-79 years and living in Tianjin, China. Impaired fasting glucose and Type 2 diabetes were ascertained according to the 1999 World Health Organization criteria. Data were analysed using multinomial and binary logistic regression, with adjustment for potential confounders. Among all participants, 532 (7.3%) persons had impaired fasting glucose, 688 (9.4%) persons had Type 2 diabetes, including 288 (3.9%) previously undiagnosed Type 2 diabetes. In fully adjusted multinomial logistic regression, compared with higher income (≥ 2000 yuan, $243.3/month), lower income (< 1000 yuan, $121.70/month) showed odds ratios (95% confidence intervals) of 3.31 (2.48-4.41) for impaired fasting glucose, 4.50 (3.07-6.61) for undiagnosed Type 2 diabetes and 4.56 (3.20-6.48) for diagnosed Type 2 diabetes. These results remained significant in the analysis stratified by education and occupation. Furthermore, persons who were retired were more likely to have impaired fasting glucose [odds ratio 1.91 (1.40-2.45)], undiagnosed Type 2 diabetes [odds ratio 2.01) 1.40-2.89] and diagnosed Type 2 diabetes [odds ratio 3.02 (2.12-4.22)]. Among the patients with Type 2 diabetes previously diagnosed, lower education (less than senior high school), non-manual work and unemployment were related to worse glycaemic control (fasting blood glucose level > 8.5 mmol/l). Lower income and retirement are associated with increased odds of impaired fasting glucose and Type 2 diabetes in Tianjin, China. Education and occupation may play a role in glycaemic control among patients with Type 2 diabetes. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.
Unraveling the nature of coherent beatings in chlorosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dostál, Jakub; Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague; Mančal, Tomáš
2014-03-21
Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm{sup −1} that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusionmore » energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.« less
Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pang, Sean; Zhu, Zheyuan
2017-05-01
Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.
Zhou, Y; Mendonca, S C; Abel, G A; Hamilton, W; Walter, F M; Johnson, S; Shelton, J; Elliss-Brookes, L; McPhail, S; Lyratzopoulos, G
2018-01-01
In England, 'fast-track' (also known as 'two-week wait') general practitioner referrals for suspected cancer in symptomatic patients are used to shorten diagnostic intervals and are supported by clinical guidelines. However, the use of the fast-track pathway may vary for different patient groups. We examined data from 669 220 patients with 35 cancers diagnosed in 2006-2010 following either fast-track or 'routine' primary-to-secondary care referrals using 'Routes to Diagnosis' data. We estimated the proportion of fast-track referrals by sociodemographic characteristic and cancer site and used logistic regression to estimate respective crude and adjusted odds ratios. We additionally explored whether sociodemographic associations varied by cancer. There were large variations in the odds of fast-track referral by cancer (P<0.001). Patients with testicular and breast cancer were most likely to have been diagnosed after a fast-track referral (adjusted odds ratios 2.73 and 2.35, respectively, using rectal cancer as reference); whereas patients with brain cancer and leukaemias least likely (adjusted odds ratios 0.05 and 0.09, respectively, for brain cancer and acute myeloid leukaemia). There were sex, age and deprivation differences in the odds of fast-track referral (P<0.013) that varied in their size and direction for patients with different cancers (P<0.001). For example, fast-track referrals were least likely in younger women with endometrial cancer and in older men with testicular cancer. Fast-track referrals are less likely for cancers characterised by nonspecific presenting symptoms and patients belonging to low cancer incidence demographic groups. Interventions beyond clinical guidelines for 'alarm' symptoms are needed to improve diagnostic timeliness.
Zhou, Y; Mendonca, S C; Abel, G A; Hamilton, W; Walter, F M; Johnson, S; Shelton, J; Elliss-Brookes, L; McPhail, S; Lyratzopoulos, G
2018-01-01
Background: In England, ‘fast-track’ (also known as ‘two-week wait’) general practitioner referrals for suspected cancer in symptomatic patients are used to shorten diagnostic intervals and are supported by clinical guidelines. However, the use of the fast-track pathway may vary for different patient groups. Methods: We examined data from 669 220 patients with 35 cancers diagnosed in 2006–2010 following either fast-track or ‘routine’ primary-to-secondary care referrals using ‘Routes to Diagnosis’ data. We estimated the proportion of fast-track referrals by sociodemographic characteristic and cancer site and used logistic regression to estimate respective crude and adjusted odds ratios. We additionally explored whether sociodemographic associations varied by cancer. Results: There were large variations in the odds of fast-track referral by cancer (P<0.001). Patients with testicular and breast cancer were most likely to have been diagnosed after a fast-track referral (adjusted odds ratios 2.73 and 2.35, respectively, using rectal cancer as reference); whereas patients with brain cancer and leukaemias least likely (adjusted odds ratios 0.05 and 0.09, respectively, for brain cancer and acute myeloid leukaemia). There were sex, age and deprivation differences in the odds of fast-track referral (P<0.013) that varied in their size and direction for patients with different cancers (P<0.001). For example, fast-track referrals were least likely in younger women with endometrial cancer and in older men with testicular cancer. Conclusions: Fast-track referrals are less likely for cancers characterised by nonspecific presenting symptoms and patients belonging to low cancer incidence demographic groups. Interventions beyond clinical guidelines for ‘alarm’ symptoms are needed to improve diagnostic timeliness. PMID:29182609
Macente, Sara; Fujimura Leite, Clarice Queico; Santos, Adolfo Carlos Barreto; Siqueira, Vera Lúcia Dias; Machado, Luzia Neri Cosmo; Marcondes, Nadir Rodrigues; Hirata, Mario Hiroyuki; Hirata, Rosário Dominguez Crespo
2013-01-01
Current study evaluated the hsp65 Nested PCR Restriction Fragment Length Polymorphism Analysis (hsp65 Nested PCR-PRA) to detect and identify Mycobacterium tuberculosis complex directly in clinical samples for a rapid and specific diagnosis of tuberculosis (TB). hsp65 Nested PCR-PRA was applied directly to 218 clinical samples obtained from 127 patients suspected of TB or another mycobacterial infection from July 2009 to July 2010. The hsp65 Nested PCR-PRA showed 100% sensitivity and 95.0 and 93.1% specificity in comparison with culture and microscopy (acid fast bacillus smear), respectively. hsp65 Nested PCR-PRA was shown to be a fast and reliable assay for diagnosing TB, which may contribute towards a fast diagnosis that could help the selection of appropriate chemotherapeutic and early epidemiological management of the cases which are of paramount importance in a high TB burden country. PMID:24260739
Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography.
Grieve, Kate; Mouslim, Karima; Assayag, Osnath; Dalimier, Eugénie; Harms, Fabrice; Bruhat, Alexis; Boccara, Claude; Antoine, Martine
2016-04-01
Current techniques for the intraoperative analysis of sentinel lymph nodes during breast cancer surgery present drawbacks such as time and tissue consumption. Full-field optical coherence tomography is a novel noninvasive, high-resolution, fast imaging technique. This study investigated the use of full-field optical coherence tomography as an alternative technique for the intraoperative analysis of sentinel lymph nodes. Seventy-one axillary lymph nodes from 38 patients at Tenon Hospital were imaged minutes after excision with full-field optical coherence tomography in the pathology laboratory, before being handled for histological analysis. A pathologist performed a blind diagnosis (benign/malignant), based on the full-field optical coherence tomography images alone, which resulted in a sensitivity of 92% and a specificity of 83% (n = 65 samples). Regular feedback was given during the blind diagnosis, with thorough analysis of the images, such that features of normal and suspect nodes were identified in the images and compared with histology. A nonmedically trained imaging expert also performed a blind diagnosis aided by the reading criteria defined by the pathologist, which resulted in 85% sensitivity and 90% specificity (n = 71 samples). The number of false positives of the pathologist was reduced by 3 in a second blind reading a few months later. These results indicate that following adequate training, full-field optical coherence tomography can be an effective noninvasive diagnostic tool for extemporaneous sentinel node biopsy qualification. © The Author(s) 2015.
Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping
NASA Astrophysics Data System (ADS)
Yang, Wenlong; Sokolov, Alexei
2010-10-01
The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Matcher, Stephen J.
2013-03-01
We report on a new calibration technique that permits the accurate extraction of sample Jones matrix and hence fast-axis orientation by using fiber-based polarization-sensitive optical coherence tomography (PS-OCT) that is completely based on non polarization maintaining fiber such as SMF-28. In this technique, two quarter waveplates are used to completely specify the parameters of the system fibers in the sample arm so that the Jones matrix of the sample can be determined directly. The device was validated on measurements of a quarter waveplate and an equine tendon sample by a single-mode fiber-based swept-source PS-OCT system.
NASA Astrophysics Data System (ADS)
Laubscher, Markus; Bourquin, Stéphane; Froehly, Luc; Karamata, Boris; Lasser, Theo
2004-07-01
Current spectroscopic optical coherence tomography (OCT) methods rely on a posteriori numerical calculation. We present an experimental alternative for accessing spectroscopic information in OCT without post-processing based on wavelength de-multiplexing and parallel detection using a diffraction grating and a smart pixel detector array. Both a conventional A-scan with high axial resolution and the spectrally resolved measurement are acquired simultaneously. A proof-of-principle demonstration is given on a dynamically changing absorbing sample. The method's potential for fast spectroscopic OCT imaging is discussed. The spectral measurements obtained with this approach are insensitive to scan non-linearities or sample movements.
Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Podoleanu, Adrian Gh
2014-02-01
A fast swept-source optical coherence tomography (SS-OCT) system is employed to acquire volumes of dental tissue, in order to monitor the temporal evolution of dental wear. An imaging method is developed to evaluate the volume of tissue lost in ex vivo artificially induced abfractions and attritions. The minimal volume (measured in air) that our system could measure is 2352 μm3. A volume of 25,000 A-scans is collected in 2.5 s. All these recommend the SS-OCT method as a valuable tool for dynamic evaluation of the abfraction and attrition with remarkable potential for clinical use.
Modeling of processes of formation of the images in optical-electronic systems
NASA Astrophysics Data System (ADS)
Grudin, B. N.; Plotnikov, V. S.; Fischenko, V. K.
2001-08-01
The digital model of the multicomponent coherent optical system with arbitrary layout of optical elements (lasers, lenses, phototransparencies with recording of the function of transmission of a specimens or filters, photoregistrars), constructed with usage of fast algorithms is considered. The model is realized as the program for personal computers in operational systems Windows 95, 98 and Windows NT. At simulation, for example, coherent system consisting of twenty elementary optical cascades a relative error in the output image as a rule does not exceed 0.25% when N >= 256 (N x N - the number of discrete samples on the image), and time of calculation of the output image on a computer (Pentium-2, 300 MHz) for N = 512 does not exceed one minute. The program of simulation of coherent optical systems will be utilized in scientific researches and at tutoring the students of Far East State University.
Temporally coherent 4D video segmentation for teleconferencing
NASA Astrophysics Data System (ADS)
Ehmann, Jana; Guleryuz, Onur G.
2013-09-01
We develop an algorithm for 4-D (RGB+Depth) video segmentation targeting immersive teleconferencing ap- plications on emerging mobile devices. Our algorithm extracts users from their environments and places them onto virtual backgrounds similar to green-screening. The virtual backgrounds increase immersion and interac- tivity, relieving the users of the system from distractions caused by disparate environments. Commodity depth sensors, while providing useful information for segmentation, result in noisy depth maps with a large number of missing depth values. By combining depth and RGB information, our work signi¯cantly improves the other- wise very coarse segmentation. Further imposing temporal coherence yields compositions where the foregrounds seamlessly blend with the virtual backgrounds with minimal °icker and other artifacts. We achieve said improve- ments by correcting the missing information in depth maps before fast RGB-based segmentation, which operates in conjunction with temporal coherence. Simulation results indicate the e±cacy of the proposed system in video conferencing scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less
A Biomimetic-Computational Approach to Optimizing the Quantum Efficiency of Photovoltaics
NASA Astrophysics Data System (ADS)
Perez, Lisa M.; Holzenburg, Andreas
The most advanced low-cost organic photovoltaic cells have a quantum efficiency of 10%. This is in stark contrast to plant/bacterial light-harvesting systems which offer quantum efficiencies close to unity. Of particular interest is the highly effective quantum coherence-enabled energy transfer (Fig. 1). Noting that quantum coherence is promoted by charged residues and local dielectrics, classical atomistic simulations and time-dependent density functional theory (DFT) are used to identify charge/dielectric patterns and electronic coupling at exactly defined energy transfer interfaces. The calculations make use of structural information obtained on photosynthetic protein-pigment complexes while still in the native membrane making it possible to establish a link between supramolecular organization and quantum coherence in terms of what length scales enable fast energy transport and prevent quenching. Calculating energy transfer efficiencies between components based on different proximities will permit the search for patterns that enable defining material properties suitable for advanced photovoltaics.
Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...
2017-10-20
The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less
Lee, Sang-Won; Jeong, Hyun-Woo; Kim, Beop-Min
2010-01-01
We propose high-speed spectral domain polarization-sensitive optical coherence tomography (SD-PS-OCT) using a single camera and a 1x2 optical switch at the 1.3-microm region. The PS-low coherence interferometer used in the system is constructed using free-space optics. The reflected horizontal and vertical polarization light rays are delivered via an optical switch to a single spectrometer by turns. Therefore, our system costs less to build than those that use dual spectrometers, and the processes of timing and triggering are simpler from the viewpoints of both hardware and software. Our SD-PS-OCT has a sensitivity of 101.5 dB, an axial resolution of 8.2 microm, and an acquisition speed of 23,496 A-scans per second. We obtain the intensity, phase retardation, and fast axis orientation images of a rat tail tendon ex vivo.
How fast can stellar death throes go?
NASA Astrophysics Data System (ADS)
Eldridge, J. J.
2018-04-01
Using evolving observing strategies and technologies we are catching supernovae closer and closer to the `b' of the `bang', thus unveiling new types of explosion mechanism that have not been studied in depth before.
Quantum annealing with parametrically driven nonlinear oscillators
NASA Astrophysics Data System (ADS)
Puri, Shruti
While progress has been made towards building Ising machines to solve hard combinatorial optimization problems, quantum speedups have so far been elusive. Furthermore, protecting annealers against decoherence and achieving long-range connectivity remain important outstanding challenges. With the hope of overcoming these challenges, I introduce a new paradigm for quantum annealing that relies on continuous variable states. Unlike the more conventional approach based on two-level systems, in this approach, quantum information is encoded in two coherent states that are stabilized by parametrically driving a nonlinear resonator. I will show that a fully connected Ising problem can be mapped onto a network of such resonators, and outline an annealing protocol based on adiabatic quantum computing. During the protocol, the resonators in the network evolve from vacuum to coherent states representing the ground state configuration of the encoded problem. In short, the system evolves between two classical states following non-classical dynamics. As will be supported by numerical results, this new annealing paradigm leads to superior noise resilience. Finally, I will discuss a realistic circuit QED realization of an all-to-all connected network of parametrically driven nonlinear resonators. The continuous variable nature of the states in the large Hilbert space of the resonator provides new opportunities for exploring quantum phase transitions and non-stoquastic dynamics during the annealing schedule.
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai; ...
2017-10-23
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila.
Lee, Yuh Chwen G; Leek, Courtney; Levine, Mia T
2017-02-01
Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Coherent diffractive imaging of time-evolving samples with improved temporal resolution
Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...
2016-05-19
Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less
New developments in optical coherence tomography
Kostanyan, Tigran; Wollstein, Gadi; Schuman, Joel S.
2017-01-01
Purpose of review Optical coherence tomography (OCT) has become the cornerstone technology for clinical ocular imaging in the past few years. The technology is still rapidly evolving with newly developed applications. This manuscript reviews recent innovative OCT applications for glaucoma diagnosis and management. Recent findings The improvements made in the technology have resulted in increased scanning speed, axial and transverse resolution, and more effective use of the OCT technology as a component of multimodal imaging tools. At the same time, the parallel evolution in novel algorithms makes it possible to efficiently analyze the increased volume of acquired data. Summary The innovative iterations of OCT technology have the potential to further improve the performance of the technology in evaluating ocular structural and functional characteristics and longitudinal changes in glaucoma. PMID:25594766
Linear feedback stabilization of a dispersively monitored qubit
NASA Astrophysics Data System (ADS)
Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin
2017-08-01
The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.
Coherent transport structures in magnetized plasmas. I. Theory
NASA Astrophysics Data System (ADS)
Di Giannatale, G.; Falessi, M. V.; Grasso, D.; Pegoraro, F.; Schep, T. J.
2018-05-01
In a pair of linked articles (called Papers I and II, respectively), we apply the concept of Lagrangian Coherent Structures (LCSs) borrowed from the study of dynamical systems to magnetic field configurations in order to separate regions where field lines have a different kind of behaviour. In the present article, Paper I, after recalling the definition and the properties of the LCSs, we show how this conceptual framework can be applied to the study of particle transport in a magnetized plasma. Furthermore, we introduce a simplified model that allows us to consider explicitly the case where the magnetic configuration evolves in time on time scales comparable to the particle transit time through the configuration. In contrast with previous works on this topic, this analysis requires that a system that is aperiodic in time be investigated.
NASA Astrophysics Data System (ADS)
Tarshish, Nathaniel; Abernathey, Ryan; Dufour, Carolina; Frenger, Ivy; Griffies, Stephen
2017-04-01
Transient ocean mesoscale fluctuations play a central role in the global climate system, transporting climate relevant tracers such as heat and carbon. In satellite observations and numerical simulations, mesoscale vortices feature prominently as collectively rotating regions that remain visibly coherent. Prior studies on transport from ocean vortices typically rely on Eulerian identification methods, in which vortices are identified by selecting closed contours of Eulerian fields (e.g. sea surface height, or the Okubo-Weiss parameter) that satisfy geometric criteria and anomaly thresholds. In contrast, recent studies employ Lagrangian analysis of virtual particle trajectories initialized within the selected Eulerian contours, revealing significant discrepancies between the advection of the contour's material interior and the evolution of the Eulerian field contour. This work investigates the global mass and tracer transport associated with materially coherent surface ocean vortices. Further, it addresses differences between Eulerian and Lagrangian analyses for the detection of vortices. To do so, we use GFDL's CM2.6 coupled climate model with 5-10km horizontal grid spacing. We identify coherent vortices in CM2.6 by implementing the Rotationally Coherent Lagrangian Vortex (RCLV) framework, which recently emerged from dynamical systems theory. This approach involves the numerical advection of millions of Lagrangian particles and guarantees material coherence by construction. We compute the statistics, spatial distribution, and lifetimes of coherent vortices in addition to calculating the associated mass and tracer transports. We offer compelling evidence that Eulerian vortex methods are poorly suited to answer questions of mass and tracer transport.
NASA Astrophysics Data System (ADS)
Galdon-Quiroga, J.; Garcia-Munoz, M.; Sanchis-Sanchez, L.; Mantsinen, M.; Fietz, S.; Igochine, V.; Maraschek, M.; Rodriguez-Ramos, M.; Sieglin, B.; Snicker, A.; Tardini, G.; Vezinet, D.; Weiland, M.; Eriksson, L. G.; The ASDEX Upgrade Team; The EUROfusion MST1 Team
2018-03-01
Absolute flux of fast ion losses induced by tearing modes have been measured by means of fast ion loss detectors (FILD) for the first time in RF heated plasmas in the ASDEX Upgrade tokamak. Up to 30 MW m-2 of fast ion losses are measured by FILD at 5 cm from the separatrix, consistent with infra-red camera measurements, with energies in the range of 250-500 keV and pitch angles corresponding to large trapped orbits. A resonant interaction between the fast ions in the high energy tail of the ICRF distribution and a m/n = 5/4 tearing mode leads to enhanced fast ion losses. Around 9.3 +/- 0.7 % of the fast ion losses are found to be coherent with the mode and scale linearly with its amplitude, indicating the convective nature of the transport mechanism. Simulations have been carried out to estimate the contribution of the prompt losses. A good agreement is found between the simulated and the measured velocity space of the losses. The velocity space resonances that may be responsible for the enhanced fast ion losses are identified.
Figuration and detection of single molecules
NASA Astrophysics Data System (ADS)
Nevels, R.; Welch, G. R.; Cremer, P. S.; Hemmer, P.; Phillips, T.; Scully, S.; Sokolov, A. V.; Svidzinsky, A. A.; Xia, H.; Zheltikov, A.; Scully, M. O.
2012-08-01
Recent advances in the description of atoms and molecules based on Dimensional scaling analysis, developed by Dudley Herschbach and co-workers, provided new insights into visualization of molecular structure and chemical bonding. Prof. Herschbach is also a giant in the field of single molecule scattering. We here report on the engineering of molecular detectors. Such systems have a wide range of application from medical diagnostics to the monitoring of chemical, biological and environmental hazards. We discuss ways to identify preselected molecules, in particular, mycotoxin contaminants using coherent laser spectroscopy. Mycotoxin contaminants, e.g. aflatoxin B1 which is present in corn and peanuts, are usually analysed by time-consuming microscopic, chemical and biological assays. We present a new approach that derives from recent experiments in which molecules are prepared by one (or more) femtosecond laser(s) and probed by another set. We call this technique FAST CARS (femto second adaptive spectroscopic technique for coherent anti-Stokes Raman spectroscopy). We propose and analyse ways in which FAST CARS can be used to identify preselected molecules, e.g. aflatoxin, rapidly and economically.
NASA Astrophysics Data System (ADS)
Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng
2018-03-01
Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.
Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner
2011-09-26
Coherent diffraction imaging (CDI) for visualizing objects at atomic resolution has been realized as a promising tool for imaging single molecules. Drawbacks of CDI are associated with the difficulty of the numerical phase retrieval from experimental diffraction patterns; a fact which stimulated search for better numerical methods and alternative experimental techniques. Common phase retrieval methods are based on iterative procedures which propagate the complex-valued wave between object and detector plane. Constraints in both, the object and the detector plane are applied. While the constraint in the detector plane employed in most phase retrieval methods requires the amplitude of the complex wave to be equal to the squared root of the measured intensity, we propose a novel Fourier-domain constraint, based on an analogy to holography. Our method allows achieving a low-resolution reconstruction already in the first step followed by a high-resolution reconstruction after further steps. In comparison to conventional schemes this Fourier-domain constraint results in a fast and reliable convergence of the iterative reconstruction process. © 2011 Optical Society of America
Yarmolinsky, James; Mueller, Noel T.; Duncan, Bruce B.; Bisi Molina, Maria del Carmen; Goulart, Alessandra C.; Schmidt, Maria Inês
2015-01-01
Introduction Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals. Methods We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil). Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and –2-hour postload insulin and measures of insulin sensitivity. Results We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2–3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02)]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p<0.0001] but not with fasting glucose concentrations (p = 0.07). Coffee was additionally associated with 2-hour postload insulin [Never/almost never: 287.2 pmol/L, ≤1 time/day: 280.1 pmol/L, 2–3 times/day: 275.3 pmol/L, >3 times/day: 262.2 pmol/L, p = 0.0005) but not with fasting insulin concentrations (p = .58). Conclusion Our present study provides further evidence of a protective effect of coffee on risk of adult-onset diabetes. This effect appears to act primarily, if not exclusively, through postprandial, as opposed to fasting, glucose homeostasis. PMID:25978631
ERIC Educational Resources Information Center
Samar, V.J.; Parasnis, I.
2005-01-01
Prelingual deafness and developmental dyslexia have confounding developmental effects on reading acquisition. Therefore, standard reading assessment methods for diagnosing dyslexia in hearing people are ineffective for use with deaf people. Recently, Samar, Parasnis, and Berent (2002) reported visual evoked potential evidence that deaf poor…
Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation
Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...
2016-02-10
Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less
Volz, Kirsten G; Rübsamen, Rudolf; von Cramon, D Yves
2008-09-01
According to the Oxford English Dictionary, intuition is "the ability to understand or know something immediately, without conscious reasoning." In other words, people continuously, without conscious attention, recognize patterns in the stream of sensations that impinge upon them. The result is a vague perception of coherence, which subsequently biases thought and behavior accordingly. Within the visual domain, research using paradigms with difficult recognition has suggested that the orbitofrontal cortex (OFC) serves as a fast detector and predictor of potential content that utilizes coarse facets of the input. To investigate whether the OFC is crucial in biasing task-specific processing, and hence subserves intuitive judgments in various modalities, we used a difficult-recognition paradigm in the auditory domain. Participants were presented with short sequences of distorted, nonverbal, environmental sounds and had to perform a sound categorization task. Imaging results revealed rostral medial OFC activation for such auditory intuitive coherence judgments. By means of a conjunction analysis between the present results and those from a previous study on visual intuitive coherence judgments, the rostral medial OFC was shown to be activated via both modalities. We conclude that rostral OFC activation during intuitive coherence judgments subserves the detection of potential content on the basis of only coarse facets of the input.
Collective Dynamics of Belief Evolution under Cognitive Coherence and Social Conformity.
Rodriguez, Nathaniel; Bollen, Johan; Ahn, Yong-Yeol
2016-01-01
Human history has been marked by social instability and conflict, often driven by the irreconcilability of opposing sets of beliefs, ideologies, and religious dogmas. The dynamics of belief systems has been studied mainly from two distinct perspectives, namely how cognitive biases lead to individual belief rigidity and how social influence leads to social conformity. Here we propose a unifying framework that connects cognitive and social forces together in order to study the dynamics of societal belief evolution. Each individual is endowed with a network of interacting beliefs that evolves through interaction with other individuals in a social network. The adoption of beliefs is affected by both internal coherence and social conformity. Our framework may offer explanations for how social transitions can arise in otherwise homogeneous populations, how small numbers of zealots with highly coherent beliefs can overturn societal consensus, and how belief rigidity protects fringe groups and cults against invasion from mainstream beliefs, allowing them to persist and even thrive in larger societies. Our results suggest that strong consensus may be insufficient to guarantee social stability, that the cognitive coherence of belief-systems is vital in determining their ability to spread, and that coherent belief-systems may pose a serious problem for resolving social polarization, due to their ability to prevent consensus even under high levels of social exposure. We argue that the inclusion of cognitive factors into a social model could provide a more complete picture of collective human dynamics.
Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R
2005-01-01
Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.
SKS Splitting and the Scale of Vertical Coherence of the Taiwan Mountain Belt
NASA Astrophysics Data System (ADS)
Kuo, Ban-Yuan; Lin, Shu-Chuan; Lin, Yi-Wei
2018-02-01
Many continental orogens feature a pattern of SKS shear wave splitting with fast polarization directions parallel to the mountain fabrics and delay times of 1-2 s, implying that the crust and lithosphere deform consistently. In the Taiwan arc-continent collision zone, similar pattern of SKS splitting exists, and thereby lithospheric scale deformation due to collision has been assumed. However, recent dynamic modeling demonstrated that the SKS splitting in Taiwan can be generated by the toroidal flow in the asthenosphere induced by the subduction of the Philippine Sea plate and the Eurasian plate. To further evaluate this hypothesis, we analyzed a new data set using a quantitative approach. The results show that models with slab geometries constrained by seismicity explain the observed fast splitting direction to within 25°, whereas the misfit grows to 50-60° if the toroidal flow is disrupted by the presence of a sizable aseismic slab beneath central Taiwan as often suggested by tomographic imaging. However, small sized aseismic slab or detached slab fragment can potentially reconcile the splitting observations. We estimated the scale of vertical coherence to be 10-40 km in the lithosphere and 100-150 km in the asthenosphere, making the former unfavorable for accumulating large delay times. The low coherence is caused by the subduction of the Eurasian plate that creates complex deformation different from what characterizes the compressional tectonics above the plate. This suggests that the mountain building in Taiwan is a shallow process, rather than lithospheric in scale.
Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch
Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A.
2012-01-01
We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers. PMID:23243559
Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch.
Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A
2012-12-01
We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers.
Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit
Chen, Yue; Reeves, Geoffrey D.; Cunningham, Gregory S.; ...
2016-02-15
Our study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. Furthermore, we first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons—observed by satellites with very different altitudes—with correlation coefficients as high as ≳ 0.85. We then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward, based on the coherence. Reliability of thesemore » predictive filters is quantified by the performance efficiency with values as high as 0.74 when driven merely by LEO observations (or up to 0.94 with the inclusion of in situ MeV electron measurements). Finally, a hypothesis based upon the wave-particle resonance theory is proposed to explain the coherence, and a first-principle electron tracing model yields supporting evidence.« less
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Frehlich, Rod G.
2007-01-01
The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.
NASA Astrophysics Data System (ADS)
Schinckus, C.
2016-12-01
This article aimed at presenting the scattered econophysics literature as a unified and coherent field through a specific lens imported from philosophy science. More precisely, I used the methodology developed by Imre Lakatos to cover the methodological evolution of econophysics over these last two decades. In this perspective, three co-existing approaches have been identified: statistical econophysics, bottom-up agent based econophysics and top-down agent based econophysics. Although the last is presented here as the last step of the methodological evolution of econophysics, it is worth mentioning that this tradition is still very new. A quick look on the econophysics literature shows that the vast majority of works in this field deal with a strictly statistical approach or a classical bottom-up agent-based modelling. In this context of diversification, the objective (and contribution) of this article is to emphasize the conceptual coherence of econophysics as a unique field of research. With this purpose, I used a theoretical framework coming from philosophy of science to characterize how econophysics evolved by combining a methodological enrichment with the preservation of its core conceptual statements.
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima
2017-10-01
We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.
Efficient Radiative Transfer for Dynamically Evolving Stratified Atmospheres
NASA Astrophysics Data System (ADS)
Judge, Philip G.
2017-12-01
We present a fast multi-level and multi-atom non-local thermodynamic equilibrium radiative transfer method for dynamically evolving stratified atmospheres, such as the solar atmosphere. The preconditioning method of Rybicki & Hummer (RH92) is adopted. But, pressed for the need of speed and stability, a “second-order escape probability” scheme is implemented within the framework of the RH92 method, in which frequency- and angle-integrals are carried out analytically. While minimizing the computational work needed, this comes at the expense of numerical accuracy. The iteration scheme is local, the formal solutions for the intensities are the only non-local component. At present the methods have been coded for vertical transport, applicable to atmospheres that are highly stratified. The probabilistic method seems adequately fast, stable, and sufficiently accurate for exploring dynamical interactions between the evolving MHD atmosphere and radiation using current computer hardware. Current 2D and 3D dynamics codes do not include this interaction as consistently as the current method does. The solutions generated may ultimately serve as initial conditions for dynamical calculations including full 3D radiative transfer. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Drehmer, Michele; Odegaard, Andrew O; Schmidt, Maria Inês; Duncan, Bruce B; Cardoso, Letícia de Oliveira; Matos, Sheila M Alvim; Molina, Maria Del Carmen B; Barreto, Sandhi M; Pereira, Mark A
2017-01-01
Studies evaluating dietary patterns, including the DASH diet, and their relationship with the metabolic syndrome and diabetes may help to understand the role of dairy products (low fat or full fat) in these conditions. Our aim is to identify dietary patterns in Brazilian adults and compare them with the (DASH) diet quality score in terms of their associations with metabolic syndrome and newly diagnosed diabetes in the Brazilian Longitudinal Study of Adult Health-the ELSA-Brasil study. The ELSA-Brasil is a multicenter cohort study comprising 15,105 civil servants, aged 35-74 years at baseline (2008-2010). Standardized interviews and exams were carried out, including an OGTT. We analyzed baseline data for 10,010 subjects. Dietary patterns were derived by principal component analysis. Multivariable logistic regression investigated associations of dietary patterns with metabolic syndrome and newly diagnosed diabetes and multivariable linear regression with components of metabolic syndrome. After controlling for potential confounders, we observed that greater adherence to the Common Brazilian meal pattern (white rice, beans, beer, processed and fresh meats), was associated with higher frequencies of newly diagnosed diabetes, metabolic syndrome and all of its components, except HDL-C. Participants with greater intake of a Common Brazilian fast foods/full fat dairy/milk based desserts pattern presented less newly diagnosed diabetes. An inverse association was also seen between the DASH Diet pattern and the metabolic syndrome, blood pressure and waist circumference. Diet, light foods and beverages/low fat dairy pattern was associated with more prevalence of both outcomes, and higher fasting glucose, HDL-C, waist circumference (among men) and lower blood pressure. Vegetables/fruit dietary pattern did not protect against metabolic syndrome and newly diagnosed diabetes but was associated with lower waist circumference. The inverse associations found for the dietary pattern characterizing Brazilian fast foods and desserts, typically containing dairy products, with newly diagnosed diabetes, and for the DASH diet with metabolic syndrome, support previously demonstrated beneficial effects of dairy products in metabolism. The positive association with metabolic syndrome and newly diagnosed diabetes found for the pattern characterizing a typical Brazilian meal deserves further investigation, particularly since it is frequently accompanied by processed meat. Trial registration NCT02320461. Registered 18 December 2014.
Experimental results in evolutionary fault-recovery for field programmable analog devices
NASA Technical Reports Server (NTRS)
Zebulum, Ricardo S.; Keymeulen, Didier; Duong, Vu; Guo, Xin; Ferguson, M. I.; Stoica, Adrian
2003-01-01
This paper presents experimental results of fast intrinsic evolutionary design and evolutionary fault recovery of a 4-bit Digital to Analog Converter (DAC) using the JPL stand-alone board-level evolvable system (SABLES).
A Fast-Evolving, Luminous Transient Discovered by K2/Kepler
NASA Astrophysics Data System (ADS)
Rest, Armin; Garnavich, Peter; Khatami, David; Kasen, Daniel; Tucker, Brad; Shaya, Edward; Olling, Robert; Mushotzky, Richard; Zenteno, Alfredo; Margheim, Steven; Strampelli, Giovanni Maria; James, David; Smith, Chris; Forster, Francisco; Villar, Ashley
2018-01-01
For decades optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients (FELTs) have been identified. FELTs have peak luminosities comparable to type Ia supernovae, but rise to maximum in <10 days and fade from view in <30 days. Here we present the most extreme example of this class thus far, KSN2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. Possible energy sources for KSN2015K are the decay of radioactive elements, a central engine powered by accretion/magnetic fields, or hydrodynamic shock. We show that KSN2015K's luminosity makes it unlikely to be powered by radioactive isotopes, and we find that the shock breakout into a dense wind most likely energized the transient.
Takaoka, Hiroyuki; Srisuka, Wichai; Low, Van Lun; Saeung, Atiporn
2018-05-04
Simulium (Simulium) phraense sp. nov. (Diptera: Simuliidae) is described from females, males, pupae, and larvae from Thailand. This new species is placed in the Simulium striatum species group and is most similar to Simulium (Simulium) nakhonense Takaoka & Suzuki (Diptera: Simuliidae) from Thailand among species of the same species group but is barely distinguished from the latter species by lacking annular ridges on the surface of the pupal gill filaments. The fast-evolving nuclear big zinc finger (BZF) gene has successfully differentiated this new species from its allies, S. (S.) nakhonense and Simulium (Simulium) chiangmaiense Takaoka & Suzuki (Diptera: Simuliidae) of the S. striatum species group. The BZF gene sequences show that this new species is more closely related to S. (S.) nakhonense than to S. (S.) chiangmaiense, further supporting its morphological classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flacco, A.; Fairchild, M.; Reiche, S.
2004-12-07
The coherent radiation emitted by electrons in high brightness beam-based experiments is important from the viewpoints of both radiation source development, and the understanding and diagnosing the basic physical processes important in beam manipulations at high intensity. While much theoretical work has been developed to aid in calculating aspects of this class of radiation, these methods do not often produce accurate information concerning the experimentally relevant aspects of the radiation. At UCLA, we are particularly interested in coherent synchrotron radiation and the related phenomena of coherent edge radiation, in the context of a fs-beam chicane compression experiment at the BNLmore » ATF. To analyze this and related problems, we have developed a program that acts as an extension to the Lienard-Wiechert-based 3D simulation code TREDI, termed FieldEye. This program allows the evaluation of electromagnetic fields in the time and frequency domain in an arbitrary 2D detector planar area. We discuss here the implementation of the FieldEye code, and give examples of results relevant to the case of the ATF chicane compressor experiment.« less
Optical coherence tomography of dental structures
NASA Astrophysics Data System (ADS)
Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.
1998-04-01
In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.
Duffy, Frank H; Als, Heidelise
2012-06-26
The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks.
High-Resolution Methods for Diagnosing Cartilage Damage In Vivo
Novakofski, Kira D.; Pownder, Sarah L.; Koff, Matthew F.; Williams, Rebecca M.; Potter, Hollis G.; Fortier, Lisa A.
2016-01-01
Advances in current clinical modalities, including magnetic resonance imaging and computed tomography, allow for earlier diagnoses of cartilage damage that could mitigate progression to osteoarthritis. However, current imaging modalities do not detect submicrometer damage. Developments in in vivo or arthroscopic techniques, including optical coherence tomography, ultrasonography, bioelectricity including streaming potential measurement, noninvasive electroarthrography, and multiphoton microscopy can detect damage at an earlier time point, but they are limited by a lack of penetration and the ability to assess an entire joint. This article reviews current advancements in clinical and developing modalities that can aid in the early diagnosis of cartilage injury and facilitate studies of interventional therapeutics. PMID:26958316
NASA Astrophysics Data System (ADS)
Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.
2006-08-01
Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.
High frame-rate en face optical coherence tomography system using KTN optical beam deflector
NASA Astrophysics Data System (ADS)
Ohmi, Masato; Shinya, Yusuke; Imai, Tadayuki; Toyoda, Seiji; Kobayashi, Junya; Sakamoto, Tadashi
2017-02-01
We developed high frame-rate en face optical coherence tomography (OCT) system using KTa1-xNbxO3 (KTN) optical beam deflector. In the imaging system, the fast scanning was performed at 200 kHz by the KTN optical beam deflector, while the slow scanning was performed at 800 Hz by the galvanometer mirror. As a preliminary experiment, we succeeded in obtaining en face OCT images of human fingerprint with a frame rate of 800 fps. This is the highest frame-rate obtained using time-domain (TD) en face OCT imaging. The 3D-OCT image of sweat gland was also obtained by our imaging system.
Coherence-domain imaging with harmonic holography
NASA Astrophysics Data System (ADS)
Pu, Ye; Psaltis, Demetri
2017-08-01
Observing the fast dynamics of specific molecules or targets in three-dimensional (3D) space and time inside a crowded and complex environment, such as living cells or tissues, remain one of the grand open challenges in modern science. Harmonic holography tackle this challenge by combining the 3D imaging capability of holography with the ultrafast, coherent optical contrast offered by second-harmonic radiating imaging probes (SHRIMPs). Similar to fluorescence, the second-harmonic signal emitted from SHRIMPs provides a color contrast against the uninterested background scattering, which can be efficiently suppressed by an optical filter. We review the latest developments in SHRIMPs and harmonic holography and discuss their further applications in fluidics and biofluidics.
Deformation of a bismuth ferrite nanocrystal imaged by coherent X-ray diffraction
NASA Astrophysics Data System (ADS)
Newton, Marcus C.; Pietraszewski, Adam; Kenny, Anthony; Wagner, Ulrich; Rau, Christoph
2017-06-01
Perovskite materials that contain transition metal-oxides often exhibit multifunctional properties with considerable utility in a device setting. BiFeO3 is a multiferroic perovskite material that exhibits room temperature anti-ferromagnetic and ferroelectric ordering. Optical excitation of BiFeO3 crystals results in an elastic structural deformation of the lattice with a fast response on the pico-second time scale. Here we report on dynamic optical excitation coupled with Bragg coherent X-ray diffraction measurements to investigate the structural properties of BiFeO3 nanoscale crystals. A continuous distortion of the diffraction speckle pattern was observed with increasing illumination. This was attributed to strain resulting from photo-induced lattice deformation.
Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
De Boer, Johannes F.; Milner, Thomas E.; Nelson, J. Stuart
2001-01-01
Employing a low coherence Michelson interferometer, two dimensional images of optical birefringence in turbid samples as a function of depth are measured. Polarization sensitive detection of the signal formed by interference of backscattered light from the sample and a mirror or reference plane in the reference arm which defines a reference optical path length, give the optical phase delay between light propagating along the fast and slow axes of the birefringence sample. Images showing the change in birefringence in response to irradiation of the sample are produced as an example of the detection apparatus and methodology. The technique allow rapid, noncontact investigation of tissue or sample diagnostic imaging for various medical or materials procedures.
NASA Astrophysics Data System (ADS)
Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya
2015-02-01
We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.
Fast retinal layer segmentation of spectral domain optical coherence tomography images
NASA Astrophysics Data System (ADS)
Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao
2015-09-01
An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.
Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements.
Marty, Brice; Wens, V; Bourguignon, M; Naeije, G; Goldman, S; Jousmäki, V; De Tiège, X
2018-05-03
This magnetoencephalography (MEG) study aims at characterizing the coupling between cerebellar activity and the kinematics of repetitive self-paced finger movements. Neuromagnetic signals were recorded in 11 right-handed healthy adults while they performed repetitive flexion-extensions of right-hand fingers at three different movement rates: slow (~ 1 Hz), medium (~ 2 Hz), and fast (~ 3 Hz). Right index finger acceleration was monitored with an accelerometer. Coherence analysis was used to index the coupling between right index finger acceleration and neuromagnetic signals. Dynamic imaging of coherent sources was used to locate coherent sources. Coupling directionality between primary sensorimotor (SM1), cerebellar, and accelerometer signals was assessed with renormalized partial directed coherence. Permutation-based statistics coupled with maximum statistic over the entire brain volume or restricted to the cerebellum were used. At all movement rates, maximum coherence peaked at SM1 cortex contralateral to finger movements at movement frequency (F0) and its first harmonic (F1). Significant (statistics restricted to the cerebellum) coherence consistently peaked at the right posterior lobe of the cerebellum at F0 with no influence of movement rate. Coupling between Acc and cerebellar signals was significantly stronger in the afferent than in the efferent direction with no effective contribution of cortico-cerebellar or cerebello-cortical pathways. This study demonstrates the existence of significant coupling between finger movement kinematics and neuromagnetic activity at the posterior cerebellar lobe ipsilateral to finger movement at F0. This coupling is mainly driven by spinocerebellar, presumably proprioceptive, afferences.
Application of the clinical matrix to the diagnosis of leukemia
NASA Astrophysics Data System (ADS)
Pakkala, Sampath Y.; Lin, Frank C.
1992-07-01
A system for diagnosing leukemia subtypes has been formulated using neural networks. The statistical data of the symptoms collected by hematologists is fed into a single training set using a neural network, where the network is trained by using fast backpropagation algorithm, which when done can help the general practitioners for making diagnoses on the basis of signs and symptoms alone.
Westen, Drew; Shedler, Jonathan; Bradley, Bekh; DeFife, Jared A.
2013-01-01
Objective The authors describe a system for diagnosing personality pathology that is empirically derived, clinically relevant, and practical for day-to-day use. Method A random national sample of psychiatrists and clinical psychologists (N=1,201) described a randomly selected current patient with any degree of personality dysfunction (from minimal to severe) using the descriptors in the Shedler-Westen Assessment Procedure–II and completed additional research forms. Results The authors applied factor analysis to identify naturally occurring diagnostic groupings within the patient sample. The analysis yielded 10 clinically coherent personality diagnoses organized into three higher-order clusters: internalizing, externalizing, and borderline-dysregulated. The authors selected the most highly rated descriptors to construct a diagnostic prototype for each personality syndrome. In a second, independent sample, research interviewers and patients’ treating clinicians were able to diagnose the personality syndromes with high agreement and minimal comorbidity among diagnoses. Conclusions The empirically derived personality prototypes described here provide a framework for personality diagnosis that is both empirically based and clinically relevant. PMID:22193534
NASA Astrophysics Data System (ADS)
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Guo, Shuguang; Wong, Brian J. F.; Chen, Zhongping
2009-02-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality and has been used to image the human larynx during surgical endoscopy. The design of a long GRIN lens based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with 40 fame/second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cord, which provide important information for clinical diagnosis and treatment, as well as in fundamental research of the voice. Office-based OCT is a promising imaging modality to study the larynx.
ERIC Educational Resources Information Center
Helles, Adam; Gillberg, I. Carina; Gillberg, Christopher; Billstedt, Eva
2017-01-01
This study examined objective quality of life (work, academic success, living situation, relationships, support system) and subjective quality of life (Sense of Coherence and Short-Form Health Survey-36) in an adult sample of males (n = 50, mean age: 30 years) with Asperger syndrome diagnosed in childhood and followed prospectively over two…
Sun, Jing; Li, Zhan-Jiang; Buys, Nicholas J; Storch, Eric A; Wang, Ji-sheng
2014-10-01
Risk factors of adolescents with obsessive-compulsive symptoms (OC) have been extensively examined, but protective resilience factors have not been explored, particularly in Chinese adolescents. This study aimed to investigate the association of resilience factors with the occurrence of OC and its symptoms in Chinese adolescents. This study consisted of two phases. The first phase used a cross-sectional design involving a stratified clustered non-clinical sample of 3185 secondary school students. A clinical interview procedure was then employed to diagnose OC in students who had a Leyton Obsessional Inventory 'yes' score of ≥15. The second phase used a case-control study design to analyse the relationship between resilience factors and OC in a matched sample of 288 adolescents with diagnosed OC relative to 246 healthy adolescents. Low personal disposition scores in self-fulfilment, flexibility and self-esteem, and low peer relation scores in the school environment were associated with a higher probability of having OC. Canonical correlation analysis indicated that OC symptoms were significantly associated with personal dispositions, poor peer relationships and maladaptive social life, but not to family coherence. The study is not prospective in nature, so the causal relationship between OC occurrence and resilience factors cannot be confirmed. Second, the use of self-report instruments in personal disposition, family coherence, and school environment may be a source of error. Resilience factors at both the personal disposition and school environment levels are important predictors of OC symptoms and caseness. Future studies using prospective designs are needed to confirm these relationships. Copyright © 2014 Elsevier B.V. All rights reserved.
Green disease in optical coherence tomography diagnosis of glaucoma.
Sayed, Mohamed S; Margolis, Michael; Lee, Richard K
2017-03-01
Optical coherence tomography (OCT) has become an integral component of modern glaucoma practice. Utilizing color codes, OCT analysis has rendered glaucoma diagnosis and follow-up simpler and faster for the busy clinician. However, green labeling of OCT parameters suggesting normal values may confer a false sense of security, potentially leading to missed diagnoses of glaucoma and/or glaucoma progression. Conditions in which OCT color coding may be falsely negative (i.e., green disease) are identified. Early glaucoma in which retinal nerve fiber layer (RNFL) thickness and optic disc parameters, albeit labeled green, are asymmetric in both eyes may result in glaucoma being undetected. Progressively decreasing RNFL thickness may reveal the presence of progressive glaucoma that, because of green labeling, can be missed by the clinician. Other ocular conditions that can increase RNFL thickness can make the diagnosis of coexisting glaucoma difficult. Recently introduced progression analysis features of OCT may help detect green disease. Recognition of green disease is of paramount importance in diagnosing and treating glaucoma. Understanding the limitations of imaging technologies coupled with evaluation of serial OCT analyses, prompt clinical examination, and structure-function correlation is important to avoid missing real glaucoma requiring treatment.
Páramo is the world's fastest evolving and coolest biodiversity hotspot
Madriñán, Santiago; Cortés, Andrés J.; Richardson, James E.
2013-01-01
Understanding the processes that cause speciation is a key aim of evolutionary biology. Lineages or biomes that exhibit recent and rapid diversification are ideal model systems for determining these processes. Species rich biomes reported to be of relatively recent origin, i.e., since the beginning of the Miocene, include Mediterranean ecosystems such as the California Floristic Province, oceanic islands such as the Hawaiian archipelago and the Neotropical high elevation ecosystem of the Páramos. Páramos constitute grasslands above the forest tree-line (at elevations of c. 2800–4700 m) with high species endemism. Organisms that occupy this ecosystem are a likely product of unique adaptations to an extreme environment that evolved during the last three to five million years when the Andes reached an altitude that was capable of sustaining this type of vegetation. We compared net diversification rates of lineages in fast evolving biomes using 73 dated molecular phylogenies. Based on our sample, we demonstrate that average net diversification rates of Páramo plant lineages are faster than those of other reportedly fast evolving hotspots and that the faster evolving lineages are more likely to be found in Páramos than the other hotspots. Páramos therefore represent the ideal model system for studying diversification processes. Most of the speciation events that we observed in the Páramos (144 out of 177) occurred during the Pleistocene possibly due to the effects of species range contraction and expansion that may have resulted from the well-documented climatic changes during that period. Understanding these effects will assist with efforts to determine how future climatic changes will impact plant populations. PMID:24130570
Páramo is the world's fastest evolving and coolest biodiversity hotspot.
Madriñán, Santiago; Cortés, Andrés J; Richardson, James E
2013-10-09
Understanding the processes that cause speciation is a key aim of evolutionary biology. Lineages or biomes that exhibit recent and rapid diversification are ideal model systems for determining these processes. Species rich biomes reported to be of relatively recent origin, i.e., since the beginning of the Miocene, include Mediterranean ecosystems such as the California Floristic Province, oceanic islands such as the Hawaiian archipelago and the Neotropical high elevation ecosystem of the Páramos. Páramos constitute grasslands above the forest tree-line (at elevations of c. 2800-4700 m) with high species endemism. Organisms that occupy this ecosystem are a likely product of unique adaptations to an extreme environment that evolved during the last three to five million years when the Andes reached an altitude that was capable of sustaining this type of vegetation. We compared net diversification rates of lineages in fast evolving biomes using 73 dated molecular phylogenies. Based on our sample, we demonstrate that average net diversification rates of Páramo plant lineages are faster than those of other reportedly fast evolving hotspots and that the faster evolving lineages are more likely to be found in Páramos than the other hotspots. Páramos therefore represent the ideal model system for studying diversification processes. Most of the speciation events that we observed in the Páramos (144 out of 177) occurred during the Pleistocene possibly due to the effects of species range contraction and expansion that may have resulted from the well-documented climatic changes during that period. Understanding these effects will assist with efforts to determine how future climatic changes will impact plant populations.
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Tamborra, Irene; Just, Oliver; Janka, Hans-Thomas
2017-12-01
The remnant of neutron star mergers is dense in neutrinos. By employing inputs from one hydrodynamical simulation of a binary neutron star merger remnant with a black hole of 3 M⊙ in the center, dimensionless spin parameter 0.8 and an accretion torus of 0.3 M⊙, the neutrino emission properties are investigated as the merger remnant evolves. Initially, the local number density of ν¯e is larger than that of νe everywhere above the remnant. Then, as the torus approaches self-regulated equilibrium, the local abundance of neutrinos overcomes that of antineutrinos in a funnel around the polar region. The region where the fast pairwise flavor conversions can occur shrinks accordingly as time evolves. Still, we find that fast flavor conversions do affect most of the neutrino-driven ejecta. Assuming that fast flavor conversions lead to flavor equilibration, a significant enhancement of nuclei with mass numbers A >130 is found as well as a change of the lanthanide mass fraction by more than a factor of a thousand. Our findings hint towards a potentially relevant role of neutrino flavor oscillations for the prediction of the kilonova (macronova) light curves and motivate further work in this direction.
Sethupathi, M; Blackwell, A
2009-03-01
We introduced a Nurse/Health Advisor-led fast-track service for treating patients diagnosed with chlamydia outside a genitourinary medicine setting and contacts of chlamydia/non-specific urethritis/cervicitis wherever diagnosed. Asymptomatic patients were treated without initial testing and asked to return for full screening at four to six weeks. We assessed the efficacy and safety of the system and need for follow-up after treatment. Case-notes of 226 patients (121 men and 105 women) were analysed, of whom 140 attended follow-up. With the exception of one case of gonorrhoea, no other serious sexually transmitted infection was detected. Twenty-seven (19.2%) patients were re-treated for either chlamydia (six patients, 4.4%) or non-specific genital infection or because of having unprotected intercourse with untreated or partially treated partners. We conclude that in our relatively low-risk population, our fast-track service is safe and effective. Test of cure for chlamydia seems essential because of the high percentage of patients requiring re-treatment.
ERIC Educational Resources Information Center
Gray, Shelley
2006-01-01
Purpose: This study assessed the fast mapping performance of children with specific language impairment (SLI) across the preschool to kindergarten age span in relation to their phonological memory and vocabulary development. Method: Fifty-three children diagnosed with SLI and 53 children with normal language (NL) matched for age and gender (30…
Spectral domain optical coherence tomography imaging of retinal diseases in Singapore.
Singh, Mandeep; Chee, Caroline K L
2009-01-01
In this retrospective case series, the authors reviewed cases of patients with macular disorders whose eyes had been imaged using spectral domain optical coherence tomography (SD-OCT) (Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA). SD-OCT images were obtained from patients with a variety of ocular conditions attending a tertiary retinal clinic in Singapore from August 2007 to December 2007, according to standardized protocols. Images of 428 eyes from 301 patients were reviewed. Ocular diagnoses included diabetic macular edema, exudative age-related macular degeneration, central serous chorioretinopathy, cystoid macular edema, retinal vein and artery occlusions, infective chorioretinitis, and others. The authors present four cases of particular interest to illustrate how SD-OCT was useful in complementing the clinician's assessment of macular disease.
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
NASA Astrophysics Data System (ADS)
Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo
2018-02-01
The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less
Mendichovszky, I A; Priest, A N; Bowden, D J; Hunter, S; Joubert, I; Hilborne, S; Graves, M J; Baglin, T; Lomas, D J
2017-06-01
Lower limb deep venous thrombosis (DVT) is a common condition with high morbidity and mortality. The aim of the study was to investigate the temporal evolution of the acute thrombus by magnetic resonance imaging (MRI) and its relationship to venous recanalization in patients with recurrent DVTs. Thirteen patients with newly diagnosed lower limb DVTs underwent MRI with non-contrast MR venography (NC-MRV) and MR direct thrombus imaging (MR-DTI), an inversion-recovery water-selective fast gradient-echo acquisition. Imaging was performed within 7 days of the acute thrombotic event, then at 3 and 6 months. By 3 months from the thrombotic event a third of the thrombi had resolved and by 6 months about half of the cases had resolved on the basis of vein recanalisation using NC-MRV. On the initial MR-DTI acute thrombus was clearly depicted by hyperintense signal, while the remaining thrombi were predominantly low signal at 3 and 6 months. Some residual thrombi contained small and fragmented persisting hyperintense areas at 3 months, clearing almost completely by 6 months. Our study suggests that synergistic venous assessment with combined NC-MRV and MR-DTI is able to distinguish acute venous thrombosis from the established (old) or evolving DVT detected by ultrasound. • MRI can distinguish between acute and evolving or chronic lower limb DVT • Two advanced MRI techniques can follow the evolution of lower limb DVT • MRI could be used to avoid an incorrect diagnosis of recurrent DVT • MRI could help avoid the risks and complications of lifelong anticoagulation therapy.
Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation
NASA Astrophysics Data System (ADS)
Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.
2017-11-01
In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.
Severity Summarization and Just in Time Alert Computation in mHealth Monitoring.
Pathinarupothi, Rahul Krishnan; Alangot, Bithin; Rangan, Ekanath
2017-01-01
Mobile health is fast evolving into a practical solution to remotely monitor high-risk patients and deliver timely intervention in case of emergencies. Building upon our previous work on a fast and power efficient summarization framework for remote health monitoring applications, called RASPRO (Rapid Alerts Summarization for Effective Prognosis), we have developed a real-time criticality detection technique, which ensures meeting physician defined interventional time. We also present the results from initial testing of this technique.
Hybrid learning in signalling games
NASA Astrophysics Data System (ADS)
Barrett, Jeffrey A.; Cochran, Calvin T.; Huttegger, Simon; Fujiwara, Naoki
2017-09-01
Lewis-Skyrms signalling games have been studied under a variety of low-rationality learning dynamics. Reinforcement dynamics are stable but slow and prone to evolving suboptimal signalling conventions. A low-inertia trial-and-error dynamical like win-stay/lose-randomise is fast and reliable at finding perfect signalling conventions but unstable in the context of noise or agent error. Here we consider a low-rationality hybrid of reinforcement and win-stay/lose-randomise learning that exhibits the virtues of both. This hybrid dynamics is reliable, stable and exceptionally fast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.
2016-01-01
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...
2016-01-18
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer
NASA Astrophysics Data System (ADS)
Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz
2015-12-01
In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.
Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.
Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D
2017-01-01
Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.
Programmed coherent coupling in a synthetic DNA-based excitonic circuit
NASA Astrophysics Data System (ADS)
Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark
2018-02-01
Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.
Nonlinear observers with linearizable error dynamics
NASA Technical Reports Server (NTRS)
Krener, A. J.; Respondek, W.
1985-01-01
A new method for designing asymptotic observers for a class of nonlinear systems is presented. The error between the state of the systems and the state of the observer in appropriate coordinates evolves linearly and can be made to decay aribtrarily exponentially fast.
Diverticular Disease: Traditional and Evolving Paradigms.
Lamanna, Lenore; Moran, Patricia E
Diverticular disease includes diverticulosis, which are sac protrusions of the intestinal mucosa, and diverticulitis, inflammation of the diverticula. Diverticular disease is listed as one of the top 10 leading physician diagnoses for gastrointestinal disorders in outpatient clinic visits in the United States. There are several classifications of diverticular disease ranging from asymptomatic diverticulosis to diverticulitis with complications. Several theories are linked to the development of diverticula which includes the physiology of the colon itself, collagen cross-linking, and recently challenged, low-fiber intake. The differential diagnoses of lower abdominal pain in addition to diverticular disease have overlapping signs and symptoms, which can make a diagnosis challenging. Identification of the distinct signs and symptoms of each classification will assist the practitioner in making the correct diagnosis and lead to appropriate management. The findings from recent studies have changed the paradigm of diverticular disease. The purpose of this article is to discuss traditional dogma and evolving concepts in the pathophysiology, prevention, and management of diverticular disease. Practitioners must be knowledgeable about diverticular disease for improved outcomes.
Løvlien, Mona; Mundal, Liv; Hall-Lord, Marie-Louise
2017-04-01
To examine the relationship between leisure-time physical activity, health-related quality of life and sense of coherence in women after an acute myocardial infarction, and further to investigate whether these aspects were associated with age. Physical activity and health-related quality of life are vital aspects for patients after an acute myocardial infarction. Cross-sectional. All eligible women diagnosed with acute myocardial infarction received a postal questionnaire two to three months after hospital discharge, and 142 women were included. To measure health-related quality of life and sense of coherence, The MacNew Heart disease questionnaire and the Sense of coherence-13 scale was used. Respondents reporting at least one type of physical activity had significantly higher health-related quality of life as compared to respondents reporting no kind of physical activity. Respondents reporting physical activity for at least 30 minutes twice a week had significantly higher health-related quality of life scores than respondents being active less than twice a week. A weak association was found between physical activity level and sense of coherence. Reduction in physical activity after the acute myocardial infarction was associated with reduced health-related quality of life and sense of coherence. Sense of coherence was significantly associated with age, as respondents 75 years and older had significantly higher scores than respondents younger than 75 years. Physical activity, even at a low level, is significantly associated with increased health-related quality of life and to some extent to sense of coherence. Tailoring women after an acute myocardial infarction about lifestyle changes must include knowledge about the benefits of leisure-time physical activity, and that even a small amount of activity is associated with a better health-related quality of life. The utmost important assignment is to motivate the women for regular physical activity in their leisure-time. Older women need special attention. © 2016 John Wiley & Sons Ltd.
Concentric transmon qubit featuring fast tunability and site-selective Z coupling
NASA Astrophysics Data System (ADS)
Weides, Martin; Braumueller, Jochen; Sandberg, Martin; Vissers, Michael; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey; Pappas, David
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
Full accounting of diabetes and pre-diabetes in the U.S. population in 1988-1994 and 2005-2006.
Cowie, Catherine C; Rust, Keith F; Ford, Earl S; Eberhardt, Mark S; Byrd-Holt, Danita D; Li, Chaoyang; Williams, Desmond E; Gregg, Edward W; Bainbridge, Kathleen E; Saydah, Sharon H; Geiss, Linda S
2009-02-01
We examined the prevalences of diagnosed diabetes, and undiagnosed diabetes and pre-diabetes using fasting and 2-h oral glucose tolerance test values, in the U.S. during 2005-2006. We then compared the prevalences of these conditions with those in 1988-1994. In 2005-2006, the National Health and Nutrition Examination Survey included a probability sample of 7,267 people aged > or =12 years. Participants were classified according to glycemic status by interview for diagnosed diabetes and by fasting and 2-h glucoses measured in subsamples. In 2005-2006, the crude prevalence of total diabetes in people aged > or =20 years was 12.9%, of which approximately 40% was undiagnosed. In people aged > or =20 years, the crude prevalence of impaired fasting glucose was 25.7% and of impaired glucose tolerance was 13.8%, with almost 30% having either. Over 40% of individuals had diabetes or pre-diabetes. Almost one-third of the elderly had diabetes, and three-quarters had diabetes or pre-diabetes. Compared with non-Hispanic whites, age- and sex-standardized prevalence of diagnosed diabetes was approximately twice as high in non-Hispanic blacks (P < 0.0001) and Mexican Americans (P = 0.0001), whereas undiagnosed diabetes was not higher. Crude prevalence of diagnosed diabetes in people aged > or =20 years rose from 5.1% in 1988-1994 to 7.7% in 2005-2006 (P = 0.0001); this was significant after accounting for differences in age and sex, particularly in non-Hispanic blacks. Prevalences of undiagnosed diabetes and pre-diabetes were generally stable, although the proportion of total diabetes that was undiagnosed decreased in Mexican Americans. Over 40% of people aged > or =20 years have hyperglycemic conditions, and prevalence is higher in minorities. Diagnosed diabetes has increased over time, but other conditions have been relatively stable.
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.
2017-03-01
A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.
King, Carina; Colbourn, Tim; Mankhambo, Limangeni; Beard, James; Hay Burgess, Debbie C; Costello, Anthony; Izadnegahdar, Rasa; Lufesi, Norman; Mwansambo, Charles; Nambiar, Bejoy; Johnson, Eric S; Platt, Robert W; Mukanga, David; McCollum, Eric D
2016-11-16
Despite recent progress, pneumonia remains the largest infectious killer of children globally. This paper describes outcomes of not treating community-diagnosed fast-breathing pneumonia on patient recovery. We conducted an exploratory subanalysis of an observational prospective cohort study in Malawi. We recruited children (2-59 months) diagnosed by community health workers with fast-breathing pneumonia using WHO integrated community case management (iCCM) guidelines. Children were followed at days 5 and 14 with a clinical assessment of recovery. We conducted bivariate and multivariable logistic regression for the association between treatment of fast-breathing pneumonia and recovery, adjusting for potential confounders. We followed up 847 children, of whom 78 (9%) had not been given antibiotics (non-treatment). Non-treatment cases had higher baseline rates of diarrhoea, non-severe hypoxaemia and fever. Non-recovery (persistence or worsening of symptoms) was 13% and 23% at day 5 in those who did receive and those who did not receive co-trimoxazole. Non-recovery, when defined as worsening of symptoms only, at day 5 was 7% in treatment and 10% in non-treatment cases. For both definitions, combined co-trimoxazole and lumefantrine-artemether (LA) treatment trended towards protection (adjusted OR (aOR) 0.28; 95% CI 0.12 to 0.68/aOR 0.29; 95% CI 0.08 to 1.01). We found that children who did not receive co-trimoxazole treatment had worse clinical outcomes; malaria co-diagnosis and treatment also play a significant role in non-recovery. Further research into non-treatment of fast-breathing pneumonia, using a pragmatic approach with consideration for malaria co-diagnosis and HIV status is needed to guide refinement of community treatment algorithms in this region. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Manipulation of peripheral neural feedback loops alters human corticomuscular coherence
Riddle, C Nicholas; Baker, Stuart N
2005-01-01
Sensorimotor EEG shows ∼20 Hz coherence with contralateral EMG. This could involve efferent and/or afferent components of the sensorimotor loop. We investigated the pathways responsible for coherence genesis by manipulating nervous conduction delays using cooling. Coherence between left sensorimotor EEG and right EMG from three hand and two forearm muscles was assessed in healthy subjects during the hold phase of a precision grip task. The right arm was then cooled to 10°C for ∼90 min, increasing peripheral motor conduction time (PMCT) by ∼35% (assessed by F-wave latency). EEG and EMG recordings were repeated, and coherence recalculated. Control recordings revealed a heterogeneous subject population. In 6/15 subjects (Group A), the corticomuscular coherence phase increased linearly with frequency, as expected if oscillations were propagated along efferent pathways from cortex to muscle. The mean corticomuscular conduction delay for intrinsic hand muscles calculated from the phase–frequency regression slope was 10.4 ms; this is smaller than the delay expected for conduction over fast corticospinal pathways. In 8/15 subjects (Group B), the phase showed no dependence with frequency. One subject showed both Group A and Group B patterns over different frequency ranges. Following cooling, averaged corticomuscular coherence was decreased in Group A subjects, but unchanged for Group B, even though both groups showed comparable slowing of nervous conduction. The delay calculated from the slope of the phase–frequency regression was increased following cooling. However, the size of this increase was around twice the rise in PMCT measured using the F-wave (regression slope 2.33, 95% confidence limits 1.30–3.36). Both afferent and efferent peripheral nerves will be slowed by similar amounts following cooling. The change in delay calculated from the coherence phase therefore better matches the rise in total sensorimotor feedback loop time caused by cooling, rather than just the change in the efferent limb. A model of corticomuscular coherence which assumes that only efferent pathways contribute cannot be reconciled to these results. The data rather suggest that afferent feedback pathways may also play a role in the genesis of corticomuscular coherence. PMID:15919711
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuqing; Cai, Shuhui; Yang, Yu
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less
Montgelard, Claudine; Forty, Ellen; Arnal, Véronique; Matthee, Conrad A
2008-11-26
The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using approximately 7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea). The second suprafamilial clustering identified a novel association between the Sciuromorpha (Gliridae + (Sciuridae + Aplodontidae)) and the Hystricomorpha (Ctenodactylidae + Hystricognathi) which together represents the earliest dichotomy among Rodentia. Molecular time estimates using a relaxed Bayesian molecular clock dates the appearance of the five suborders nearly contemporaniously at the KT boundary and this is congruent with suggestions of an early explosion of rodent diversity. Based on these newly proposed phylogenetic relationships, the evolution of the zygomasseteric pattern that has been used for a long time in rodent systematics is evaluated.
2008-01-01
Background The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using ~7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Results Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). Conclusion The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea). The second suprafamilial clustering identified a novel association between the Sciuromorpha (Gliridae + (Sciuridae + Aplodontidae)) and the Hystricomorpha (Ctenodactylidae + Hystricognathi) which together represents the earliest dichotomy among Rodentia. Molecular time estimates using a relaxed Bayesian molecular clock dates the appearance of the five suborders nearly contemporaniously at the KT boundary and this is congruent with suggestions of an early explosion of rodent diversity. Based on these newly proposed phylogenetic relationships, the evolution of the zygomasseteric pattern that has been used for a long time in rodent systematics is evaluated. PMID:19036132
Coherence: A Novel Nonpharmacological Modality for Lowering Blood Pressure in Hypertensive Patients
2012-01-01
This study examined the efficacy of teaching emotional self-regulation techniques supported by heart rhythm coherence training (emWave Personal Stress Reliever) as a means to quickly lower blood pressure (BP) in patients diagnosed with hypertension. Previous studies have demonstrated systemic reductions in BP in both high stress populations and patients diagnosed with hypertension using this approach, but to the best of our knowledge, an investigation of their ability to produce immediate reductions in BP had not been published in the medical literature. The study was a randomized controlled design with 62 hypertensive participants who were divided into three groups. Group 1 was taking hypertensive medication, was taught self-regulation technique, and used heart rate variability coherence (HRVC) training devices. Group 2 was not yet taking medication and was trained in the same intervention. Group 3 was taking hypertensive medication but did not receive the intervention and was instructed to relax between the BP assessments. An analysis of covariates was conducted to compare the effectiveness of three different interventions on reducing the participants' BP. The use of the self-regulation technique and the HRVC-monitoring device was associated with a significantly greater reduction in mean arterial pressure in the two groups who used the intervention as compared with the relaxation-plus-medication group. Additionally, the group not taking medication that used the intervention also had a significantly greater reduction in systolic BP than the relaxation- plus-medication group. These results suggest that self-regulation techniques that incorporate the intentional generation of positive emotions to facilitate a shift into the psychophysiological coherence state are an effective approach to lowering BP. This approach to reducing BP should be considered a simple and effective approach that can easily be taught to patients to quickly lower their BP in stressful situations. The technique should be especially useful when hypertensive patients are experiencing stressful emotions or reactions to stressors. It is possible that the BP reductions associated with the use of the technique leads to a change in the physiological set-point for homeostatic regulation of BP. Further studies should examine if large scale implementations of such heart-based coherence techniques could have a significant impact on reducing risk of mortality and morbidity in hypertensive patients. PMID:24278819
Coherent manipulation of photons and electrons
NASA Astrophysics Data System (ADS)
Zhao, Lu
In modern physics, coherent manipulation of photons and electrons has been intensively studied, and may have important applications in classical and quantum information processing. In this dissertation, we consider some interesting schemes to realize photonic and electronic coherent manipulation. In order to coherently manipulate photons, electromagnetically induced transparency (EIT) systems have been widely adopted because the optical response of EIT systems can be controlled by the laser-induced atomic coherence. In the second chapter, we theoretically investigate image storage in hot-vapor EIT media. A so-called 4f system is adopted for imaging, and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of "light storage". We investigate how the stored diffraction pattern evolves under diffusion and discuss the essence of the stability of its dark spots. Our result indicates under appropriate conditions that an image can be reconstructed with high fidelity. The main reason for this procedure is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively. In the third chapter, we show theoretical evidence that EIT systems can function as optically addressed spatial light modulators with megahertz modulation rates. The transverse spatial properties of continuous-wave probe fields can be modulated rapidly using two-dimensional optical patterns. To exemplify our proposal, we study real-time generation and manipulation of Laguerre-Gaussian beams by means of phase or amplitude modulation using flat-top image-bearing pulse trains as coupling fields in low-cost hot-vapor EIT systems. In order to coherently manipulate electrons, we consider graphene systems, including single-layer graphene and bilayer graphene, which have recently attracted considerable attention. Due to the long coherence length and electrically tunable Fermi levels, electrons in graphene systems have some photon-like behaviors, and could be coherently manipulated. Therefore, in the fourth chapter, we theorize that at a sharp electrostatic step potential in graphene massless Dirac fermions can obtain Goos-Hanchen-like shifts under total internal reflection. Also, we study coherent propagation of the quasiparticles along a sharp graphene p-n-p waveguide, and derive novel dispersion relations for the guided modes. Consequently, coherent graphene-based devices, e.g., movable mirrors, buffers and memories, induced only by the electric field effects may be proposed. Finally, we theoretically investigate the coherent propagation of massive chiral fermions along a sharp bilayer graphene p-n-p waveguide, and indicate that the guided quasiparticles can be coherently slowed, stored and retrieved based on tunable electric field effects. Controlling group velocity in the bilayer graphene p-n-p waveguide is accomplished via interband tunneling through the p-n interfaces, and does not depend on the bandgap opening.
NASA Astrophysics Data System (ADS)
Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.
2016-02-01
Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.
Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent
2012-01-01
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292
Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent
2012-10-01
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.
High Temporal and Spatial Resolution Global GPS TEC Observations of the 2015 St. Patrick Day Storm
NASA Astrophysics Data System (ADS)
Vierinen, J.
2015-12-01
High spatiotemperal resolution global GPS TEC measurements of the 2015 St. Patrick's day storm are presented. The high resolution data is useful, as it clearly shows the high latitude convection patterns, the equatorward progression of the auroral region, the tongue of ionization, as well as the increased electron density in the equatorial anomaly region. The measurements are compared with high power large aperture radar and passive radar measurements of coherent and incoherent scatter at Millstone Hill. Regions of fast convection identified in the GPS TEC data are found to coincide with coherent scatter in both radar data. Convection velocities determined from GPS TEC are compared with those obtained from incoherent scatter radar measurements.
Optical imaging modalities: From design to diagnosis of skin cancer
NASA Astrophysics Data System (ADS)
Korde, Vrushali Raj
This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third portion of this study. OCM is a high resolution en-face imaging modality. It is a hybrid system that combines the principles of confocal microscopy with coherence gating to provide an increased imaging depth. It can also be described as an OCT system with a high NA objective. Similar to OCT, the axial resolution is determined by the source center wavelength and bandwidth. The NA of the sample arm optics determines the lateral resolution, usually on the order of 1-5 mum. My effort on this system was to develop a handheld endoscope. To my knowledge, an OCM endoscope has not been developed prior to this work. An image of skin was taken as a proof of concept. This rigid handheld OCM endoscope will be useful for applications ranging from minimally invasive surgical imaging to non-invasively assessing dysplasia and sun damage in skin.
Bayesian reconstruction of gravitational wave bursts using chirplets
NASA Astrophysics Data System (ADS)
Millhouse, Margaret; Cornish, Neil J.; Littenberg, Tyson
2018-05-01
The LIGO-Virgo Collaboration uses a variety of techniques to detect and characterize gravitational waves. One approach is to use templates—models for the signals derived from Einstein's equations. Another approach is to extract the signals directly from the coherent response of the detectors in the LIGO-Virgo network. Both approaches played an important role in the first gravitational wave detections. Here we extend the BayesWave analysis algorithm, which reconstructs gravitational wave signals using a collection of continuous wavelets, to use a generalized wavelet family, known as chirplets, that have time-evolving frequency content. Since generic gravitational wave signals have frequency content that evolves in time, a collection of chirplets provides a more compact representation of the signal, resulting in more accurate waveform reconstructions, especially for low signal-to-noise events, and events that occupy a large time-frequency volume.
2012-01-01
Background The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Methods Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Results Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Conclusions Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks. PMID:22730909
NASA Astrophysics Data System (ADS)
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J. F.; Chen, Zhongping
2009-11-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens-based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology.
Composite pulses for interferometry in a thermal cold atom cloud
NASA Astrophysics Data System (ADS)
Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim
2014-09-01
Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.
Coherent dynamics of a telecom-wavelength entangled photon source.
Ward, M B; Dean, M C; Stevenson, R M; Bennett, A J; Ellis, D J P; Cooper, K; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J
2014-01-01
Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell's inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J F; Chen, Zhongping
2009-01-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens-based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology.
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J.F.; Chen, Zhongping
2009-01-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens–based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology. PMID:20059258
Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona
NASA Astrophysics Data System (ADS)
Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong
2018-04-01
The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.
Ultracoherent operation of spin qubits with superexchange coupling
NASA Astrophysics Data System (ADS)
Rančić, Marko J.; Burkard, Guido
2017-11-01
With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.
Trends in optical coherence tomography applied to medical imaging
NASA Astrophysics Data System (ADS)
Podoleanu, Adrian G.
2014-01-01
The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.
2013-01-01
The impact of the Fast Track intervention on externalizing disorders across childhood was examined. Eight hundred-ninety-one early-starting children (69% male; 51% African American) were randomly assigned by matched sets of schools to intervention or control conditions. The 10-year intervention addressed parent behavior-management, child social cognitive skills, reading, home visiting, mentoring, and classroom curricula. Outcomes included psychiatric diagnoses after grades 3, 6, 9, and 12 for conduct disorder, oppositional defiant disorder, attention deficit hyperactivity disorder, and any externalizing disorder. Significant interaction effects between intervention and initial risk level indicated that intervention prevented the lifetime prevalence of all diagnoses, but only among those at highest initial risk, suggesting that targeted intervention can prevent externalizing disorders to promote the raising of healthy children. PMID:21291445
Coherence and Divergence of Megatrends in Science and Engineering
NASA Astrophysics Data System (ADS)
Roco, M. C.
2002-04-01
Scientific discoveries and technological innovations are at the core of human endeavor, and it is estimated that their role will only increase in time. Such advancements evolve in coherence, with areas of confluence and temporary divergences, which bring synergism and that stimulate further developments following in average an exponential growth. Six increasingly interconnected megatrends are perceived as dominating the scene for the next decades: (a) information and computing, (b) nanoscale science and engineering (S&E), (c) biology and bio-environmental approaches, (d) medical sciences and enhancing human physical capabilities, (e) cognitive sciences and enhancing intellectual abilities, and (f) collective behavior and system approach. This paper presents a perspective on the process of identification, planning and program implementation of S&E megatrends, with illustration for the US research initiative on nanoscale science, engineering, and technology. The interplay between coherence and divergence, leading to unifying science and converging technologies, does not develop only among simultaneous scientific trends but also along time and across geopolitical boundaries. There is no single way of development of S&E, and here is the role of taking visionary measures. Societal implication scientists need to be involved from the conceptual phase of a program responding to a S&E megatrend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. S.; Nakae, L. F.; Prasad, M. K.
Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutronsmore » in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.« less
Böni, Christian; Al-Sheikh, Mayss; Hasse, Barbara; Eberhard, Roman; Kohler, Philipp; Hasler, Pascal; Erb, Stefan; Hoffmann, Matthias; Barthelmes, Daniel; Zweifel, Sandrine A
2017-12-04
To explore morphologic characteristics of choroidal lesions in patients with disseminated Mycobacterium chimaera infection subsequent to open-heart surgery. Nine patients (18 eyes) with systemic M. chimaera infection were reviewed. Activity of choroidal lesions were evaluated using biomicroscopy, fundus autofluorescence, enhanced depth imaging optical coherence tomography, fluorescein angiography/indocyanine green angiography, and optical coherence tomography angiography. Relationships of choroidal findings to systemic disease activity were sought. All 9 male patients, aged between 49 and 66 years, were diagnosed with endocarditis and/or aortic graft infection. Mean follow-up was 17.6 months. Four patients had only inactive lesions (mild disease). In all five patients (10 eyes) with progressive ocular disease, indocyanine green angiography was superior to other tests for revealing new lesions and active lesions correlated with hyporeflective choroidal areas on enhanced depth imaging optical coherence tomography. One eye with a large choroidal granuloma developed choroidal neovascularization. Optical coherence tomography angiography showed areas with reduced perfusion at the inner choroid. All 5 patients with progressive ocular disease had evidence of systemic disease activity within ±6 weeks' duration. Choroidal manifestation of disseminated M. chimaera infection indicates systemic disease activity. Multimodal imaging is suitable to recognize progressive ocular disease. We propose ophthalmologic screening examinations for patients with M. chimaera infection.
Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, S.N.
1992-12-31
This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.
Tangled nature: a model of evolutionary ecology.
Christensen, Kim; di Collobiano, Simone A; Hall, Matt; Jensen, Henrik J
2002-05-07
We discuss a simple model of co-evolution. In order to emphasize the effect of interaction between individuals, the entire population is subjected to the same physical environment. Species are emergent structures and extinction, origination and diversity are entirely a consequence of co-evolutionary interaction between individuals. For comparison, we consider both asexual and sexually reproducing populations. In either case, the system evolves through periods of hectic reorganization separated by periods of coherent stable coexistence. Copyright 2002 Elsevier Science Ltd. All rights reserved.
Singh, Arvind Kumar; Mani, Kalaivani; Krishnan, Anand; Aggarwal, Praveen; Gupta, Sanjeev Kumar
2012-10-01
The increasing proportion of elderly persons is contributing to an increase in the prevalence of diabetes. The residents of urban slums are more vulnerable due to poverty and lack of access to health care. To estimate the prevalence of diabetes in elderly persons in an urban slum and to assess their awareness, treatment and control of this condition. All persons aged 60 years and above, residing in an urban slum of Delhi, were included in this cross-sectional community- based study. Data were collected on sociodemographic variables. The participants' awareness and treatment of diabetes was recorded. Their fasting blood sugar was estimated using an automated glucometer. Diabetes was diagnosed if fasting blood glucose was ≥126 mg/dL, or if the participant was taking treatment for diabetes. Impaired fasting blood glucose was diagnosed if fasting blood glucose was 110-125 mg/dL. Among the 474 participants studied, the prevalence of diabetes was estimated to be 18.8% (95% CI 15.3-21.5). It decreased with increasing age, and was higher among women. The prevalence of impaired fasting blood glucose was 19.8% (95% CI 16.3-23.7). It was higher among women. One-third of the diabetic participants were aware of their condition; two-thirds of these were on treatment and three-fourths of those on treatment had controlled fasting blood sugar level. The awareness, treatment and control were better among women. Diabetes is common among elderly persons in urban slums. Its magnitude and low awareness warrant effective public health interventions for their treatment and control.
Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E
2013-11-01
Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies.
... There are many types of NHL. One classification (grouping) is by how fast the cancer spreads. The ... The stage when you are first diagnosed Your age and overall health Symptoms, including weight loss, fever, ...
NASA Astrophysics Data System (ADS)
Lee, Hong-Yi; Chen, Ping-Hsien; Lee, Tzu-Han; Chang, Kuo-Wei; Kuo, Wen-Chuan
2018-02-01
Oral cancer is the 11th most common cancer worldwide, especially in a male adult. The median age of death in oral cancer was 55 years, 10-20 years earlier than other cancers. Presently, oral cancer is often found in late stage, because the lesion is often flat in early stage and is difficult to diagnose under traditional white light imaging. The only definitive method for determining cancer is an invasive biopsy and then using histology examination. How to detect precancerous lesions or early malignant lesions is an important issue for improving prognosis of oral cancer. Optical coherence tomography (OCT) is a new optical tool for diagnosing early malignant lesions in the skin or gastrointestinal tract recently. Here we report a new method for detecting precancerous or early malignant oral lesions by using swept source polarization-sensitive optical coherence tomography (PS-OCT) with center-wavelength 1310 nm, bandwidth 110 nm and 100 kHz swept rate. We used all single-mode fiber design to detect the change of birefringence information in the epithelium structure. This system has an advantage that enables measurement of backscattered intensity and birefringence simultaneously with only one A-scan per transverse location. In preliminary result, we computed the slope of the every A-scan signal in tissue part using a linear-curve fitting in backscattered intensity and birefringence on the enface. In this research, we used an oral cancer mice model for observing the change of structure and birefringence properties in different stages of oral cancer mice. We presented the parametric enface imaging that can detect the early oral malignant lesions.
Robles, Lourdes Y; Singh, Satish; Fisichella, Piero Marco
2015-05-15
Despite advances in diagnoses and therapy, esophageal adenocarcinoma remains a highly lethal neoplasm. Hence, a great interest has been placed in detecting early lesions and in the detection of Barrett esophagus (BE). Advanced imaging technologies of the esophagus have then been developed with the aim of improving biopsy sensitivity and detection of preplastic and neoplastic cells. The purpose of this article was to review emerging imaging technologies for esophageal pathology, spectroscopy, confocal laser endomicroscopy (CLE), and optical coherence tomography (OCT). We conducted a PubMed search using the search string "esophagus or esophageal or oesophageal or oesophagus" and "Barrett or esophageal neoplasm" and "spectroscopy or optical spectroscopy" and "confocal laser endomicroscopy" and "confocal microscopy" and "optical coherence tomography." The first and senior author separately reviewed all articles. Our search identified: 19 in vivo studies with spectroscopy that accounted for 1021 patients and 4 ex vivo studies; 14 clinical CLE in vivo studies that accounted for 941 patients and 1 ex vivo study with 13 patients; and 17 clinical OCT in vivo studies that accounted for 773 patients and 2 ex vivo studies. Human studies using spectroscopy had a very high sensitivity and specificity for the detection of BE. CLE showed a high interobserver agreement in diagnosing esophageal pathology and an accuracy of predicting neoplasia. We also found several clinical studies that reported excellent diagnostic sensitivity and specificity for the detection of BE using OCT. Advanced imaging technology for the detection of esophageal lesions is a promising field that aims to improve the detection of early esophageal lesions. Although advancing imaging techniques improve diagnostic sensitivities and specificities, their integration into diagnostic protocols has yet to be perfected. Copyright © 2015 Elsevier Inc. All rights reserved.
Study on diagnosis of micro-biomechanical structure using optical coherence tomography
NASA Astrophysics Data System (ADS)
Saeki, Souichi; Hashimoto, Youhei; Saito, Takashi; Hiro, Takafumi; Matsuzaki, Masunori
2007-02-01
Acute coronary syndromes, e.g. myocardial infarctions, are caused by the rupture of unstable plaques on coronary arteries. The stability of plaque, which depends on biomechanical properties of fibrous cap, should be diagnosed crucially. Recently, Optical Coherence Tomography (OCT) has been developed as a cross-sectional imaging method of microstructural biological tissue with high resolution 1~10 μm. Multi-functional OCT system has been promising, e.g. an estimator of biomechanical characteristics. It has been, however, difficult to estimate biomechanical characteristics, because OCT images have just speckle patterns by back-scattering light from tissue. In this study, presented is Optical Coherence Straingraphy (OCS) on the basis of OCT system, which can diagnose tissue strain distribution. This is basically composed of Recursive Cross-correlation technique (RC), which can provide a displacement vector distribution with high resolution. Furthermore, Adjacent Cross-correlation Multiplication (ACM) is introduced as a speckle noise reduction method. Multiplying adjacent correlation maps can eliminate anomalies from speckle noise, and then can enhance S/N in the determination of maximum correlation coefficient. Error propagation also can be further prevented by introducing to the recursive algorithm (RC). In addition, the spatial vector interpolation by local least square method is introduced to remove erroneous vectors and smooth the vector distribution. This was numerically applied to compressed elastic heterogeneous tissue samples to carry out the accuracy verifications. Consequently, it was quantitatively confirmed that its accuracy of displacement vectors and strain matrix components could be enhanced, comparing with the conventional method. Therefore, the proposed method was validated by the identification of different elastic objects with having nearly high resolution for that defined by optical system.
Inoue, Maiko; Jung, Jesse J; Balaratnasingam, Chandrakumar; Dansingani, Kunal K; Dhrami-Gavazi, Elona; Suzuki, Mihoko; de Carlo, Talisa E; Shahlaee, Abtin; Klufas, Michael A; El Maftouhi, Adil; Duker, Jay S; Ho, Allen C; Maftouhi, Maddalena Quaranta-El; Sarraf, David; Freund, K Bailey
2016-07-01
To determine the sensitivity of the combination of optical coherence tomography angiography (OCTA) and structural optical coherence tomography (OCT) for detecting type 1 neovascularization (NV) and to determine significant factors that preclude visualization of type 1 NV using OCTA. Multicenter, retrospective cohort study of 115 eyes from 100 patients with type 1 NV. A retrospective review of fluorescein (FA), OCT, and OCTA imaging was performed on a consecutive series of eyes with type 1 NV from five institutions. Unmasked graders utilized FA and structural OCT data to determine the diagnosis of type 1 NV. Masked graders evaluated FA data alone, en face OCTA data alone and combined en face OCTA and structural OCT data to determine the presence of type 1 NV. Sensitivity analyses were performed using combined FA and OCT data as the reference standard. A total of 105 eyes were diagnosed with type 1 NV using the reference. Of these, 90 (85.7%) could be detected using en face OCTA and structural OCT. The sensitivities of FA data alone and en face OCTA data alone for visualizing type 1 NV were the same (66.7%). Significant factors that precluded visualization of NV using en face OCTA included the height of pigment epithelial detachment, low signal strength, and treatment-naïve disease (P < 0.05, respectively). En face OCTA and structural OCT showed better detection of type 1 NV than either FA alone or en face OCTA alone. Combining en face OCTA and structural OCT information may therefore be a useful way to noninvasively diagnose and monitor the treatment of type 1 NV.
Grodzinsky, Ewa; Walter, Susanna; Viktorsson, Lisa; Carlsson, Ann-Kristin; Jones, Michael P; Faresjö, Åshild
2015-01-28
Irritable Bowel Syndrome (IBS) is a chronic, relapsing gastrointestinal disorder, that affects approximately 10% of the general population and the majority are diagnosed in primary care. IBS has been reported to be associated with altered psychological and cognitive functioning such as mood disturbances, somatization, catastrophizing or altered visceral interoception by negative emotions and stress. The aim was to investigate the psychosocial constructs of self-esteem and sense of coherence among IBS patients compared to non-IBS patients in primary care. A case-control study in primary care setting among IBS patients meeting the ROME III criteria (n = 140) compared to controls i.e. non-IBS patients (n = 213) without any present or previous gastrointestinal complaints. The data were collected through self-reported questionnaires of psychosocial factors. IBS-patients reported significantly more negative self-esteem (p < 0.001), lower scores for positive self-esteem (p < 0.001), and lower sense of coherence (p < 0.001) than the controls. The IBS-cases were also less likely to report 'good' health status (p < 0.001) and less likely to report a positive belief in the future (p < 0.001). After controlling for relevant confounding factors in multiple regressions, the elevation in negative self-esteem among IBS patients remained statistically significant (p = 0.02), as did the lower scores for sense of coherence among IBS cases (p = 0.04). The more frequently reported negative self-esteem and inferior coping strategies among IBS patients found in this study suggest the possibility that psychological therapies might be helpful for these patients. However these data do not indicate the causal direction of the observed associations. More research is therefore warranted to determine whether these psychosocial constructs are more frequent in IBS patients.
NASA Astrophysics Data System (ADS)
Blavier, Marie; Blanco, Leonardo; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Mugnier, Laurent; Chènegros, Guillaume; Rousset, Gérard; Lacombe, François; Pâques, Michel; Le Gargasson, Jean-François; Sahel, José-Alain
2009-02-01
Retinal pathologies, like ARMD or glaucoma, need to be early detected, requiring imaging instruments with resolution at a cellular scale. However, in vivo retinal cells studies and early diagnoses are severely limited by the lack of resolution on eye-fundus images from classical ophthalmologic instruments. We built a 2D retina imager using Adaptive Optics to improve lateral resolution. This imager is currently used in clinical environment. We are currently developing a time domain full-field optical coherence tomograph. The first step was to conceive the images reconstruction algorithms and validation was realized on non-biological samples. Ex vivo retina are currently being imaged. The final step will consist in coupling both setups to acquire high resolution retina cross-sections.
Syphilitic posterior placoid chorioretinitis as initial presentation of early neurosyphilis.
Molina-Sócola, F E; López-Herrero, F; Medina-Tapia, A; Rueda-Rueda, T; Contreras-Díaz, M; Sánchez-Vicente, J L
2017-10-01
A 36 year-old male with a recent HIV diagnosis, presented with loss of vision of his left eye. Ophthalmoscopy revealed a unilateral yellowish placoid lesion in the macula. After fluorescein angiography, optical coherence tomography, optical coherence tomography angiography, syphilis serology, and cerebrospinal fluid results, he was diagnosed with neurosyphilis and syphilitic posterior placoid chorioretinitis. Acute syphilitic posterior placoid chorioretinitis is a rare ocular manifestation of syphilis. All patients with characteristic clinical and angiographic findings of acute syphilitic posterior placoid chorioretinitis should be tested for a neurosyphilis and human immunodeficiency virus co-infection. Early treatment with intravenous penicillin is usually effective with good visual results. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.
Spectral domain optical coherence tomography in Celestone® retinal toxicity.
Marticorena-Álvarez, P; González Guijarro, J
2016-03-01
After inadvertent intravitreal injection of Celestone® (betamethasone sodium phosphate and acetate, benzalkonium chloride) in a patient, the macular spectral domain optical coherence tomography (SD-OCT) images showed hyper-reflectivity, thinning, and irregular spikes in the inner retinal layers. These early findings could explain the toxic secondary anatomical changes due to the drug itself and/or to its excipients. Late and permanent SD-OCT findings included changes in the ellipsoid zone and cystic-like spaces. In this case, SD-OCT images can help to better understand the pathophysiology of the retinal damage and to diagnose the associated complications, providing information with prognostic value. Copyright © 2015 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
Operational Characteristics and Plasma Measurements in a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Best, S.; Rose, M. F.; Miller, R.; Owens, T.
2008-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In this paper, we present measurements aimed at quantifying the thruster's overall operational characteristics and providing additional insight into the nature of operation. Measurements of the terminal current and voltage characteristics during the pulse help quantify the output of the pulsed power train driving the acceleration coil. A fast ionization gauge is used to measure the evolution of the neutral gas distribution in the accelerator prior to a pulse. The preionization process is diagnosed by monitoring light emission from the gas using a photodiode, and a time-resolved global view of the evolving, accelerating current sheet is obtained using a fast-framing camera. Local plasma and field measurements are obtained using an array of intrusive probes. The local induced magnetic field and azimuthal current density are measured using B-dot probes and mini-Rogowski coils, respectively. Direct probing of the number density and electron temperature is performed using a triple probe.
NASA Technical Reports Server (NTRS)
Cohn, S. E.
1982-01-01
Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.
Keppner, Eva M; Jarau, Stefan
2016-10-01
Stingless bees have evolved several ways to share contested resources to ensure the coexistence between different species. Partamona orizabaensis quickly exploits food sources by fast and direct recruitment that does not rely on scent marks deposited on substrates. In this study we show that the flight activity of P. orizabaensis is influenced by weather conditions, with higher activity during periods of colder temperatures, higher relative humidity and even during rainfall. We showed that the outcome of aggression experiments between the non-aggressive species P. orizabaensis and its aggressive competitor Trigona fuscipennis is influenced by the number of bees that arrive early after food source discovery. Therefore, the increased activity during less favorable weather conditions and the fast recruitment of nestmates following the discovery of a food source, as observed for P. orizabaensis, may be adaptations that evolved to coexist even with more aggressive and dominant species of stingless bees, with which P. orizabaensis has to compete for resources.
Kamm, Gretel B.; López-Leal, Rodrigo; Lorenzo, Juan R.; Franchini, Lucía F.
2013-01-01
The developmental brain gene NPAS3 stands out as a hot spot in human evolution because it contains the largest number of human-specific, fast-evolving, conserved, non-coding elements. In this paper we studied 2xHAR142, one of these elements that is located in the fifth intron of NPAS3. Using transgenic mice, we show that the mouse and chimp 2xHAR142 orthologues behave as transcriptional enhancers driving expression of the reporter gene lacZ to a similar NPAS3 expression subdomain in the mouse central nervous system. Interestingly, the human 2xHAR142 orthologue drives lacZ expression to an extended expression pattern in the nervous system. Thus, molecular evolution of 2xHAR142 provides the first documented example of human-specific heterotopy in the forebrain promoted by a transcriptional enhancer and suggests that it may have contributed to assemble the unique properties of the human brain. PMID:24218632
Subjects with impaired fasting glucose: evolution in a period of 6 years.
Leiva, E; Mujica, V; Orrego, R; Wehinger, S; Soto, A; Icaza, G; Vásquez, M; Díaz, L; Andrews, M; Arredondo, M
2014-01-01
To study the evolution of impaired fasting glucose (IFG), considering glucose and HbA1c levels and risk factors associated, in a period of 6 years. We studied 94 subjects with impaired fasting glucose (IFG) that were diagnosed in 2005 and followed up to 2012. Glucose and HbA1c levels were determined. A descriptive analysis of contingence charts was performed in order to study the evolution in the development of type-2 diabetes mellitus (T2DM). Twenty-eight of ninety-four subjects became T2DM; 51/94 remained with IFG; and 20/94 presented normal fasting glucose. From the 28 diabetic subjects, 9 had already developed diabetes and were under treatment with oral hypoglycemic agents; 5 were diagnosed with plasma glucose < 126 mg/dL, but with HbA1c over 6.5%. In those who developed diabetes, 15/28 had a family history of T2DM in first relative degree. Also, diabetic subjects had a BMI significantly higher than nodiabetics (t test: P < 0.01). The individuals that in 2005 had the highest BMI are those who currently have diabetes. The IFG constitutes a condition of high risk of developing T2DM in a few years, especially over 110 mg/dL and in obesity patients.
Connectivity is a Poor Indicator of Fast Quantum Search
NASA Astrophysics Data System (ADS)
Meyer, David A.; Wong, Thomas G.
2015-03-01
A randomly walking quantum particle evolving by Schrödinger's equation searches on d -dimensional cubic lattices in O (√{N }) time when d ≥5 , and with progressively slower runtime as d decreases. This suggests that graph connectivity (including vertex, edge, algebraic, and normalized algebraic connectivities) is an indicator of fast quantum search, a belief supported by fast quantum search on complete graphs, strongly regular graphs, and hypercubes, all of which are highly connected. In this Letter, we show this intuition to be false by giving two examples of graphs for which the opposite holds true: one with low connectivity but fast search, and one with high connectivity but slow search. The second example is a novel two-stage quantum walk algorithm in which the walking rate must be adjusted to yield high search probability.
Completed Ulnar Shaft Stress Fracture in a Fast-Pitch Softball Pitcher.
Wiltfong, Roger E; Carruthers, Katherine H; Popp, James E
2017-03-01
Stress fractures of the upper extremity have been previously described in the literature, yet reports of isolated injury to the ulna diaphysis or olecranon are rare. The authors describe a case involving an 18-year-old fast-pitch softball pitcher. She presented with a long history of elbow and forearm pain, which was exacerbated during a long weekend of pitching. Her initial physician diagnosed her as having forearm tendinitis. She was treated with nonsurgical means including rest, anti-inflammatory medications, therapy, and kinesiology taping. She resumed pitching when allowed and subsequently had an acute event immediately ceasing pitching. She presented to an urgent care clinic that evening and was diagnosed as having a complete ulnar shaft fracture subsequently needing surgical management. This case illustrates the need for a high degree of suspicion for ulnar stress fractures in fast-pitch soft-ball pitchers with an insidious onset of unilateral forearm pain. Through early identification and intervention, physicians may be able to reduce the risk of injury progression and possibly eliminate the need for surgical management. [Orthopedics. 2017; 40(2):e360-e362.]. Copyright 2016, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinilhaq,; Widita, Rena
2014-09-30
Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less
Language Research Sponsored by ONR
1993-01-01
skill in diagnosing problems with an avionics test station, an Air Force project. The existing tutor has been evaluated in workplace training and...of the same term. Comments on text coherence could then be derived. In conjunction with a project to develop a system to aid the authors of Navy...on the development of a text critiquing system that might enhance the capabilities of AIM. Kieras reviewed the psycholinguistic research literature
High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle
Le Van Quyen, Michel; Muller, Lyle E.; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G.; Dehghani, Nima; Destexhe, Alain
2016-01-01
Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake–sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS. PMID:27482084
High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.
Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain
2016-08-16
Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.
Fast track lunar NTR systems assessment for the First Lunar Outpost and its evolvability to Mars
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Alexander, Stephen W.
1992-01-01
The objectives of the 'fast track' lunar Nuclear Thermal Rocket (NTR) analysis are to quantify necessary engine/stage characteristics to perform NASA's 'First Lunar Outpost' scenario and to assess the potential for evolution to Mars mission applications. By developing NTR/stage technologies for use in NASA's 'First Lunar Outpost' scenario, NASA will make a major down payment on the key components needed for the follow-on Mars Space Transportation System. A faster, cheaper approach to overall lunar/Mars exploration is expected.
Muktiono, B; Schulten, C; Heemken, O; Gandrass, J; Prange, A; Schnabl, H; Cerboncini, C
2008-02-01
Protein extracts of photosystem II were prepared from leaf chloroplasts of different plant species by fast and nondenaturing methods. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis of the proteins obtained showed that the extracts were enriched by D1 proteins, which appeared putatively in association with the 33-kDa oxygen-evolving-complex subunits. In further isolation steps D1 proteins were purified using salt-gradient chromatography (fast protein liquid chromatography) and characterized by western blot and mass spectrometry.
Diagnosis of Diabetes and Prediabetes
... What tests are used to diagnose diabetes and prediabetes? Health care professionals most often use the fasting ... numbers tell me if I have diabetes or prediabetes? Each test to detect diabetes and prediabetes uses ...
Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.
2016-11-15
An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density,more » and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.« less
Image processing for grazing incidence fast atom diffraction
NASA Astrophysics Data System (ADS)
Debiossac, Maxime; Roncin, Philippe
2016-09-01
Grazing incidence fast atom diffraction (GIFAD, or FAD) has developed as a surface sensitive technique. Compared with thermal energies helium diffraction (TEAS or HAS), GIFAD is less sensitive to thermal decoherence but also more demanding in terms of surface coherence, the mean distance between defects. Such high quality surfaces can be obtained from freshly cleaved crystals or in a molecular beam epitaxy (MBE) chamber where a GIFAD setup has been installed allowing in situ operation. Based on recent publications by Atkinson et al. (2014) and Debiossac et al. (2014), the paper describes in detail the basic steps needed to measure the relative intensities of the diffraction spots. Care is taken to outline the underlying physical assumptions.
Fast breeder reactor protection system
van Erp, J.B.
1973-10-01
Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)
NASA Astrophysics Data System (ADS)
Maes, C.; Asbóth, J. K.; Ritsch, H.
2007-05-01
We study the dynamics of a fast gaseous beam in a high Q ring cavity counter propagating a strong pump laser with large detuning from any particle optical resonance. As spontaneous emission is strongly suppressed the particles can be treated as polarizable point masses forming a dynamic moving mirror. Above a threshold intensity the particles exhibit spatial periodic ordering enhancing collective coherent backscattering which decelerates the beam. Based on a linear stability analysis in their accelerated rest frame we derive analytic bounds for the intensity threshold of this selforganization as a function of particle number, average velocity, kinetic temperature, pump detuning and resonator linewidth. The analytical results agree well with time dependent simulations of the N-particle motion including field damping and spontaneous emission noise. Our results give conditions which may be easily evaluated for stopping and cooling a fast molecular beam.
Maes, C; Asbóth, J K; Ritsch, H
2007-05-14
We study the dynamics of a fast gaseous beam in a high Q ring cavity counter propagating a strong pump laser with large detuning from any particle optical resonance. As spontaneous emission is strongly suppressed the particles can be treated as polarizable point masses forming a dynamic moving mirror. Above a threshold intensity the particles exhibit spatial periodic ordering enhancing collective coherent backscattering which decelerates the beam. Based on a linear stability analysis in their accelerated rest frame we derive analytic bounds for the intensity threshold of this selforganization as a function of particle number, average velocity, kinetic temperature, pump detuning and resonator linewidth. The analytical results agree well with time dependent simulations of the N-particle motion including field damping and spontaneous emission noise. Our results give conditions which may be easily evaluated for stopping and cooling a fast molecular beam.
NASA Astrophysics Data System (ADS)
Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.
2018-01-01
We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.
A single-atom quantum memory in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freer, Solomon; Simmons, Stephanie; Laucht, Arne
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less
A single-atom quantum memory in silicon
Freer, Solomon; Simmons, Stephanie; Laucht, Arne; ...
2017-03-20
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less
Design of a gap tunable flux qubit with FastHenry
NASA Astrophysics Data System (ADS)
Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo
2016-12-01
In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).
Scheffzük, Claudia; Kukushka, Valeriy I.; Vyssotski, Alexei L.; Draguhn, Andreas
2011-01-01
Background The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to long-range slow oscillations. It is likely that such cross-frequency coupling supports specific tasks including behavioural choice and working memory. Principal Findings We analyzed temporal coupling between high-frequency oscillations and EEG theta activity (4–12 Hz) in recordings from mouse parietal neocortex. Theta was exclusively present during active wakefulness and REM-sleep. Fast oscillations occurred in two separate frequency bands: gamma (40–100 Hz) and fast gamma (120–160 Hz). Theta, gamma and fast gamma were more prominent during active wakefulness as compared to REM-sleep. Coupling between theta and the two types of fast oscillations, however, was more pronounced during REM-sleep. This state-dependent cross-frequency coupling was particularly strong for theta-fast gamma interaction which increased 9-fold during REM as compared to active wakefulness. Theta-gamma coupling increased only by 1.5-fold. Significance State-dependent cross-frequency-coupling provides a new functional characteristic of REM-sleep and establishes a unique property of neocortical fast gamma oscillations. Interactions between defined patterns of slow and fast network oscillations may serve selective functions in sleep-dependent information processing. PMID:22163023
ERIC Educational Resources Information Center
Townsend, Drue
2007-01-01
In years past, pencils and paper, chalk and chalkboards were common sights on school campuses. Fast forward to 2007--personal laptops, PDAs and PowerPoint presentations are the communication tools of choice. The traditional images that came to mind when remembering one's school days are no longer. Evolving technology and innovations in school…
NASA Astrophysics Data System (ADS)
Miller, Steven
1998-03-01
A generic stochastic method is presented that rapidly evaluates numerical bulk flux solutions to the one-dimensional integrodifferential radiative transport equation, for coherent irradiance of optically anisotropic suspensions of nonspheroidal bioparticles, such as blood. As Fermat rays or geodesics enter the suspension, they evolve into a bundle of random paths or trajectories due to scattering by the suspended bioparticles. Overall, this can be interpreted as a bundle of Markov trajectories traced out by a "gas" of Brownian-like point photons being scattered and absorbed by the homogeneous distribution of uncorrelated cells in suspension. By considering the cumulative vectorial intersections of a statistical bundle of random trajectories through sets of interior data planes in the space containing the medium, the effective equivalent information content and behavior of the (generally unknown) analytical flux solutions of the radiative transfer equation rapidly emerges. The fluxes match the analytical diffuse flux solutions in the diffusion limit, which verifies the accuracy of the algorithm. The method is not constrained by the diffusion limit and gives correct solutions for conditions where diffuse solutions are not viable. Unlike conventional Monte Carlo and numerical techniques adapted from neutron transport or nuclear reactor problems that compute scalar quantities, this vectorial technique is fast, easily implemented, adaptable, and viable for a wide class of biophotonic scenarios. By comparison, other analytical or numerical techniques generally become unwieldy, lack viability, or are more difficult to utilize and adapt. Illustrative calculations are presented for blood medias at monochromatic wavelengths in the visible spectrum.
On important precursor of singular optics (tutorial)
NASA Astrophysics Data System (ADS)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Refractive errors in patients with newly diagnosed diabetes mellitus.
Yarbağ, Abdülhekim; Yazar, Hayrullah; Akdoğan, Mehmet; Pekgör, Ahmet; Kaleli, Suleyman
2015-01-01
Diabetes mellitus is a complex metabolic disorder that involves the small blood vessels, often causing widespread damage to tissues, including the eyes' optic refractive error. In patients with newly diagnosed diabetes mellitus who have unstable blood glucose levels, refraction may be incorrect. We aimed to investigate refraction in patients who were recently diagnosed with diabetes and treated at our centre. This prospective study was performed from February 2013 to January 2014. Patients were diagnosed with diabetes mellitus using laboratory biochemical tests and clinical examination. Venous fasting plasma glucose (fpg) levels were measured along with refractive errors. Two measurements were taken: initially and after four weeks. The last difference between the initial and end refractive measurements were evaluated. Our patients were 100 males and 30 females who had been newly diagnosed with type II DM. The refractive and fpg levels were measured twice in all patients. The average values of the initial measurements were as follows: fpg level, 415 mg/dl; average refractive value, +2.5 D (Dioptres). The average end of period measurements were fpg, 203 mg/dl; average refractive value, +0.75 D. There is a statistically significant difference between after four weeks measurements with initially measurements of fasting plasma glucose (fpg) levels (p<0.05) and there is a statistically significant relationship between changes in fpg changes with glasses ID (p<0.05) and the disappearance of blurred vision (to be greater than 50% success rate) were statistically significant (p<0.05). Also, were detected upon all these results the absence of any age and sex effects (p>0.05). Refractive error is affected in patients with newly diagnosed diabetes mellitus; therefore, plasma glucose levels should be considered in the selection of glasses.
Uncovering the hidden: complexity and strategies for diagnosing latent tuberculosis.
Flores-Valdez, Mario Alberto
2017-10-24
Tuberculosis produces two clinical manifestations: active and latent (non-apparent) disease. The latter is estimated to affect one-third of the world population and constitutes a source of continued transmission should the disease emerge from its hidden state (reactivation). Methods to diagnose latent TB have been evolving and aim to detect the disease in people who are truly infected with M. tuberculosis , versus those where other mycobacteria, or even other pathologies not related to TB, are present. The current use of proteomic and transcriptomic approaches may lead to improved detection methods in the coming years.
New testing options for diagnosing and grading dry eye disease.
Foulks, Gary N; Pflugfelder, Stephen C
2014-06-01
To describe new options for diagnosis and severity grading of dry eye disease. Perspective on technological advancements to identify tear dysfunction and their value in diagnosing and grading dry eye disease. Evidence is presented on new and evolving technologies to measure tear stability, composition, and meniscus height and their role in dry eye diagnosis and therapeutic efficacy grading is assessed. Evolving concepts regarding pathogenesis and new technologies to evaluate the tears and ocular surface have improved the ability to diagnose, classify, and grade the severity of dry eye disease. New technologies include noninvasive imaging of tear stability and tear meniscus height as a measure of tear volume and tear composition (osmolarity, lacrimal factors, inflammatory mediators, growth and differentiation factors). Approved tests, such as tear osmolarity and tear imaging, are being integrated into clinical practice and may eventually supplant certain traditional tests that have greater variability and less sensitivity. Other tests, such as molecular assays of tears and conjunctival cells, are currently being used in studies investigating pathogenesis and therapeutic mechanism of action. They may eventually translate to routine clinical practice. New technologies have emerged that can noninvasively evaluate the tears and measure disease-associated compositional changes. These tests are being integrated into clinical practice and therapeutic trials for diagnosis, classification, and severity grading of dry eye disease. Copyright © 2014 Elsevier Inc. All rights reserved.
A Possible Application of Coherent Light Scattering on Biological Fluids
NASA Astrophysics Data System (ADS)
Chicea, Dan; Chicea, Liana Maria
2007-04-01
Human urine from both healthy patients and patients with different diseases was used as scattering medium in a coherent light scattering experiment. The time variation of the light intensity in the far field speckle image was acquired using a data acquisition system on a PC and a time series resulted for each sample. The autocorrelation function for each sample was calculated and the autocorrelation time was determined. The same samples were analyzed in a medical laboratory using the standard procedure. We found so far that the autocorrelation time is differently modified by the presence of pus, albumin, urobilin and sediments. The results suggest a fast procedure that can be used as laboratory test to detect the presence not of each individual component in suspensions but of big conglomerates as albumin, cylinders, oxalate crystals.
Streaming simplification of tetrahedral meshes.
Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T
2007-01-01
Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.
Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang; Jia, Yali
2017-01-01
Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. PMID:29296475
Fast and slow coherent cascades in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, Fotios V.; Freivogel, Ben; Pedraza, Juan F.
2018-06-01
We study the phase and amplitude dynamics of small perturbations in 3 + 1 dimensional anti-de Sitter spacetime using the truncated resonant approximation, also known as the two time framework. We analyse the phase spectrum for different classes of initial data and find that higher frequency modes turn on with coherently aligned phases. Combining numerical and analytical results, we conjecture that there is a class of initial conditions that collapse in infinite slow time and to which the well-studied case of the two-mode, equal energy initial data belongs. We additionally study perturbations that collapse in finite time, and find that the energy spectrum approaches a power law, with the energy per mode scaling approximately as the inverse first power of the frequency.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang
2014-04-01
We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.
NASA Astrophysics Data System (ADS)
Li, Ruixiao; Li, Kun; Zhao, Changming
2018-01-01
Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.
Laboratory demonstration of Stellar Intensity Interferometry using a software correlator
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David
2017-06-01
In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.
Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali
2017-12-01
Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
NASA Astrophysics Data System (ADS)
Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore
2016-12-01
The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.
NASA Astrophysics Data System (ADS)
Tu, Haohua; You, Sixian; Sun, Yi; Spillman, Darold R.; Ray, Partha S.; Liu, George; Boppart, Stephen A.
2017-03-01
In contrast to a broadband Ti:sapphire laser that mode locks a continuum of emission and enables broadband biophotonic applications, supercontinuum generation moves the spectral broadening outside the laser cavity into a nonlinear medium, and may thus improve environmental stability and more readily enable clinical translation. Using a photonic crystal fiber for passive spectral broadening, this technique becomes widely accessible from a narrowband fixed-wavelength mode-locked laser. Currently, fiber supercontinuum sources have benefited single-photon biological imaging modalities, including light-sheet or confocal microscopy, diffuse optical tomography, and retinal optical coherence tomography. However, they have not fully benefited multiphoton biological imaging modalities with proven capability for high-resolution label-free molecular imaging. The reason can be attributed to the amplitude/phase noise of fiber supercontinuum, which is amplified from the intrinsic noise of the input laser and responsible for spectral decoherence. This instability deteriorates the performance of multiphoton imaging modalities more than that of single-photon imaging modalities. Building upon a framework of coherent fiber supercontinuum generation, we have avoided this instability or decoherence, and balanced the often conflicting needs to generate strong signal, prevent sample photodamage, minimize background noise, accelerate imaging speed, improve imaging depth, accommodate different modalities, and provide user-friendly operation. Our prototypical platforms have enabled fast stain-free histopathology of fresh tissue in both laboratory and intraoperative settings to discover a wide variety of imaging-based cancer biomarkers, which may reduce the cost and waiting stress associated with disease/cancer diagnosis. A clear path toward intraoperative multiphoton imaging can be envisioned to help pathologists and surgeons improve cancer surgery.
Flux-driven simulations of turbulence collapse
Park, G. Y.; Kim, S. S.; Jhang, Hogun; ...
2015-03-12
In this study, using self-consistent three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally due to mean E x B shear feedback through evolving pressure gradient once input power exceeds a threshold value. The temporal evolution and development of the transition are elucidated. Profiles, turbulence-driven flows and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that themore » turbulence collapses and the ETB transition begins when R T > 1 at t = t R (R T : normalized Reynolds power), while the conventional transition criterion (ω E x B > γlin) is satisfied only after t = t C (> t R), when the mean ow shear grows due to positive feedback.« less
Purity of Gaussian states: Measurement schemes and time evolution in noisy channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio
2003-07-01
We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermalmore » baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.« less
2010 MULTIPHOTON PROCESSES GORDON RESEARCH CONFERENCE, JUNE 6-11, 2010, TILTON, NH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mette Gaarde
2010-06-11
The Gordon Research Conference on Multiphoton Processes will be held for the 15th time in 2010. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Ultrafast coherent control; (2) Free-electron laser experiments and theory; (3) Generation of harmonics and attosecond pulses; (4) Ultrafast imaging; (5) Applications of very high intensity laser fields; (6) Strong-field processes in molecules and solids; (7) Attosecond science; and (8) Controlling light. The scientific program will blur traditional disciplinary boundariesmore » as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.« less
Coherent anti-stokes Raman spectroscopy for detecting explosives in real time
NASA Astrophysics Data System (ADS)
Dogariu, Arthur; Pidwerbetsky, Alex
2012-06-01
We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.
Detection of atmospheric infrasound with a ring laser interferometer
NASA Astrophysics Data System (ADS)
Dunn, Robert W.; Meredith, John A.; Lamb, Angela B.; Kessler, Elijah G.
2016-09-01
In this paper, the results from using a large active ring laser interferometer as an infrasound detector are presented. On April 27, 2014, an EF4 tornado struck Central Arkansas and passed within 21 km of the ring laser interferometer. The tornado resulted in 16 fatalities and millions of dollars in damage. Using the ring laser to study the tornado infrasound produced results that qualitatively agree with several findings from a long-term study of weather generated infrasound by the National Oceanic and Atmospheric Administration. A Fast Fourier Transform of the ring laser output revealed a coherent frequency of approximately 0.94 Hz that lasted during the life of the storm. The 0.94 Hz frequency was initially observed 30 min before the funnel was reported on the ground. Infrasound signatures from four separate tornadoes are presented. In each case, coherent infrasound was detected at least 30 min before the tornado was reported on the ground. Examples of the detection of distant coherent acoustic-gravity waves from volcanoes and typhoons are also presented. In addition, buoyancy waves were recorded.
Changes in the Coherent Dynamics of Nanoconfined Room Temperature Ionic Liquids
NASA Astrophysics Data System (ADS)
Vallejo, Kevin; Cano, Melissa; Li, Song; Rotner, Gernot; Faraone, Antonio; Banuelos, Jose
Confinement and temperature effects on the coherent dynamics of the room temperature ionic liquid (RTIL) [C10MPy+] [Tf2N-] were investigated using neutron spin-echo (NSE) in two silica matrices with different pore size. Several intermolecular forces give rise to the bulk molecular structure between anions and cations. NSE provided dynamics (via the coherent intermediate scattering function) in the time range of 0.004 to 10 ns, and at Q-values corresponding to intermediate range ordering and inter- and intra-molecular length scales of the RTIL. Pore wall effects were delineated by comparing bulk RTIL dynamics with those of the confined fluid in 2.8 nm and 8 nm pores. Analytical models were applied to the experimental data to extract decay times and amplitudes of each component. We find a fast relaxation outside the experiment time window, a primary relaxation, and slow, surface-induced dynamics, which all speed up with increased temperature, however, the temperature dependence differs between bulk and confinement. This study sheds light on the structure and dynamics of RTILs and is relevant to the optimization of RTILs for green technologies and applications.
NASA Astrophysics Data System (ADS)
Pavlichin, Dmitri S.; Mabuchi, Hideo
2014-06-01
Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-04-01
An important dissipation mechanism for waves in randomly inhomogeneous poroelastic media is the effect of wave-induced fluid flow. In the framework of Biot's theory of poroelasticity, this mechanism can be understood as scattering from fast into slow compressional waves. To describe this conversion scattering effect in poroelastic random media, the dynamic characteristics of the coherent wavefield using the theory of statistical wave propagation are analyzed. In particular, the method of statistical smoothing is applied to Biot's equations of poroelasticity. Within the accuracy of the first-order statistical smoothing an effective wave number of the coherent field, which accounts for the effect of wave-induced flow, is derived. This wave number is complex and involves an integral over the correlation function of the medium's fluctuations. It is shown that the known one-dimensional (1-D) result can be obtained as a special case of the present 3-D theory. The expression for the effective wave number allows to derive a model for elastic attenuation and dispersion due to wave-induced fluid flow. These wavefield attributes are analyzed in a companion paper. .
Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Wang, Shoujun; Oliva, E
2014-01-01
Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less
Ultrafast control and monitoring of material properties using terahertz pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowlan, Pamela Renee
These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying thismore » to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi 2Se 3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.« less
NASA Astrophysics Data System (ADS)
Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.
2016-03-01
In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.
NASA Astrophysics Data System (ADS)
Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel
2016-10-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.
Implementation speed of deterministic population passages compared to that of Rabi pulses
NASA Astrophysics Data System (ADS)
Chen, Jingwei; Wei, L. F.
2015-02-01
Fast Rabi π -pulse technique has been widely applied to various coherent quantum manipulations, although it requires precise designs of the pulse areas. Relaxing the precise pulse designs, various rapid adiabatic passage (RAP) approaches have been alternatively utilized to implement various population passages deterministically. However, the usual RAP protocol could not be implemented desirably fast, as the relevant adiabatic condition should be robustly satisfied during the passage. Here, we propose a modified shortcut to adiabaticity (STA) technique to accelerate significantly the desired deterministic quantum state population passages. This transitionless technique is beyond the usual rotating wave approximation (RWA) performed in the recent STA protocols, and thus can be applied to deliver various fast quantum evolutions wherein the relevant counter-rotating effects cannot be neglected. The proposal is demonstrated specifically with the driven two- and three-level systems. Numerical results show that with the present STA technique beyond the RWA the usual Stark-chirped RAPs and stimulated Raman adiabatic passages could be significantly speeded up; the deterministic population passages could be implemented as fast as the widely used fast Rabi π pulses, but are insensitive to the applied pulse areas.
The Paradox of the Axial Melt Lens: Petrology and Geochemistry of the Upper Plutonics at Hess Deep
NASA Astrophysics Data System (ADS)
Lissenberg, C. J.; Loocke, M. P.; MacLeod, C. J.
2014-12-01
The axial melt lens (AML) is a steady-state magma-rich body located at the dyke-gabbro transition at intermediate- and fast-spreading ridges. It is widely believed to be the reservoir from which mid-ocean ridge basalt (MORB) is erupted. The paradox of the axial melt lens is that the plutonic rocks that occur at this level are far too evolved to be in equilibrium with MORB, which is basaltic by definition; hence, the plutonic and volcanic records do not match. We explore this paradox by study of the first comprehensive sample suite of the uppermost plutonics of a fast-spreading ridge, taken by remotely-operated vehicle from the Hess Deep rift during cruise JC21. 23 samples (8 dolerites, 14 gabbronorites, and 1 gabbro) were collected from a section containing the transition from the uppermost gabbroic section into sheeted dykes. We present the results of a detailed petrographic and microanalytical investigation of these samples. They are dominated by evolved, varitextured (both in hand sample and thin section) oxide gabbronorites; olivine occurs in only one sample. A preponderance of the samples have positive Eu/Eu* and Sr/Sr*, indicating a cumulate origin. However, the minerals have evolved compositions, and are in equilibrium with melts significantly more evolved than East Pacific Rise MORB. Furthermore, the trace element contents of clinopyroxene differ significantly from clinopyroxene in equilibrium with MORB, being more enriched in incompatible elements. To account for both the evidence of derivation of MORB from the AML and the evolved nature of its rock record, we posit that the AML must be fed by melts on two different timescales: continual low-volume feeding by evolved interstitial melt from the cumulus pile below is augmented episodically by delivery of high volumes of more primitive melt. The latter episodes may trigger eruptions; hence the primitive melts are held in the magma chamber for only short periods, and erupt on the seafloor before significant crystallisation in the AML has taken place. This model for the feeding of the AML provides ample opportunity for mixing between the relatively primitive melts and the evolved, trace-element-rich melt, and accounts for the observed over-enrichment in incompatible elements of MORB.
Globalization in the Face of Standardization: Implications for Teacher Education
ERIC Educational Resources Information Center
Delgado, Rocio; Norman, Patricia
2008-01-01
As globalization affects political and economic systems, cultures, and the environment, it affects the educational needs of a globalized workforce. In this complex, fast-evolving knowledge economy, workers must possess analytic skills, creativity, flexibility, and innovation. They need oral and written communication skills and the disposition to…
The Evolution of Communication from Hieroglyphics to DVDs
ERIC Educational Resources Information Center
Fitzgerald, Mike
2006-01-01
Communication spreads knowledge worldwide. It could be argued that "communication" is one of the greatest human achievements. In this article, the author briefly describes some key technologies associated with the archiving and communication of information. Since communication technologies continue to evolve at a fast pace, he simply focuses on…
USDA-ARS?s Scientific Manuscript database
The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...
ERIC Educational Resources Information Center
Foltz, Robert
2012-01-01
In 2013, the American Psychiatric Association will release its newest Diagnostic and Statistical Manual, 5th Edition (DSM-5). This tome has evolved over the decades, originally including just 112 diagnoses across 128 pages. The upcoming edition is expected to eclipse the 943 pages, and 350+ disorders of the current DSM-IV-TR, offering a variety of…
The History of Behavioral Treatments in Autism: From the Punitive to the Positive
ERIC Educational Resources Information Center
Suppo, Jennifer L.
2017-01-01
The behavioral treatments for persons diagnosed with autism have evolved from those that included punitive components to those that are now based upon principles of positive behavior supports. The proceeding document provides an historical overview of relevant behavioral approaches, including the type of approach and the quality of involvement and…
Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene
2018-04-01
To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.
Klimov, V V; Hulsebosch, R J; Allakhverdiev, S I; Wincencjusz, H; van Gorkom, H J; Hoff, A J
1997-12-23
It was previously shown in the photosystem II membrane preparation DT-20 that photoxidation of the oxygen-evolving manganese cluster was blocked by 0.1 mM formate, unless 0.2 mM bicarbonate was present as well [Wincencjusz, H., Allakhverdiev, S. I., Klimov, V. V., and Van Gorkom, H. J. (1996) Biochim. Biophys. Acta 1273, 1-3]. Here it is shown by measurements of EPR signal II that oxidation of the secondary electron donor, YZ, is not inhibited. However, the reduction of is greatly slowed and occurs largely by back reaction with reduced acceptors. Bicarbonate is shown to prevent the loss of fast electron donation to . The release of about one or two free Mn2+ per photosystem II during formate treatment, and the fact that these effects are mimicked by Mn-depletion, suggests that formate may act by replacing a bicarbonate which is essential for Mn binding. Irreversible light-induced rebinding in an EPR-silent form of Mn2+ that was added to Mn-depleted DT-20 was indeed found to depend on the presence of bicarbonate, as did the reconstitution in such material of both the fast electron donation to and the UV absorbance changes characteristic of a functional oxygen-evolving complex. It is concluded that bicarbonate may be an essential ligand of the functional Mn cluster.
An, Lin; Li, Peng; Shen, Tueng T.; Wang, Ruikang
2011-01-01
We present a new development of ultrahigh speed spectral domain optical coherence tomography (SDOCT) for human retinal imaging at 850 nm central wavelength by employing two high-speed line scan CMOS cameras, each running at 250 kHz. Through precisely controlling the recording and reading time periods of the two cameras, the SDOCT system realizes an imaging speed at 500,000 A-lines per second, while maintaining both high axial resolution (~8 μm) and acceptable depth ranging (~2.5 mm). With this system, we propose two scanning protocols for human retinal imaging. The first is aimed to achieve isotropic dense sampling and fast scanning speed, enabling a 3D imaging within 0.72 sec for a region covering 4x4 mm2. In this case, the B-frame rate is 700 Hz and the isotropic dense sampling is 500 A-lines along both the fast and slow axes. This scanning protocol minimizes the motion artifacts, thus making it possible to perform two directional averaging so that the signal to noise ratio of the system is enhanced while the degradation of its resolution is minimized. The second protocol is designed to scan the retina in a large field of view, in which 1200 A-lines are captured along both the fast and slow axes, covering 10 mm2, to provide overall information about the retinal status. Because of relatively long imaging time (4 seconds for a 3D scan), the motion artifact is inevitable, making it difficult to interpret the 3D data set, particularly in a way of depth-resolved en-face fundus images. To mitigate this difficulty, we propose to use the relatively high reflecting retinal pigmented epithelium layer as the reference to flatten the original 3D data set along both the fast and slow axes. We show that the proposed system delivers superb performance for human retina imaging. PMID:22025983
An, Lin; Li, Peng; Shen, Tueng T; Wang, Ruikang
2011-10-01
We present a new development of ultrahigh speed spectral domain optical coherence tomography (SDOCT) for human retinal imaging at 850 nm central wavelength by employing two high-speed line scan CMOS cameras, each running at 250 kHz. Through precisely controlling the recording and reading time periods of the two cameras, the SDOCT system realizes an imaging speed at 500,000 A-lines per second, while maintaining both high axial resolution (~8 μm) and acceptable depth ranging (~2.5 mm). With this system, we propose two scanning protocols for human retinal imaging. The first is aimed to achieve isotropic dense sampling and fast scanning speed, enabling a 3D imaging within 0.72 sec for a region covering 4x4 mm(2). In this case, the B-frame rate is 700 Hz and the isotropic dense sampling is 500 A-lines along both the fast and slow axes. This scanning protocol minimizes the motion artifacts, thus making it possible to perform two directional averaging so that the signal to noise ratio of the system is enhanced while the degradation of its resolution is minimized. The second protocol is designed to scan the retina in a large field of view, in which 1200 A-lines are captured along both the fast and slow axes, covering 10 mm(2), to provide overall information about the retinal status. Because of relatively long imaging time (4 seconds for a 3D scan), the motion artifact is inevitable, making it difficult to interpret the 3D data set, particularly in a way of depth-resolved en-face fundus images. To mitigate this difficulty, we propose to use the relatively high reflecting retinal pigmented epithelium layer as the reference to flatten the original 3D data set along both the fast and slow axes. We show that the proposed system delivers superb performance for human retina imaging.
We were chosen as a family: parents' evolving use of religion when their child has cystic fibrosis.
Grossoehme, Daniel H; Ragsdale, Judith R; Snow, Amy; Seid, Michael
2012-12-01
Parental coping with new CF diagnoses often includes religion; however, little is known about how the use of religion changes over time. Longitudinal grounded theory method, in which parents were interviewed twice the 2 years after their child's diagnosis, was used. Parents constructed the meaning that parenting a child with CF is their vocation, in accordance with "God's plan." A shift from isolation to an outward focus and reentry into the community was clear. The use of faith evolved over time and continues to be a source of support and hope for parents. Clinical implications of parental religion are discussed.
Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy
NASA Astrophysics Data System (ADS)
Kobayashi, Tsubasa; Cha, Yu-Rok; Kaji, Yuichi; Oshika, Tetsuro; Leproux, Philippe; Couderc, Vincent; Kano, Hideaki
2018-02-01
Acanthamoeba keratitis is a disease in which amoebae named Acanthamoeba invade the cornea of an eye. To diagnose this disease before it becomes serious, it is important to detect the cyst state of Acanthamoeba in the early stage of infection. In the present study, we explored spectroscopic signitures of the cyst state of Acanthamoeba using multimodal nonlinear optical microscopy with the channels of multiplex coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and third harmonic generation (THG). A sharp band at around 1603 cm-1 in the CARS (Im[χ(3)]) spectrum was found at the cyst state of Acanthamoeba, which possibly originates from ergosterol and/or 7-dehydrostigmasterol. It can be used as a maker band of Acanthamoeba for medical treatment. Keyword: Acanthamoeba keratitis, coherent anti-Stokes Raman scattering, CARS, second harmonic generation, SHG, microspectroscopy, multiphoton microscopy
NASA Astrophysics Data System (ADS)
Kang, DongYel; Wang, Alex; Volgger, Veronika; Chen, Zhongping; Wong, Brian J. F.
2015-07-01
Detection of an early stage of subglottic edema is vital for airway management and prevention of stenosis, a life-threatening condition in critically ill neonates. As an observer for the task of diagnosing edema in vivo, we investigated spatiotemporal correlation (STC) of full-range optical coherence tomography (OCT) images acquired in the rabbit airway with experimentally simulated edema. Operating the STC observer on OCT images generates STC coefficients as test statistics for the statistical decision task. Resulting from this, the receiver operating characteristic (ROC) curves for the diagnosis of airway edema with full-range OCT in-vivo images were extracted and areas under ROC curves were calculated. These statistically quantified results demonstrated the potential clinical feasibility of the STC method as a means to identify early airway edema.
Shape-from-focus by tensor voting.
Hariharan, R; Rajagopalan, A N
2012-07-01
In this correspondence, we address the task of recovering shape-from-focus (SFF) as a perceptual organization problem in 3-D. Using tensor voting, depth hypotheses from different focus operators are validated based on their likelihood to be part of a coherent 3-D surface, thereby exploiting scene geometry and focus information to generate reliable depth estimates. The proposed method is fast and yields significantly better results compared with existing SFF methods.
Amblyopia secondary to iris cyst.
López-Arroquia, T E; Avendaño-Cantos, E M; Mesa-Varona, D; Gálvez-Martínez, J; López-Romero, S; Nuñez-Plascencia, R; González del Valle, F
2014-12-01
A 5 year-old child diagnosed with moderate anisometropic amblyopia secondary to primary cyst of iris pigment epithelium. He was evaluated with ultrasound biomicroscopy (BMU) and optical coherence tomography (OCT) of anterior segment. The OCT, although with some limitations, is a useful tool to study the anterior segment. It is probably more recommendable than BMU in the childhood. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
A Critical Fast Ion Beta in the Madison Symmetric Torus Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Capecchi, William J.
The first fast-ion profile measurements have been made in a reversed-field pinch (RFP) plasma. A large population of fast-ions are deposited in the core of the Madison Symmetric Torus (MST) through use of a 1 MW neutral beam injector (NBI) giving rise to a variety of beam-driven instabilities. One such mode, the energetic-particle mode (EPM) has been shown to reduce fast-ion content in MST, evident through drops in signal levels of the advanced neutral particle analyzer (ANPA). EPMs in MST appear as bursts of magnetic fluctuations at a lab frequency of ˜100 kHz reaching peak amplitude and decaying away within 100 microseconds. A burst ensemble of the neutron data does not reveal a drop in neutron emission across a burst, implying the population of fast-ions transported by a burst constitute a small fraction of the total. The burst may also pitch-angle scatter out of the ANPA phase space or be transported to mid-radius where charge-exchange with the background neutrals or fast-ion orbit stochasticity may reduce fast-ion confinement. Data gathered from the expanded neutron diagnostic suite including a new collimated neutron detector (CiNDe) was used to reconstruct the fast-ion profile in MST and measure critical fast-ion beta quantities. Measurements were made in plasma conditions with varying magnetic field strength in order to investigate the interplay between the energetic particle (EP) drive and Alfven continuum damping. The measured values of the core fast-ion beta (7.5% (1.2%) in 300 (500) kA plasmas) are reduced from classical predictions (TRANSP predicts up to 10% core value) due to EPM activity. The frequency, magnitude, and rate of occurrence of the bursts depends on the tearing mode amplitude, Alfven continuum damping rate, fast-ion profile shape, and resonant orbit dynamics. Marginal stability was reached in both moderate- (300 kA) and high- (500 kA) current discharges, marked by sustained EPM activity and a saturated global neutron signal during NBI. The difference in profile shape is interpreted to be related to the core-most resonant tearing mode amplitude, as a larger core magnetic island moves the location of steepest fast-ion gradient further out in radius, resulting in lower confinement of the fast-ions. The reconstructed profile is more strongly peaked at lower current, consistent with a lower measured core-most tearing mode amplitude. A larger dataset at lower current gives enough temporal resolution to investigate the evolution of the fast-ion profile. The suppression of the core-most tearing mode amplitude during NBI results in a rapid and dynamically evolving fast-ion profile at the beginning of the NBI discharge and results in an initially broader profile early evolving into a more strongly peaked profile later in the NBI discharge.
Li, Qian; Li, Yang; Zhang, Xiaohui; Xu, Zhangxing; Zhu, Xiaoqing; Ma, Kai; She, Haicheng; Peng, Xiaoyan
2015-10-01
To characterize Bietti crystalline dystrophy (BCD) in different stages using multiple imaging modalities. Sixteen participants clinically diagnosed as BCD were included in the retrospective study and were categorized into 3 stages according to fundus photography. Eleven patients were genetically confirmed. Fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging features of BCD were analyzed. On fundus autofluorescence, the abnormal autofluorescence was shown to enlarge in area and decrease in intensity with stages. Using spectral domain optical coherence tomography, the abnormalities in Stage 1 were observed to localize in outer retinal layers, whereas in Stage 2 and Stage 3, more extensive retinal atrophy was seen. In enhanced depth imaging, the subfoveal choroidal layers were delineated clearly in Stage 1; in Stage 2, destructions were primarily found in the choriocapillaris with associated alterations in the outer vessels; Stage 3 BCD displayed severe choroidal thinning. Choroidal neovascularization and macular edema were exhibited with high incidence. IVS6-8del17bp/inGC of the CYP4V2 gene was the most common mutant allele. Noninvasive fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging may help to characterize the chorioretinal pathology of BCD at different degrees, and therefore, we propose staging of BCD depending on those methods. Physicians should be cautious of the vision-threatening complications of the disease.
Moellering, Douglas R.
2014-01-01
Abstract Background: Glycated hemoglobin (HbA1c) has been advocated for the diagnosis of diabetes and prediabetes. Its performance has been commonly assessed in corroboration with elevated fasting plasma glucose (FPG), but not the combination of FPG and 2-hr glucose values. This study assesses receiver operating characteristics (ROC) curves of HbA1c pertaining to the diagnoses of prediabetes and diabetes by FPG and/or 2-hr glucose, and the effects of age, gender, and race. Methods: We assessed the utility of HbA1c for diagnosing diabetes and prediabetes among 5395 adults without known diabetes from the National Health and Nutrition Examination Survey (NHANES) 2005–2010. Results: Current cutoffs of HbA1c for diabetes (6.5%) or prediabetes (5.7%) exhibited low sensitivity (0.249 and 0.354, respectively) and high specificity in identifying patients diagnosed using both FPG and 2-hr glucose, resulting in large false-negative rates (75.1% and 64.9%). Misdiagnosis rates increased with age and in non-Hispanic whites and Mexican Americans. When HbA1c was combined with FPG for diagnoses, the false-negative rate remained high for diabetes (45.7%), but was reduced for prediabetes (9.2%). Conclusions: When assessed against diagnoses using both FPG and 2-hr glucose, HbA1c had low sensitivity and high specificity for identifying diabetes and prediabetes, which varied as a function of age and race. Regarding recently released American Diabetes Association (ADA) and joint European guidelines, it is important to consider that HbA1c values below 6.5% and 5.7% do not reliably exclude the presence of diabetes and prediabetes, respectively. Overall, the data argue for greater use of oral glucose tolerance tests (OGTTs) and both FPG and 2-hr glucose values for diagnosis of diabetes and prediabetes. PMID:24512556
Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes
Chung, Stephanie T.; Hsia, Daniel S.; Chacko, Shaji K.; Rodriguez, Luisa M.; Haymond, Morey W.
2014-01-01
Aims/hypothesis The role of increased gluconeogenesis as an important contributor to fasting hyperglycaemia at diabetes onset is not known. We evaluated the contribution of gluconeogenesis and glycogenolysis to fasting hyperglycaemia in newly diagnosed youths with type 2 diabetes following an overnight fast. Methods Basal rates (μmol kgFFM−1 min−1) of gluconeogenesis (2H20), glycogenolysis and glycerol production ([2H5] glycerol) were measured in 18 adolescents (nine treatment naive diabetic and nine normal-glucose-tolerant obese adolescents). Results Type 2 diabetes was associated with higher gluconeogenesis (9.2±0.6 vs 7.0±0.3 μmol kgFFM−1 min−1, p < 0.01), plasma fasting glucose (7.0±0.6 vs 5.0±0.2 mmol/l, p = 0.004) and insulin (300±30 vs 126±31 pmol/l, p = 0.001). Glucose production and glycogenolysis were similar between the groups (15.4±0.3 vs 12.4±1.4 μmol kgFFM−1 min−1, p = 0.06; and 6.2±0.8 vs 5.3±0.7 μmol kgFFM−1 min−1, p = 0.5, respectively). After controlling for differences in adiposity, gluconeogenesis, glycogenolysis and glucose production were higher in diabetic youth (p ≤ 0.02). Glycerol concentration (84±6 vs 57±6 μmol/l, p = 0.01) and glycerol production (5.0±0.3 vs 3.6±0.5 μmol kgFFM−1 min−1, p =0.03) were 40% higher in youth with diabetes. The increased glycerol production could account for only ~1/3 of substrate needed for the increased gluconeogenesis in diabetic youth. Conclusion/interpretations Increased gluconeogenesis was a major contributor to fasting hyperglycaemia and hepatic insulin resistance in newly diagnosed untreated adolescents and was an early pathological feature of type 2 diabetes. Increased glycerol availability may represent a significant source of new carbon substrates for increased gluconeogenesis but would not account for all the carbons required to sustain the increased rates. PMID:25447079
Computing in high-energy physics
Mount, Richard P.
2016-05-31
I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.
Cyberinfrastructure for Aircraft Mission Support
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.
2010-01-01
Forth last several years NASA's Airborne Science Program has been developing and using infrastructure and applications that enable researchers to interact with each other and with airborne instruments via network communications. Use of these tools has increased near realtime situational awareness during field operations, resulting it productivity improvements, improved decision making, and the collection of better data. Advances in pre-mission planning and post-mission access have also emerged. Integrating these capabilities with other tools to evolve coherent service-oriented enterprise architecture for aircraft flight and test operations is the subject of ongoing efforts.
Computing in high-energy physics
NASA Astrophysics Data System (ADS)
Mount, Richard P.
2016-04-01
I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.
Computing in high-energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mount, Richard P.
I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.
Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.
Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G
2014-05-05
Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.
The many selves of social insects.
Queller, David C; Strassmann, Joan E
2002-04-12
Social insects show multiple levels of self identity. Most individuals are sterile workers who selflessly labor for their colony, which is often viewed as a superorganism. The superorganism protects itself with colony recognition systems based on learned odors, typically cuticular hydrocarbons. Transfer of these odors within the colony obscures separate clan identities. Residual individual interests do appear to cause conflicts within colonies over sex ratio, male production, caste, and reproductive dominance. However, genomic imprinting theory predicts that the individual's maternal and paternal genes will evolve separate infraorganismal identities, perhaps leaving virtually no coherent individual identity.
Ozgu-Erdinc, A Seval; Yilmaz, Saynur; Yeral, M Ilkin; Seckin, K Doga; Erkaya, Salim; Danisman, A Nuri
2015-11-01
To develop a predictive index based on high sensitivity C-reactive protein (hs-CRP), fasting plasma glucose (FPG) and fasting plasma insulin (FPI) measurements for early diagnosis of gestational diabetes mellitus (GDM). Healthy pregnant women who were screened for GDM during their first antenatal visit were included in this retrospective cohort study. FPG, FPI and serum hs-CRP concentrations were measured between weeks 11 and 14. A two-step glucose challenge test was carried out between gestational weeks 24 and 28. Fasting glucose/insulin ratio (FIGR), Homeostatic Model Assessment Insulin Resistance (HOMA-IR), HOMA-β indices and Quantitative Insulin Sensitivity Check Index (QUICKI) were used to estimate insulin sensitivity and β-cell function. Of the 450 women who were eligible for the study, 49 (11.2%) were diagnosed with GDM at weeks 24-28. The median FPG and hs-CRP levels were higher in the GDM diagnosed women compared to the others. Comparison of accuracy measures resulted in the highest specificity (87.2%; 95% CI 83.5-90.1) and diagnostic odds ratio (3.9; 95% CI 2.1-7.6) for hs-CRP. FPG and hs-CRP in the first trimester are correlated with later development of GDM in the pregnancy. In our study, FPG provided a better sensitivity while hs-CRP exhibited a better specificity for prediction of GDM.
Hamano, Tsuyoshi; Li, Xinjun; Sundquist, Jan; Sundquist, Kristina
2017-01-01
The aim of this 6-year follow-up study was to examine whether neighbourhood accessibility to fast-food outlets was associated with diagnosed childhood obesity, after adjustment for neighbourhood- and individual-level socio-demographic factors. This 6-year follow-up study comprised 484,677 boys and 459,810 girls aged 0-14 years in Sweden. The follow-up period ran from January 1, 2005, until hospitalisation/out-patient treatment for obesity, death, emigration or the end of the study period on December 31, 2010. Multilevel logistic regression models (individual-level factors at the first level and neighbourhood-level factors at the second level) were used to calculate odds ratios (ORs) with 95% confidence intervals (95% CIs). We identified 6,968 obesity cases (3,878 boys and 3,090 girls) during the follow-up period. Higher odds of childhood obesity for those living in neighbourhoods with accessibility to fast-food outlets was observed (OR = 1.14, 95% CI = 1.07-1.22) that remained significant after adjustments (OR = 1.06, 95% CI = 1.00-1.13). This prospective nationwide study showed that the neighbourhood accessibility to fast-food outlets was independently associated with increased odds of diagnosed childhood obesity. This finding implicates that residential environments should be considered when developing health promotion programmes. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.
Subjects with Impaired Fasting Glucose: Evolution in a Period of 6 Years
Leiva, E.; Mujica, V.; Orrego, R.; Wehinger, S.; Soto, A.; Icaza, G.; Vásquez, M.; Díaz, L.; Andrews, M.; Arredondo, M.
2014-01-01
Aim. To study the evolution of impaired fasting glucose (IFG), considering glucose and HbA1c levels and risk factors associated, in a period of 6 years. Methods. We studied 94 subjects with impaired fasting glucose (IFG) that were diagnosed in 2005 and followed up to 2012. Glucose and HbA1c levels were determined. A descriptive analysis of contingence charts was performed in order to study the evolution in the development of type-2 diabetes mellitus (T2DM). Results. Twenty-eight of ninety-four subjects became T2DM; 51/94 remained with IFG; and 20/94 presented normal fasting glucose. From the 28 diabetic subjects, 9 had already developed diabetes and were under treatment with oral hypoglycemic agents; 5 were diagnosed with plasma glucose < 126 mg/dL, but with HbA1c over 6.5%. In those who developed diabetes, 15/28 had a family history of T2DM in first relative degree. Also, diabetic subjects had a BMI significantly higher than nodiabetics (t test: P < 0.01). The individuals that in 2005 had the highest BMI are those who currently have diabetes. Conclusion. The IFG constitutes a condition of high risk of developing T2DM in a few years, especially over 110 mg/dL and in obesity patients. PMID:25215305
Coherent Structures and Evolution of Vorticity in Short-Crested Breaking Surface Waves
NASA Astrophysics Data System (ADS)
Kirby, James; Derakhti, Morteza
2017-11-01
We employ a multi-phase LES/VOF code to study turbulence and coherent structures generated during breaking of short-crested surface water waves. We examine the evolution of coherent vortex structures evolving at the scale of the width of the breaking event, and their long-time interaction with smaller vortex loops formed by the local instability of the breaking crest. Long-time results are often characterized by the detachment of the larger scale vortex loop from the surface and formation of a closed vortex ring. The evolution of circulation for the vortical flow field is examined. The initial concentration of forcing close to the free surface leads to spatial distributions of both span-wise and vertical vorticity distributions which are concentrated close to the surface. This result, which persists into shallow water, is at odds with the basic simplicity of the Peregrine mechanism, suggesting that even shallow flows such as the surf zone should be regarded as being forced (in dissipative situations) by a wave-induced surface stress rather than a uniform-over-depth body force. The localized forcing leads to the development of a complex pattern of stream-wise vorticity, comparable in strength to the vertical and span-wise components, and also persist into shallow water. NSF OCE-1435147.
Investigation of coherent structures in a superheated jet using decomposition methods
NASA Astrophysics Data System (ADS)
Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar
2016-11-01
A superheated turbulent jet, commonly encountered in many engineering flows, is complex two phase mixture of liquid and vapor. The superposition of temporally and spatially evolving coherent vortical motions, known as coherent structures (CS), govern the dynamics of such a jet. Both POD and DMD are employed to analyze such vortical motions. PIV data is used in conjunction with the decomposition methods to analyze the CS in the flow. The experiments were conducted using water emanating into a tank containing homogeneous fluid at ambient condition. Three inlet pressure were employed in the study, all at a fixed inlet temperature. 90% of the total kinetic energy in the mean flow is contained within the first five modes. The scatterplot for any two POD coefficients predominantly showed a circular distribution, representing a strong connection between the two modes. We speculate that the velocity and vorticity contours of spatial POD basis functions show presence of K-H instability in the flow. From DMD, eigenvalues away from the origin is observed for all the cases indicating the presence of a non-oscillatory structure. Spatial structures are also obtained from DMD. The authors are grateful to Confederation of Indian Industry and General Electric India Pvt. Ltd. for partial funding of this project.
Coherent Structures in Magnetic Confinement Systems
NASA Astrophysics Data System (ADS)
Horton, W.
2006-04-01
Coherent structures are long-lived, nonlinear localized solutions of the selfconsistient plasma-electromagnetic field equations. They contain appreciable energy density and control various transport and magnetic reconnection processes in plasmas. These structures are self-binding from the nonlinearity balancing, or overcoming, the wave dispersion of energy in smaller amplitude structures. The structures evolve out of the nonlinear interactions in various instabilities or external driving fields. The theoretical basis for these structures are reviewed giving examples from various plasma instabilities and their reduced descriptions from the appropriate partial differential equations. A classic example from drift waves is the formation of monopole, dipole and tripolar vortex structures which have been created in both laboratory and simulation experiments. For vortices, the long life-time and nonlinear interactions of the structures can be understood with conservation laws of angular momentum given by the vorticity field associated with dynamics. Other morphologies include mushrooms, Kelvin-Helmholtz vorticity roll-up, streamers and blobs. We show simulation movies of various examples drawn from ETG modes in NSTX, H-mode like shear flow layers in LAPD and the vortices measured with soft x-ray tomography in the GAMMA 10 tandem mirror. Coherent current-sheet structures form in driven magnetic reconnection layers and control the rate of transformation of magnetic energy to flow and thermal energy.
Demonstration of two-qubit algorithms with a superconducting quantum processor.
DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J
2009-07-09
Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.
Suzuki, Miwa; Lee, Andrew Y; Vázquez-Medina, José Pablo; Viscarra, Jose A; Crocker, Daniel E; Ortiz, Rudy M
2015-05-15
Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. Copyright © 2015 Elsevier Inc. All rights reserved.
Suzuki, Miwa; Lee, Andrew; Vázquez-Medina, Jose Pablo; Viscarra, Jose A.; Crocker, Daniel E.; Ortiz, Rudy M.
2015-01-01
Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. PMID:25857751
Can a Point-of-Care Troponin I Assay be as Good as a Central Laboratory Assay? A MIDAS Investigation
Diercks, Deborah; Birkhahn, Robert; Singer, Adam J.; Hollander, Judd E.; Nowak, Richard; Safdar, Basmah; Miller, Chadwick D.; Peberdy, Mary; Counselman, Francis; Chandra, Abhinav; Kosowsky, Joshua; Neuenschwander, James; Schrock, Jon; Lee-Lewandrowski, Elizabeth; Arnold, William; Nagurney, John
2016-01-01
Background We aimed to compare the diagnostic accuracy of the Alere Triage Cardio3 Tropinin I (TnI) assay (Alere, Inc., USA) and the PathFast cTnI-II (Mitsubishi Chemical Medience Corporation, Japan) against the central laboratory assay Singulex Erenna TnI assay (Singulex, USA). Methods Using the Markers in the Diagnosis of Acute Coronary Syndromes (MIDAS) study population, we evaluated the ability of three different assays to identify patients with acute myocardial infarction (AMI). The MIDAS dataset, described elsewhere, is a prospective multicenter dataset of emergency department (ED) patients with suspected acute coronary syndrome (ACS) and a planned objective myocardial perfusion evaluation. Myocardial infarction (MI) was diagnosed by central adjudication. Results The C-statistic with 95% confidence intervals (CI) for diagnosing MI by using a common population (n=241) was 0.95 (0.91-0.99), 0.95 (0.91-0.99), and 0.93 (0.89-0.97) for the Triage, Singulex, and PathFast assays, respectively. Of samples with detectable troponin, the absolute values had high Pearson (RP) and Spearman (RS) correlations and were RP =0.94 and RS=0.94 for Triage vs Singulex, RP =0.93 and RS=0.85 for Triage vs PathFast, and RP =0.89 and RS=0.73 for PathFast vs Singulex. Conclusions In a single comparative population of ED patients with suspected ACS, the Triage Cardio3 TnI, PathFast, and Singulex TnI assays provided similar diagnostic performance for MI. PMID:27374704
Dietary restriction, cardiac autonomic regulation and stress reactivity in bulimic women.
Vögele, Claus; Hilbert, Anja; Tuschen-Caffier, Brunna
2009-08-04
Recent findings suggest sympathetic inhibition during dietary restriction as opposed to increased sympathetic activity during re-feeding. The present study investigated cardiac autonomic regulation and stress reactivity in relation to biochemical markers of dietary restriction status in women diagnosed with bulimia nervosa. We predicted that bulimic individuals (BN) with a biochemical profile indicating dietary restriction exhibit reduced cardiac sympathetic and/or increased vagal activity. We also hypothesized, that BN with a biochemical profile within a normal range (i.e. currently not dieting or malnourished) would show heart rate variability responses (HRV) and reactivity to mental stress indicating increased sympathetic activation compared with non-eating disordered controls. Seventeen female volunteers diagnosed with bulimia nervosa were categorized according to their serum profile (glucose, pre-albumin, IGF-1, TSH, leptin) into currently fasting versus non-fasting and compared with 16 non-eating disordered controls matched for age and BMI. Spectral components of HRV were calculated on heart rate data from resting and mental stress periods (standardized achievement challenge) using autoregressive analysis. Compared to non-fasting BN and controls, fasting BN showed increased vagal and decreased sympathetic modulation during both resting and recovery periods. Cardiac autonomic regulation was not impaired in response to mental challenge. No differences could be found between non-fasting BN and controls. The results confirm the notion of cardiac sympathetic inhibition and vagal dominance during dietary restriction and suggest the specificity of starvation related biochemical changes for cardiac autonomic control. The results are discussed in terms of the higher incidence in cardiac complications in these patients.
Peacock, W Frank; Diercks, Deborah; Birkhahn, Robert; Singer, Adam J; Hollander, Judd E; Nowak, Richard; Safdar, Basmah; Miller, Chadwick D; Peberdy, Mary; Counselman, Francis; Chandra, Abhinav; Kosowsky, Joshua; Neuenschwander, James; Schrock, Jon; Lee-Lewandrowski, Elizabeth; Arnold, William; Nagurney, John
2016-09-01
We aimed to compare the diagnostic accuracy of the Alere Triage Cardio3 Tropinin I (TnI) assay (Alere, Inc., USA) and the PathFast cTnI-II (Mitsubishi Chemical Medience Corporation, Japan) against the central laboratory assay Singulex Erenna TnI assay (Singulex, USA). Using the Markers in the Diagnosis of Acute Coronary Syndromes (MIDAS) study population, we evaluated the ability of three different assays to identify patients with acute myocardial infarction (AMI). The MIDAS dataset, described elsewhere, is a prospective multicenter dataset of emergency department (ED) patients with suspected acute coronary syndrome (ACS) and a planned objective myocardial perfusion evaluation. Myocardial infarction (MI) was diagnosed by central adjudication. The C-statistic with 95% confidence intervals (CI) for diagnosing MI by using a common population (n=241) was 0.95 (0.91-0.99), 0.95 (0.91-0.99), and 0.93 (0.89-0.97) for the Triage, Singulex, and PathFast assays, respectively. Of samples with detectable troponin, the absolute values had high Pearson (R(P)) and Spearman (R(S)) correlations and were R(P)=0.94 and R(S)=0.94 for Triage vs Singulex, R(P)=0.93 and R(S)=0.85 for Triage vs PathFast, and R(P)=0.89 and R(S)=0.73 for PathFast vs Singulex. In a single comparative population of ED patients with suspected ACS, the Triage Cardio3 TnI, PathFast, and Singulex TnI assays provided similar diagnostic performance for MI.
Shoji, T; Sakurai, Y; Sato, H; Chihara, E; Takeuchi, M
2011-07-01
To investigate associations between fasting plasma glucose level and the prevalence of acquired colour vision impairment in type 2 diabetes patients without diabetic retinopathy. Participants in this cross-sectional study of male officials aged 20-60 yr in the Japanese Self Defence Force, underwent colour vision testing, ophthalmic examination, a standardized interview and examination of venous blood samples. Ishihara plates, a Lanthony 15-hue desaturated panel and Standard Pseudoisochromatic Plates Part 2 were used to examine colour vision. The Farnsworth-Munsell 100-hue test was performed to define acquired colour vision impairment. Cardiovascular disease risk factors were determined from serum blood samples, physical records and an interview. We performed logistic regression analysis adjusted for age, diagnosed hypertension, dyslipidaemia, cataract, glaucoma, being overweight, smoking status and alcohol intake. Crude and adjusted odds ratios were calculated for three glucose levels, which included normal fasting glucose, impaired fasting glucose and diabetes. Out of a total of 1042 men enrolled, 872 were eligible for the study, and 31 were diagnosed with acquired colour vision impairment. As compared with the subjects with normal fasting glucose (< 5.6 mmol/l), the crude odds ratio for acquired colour vision impairment was 0.93 (95% CI 0.32-2.74) for the subjects with impaired fasting glucose (5.6-6.9 mmol/l) and 8.07 (95% CI 2.48-26.22) for the patients with type 2 diabetes. The multiple-adjusted odds ratios were 0.77 (95% CI 0.25-2.34) for the subjects with impaired fasting glucose and 5.89 (95% CI 1.55-22.40) for the patients with type 2 diabetes. Our findings suggest that there is a dramatically increased prevalence of acquired colour vision impairment in type 2 diabetes patients without diabetic retinopathy which might be attributable to another pathogenesis associated with diabetic retinopathy. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
Chen, Yanyan; Wu, Xiafang; Wu, Ruirui; Sun, Xiance; Yang, Boyi; Wang, Yi; Xu, Yuanyuan
2016-01-01
Changes in profile of lipids and adipokines have been reported in patients with thyroid dysfunction. But the evidence is controversial. The present study aimed to explore the relationships between thyroid function and the profile of lipids and adipokines. A cross-sectional study was conducted in 197 newly diagnosed hypothyroid patients, 230 newly diagnosed hyperthyroid patients and 355 control subjects. Hypothyroid patients presented with significantly higher serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDLC), fasting insulin, resistin and leptin than control (p < 0.05). Hyperthyroid patients presented with significantly lower serum levels of high-density lipoprotein cholesterol, LDLC and leptin, as well as higher levels of fasting insulin, resistin, adiponectin and homeostasis model insulin resistance index (HOMA-IR) than control (p < 0.05). Nonlinear regression and multivariable linear regression models all showed significant associations of resistin or adiponectin with free thyroxine and association of leptin with thyroid-stimulating hormone (p < 0.001). Furthermore, significant correlation between resistin and HOMA-IR was observed in the patients (p < 0.001). Thus, thyroid dysfunction affects the profile of lipids and adipokines. Resistin may serve as a link between thyroid dysfunction and insulin resistance. PMID:27193069
Nonlinear Coherent Structures, Microbursts and Turbulence
NASA Astrophysics Data System (ADS)
Lakhina, G. S.
2015-12-01
Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.
Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline
Cao, Yi; Nugent, Peter E.; Kasliwal, Mansi M.
2016-09-28
A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting followup observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using highperformance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future.
Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yi; Nugent, Peter E.; Kasliwal, Mansi M.
A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting followup observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using highperformance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future.
Observations of a fast transverse instability in the PSR
NASA Astrophysics Data System (ADS)
Neuffer, D.; Colton, E.; Fitzgerald, D.; Hardek, T.; Hutson, R.; Macek, R.; Plum, M.; Thiessen, H.; Wang, T.-S.
1992-09-01
A fast instability with beam loss is observed in the Los Alamos Proton Storage Ring (PSR) when the injected beam current exceeds a threshold value, with both bunched and unbunched beams. Large coherent transverse oscillations occur prior to and during beam loss. The threshold depends strongly on rf voltage, beam-pulse shape, beam size, nonlinear fields, and beam environmental. Results of recent observations of the instability are reported; possible causes of the instability are discussed. Recent measurements and calculations indicate that the instability is an "e-p"-type instability, driven by coupled oscillations with electrons trapped within the proton beam. Future experiments toward further understanding of the instability are discussed, and methods of increasing PSR beam storage are suggested.
Wavelet-domain de-noising of OCT images of human brain malignant glioma
NASA Astrophysics Data System (ADS)
Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.
2018-04-01
We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.
Wong, Tien Y; Liew, Gerald; Tapp, Robyn J; Schmidt, Maria Inês; Wang, Jie Jin; Mitchell, Paul; Klein, Ronald; Klein, Barbara E K; Zimmet, Paul; Shaw, Jonathan
2008-03-01
The WHO and American Diabetes Association criteria for diagnosing diabetes mellitus assume the presence of a glycaemic threshold with high sensitivity for identifying retinopathy. However, this assumption is based on data from three previous studies that had important limitations in detecting retinopathy. We aimed to provide updated data for the relation between fasting plasma glucose (FPG) and retinopathy, and to assess the diagnostic accuracy of current FPG thresholds in identifying both prevalent and incident retinopathy. We examined the data from three cross-sectional adult populations: those in the Blue Mountains Eye Study (BMES, Australia, n=3162), the Australian Diabetes, Obesity and Lifestyle Study (AusDiab, Australia, n=2182), and the Multi-Ethnic Study of Atherosclerosis (MESA, USA, n=6079). Retinopathy was diagnosed from multiple retinal photographs of each eye, and graded according to the modified Airlie House Classification system. Plasma glucose concentrations were measured from fasting venous blood samples. The overall prevalence of retinopathy was 11.5% in BMES (95% CI 10.4-12.6%), 9.6% in AusDiab (8.4-10.9), and 15.8% in MESA (14.9-16.7). However, we found inconsistent evidence of a uniform glycaemic threshold for prevalent and incident retinopathy, with analyses suggesting a continuous relation. The widely used diabetes FPG cutoff of 7.0 mmol/L or higher had sensitivity less than 40% (range 14.8-39.1) for detecting retinopathy, with specificity between 80.8% and 95.8%. The area under receiver operating characteristic curves for FPG and retinopathy was low and ranged from 0.56 to 0.61. We saw no evidence of a clear and consistent glycaemic threshold for the presence or incidence of retinopathy across different populations. The current FPG cutoff of 7.0 mmol/L used to diagnose diabetes did not accurately identify people with and without retinopathy. These findings suggest that the criteria for diagnosing diabetes could need reassessment.
Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.
2016-01-01
Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography. PMID:26832279
Scattering properties of electromagnetic waves from metal object in the lower terahertz region
NASA Astrophysics Data System (ADS)
Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.
2018-01-01
An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.
NASA Astrophysics Data System (ADS)
Guo, Baoshan; Jiang, Lan; Hua, Yanhong; Li, Xin; Cui, Tianhong; Lu, Yongfeng
2018-03-01
Coherent anti-Stokes Raman scattering (CARS) microscopy is an attractive technique for label-free biochemical-specific characterization of biological specimens. However, it has very low sensitivity in monitoring and imaging molecules present in extremely low concentrations or at fast speeds. To improve this sensitivity, especially for multiplex CARS, the intensity of the pump beam and broadband Stokes beam should be enhanced simultaneously. Therefore, the gold shell particle and gold surface are demonstrated to enhance the forward and backward CARS, respectively. Results show that a signal enhancement factor of ˜25,000 can be achieved for the gold surface and an even higher enhancement factor can be achieved for the gold shell particles. Thus, we can obtain an enhanced CARS signal in a broad spectral range, which will substantially improve the detection sensitivity of hyperspectral CARS spectroscopy and imaging.
Nonlinear reconnecting edge localized modes in current-carrying plasmas
Ebrahimi, F.
2017-05-22
Nonlinear edge localized modes in a tokamak are examined using global three-dimensional resistive magnetohydrodynamics simulations. Coherent current-carrying filament (ribbon-like) structures wrapped around the torus are nonlinearly formed due to nonaxisymmetric reconnecting current sheet instabilities, the so-called peeling-like edge localized modes. These fast growing modes saturate by breaking axisymmetric current layers isolated near the plasma edge and go through repetitive relaxation cycles by expelling current radially outward and relaxing it back. The local bidirectional fluctuation-induced electromotive force (emf) from the edge localized modes, the dynamo action, relaxes the axisymmetric current density and forms current holes near the edge. Furthermore, the three-dimensionalmore » coherent current-carrying filament structures (sometimes referred to as 3-D plasmoids) observed here should also have strong implications for solar and astrophysical reconnection.« less
NASA Astrophysics Data System (ADS)
Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.
2004-07-01
First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannson, T.
1993-03-01
During the last two decades, there have been dramatic improvements in the development of optical sources. Examples of this development range from semiconductor laser diodes to free electron beam lasers and synchrotron radiation. Before these developments, standards for the measurement of basic optical parameters (quantities) were less demanding. Now, however, there is a fundamental need for new, reliable methods for providing fast quantitative results for a very broad variety of optical systems and sources. This is particularly true for partially coherent optical beams, since all optical sources are either fully or partially spatially coherent (including Lambertian sources). Until now, theremore » has been no satisfactory solution to this problem. During the last two decades, however, the foundations of physical radiometry have been developed by Walther, Wolf and co-workers. By integrating physical optics, statistical optics and conventional radiometry, this body of work provides necessary tools for the evaluation of radiometric quantities for partially coherent optical beams propagating through optical systems. In this program, Physical Optics Corporation (POC) demonstrated the viability of such a radiometric approach for the specific case of generalized energy concentrators called Liouville transformers. We believe that this radiometric approach is necessary to fully characterize any type of optical system since it takes into account the partial coherence of radiation. 90 refs., 57 figs., 4 tabs.« less
Soto, Juan M; Rodrigo, José A; Alieva, Tatiana
2018-01-01
Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.
Selvin, Elizabeth; Wang, Dan; Matsushita, Kunihiro; Grams, Morgan E; Coresh, Josef
2018-06-19
Current clinical definitions of diabetes require repeated blood work to confirm elevated levels of glucose or hemoglobin A1c (HbA1c) to reduce the possibility of a false-positive diagnosis. Whether 2 different tests from a single blood sample provide adequate confirmation is uncertain. To examine the prognostic performance of a single-sample confirmatory definition of undiagnosed diabetes. Prospective cohort study. The ARIC (Atherosclerosis Risk in Communities) study. 13 346 ARIC participants (12 268 without diagnosed diabetes) with 25 years of follow-up for incident diabetes, cardiovascular outcomes, kidney disease, and mortality. Confirmed undiagnosed diabetes was defined as elevated levels of fasting glucose (≥7.0 mmol/L [≥126 mg/dL]) and HbA1c (≥6.5%) from a single blood sample. Among 12 268 participants without diagnosed diabetes, 978 had elevated levels of fasting glucose or HbA1c at baseline (1990 to 1992). Among these, 39% had both (confirmed undiagnosed diabetes), whereas 61% had only 1 elevated measure (unconfirmed undiagnosed diabetes). The confirmatory definition had moderate sensitivity (54.9%) but high specificity (98.1%) for identification of diabetes cases diagnosed during the first 5 years of follow-up, with specificity increasing to 99.6% by 15 years. The 15-year positive predictive value was 88.7% compared with 71.1% for unconfirmed cases. Confirmed undiagnosed diabetes was significantly associated with cardiovascular and kidney disease and mortality, with stronger associations than unconfirmed diabetes. Lack of repeated measurements of fasting glucose and HbA1c. A single-sample confirmatory definition of diabetes had a high positive predictive value for subsequent diagnosis and was strongly associated with clinical end points. Our results support the clinical utility of using a combination of elevated fasting glucose and HbA1c levels from a single blood sample to identify undiagnosed diabetes in the population. National Institute of Diabetes and Digestive and Kidney Diseases and National Heart, Lung, and Blood Institute.
Ding, Ning; Kwak, Lucia; Ballew, Shoshana H; Jaar, Bernard; Hoogeveen, Ron C; Ballantyne, Christie M; Sharrett, A Richey; Folsom, Aaron R; Heiss, Gerardo; Salameh, Maya; Coresh, Josef; Hirsch, Alan T; Selvin, Elizabeth; Matsushita, Kunihiro
2018-04-30
Traditional glycemic markers, fasting glucose and hemoglobin A1c (HbA1c), predict incident peripheral artery disease (PAD). However, it is unknown whether nontraditional glycemic markers, fructosamine, glycated albumin, and 1,5-anhydroglucitol, are associated with PAD and whether these glycemic markers demonstrate particularly strong associations with severe PAD, critical limb ischemia (CLI). We quantified the associations of these five glycemic markers with incident PAD (hospitalizations with PAD diagnosis or leg revascularization) in 11,634 ARIC participants using Cox regression models. Participants were categorized according to diabetes diagnosis and clinical cut-points of glycemic markers (nontraditional glycemic markers were categorized according to percentiles corresponding to the HbA1c cut-points). Over a median follow-up of 20.7 years, there were 392 cases of PAD (133 were CLI with tissue loss). HbA1c was more strongly associated with incident PAD than fasting glucose, with adjusted hazard ratios (HR) 6.00 (95% CI, 3.73-9.66) for diagnosed diabetes with HbA1c ≥ 7% and 3.53 (2.39-5.22) for no diagnosed diabetes with HbA1c ≥ 6.5% compared to no diagnosed diabetes with HbA1c <5.7%. Three nontraditional glycemic markers demonstrated risk gradients intermediate between HbA1c and fasting glucose and their risk gradients were substantially attenuated after adjusting for HbA1c. All glycemic markers consistently demonstrated stronger associations with CLI than PAD without CLI (p for difference <0.02 for all glycemic markers). Nontraditional glycemic markers were associated with incident PAD independent of fasting glucose but not necessarily HbA1c. Our results also support the importance of glucose metabolism in the progression to CLI. Copyright © 2018 Elsevier B.V. All rights reserved.
A Short History of Cardiac Inspection: A Quest "To See with a Better Eye".
Evans, William N
2015-08-01
Cardiac examination has evolved over centuries. The goal of cardiac evaluation, regardless the era, is to "see" inside the heart to diagnose congenital and acquired intra-cardiac structural and functional abnormalities. This article briefly reviews the history of cardiac examination and discusses contemporary best, evidence-based methods of cardiac inspection.
Asperger syndrome, violent thoughts and clinically isolated syndrome.
Vanderbruggen, N; Van Geit, N; Bissay, V; Zeeuws, D; Santermans, L; Baeken, C
2010-12-01
A young man, 23 years old, with a clinically isolated syndrome (CIS), presented violent thoughts during a neurological consultation. He was diagnosed with Asperger Syndrome based on a psychiatric and (neuro)psychological examination. Possible risk factors for acting-out and the implications for treatment, if CIS would evolve to MS, are discussed based on a review of the literature.
The Effect of Autism on Sibling Relationships and Well-Being
ERIC Educational Resources Information Center
Gold, Mireille; McCabe, Paul C.
2012-01-01
Over the course of 3 decades, autism has evolved from a nearly unheard of disorder to one that is widely diagnosed (Centers for Disease Control and Prevention, 2009). This surge in diagnosis has initiated a renewed interest in autism research across disciplines. The impact of autism on the family is of particular significance to school…
Pancreatic Cancer Genomics 2.0: Profiling Metastases.
Collisson, Eric A; Maitra, Anirban
2017-03-13
Pancreatic ductal adenocarcinoma, even when diagnosed early, nearly always metastasizes. Recurrent mutations and genomic instability are early events in the disease. Two recent papers advance our understanding of how the cancer genome evolves as the primary tumor migrates from its origin in the pancreas to colonize distant metastatic sites. Copyright © 2017 Elsevier Inc. All rights reserved.
What Makes Counsellors Working in Primary Care Distinct from Counsellors Working in Other Settings?
ERIC Educational Resources Information Center
Hudson-Allez, Glyn
2000-01-01
Counseling in primary care can be considered a fast-evolving profession that is distinct from counseling in the private sector. Differences in counselor roles, specifically confidentiality ethics and working hours, are discussed. Referrals and attrition are also discussed. The distinctiveness of primary care counseling versus working in more…
In the Wake of China's Quickening Economy, Universities Struggle to Keep Pace
ERIC Educational Resources Information Center
Hennock, Mary
2012-01-01
In China the global challenges of fast-evolving technology and multidisciplinary studies are complicated by the newness of the market. Only 40 years ago, professors were condemned to manual labor if suspected of capitalist sympathies, and most universities were shut down during the decade-long Cultural Revolution. The government is preoccupied…
USDA-ARS?s Scientific Manuscript database
Peripheral insulin resistance shifts metabolic fuel use away from carbohydrates, and towards lipids, and is most commonly associated with Type 2 diabetes mellitus. However, regulated insulin resistance is an evolved mechanism to preserve glucose for the brain in conditions of high demand or carbohy...
Agility in Business School Education through Richness and Reach: A Conceptual Model
ERIC Educational Resources Information Center
Gupta, Nakul; Bharadwaj, Sangeeta Shah
2013-01-01
Purpose: Pedagogy today has become a function of technology and this relationship becomes all the more promising when used to address the educational needs of the constantly changing and fast evolving business school education. Business schools today are responsible for empowering future managers and leaders with not only the knowledge and…
The natural aging of austenitic stainless steels irradiated with fast neutrons
NASA Astrophysics Data System (ADS)
Rofman, O. V.; Maksimkin, O. P.; Tsay, K. V.; Koyanbayev, Ye. T.; Short, M. P.
2018-02-01
Much of today's research in nuclear materials relies heavily on archived, historical specimens, as neutron irradiation facilities become ever more scarce. These materials are subject to many processes of stress- and irradiation-induced microstructural evolution, including those during and after irradiation. The latter of these, referring to specimens "naturally aged" in ambient laboratory conditions, receives far less attention. The long and slow set of rare defect migration and interaction events during natural aging can significantly change material properties over decadal timescales. This paper presents the results of natural aging carried out over 15 years on austenitic stainless steels from a BN-350 fast breeder reactor, each with its own irradiation, stress state, and natural aging history. Natural aging is shown to significantly reduce hardness in these steels by 10-25% and partially alleviate stress-induced hardening over this timescale, showing that materials evolve back towards equilibrium even at such a low temperature. The results in this study have significant implications to any nuclear materials research program which uses historical specimens from previous irradiations, challenging the commonly held assumption that materials "on the shelf" do not evolve.
Dutta, Rajesh; Bagchi, Kaushik
2017-01-01
Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457
Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method
NASA Astrophysics Data System (ADS)
Bizzozero, David A.
In this thesis, we present methods for integrating Maxwell's equations in Frenet-Serret coordinates in several settings using discontinuous Galerkin (DG) finite element method codes in 1D, 2D, and 3D. We apply these routines to the study of coherent synchrotron radiation, an important topic in accelerator physics. We build upon the published computational work of T. Agoh and D. Zhou in solving Maxwell's equations in the frequency-domain using a paraxial approximation which reduces Maxwell's equations to a Schrodinger-like system. We also evolve Maxwell's equations in the time-domain using a Fourier series decomposition with 2D DG motivated by an experiment performed at the Canadian Light Source. A comparison between theory and experiment has been published (Phys. Rev. Lett. 114, 204801 (2015)). Lastly, we devise a novel approach to integrating Maxwell's equations with 3D DG using a Galilean transformation and demonstrate proof-of-concept. In the above studies, we examine the accuracy, efficiency, and convergence of DG.
Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons.
Bossini, D; Dal Conte, S; Hashimoto, Y; Secchi, A; Pisarev, R V; Rasing, Th; Cerullo, G; Kimel, A V
2016-02-05
The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.
Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons
NASA Astrophysics Data System (ADS)
Bossini, D.; Dal Conte, S.; Hashimoto, Y.; Secchi, A.; Pisarev, R. V.; Rasing, Th.; Cerullo, G.; Kimel, A. V.
2016-02-01
The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
Coherent Dynamics of Open Quantum System in the Presence of Majorana Fermions
NASA Astrophysics Data System (ADS)
Assuncao, Maryzaura O.; Diniz, Ginetom S.; Vernek, Edson; Souza, Fabricio M.
In recent years the research on quantum coherent dynamics of open systems has attracted great attention due to its relevance for future implementation of quantum computers. In the present study we apply the Kadanoff-Baym formalism to simulate the population dynamics of a double-dot molecular system attached to both a superconductor and fermionic reservoirs. We solve both analytically and numerically a set of coupled differential equations that account for crossed Andreev reflection (CAR), intramolecular hopping and tunneling. We pay particular attention on how Majorana bound states can affect the population dynamics of the molecule. We investigate on how initial state configuration affects the dynamics. For instance, if one dot is occupied and the other one is empty, the dynamics is dictated by the inter dot tunneling. On the other hand, for initially empty dots, the CAR dominates. We also investigate how the source and drain currents evolve in time. This work was supporte by FAPEMIG, CNPq and CAPES.
SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Mitchell A.; Asgari-Targhi, Mahboubeh, E-mail: m.berger@exeter.ac.u, E-mail: m.asgari@ucl.ac.u
2009-11-01
The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simplemore » models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.« less
NASA Astrophysics Data System (ADS)
Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.
2016-03-01
Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.
Cystic Fibrosis Diagnosis and Newborn Screening.
Rosenfeld, Margaret; Sontag, Marci K; Ren, Clement L
2016-08-01
The diagnosis of cystic fibrosis (CF) has evolved over the past decade as newborn screening has become universal in the United States and elsewhere. The heterogeneity of phenotypes associated with CF transmembrane conductance regulator (CFTR) dysfunction and mutations in the CFTR gene has become clearer, ranging from classic pancreatic-insufficient CF to manifestations in only 1 organ system to indeterminate diagnoses identified by newborn screening. The tools available for diagnosis have also expanded. This article reviews the newest diagnostic criteria for CF, newborn screening, prenatal screening and diagnosis, and indeterminate diagnoses in newborn-screened infants and symptomatic adults. Copyright © 2016 Elsevier Inc. All rights reserved.
Contemporary management of ductal carcinoma in situ and lobular carcinoma in situ.
Obeng-Gyasi, Samilia; Ong, Cecilia; Hwang, E Shelley
2016-06-01
The management of in situ lesions ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) continues to evolve. These diagnoses now comprise a large burden of mammographically diagnosed cancers, and with a global trend towards more population-based screening, the incidence of these lesions will continue to rise. Because outcomes following treatment for DCIS and LCIS are excellent, there is emerging controversy about what extent of treatment is optimal for both diseases. Here we review the current approaches to the diagnosis and treatment of both DCIS and LCIS. In addition, we will consider potential directions for future management of these lesions.
Foveal retinoschisis misdiagnosed as bilateral amblyopia.
Kyung, Sungeun E; Lee, Minsoo
2012-12-01
Juvenile foveal retinoschisis is one of the most common causes of bilateral macular degeneration in young boys. School age with accommodative esotropia may develop amblyopia due to late correction of hyperopia. Retinoschisis is hard to diagnose in patient with subtle macula change and hyperopic amblyopia. We report a case of bilateral foveal retinoschisis before and after treatment with topical dorzolamide, which was misdiagnosed as bilateral hyperopic amblyopia. Optical coherence tomography should be considered in diagnostic procedures of children with hyperopic amblyopia.
A hybrid silicon membrane spatial light modulator for optical information processing
NASA Technical Reports Server (NTRS)
Pape, D. R.; Hornbeck, L. J.
1984-01-01
A new two dimensional, fast, analog, electrically addressable, silicon based membrane spatial light modulator (SLM) was developed for optical information processing applications. Coherent light reflected from the mirror elements is phase modulated producing an optical Fourier transform of an analog signal input to the device. The DMD architecture and operating parameters related to this application are presented. A model is developed that describes the optical Fourier transform properties of the DMD.
FAST TRACK COMMUNICATION: Stable propagation of a modulated positron beam in a bent crystal channel
NASA Astrophysics Data System (ADS)
Kostyuk, A.; Korol, A. V.; Solov'yov, A. V.; Greiner, W.
2010-08-01
The propagation of a modulated positron beam in a planar crystal channel is investigated. It is demonstrated that the beam preserves its modulation at sufficiently large penetration depths, which opens the prospect of using a crystalline undulator as a coherent source of hard x-rays. This finding is a crucial milestone in developing a new type of laser radiating in the hard x-ray and gamma-ray range.
Advances in the physics basis for the European DEMO design
NASA Astrophysics Data System (ADS)
Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.
2015-06-01
In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
Time delay generation at high frequency using SOA based slow and fast light.
Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi
2011-10-24
We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America
Optical coherence tomography in diagnosing cervical cancer
NASA Astrophysics Data System (ADS)
Kuznetzova, Irina A.; Shakhova, Natalia M.; Kachalina, Tatiana S.; Gladkova, Natalia D.; Myakov, Alexey V.; Iksanov, Rashid R.; Feldchtein, Felix I.
2000-05-01
Cervical cancer remains one of the most significant problem in oncogynecology. It tends towards treatment approaches that provide termination of pathological processes along with preservation of the patient's life quality. There is a need in earlier and more accurate diagnosis of pathological states, objective assessment of physiological processes, and adequate monitoring of the course of treatment. In our previous publications we have reported unique capabilities of the Optical Coherence Tomography (OCT) to image in vivo the mucosa structure of the cervix and to monitor various physiological and pathological alterations. In this report, we present results of OCT application to diagnose different stages of cervical cancer and to control its treatment at early stages. We have performed OCT-colposcopy in 11 female patients with cervical cancer to derive OCT criteria of this disease, to provide exact demarcation of a pathological area, and to determine a real size of a tumor. We have found that, in general, borders of a tumor, defined visually and detected with OCT by violation of the basement membrane in exocervix, do not coincide. The mismatch depends on a stage of cancer and can be as much as several millimeters. This information is especially important for evaluation of linear dimension of tumors with 3 - 5 mm invasion and also for differential diagnosis between the T1 and T2 stages with cancer extension onto vagina.
Single-mode 140 nm swept light source realized by using SSG-DBR lasers
NASA Astrophysics Data System (ADS)
Fujiwara, N.; Yoshimura, R.; Kato, K.; Ishii, H.; Kano, F.; Kawaguchi, Y.; Kondo, Y.; Ohbayashi, K.; Oohashi, H.
2008-02-01
We demonstrate a single-mode and fast wavelength swept light source by using Superestrucuture grating distributed Bragg reflector (SSG-DBR) lasers for use in optical frequency-domain reflectometry optical coherence tomography. The SSG-DBR lasers provide single-mode operation resulting in high coherency. Response of the wavelength tuning is very fast; several nanoseconds, but there was an unintentional wavelength drift resulting from a thermal drift due to injecting tuning current. The dri1ft unfortunately requires long time to converge; more than a few milliseconds. For suppressing the wavelength drift, we introduced Thermal Drift Compensation mesa (TDC) parallel to the laser mesa with the spacing of 20 μm. By controlling TDC current to satisfy the total electric power injected into both the laser mesa and the TDC mesa, the thermal drift can be suppressed. In the present work, we fabricated 4 wavelength's kinds of SSG-DBR laser, which covers respective wavelength band; S-band (1496-1529 nm), C-band (1529-1564 nm), L --band (1564-1601 nm), and L +-band (1601-1639). We set the frequency channel of each laser with the spacing 6.25 GHz and 700 channels. The total frequency channel number is 2800 channels (700 ch × 4 lasers). We simultaneously operated the 4 lasers with a time interval of 500 ns/channel. A wavelength tuning range of more than 140 nm was achieved within 350 μs. The output power was controlled to be 10 mW for all channels. A single-mode, accurate, wide, and fast wavelength sweep was demonstrated with the SSG-DBR lasers having TDC mesa structure for the first time.
Watching diagnoses develop: Eye movements reveal symptom processing during diagnostic reasoning.
Scholz, Agnes; Krems, Josef F; Jahn, Georg
2017-10-01
Finding a probable explanation for observed symptoms is a highly complex task that draws on information retrieval from memory. Recent research suggests that observed symptoms are interpreted in a way that maximizes coherence for a single likely explanation. This becomes particularly clear if symptom sequences support more than one explanation. However, there are no existing process data available that allow coherence maximization to be traced in ambiguous diagnostic situations, where critical information has to be retrieved from memory. In this experiment, we applied memory indexing, an eye-tracking method that affords rich time-course information concerning memory-based cognitive processing during higher order thinking, to reveal symptom processing and the preferred interpretation of symptom sequences. Participants first learned information about causes and symptoms presented in spatial frames. Gaze allocation to emptied spatial frames during symptom processing and during the diagnostic response reflected the subjective status of hypotheses held in memory and the preferred interpretation of ambiguous symptoms. Memory indexing traced how the diagnostic decision developed and revealed instances of hypothesis change and biases in symptom processing. Memory indexing thus provided direct online evidence for coherence maximization in processing ambiguous information.
Avetisov, S E; Budzinskaya, M V; Zhabina, O A; Andreeva, I V; Plyukhova, A A; Kobzova, M V; Musaeva, G M
2015-01-01
Myopia prevalence grows alike in many countries, including Russia, regardless of geographical and population conditions. to assess fundus changes in myopic patients at different ocular axial lengths by means of modern diagnostic tools. The study enrolled 97 patients (194 eyes) aged 45 ± 20.17 years with myopia of different degrees. Besides a standard ophthalmic examination, all patients underwent fundus fluorescein angiography and optical coherence tomography. The occurrence of retinal pigment epithelium (RPE) atrophy (diffuse or focal) has been shown to increase with increasing ocular axial length. Only 27 eyes (28.1%) appeared intact. As myopia progression implies axial growth of the eye, it is associated with a more severe decrease in choroid, RPE, and photoreceptor layer thicknesses: the longer the anterior-posterior axis, the thinner the above mentioned fundus structures. Age-related changes in the fundus are also likely to be more pronounced in longer axes. Myopic traction maculopathy, which in our case appeared the main cause of increased retinal thickness, was diagnosed in 105 eyes, "outer" macular retinoschisis--in 40 eyes. Thus, modern diagnostic tools, such as fluorescein angiography and optical coherence tomography, enable objective assessment of the central fundus.
NASA Astrophysics Data System (ADS)
Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Mohammadzai, Qais; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Chang, Anthony; Mohan, Chandra; Larin, Kirill V.
2016-03-01
Acute Glomerulonephritis caused by anti-glomerular basement membrane disease has a high mortality due to delayed diagnosis. Thus, an accurate and early diagnosis is critical for preserving renal function. Currently, blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides superior spatial resolution (micron scale) as compared to ultrasound and CT. Pathological changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signal, such as optical attenuation and speckle variance. Moreover, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, we utilized OCT to detect the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, classification accuracy using only optical metrics was clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improved from 76% to 95%. These results show that OCT combined with OCE can be potentially useful for nephritis detection.
Advances in optical coherence tomography in dermatology-a review
NASA Astrophysics Data System (ADS)
Olsen, Jonas; Holmes, Jon; Jemec, Gregor B. E.
2018-04-01
Optical coherence tomography (OCT) was introduced as an imaging system, but like ultrasonography, other measures, such as blood perfusion and polarization of light, have enabled the technology to approach clinical utility. This review aims at providing an overview of the advances in clinical research based on the improving technical aspects. OCT provides cross-sectional and en face images down to skin depths of 0.4 to 2.00 mm with optical resolution of 3 to 15 μm. Dynamic optical coherence tomography (D-OCT) enables the visualization of cutaneous microvasculature via detection of rapid changes in the interferometric signal of blood flow. Nonmelanoma skin cancer (NMSC) is the most comprehensively investigated topic, resulting in improved descriptions of morphological features and diagnostic criteria. A refined scoring system for diagnosing NMSC, taking findings from conventional and D-OCT into account, is warranted. OCT diagnosis of melanoma is hampered by the resolution and the optical properties of melanin. D-OCT may be of value in diseases characterized with dynamic changes in the vasculature of the skin and the addition of functional measures is strongly encouraged. In conclusion, OCT in dermatology is still an emerging technology that has great potential for improving further in the future.
de Carlo, Talisa E; Kokame, Gregg T; Kaneko, Kyle N; Lian, Rebecca; Lai, James C; Wee, Raymond
2018-03-20
Determine sensitivity and specificity of polypoidal choroidal vasculopathy (PCV) diagnosis with structural en face optical coherence tomography (OCT) and OCT angiography (OCTA). Retrospective review of the medical records of eyes diagnosed with PCV by indocyanine green angiography with review of diagnostic testing with structural en face OCT and OCTA by a trained reader. Structural en face OCT, cross-sectional OCT angiograms alone, and OCTA in its entirety were reviewed blinded to the findings of indocyanine green angiography and each other to determine if they could demonstrate the PCV complex. Sensitivity and specificity of PCV diagnosis was determined for each imaging technique using indocyanine green angiography as the ground truth. Sensitivity and specificity of structural en face OCT were 30.0% and 85.7%, of OCT angiograms alone were 26.8% and 96.8%, and of the entire OCTA were 43.9% and 87.1%, respectively. Sensitivity and specificity were improved for OCT angiograms and OCTA when looking at images taken within 1 month of PCV diagnosis. Sensitivity of detecting PCV was low using structural en face OCT and OCTA but specificity was high. Indocyanine green angiography remains the gold standard for PCV detection.
Dynamical Model for Spindown of Solar-type Stars
NASA Astrophysics Data System (ADS)
Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer
2016-12-01
After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution.
Heianza, Y; Arase, Y; Fujihara, K; Tsuji, H; Saito, K; Hsieh, S D; Kodama, S; Shimano, H; Yamada, N; Hara, S; Sone, H
2012-09-01
To evaluate various screening criteria for pre-diabetes to identify which combination of impaired fasting glucose and elevated HbA(1c) values performs most effectively in predicting future diabetes in a large cohort of Japanese individuals. The study included 4670 men and 1571 women without diabetes (diabetes: fasting plasma glucose ≥ 7.0 mmol/l, HbA(1c) ≥ 48 mmol/mol (≥ 6.5%), or self-reported clinician-diagnosed diabetes). Pre-diabetes was diagnosed by a combination of impaired fasting glucose (fasting plasma glucose 5.6-6.9 mmol/l or 6.1-6.9 mmol/l) and elevated HbA(1c) [39-46 mmol/mol (5.7-6.4%) or 42-46 mmol/mol (6.0-6.4%)]. During a 5-year follow-up, 338 incident cases of diabetes occurred. The combination of HbA(1c) 39-46 mmol/mol (5.7-6.4%) and fasting plasma glucose 5.6-6.9 mmol/l yielded the highest sensitivity (86%) and generated a large population-attributable per cent risk (78%) for predicting development of diabetes. Among individuals classified as having pre-diabetes by any of the four combined criteria, 20.5-32.0% reverted to the normoglycaemic state as having neither elevated HbA(1c) nor impaired fasting glucose at the last follow-up examination. At 5.6 years after the baseline examination, however, pre-diabetic individuals who fulfilled both HbA(1c) 42-46 mmol/mol (6.0-6.4%) and fasting plasma glucose 6.1-6.9 mmol/l had a 100% cumulative risk of developing diabetes. The combination of HbA(1c) 39-46 mmol/mol (5.7-6.4%) and fasting plasma glucose 5.6-6.9 mmol/l would have the best performance in reducing the likelihood of missing future cases of diabetes. Identifying pre-diabetic individuals who strictly fulfil HbA(1c) 42-46 mmol/mol (6.0-6.4%) and fasting plasma glucose 6.1-6.9 mmol/l would predict definite progression to diabetes. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
Houser, Dorian S.; Champagne, Cory D.; Crocker, Daniel E.
2013-01-01
Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7–3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies. PMID:24198811
A similarity hypothesis for the two-point correlation tensor in a temporally evolving plane wake
NASA Technical Reports Server (NTRS)
Ewing, D. W.; George, W. K.; Moser, R. D.; Rogers, M. M.
1995-01-01
The analysis demonstrated that the governing equations for the two-point velocity correlation tensor in the temporally evolving wake admit similarity solutions, which include the similarity solutions for the single-point moment as a special case. The resulting equations for the similarity solutions include two constants, beta and Re(sub sigma), that are ratios of three characteristic time scales of processes in the flow: a viscous time scale, a time scale characteristic of the spread rate of the flow, and a characteristic time scale of the mean strain rate. The values of these ratios depend on the initial conditions of the flow and are most likely measures of the coherent structures in the initial conditions. The occurrences of these constants in the governing equations for the similarity solutions indicates that these solutions, in general, will only be the same for two flows if these two constants are equal (and hence the coherent structures in the flows are related). The comparisons between the predictions of the similarity hypothesis and the data presented here and elsewhere indicate that the similarity solutions for the two-point correlation tensors provide a good approximation of the measures of those motions that are not significantly affected by the boundary conditions caused by the finite extent of real flows. Thus, the two-point similarity hypothesis provides a useful tool for both numerical and physical experimentalist that can be used to examine how the finite extent of real flows affect the evolution of the different scales of motion in the flow.
Liu, George S; Zhu, Michael H; Kim, Jinkyung; Raphael, Patrick; Applegate, Brian E; Oghalai, John S
2017-10-01
Detection of endolymphatic hydrops is important for diagnosing Meniere's disease, and can be performed non-invasively using optical coherence tomography (OCT) in animal models as well as potentially in the clinic. Here, we developed ELHnet, a convolutional neural network to classify endolymphatic hydrops in a mouse model using learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training and validation images from 17 mice, using only the image pixels and observer-determined labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice that were previously not used, and found that the neural network correctly classified 34 of the 37 mice. This demonstrates an improvement in performance from previous work on computer-aided classification of endolymphatic hydrops. To the best of our knowledge, this is the first deep CNN designed for endolymphatic hydrops classification.
Khairallah, Moncef; Kahloun, Rim; Gargouri, Salma; Jelliti, Bechir; Sellami, Dorra; Ben Yahia, Salim; Feki, Jamel
2017-08-01
A 65-year-old man with diabetes and a history of fever of unknown origin 2 weeks earlier complained of sudden decreased vision in the left eye. The patient was diagnosed with bilateral West Nile virus (WNV) chorioretinitis associated with occlusive retinal vasculitis in the left eye. Swept-source optical coherence tomography angiography (SS-OCTA) of the left eye showed extensive, well-delineated, hypointense non-perfusion areas and perifoveal capillary arcade disruption in the superficial capillary plexus, as well as larger non-perfusion areas, capillary rarefaction, and diffuse capillary network attenuation and disorganization in the deep capillary plexus. OCTA may be a valuable tool for noninvasively assessing occlusive retinal vasculitis associated with WNV infection. It allows an accurate detection and precise delineation of areas of retinal capillary nonperfusion in both the superficial and deep capillary plexuses. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:672-675.]. Copyright 2017, SLACK Incorporated.
Liu, George S.; Zhu, Michael H.; Kim, Jinkyung; Raphael, Patrick; Applegate, Brian E.; Oghalai, John S.
2017-01-01
Detection of endolymphatic hydrops is important for diagnosing Meniere’s disease, and can be performed non-invasively using optical coherence tomography (OCT) in animal models as well as potentially in the clinic. Here, we developed ELHnet, a convolutional neural network to classify endolymphatic hydrops in a mouse model using learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training and validation images from 17 mice, using only the image pixels and observer-determined labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice that were previously not used, and found that the neural network correctly classified 34 of the 37 mice. This demonstrates an improvement in performance from previous work on computer-aided classification of endolymphatic hydrops. To the best of our knowledge, this is the first deep CNN designed for endolymphatic hydrops classification. PMID:29082086
LOCATING AND CHARACTERIZING ANGIOID STREAKS WITH EN FACE OPTICAL COHERENCE TOMOGRAPHY.
Hanhart, Joel; Greifner, Hillel; Rozenman, Yaakov
2017-01-01
To characterize angioid streaks (AS) with en face optical coherence tomography (OCT). Case report of a patient with myopia presenting with choroidal neovascularization secondary to AS. Swept-source en face OCT ability to image the streaks was compared with spectral-domain and swept-source B-scans as well as color and red-free pictures. A 48-year-old man with myopia presented with sudden central visual loss. Choroidal neovascularization secondary to AS was diagnosed and intraocular anti-vascular endothelial growth factor given with clinical and OCT features improvement. Angioid streaks were visualized as less dark than the overlying retinal and the underlying choroidal vasculature. En face OCT located the changes at the level of Bruch membrane. An AS was found to be interrupted by the choroidal neovascularization, what was not captured by other modalities. En face OCT allows to assess the extent of changes in Bruch membrane and their spatial relationship to choroidal neovascularization.
En face swept-source optical coherence tomographic analysis of X-linked juvenile retinoschisis.
Ono, Shinji; Takahashi, Atsushi; Mase, Tomoko; Nagaoka, Taiji; Yoshida, Akitoshi
2016-07-01
To clarify the area of retinoschisis by X-linked juvenile retinoschisis (XLRS) using swept-source optical coherence tomography (SS-OCT) en face images. We report two cases of XLRS in the same family. The patients presented with bilateral blurred vision. The posterior segment examination showed a spoked-wheel pattern in the macula. SS-OCT cross-sectional images revealed widespread retinal splitting at the level of the inner nuclear layer bilaterally. We diagnosed XLRS. To evaluate the area of retinoschisis, we obtained en face SS-OCT images, which clearly visualized the area of retinoschisis seen as a sunflower-like structure in the macula. We report the findings on en face SS-OCT images from patients with XLRS. The en face images using SS-OCT showed the precise area of retinoschisis compared with the SS-OCT thickness map and are useful for managing patients with XLRS.
Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence
NASA Astrophysics Data System (ADS)
Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine
2017-04-01
Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.