Sample records for coherence microscopy ocm

  1. Dark-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Pache, C.; Villiger, M. L.; Lasser, T.

    2010-02-01

    Many solutions have been proposed to produce phase quantitative images of biological cell samples. Among these, Spectral Domain Phase Microscopy combines the fast imaging speed and high sensitivity of Optical Coherence Microscopy (OCM) in the Fourier domain with the high phase stability of common-path interferometry. We report on a new illumination scheme for OCM that enhances the sensitivity for backscattered light and detects the weak sample signal, otherwise buried by the signal from specular reflection. With the use of a Bessel-like beam, a dark-field configuration was realized. Sensitivity measurements for three different illumination configurations were performed to compare our method to standard OCM and extended focus OCM. Using a well-defined scattering and reflecting object, we demonstrated an attenuation of -40 dB of the DC-component and a relative gain of 30 dB for scattered light, compared to standard OCM. In a second step, we applied this technique, referred to as dark-field Optical Coherence Microscopy (dfOCM), to living cells. Chinese hamster ovarian cells were applied in a drop of medium on a coverslide. The cells of ~15 μm in diameter and even internal cell structures were visualized in the acquired tomograms.

  2. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-01-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with <4 μm axial resolution (OCT and OCM), and 14 μm (OCT) and <2 μm (OCM) transverse resolution. The system allows seamless switching between low and high magnifications in a way similar to traditional microscopy. Good correspondence is observed between optical images and histological sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.

  3. Measurement of time-varying displacement fields in cell culture for traction force optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mulligan, Jeffrey A.; Adie, Steven G.

    2017-02-01

    Mechanobiology is an emerging field which seeks to link mechanical forces and properties to the behaviors of cells and tissues in cancer, stem cell growth, and other processes. Traction force microscopy (TFM) is an imaging technique that enables the study of traction forces exerted by cells on their environment to migrate as well as sense and manipulate their surroundings. To date, TFM research has been performed using incoherent imaging modalities and, until recently, has been largely confined to the study of cell-induced tractions within two-dimensions using highly artificial and controlled environments. As the field of mechanobiology advances, and demand grows for research in physiologically relevant 3D culture and in vivo models, TFM will require imaging modalities that support such settings. Optical coherence microscopy (OCM) is an interferometric imaging modality which enables 3D cellular resolution imaging in highly scattering environments. Moreover, optical coherence elastography (OCE) enables the measurement of tissue mechanical properties. OCE relies on the principle of measuring material deformations in response to artificially applied stress. By extension, similar techniques can enable the measurement of cell-induced deformations, imaged with OCM. We propose traction force optical coherence microscopy (TF-OCM) as a natural extension and partner to existing OCM and OCE methods. We report the first use of OCM data and digital image correlation to track temporally varying displacement fields exhibited within a 3D culture setting. These results mark the first steps toward the realization of TF-OCM in 2D and 3D settings, bolstering OCM as a platform for advancing research in mechanobiology.

  4. 3D in vivo imaging with extended-focus optical coherence microscopy.

    PubMed

    Chen, Yu; Trinh, Le A; Fingler, Jeff; Fraser, Scott E

    2017-11-01

    Optical coherence microscopy (OCM) has unique advantages of non-invasive 3D imaging without the need of exogenous labels for studying biological samples. However, the imaging depth of this technique is limited by the tradeoff between the depth of focus (DOF) and high lateral resolution in Gaussian optics. To overcome this limitation, we have developed an extended-focus OCM (xf-OCM) imaging system using quasi-Bessel beam illumination to extend the DOF to ∼100 μm, about 3-fold greater than standard OCM. High lateral resolution of 1.6 μm ensured detailed identification of structures within live animal samples. The insensitivity to spherical aberrations strengthened the capability of our xf-OCM system in 3D biological imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  6. Quantitative optical coherence microscopy for the in situ investigation of the biofilm

    NASA Astrophysics Data System (ADS)

    Meleppat, Ratheesh Kumar; Shearwood, Christopher; Keey, Seah Leong; Matham, Murukeshan Vadakke

    2016-12-01

    This paper explores the potential of optical coherence microscopy (OCM) for the in situ monitoring of biofilm growth. The quantitative imaging of the early developmental biology of a representative biofilm, Klebsiella pneumonia (KP-1), was performed using a swept source-based Fourier domain OCM system. The growth dynamics of the KP-1 biofilms and their transient response under perturbation was investigated using the enface visualization of microcolonies and their spatial localization. Furthermore, the optical density (OD) and planar density of the biofilms are calculated using an OCM technique and compared with OD and colony forming units measured using standard procedures via the sampling of the flow-cell effluent.

  7. Optical Coherence Microscopy

    NASA Astrophysics Data System (ADS)

    Aguirre, Aaron D.; Zhou, Chao; Lee, Hsiang-Chieh; Ahsen, Osman O.; Fujimoto, James G.

    Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.

  8. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  9. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  10. Design of a handheld optical coherence microscopy endoscope

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali R.; Liebmann, Erica; Barton, Jennifer K.

    2011-06-01

    Optical coherence microscopy (OCM) combines coherence gating, high numerical aperture optics, and a fiber-core pinhole to provide high axial and lateral resolution with relatively large depth of imaging. We present a handheld rigid OCM endoscope designed for small animal surgical imaging, with a 6-mm diam tip, 1-mm scan width, and 1-mm imaging depth. X-Y scanning is performed distally with mirrors mounted to micro galvonometer scanners incorporated into the endoscope handle. The endoscope optical design consists of scanning doublets, an afocal Hopkins relay lens system, a 0.4 numerical aperture water immersion objective, and a cover glass. This endoscope can resolve laterally a 1.4-μm line pair feature and has an axial resolution (full width half maximum) of 5.4 μm. Images taken with this endoscope of fresh ex-vivo mouse ovaries show structural features, such as corpus luteum, primary follicles, growing follicles, and fallopian tubes. This rigid handheld OCM endoscope can be useful for a variety of minimally invasive and surgical imaging applications.

  11. Rat brain imaging using full field optical coherence microscopy with short multimode fiber probe

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Saito, Daisuke; Kurotani, Reiko; Abe, Hiroyuki; Kawauchi, Satoko; Sato, Shunichi; Nishidate, Izumi

    2017-02-01

    We demonstrated FF OCM(full field optical coherence microscopy) using an ultrathin forward-imaging SMMF (short multimode fiber) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length, which is a typical graded-index multimode fiber for optical communications. The axial resolution was measured to be 2.20 μm, which is close to the calculated axial resolution of 2.06 μm. The lateral resolution was evaluated to be 4.38 μm using a test pattern. Assuming that the FWHM of the contrast is the DOF (depth of focus), the DOF of the signal is obtained at 36 μm and that of the OCM is 66 μm. The contrast of the OCT images was 6.1 times higher than that of the signal images due to the coherence gate. After an euthanasia the rat brain was resected and cut at 2.6mm tail from Bregma. Contacting SMMF to the primary somatosensory cortex and the agranular insular cortex of ex vivo brain, OCM images of the brain were measured 100 times with 2μm step. 3D OCM images of the brain were measured, and internal structure information was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in full-field OCM has been demonstrated.

  12. Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos.

    PubMed

    Karnowski, Karol; Ajduk, Anna; Wieloch, Bartosz; Tamborski, Szymon; Krawiec, Krzysztof; Wojtkowski, Maciej; Szkulmowski, Maciej

    2017-06-23

    Imaging of living cells based on traditional fluorescence and confocal laser scanning microscopy has delivered an enormous amount of information critical for understanding biological processes in single cells. However, the requirement for a high numerical aperture and fluorescent markers still limits researchers' ability to visualize the cellular architecture without causing short- and long-term photodamage. Optical coherence microscopy (OCM) is a promising alternative that circumvents the technical limitations of fluorescence imaging techniques and provides unique access to fundamental aspects of early embryonic development, without the requirement for sample pre-processing or labeling. In the present paper, we utilized the internal motion of cytoplasm, as well as custom scanning and signal processing protocols, to effectively reduce the speckle noise typical for standard OCM and enable high-resolution intracellular time-lapse imaging. To test our imaging system we used mouse and pig oocytes and embryos and visualized them through fertilization and the first embryonic division, as well as at selected stages of oogenesis and preimplantation development. Because all morphological and morphokinetic properties recorded by OCM are believed to be biomarkers of oocyte/embryo quality, OCM may represent a new chapter in imaging-based preimplantation embryo diagnostics.

  13. Ultrathin forward-imaging short multimode fiber probe for full-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Saito, Daisuke; Shouji, Kou; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2016-12-01

    To extend the applications of optical coherence tomography (OCT) to the fields of physiology and clinical medicine, less invasive, robust, and reliable optical probes are required. Thus, we demonstrate an ultrathin forward-imaging short multimode fiber (SMMF) optical coherence microscopy (OCM) probe with a 50 μm core diameter, 125 μm total diameter, and 5.12 mm length. Imaging conditions and magnification were analyzed, and they correspond closely to the measured results. The dispersion of the SMMF was investigated, and the modal dispersion coefficient was found to be 2.3% of the material dispersion coefficient. The axial resolution was minimized at 2.15 μm using a 0.885-mm-thick dispersion compensator. The lateral resolution was evaluated to be 4.38 μm using a test pattern. The contrast of the OCM images was 5.7 times higher than that of the signal images owing to the coherence gate. The depth of focus and diameter of the field of view were measured to be 60 μm and 40-50 μm, respectively. OCM images of the dried fins of small fish (Medaka) were measured and internal structures could be recognized.

  14. Visible light optical coherence microscopy imaging of the mouse cortex with femtoliter volume resolution

    NASA Astrophysics Data System (ADS)

    Merkle, Conrad W.; Chong, Shau Poh; Kho, Aaron M.; Zhu, Jun; Kholiqov, Oybek; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-02-01

    Most flying-spot Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) systems use a symmetric confocal geometry, where the detection path retraces the illumination path starting from and ending with the spatial mode of a single mode optical fiber. Here, we describe a visible light OCM instrument that breaks this symmetry to improve transverse resolution without sacrificing collection efficiency in scattering tissue. This was achieved by overfilling a 0.3 numerical aperture (NA) water immersion objective on the illumination path, while maintaining a conventional Gaussian mode detection path (1/e2 intensity diameter 0.82 Airy disks), enabling 1.1 μm full-width at half-maximum (FWHM) transverse resolution. At the same time, a 0.9 μm FWHM axial resolution in tissue, achieved by a broadband visible light source, enabled femtoliter volume resolution. We characterized this instrument according to paraxial coherent microscopy theory, and then used it to image the meningeal layers, intravascular red blood cell-free layer, and myelinated axons in the mouse neocortex in vivo through the thinned skull. Finally, by introducing a 0.8 NA water immersion objective, we improved the lateral resolution to 0.44 μm FWHM, which provided a volumetric resolution of 0.2 fL, revealing cell bodies in cortical layer I of the mouse brain with OCM for the first time.

  15. Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha; Jiang, James Y.; Barry, Scott; Cable, Alex E.

    2012-01-01

    In vivo optical microscopic imaging techniques have recently emerged as important tools for the study of neurobiological development and pathophysiology. In particular, two-photon microscopy has proved to be a robust and highly flexible method for in vivo imaging in highly scattering tissue. However, two-photon imaging typically requires extrinsic dyes or contrast agents, and imaging depths are limited to a few hundred microns. Here we demonstrate Optical Coherence Microscopy (OCM) for in vivo imaging of neuronal cell bodies and cortical myelination up to depths of ~1.3 mm in the rat neocortex. Imaging does not require the administration of exogenous dyes or contrast agents, and is achieved through intrinsic scattering contrast and image processing alone. Furthermore, using OCM we demonstrate in vivo, quantitative measurements of optical properties (index of refraction and attenuation coefficient) in the cortex, and correlate these properties with laminar cellular architecture determined from the images. Lastly, we show that OCM enables direct visualization of cellular changes during cell depolarization and may therefore provide novel optical markers of cell viability. PMID:22330462

  16. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  17. Bessel beam OCM for analysis of global ischemia in mouse brain

    NASA Astrophysics Data System (ADS)

    Rapolu, Mounika; Dolezyczek, Hubert; Tamborski, Szymon; Malinowska, Monika; Wilczynski, Grzegorz; Szkulmowski, Maciej; Wojtkowski, Maciej

    2017-07-01

    We present the in-vivo imaging of the global mouse brain ischemia using Bessel beam optical coherence microscopy. This method allows to monitor changes in brain structure with extra control of blood flow during the process of artery occlusion. The results show the capability and sensitivity of OCM system with Bessel beam to analyze brain plasticity after severe injury within a period of 8 days.

  18. Swept source optical coherence microscopy using a 1310 nm VCSEL light source

    PubMed Central

    Ahsen, Osman O.; Tao, Yuankai K.; Potsaid, Benjamin M.; Sheikine, Yuri; Jiang, James; Grulkowski, Ireneusz; Tsai, Tsung-Han; Jayaraman, Vijaysekhar; Kraus, Martin F.; Connolly, James L.; Hornegger, Joachim; Cable, Alex; Fujimoto, James G.

    2013-01-01

    We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0.86 µm - 3.42 µm using interchangeable 40X, 20X and 10X objectives with ~600 µm x 600 µm, ~1 mm x 1 mm and ~2 mm x 2 mm field-of-view (FOV), respectively. Parasitic variations in path length with beam scanning were corrected numerically. These features enable swept source OCM to be integrated with a wide range of existing scanning microscopes. Large FOV mosaics were generated by serially acquiring adjacent overlapping microscopic fields and combining them in post-processing. Fresh human colon, thyroid and kidney specimens were imaged ex vivo and compared to matching histology sections, demonstrating the ability of OCM to image tissue specimens. PMID:23938673

  19. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  20. Phase sensitive optical coherence microscopy for photothermal imaging of gold nanorods

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Podoleanu, Adrian G.; Dobre, George

    2018-03-01

    We describe a swept source based phase sensitive optical coherence microscopy (OCM) system for photothermal imaging of gold nanorods (GNR). The phase sensitive OCM system employed in the study has a displacement sensitivity of 0.17 nm to vibrations at single frequencies below 250 Hz. We demonstrate the generation of phase maps and confocal phase images. By displaying the difference between successive confocal phase images, we perform the confocal photothermal imaging of accumulated GNRs behind a glass coverslip and behind the scattering media separately. Compared with two-photon luminescence (TPL) detection techniques reported in literature, the technique in this study has the advantage of a simplified experimental setup and provides a more efficient method for imaging the aggregation of GNR. However, the repeatability performance of this technique suffers due to jitter noise from the swept laser source.

  1. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  2. Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Woehrer, Adelheid; Ricken, Gerda; Augustin, Marco; Mitter, Christian; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2017-03-01

    One major hallmark of Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA) is the deposition of extracellular senile plaques and vessel wall deposits composed of amyloid-beta (Aβ). In AD, degeneration of neurons is preceded by the formation of Aβ plaques, which show different morphological forms. Most of them are birefringent owing to the parallel arrangement of amyloid fibrils. Here, we present polarization sensitive optical coherence microscopy (PS-OCM) for imaging mature neuritic Aβ plaques based on their birefringent properties. Formalin-fixed, post-mortem brain samples of advanced stage AD patients were investigated. In several cortical brain regions, neuritic Aβ plaques were successfully visualized in tomographic and three-dimensional (3D) images. Cortical grey matter appeared polarization preserving, whereas neuritic plaques caused increased phase retardation. Consistent with the results from PS-OCM imaging, the 3D structure of senile Aβ plaques was computationally modelled for different illumination settings and plaque sizes. Furthermore, the birefringent properties of cortical and meningeal vessel walls in CAA were investigated in selected samples. Significantly increased birefringence was found in smaller vessels. Overall, these results provide evidence that PS-OCM is able to assess amyloidosis based on intrinsic birefringent properties.

  3. Imaging of the stroke-related changes in the vascular system of the mouse brain with the use of extended focus optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Tamborski, Szymon; Lyu, Hong Chou; Bukowska, Danuta; Dolezyczek, Hubert; Wilczynski, Grzegorz; Szlag, Daniel; Lasser, Theo; Wojtkowski, Maciej; Szkulmowski, Maciej

    2016-03-01

    We used Optical Coherence Microscopy (OCM) to monitor structural and functional changes due to ischemic stroke in small animals brains in vivo. To obtain lateral resolution of 2.2 μm over the range of 600 μm we used extended focus configuration of OCM instrument involving Bessel beam. It provided access to detailed 3D information about the changes in brain vascular system up to the level of capillaries across I and II/III layers of neocortex. We used photothrombotic stroke model involving photoactive application of rose bengal to assure minimal invasiveness of the procedure and precise localization of the clot distribution center. We present the comparative analysis involving structural and angiographic maps of the stroke-affected brain enabling in-depth insight to the process of development of the disorder.

  4. Acute changes associated with electrode insertion measured with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Lozzi, Andrea; Boretsky, Adam; Agrawal, Anant; Welle, Cristin G.

    2016-03-01

    Despite advances in functional neural imaging, penetrating microelectrodes provide the most direct interface for the extraction of neural signals from the nervous system and are a critical component of many high degree-of-freedom braincomputer interface devices. Electrode insertion is a traumatic event that elicits a complex neuroinflammatory response. In this investigation we applied optical coherence microscopy (OCM), particularly optical coherence angiography (OCA), to characterize the immediate tissue response during microelectrode insertion. Microelectrodes of varying dimension and footprint (one-, two-, and four-shank) were inserted into mouse motor cortex beneath a window after craniotomy surgery. The microelectrodes were inserted in 3-4 steps at 15-20°, with approximately 250 μm linear insertion distance for each step. Before insertion and between each step, OCM datasets were collected, including for quantitative capillary velocimetry. A cohort of control animals without microelectrode insertion was also imaged over a similar time period (2-3 hours). Mechanical tissue deformation was observed in all the experimental animals. The quantitative angiography results varied across animals, and were not correlated with device dimensions. In some cases, localized flow drop-out was observed in a small region surrounding the electrode, while in other instances a global disruption in flow occurred, perhaps as a result of large vessel compression caused by mechanical pressure. OCM is a tool that can be used in various neurophotonics applications, including quantification of the neuroinflammatory response to penetrating electrode insertion.

  5. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    NASA Astrophysics Data System (ADS)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  6. Combined Optical Coherence and Fluorescence Microscopy to assess dynamics and specificity of pancreatic beta-cell tracers

    PubMed Central

    Berclaz, Corinne; Pache, Christophe; Bouwens, Arno; Szlag, Daniel; Lopez, Antonio; Joosten, Lieke; Ekim, Selen; Brom, Maarten; Gotthardt, Martin; Grapin-Botton, Anne; Lasser, Theo

    2015-01-01

    The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it alleviates the need of both genetically modified mice to detect islets and injection of external dye to reveal vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide 1 receptor (GLP1R), for which other imaging modalities have been used and can serve as a reference. Cultured cells transfected with GLP1R and incubated with Cy5.5-exendin-3 show full tracer internalization. We determined that a dose of 1 μg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer in islets with a high specificity. In a next step, time-lapse OCM imaging was used to monitor the rapid and specific tracer accumulation in murine islets and its persistence over hours. This optical platform represents a versatile toolbox for selecting beta-cell specific markers for diabetes research and future clinical diagnosis. PMID:25988507

  7. Ultrahigh-resolution optical coherence microscopy accurately classifies precancerous and cancerous human cervix free of labeling

    PubMed Central

    Zeng, Xianxu; Zhang, Xiaoan; Li, Canyu; Wang, Xiaofang; Jerwick, Jason; Xu, Tao; Ning, Yuan; Wang, Yihong; Zhang, Linlin; Zhang, Zhan; Ma, Yutao; Zhou, Chao

    2018-01-01

    Cervical cancer remains the fourth most common cause of cancer worldwide and the third leading cause of cancer deaths for women in developing countries. Traditional screening tools, such as human papillomavirus and Pap tests, cannot provide results in real-time and cannot localize suspicious regions. Colposcopy-directed biopsies are invasive in nature and only a few sites of the cervix may be chosen for investigation. A non-invasive, label-free and real-time imaging method with a resolution approaching that of histopathology is desirable for early detection of the disease. Methods: Ultrahigh-resolution optical coherence microscopy (OCM) is an emerging imaging technique used to obtain 3-dimensional (3-D) “optical biopsies” of biological samples with cellular resolution. In this study, 497 3-D OCM datasets from 159 specimens were collected from 92 patients. Results: Distinctive patterns for normal cervix, squamocolumnar junction, ectropion, low-grade and high-grade squamous intraepithelial lesions (LSIL and HSIL) and invasive cervical lesions were clearly observed from OCM images, which matched well with corresponding histological slides. OCM images demonstrated a sensitivity of 80% (95% confidence interval, CI, 72%-86%) and a specificity of 89% (95% CI, 84%-93%) for detecting high-risk lesions (HSIL and invasive lesions) when blindly tested by three investigators. A substantial inter-observer agreement was observed (κ=0.627), which showed high diagnostic consistency among three investigators. Conclusion: These results laid the foundation for future non-invasive optical evaluation of cervical tissue in vivo, which could lead to a less invasive and more effective screening and “see-and-treat” strategy for the management of cervical cancer. PMID:29896305

  8. Tissue imaging using full field optical coherence microscopy with short multimode fiber probe

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Eto, Kai; Goto, Tetsuhiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2018-03-01

    In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.

  9. Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo

    2016-03-01

    Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.

  10. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases.

    PubMed

    Tankam, Patrice; He, Zhiguo; Chu, Ying-Ju; Won, Jungeun; Canavesi, Cristina; Lepine, Thierry; Hindman, Holly B; Topham, David J; Gain, Philippe; Thuret, Gilles; Rolland, Jannick P

    2015-03-15

    Gabor-domain optical coherence microscopy (GD-OCM) was applied ex vivo in the investigation of corneal cells and their surrounding microstructures with particular attention to the corneal endothelium. Experiments using fresh pig eyeballs, excised human corneal buttons from patients with Fuchs' endothelial dystrophy (FED), and healthy donor corneas were conducted. Results show in a large field of view (1  mm×1  mm) high definition images of the different cell types and their surrounding microstructures through the full corneal thickness at both the central and peripheral locations of porcine corneas. Particularly, an image of the endothelial cells lining the bottom of the cornea is highlighted. As compared to healthy human corneas, the corneas of individuals with FED show characteristic microstructural alterations of the Descemet's membrane and increased size and number of keratocytes. The GD-OCM-based imaging system developed may constitute a novel tool for corneal imaging and disease diagnosis. Also, importantly, it may provide insights into the mechanism of corneal physiology and pathology, particularly in diseases of the corneal endothelium.

  11. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    PubMed

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  12. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  13. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  14. Compact LED-based full-field optical coherence microscopy for high-resolution high-speed in vivo imaging

    NASA Astrophysics Data System (ADS)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on a compact full-field optical coherence microscopy (FF-OCM) setup specifically designed to meet the needs for in vivo imaging, illuminated by a high-brightness broadband light emitting diode (LED). Broadband LEDs have spectra potentially large enough to provide imaging spatial resolutions similar to those reached using conventional halogen lamps, but their radiance can be much higher, which leads to high speed acquisition and makes in vivo imaging possible. We introduce a FF-OCM setup using a 2.3 W broadband LED, with an interferometer designed to be as compact as possible in order to provide the basis for a portable system that will make it possible to fully benefit from the capacity for in vivo imaging by providing the ability to image any region of interest in real-time. The interferometer part of the compact FF-OCM setup weighs 210 g for a size of 11x11x5 cm3. Using this setup, a sub-micron axial resolution was reached, with a detection sensitivity of 68 dB at an imaging rate of 250 Hz. Due to the high imaging rate, the sensitivity could be improved by accumulation while maintaining an acquisition time short enough for in vivo imaging. It was possible to reach a sensitivity of 75 dB at a 50 Hz imaging rate. High resolution in vivo human skin images were obtained with this setup and compared with images of excised human skin, showing high similarity.

  15. Gabor domain optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Murali, Supraja

    Time domain Optical Coherence Tomography (TD-OCT), first reported in 1991, makes use of the low temporal coherence properties of a NIR broadband laser to create depth sectioning of up to 2mm under the surface using optical interferometry and point to point scanning. Prior and ongoing work in OCT in the research community has concentrated on improving axial resolution through the development of broadband sources and speed of image acquisition through new techniques such as Spectral domain OCT (SD-OCT). In SD-OCT, an entire depth scan is acquired at once with a low numerical aperture (NA) objective lens focused at a fixed point within the sample. In this imaging geometry, a longer depth of focus is achieved at the expense of lateral resolution, which is typically limited to 10 to 20 mum. Optical Coherence Microscopy (OCM), introduced in 1994, combined the advantages of high axial resolution obtained in OCT with high lateral resolution obtained by increasing the NA of the microscope placed in the sample arm. However, OCM presented trade-offs caused by the inverse quadratic relationship between the NA and the DOF of the optics used. For applications requiring high lateral resolution, such as cancer diagnostics, several solutions have been proposed including the periodic manual re-focusing of the objective lens in the time domain as well as the spectral domain C-mode configuration in order to overcome the loss in lateral resolution outside the DOF. In this research, we report for the first time, high speed, sub-cellular imaging (lateral resolution of 2 mum) in OCM using a Gabor domain image processing algorithm with a custom designed and fabricated dynamic focus microscope interfaced to a Ti:Sa femtosecond laser centered at 800 nm within an SD-OCM configuration. It is envisioned that this technology will provide a non-invasive replacement for the current practice of multiple biopsies for skin cancer diagnosis. The research reported here presents three important advances to this technology all of which have been demonstrated in full functional hardware conceived and built during the course of this research. First, it has been demonstrated that the coherence gate created by the femtosecond laser can be coupled into a scanning optical microscope using optical design methods to include liquid lens technology that enables scanning below the surface of skin with no moving parts and at high resolution throughout a 2x2x2 mm imaging cube. Second, the integration the variable-focus liquid lens technology within a fixed-optics microscope custom optical design helped increase the working NA by an order of magnitude over the limitation imposed by the liquid lens alone. Thus, this design has enabled homogenous axial and lateral resolution at the micron-level (i.e., 2 mum) while imaging in the spectral domain, and still maintaining in vivo speeds. The latest images in biological specimens clearly demonstrate sub-cellular resolution in all dimensions throughout the imaging volume. Third, this new modality for data collection has been integrated with an automated Gabor domain image registration and fusion algorithm to provide full resolution images across the data cube in real-time. We refer to this overall OCM method as Gabor domain OCM (GD-OCM). These advantages place GD-OCM in a unique position with respect to the diagnosis of cancer, because when fully developed, it promises to enable fast and accurate screening for early symptoms that could lead to prevention. The next step for this technology is to apply it directly, in a clinical environment. This step is underway and is expected to be reported by the next generation of researchers within this group.

  16. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue

    PubMed Central

    Chin, Lixin; Kennedy, Brendan F.; Kennedy, Kelsey M.; Wijesinghe, Philip; Pinniger, Gavin J.; Terrill, Jessica R.; McLaughlin, Robert A.; Sampson, David D.

    2014-01-01

    In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies. PMID:25401023

  17. Dynamic-focusing microscope objective for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-01-01

    Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.

  18. Optical approach to the salivary pellicle

    NASA Astrophysics Data System (ADS)

    Baek, Jae Ho; Krasieva, Tatiana; Tang, Shuo; Ahn, Yehchan; Kim, Chang Soo; Vu, Diana; Chen, Zhongping; Wilder-Smith, Petra

    2009-07-01

    The salivary pellicle plays an important role in oral physiology, yet noninvasive in situ characterization and mapping of this layer remains elusive. The goal of this study is to develop an optical approach for the real-time, noninvasive mapping and characterization of salivary pellicles using optical coherence tomography (OCT) and optical coherence microscopy (OCM). The long-term goals are to improve diagnostic capabilities in the oral cavity, gain a better understanding of physiological and pathological processes related to the oral hard tissues, and monitor treatment responses. A salivary pellicle is incubated on small enamel cubes using human whole saliva. OCT and OCM imaging occurs at 0, 10, 30, 60 min, and 24 h. For some imaging, spherical gold nanoparticles (15 nm) are added to determine whether this would increase the optical signal from the pellicle. Multiphoton microscopy (MPM) provides the baseline information. In the saliva-incubated samples, a surface signal from the developing pellicle is visible in OCT images. Pellicle ``islands'' form, which increase in complexity over time until they merge to form a continuous layer over the enamel surface. Noninvasive, in situ time-based pellicle formation on the enamel surface is visualized and characterized using optical imaging.

  19. Optical imaging modalities: From design to diagnosis of skin cancer

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali Raj

    This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third portion of this study. OCM is a high resolution en-face imaging modality. It is a hybrid system that combines the principles of confocal microscopy with coherence gating to provide an increased imaging depth. It can also be described as an OCT system with a high NA objective. Similar to OCT, the axial resolution is determined by the source center wavelength and bandwidth. The NA of the sample arm optics determines the lateral resolution, usually on the order of 1-5 mum. My effort on this system was to develop a handheld endoscope. To my knowledge, an OCM endoscope has not been developed prior to this work. An image of skin was taken as a proof of concept. This rigid handheld OCM endoscope will be useful for applications ranging from minimally invasive surgical imaging to non-invasively assessing dysplasia and sun damage in skin.

  20. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    NASA Astrophysics Data System (ADS)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  1. Use of multiple imaging modalities to detect ovarian cancer

    NASA Astrophysics Data System (ADS)

    Kanter, Elizabeth; Walker, Ross; Marion, Sam; Hoyer, Patricia; Barton, Jennifer K.

    2005-04-01

    Ovarian cancer is not a common cancer-approximately 25,000 new cases in 2004-but it is the fifth leading cause of death from cancer in women (over 16,000 in 2004). Little is known about the precursors and early stages of ovarian cancer partially due to the lack of human samples at the early stages. A cohesive model that incorporates ovarian cancer induction into a menopausal rodent would be well suited for comprehensive studies of ovarian cancer. Non-destructive imaging would allow carcinogenesis to be followed. Optical Coherence Tomography (OCT), Optical Coherence Microscopy (OCM) and Light-Induced Fluorescence (LIF) are minimally invasive optical modalities that allow both structural and biochemical changes to be noted. Rat ovaries were exposed to 4-vinylcyclohexene diepoxide (VCD) for 20 days in order to destroy the primordial follicles. Plain sutures and sutures coated with 7,12-dimethylbenz(a)anthracene (DMBA) were implanted in the right ovary, in order to produce epithelial based ovarian cancers (a plain suture was inserted in the control). Rats were sacrificed at 4 weeks and ovaries were harvested and imaged with a combined OCT/LIF system and with the OCM. Histology was preformed on the harvested ovaries and any pathology determined. Two of the ovaries were visually abnormal; the OCT/LIF imaging confirmed these abnormalities. The normal ovary OCM and OCT images show the organized structure of the ovary, the follicles, bursa and corpus lutea are visible. The OCM images show the disorganized structure of one of the abnormal ovaries. Overall this pilot study demonstrated the feasibility of both the animal model and optical imaging.

  2. Optical coherence microscopy of mouse cortical vasculature surrounding implanted electrodes

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Lozzi, Andrea; Abliz, Erkinay; Greenbaum, Noah; Turner, Kevin P.; Pfefer, T. Joshua; Agrawal, Anant; Krauthamer, Victor; Welle, Cristin G.

    2014-03-01

    Optical coherence microscopy (OCM) provides real-time, in-vivo, three-dimensional, isotropic micron-resolution structural and functional characterization of tissue, cells, and other biological targets. Optical coherence angiography (OCA) also provides visualization and quantification of vascular flow via speckle-based or phase-resolved techniques. Performance assessment of neuroprosthetic systems, which allow direct thought control of limb prostheses, may be aided by OCA. In particular, there is a need to examine the underlying mechanisms of chronic functional degradation of implanted electrodes. Angiogenesis, capillary network remodeling, and changes in flow velocity are potential indicators of tissue changes that may be associated with waning electrode performance. The overall goal of this investigation is to quantify longitudinal changes in vascular morphology and capillary flow around neural electrodes chronically implanted in mice. We built a 1315-nm OCM system to image vessels in neocortical tissue in a cohort of mice. An optical window was implanted on the skull over the primary motor cortex above a penetrating shank-style microelectrode array. The mice were imaged bi-weekly to generate vascular maps of the region surrounding the implanted microelectrode array. Acute effects of window and electrode implantation included vessel dilation and profusion of vessels in the superficial layer of the cortex (0-200 μm). In deeper layers surrounding the electrode, no qualitative differences were seen in this early phase. These measurements establish a baseline vascular tissue response from the cortical window preparation and lay the ground work for future longitudinal studies to test the hypothesis that vascular changes will be associated with chronic electrode degradation.

  3. In vivo monitoring of seeds and plant-tissue water absorption using optical coherence tomography and optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.

    2004-07-01

    First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.

  4. Revealing the cellular metabolism and microstructural changes in vivo in senescing Acer saccharum leaves using two-photon FLIM and full-field OCM

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sandeep; Anna, Tulsi; Kuo, Wen-Chuan; Chiou, Arthur

    2016-10-01

    Seasonal as well as climate changes have immense effect on bud burst, leaf color and leaf abscission. Autumn phenology of leaves is clearly distinguishable in deciduous plant leaves where the leaf color changes from green to red (leaf senescence). In this work, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) and full-field optical coherence microscopy (FF-OCM) were applied to study mitochondrial activity and microstructural changes, respectively, in the senescence of Acer saccharum (Sugar maple) leaves. Fluorescence lifetime of reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] was recorded using 2P-FLIM to quantify the cellular metabolic changes. Compared to the green leaves, the red leaves showed a 19% increase (P < 0.05) in the average fluorescence lifetime of NAD(P)H, and a 52% decrease (p < 0.005) in the free to protein-bound NAD(P)H ratio. This infers a significant change in mitochondrial metabolic regulation in red leaves in contrast to green leaves. Additionally, en-face sectional images at 0.8 μm axial resolutions of the green and the red color Acer saccharum leaves via FF-OCM using white light emitting diode (WLED) showed a well-defined microstructure of epicuticular waxy layer in green leaves as compared to red leaves where disintegrated microstructure was observed. Our approach can potentially be used to correlate mitochondrial activity with epicuticular microstructural changes in senescing leaves and other biological tissues.

  5. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  6. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration.

    PubMed

    Gibbs, Holly C; Dodson, Colin R; Bai, Yuqiang; Lekven, Arne C; Yeh, Alvin T

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  7. Imaging of mucus clearance in the airways of living spontaneously breathing mice by optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pieper, Mario; Schulz-Hildebrandt, Hinnerk; Hüttmann, Gereon; König, Peter

    2016-03-01

    Mucus transport is essential to remove inhaled particles and pathogens from the lung. Impaired removal of mucus often results in worsening of lung diseases. To understand the mechanisms of mucus transport and to monitor the impact of therapeutic strategies, it is essential to visualize airways and mucus in living animals without disturbing transport processes by intubation or surgically opening the airways. We developed a custom-built optical coherence microscope (OCM) providing a lateral and axial resolution of approximately 1.5 µm with a field of view of 2 mm at up to 150 images/s. Images of the intact trachea and its mucus transport were recorded in anesthetized spontaneously breathing mice. NaCl solution (0.9% and 7%) or Lipopolysaccharide were applied intranasally. OCM resolved detailed structure of the trachea and enabled measuring the airway surface liquid (ASL) thickness through the tracheal wall. Without stimulation, the amount of ASL was only a few µm above the epithelium and remained constant. After intranasal application of 30 µl saline at different concentrations, an early fast cough-like fluid removal with velocities higher than 1 mm/s was observed that removed a high amount of liquid. The ASL thickness increased transiently and quickly returned to levels before stimulation. In contrast to saline, application of Lipopolysaccharide induced substantial mucus release and an additional slow mucus transport by ciliary beating (around 100 µm/s) towards the larynx was observed. In conclusion, OCM is appropriate unique tool to study mechanisms of mucus transport in the airways and effects of therapeutic interventions in living animals.

  8. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    PubMed

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  9. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aigner, M., E-mail: michael.aigner@jku.at; Köpplmayr, T., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at; Lang, C., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at

    2014-05-15

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inlinemore » measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.« less

  10. Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy

    PubMed Central

    Zhou, Renjie; Jin, Di; Hosseini, Poorya; Singh, Vijay Raj; Kim, Yang-hyo; Kuang, Cuifang; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues. PMID:28085800

  11. Non-invasive red light optogenetic pacing and optical coherence microscopy (OCM) imaging for drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.

  12. Optical Assessment of Soft Contact Lens Edge-Thickness.

    PubMed

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P

    2016-08-01

    To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.

  13. Optical Assessment of Soft Contact Lens Edge-Thickness

    PubMed Central

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.

    2016-01-01

    Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902

  14. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    PubMed Central

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function. PMID:26348211

  15. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  16. Real-time microstructural and functional imaging and image processing in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Westphal, Volker

    Optical Coherence Tomography (OCT) is a noninvasive optical imaging technique that allows high-resolution cross-sectional imaging of tissue microstructure, achieving a spatial resolution of about 10 mum. OCT is similar to B-mode ultrasound (US) except that it uses infrared light instead of ultrasound. In contrast to US, no coupling gel is needed, simplifying the image acquisition. Furthermore, the fiber optic implementation of OCT is compatible with endoscopes. In recent years, the transition from slow imaging, bench-top systems to real-time clinical systems has been under way. This has lead to a variety of applications, namely in ophthalmology, gastroenterology, dermatology and cardiology. First, this dissertation will demonstrate that OCT is capable of imaging and differentiating clinically relevant tissue structures in the gastrointestinal tract. A careful in vitro correlation study between endoscopic OCT images and corresponding histological slides was performed. Besides structural imaging, OCT systems were further developed for functional imaging, as for example to visualize blood flow. Previously, imaging flow in small vessels in real-time was not possible. For this research, a new processing scheme similar to real-time Doppler in US was introduced. It was implemented in dedicated hardware to allow real-time acquisition and overlayed display of blood flow in vivo. A sensitivity of 0.5mm/s was achieved. Optical coherence microscopy (OCM) is a variation of OCT, improving the resolution even further to a few micrometers. Advances made in the OCT scan engine for the Doppler setup enabled real-time imaging in vivo with OCM. In order to generate geometrical correct images for all the previous applications in real-time, extensive image processing algorithms were developed. Algorithms for correction of distortions due to non-telecentric scanning, nonlinear scan mirror movements, and refraction were developed and demonstrated. This has led to interesting new applications, as for example in imaging of the anterior segment of the eye.

  17. Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.

    PubMed

    Lü, Tao; Xiao, Qing; Xia, Danqing; Ruan, Kai; Li, Zhengjia

    2010-01-01

    To overcome the inconsecutive drawback of shadow and schlieren photography, the complete dynamics of cavitation bubble oscillation or ablation products induced by a single holmium laser pulse [2.12 microm, 300 micros (FWHM)] transmitted in different core diameter (200, 400, and 600 microm) fibers is recorded by means of high-speed photography. Consecutive images from high-speed cameras can stand for the true and complete process of laser-water or laser-tissue interaction. Both laser pulse energy and fiber diameter determine cavitation bubble size, which further determines acoustic transient amplitudes. Based on the pictures taken by high-speed camera and scanned by an optical coherent microscopy (OCM) system, it is easily seen that the liquid layer at the distal end of the fiber plays an important role during the process of laser-tissue interaction, which can increase ablation efficiency, decrease heat side effects, and reduce cost.

  18. Buried oxide and defects in oxygen implanted Si monitored by positron annihilation

    NASA Astrophysics Data System (ADS)

    Kruseman, A. C.; van Veen, A.; Schut, H.; Mijnarends, P. E.; Fujinami, M.

    2001-08-01

    One- and two-detector Doppler broadening measurements performed on low (˜1014 to 1015O+/cm2) and high dose (˜1017 to 1018O+/cm2) oxygen-irradiated Si using variable-energy slow positrons are analyzed in terms of S and W parameters. After annealing the low-dose samples at 800 °C, large VxOy complexes are formed at depths around 400 nm. These complexes produce a clear-cut signature when the ratio of S to that of defect-free bulk Si is plotted. Similar behavior is found for samples irradiated with 2 and 4×1017O+/cm2 and annealed at 1000 °C. After irradiation with 1.7×1018O+/cm2 and anneal at 1350 °C a 170 nm thick almost-bulk-quality Si surface layer is formed on top of a 430 nm thick buried oxide layer. This method of preparation is called separation by implantation of oxygen. S-W measurements show that the surface layer contains electrically inactive VxOy complexes not seen by electron microscopy. A method is presented to decompose the Doppler broadening line shape into contributions of the bulk, surface, and defect.

  19. Optical coherence microscope for invariant high resolution in vivo skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, S.; Lee, K. S.; Meemon, P.; Rolland, J. P.

    2008-02-01

    A non-invasive, reliable and affordable imaging system with the capability of detecting skin pathologies such as skin cancer would be a valuable tool to use for pre-screening and diagnostic applications. Optical Coherence Microscopy (OCM) is emerging as a building block for in vivo optical diagnosis, where high numerical aperture optics is introduced in the sample arm to achieve high lateral resolution. While high numerical aperture optics enables realizing high lateral resolution at the focus point, dynamic focusing is required to maintain the target lateral resolution throughout the depth of the sample being imaged. In this paper, we demonstrate the ability to dynamically focus in real-time with no moving parts to a depth of up to 2mm in skin-equivalent tissue in order to achieve 3.5μm lateral resolution throughout an 8 cubic millimeter sample. The built-in dynamic focusing ability is provided by an addressable liquid lens embedded in custom-designed optics which was designed for a broadband laser source of 120 nm bandwidth centered at around 800nm. The imaging probe was designed to be low-cost and portable. Design evaluation and tolerance analysis results show that the probe is robust to manufacturing errors and produces consistent high performance throughout the imaging volume.

  20. Optogenetic pacing in Drosophila models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Penghe; Li, Airong; Men, Jing; Tans, Rudolph E.; Zhou, Chao

    2017-02-01

    The Drosophila melanogaster shares many similarities with vertebrates in heart development. Comparison of heart structural and functional characteristic between male and female Drosophila melanogaster at different developmental stages is helpful to understand heart morphogenesis and function for different genders. And also, it opens up the possibility to uncover the role of sex-related genes in heart development. In this longitudinal study, we cultured and tracked dozens of individually labeled flies throughout their lifecycle. The heart characteristic was measured at different developmental stages during culturing. The gender of each individual fly was determined by adult stage so that the collected data of early stages could be classified to male or female group. We adapted a high-speed optical coherence microscopy (OCM) system with axial and transverse resolution of 2um and 4um, respectively, to perform non-invasive M-mode imaging at a frame rate of 132Hz in Drosophila heart at third instar larva, early pupa and adult stage. Based on those GPU processed M-mode OCM images, we segmented the fly heart region and then quantified the cardiac structural and functional parameters such as heart rate, heart chamber size and so on. Despite large variances of wild type Drosophila in terms of some cardiac characteristic, our results suggest that the heart rate is lower for male flies than for female flies, especially at third instar larva stage. The end diastolic area (EDA) and end systolic area (ESA) of the heart are both slightly larger in female flies than in male flies at larva and adult stage. In summary, we showed gender differences of wild type drosophila in heart functional and structural characteristic.

  1. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters

    DTIC Science & Technology

    2012-06-08

    Earth Scan Laboratory, Louisiana State University. Raw OCM data were calibrated by converting raw counts to radiance values for the eight OCM spectral...La(λi)) Aerosol path radiance is the contribution of scattering by particles similar to or larger than the wavelength of light such as dust, pollen ...University. Raw OCM data were calibrated by converting raw counts to radiance values for the eight OCM spectral bands using the SeaSpace Terascan TM

  2. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  3. Estimation of photosynthetically available radiation (PAR) from OCEANSAT-I OCM using a simple atmospheric radiative transfer model

    NASA Astrophysics Data System (ADS)

    Tripathy, Madhumita; Raman, Mini; Chauhan, Prakash

    2015-10-01

    Photosynthetically available radiation (PAR) is an important variable for radiation budget, marine and terrestrial ecosystem models. OCEANSAT-1 Ocean Color Monitor (OCM) PAR was estimated using two different methods under both clear and cloudy sky conditions. In the first approach, aerosol optical depth (AOD) and cloud optical depth (COD) were estimated from OCEANSAT-1 OCM TOA (top-of-atmosphere) radiance data on a pixel by pixel basis and PAR was estimated from extraterrestrial solar flux for fifteen spectral bands using a radiative transfer model. The second approach used TOA radiances measured by OCM in the PAR spectral range to compute PAR. This approach also included surface albedo and cloud albedo as inputs. Comparison between OCEANSAT-1 OCM PAR at noon with in situ measured PAR shows that root mean square difference was 5.82% for the method I and 7.24% for the method II in daily time scales. Results indicate that methodology adopted to estimate PAR from OCEANSAT-1 OCM can produce reasonably accurate PAR estimates over the tropical Indian Ocean region. This approach can be extended to OCEANSAT-2 OCM and future OCEANSAT-3 OCM data for operational estimation of PAR for regional marine ecosystem applications.

  4. Cross-calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-05-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  5. Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-01-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  6. An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Drew, Michael; Nguyen, Nhan T.; Hashemi, Kelley E.; Ting, Eric; Chaparro, Daniel

    2017-01-01

    Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.

  7. An evaluation of the use of oral contrast media in abdominopelvic CT.

    PubMed

    Buttigieg, Erica Lauren; Grima, Karen Borg; Cortis, Kelvin; Soler, Sandro Galea; Zarb, Francis

    2014-11-01

    To evaluate the diagnostic efficacy of different oral contrast media (OCM) for abdominopelvic CT examinations performed for follow-up general oncological indications. The objectives were to establish anatomical image quality criteria for abdominopelvic CT; use these criteria to evaluate and compare image quality using positive OCM, neutral OCM and no OCM; and evaluate possible benefits for the medical imaging department. Forty-six adult patients attending a follow-up abdominopelvic CT for general oncological indications and who had a previous abdominopelvic CT with positive OCM (n = 46) were recruited and prospectively placed into either the water (n = 25) or no OCM (n = 21) group. Three radiologists performed absolute visual grading analysis (VGA) to assess image quality by grading the fulfilment of 24 anatomical image quality criteria. Visual grading characteristics (VGC) analysis of the data showed comparable image quality with regards to reproduction of abdominal structures, bowel discrimination, presence of artefacts, and visualization of the amount of intra-abdominal fat for the three OCM protocols. All three OCM protocols provided similar image quality for follow-up abdominopelvic CT for general oncological indications. • Positive oral contrast media are routinely used for abdominopelvic multidetector computed tomography • Experimental study comparing image quality using three different oral contrast materials • Three different oral contrast materials result in comparable CT image quality • Benefits for patients and medical imaging department.

  8. Development of Dorzolamide Loaded 6-O-Carboxymethyl Chitosan Nanoparticles for Open Angle Glaucoma

    PubMed Central

    Ahmed, Mohammed Hadi

    2013-01-01

    Chitosan (CS) is a biodegradable, biocompatible, and mucoadhesive natural polymer soluble in acidic pH only and can be irritating to the eye. Objective of the study was to synthesize water soluble 6-O-carboxymethyl (OCM-CS) derivative of CS, and to develop CS and OCM-CS nanoparticles (NPs) loaded with dorzolamide hydrochloride (DRZ). CS was reacted with monochloroacetic acid (MCA) for OCM-CS synthesis and was characterized by FT-IR, DSC, and 13C NMR. CS and OCM-CS NPs were prepared by ionic gelation method. Ocular irritation potential were evaluated and therapeutic efficacy was measured by reduction in intraocular pressure (IOP) in normotensive rabbits. Maximum yield was obtained when the ratio of water/isopropyl alcohol was 1/4 at 55°C. The FT-IR, DSC and 13C NMR confirmed the formation of an ether linkage between hydroxyl groups of CS and MCA. The particle size and zeta potential of optimised CSNPs was 250.3 ± 2.62 nm and +33.47 ± 0.723 mV, whereas those for OCM-CSNPs were 187.1 ± 2.72 nm and 30.87 ± 0.86 mV. The entrapment efficiency was significantly improved for OCM-CSNPs, compared to CSNPs. OCM-CSNPs had tailored drug release and improved bioavailability with reduction in pulse entry as compared to CSNPs. Hence, it can be concluded that DRZ loaded OCM-CSNPs would be better alternative option to available eye drops for glaucoma treatment. PMID:24222858

  9. Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma.

    PubMed

    Shinde, Ujwala; Ahmed, Mohammed Hadi; Singh, Kavita

    2013-01-01

    Chitosan (CS) is a biodegradable, biocompatible, and mucoadhesive natural polymer soluble in acidic pH only and can be irritating to the eye. Objective of the study was to synthesize water soluble 6-O-carboxymethyl (OCM-CS) derivative of CS, and to develop CS and OCM-CS nanoparticles (NPs) loaded with dorzolamide hydrochloride (DRZ). CS was reacted with monochloroacetic acid (MCA) for OCM-CS synthesis and was characterized by FT-IR, DSC, and (13)C NMR. CS and OCM-CS NPs were prepared by ionic gelation method. Ocular irritation potential were evaluated and therapeutic efficacy was measured by reduction in intraocular pressure (IOP) in normotensive rabbits. Maximum yield was obtained when the ratio of water/isopropyl alcohol was 1/4 at 55°C. The FT-IR, DSC and (13)C NMR confirmed the formation of an ether linkage between hydroxyl groups of CS and MCA. The particle size and zeta potential of optimised CSNPs was 250.3 ± 2.62 nm and +33.47 ± 0.723 mV, whereas those for OCM-CSNPs were 187.1 ± 2.72 nm and 30.87 ± 0.86 mV. The entrapment efficiency was significantly improved for OCM-CSNPs, compared to CSNPs. OCM-CSNPs had tailored drug release and improved bioavailability with reduction in pulse entry as compared to CSNPs. Hence, it can be concluded that DRZ loaded OCM-CSNPs would be better alternative option to available eye drops for glaucoma treatment.

  10. Oral picropodophyllin (PPP) is well tolerated in vivo and inhibits IGF-1R expression and growth of uveal melanoma.

    PubMed

    Economou, Mario A; Andersson, Sandra; Vasilcanu, Diana; All-Ericsson, Charlotta; Menu, Eline; Girnita, Ada; Girnita, Leonard; Axelson, Magnus; Seregard, Stefan; Larsson, Olle

    2008-06-01

    The cyclolignan picropodophyllin (PPP) efficiently blocks the activity of insulinlike growth factor-1 receptor (IGF-1R) and inhibits the growth of uveal melanoma cells in vitro and in vivo. In this study, the authors investigated the efficiency of orally administered PPP on the growth of uveal melanoma xenografts. In addition, they focused on the effect of PPP on vascular endothelial growth factor (VEGF) in vivo and evaluated its effects in combination with other established antitumor agents in vitro. Four different uveal melanoma cell lines (OCM-1, OCM-3, OCM-8, 92-1) were treated with PPP alone and in combination with imatinib mesylate, cisplatin, 5-fluorouracil, and doxorubicin. Cell viability was determined by XTT assay. SCID mice that underwent xenografting with uveal melanoma cells were used to determine antitumor efficacy of oral PPP in vivo. Five mice were used per group. Tumor samples obtained from the in vivo experiments were analyzed for VEGF and IGF-1R expression by Western blotting. PPP was found to be superior to the other antitumor agents in killing uveal melanoma cells in all four cell lines (IC50 < 0.05 microM). Oral PPP inhibited uveal melanoma growth in vivo in OCM-3 (P = 0.03) and OCM-8 (P = 0.01) xenografts and was well tolerated by the animals. PPP decreased VEGF expression in the OCM-1 (P = 0.006) and OCM-8 (P = 0.01) tumors. Oral PPP was well tolerated in vivo, caused total growth inhibition of uveal melanoma xenografts, and decreased VEGF levels in the tumors.

  11. Impact of low-energy CT imaging on selection of positive oral contrast media concentration.

    PubMed

    Patino, Manuel; Murcia, Diana J; Iamurri, Andrea Prochowski; Kambadakone, Avinash R; Hahn, Peter F; Sahani, Dushyant V

    2017-05-01

    To determine to what extent low-energy CT imaging affects attenuation of gastrointestinal tract (GIT) opacified with positive oral contrast media (OCM). Second, to establish optimal OCM concentrations for low-energy diagnostic CT exams. One hundred patients (38 men and 62 women; age 62 ± 11 years; BMI 26 ± 5) with positive OCM-enhanced 120-kVp single-energy CT (SECT), and follow-up 100-kVp acquisitions (group A; n = 50), or 40-70-keV reconstructions from rapid kV switching-single-source dual-energy CT (ssDECT) (group B; n = 50) were included. Luminal attenuation from different GIT segments was compared between exams. Standard dose of three OCM and diluted solutions (75%, 50%, and 25% concentrations) were introduced serially in a gastrointestinal phantom and scanned using SECT (120, 100, and 80 kVp) and DECT (80/140 kVp) acquisitions on a ssDECT scanner. Luminal attenuation was obtained on SECT and DECT images (40-70 keV), and compared to 120-kVp scans with standard OCM concentrations. Luminal attenuation was higher on 100-kVp (328 HU) and on 40-60-keV images (410-924 HU) in comparison to 120-kVp scans (298 HU) in groups A and B (p < 0.05). Phantom: There was an inverse correlation between luminal attenuation and X-ray energy, increasing up to 527 HU on low-kVp and 999 HU on low-keV images (p < 0.05). 25% and 50% diluted OCM solutions provided similar or higher attenuation than 120 kVp, at low kVp and keV, respectively. Low-energy CT imaging increases the attenuation of GIT opacified with positive OCM, permitting reduction of 25%-75% OCM concentration.

  12. The importance of social and collaborative learning for online continuing medical education (OCME): directions for future development and research.

    PubMed

    Sandars, John; Kokotailo, Patricia; Singh, Gurmit

    2012-01-01

    There is an increasing use of online continuing medical education (OCME), but the potential use of social and collaborative learning to change professional performance and improve patient care has yet to be fully realised. The integration of the main themes from the presentations and comments from participants at a symposium at AMEE 2011. Sociological perspectives on change in professional performance highlight the need for social and collaborative learning in OCME so that learners can share information (explicit knowledge) and opinion (tacit knowledge). The educational topic should be relevant to the complexity of professional practice and use iterative cycles of implementation and critical reflection in social networks so that proposed solutions can be tested in actual practice. The challenge of developing effective online discussions for collaborative learning is recognised. The provision of OCME requires a shift in both policy and practice to emphasise the importance of social and collaborative learning. Further research is recommended, especially to evaluate the implementation and impact of social and collaborative learning for OCME on patient care and the use of newer Web 2.0 approaches.

  13. A novel method for destriping of OCM-2 data and radiometric performance analysis for improved ocean color data products

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh Kumar; Shanmugam, Palanisamy

    2018-06-01

    Despite the capability of Ocean Color Monitor aboard Oceansat-2 satellite to provide frequent, high-spatial resolution, visible and near-infrared images for scientific research on coastal zones and climate data records over the global ocean, the generation of science quality ocean color products from OCM-2 data has been hampered by serious vertical striping artifacts and poor calibration of detectors. These along-track stripes are the results of variations in the relative response of the individual detectors of the OCM-2 CCD array. The random unsystematic stripes and bandings on the scene edges affect both visual interpretation and radiometric integrity of remotely sensed data, contribute to confusion in the aerosol correction process, and multiply and propagate into higher level ocean color products generated by atmospheric correction and bio-optical algorithms. Despite a number of destriping algorithms reported in the literature, complete removal of stripes without residual effects and signal distortion in both low- and high-level products is still challenging. Here, a new operational algorithm has been developed that employs an inverted gaussian function to estimate error fraction parameters, which are uncorrelated and vary in spatial, spectral and temporal domains. The algorithm is tested on a large number of OCM-2 scenes from Arabian Sea and Bay of Bengal waters contaminated with severe stripes. The destriping effectiveness of this approach is then evaluated by means of various qualitative and quantitative analyses, and by comparison with the results of the previously reported method. Clearly, the present method is more effective in terms of removing the stripe noise while preserving the radiometric integrity of the destriped OCM-2 data. Furthermore, a preliminary time-dependent calibration of the OCM-2 sensor is performed with several match-up in-situ data to evaluate its radiometric performance for ocean color applications. OCM-2 derived water-leaving radiance products obtained after calibration show a good consistency with in-situ and MODIS-Aqua observations, with errors less than the validated uncertainties of ±5% and ±35% endorsed for the remote-sensing measurements of water-leaving radiance and retrieval of chlorophyll concentrations respectively. The calibration results show a declining trend in detector sensitivity of the OCM-2 sensor, with a maximum effect in the shortwave spectrum, which provides evidence of sensor degradation and its profound effect on the striping artifacts in the OCM-2 data products.

  14. The Mars Science Laboratory Organic Check Material

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  15. Modified optimal control pilot model for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1992-01-01

    This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.

  16. A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means.

    PubMed

    Polak, Marike; de Rooij, Mark; Heiser, Willem J

    2012-09-01

    In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) criterion of irrelevance, which is a graphical, exploratory method for evaluating the "relevance" of dichotomous attitude items. We generalized this criterion to graded response items and quantified the relevance by fitting a unimodal smoother. The resulting goodness-of-fit was used to determine item fit and aggregated scale fit. Based on a simulation procedure, cutoff values were proposed for the measures of item fit. These cutoff values showed high power rates and acceptable Type I error rates. We present 2 applications of the OCM method. First, we apply the OCM method to personality data from the Developmental Profile; second, we analyze attitude data collected by Roberts and Laughlin (1996) concerning opinions of capital punishment.

  17. Analysis of aircraft longitudinal handling qualities

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1981-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  18. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot-induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  19. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations is formulated. Finally, a model based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  20. An analytical approach for predicting pilot induced oscillations

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1981-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion or determining the susceptability of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  1. A Design Theory for Vigilant Online Learning Systems

    ERIC Educational Resources Information Center

    Wright, M. Keith

    2016-01-01

    There is now a preponderance of evidence suggesting that the types of online course management software (OCMS) used in purely online undergraduate college courses, do not meet the needs of younger immature students. These students often lack the learning skills necessary to succeed in such courses, nor do the popular OCMS include the vigilance…

  2. The effect of ultraviolet radiation on choroidal melanocytes and melanoma cell lines: cell survival and matrix metalloproteinase production.

    PubMed

    Lai, Kenneth; Di Girolamo, Nick; Conway, Robert M; Jager, Martine J; Madigan, Michele C

    2007-05-01

    Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be regulated following UVR exposure, and whether they are important for choroidal melanoma development.

  3. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  4. A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means

    ERIC Educational Resources Information Center

    Polak, Marike; De Rooij, Mark; Heiser, Willem J.

    2012-01-01

    In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) "criterion…

  5. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis

    PubMed Central

    Locri, Filippo; Amato, Rosario; Marsili, Stefania; Rusciano, Dario; Bagnoli, Paola

    2018-01-01

    Optic neuritis is an acute inflammatory demyelinating disorder of the optic nerve (ON) and is an initial symptom of multiple sclerosis (MS). Optic neuritis is characterized by ON degeneration and retinal ganglion cell (RGC) loss that contributes to permanent visual disability and lacks a reliable treatment. Here, we used the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, a well-established model also for optic neuritis. In this model, C57BL6 mice, intraperitoneally injected with a fragment of the myelin oligodendrocyte glycoprotein (MOG), were found to develop inflammation, Müller cell gliosis, and infiltration of macrophages with increased production of oncomodulin (OCM), a calcium binding protein that acts as an atypical trophic factor for neurons enabling RGC axon regeneration. Immunolabeling of retinal whole mounts with a Brn3a antibody demonstrated drastic RGC loss. Dietary supplementation with Neuro-FAG (nFAG®), a balanced mixture of fatty acids (FAs), counteracted inflammatory and gliotic processes in the retina. In contrast, infiltration of macrophages and their production of OCM remained at elevated levels thus eventually preserving OCM trophic activity. In addition, the diet supplement with nFAG exerted a neuroprotective effect preventing MOG-induced RGC death. In conclusion, these data suggest that the balanced mixture of FAs may represent a useful form of diet supplementation to limit inflammatory events and death of RGCs associated to optic neuritis. This would occur without affecting macrophage infiltration and the release of OCM thus favoring the maintenance of OCM neuroprotective role. PMID:29517994

  6. Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition.

    PubMed

    Santos, Patrícia Dos; Targa, Adriano D S; Noseda, Ana Carolina D; Rodrigues, Lais S; Fagotti, Juliane; Lima, Marcelo M S

    2017-09-01

    Several efforts have been made to understand the involvement of rapid eye movement (REM) sleep for cognitive processes. Consolidation or retention of recognition memories is severely disrupted by REM sleep deprivation (REMSD). In this regard, pedunculopontine tegmental nucleus (PPT) and other brainstem nuclei, such as pontine nucleus (Pn) and oculomotor nucleus (OCM), appear to be candidates to take part in this REM sleep circuitry with potential involvement in cognition. Therefore, the objective of this study was to investigate a possible association between the performance of Wistar rats in a declarative memory and PPT, Pn, and OCM activities after different periods of REMSD. We examined c-Fos and choline acetyltransferase (ChaT) expressions as indicators of neuronal activity as well as a familiarity-based memory test. The animals were distributed in groups: control, REMSD, and sleep rebound (REB). At the end of the different REMSD (24, 48, 72, and 96 h) and REB (24 h) time points, the rats were immediately tested in the object recognition test and then the brains were collected. Results indicated that OCM neurons presented an increased activity, due to ChaT-labeling associated with REMSD that negatively correlated (r = -0.32) with the cognitive performance. This suggests the existence of a cholinergic compensatory mechanism within the OCM during REMSD. We also showed that 24 h of REMSD impacted similarly in memory, compared to longer periods of REMSD. These data extend the notion that REM sleep is influenced by areas other than PPT, i.e., Pn and OCM, which could be key players in both sleep processes and cognition.

  7. Oxidative coupling of methane over SrO deposited on different commercial supports precoated with La{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.

    1998-06-01

    The influence of catalyst carrier or support (with different chemical compositions and surface properties), catalyst deposition method (viz., impregnation and coating), precursor for strontium oxide (SrO; Sr-nitrate, acetate, hydroxide, and carbonate), and loading of SrO and lanthanum oxide (La{sub 2}O{sub 3}; 0--25 wt%) on the surface properties and performance of catalyst in oxidative coupling of methane (OCM; at 850 C, gas hourly space velocity = 1.02 {times} 10{sup 5} cm{sup 3}/g{center_dot}h and CH{sub 4}/O{sub 2} = 4 or 16) was thoroughly investigated. The basicity, acidity, and O{sub 2} chemisorption of the catalysts were studied by the temperature programmed desorption (TPD)more » of CO{sub 2}, NH{sub 3}, and O{sub 2}, respectively, from 50 to 950 C. The total and strong basic sites, acidity, and OCM activity of the supported catalyst were strongly influenced by the support used and also by the La{sub 2}O{sub 3} loading on the support. The catalyst with a sintered low surface area porous silica-Alumina support and high (20 wt%) La{sub 2}O{sub 3} and SrO loadings showed the best performance in the OCM process. The OCM activity was influenced by SrO loading, but to a smaller extent, and also by the method of SrO deposition. The OCM activity of the supported catalysts could be related to their strong basic sites (measured in terms of the CO{sub 2} desorbed between 500 and 950 C).« less

  8. Concept mapping One-Carbon Metabolism to model future ontologies for nutrient-gene-phenotype interactions.

    PubMed

    Joslin, A C; Green, R; German, J B; Lange, M C

    2014-09-01

    Advances in the development of bioinformatic tools continue to improve investigators' ability to interrogate, organize, and derive knowledge from large amounts of heterogeneous information. These tools often require advanced technical skills not possessed by life scientists. User-friendly, low-barrier-to-entry methods of visualizing nutrigenomics information are yet to be developed. We utilized concept mapping software from the Institute for Human and Machine Cognition to create a conceptual model of diet and health-related data that provides a foundation for future nutrigenomics ontologies describing published nutrient-gene/polymorphism-phenotype data. In this model, maps containing phenotype, nutrient, gene product, and genetic polymorphism interactions are visualized as triples of two concepts linked together by a linking phrase. These triples, or "knowledge propositions," contextualize aggregated data and information into easy-to-read knowledge maps. Maps of these triples enable visualization of genes spanning the One-Carbon Metabolism (OCM) pathway, their sequence variants, and multiple literature-mined associations including concepts relevant to nutrition, phenotypes, and health. The concept map development process documents the incongruity of information derived from pathway databases versus literature resources. This conceptual model highlights the importance of incorporating information about genes in upstream pathways that provide substrates, as well as downstream pathways that utilize products of the pathway under investigation, in this case OCM. Other genes and their polymorphisms, such as TCN2 and FUT2, although not directly involved in OCM, potentially alter OCM pathway functionality. These upstream gene products regulate substrates such as B12. Constellations of polymorphisms affecting the functionality of genes along OCM, together with substrate and cofactor availability, may impact resultant phenotypes. These conceptual maps provide a foundational framework for development of nutrient-gene/polymorphism-phenotype ontologies and systems visualization.

  9. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.

    PubMed

    von Olshausen, Philipp; Rohrbach, Alexander

    2013-10-15

    Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

  10. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less

  11. Summary of Aqua, Aura, and Terra High Interest Events

    NASA Technical Reports Server (NTRS)

    Newman, Lauri

    2015-01-01

    Single-obs tracking Sparsely tracked objects are an unfortunate reality of CARA operations Terra vs. 32081: new track with bad data was included in OD solution for secondary object and risk became high CARA and JSpOC discussed tracking and OSAs threw out the bad data. Event no longer presented high risk based on new OD Improvement: CARA now sends JSpOC a flag indicating when a single obs is included, so OSAs can evaluate if manual update to OD is required. Missing ASW OCMsAura vs. 87178, TCA: 317 at 08:04 UTC. Post-maneuver risk (conjunction was identified in OO results)CARA confirmed with JSpOC that ASW OCMs should have been received in addition to OO OCMsJSpOC corrected the manual error in their script that prevented the data from being delivered to CARAJSpOC QAd their other scripts to ensure this error did not exist in other places.

  12. Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: Evidence from the Strong Heart Study.

    PubMed

    Spratlen, Miranda Jones; Gamble, Mary V; Grau-Perez, Maria; Kuo, Chin-Chi; Best, Lyle G; Yracheta, Joseph; Francesconi, Kevin; Goessler, Walter; Mossavar-Rahmani, Yasmin; Hall, Meghan; Umans, Jason G; Fretts, Amanda; Navas-Acien, Ana

    2017-07-01

    B-vitamins involved in one-carbon metabolism (OCM) can affect arsenic metabolism efficiency in highly arsenic exposed, undernourished populations. We evaluated whether dietary intake of OCM nutrients (including vitamins B2, B6, folate (B9), and B12) was associated with arsenic metabolism in a more nourished population exposed to lower arsenic than previously studied. Dietary intake of OCM nutrients and urine arsenic was evaluated in 405 participants from the Strong Heart Study. Arsenic exposure was measured as the sum of iAs, monomethylarsonate (MMA) and dimethylarsenate (DMA) in urine. Arsenic metabolism was measured as the individual percentages of each metabolite over their sum (iAs%, MMA%, DMA%). In adjusted models, increasing intake of vitamins B2 and B6 was associated with modest but significant decreases in iAs% and MMA% and increases in DMA%. A significant interaction was found between high folate and B6 with enhanced arsenic metabolism efficiency. Our findings suggest OCM nutrients may influence arsenic metabolism in populations with moderate arsenic exposure. Stronger and independent associations were observed with B2 and B6, vitamins previously understudied in relation to arsenic. Research is needed to evaluate whether targeting B-vitamin intake can serve as a strategy for the prevention of arsenic-related health effects at low-moderate arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Scott; Freeman, Dennis M.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometermore » motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.« less

  14. Forensic Archaeological Recovery of a Large-Scale Mass Disaster Scene: Lessons Learned from Two Complex Recovery Operations at the World Trade Center Site.

    PubMed

    Warnasch, Scott C

    2016-05-01

    In 2006, unexpected discoveries of buried World Trade Center (WTC) debris and human remains were made at the World Trade Center mass disaster site. New York City's Office of Chief Medical Examiner (OCME) was given the task of systematically searching the site for any remaining victims' remains. The subsequent OCME assessment and archaeological excavation conducted from 2006 until 2013, resulted in the recovery of over 1,900 victims' remains. In addition, this operation demonstrated the essential skills archaeologists can provide in a mass disaster recovery operation. The OCME excavation data illustrates some of the challenges encountered during the original recovery effort of 2001/2002. It suggests that when understood within the larger site recovery context, certain fundamental components of the original recovery effort, such as operational priorities and activities in effect during the original recovery, directly or indirectly resulted in unsearched deposits that contained human remains. © 2016 American Academy of Forensic Sciences.

  15. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    PubMed

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  16. Scatter sensitive microscopic techniques to identify contrasting mucosal structures in ultrahigh-resolution optical coherence tomograms of mouse colon

    NASA Astrophysics Data System (ADS)

    Tumlinson, Alexandre R.; Hariri, Lida P.; Drexler, Wolfgang; Barton, Jennifer K.

    2008-02-01

    Optical coherence tomography, optical coherence microscopy, reflectance confocal microscopy, and darkfield microscopy all derive contrast from the intensity of endogenous tissue scatter. We have imaged excised mouse colon tissue with these complimentary technologies to make conclusions about structural origins of scatter in the mouse colonic mucosa observed with endoscopic OCT. We find hyperintense scattering both from the cytoplasm of epithelial cells and from the boundary between epithelia and the lamina propria. We find almost no scatter from the portion of epithelial cells containing the nucleus. These observations substantiate explanations for the appearance of colonic crypts and the luminal surface.

  17. Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy.

    PubMed

    Wang, Dong; Liu, Shuanglong; Chen, Yue; Song, Jun; Liu, Wei; Xiong, Maozhen; Wang, Guangsheng; Peng, Xiao; Qu, Junle

    2017-05-01

    We propose a method to improve the resolution of coherent anti-Stokes Raman scattering microscopy (CARS), and present a theoretical model. The proposed method, coherent anti-Stokes Raman scattering difference microscopy (CARS-D), is based on the intensity difference between two differently acquired images. One being the conventional CARS image, and the other obtained when the sample is illuminated by a doughnut shaped spot. The final super-resolution CARS-D image is constructed by intensity subtraction of these two images. However, there is a subtractive factor between them, and the theoretical model sets this factor to obtain the best imaging effect.

  18. Improved wavefront correction for coherent image restoration.

    PubMed

    Zelenka, Claudius; Koch, Reinhard

    2017-08-07

    Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.

  19. Antimicrobial compounds of porcine mucosa

    NASA Astrophysics Data System (ADS)

    Kotenkova, E. A.; Lukinova, E. A.; Fedulova, L. V.

    2017-09-01

    The aim of the study was to investigate porcine oral cavity mucosa (OCM), nasal cavity mucosa (NCM), rectal mucosa (RM) and tongue mucosa (TM) as sources of antimicrobial compounds. Ultrafiltrates with MW >30 kDa, MW 5-30 kDa and MW <5 kDa were obtained. All ultrafiltrates had antimicrobial activity against Escherichia coli and Proteus vulgaris. NCM ultrafiltrates revealed the highest antibacterial activity in respect to negative control: for the fraction with MW >30 kDa, the zone of microbial growth inhibition was 7.5 mm, for the MW<5 kDa fraction, it was 7 mm, and for MW 5-30 kDa fraction, it was 4.5 mm. No significant differences were found in high molecular weight proteomic profile, while qualitative and quantitative differences were observed in the medium and low molecular weight areas, especially in OCM and NCM. HPLC showed 221 tissue-specific peptides in OCM, 156 in NCM, 225 in RM, but only 5 in TM. The results observed confirmed porcine mucous tissues as a good source of antimicrobial compounds, which could be an actual alternative for reduction of microbial spoilage of foods.

  20. Sustainability reporting in public sector organisations: Exploring the relation between the reporting process and organisational change management for sustainability.

    PubMed

    Domingues, Ana Rita; Lozano, Rodrigo; Ceulemans, Kim; Ramos, Tomás B

    2017-05-01

    Sustainability Reporting has become a key element in different organisations. Although there have been a number of academic publications discussing the adoption of sustainability reports in the public sector, their numbers have been quite low when compared to those focussing on corporate reports. Additionally, there has been little research on the link between sustainability reporting in Public Sector Organisations (PSOs) and Organisational Change Management for Sustainability (OCMS). This paper focuses on the contribution of sustainability reporting to OCMS. A survey was sent to all PSOs that have published at least one sustainability report based on the GRI guidelines. The study provides a critical analysis of the relation between sustainability reporting and OCMS in PSOs, including the drivers for reporting, the impacts on organisation change management, and the role of stakeholders in the process. Despite still lagging in sustainability reporting journey, PSOs are starting to use sustainability reporting as a communication tool, and this could drive organisational changes for sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Oncology Care Model: Perspectives From the Centers for Medicare & Medicaid Services and Participating Oncology Practices in Academia and the Community.

    PubMed

    Kline, Ron; Adelson, Kerin; Kirshner, Jeffrey J; Strawbridge, Larissa M; Devita, Marsha; Sinanis, Naralys; Conway, Patrick H; Basch, Ethan

    2017-01-01

    Cancer care delivery in the United States is often fragmented and inefficient, imposing substantial burdens on patients. Costs of cancer care are rising more rapidly than other specialties, with substantial regional differences in quality and cost. The Centers for Medicare & Medicaid Services (CMS) Innovation Center (CMMIS) recently launched the Oncology Care Model (OCM), which uses payment incentives and practice redesign requirements toward the goal of improving quality while controlling costs. As of March 2017, 190 practices were participating, with approximately 3,200 oncologists providing care for approximately 150,000 unique beneficiaries per year (approximately 20% of the Medicare Fee-for-Service population receiving chemotherapy for cancer). This article provides an overview of the program from the CMS perspective, as well as perspectives from two practices implementing OCM: an academic health system (Yale Cancer Center) and a community practice (Hematology Oncology Associates of Central New York). Requirements of OCM, as well as implementation successes, challenges, financial implications, impact on quality, and future visions, are provided from each perspective.

  2. The study of documentary photographs of the early 20th century by the optical coherence microscopy method

    NASA Astrophysics Data System (ADS)

    Ryseva, Ekaterina; Zhukova, Ekaterina

    2013-05-01

    The wide field and spectral methods of optical coherence microscopy were used for extensive studying the photographs printed in the early 20th century. Tomographic images (B-scans) of photo and paper materials are presented and discussed.

  3. One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating.

    PubMed

    Lin, Yu-Chih; Tu, Han-Yen; Wu, Xin-Ru; Lai, Xin-Ji; Cheng, Chau-Jern

    2018-05-14

    This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.

  4. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  5. Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.

    PubMed

    Gu, Min; Fu, Ling

    2006-02-06

    Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.

  6. Where Are the Opportunities for Reducing Health Care Spending Within Alternative Payment Models?

    PubMed

    Rocque, Gabrielle B; Williams, Courtney P; Kenzik, Kelly M; Jackson, Bradford E; Halilova, Karina I; Sullivan, Margaret M; Rocconi, Rod P; Azuero, Andres; Kvale, Elizabeth A; Huh, Warner K; Partridge, Edward E; Pisu, Maria

    2018-06-01

    The Oncology Care Model (OCM) is a highly controversial specialty care model developed by the Centers for Medicare & Medicaid aimed to provide higher-quality care at lower cost. Because oncologists will be increasingly held accountable for spending as well as quality within new value-based health care models like the OCM, they need to understand the drivers of total spending for their patients. This retrospective cohort study included patients ≥ 65 years of age with primary fee-for-service Medicare insurance who received antineoplastic therapy at 12 cancer centers in the Southeast from 2012 to 2014. Medicare administrative claims data were used to identify health care spending during the prechemotherapy period (from cancer diagnosis to antineoplastic therapy initiation) and during the OCM episodes of care triggered by antineoplastic treatment. Total health care spending per episode includes all types of services received by a patient, including nononcology services. Spending was further characterized by type of service. Average total health care spending in the three OCM episodes of care was $33,838 (n = 3,427), $23,811 (n = 1,207), and $19,241 (n = 678). Antineoplastic drugs accounted for 27%, 32%, and 36% of total health care spending in the first, second, and third episodes. Ten drugs, used by 31% of patients, contributed 61% to drug spending ($18.8 million) in the first episode. Inpatient spending also substantially contributed to total costs, representing 17% to 20% ($30.5 million) of total health care spending. Health care spending was heavily driven by both antineoplastic drugs and hospital use. Oncologists' ability to affect these types of spending will determine their success under alternative payment models.

  7. Neonatal Overfeeding in Female Mice Predisposes the Development of Obesity in their Male Offspring via Altered Central Leptin Signalling.

    PubMed

    Wang, H; Ji, J; Yu, Y; Wei, X; Chai, S; Liu, D; Huang, D; Li, Q; Dong, Z; Xiao, X

    2015-07-01

    The prevalence of obesity among child-bearing women has increased significantly. The adverse consequences of maternal obesity on the descendants have been well accepted, although few studies have examined the underlying mechanisms. We investigated whether neonatal overfeeding in female mice alters metabolic phenotypes in the offspring and whether hypothalamic leptin signalling is involved. Neonatal overfeeding was induced by reducing the litter size to three pups per litter, in contrast to normal litter size of 10 pups per litter. Normal and neonatally overfed female mice were bred with normal male mice, and offspring of overfeeding mothers (OOM) and control mothers (OCM) were generated. We examined body weight, daily food intake, leptin responsiveness and the number of positive neurones for phosphorylated-signal transducer and activator of transcription 3 (pSTAT3) along with neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH) and NPY in the nucleus tractus solitarius (NTS) of the brain stem. The body weight and daily food intake of OOM were significantly higher than those of OCM. Leptin significantly reduced food intake and increased the number of pSTAT3 positive neurones in the ARH of OCM mice, whereas no significant changes in food intake and pSTAT3 neurones were found in leptin-treated OOM mice. The number of NPY neurones in the ARH and NTS of the OOM mice was significantly higher than that of OCM mice. The results of the present study indicate that the obese phenotype from mothers can be passed onto the subsequent generation, which is possibly associated with hypothalamic leptin resistance. © 2015 British Society for Neuroendocrinology.

  8. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apedo, K.L., E-mail: apedo@unistra.fr; Munzer, C.; He, H.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are comparedmore » with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.« less

  9. Coherent Raman Scattering Microscopy in Biology and Medicine.

    PubMed

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2015-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take.

  10. Coherent Raman Scattering Microscopy in Biology and Medicine

    PubMed Central

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2016-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take. PMID:26514285

  11. Label-free imaging of the dynamics of cell-to-cell string-like structure bridging in the free-space by low-coherent quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2013-03-01

    We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.

  12. Assessing Medicare's Approach To Covering New Drugs In Bundled Payments For Oncology.

    PubMed

    Muldoon, L Daniel; Pelizzari, Pamela M; Lang, Kelsey A; Vandigo, Joe; Pyenson, Bruce S

    2018-05-01

    New oncology therapies can contribute to survival or quality of life, but payers and policy makers have raised concerns about the cost of these therapies. Similar concerns extend beyond cancer. In seeking a solution, payers are increasingly turning toward value-based payment models in which providers take financial risk for costs and outcomes. These models, including episode payment and bundled payment, create financial gains for providers who reduce cost, but they also create concerns about potential stinting on necessary treatments. One approach, which the Centers for Medicare and Medicaid Services adopted in the Oncology Care Model (OCM), is to partially adjust medical practices' budgets for their use of novel therapies, defined in this case as new oncology drugs or new indications for existing drugs approved after December 31, 2014. In an analysis of the OCM novel therapies adjustment using historical Medicare claims data, we found that the adjustment may provide important financial protection for practices. In a simulation we performed, the adjustment reduced the average loss per treatment episode by $758 (from $807 to $49) for large practices that use novel therapies often. Lessons from the OCM can have implications for other alternative payment models.

  13. Oxidative coupling of methane over a Sr-promoted La{sub 2}O{sub 3} catalyst supported on a low surface area porous catalyst carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Uphade, B.S.; Mulla, S.A.R.

    1997-09-01

    Oxidative coupling of methane (OCM) to higher hydrocarbons over Sr-promoted La{sub 2}O{sub 3} supported on commercial low surface area porous catalyst carriers at 800 and 850 C and a space velocity of 102,000 cm{sup 3}/g{center_dot}h has been thoroughly investigated. Effects of support, catalyst particle size, linear gas velocity, Sr/La ratio, CH{sub 4}/O{sub 2} ratio in the feed, and catalyst dilution by inert solid particles on the conversion, yield, or selectivity and product ratios (C{sub 2}H{sub 4}/C{sub 2}H{sub 6} and CO/CO{sub 2}) in the OCM process have been studied. The catalysts have been characterized for their basicity, acidity, and oxygen chemisorptionmore » by the TPD of CO{sub 2}, ammonia, and oxygen, respectively, from 50 to 950 C and also characterized for their surface area. The supported catalysts showed better performance than the unsupported one. The best OCM results (obtained over Sr-La{sub 2}O{sub 3}/SA-5205 with a Sr/La ratio of 0.3 at a space velocity of 102,000 cm{sup 3}/g{center_dot}h) are 30.1% CH{sub 4} conversion with 65.6% selectivity for C{sub 2+} (or 19.7% C{sub 2+}-yield) at 850 C (CH{sub 4}/O{sub 2} = 16.0). The basicity is strongly influenced by the Sr/La ratio; the supported catalysts showed the best performance for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence on the OCM process. However, the influence of linear gas velocity and particle size is found to be small; it results mainly from the temperature gradient in the catalyst. The catalyst dilution has beneficial effects for achieving a higher C{sub 2}H{sub 4}/C{sub 2}H{sub 6} ratio and also for reducing the hazardous nature of the OCM process because of the coupling of the exothermic oxidative conversion reactions and the endothermic thermal cracking reactions and also due to the increased heat transfer area.« less

  14. In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy

    PubMed Central

    Liao, Chien-Sheng; Cheng, Ji-Xin

    2017-01-01

    Coherent Raman scattering (CRS) microscopy is a high-speed vibrational imaging platform with the ability to visualize the chemical content of a living specimen by using molecular vibrational fingerprints. We review technical advances and biological applications of CRS microscopy. The basic theory of CRS and the state-of-the-art instrumentation of a CRS microscope are presented. We further summarize and compare the algorithms that are used to separate the Raman signal from the nonresonant background, to denoise a CRS image, and to decompose a hyperspectral CRS image into concentration maps of principal components. Important applications of single-frequency and hyperspectral CRS microscopy are highlighted. Potential directions of CRS microscopy are discussed. PMID:27306307

  15. Multi-spectral digital holographic microscopy for enhanced quantitative phase imaging of living cells

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi

    2018-02-01

    Main restrictions of using laser light in digital holographic microscopy (DHM) are coherence induced noise and parasitic reflections in the experimental setup which limit resolution and measurement accuracy. We explored, if coherence properties of partial coherent light sources can be generated synthetically utilizing spectrally tunable lasers. The concept of the method is demonstrated by label-free quantitative phase imaging of living pancreatic tumor cells and utilizing an experimental configuration including a commercial microscope and a laser source with a broad tunable spectral range of more than 200 nm.

  16. Fourier phase in Fourier-domain optical coherence tomography.

    PubMed

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  17. Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract

    PubMed Central

    CORON, E.; AUKSORIUS, E.; PIERETTI, A.; MAHÉ, M. M.; LIU, L.; STEIGER, C.; BROMBERG, Y.; BOUMA, B.; TEARNEY, G.; NEUNLIST, M.; GOLDSTEIN, A. M.

    2013-01-01

    Background Noninvasive methods are needed to improve the diagnosis of enteric neuropathies. Full-field optical coherence microscopy (FFOCM) is a novel optical microscopy modality that can acquire 1 μm resolution images of tissue. The objective of this research was to demonstrate FFOCM imaging for the characterization of the enteric nervous system (ENS). Methods Normal mice and EdnrB−/− mice, a model of Hirschsprung’s disease (HD), were imaged in three-dimensions ex vivo using FFOCM through the entire thickness and length of the gut. Quantitative analysis of myenteric ganglia was performed on FFOCM images obtained from whole-mount tissues and compared with immunohistochemistry imaged by confocal microscopy. Key Results Full-field optical coherence microscopy enabled visualization of the full thickness gut wall from serosa to mucosa. Images of the myenteric plexus were successfully acquired from the stomach, duodenum, colon, and rectum. Quantification of ganglionic neuronal counts on FFOCM images revealed strong interobserver agreement and identical values to those obtained by immunofluorescence microscopy. In EdnrB−/− mice, FFOCM analysis revealed a significant decrease in ganglia density along the colorectum and a significantly lower density of ganglia in all colorectal segments compared with normal mice. Conclusions & Inferences Full-field optical coherence microscopy enables optical microscopic imaging of the ENS within the bowel wall along the entire intestine. FFOCM is able to differentiate ganglionic from aganglionic colon in a mouse model of HD, and can provide quantitative assessment of ganglionic density. With further refinements that enable bowel wall imaging in vivo, this technology has the potential to revolutionize the characterization of the ENS and the diagnosis of enteric neuropathies. PMID:23106847

  18. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    PubMed

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of fiber lasers and devices for coherent Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the high energy femtosecond pulses for other multiphoton imaging techniques. Finally, ideas for future extensions of this work will be discussed.

  20. Enhanced Management of and Access to Hurricane Sandy Ocean and Coastal Mapping Data

    NASA Astrophysics Data System (ADS)

    Eakins, B.; Neufeld, D.; Varner, J. D.; McLean, S. J.

    2014-12-01

    NOAA's National Geophysical Data Center (NGDC) has significantly improved the discovery and delivery of its geophysical data holdings, initially targeting ocean and coastal mapping (OCM) data in the U.S. coastal region impacted by Hurricane Sandy in 2012. We have developed a browser-based, interactive interface that permits users to refine their initial map-driven data-type choices prior to bulk download (e.g., by selecting individual surveys), including the ability to choose ancillary files, such as reports or derived products. Initial OCM data types now available in a U.S. East Coast map viewer, as well as underlying web services, include: NOS hydrographic soundings and multibeam sonar bathymetry. Future releases will include trackline geophysics, airborne topographic and bathymetric-topographic lidar, bottom sample descriptions, and digital elevation models.This effort also includes working collaboratively with other NOAA offices and partners to develop automated methods to receive and verify data, stage data for archive, and notify data providers when ingest and archive are completed. We have also developed improved metadata tools to parse XML and auto-populate OCM data catalogs, support the web-based creation and editing of ISO-compliant metadata records, and register metadata in appropriate data portals. This effort supports a variety of NOAA mission requirements, from safe navigation to coastal flood forecasting and habitat characterization.

  1. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  2. Polarization Sensitive Coherent Raman Measurements of DCVJ

    NASA Astrophysics Data System (ADS)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  3. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.

  4. A structural equation modelling approach to explore the role of B vitamins and immune markers in lung cancer risk.

    PubMed

    Baltar, Valéria Troncoso; Xun, Wei W; Johansson, Mattias; Ferrari, Pietro; Chuang, Shu-Chun; Relton, Caroline; Ueland, Per Magne; Midttun, Øivind; Slimani, Nadia; Jenab, Mazda; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Fagherazzi, Guy; Kaaks, Rudolf; Rohrmann, Sabine; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, Bas; Boshuizen, Hendriek; van Gils, Carla H; Onland-Moret, N Charlotte; Agudo, Antonio; Barricarte, Aurelio; Navarro, Carmen; Rodríguez, Laudina; Castaño, José Maria Huerta; Larrañaga, Nerea; Khaw, Kay-Tee; Wareham, Nick; Allen, Naomi E; Crowe, Francesca; Gallo, Valentina; Norat, Teresa; Krogh, Vittorio; Masala, Giovanna; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Rasmuson, Torgny; Hallmans, Göran; Roswall, Nina; Tjønneland, Anne; Riboli, Elio; Brennan, Paul; Vineis, Paolo

    2013-08-01

    The one-carbon metabolism (OCM) is considered key in maintaining DNA integrity and regulating gene expression, and may be involved in the process of carcinogenesis. Several B-vitamins and amino acids have been implicated in lung cancer risk, via the OCM directly as well as immune system activation. However it is unclear whether these factors act independently or through complex mechanisms. The current study applies structural equations modelling (SEM) to further disentangle the mechanisms involved in lung carcinogenesis. SEM allows simultaneous estimation of linear relations where a variable can be the outcome in one equation and the predictor in another, as well as allowing estimation using latent variables (factors estimated by correlation matrix). A large number of biomarkers have been analysed from 891 lung cancer cases and 1,747 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Four putative mechanisms in the OCM and immunity were investigated in relation to lung cancer risk: methionine-homocysteine metabolism, folate cycle, transsulfuration, and mechanisms involved in inflammation and immune activation, all adjusted for tobacco exposure. The hypothesized SEM model confirmed a direct and protective effect for factors representing methionine-homocysteine metabolism (p = 0.020) and immune activation (p = 0.021), and an indirect protective effect of folate cycle (p = 0.019), after adjustment for tobacco smoking. In conclusion, our results show that in the investigation of the involvement of the OCM, the folate cycle and immune system in lung carcinogenesis, it is important to consider complex pathways (by applying SEM) rather than the effects of single vitamins or nutrients (e.g. using traditional multiple regression). In our study SEM were able to suggest a greater role of the methionine-homocysteine metabolism and immune activation over other potential mechanisms.

  5. Comparison of short-term outcomes between laparoscopic-assisted and open complete mesocolic excision (CME) for the treatment of transverse colon cancer.

    PubMed

    Wang, Yong; Zhang, Chuan; Feng, Yi-Fei; Fu, Zan; Sun, Yue-Ming

    2017-02-01

    Colorectal cancer (CRC) is the third most common cancer worldwide. Although laparoscopic-assisted complete mesocolic excision (LCME) is a superior treatment, there are few studies available on it owe to the low incidence and technical difficulty of LCME in transverse colon cancer. The clinical data of 78 patients with transverse colon cancer who were treated by LCME and open complete mesocolic excision (OCME) were retrospectively analyzed. A total of 39 cases had been treated by LCME, compared with 39 cases treated by OCME. The patient characteristics and short-term outcomes including operation time, intra-operative blood loss, length of incision, time to first flatus, first postoperative ambulation, postoperative hospitalization time, number of harvested lymph nodes, length of resected specimen and incidence of complications were evaluated. There was no case converted to OCME in LCME group. LCME had significantly shorter length of incision, shorter operation time, less intra-operative blood loss, shorter postoperative hospitalization time (P<0.05). The length of resected specimen and the numbers of harvested lymph nodes were (26.5±5.4 cm) and (16.2±3.1) in LCME group, and (24.8±4.9 cm) and (15.1±3.5) in OCME group, with no differences between two groups. The incidence of wound infection was lower while the incidence of lymphatic leakage, anastomotic leakage, urinary tract infection and wound dehiscence had no significant differences between two groups. None of patients in these two groups developed urinary retention, anastomotic bleeding and postoperative intestinal obstruction. Our findings suggested that LCME is a safe, feasible and effective treatment method for the treatment of transverse colon cancer due to it can provide superior short-term outcomes including less intra-operative blood loss, faster recovery and lower incidence of wound infection.

  6. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, Keren

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformationalmore » advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM architectures on Exascale computing systems.« less

  7. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure.

  8. Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode.

    PubMed

    Garcia-Sucerquia, Jorge

    2013-01-01

    By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.

  9. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  10. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  11. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy.

    PubMed

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen

    2014-08-25

    Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.

  12. Fourier phase in Fourier-domain optical coherence tomography

    PubMed Central

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  13. Imaging fully hydrated whole cells by coherent x-ray diffraction microscopy.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Naitow, Hisashi; Kunishima, Naoki; Yoshida, Takashi; Ishikawa, Tetsuya; Song, Changyong

    2013-03-01

    Nanoscale imaging of biological specimens in their native condition is of long-standing interest, in particular with direct, high resolution views of internal structures of intact specimens, though as yet progress has been limited. Here we introduce wet coherent x-ray diffraction microscopy capable of imaging fully hydrated and unstained biological specimens. Whole cell morphologies and internal structures better than 25 nm can be clearly visualized without contrast degradation.

  14. Measuring refractive index and volume of liquid under high pressure with optical coherence tomography and light microscopy.

    PubMed

    Wang, Donglin; Yang, Kun; Zhou, Yin

    2016-03-20

    Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.

  15. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser.

    PubMed

    Pan, Feng; Yang, Lizhi; Xiao, Wen

    2017-09-04

    In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

  16. Role of coherence in microsphere-assisted nanoscopy

    NASA Astrophysics Data System (ADS)

    Perrin, Stephane; Lecler, Sylvain; Leong-Hoi, Audrey; Montgomery, Paul C.

    2017-06-01

    The loss of the information, due to the diffraction and the evanescent waves, limits the resolving power of classical optical microscopy. In air, the lateral resolution of an optical microscope can approximated at half of the wavelength using a low-coherence illumination. Recently, several methods have been developed in order to overcome this limitation and, in 2011, a new far-field and full-field imaging technique was proposed where a sub-diffraction-limit resolution has been achieved using a transparent microsphere. In this article, the phenomenon of super-resolution using microsphere-assisted microscopy is analysed through rigorous electro-magnetic simulations. The performances of the imaging technique are estimated as function of optical and geometrical parameters. Furthermore, the role of coherence is introduced through the temporal coherence of the light source and the phase response of the object.

  17. Oral picropodophyllin (PPP) is well tolerated in vivo and inhibits IGF-1R expression and growth of uveal melanoma.

    PubMed

    Economou, Mario A; Andersson, Sandra; Vasilcanu, Diana; All-Ericsson, Charlotta; Menu, Eline; Girnita, Ada; Girnita, Leonard; Axelson, Magnus; Seregard, Stefan; Larsson, Olle

    2008-11-01

    The cyclolignan picropodophyllin (PPP) efficiently blocks the activity of insulin-like growth factor-1 receptor (IGF-1R) and inhibits growth of uveal melanoma cells in vitro and in vivo. In this study, we aimed to investigate the efficiency of orally administered PPP on growth of uveal melanoma xenografts. Further, we focused on the effect of PPP on vascular endothelial growth factor (VEGF) in vivo and evaluated its effects in combination with other established anti-tumor agents in vitro. Four different uveal melanoma cell lines (OCM-1, OCM-3, OCM-8, 92-1) were treated with PPP alone and in combination with imatinib mesylate, cisplatin, 5-FU and doxorubicin. Cell viability was determined by XTT assay. SCID mice xenografted with uveal melanoma cells were used to determine anti-tumor efficacy of oral PPP in vivo. Tumor samples obtained from the in vivo experiments were analyzed for VEGF and IGF-1R expression by western blotting. PPP was found to be superior to the other anti-tumor agents in killing uveal melanoma cells. Oral PPP inhibited uveal melanoma growth in vivo and was well tolerated by the animals. PPP decreased VEGF expression in the tumors. Oral PPP is well tolerated in vivo and caused total growth inhibition of uveal melanoma xenografts as well as it decreased the levels of VEGF in the tumors.

  18. Cluster structure and Coulomb shift in two-center mirror systems

    NASA Astrophysics Data System (ADS)

    Nakao, M.; Umehara, H.; Sonoda, S.; Ebata, S.; Ito, M.

    2017-11-01

    The α + 14C elastic scattering and the nuclear structure of its compound systems, 18O = α + 14C, are analyzed on the basis of the semi-microscopic model. The α + 14C interaction potential is constructed from the double folding (DF) model with the effective nucleon-nucleon interaction of the density-dependent Michigan 3-range Yukawa. The DF potential is applied to the α+14C elastic scattering in the energy range of Eα/Aα = 5.5 8.8 MeV, and the observed differential cross sections are reasonably reproduced. The energy spectra of 18O are calculated by employing the orthogonality condition model (OCM) plus the absorbing boundary condition (ABC). The OCM + ABC calculation predicts the formation of the 0+ resonance around E = 3MeV with respect to the α threshold, which seems to correspond to the resonance identified in the recent experiment. We also apply the OCM + ABC calculation to the mirror system, such as 18Ne = α+14O, and the Coulomb shift of 18O - 18Ne is evaluated. We have found that the Coulomb shift is clearly reduced in the excited 0+ state due to the development of the α cluster structure. This result strongly supports that the Coulomb shift is a candidate of new probe to identify the clustering phenomena.

  19. Potential Links between Impaired One-Carbon Metabolism Due to Polymorphisms, Inadequate B-Vitamin Status, and the Development of Alzheimer’s Disease

    PubMed Central

    Troesch, Barbara; Weber, Peter; Mohajeri, M. Hasan

    2016-01-01

    Alzheimer’s disease (AD) is the major cause of dementia and no preventive or effective treatment has been established to date. The etiology of AD is poorly understood, but genetic and environmental factors seem to play a role in its onset and progression. In particular, factors affecting the one-carbon metabolism (OCM) are thought to be important and elevated homocysteine (Hcy) levels, indicating impaired OCM, have been associated with AD. We aimed at evaluating the role of polymorphisms of key OCM enzymes in the etiology of AD, particularly when intakes of relevant B-vitamins are inadequate. Our review indicates that a range of compensatory mechanisms exist to maintain a metabolic balance. However, these become overwhelmed if the activity of more than one enzyme is reduced due to genetic factors or insufficient folate, riboflavin, vitamin B6 and/or vitamin B12 levels. Consequences include increased Hcy levels and reduced capacity to synthetize, methylate and repair DNA, and/or modulated neurotransmission. This seems to favor the development of hallmarks of AD particularly when combined with increased oxidative stress e.g., in apolipoprotein E (ApoE) ε4 carriers. However, as these effects can be compensated at least partially by adequate intakes of B-vitamins, achieving optimal B-vitamin status for the general population should be a public health priority. PMID:27973419

  20. Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra

    NASA Astrophysics Data System (ADS)

    Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.

    2018-03-01

    We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.

  1. Coherent imaging with incoherent light in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  2. Flight directors for STOl aircraft

    NASA Technical Reports Server (NTRS)

    Rabin, U. H.

    1983-01-01

    Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.

  3. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy

    PubMed Central

    Chung, Chao-Yu; Boik, John; Potma, Eric O.

    2014-01-01

    Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525

  4. Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies.

    PubMed

    Belsey, Natalie A; Garrett, Natalie L; Contreras-Rojas, L Rodrigo; Pickup-Gerlaugh, Adam J; Price, Gareth J; Moger, Julian; Guy, Richard H

    2014-01-28

    Stimulated Raman scattering microscopy was used to assess the permeation of topically applied drugs and formulation excipients into porcine skin. This chemically selective technique generates high-resolution 3D images, from which semi-quantitative information may be elucidated. Ibuprofen, applied as a close-to-saturated solution in propylene glycol, was directly observed to crystallise in/on the skin, as the co-solvent permeated more rapidly, resulting in precipitation of the drug. Coherent Raman scattering microscopy is also an excellent tool, in conjunction with more conventional confocal fluorescence microscopy, with which to image micro/nanoparticle-based formulations. Specifically, the uptake of particles into thermal ablation transport pathways in the skin has been examined. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Coherent Raman scattering microscopy for label-free imaging of live amphioxus

    NASA Astrophysics Data System (ADS)

    Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi

    2012-03-01

    The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.

  6. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  7. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform

    PubMed Central

    Schachtschneider, Kyle M.; Schwind, Regina M.; Newson, Jordan; Kinachtchouk, Nickolas; Rizko, Mark; Mendoza-Elias, Nasya; Grippo, Paul; Principe, Daniel R.; Park, Alex; Overgaard, Nana H.; Jungersen, Gregers; Garcia, Kelly D.; Maker, Ajay V.; Rund, Laurie A.; Ozer, Howard; Gaba, Ron C.; Schook, Lawrence B.

    2017-01-01

    Despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. More than 8.2 million deaths were attributed to cancer in 2012, and it is anticipated that cancer incidence will continue to rise, with 19.3 million cases expected by 2025. The development and investigation of new diagnostic modalities and innovative therapeutic tools is critical for reducing the global cancer burden. Toward this end, transitional animal models serve a crucial role in bridging the gap between fundamental diagnostic and therapeutic discoveries and human clinical trials. Such animal models offer insights into all aspects of the basic science-clinical translational cancer research continuum (screening, detection, oncogenesis, tumor biology, immunogenicity, therapeutics, and outcomes). To date, however, cancer research progress has been markedly hampered by lack of a genotypically, anatomically, and physiologically relevant large animal model. Without progressive cancer models, discoveries are hindered and cures are improbable. Herein, we describe a transgenic porcine model—the Oncopig Cancer Model (OCM)—as a next-generation large animal platform for the study of hematologic and solid tumor oncology. With mutations in key tumor suppressor and oncogenes, TP53R167H and KRASG12D, the OCM recapitulates transcriptional hallmarks of human disease while also exhibiting clinically relevant histologic and genotypic tumor phenotypes. Moreover, as obesity rates increase across the global population, cancer patients commonly present clinically with multiple comorbid conditions. Due to the effects of these comorbidities on patient management, therapeutic strategies, and clinical outcomes, an ideal animal model should develop cancer on the background of representative comorbid conditions (tumor macro- and microenvironments). As observed in clinical practice, liver cirrhosis frequently precedes development of primary liver cancer or hepatocellular carcinoma. The OCM has the capacity to develop tumors in combination with such relevant comorbidities. Furthermore, studies on the tumor microenvironment demonstrate similarities between OCM and human cancer genomic landscapes. This review highlights the potential of this and other large animal platforms as transitional models to bridge the gap between basic research and clinical practice. PMID:28879168

  8. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  9. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  10. Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea.

    PubMed

    Kaji, Yuichi; Akiyama, Toshihiro; Segawa, Hiroki; Oshika, Tetsuro; Kano, Hideaki

    2017-11-01

    In vivo and in situ visualization of biomolecules without pretreatment will be important for diagnosis and treatment of ocular disorders in the future. Recently, multiphoton microscopy, based on the nonlinear interactions between molecules and photons, has been applied to reveal the localizations of various molecules in tissues. We aimed to use multimodal multiphoton microscopy to visualize the localizations of specific biomolecules in rat corneas. Multiphoton images of the corneas were obtained from nonlinear signals of coherent anti-Stokes Raman scattering, third-order sum frequency generation, and second-harmonic generation. The localizations of the adhesion complex-containing basement membrane and Bowman layer were clearly visible in the third-order sum frequency generation images. The fine structure of type I collagen was observed in the corneal stroma in the second-harmonic generation images. The localizations of lipids, proteins, and nucleic acids (DNA/RNA) was obtained in the coherent anti-Stokes Raman scattering images. Imaging technologies have progressed significantly and been applied in medical fields. Optical coherence tomography and confocal microscopy are widely used but do not provide information on the molecular structure of the cornea. By contrast, multiphoton microscopy provides information on the molecular structure of living tissues. Using this technique, we successfully visualized the localizations of various biomolecules including lipids, proteins, and nucleic acids in the cornea. We speculate that multiphoton microscopy will provide essential information on the physiological and pathological conditions of the cornea, as well as molecular localizations in tissues without pretreatment.

  11. High brightness, low coherence, digital holographic microscopy for 3D visualization of an in-vitro sandwiched biological sample.

    PubMed

    Abdelsalam, D G; Yasui, Takeshi

    2017-05-01

    We achieve practically a bright-field digital holographic microscopy (DHM) configuration free from coherent noise for three-dimensional (3D) visualization of an in-vitro sandwiched sarcomere sample. Visualization of such sandwiched samples by conventional atomic force microscope (AFM) is impossible, while visualization using DHM with long coherent lengths is challenging. The proposed configuration is comprised of an ultrashort pulse laser source and a Mach-Zehnder interferometer in transmission. Periodically poled lithium niobate (PPLN) crystal was used to convert the fundamental beam by second harmonic generation (SHG) to the generated beam fit to the CCD camera used. The experimental results show that the contrast of the reconstructed phase image is improved to a higher degree compared to a He-Ne laser based result. We attribute this improvement to two things: the feature of the femtosecond pulse light, which acts as a chopper for coherent noise suppression, and the fact that the variance of a coherent mode can be reduced by a factor of 9 due to low loss through a nonlinear medium.

  12. Spatially multiplexed interferometric microscopy with partially coherent illumination

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Zalevsky, Zeev; García, Javier; Ferreira, Carlos; Micó, Vicente

    2016-10-01

    We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample's phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).

  13. Source of coherent short wavelength radiation

    DOEpatents

    Villa, Francesco

    1990-01-01

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  14. High-power picosecond fiber source for coherent Raman microscopy

    PubMed Central

    Kieu, Khanh; Saar, Brian G.; Holtom, Gary R.; Xie, X. Sunney; Wise, Frank W.

    2011-01-01

    We report a high-power picosecond fiber pump laser system for coherent Raman microscopy (CRM). The fiber laser system generates 3.5 ps pulses with 6 W average power at 1030 nm. Frequency doubling yields more than 2 W of green light, which can be used to pump an optical parametric oscillator to produce the pump and the Stokes beams for CRM. Detailed performance data on the laser and the various wavelength conversion steps are discussed, together with representative CRM images of fresh animal tissue obtained with the new source. PMID:19571996

  15. Occlusal overload investigations by noninvasive technology: fluorescence microscopy and en-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Marcauteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Enikö; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-07-01

    The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-Face Optical coherence tomography (eF-OCT) and fluorescence microscopy (FM) were used for the imaging of several anterior teeth extracted from patients with light active bruxism. We found a characteristic pattern of enamel cracks, that reached the tooth surface. We concluded that the combination of the en-Face OCT and FM is a promising non-invasive alternative technique for reliable monitoring of occlusal overload.

  16. A scheme for lensless X-ray microscopy combining coherent diffraction imaging and differential corner holography.

    PubMed

    Capotondi, F; Pedersoli, E; Kiskinova, M; Martin, A V; Barthelmess, M; Chapman, H N

    2012-10-22

    We successfully use the corners of a common silicon nitride supporting window in lensless X-ray microscopy as extended references in differential holography to obtain a real space hologram of the illuminated object. Moreover, we combine this method with the iterative phasing techniques of coherent diffraction imaging to enhance the spatial resolution on the reconstructed object, and overcome the problem of missing areas in the collected data due to the presence of a beam stop, achieving a resolution close to 85 nm.

  17. Retinal and choroidal imaging in vivo using integrated photoacoustic microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Zhang, Wei; Nguyen, Van Phuc; Huang, Ziyi; Wang, Xueding; Paulus, Yannis M.

    2018-02-01

    Most reported photoacoustic ocular imaging work to date uses small animals, such as mice and rats, the eyes of which are small and less than one-third the size of a human eye, which poses a challenge for clinical translation. Here we achieved chorioretinal imaging of larger animals, i.e. rabbits, using a dual-modality photoacoustic microscopy (PAM) and optical coherence tomography (OCT) system. Preliminary experimental results in living rabbits demonstrate that the PAM can noninvasively visualize depth-resolved retinal and choroidal vessels using a safe laser exposure dose; and the OCT can finely distinguish different retinal layers, the choroid, and the sclera. This reported work might be a major step forward in clinical translation of photoacoustic microscopy.

  18. Single-shot water-immersion microscopy platform for qualitative visualization and quantitative phase imaging of biosamples

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Cojoc, Dan; Torre, Vincent; Micó, Vicente

    2017-07-01

    We present the combination of a single-shot water-immersion digital holographic microscopy with broadband illumination for simultaneous visualization of coherent and incoherent images using microbeads and different biosamples.

  19. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.

    PubMed

    Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I

    2015-09-01

    A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.

  20. Integrated photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy for multimodal chorioretinal imaging

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Zhang, Wei; Nguyen, Van Phuc; Huang, Ziyi; Wang, Xueding; Paulus, Yannis M.

    2018-02-01

    Current clinical available retinal imaging techniques have limitations, including limited depth of penetration or requirement for the invasive injection of exogenous contrast agents. Here, we developed a novel multimodal imaging system for high-speed, high-resolution retinal imaging of larger animals, such as rabbits. The system integrates three state-of-the-art imaging modalities, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), and fluorescence microscopy (FM). In vivo experimental results of rabbit eyes show that the PAM is able to visualize laser-induced retinal burns and distinguish individual eye blood vessels using a laser exposure dose of 80 nJ, which is well below the American National Standards Institute (ANSI) safety limit 160 nJ. The OCT can discern different retinal layers and visualize laser burns and choroidal detachments. The novel multi-modal imaging platform holds great promise in ophthalmic imaging.

  1. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion

    NASA Astrophysics Data System (ADS)

    Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.

  2. Combined monitoring, decision and control model for the human operator in a command and control desk

    NASA Technical Reports Server (NTRS)

    Muralidharan, R.; Baron, S.

    1978-01-01

    A report is given on the ongoing efforts to mode the human operator in the context of the task during the enroute/return phases in the ground based control of multiple flights of remotely piloted vehicles (RPV). The approach employed here uses models that have their analytical bases in control theory and in statistical estimation and decision theory. In particular, it draws heavily on the modes and the concepts of the optimal control model (OCM) of the human operator. The OCM is being extended into a combined monitoring, decision, and control model (DEMON) of the human operator by infusing decision theoretic notions that make it suitable for application to problems in which human control actions are infrequent and in which monitoring and decision-making are the operator's main activities. Some results obtained with a specialized version of DEMON for the RPV control problem are included.

  3. Nonlinear optical susceptibility described with a spherical formalism applied to coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Cleff, Carsten; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2017-07-01

    We describe coherent Raman scattering in a complete spherical formalism allowing a better understanding of the coherent Raman process with respect to its symmetry properties, which is especially helpful in polarized coherent Raman microscopy. We describe how to build the coherent Raman tensor from spontaneous Raman tensor for crystalline and disordered media. We introduce a distribution function for molecular bonds and show how this distribution function results in a new macroscopic symmetry which can be very different from the symmetry of vibrational modes. Finally, we explicitly show polarization configurations for coherent anti-Stokes Raman scattering to probe specific vibration symmetries in crystalline samples and lipid layers.

  4. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring. An optimal scheme of clinical CARS micro-spectroscopy for thin ex vivo tissues. PMID:23674234

  5. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst

    PubMed Central

    Wang, Pengwei; Zhao, Guofeng; Wang, Yu; Lu, Yong

    2017-01-01

    Oxidative coupling of methane (OCM) is a promising method for the direct conversion of methane to ethene and ethane (C2 products). Among the catalysts reported previously, Mn2O3-Na2WO4/SiO2 showed the highest conversion and selectivity, but only at 800° to 900°C, which represents a substantial challenge for commercialization. We report a TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst by using Ti-MWW zeolite as TiO2 dopant as well as SiO2 support, enabling OCM with 26% conversion and 76% C2-C3 selectivity at 720°C because of MnTiO3 formation. MnTiO3 triggers the low-temperature Mn2+↔Mn3+ cycle for O2 activation while working synergistically with Na2WO4 to selectively convert methane to C2-C3. We also prepared a practical Mn2O3-TiO2-Na2WO4/SiO2 catalyst in a ball mill. This catalyst can be transformed in situ into MnTiO3-Na2WO4/SiO2, yielding 22% conversion and 62% selectivity at 650°C. Our results will stimulate attempts to understand more fully the chemistry of MnTiO3-governed low-temperature activity, which might lead to commercial exploitation of a low-temperature OCM process. PMID:28630917

  6. Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length

    NASA Astrophysics Data System (ADS)

    Kosmeier, S.; Langehanenberg, P.; von Bally, G.; Kemper, B.

    2012-01-01

    Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm's OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.

  7. Spectrally-broad coherent anti-Stokes Raman scattering hyper-microscopy utilizing a Stokes supercontinuum pumped at 800 nm

    PubMed Central

    Porquez, Jeremy G.; Cole, Ryan A.; Tabarangao, Joel T.; Slepkov, Aaron D.

    2016-01-01

    We demonstrate spectral-focusing based coherent anti-Stokes Raman scattering (SF-CARS) hyper-microscopy capable of probing vibrational frequencies from 630 cm−1 to 3250 cm−1 using a single Ti:Sapphire femtosecond laser operating at 800 nm, and a commercially-available supercontinuum-generating fibre module. A broad Stokes supercontinuum with significant spectral power at wavelengths between 800 nm and 940 nm is generated by power tuning the fibre module using atypically long and/or chirped ~200 fs pump pulses, allowing convenient access to lower vibrational frequencies in the fingerprint spectral region. This work significantly reduces the instrumental and technical requirements for multimodal CARS microscopy, while expanding the spectral capabilities of an established approach to SF-CARS. PMID:27867735

  8. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Raghunathan, Raksha; Zhang, Jitao; Wu, Chen; Rippy, Justin; Singh, Manmohan; Larin, Kirill V.; Scarcelli, Giuliano

    2017-08-01

    Embryogenesis is regulated by numerous changes in mechanical properties of the cellular microenvironment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embryonic development, potentially improving early detection of congenital abnormalities as well as evaluating and developing therapeutic interventions. A number of methods and techniques have been used to study cellular biomechanical properties during embryogenesis. While some of these techniques are invasive or involve the use of external agents, others are compromised in terms of spatial and temporal resolutions. We propose the use of Brillouin microscopy in combination with optical coherence tomography (OCT) to measure stiffness as well as structural changes in a developing embryo. While Brillouin microscopy assesses the changes in stiffness among different organs of the embryo, OCT provides the necessary structural guidance.

  9. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, E. S.; Chang, A. S.; Martin, A. J.

    2013-08-19

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  10. [Cornea imagery and keratitis caused by processionary caterpillar hairs].

    PubMed

    Fournier, I; Saleh, M; Beynat, J; Creuzot-Garcher, C; Bourcier, T; Speeg-Schatz, C

    2011-03-01

    With their ability to migrate into the cornea and release toxins, caterpillar hairs can induce different clinical presentations such as conjunctivitis, keratoconjunctivitis, uveitis, and less frequently vitreoretinal inflammation (hyalitis, papillitis, macular edema). We report a case that occurred in Alsace (France) in a 13-years-old boy presenting with keratitis caused by caterpillar hairs. We localized them in the cornea, for the first time, using confocal microscopy and anterior segment spectral optical coherence tomography. Confocal microscopy and spectral optical coherence tomography can be useful for diagnosis and follow-up of this disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  11. (99m)Tc-labeled SWL specific peptide for targeting EphA2 receptor.

    PubMed

    Liu, Yu; Lan, Xiaoli; Wu, Tao; Lang, Juntao; Jin, Xueyan; Sun, Xun; Wen, Qiong; An, Rui

    2014-07-01

    EphA2, one member of the Eph receptor family, is widely expressed in multiple aggressive cancers. SWL, a small peptide identified by phage display, has high binding affinity to EphA2, suggesting that it could be exploited for targeted molecular imaging. Therefore, a novel peptide-based probe, (99m)Tc-HYNIC-SWL, was developed and its potential to specifically target EphA2-positive tumors was investigated. The SWL peptide was labeled with hydrazinonicotinic acid (HYNIC), followed by (99m)Tc labeling. Immunofluorescence staining was carried out to detect the expression of EphA2 in A549 lung cancer cells and OCM-1 melanoma cells. Saturation binding experiments were performed by incubating A549 cells with increasing concentrations of radiolabeled peptide in vitro. To test the probe in vivo, nude mice bearing either A549 or OCM-1 derived tumors were established, injected with (99m)Tc-HYNIC-SWL, and subjected to SPECT imaging. Mice injected with excess unlabeled SWL were used as a specific control. Ex vivo γ-counting of dissected tissues from the mice was also performed to evaluate biodistribution. Immunofluorescence staining showed that A549 cells intensively expressed EphA2, while OCM-1 cells had little expression. (99m)Tc-HYNIC-SWL displayed high binding affinity with A549 cells (KD=2.6±0.7nM). From the SPECT images and the results of the biodistribution study, significantly higher uptake of the tracer was seen in A549 tumors (1.44±0.12 %ID/g) than in OCM-1 tumors (0.43±0.20 %ID/g) at 1h after injection. Pre-injection with excess unlabeled peptide in A549-bearing nude mice, significantly reduced tumor uptake of the radiolabeled probe (0.58±0.20 %ID/g) was seen. These data suggest that (99m)Tc-HYNIC-SWL specifically targets EphA2 in tumors. The expression of EphA2 can be noninvasively investigated using (99m)Tc-HYNIC-SWL by SPECT imaging. The in vitro and in vivo characteristics of (99m)Tc-HYNIC-SWL make it a promising probe for EphA2-positive tumor imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae Haematococcus Pluvialis

    PubMed Central

    Barlow, Aaron M.; Slepkov, Aaron D.; Ridsdale, Andrew; McGinn, Patrick J.; Stolow, Albert

    2014-01-01

    We consider multi-modal four-wave mixing microscopies to be ideal tools for the in vivo study of carotenoid distributions within the important biofuel microalgae Haematococcus pluvialis. We show that hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy generates non-invasive, quantitative real-time concentrations maps of intracellular carotenoid distributions in live algae. PMID:25360358

  13. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.

    PubMed

    Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M

    2017-11-22

    The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in detail, and the conclusions are correlated to surface properties and catalysis.

  14. Image formation of volume holographic microscopy using point spread functions

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Oh, Se Baek; Kou, Shan Shan; Lee, Justin; Sheppard, Colin J. R.; Barbastathis, George

    2010-04-01

    We present a theoretical formulation to quantify the imaging properties of volume holographic microscopy (VHM). Volume holograms are formed by exposure of a photosensitive recording material to the interference of two mutually coherent optical fields. Recently, it has been shown that a volume holographic pupil has spatial and spectral sectioning capability for fluorescent samples. Here, we analyze the point spread function (PSF) to assess the imaging behavior of the VHM with a point source and detector. The coherent PSF of the VHM is derived, and the results are compared with those from conventional microscopy, and confocal microscopy with point and slit apertures. According to our analysis, the PSF of the VHM can be controlled in the lateral direction by adjusting the parameters of the VH. Compared with confocal microscopes, the performance of the VHM is comparable or even potentially better, and the VHM is also able to achieve real-time and three-dimensional (3D) imaging due to its multiplexing ability.

  15. Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsubasa; Cha, Yu-Rok; Kaji, Yuichi; Oshika, Tetsuro; Leproux, Philippe; Couderc, Vincent; Kano, Hideaki

    2018-02-01

    Acanthamoeba keratitis is a disease in which amoebae named Acanthamoeba invade the cornea of an eye. To diagnose this disease before it becomes serious, it is important to detect the cyst state of Acanthamoeba in the early stage of infection. In the present study, we explored spectroscopic signitures of the cyst state of Acanthamoeba using multimodal nonlinear optical microscopy with the channels of multiplex coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and third harmonic generation (THG). A sharp band at around 1603 cm-1 in the CARS (Im[χ(3)]) spectrum was found at the cyst state of Acanthamoeba, which possibly originates from ergosterol and/or 7-dehydrostigmasterol. It can be used as a maker band of Acanthamoeba for medical treatment. Keyword: Acanthamoeba keratitis, coherent anti-Stokes Raman scattering, CARS, second harmonic generation, SHG, microspectroscopy, multiphoton microscopy

  16. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  17. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  18. Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor; Peterson, Gary; Chang, Ernest W.; Maguluri, Gopi; Fox, William; Rajadhyaksha, Milind

    2016-01-01

    We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins. While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ˜1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ˜7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ˜600 μm, and agreement with histology was within about ±50 μm.

  19. A dual-modality optical coherence tomography and selective plane illumination microscopy system for mouse embryonic imaging

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.

    2017-02-01

    Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.

  20. Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys

    NASA Astrophysics Data System (ADS)

    Król, M.; Tański, T.; Sitek, W.

    2015-11-01

    The influence of Zn amount and solidification rate on the characteristic temperature of the evaluation of magnesium dendrites during solidification at different cooling rates (0.6-2.5°C) were examined by thermal derivative analysis (TDA). The dendrite coherency point (DCP) is presented with a novel approach based on second derivative cooling curve. Solidification behavior was examined via one thermocouple thermal analysis method. Microstructural assessments were described by optical light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These studies showed that utilization of d2T/dt2 vs. the time curve methodology provides for analysis of the dendrite coherency point

  1. Three-dimensional wide-field pump-probe structured illumination microscopy

    PubMed Central

    Kim, Yang-Hyo; So, Peter T.C.

    2017-01-01

    We propose a new structured illumination scheme for achieving depth resolved wide-field pump-probe microscopy with sub-diffraction limit resolution. By acquiring coherent pump-probe images using a set of 3D structured light illumination patterns, a 3D super-resolution pump-probe image can be reconstructed. We derive the theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination pump-probe imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate a lateral resolution improvement by a factor of three and providing 0.5 µm level axial optical sectioning. PMID:28380860

  2. Automated classification of cell morphology by coherence-controlled holographic microscopy

    NASA Astrophysics Data System (ADS)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

  3. Automated classification of cell morphology by coherence-controlled holographic microscopy.

    PubMed

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. Correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh M.; Leahy, Martin J.

    2015-03-01

    Changes in the microcirculation are associated with conditions such as Raynauds disease. Current modalities used to assess the microcirculation such as nailfold capillaroscopy are limited due to their depth ambiguity. A correlation mapping technique was recently developed to extend the capabilities of Optical Coherence Tomography to generate depth resolved images of the microcirculation. Here we present the extension of this technique to microscopy modalities, including confocal microscopy. It is shown that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution.

  5. Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy

    PubMed Central

    Park, Joo Hyun; Lee, Jae Yong; Lee, Eun Seong

    2014-01-01

    We present a method to improve the isotropy of spatial resolution in a structured illumination microscopy (SIM) implemented for imaging non-fluorescent samples. To alleviate the problem of anisotropic resolution involved with the previous scheme of coherent SIM that employs the two orthogonal standing-wave illumination, referred to as the orthogonal SIM, we introduce a hexagonal-lattice illumination that incorporates three standing-wave fields simultaneously superimposed at the orientations equally divided in the lateral plane. A theoretical formulation is worked out rigorously for the coherent image formation with such a simultaneous multiple-beam illumination and an explicit Fourier-domain framework is derived for reconstructing an image with enhanced resolution. Using a computer-synthesized resolution target as a 2D coherent sample, we perform numerical simulations to examine the imaging characteristics of our three-angle SIM compared with the orthogonal SIM. The investigation on the 2D resolving power with the various test patterns of different periods and orientations reveal that the orientation-dependent undulation of lateral resolution can be reduced from 27% to 8% by using the three-angle SIM while the best resolution (0.54 times the resolution limit of conventional coherent imaging) in the directions of structured illumination is slightly deteriorated by 4.6% from that of the orthogonal SIM. PMID:24940548

  6. Studies on X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Huijie

    This dissertation includes three main parts: studies on coherence requirements for the diffraction microscopy experiments, ice formation on frozen-hydrated sample during data collection, and centering of the diffraction data sets. These three subjects are all in support of our groups overall goal of high resolution 3D imaging of frozen hydrated eukaryotic cells via x-ray diffraction microscopy. X-ray diffraction microscopy requires coherent illumination. However, the actual degree of coherence at some beamlines has never been tested. In research on coherence, our first aim is to determine the transverse coherence width at the sample plane at BL 9.0.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory. An analytical calculation of the coherence at the sample plane is presented. Experimental diffraction patterns of pinhole-pair samples were also taken at the beamline to determine the coherence. Due to the irregular shape of the pinholes and other optics complexity, it was very difficult to fit the data with known theoretical equations as it was traditionally done with 1D data. However, we found out that the auto-correlation function shows clearly three spots. Theoretical calculation have been carried out to show that the degree of coherence can be obtained from the intensities of the three spots. These results are compared with the results from the analytical calculation. We then perform a simulation, showing the required transverse coherence width for reconstructing samples with a given size. Ice accumulation has been a major problem in X-ray diffraction microscopy with frozen hydrated samples. Since the ice structure is different from point to point, we cannot subtract the scattering from ice, nor assume a completely "empty" region outside the finite support constraint area as required for reconstruction. Ice forms during the sample preparation and transfer. However, from the tests we did in September 2007, we found that the ice layer thickens significantly during the data collecting process. One of the tests we did was putting a dry room-temperature grid into the beam, cooling it down to liquid nitrogen temperature, and then collecting the diffraction pattern of it over time. This test showed that, after the cold grid remained in the chamber for a while, a ring could be observed in the diffraction pattern. The time necessary for this ring to be visible is highly dependent on the pressure and vacuum history of the chamber. We will discuss how the chamber pressure influences the ice accumulation rate, how an anti-contamination device can help to reduce the rate, and how this ring forms. The last part of the research is based on simulations and a real data set collected on beamline 9.0.1 at the ALS in Berkeley. In X-ray diffraction microscopy, one of the major challenges when processing the data is to accurately determine the true center of the recorded data; that is, the zero spatial frequency position. Simulations of reconstructing shifted data show that if the center of a 2D diffraction pattern is shifted by more than 3 pixels from its true center, the positivity constraint to the phase, which otherwise might be applied to improve the convergence of the reconstruction algorithm, cannot be imposed. Moreover, the phase unwrapping problem may appear during the reconstruction. These issues undermine the quality of the reconstruction of 2D data. Furthermore, the individual shift in each 2D pattern will lead to errors when assembling a 3D diffraction data cube, making the 3D reconstruction very difficult. We developed a method which uses power spectra of the partial diffraction pattern to pre-align the data. A reconstruction without severe phase unwrapping can then be obtained from the pre-aligned data. Next, the precise zero spatial frequency position can be found by examining the linear ramp present in the reconstructed phase. This method was applied to a freeze-dried yeast data set to show that this approach is effective with experimental data.

  7. Imaging calcium carbonate distribution in human sweat pore in vivo using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xueqin; Gasecka, Alicja; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-03-01

    Nonlinear microscopies, including two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), were used to study individual human sweat pore morphology and topically applied antiperspirant salt penetration inside sweat pore, in vivo on human palms. Sweat pore inner morphology in vivo was imaged up to the depth of 100 μm by TPEF microscopy. The 3D penetration and distribution of "in situ calcium carbonate" (isCC), an antiperspirant salt model, was investigated using CARS microscopy.

  8. Coherent properties of a tunable low-energy electron-matter-wave source

    NASA Astrophysics Data System (ADS)

    Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.

    2018-01-01

    A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.

  9. Techniques for super-resolution microscopy using NV-diamond

    NASA Astrophysics Data System (ADS)

    Trifonov, Alexei; Glenn, David; Bar-Gill, Nir; Le Sage, David; Walsworth, Ronald

    2011-05-01

    We discuss the development and application of techniques for super-resolution microscopy using NV centers in diamond: stimulated emission depletion (STED), metastable ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM). NV centers do not bleach under optical excitation, are not biotoxic, and have long-lived electronic spin coherence and spin-state-dependent fluorescence. Thus NV-diamond has great potential as a fluorescent biomarker and as a magnetic biosensor.

  10. Coherent Raman Scattering Microscopy for Evaluation of Head and Neck Carcinoma.

    PubMed

    Hoesli, Rebecca C; Orringer, Daniel A; McHugh, Jonathan B; Spector, Matthew E

    2017-09-01

    Objective We aim to describe a novel, label-free, real-time imaging technique, coherent Raman scattering (CRS) microscopy, for histopathological evaluation of head and neck cancer. We evaluated the ability of CRS microscopy to delineate between tumor and nonneoplastic tissue in tissue samples from patients with head and neck cancer. Study Design Prospective case series. Setting Tertiary care medical center. Subjects and Methods Patients eligible were surgical candidates with biopsy-proven, previously untreated head and neck carcinoma and were consented preoperatively for participation in this study. Tissue was collected from 50 patients, and after confirmation of tumor and normal specimens by hematoxylin and eosin (H&E), there were 42 tumor samples and 42 normal adjacent controls. Results There were 42 confirmed carcinoma specimens on H&E, and CRS microscopy identified 37 as carcinoma. Of the 42 normal specimens, CRS microscopy identified 40 as normal. This resulted in a sensitivity of 88.1% and specificity of 95.2% in distinguishing between neoplastic and nonneoplastic images. Conclusion CRS microscopy is a unique label-free imaging technique that can provide rapid, high-resolution images and can accurately determine the presence of head and neck carcinoma. This holds potential for implementation into standard practice, allowing frozen margin evaluation even at institutions without a histopathology laboratory.

  11. Three-axis digital holographic microscopy for high speed volumetric imaging.

    PubMed

    Saglimbeni, F; Bianchi, S; Lepore, A; Di Leonardo, R

    2014-06-02

    Digital Holographic Microscopy allows to numerically retrieve three dimensional information encoded in a single 2D snapshot of the coherent superposition of a reference and a scattered beam. Since no mechanical scans are involved, holographic techniques have a superior performance in terms of achievable frame rates. Unfortunately, numerical reconstructions of scattered field by back-propagation leads to a poor axial resolution. Here we show that overlapping the three numerical reconstructions obtained by tilted red, green and blue beams results in a great improvement over the axial resolution and sectioning capabilities of holographic microscopy. A strong reduction in the coherent background noise is also observed when combining the volumetric reconstructions of the light fields at the three different wavelengths. We discuss the performance of our technique with two test objects: an array of four glass beads that are stacked along the optical axis and a freely diffusing rod shaped E.coli bacterium.

  12. The collagen structure of equine articular cartilage characterized using polarization-sensitive optical coherence tomography and non-linear microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Ugryumova, Nadya; Knapp, Karen M.; Matcher, Stephen J.

    2006-09-01

    Equine articular cartilage has been imaged using both polarization-sensitive optical coherence tomography (PS-OCT) and non-linear microscopy. PS-OCT has been used to spatially map the birefringence in the cartilage and we have found that in the vicinity of the lesion the images display a characteristic disruption in the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. x2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We have also imaged the cartilage using non-linear microscopy and compare the scans taken with second harmonic generation (SHG) light and the two photon fluorescence (TPF) light. SHG images collected using 800 nm excitation reveals the spatial distribution of collagen fibers, whilst TPF images clearly shows the distribution of intracellular and pericellular fluorophores.

  13. Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy.

    PubMed

    Hartshorn, Christopher M; Lee, Young Jong; Camp, Charles H; Liu, Zhen; Heddleston, John; Canfield, Nicole; Rhodes, Timothy A; Hight Walker, Angela R; Marsac, Patrick J; Cicerone, Marcus T

    2013-09-03

    We compare a coherent Raman imaging modality, broadband coherent anti-Stokes Raman scattering (BCARS) microscopy, with spontaneous Raman microscopy for quantitative and qualitative assessment of multicomponent pharmaceuticals. Indomethacin was used as a model active pharmaceutical ingredient (API) and was analyzed in a tabulated solid dosage form, embedded within commonly used excipients. In comparison with wide-field spontaneous Raman chemical imaging, BCARS acquired images 10× faster, at higher spatiochemical resolution and with spectra of much higher SNR, eliminating the need for multivariate methods to identify chemical components. The significant increase in spatiochemical resolution allowed identification of an unanticipated API phase that was missed by the spontaneous wide-field method and bulk Raman spectroscopy. We confirmed the presence of the unanticipated API phase using confocal spontaneous Raman, which provided spatiochemical resolution similar to BCARS but at 100× slower acquisition times.

  14. The spatial coherence function in scanning transmission electron microscopy and spectroscopy.

    PubMed

    Nguyen, D T; Findlay, S D; Etheridge, J

    2014-11-01

    We investigate the implications of the form of the spatial coherence function, also referred to as the effective source distribution, for quantitative analysis in scanning transmission electron microscopy, and in particular for interpreting the spatial origin of imaging and spectroscopy signals. These questions are explored using three different source distribution models applied to a GaAs crystal case study. The shape of the effective source distribution was found to have a strong influence not only on the scanning transmission electron microscopy (STEM) image contrast, but also on the distribution of the scattered electron wavefield and hence on the spatial origin of the detected electron intensities. The implications this has for measuring structure, composition and bonding at atomic resolution via annular dark field, X-ray and electron energy loss STEM imaging are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  16. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  17. Microscanners for optical endomicroscopic applications

    NASA Astrophysics Data System (ADS)

    Hwang, Kyungmin; Seo, Yeong-Hyeon; Jeong, Ki-Hun

    2017-12-01

    MEMS laser scanning enables the miniaturization of endoscopic catheters for advanced endomicroscopy such as confocal microscopy, multiphoton microscopy, optical coherence tomography, and many other laser scanning microscopy. These advanced biomedical imaging modalities open a great potential for in vivo optical biopsy without surgical excision. They have huge capabilities for detecting on-demand early stage cancer with non-invasiveness. In this article, the scanning arrangement, trajectory, and actuation mechanism of endoscopic microscanners and their endomicroscopic applications will be overviewed.

  18. Lensfree On-Chip Microscopy and Tomography for Bio-Medical Applications

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Mudanyali, Onur; Sencan, Ikbal; Su, Ting-Wei; Tseng, Derek; Yaglidere, Oguzhan; Sikora, Uzair; Ozcan, Aydogan

    2012-01-01

    Lensfree on-chip holographic microscopy is an emerging technique that offers imaging of biological specimens over a large field-of-view without using any lenses or bulky optical components. Lending itself to a compact, cost-effective and mechanically robust architecture, lensfree on-chip holographic microscopy can offer an alternative toolset addressing some of the emerging needs of microscopic analysis and diagnostics in low-resource settings, especially for telemedicine applications. In this review, we summarize the latest achievements in lensfree optical microscopy based on partially coherent on-chip holography, including portable telemedicine microscopy, cell-phone based microscopy and field-portable optical tomographic microscopy. We also discuss some of the future directions for telemedicine microscopy and its prospects to help combat various global health challenges. PMID:24478572

  19. Quantitative phase microscopy via optimized inversion of the phase optical transfer function.

    PubMed

    Jenkins, Micah H; Gaylord, Thomas K

    2015-10-01

    Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.

  20. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo

    2018-03-01

    Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.

  1. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU data processing time)

  2. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2016-04-01

    6 1. INTRODUCTION Lung cancer is the leading cause of cancer related death accounting for more deaths than breast , prostate and colon...the cancer has spread, at which time patients have little chance of cure. Macroscopic imaging modalities including CT and bronchoscopy have made...Electromagnetic Navigation , Biopsy Guidance, Optical Microscopy, Optical Coherence Tomography, Lung Cancer , Optical needle. 3. OVERALL PROJECT SUMMARY

  3. Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging.

    PubMed

    Fussell, Andrew L; Mah, Pei Ting; Offerhaus, Herman; Niemi, Sanna-Mari; Salonen, Jarno; Santos, Hélder A; Strachan, Clare

    2014-11-01

    This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals, including poorly water-soluble drugs, by allowing the incorporation of drug into nanometer-sized pores. In this work, the loading of two poorly water-soluble model drugs, itraconazole and griseofulvin, in MCM-41 silica microparticles is characterized qualitatively, using the novel approach of CARS microscopy, which has advantages over other analytical approaches used to date and is non-destructive, rapid, label free, confocal and has chemical and physical specificity. The study investigated the effect of two solvent-based loading methods, namely immersion and rotary evaporation, and microparticle size on the three-dimensional (3-D) distribution of the two loaded drugs. Additionally, hyperspectral CARS microscopy was used to confirm the amorphous nature of the loaded drugs. Z-stacked CARS microscopy suggested that the drug, but not the loading method or particle size range, affected 3-D drug distribution. Hyperspectral CARS confirmed that the drug loaded in the MCM-41 silica microparticles was in an amorphous form. The results show that CARS microscopy and hyperspectral CARS microscopy can be used to provide further insights into the structural nature of loaded mesoporous silica microparticles as biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Fourier ptychographic microscopy at telecommunication wavelengths using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ahmed, Ishtiaque; Alotaibi, Maged; Skinner-Ramos, Sueli; Dominguez, Daniel; Bernussi, Ayrton A.; de Peralta, Luis Grave

    2017-12-01

    We report the implementation of the Fourier Ptychographic Microscopy (FPM) technique, a phase retrieval technique, at telecommunication wavelengths using a low-coherence ultrafast pulsed laser source. High quality images, near speckle-free, were obtained with the proposed approach. We demonstrate that FPM can also be used to image periodic features through a silicon wafer.

  5. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  6. The lymphatic mechanisms of brain cleaning: application of optical coherence tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Glushkovskaya-Semyachkina, O.; Abdurashitov, A.; Fedosov, I.; Namykin, A.; Pavlov, A.; Shirokov, A.; Shushunova, N.; Sindeeva, O.; Khorovodov, A.; Ulanova, M.; Sagatova, V.; Agranovich, I.; Bodrova, A.; Kurths, J.

    2018-04-01

    Here we studied the role of cerebral lymphatic system in the brain clearing using intraparenchymal injection of Evans Blue and gold nanorods assessed by optical coherent tomography and fluorescence microscopy. Our data clearly show that the cerebral lymphatic system plays an important role in the brain cleaning via meningeal lymphatic vessels but not cerebral veins. Meningeal lymphatic vessels transport fluid from the brain into the deep cervical node, which is the first anatomical "station" for lymph outflow from the brain. The lymphatic processes underlying brain clearing are more slowly vs. peripheral lymphatics. These results shed light on the lymphatic mechanisms responsible for brain clearing as well as interaction between the intra- and extracranial lymphatic compartment.

  7. Pilot/vehicle model analysis of visual and motion cue requirements in flight simulation. [helicopter hovering

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Zacharias, G.

    1980-01-01

    The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.

  8. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  9. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Evans, Conor L; Potma, Eric O; Puoris'haag, Mehron; Côté, Daniel; Lin, Charles P; Xie, X Sunney

    2005-11-15

    Imaging living organisms with molecular selectivity typically requires the introduction of specific labels. Many applications in biology and medicine, however, would significantly benefit from a noninvasive imaging technique that circumvents such exogenous probes. In vivo microscopy based on vibrational spectroscopic contrast offers a unique approach for visualizing tissue architecture with molecular specificity. We have developed a sensitive technique for vibrational imaging of tissues by combining coherent anti-Stokes Raman scattering (CARS) with video-rate microscopy. Backscattering of the intense forward-propagating CARS radiation in tissue gives rise to a strong epi-CARS signal that makes in vivo imaging possible. This substantially large signal allows for real-time monitoring of dynamic processes, such as the diffusion of chemical compounds, in tissues. By tuning into the CH(2) stretching vibrational band, we demonstrate CARS imaging and spectroscopy of lipid-rich tissue structures in the skin of a live mouse, including sebaceous glands, corneocytes, and adipocytes, with unprecedented contrast at subcellular resolution.

  10. Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering

    NASA Astrophysics Data System (ADS)

    Traverso, Andrew J.; Hokr, Brett; Yi, Zhenhuan; Yuan, Luqi; Yamaguchi, Shoichi; Scully, Marlan O.; Yakovlev, Vladislav V.

    2018-02-01

    In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν1 (A1) and ν3 (T2) vibrational levels using an infrared field tuned between 1400 and 1600 cm-1 and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.

  11. Sparsity-based multi-height phase recovery in holographic microscopy

    NASA Astrophysics Data System (ADS)

    Rivenson, Yair; Wu, Yichen; Wang, Hongda; Zhang, Yibo; Feizi, Alborz; Ozcan, Aydogan

    2016-11-01

    High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.

  12. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  13. Time-lapse contact microscopy of cell cultures based on non-coherent illumination

    NASA Astrophysics Data System (ADS)

    Gabriel, Marion; Balle, Dorothée; Bigault, Stéphanie; Pornin, Cyrille; Gétin, Stéphane; Perraut, François; Block, Marc R.; Chatelain, François; Picollet-D'Hahan, Nathalie; Gidrol, Xavier; Haguet, Vincent

    2015-10-01

    Video microscopy offers outstanding capabilities to investigate the dynamics of biological and pathological mechanisms in optimal culture conditions. Contact imaging is one of the simplest imaging architectures to digitally record images of cells due to the absence of any objective between the sample and the image sensor. However, in the framework of in-line holography, other optical components, e.g., an optical filter or a pinhole, are placed underneath the light source in order to illuminate the cells with a coherent or quasi-coherent incident light. In this study, we demonstrate that contact imaging with an incident light of both limited temporal and spatial coherences can be achieved with sufficiently high quality for most applications in cell biology, including monitoring of cell sedimentation, rolling, adhesion, spreading, proliferation, motility, death and detachment. Patterns of cells were recorded at various distances between 0 and 1000 μm from the pixel array of the image sensors. Cells in suspension, just deposited or at mitosis focalise light into photonic nanojets which can be visualised by contact imaging. Light refraction by cells significantly varies during the adhesion process, the cell cycle and among the cell population in connection with every modification in the tridimensional morphology of a cell.

  14. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  15. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  16. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  17. The impact of comorbidity and PSA doubling time on the risk of death in men experiencing PSA failure following radiation therapy with or with androgen deprivation therapy for unfavorable-risk prostate cancer.

    PubMed

    Patel, S A; Chen, M-H; Loffredo, M; Renshaw, A; Kantoff, P W; D'Amico, A V

    2017-06-01

    The optimal management of men with PSA failure following initial prostate cancer (PC) therapy stratified by comorbidity is unknown. We investigated the impact that PSA doubling time (DT) and comorbidity had on the risk of all-cause mortality (ACM), prostate cancer-specific mortality (PCSM) and other-cause mortality (OCM) following PSA failure. Between 1995 and 2001, 206 men with unfavorable-risk PC were randomized to receive radiation therapy alone or in combination with 6 months of androgen deprivation therapy (ADT); 108 men experienced PSA failure and formed the study cohort. Cox and Fine-Gray regression analysis was used to determine whether PSA DT was associated with the risk of ACM and PCSM/OCM, respectively, stratified by comorbidity status using a validated metric. After a median follow-up of 13.71 years following PSA failure, 81 of the 108 men (75%) died. Longer PSA DT was associated with a decreased risk of PCSM in men with no/minimal (adjusted hazard ratio (AHR) 0.33, 95% confidence interval (CI) 0.17-0.65, P=0.001) and moderate/severe comorbidity (AHR 0.014, 95% CI 0.002-0.129, P=0.0002). However, because of the different contributions of the risk of OCM to risk of ACM within comorbidity subgroups, increasing PSA DT was only associated with a decreased risk of ACM in men with no/minimal (AHR 0.69, 95% CI 0.50-0.96, P=0.03) but not moderate/severe comorbidity (AHR 0.95, 95% CI 0.51-1.78, P=0.87). Both the extent of comorbidity and the PSA DT should be taken into consideration when deciding on appropriate management and/or clinical trial eligibility at the time of PSA failure.

  18. Genetic parameters for image analysis traits on M. longissimus thoracis and M. trapezius of carcass cross section in Japanese Black steers.

    PubMed

    Osawa, T; Kuchida, K; Hidaka, S; Kato, T

    2008-01-01

    In Japan, the degree of marbling in ribeye (M. longissimus thoracis) is evaluated in the beef meat grading process. However, other muscles (e.g., M. trapezius) are also important in determining the meat quality and carcass market prices. The purpose of this study was to estimate genetic parameters for M. longissimus thoracis (M-LONG) and M. trapezius (M-TRAP) of carcass cross section of Japanese Black steers by computer image analysis. The number of records of Japanese Black steers and the number of pedigree records were 2,925 and 10,889, respectively. Digital images of the carcass cross section were taken between the sixth and seventh ribs by photographing equipment. Muscle area (MA), fat area ratio (FAR), overall coarseness of marbling particles (OCM), and coarseness of maximum marbling particle (MMC) in M-LONG and M-TRAP were calculated by image analysis. Genetic parameters for these traits were estimated using the AIREMLF90 program with an animal model. Fixed effects that were included in the model were dates of arrival at the carcass market and slaughter age (mo), and random effects of fattening farms, additive genetic effects and residuals were included in the model. For M-LONG, heritability estimates (+/-SE) were 0.46 +/- 0.06, 0.59 +/- 0.06, 0.47 +/- 0.06, and 0.20 +/- 0.05 for MA, FAR, OCM, and MMC, respectively. Heritability estimates (+/-SE) in M-TRAP were 0.47 +/- 0.06, 0.57 +/- 0.07, 0.49 +/- 0.07, and 0.13 +/- 0.04 for the same traits. Genetic correlations between subcutaneous fat thickness and FAR for M-LONG and M-TRAP were negative (-0.21 and -0.19, respectively). Those correlations between M-LONG and M-TRAP were moderate to high for MA, FAR, OCM, and MMC (0.38, 0.52, 0.39, and 0.60, respectively). These results indicate that other muscles including M-LONG should be evaluated for more efficient genetic improvement.

  19. [Current approaches to evaluating the anatomic and functional status of the cornea].

    PubMed

    Avetisov, S E; Borodina, N V; Kobzova, M V; Musaeva, G M

    2010-01-01

    The review provides data on current methods for evaluating the anatomic and functional status of the cornea (light refraction, light transmission, and biomechanical properties, in particular). It analyzes the main advantages and disadvantages of basic (biomicroscopy, endothelial microscopy, ophthalmometry, topography, and pachymetry) and special (confocal microscopy, optical coherence tomography, ultrasound biomicroscopy, aberrometry, bidirectional corneal applanation, and keratoesthesiometry) studies.

  20. Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution

    PubMed Central

    Fussell, Andrew L.; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J.; Offerhaus, Herman L.

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833

  1. Optical coherence tomography: potentialities in clinical practice

    NASA Astrophysics Data System (ADS)

    Zagaynova, Elena; Gladkova, Natalia D.; Shakhov, Andrey; Terentjeva, Anna; Snopova, Ludmila B.; Kuznetzova, Irina A.; Streltzova, Olga; Shakhova, Natalia M.; Kamensky, Vladislav A.; Gelikonov, Grigory V.; Gelikonov, Valentin M.; Kuranov, Roman V.; Myakov, Alex

    2004-08-01

    Clinical studies using OCT involved 2000 patients in various fields of medicine such as gastroenterology, urology, laryngology, gynecology, dermatology, stomatology, etc. Layered high-contrast images were typical for benign epithelial conditions. OCT distinguish in mucosae: epithelium, connective tissue layer, and smooth-muscle layer. Various benign processes occurring in mucosa manifest in OCT images as changes in the epithelial height, scattering properties and the course of the basement membrane. Lack of the layered structural pattern is the main criterion for dysplastic / malignant images. In clinic: OCT data may be critical for choosing a tissue site for excisional biopsy, OCT can detect tumor borders and their linear dimensions, OCT can be used to plan a resection line in operations and to control adequacy of resection, to monitor whether reparative processes are timely and adequate. OCT sensitivity of the uterine cervix, urinary bladder and larynx is 82, 98, 77%, respectively, specificity - 78, 71, 96%, diagnostic accuracy - 81, 85, 87% with significantly good agreement index of clinicians kappa - 0.65, 0.79, 0.83 (confidence intervals: 0.57-0.73; 0.71-0.88; 0.74-0.91). Error in detection of high grade dysplasia and microinvasive cancer is 21.4% in average. Additional modification of OCT (cross-polarisation OCT, OCM), development of the procedure (biotissue compression, application of chemical agents) can improve the specificity and sensitivity of traditional modality.

  2. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately diminished the observed capacitance, likely as the chemical reduction of GDC at high temperatures is irreversible.

  3. Understanding and development of manufacturable screen-printed contacts on high sheet-resistance emitters for low-cost silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hilali, Mohamed M.

    2005-11-01

    A simple cost-effective approach was proposed and successfully employed to fabricate high-quality screen-printed (SP) contacts to high sheet-resistance emitters (100 O/sq) to improve the Si solar cell efficiency. Device modeling was used to quantify the performance enhancement possible from the high sheet-resistance emitter for various cell designs. It was found that for performance enhancement from the high sheet-resistance emitter, certain cell design criteria must be satisfied. Model calculations showed that in order to achieve any performance enhancement over the conventional ˜40 O/sq emitter, the high sheet resistance emitter solar cell must have a reasonably good (<120,000 cm/s) or low front-surface recombination velocity (FSRV). Model calculations were also performed to establish requirements for high fill factors (FFs). The results showed that the series resistance should be less than 0.8 O-cm2, the shunt resistance should be greater than 1000 O-cm2, and the junction leakage current should be less than 25 nA/cm2. Analytical microscopy and surface analysis techniques were used to study the Ag-Si contact interface of different SP Ag pastes. Physical and electrical properties of SP Ag thick-film contacts were studied and correlated to understand and achieve good-quality ohmic contacts to high sheet-resistance emitters for solar cells. This information was then used to define the criteria for high-quality screen-printed contacts. The role of paste constituents and firing scheme on contact quality were investigated to tailor the high-quality screen-printed contact interface structure that results in high performance solar cells. Results indicated that small particle size, high glass transition temperature, rapid firing and less aggressive glass frit help in producing high-quality contacts. Based on these results high-quality SP contacts with high FFs > 0.78 on high sheet-resistance emitters were achieved for the first time using a simple single-step firing process. This technology was applied to different substrates (monocrystalline and multicrystalline) and surfaces (textured and planar). Cell efficiencies of ˜16.2% on low-cost EFG ribbon substrates were achieved on high sheet-resistance emitters with SP contacts. A record high-efficiency SP solar cell of 19% with textured high sheet-resistance emitter was also fabricated and modeled.

  4. In vivo three-dimensional optical coherence tomography and multiphoton microscopy in a mouse model of ovarian neoplasia

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer M.; Marion, Samuel L.; Rice, Photini Faith; Bentley, David L.; Besselsen, David; Utzinger, Urs; Hoyer, Patricia B.; Barton, Jennifer K.

    2013-03-01

    Our goal is to use optical coherence tomography (OCT) and multiphoton microscopy (MPM) to detect early tumor development in a mouse model of ovarian neoplasia. We hope to use information regarding early tumor development to create a diagnostic test for high-risk patients. In this study we collect in vivo images using OCT, second harmonic generation and two-photon excited fluorescence from non-vinylcyclohexene diepoxide (VCD)-dosed and VCD-dosed mice. VCD causes follicular apoptosis (simulating menopause) and leads to tumor development. Using OCT and MPM we visualized the ovarian microstructure and were able to see differences between non-VCD-dosed and VCD-dosed animals. This leads us to believe that OCT and MPM may be useful for detecting changes due to early tumor development.

  5. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine

    PubMed Central

    Vielreicher, M.; Schürmann, S.; Detsch, R.; Schmidt, M. A.; Buttgereit, A.; Boccaccini, A.; Friedrich, O.

    2013-01-01

    This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging. PMID:23864499

  6. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy

    PubMed Central

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.

    2015-01-01

    We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361

  7. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.

    PubMed

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R; Yaqoob, Zahid; So, Peter T C

    2015-10-19

    We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems.

  8. 76 FR 56760 - Granting of Request for Early Termination of the Waiting Period Under the Premerger Notification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... Partners II, L.P.; OCM Principal Opportunities Fund III, L.P. 20111257 G Algonquin Power & Utilities Corp.; Atmos Energy Corporation; Algonquin Power & Utilities Corp. 08/26/2011 20111178 G Smith Family Voting...; Beats Electronics, LLC; HTC Corporation. 20111270 G Atlantic Power Corporation; Capital Power Income L.P...

  9. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    PubMed

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  10. Characterising the large coherence length at diamond’s beamline I13L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A.; Rahomaki, J.

    2016-07-27

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuringmore » a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.« less

  11. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Characterization of oxide nanoparticles in Al-free and Al-containing oxide dispersion strengthened ferritic steels.

    PubMed

    Lee, Jae Hoon; Kim, Jeoung Han

    2013-09-01

    Oxide nanoparticles in oxide dispersion strengthened (ODS) ferritic steels with and without Al have been characterized by transmission electron microscopy. It is confirmed that most of the complex oxide particles consist of Y2TiO5 for 18Cr-ODS steel and YAlO3 or YAl5O12 for 18Cr5Al-ODS steel, respectivley. The addition of 5% Al in 18Cr-ODS steel leads to the formation of larger oxide particles and the reduction in their number density. For 18Cr-ODS steel, 87% of the oxide particles are coherent. The misfit strain of the coherent particles and a few semi-coherent particles is about 0.034 and 0.056, respectively. For 18Cr5Al-ODS steel, 75% of the oxide particles are semi-coherent, of which the misfit strain is 0.091 and 0.125, respectively. These results suggest that for the Al-containing ODS steel the Al addition accelerates the formation of semi-coherent oxide particles and its larger coherent and semi-coherent particles result in the larger misfit strain between the oxide particle and alloy matrix, indicating that the coherence of oxide nanoparticles in ODS steels is size-dependent.

  13. 4Pi Microscopy.

    PubMed

    Schmidt, Roman; Engelhardt, Johann; Lang, Marion

    2013-01-01

    Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.

  14. Lensless Tomographic Imaging of Near Surface Structures of Frozen Hydrated Malaria-Infected Human Erythrocytes by Coherent X-Ray Diffraction Microscopy.

    PubMed

    Frank, Viktoria; Chushkin, Yuriy; Fröhlich, Benjamin; Abuillan, Wasim; Rieger, Harden; Becker, Alexandra S; Yamamoto, Akihisa; Rossetti, Fernanda F; Kaufmann, Stefan; Lanzer, Michael; Zontone, Federico; Tanaka, Motomu

    2017-10-26

    Lensless, coherent X-ray diffraction microscopy has been drawing considerable attentions for tomographic imaging of whole human cells. In this study, we performed cryogenic coherent X-ray diffraction imaging of human erythrocytes with and without malaria infection. To shed light on structural features near the surface, "ghost cells" were prepared by the removal of cytoplasm. From two-dimensional images, we found that the surface of erythrocytes after 32 h of infection became much rougher compared to that of healthy, uninfected erythrocytes. The Gaussian roughness of an infected erythrocyte surface (69 nm) is about two times larger than that of an uninfected one (31 nm), reflecting the formation of protein knobs on infected erythrocyte surfaces. Three-dimensional tomography further enables to obtain images of the whole cells with no remarkable radiation damage, whose accuracy was estimated using phase retrieval transfer functions to be as good as 64 nm for uninfected and 80 nm for infected erythrocytes, respectively. Future improvements in phase retrieval algorithm, increase in degree of coherence, and higher flux in combination with complementary X-ray fluorescence are necessary to gain both structural and chemical details of mesoscopic architectures, such as cytoskeletons, membraneous structures, and protein complexes, in frozen hydrated human cells, especially under diseased states.

  15. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited].

    PubMed

    Soto, Juan M; Rodrigo, José A; Alieva, Tatiana

    2018-01-01

    Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.

  16. Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Uttam, Shikhar; Staton, Kevin; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2010-11-01

    Definitive diagnosis of malignancy is often challenging due to limited availability of human cell or tissue samples and morphological similarity with certain benign conditions. Our recently developed novel technology-spatial-domain low-coherence quantitative phase microscopy (SL-QPM)-overcomes the technical difficulties and enables us to obtain quantitative information about cell nuclear architectural characteristics with nanoscale sensitivity. We explore its ability to improve the identification of malignancy, especially in cytopathologically non-cancerous-appearing cells. We perform proof-of-concept experiments with an animal model of colorectal carcinogenesis-APCMin mouse model and human cytology specimens of colorectal cancer. We show the ability of in situ nanoscale nuclear architectural characteristics in identifying cancerous cells, especially in those labeled as ``indeterminate or normal'' by expert cytopathologists. Our approach is based on the quantitative analysis of the cell nucleus on the original cytology slides without additional processing, which can be readily applied in a conventional clinical setting. Our simple and practical optical microscopy technique may lead to the development of novel methods for early detection of cancer.

  17. Molecular Orientation in Dry and Hydrated Cellulose Fibers: A Coherent Anti-Stokes Raman Scattering Microscopy Study

    PubMed Central

    Zimmerley, Maxwell; Younger, Rebecca; Valenton, Tiffany; Oertel, David C.; Ward, Jimmie L.; Potma, Eric O.

    2012-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with spontaneous Raman scattering microspectroscopy and second harmonic generation (SHG) microscopy to interrogate the molecular alignment in dry and hydrated cellulose fibers. Two types of cellulose were investigated: natural cellulose I in cotton fibers and regenerated cellulose II in rayon fibers. On the basis of the orientation of the methylene symmetric stretching vibration, the molecular alignment of cellulose microfibrils is found to be conserved on the micrometer scale. Whereas the molecular orientation in cotton shows modest variability along the fiber, the alignment of the cellulose units in rayon is highly consistent throughout the fiber. The ordered alignment is retained upon fiber hydration. Upon hydration of the cellulose fibers, an anisotropic electronic contribution is observed, which indicates an ordered incorporation of water molecules into the fiber structure. The third-order and second-order electronic polarizability of cellulose I are directed along the axis of the polyglucan chain. No second-order optical response is observed in cellulose II, supporting the antiparallel arrangement of the polyglucan chains in regenerated cellulose. PMID:20684644

  18. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Weili; Fiddy, Michael A.

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  19. Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Zi Jian Er, Kenneth; Zheng, Wei; Huang, Zhiwei

    2013-08-01

    We report a radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering (RP-TE-CARS) microscopy technique for high-contrast vibrational imaging of subcellular organelles at nano-scale resolutions. The radially polarized pump and Stokes laser beams are tightly focused onto the sample while a gold-coated metallic probe is placed at the upper surface of the sample to enhance the electric field and CARS signals. The back-scattered CARS signal is measured with the gold-coated nano-tip being stationary at the focal region of laser beams. The RP-TE-CARS signal is ˜6-fold higher than that using linearly polarized laser excitation. We demonstrate the good performance of the RP-TE-CARS technique developed by imaging sub-micron polystyrene beads and mitochondria at nano-scale resolutions.

  20. Broadband plasmonic-enhanced forward and backward multiplex coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Baoshan; Jiang, Lan; Hua, Yanhong; Li, Xin; Cui, Tianhong; Lu, Yongfeng

    2018-03-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is an attractive technique for label-free biochemical-specific characterization of biological specimens. However, it has very low sensitivity in monitoring and imaging molecules present in extremely low concentrations or at fast speeds. To improve this sensitivity, especially for multiplex CARS, the intensity of the pump beam and broadband Stokes beam should be enhanced simultaneously. Therefore, the gold shell particle and gold surface are demonstrated to enhance the forward and backward CARS, respectively. Results show that a signal enhancement factor of ˜25,000 can be achieved for the gold surface and an even higher enhancement factor can be achieved for the gold shell particles. Thus, we can obtain an enhanced CARS signal in a broad spectral range, which will substantially improve the detection sensitivity of hyperspectral CARS spectroscopy and imaging.

  1. An innovative approach for investigating the ceramic bracket-enamel interface - optical coherence tomography and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian

    2008-09-01

    Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.

  2. Real-time and non-invasive measurements of cell mechanical behaviour with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.

    2017-02-01

    There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.

  3. Partially coherent lensfree tomographic microscopy⋄

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Ozcan, Aydogan

    2012-01-01

    Optical sectioning of biological specimens provides detailed volumetric information regarding their internal structure. To provide a complementary approach to existing three-dimensional (3D) microscopy modalities, we have recently demonstrated lensfree optical tomography that offers high-throughput imaging within a compact and simple platform. In this approach, in-line holograms of objects at different angles of partially coherent illumination are recorded using a digital sensor-array, which enables computing pixel super-resolved tomographic images of the specimen. This imaging modality, which forms the focus of this review, offers micrometer-scale 3D resolution over large imaging volumes of, for example, 10–15 mm3, and can be assembled in light weight and compact architectures. Therefore, lensfree optical tomography might be particularly useful for lab-on-a-chip applications as well as for microscopy needs in resource-limited settings. PMID:22193016

  4. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.

    PubMed

    Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence

    2017-07-01

    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.

  5. Virtual Investigations of an Active Deep Sea Volcano

    NASA Astrophysics Data System (ADS)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  6. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects.

    PubMed

    Schwach, Pierre; Pan, Xiulian; Bao, Xinhe

    2017-07-12

    The quest for an efficient process to convert methane efficiently to fuels and high value-added chemicals such as olefins and aromatics is motivated by their increasing demands and recently discovered large reserves and resources of methane. Direct conversion to these chemicals can be realized either oxidatively via oxidative coupling of methane (OCM) or nonoxidatively via methane dehydroaromatization (MDA), which have been under intensive investigation for decades. While industrial applications are still limited by their low yield (selectivity) and stability issues, innovations in new catalysts and concepts are needed. The newly emerging strategy using iron single sites to catalyze methane conversion to olefins, aromatics, and hydrogen (MTOAH) attracted much attention when it was reported. Because the challenge lies in controlled dehydrogenation of the highly stable CH 4 and selective C-C coupling, we focus mainly on the fundamentals of C-H activation and analyze the reaction pathways toward selective routes of OCM, MDA, and MTOAH. With this, we intend to provide some insights into their reaction mechanisms and implications for future development of highly selective catalysts for direct conversion of methane to high value-added chemicals.

  7. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity.

    PubMed

    Saxena, Roheeni; Bozack, Anne K; Gamble, Mary V

    2018-05-23

    Exposure to inorganic arsenic (InAs) via drinking water and/or food is a considerable worldwide problem. Methylation of InAs generates monomethyl (MMAs III+V )- and dimethyl (DMAs III+V )-arsenical species in a process that facilitates urinary As elimination; however, MMA is considerably more toxic than either InAs or DMAs. Emerging evidence suggests that incomplete methylation of As to DMAs, resulting in increased MMAs, is associated with increased risk for a host of As-related health outcomes. The biochemical pathway that provides methyl groups for As methylation, one-carbon metabolism (OCM), is influenced by folate and other micronutrients, including choline and betaine. Individuals and species differ widely in their ability to methylate As. A growing body of research, including cell-culture, animal-model, and epidemiological studies, has demonstrated the role of OCM-related micronutrients in As methylation. This review examines the evidence that nutritional status and nutritional interventions can influence the metabolism and toxicity of As, with a primary focus on folate. Expected final online publication date for the Annual Review of Nutrition Volume 38 is August 21, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  8. Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2011-01-01

    Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila.

  9. Coherent Raman Imaging of Live Muscle Sarcomeres Assisted by SFG Microscopy.

    PubMed

    Kim, Hyunmin; Kim, Do-Young; Joo, Kyung-Il; Kim, Jung-Hye; Jeong, Soon Moon; Lee, Eun Seong; Hahm, Jeong-Hoon; Kim, Kyuhyung; Moon, Dae Woon

    2017-08-23

    In this study, we used spectrally focused coherent anti-Stokes Raman scattering (spCARS) microscopy assisted by sum-frequency generation (SFG) to monitor the variations in the structural morphology and molecular vibrations of a live muscle of Caenorhabditis elegans. The subunits of the muscle sarcomeres, such as the M-line, myosin, dense body, and α-actinin, were alternatively observed using spCARS microscopy for different sample orientations, with the guidance of a myosin positional marker captured by SFG microscopy. Interestingly enough, the beam polarization dependence of the spCARS contrasts for two parallel subunits (dense body and myosin) showed a ~90° phase difference. The chemically sensitive spCARS spectra induced by the time-varying overlap of two pulses allowed (after a robust subtraction of the non-resonant background using a modified Kramers-Krönig transformation method) high-fidelity detection of various genetically modified muscle sarcomeres tuned to the C-H vibration (2800-3100 cm -1 ). Conversely, SFG image mapping assisted by phase-retrieved spCARS spectra also facilitated label-free monitoring of the changes in the muscle content of C. elegans that are associated with aging, based on the hypothesis that the C-H vibrational modes could serve as qualitative chemical markers sensitive to the amount and/or structural modulation of the muscle.

  10. Phenotype classification of single cells using SRS microscopy, RNA sequencing, and microfluidics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi

    2016-03-01

    Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.

  11. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming

    2014-07-28

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less

  12. On the use of variable coherence in inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Baleine, Erwan

    Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.

  13. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  14. Efficient modeling of Bragg coherent x-ray nanobeam diffraction

    DOE PAGES

    Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...

    2015-07-02

    X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less

  15. Holographic imaging with a Shack-Hartmann wavefront sensor.

    PubMed

    Gong, Hai; Soloviev, Oleg; Wilding, Dean; Pozzi, Paolo; Verhaegen, Michel; Vdovin, Gleb

    2016-06-27

    A high-resolution Shack-Hartmann wavefront sensor has been used for coherent holographic imaging, by computer reconstruction and propagation of the complex field in a lensless imaging setup. The resolution of the images obtained with the experimental data is in a good agreement with the diffraction theory. Although a proper calibration with a reference beam improves the image quality, the method has a potential for reference-less holographic imaging with spatially coherent monochromatic and narrowband polychromatic sources in microscopy and imaging through turbulence.

  16. Controlling coherence using the internal structure of hard pi pulses.

    PubMed

    Dong, Yanqun; Ramos, R G; Li, Dale; Barrett, S E

    2008-06-20

    The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si NMR linewidth of silicon has been reduced by a factor of about 70,00 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.

  17. Fiber-optic-bundle-based optical coherence tomography.

    PubMed

    Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping

    2005-07-15

    A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.

  18. 4Pi-confocal microscopy of live cells

    NASA Astrophysics Data System (ADS)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  19. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Li, Lin

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  1. Super-resolution differential interference contrast microscopy by structured illumination.

    PubMed

    Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun

    2013-01-14

    We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.

  2. A multimodal imaging platform with integrated simultaneous photoacoustic microscopy, optical coherence tomography, optical Doppler tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang

    2018-02-01

    Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.

  3. High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers.

    PubMed

    Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin

    2017-11-10

    High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.

  4. Anisotropic charge density wave in layered 1 T - TiS e 2

    DOE PAGES

    Qiao, Qiao; Zhou, Songsong; Tao, Jing; ...

    2017-10-04

    We present a three-dimensional study on the anisotropy of the charge density wave (CDW) in 1T-TiSe 2, by means of in situ atomically resolved electron microscopy at cryogenic temperatures in both reciprocal and real spaces. Using coherent nanoelectron diffraction, we observed short-range coherence of the in-plane CDW component while the long-range coherence of out-of-plane CDW component remains intact. An in-plane CDW coherence length of ~10 nm and an out-of-plane CDW coherence length of 17.5 nm, as a lower bound, were determined. The electron modulation was observed using electron energy-loss spectroscopy and verified by an orbital-projected density of states. Our integratedmore » approach reveals anisotropic CDW domains at the nanoscale, and illustrates electron modulation-induced symmetry breaking of a two-dimensional material in three dimensions, offering an opportunity to study the effect of reduced dimensionality in strongly correlated systems.« less

  5. Label-free super-resolution with coherent nonlinear structured-illumination microscopy

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Abbas, Aazad; Upham, Jeremy; Boyd, Robert W.

    2017-08-01

    Structured-illumination microscopy enables up to a two-fold lateral resolution improvement by spatially modulating the intensity profile of the illumination beam. We propose a novel way to generalize the concept of structured illumination to nonlinear widefield modalities by spatially modulating, instead of field intensities, the phase of the incident field while interferometrically measuring the complex-valued scattered field. We numerically demonstrate that for second-order and third-order processes an almost four- and six-fold increase in lateral resolution is achievable, respectively. This procedure overcomes the conventional Abbe diffraction limit and provides new possibilities for label-free super-resolution microscopy.

  6. High resolution multiple excitation spot optical microscopy

    NASA Astrophysics Data System (ADS)

    Dilipkumar, Shilpa; Mondal, Partha Pratim

    2011-06-01

    We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector. System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging.

  7. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    NASA Astrophysics Data System (ADS)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  8. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    PubMed Central

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug delivery vehicles, and contrast agents in vivo. In the quest for superior photostability and bio-compatibility, nanodiamonds (NDs) are considered one of the best choices due to their unique structural, chemical, mechanical, and optical properties. So far, mainly fluorescent NDs have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centers with stable optical properties. Here, we show that single non-fluorescing NDs exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and ND size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of NDs internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively. PMID:25305746

  9. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.

    PubMed

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  10. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam.

    PubMed

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus

    2017-05-01

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Review of advanced imaging techniques

    PubMed Central

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

  12. Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian Frank

    Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.

  13. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  14. Yining Zeng | NREL

    Science.gov Websites

    pretreatment conditions and biological digestion methods, which might not be detected by large-scale ) "Coherent Raman Microscopy Analysis of Plant Cell Walls," Biomass Conversion: Methods and Protocols, Methods in Molecular Biology (2012) "Chemical, Ultrastructural and Supramolecular Analysis

  15. Optical Diagnostics in Medicine

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.

  16. Biological elements carry out optical tasks in coherent imaging systems

    NASA Astrophysics Data System (ADS)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  17. α-Al2O3/Ga2O3 superlattices coherently grown on r-plane sapphire

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Kato, Yuji; Imura, Masataka; Nakayama, Yoshiko; Takeguchi, Masaki

    2018-06-01

    Ten-period binary α-Al2O3/Ga2O3 superlattices were fabricated on r-plane sapphire substrates by molecular beam epitaxy. By systematic variation of α-Ga2O3 thickness and evaluation through X-ray reflectivity and diffraction measurements and scanning transmission electron microscopy, we verified that the superlattice with α-Ga2O3 thickness up to ∼1 nm had coherent interfaces without misfit dislocation in spite of the large lattice mismatches. This successful fabrication of coherent α-Al2O3/Ga2O3 superlattices will encourage further development of α-(Al x Ga1‑ x )2O3-based heterostructures including superlattices.

  18. Halo-free phase contrast microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail E.; Shakir, Haadi M.; Best, Catherine; Do, Minh N.; Popescu, Gabriel

    2017-02-01

    The phase contrast (PC) method is one of the most impactful developments in the four-century long history of microscopy. It allows for intrinsic, nondestructive contrast of transparent specimens, such as live cells. However, PC is plagued by the halo artifact, a result of insufficient spatial coherence in the illumination field, which limits its applicability. We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Measuring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons.

  19. A Designer’s Guide to Human Performance Modelling (La Modelisation des Performances Humaines: Manuel du Concepteur).

    DTIC Science & Technology

    1998-12-01

    failure detection, monitoring, and decision making.) moderator function. Originally, the output from these One of the best known OCM implementations, the...imposed by the tasks themselves, the information and equipment provided, the task environment, operator skills and experience, operator strategies , the...problem-solving situation, including the toward failure.) knowledge necessary to generate the right problem- solving strategies , the attention that

  20. Controlled Synthesis of Polyenes by Catalytic Methods. Progress Report, December 1, 1992 -- November 30, 1993

    DOE R&D Accomplishments Database

    Schrock, R. R.

    1993-12-01

    Four studies are reported: living cyclopolymerization of diethyl dipropargylmalonate by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane, effect of chain length on conductivity of polyacetylene, nonlinear optical analysis of a series of triblock copolymers containing model polyenes, and synthesis of bifunctional hexafluoro-t-butoxide Mo species and their use as initiators in ROMP reactions.

  1. Obesity causes weight increases in prepubertal and pubertal male offspring and is related to changes in spermatogenesis and sperm production in rats.

    PubMed

    Navya, Harish; Yajurvedi, Hanumant Narasinhacharya

    2017-04-01

    The effect of obesity on testicular activity in prepubertal and pubertal rats was investigated in the present study. Obesity was induced in adult females by feeding a high-calorie diet (HCD). These females were mated with normal males and were fed an HCD during pregnancy and lactation. The male offspring born to obese mothers and fed an HCD after weaning were found to be obese. Seminiferous tubules of offspring from control mothers (OCM) and offspring from HCD-fed mothers (OHCDM) had the same set of germ cells at different age intervals, namely spermatogonia, leptotene spermatocytes, zygotene spermatocytes, pachytene spermatocytes and round and elongated spermatids on postnatal days (PND) 7, 13, 17, 24 and 36, and on the day of preputial separation, respectively. However, there was a significant decrease in round and elongated spermatids and the epididymal sperm count, coupled with a significant decrease in testosterone and an increase in leptin serum concentrations in OHCDM compared with OCM. These results show that obesity in prepubertal rats does not affect the age-dependent appearance of germ cells according to developmental hierarchy, but it does interfere with spermatid formation, resulting in a reduced sperm count, which may be due to a deficiency of testosterone mediated by hyperleptinaemia.

  2. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    PubMed

    Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian

    2015-05-01

    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Opportunities of using Stimulated Emission from Biological Tissue

    NASA Astrophysics Data System (ADS)

    Yun, S. H. Andy

    Fluorescence or spontaneous emission has been a powerful tool in biomedical applications ranging from biochemical assays and cytometry to microscopy and medical imaging. Here I present the opportunities in the generation and applications of coherent stimulated emission within biological samples.

  4. Imaging of high-angle annular dark-field scanning transmission electron microscopy and observations of GaN-based violet laser diodes.

    PubMed

    Shiojiri, M; Saijo, H

    2006-09-01

    The first part of this paper is devoted to physics, to explain high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and to interpret why HAADF-STEM imaging is incoherent, instructing a strict definition of interference and coherence of electron waves. Next, we present our recent investigations of InGaN/GaN multiple quantum wells and AlGaN/GaN strained-layer superlattice claddings in GaN-based violet laser diodes, which have been performed by HAADF-STEM and high-resolution field-emission gun scanning electron microscopy.

  5. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  6. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    PubMed

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  7. Optical coherent tomography and fluorescent microscopy for the study of meningeal lymphatic systems

    NASA Astrophysics Data System (ADS)

    Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Namykin, A.; Fedosov, I.; Pavlov, A.; Karavaev, A.; Sindeeva, O.; Shirokov, A.; Ulanova, M.; Shushunova, N.; Khorovodov, A.; Agranovich, I.; Bodrova, A.; Sagatova, M.; Shareef, Ali Esmat; Saranceva, E.; Dvoryatkina, M.; Tuchin, V.

    2018-04-01

    The development of novel technologies for the imaging of meningeal lymphatic vessels is one of the amazing trends of biophotonics thanks to discovery of brain lymphatics over several years ago. However, there is the limited technologies exist for the study of lymphatics in vivo because lymphatic vessels are transparent with a low speed flow of lymph. Here we demonstrate the successful application of fluorescent microscopy for the imaging of lymphatic system in the mouse brain in vivo.

  8. Optical Coherence Tomography in Cancer Imaging

    NASA Astrophysics Data System (ADS)

    Nam, Ahhyun Stephanie; Vakoc, Benjamin; Blauvelt, David; Chico-Calero, Isabel

    Investigations into the biology of cancer and novel cancer therapies rely on preclinical mouse models and traditional histological endpoints. Drawbacks of this approach include a limit in the number of time points for evaluation and an increased number of animals per study. This has motivated the use of intravital microscopy, which can provide longitudinal imaging of critical tumor parameters. Here, the capabilities of OCT as an intravital microscopy of the tumor microenvironment are summarized, and the state of OCT adoption into cancer research is summarized.

  9. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.

    PubMed

    Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf

    2018-01-01

    Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.

  10. Impact of the Ovarian Microenvironment on Serous Cancer

    DTIC Science & Technology

    2016-10-01

    Collagen is a well-established matrix utilized by serous cancer cells, of unknown origin, to seed metastatic sites, such as the mesothelium. An RNAseq...analysis will be performed between human TEC adhered to collagen matrix compared to tissue culture plastic and used to identify gene expression...changes responsible for adhesion on collagen . Ovarian conditioned medium (OCM) with and without H2O2 treatment will be added to normal and our series of

  11. Defense Standardization Program Journal. July/December 2010

    DTIC Science & Technology

    2010-12-01

    benefited both DoD and SC7. About the Authors Karen Richter is a senior analyst and project leader with the Strategy, Forces, and Resources Division... benefits of a proactive parts management approach. Among the accomplishments in this area are presentations at PSMC conferences: de- velopment of a...of a part’s authenticity. I A franchisee ! distributor has a contractual agreement with the OCM to buy, stock, repackage, sell, and distribute its

  12. Handbook of Ballistic and Engineering Data for Ammunition. Volume 1. 20-1-95 to 75-1-310 Included

    DTIC Science & Technology

    1950-07-01

    steel uistead of cast iron)witb the PD Fuze M52 as standard for limited procurement. OCM items 16026 and 16122 recommended and approved standardization of...BALLSTIC AND ENGINEERIN DATA II DRAG~E75 COFFCINT MACH NUMBER PLDT -14 44 SHELLI H5-mM .. a; FUZE,CPD, 7PI SEL;HEL, 75-MM M48; UE,TJ 3 fill 1.5 I . 2I

  13. Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses

    PubMed Central

    Chen, Kun; Wu, Tao; Wei, Haoyun; Zhou, Tian; Li, Yan

    2016-01-01

    Coherent anti-Stokes Raman microscopy (CARS) is a quantitative, chemically specific, and label-free optical imaging technique for studying inhomogeneous systems. However, the complicating influence of the nonresonant response on the CARS signal severely limits its sensitivity and specificity and especially limits the extent to which CARS microscopy has been used as a fully quantitative imaging technique. On the basis of spectral focusing mechanism, we establish a dual-soliton Stokes based CARS microspectroscopy and microscopy scheme capable of quantifying the spatial information of densities and chemical composition within inhomogeneous samples, using a single fiber laser. Dual-soliton Stokes scheme not only removes the nonresonant background but also allows robust acquisition of multiple characteristic vibrational frequencies. This all-fiber based laser source can cover the entire fingerprint (800-2200 cm−1) region with a spectral resolution of 15 cm−1. We demonstrate that quantitative degree determination of lipid-chain unsaturation in the fatty acids mixture can be achieved by the characterization of C = C stretching and CH2 deformation vibrations. For microscopy purposes, we show that the spatially inhomogeneous distribution of lipid droplets can be further quantitatively visualized using this quantified degree of lipid unsaturation in the acyl chain for contrast in the hyperspectral CARS images. The combination of compact excitation source and background-free capability to facilitate extraction of quantitative composition information with multiplex spectral peaks will enable wider applications of quantitative chemical imaging in studying biological and material systems. PMID:27867704

  14. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    NASA Astrophysics Data System (ADS)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  15. A Platform to Monitor Tumor Cellular and Vascular Response to Radiation Therapy by Optical Coherence Tomography and Fluorescence Microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Leung, Michael Ka Kit

    Radiotherapy plays a significant role in cancer treatment, and is thought to be curative by mainly killing tumor cells through damage to their genetic material. However, recent findings indicate that the tumor's vascular blood supply is also a major determinant of radiation response. The goals of this thesis are to: (1) develop an experimental platform for small animals to deliver ionizing radiation and perform high-resolution optical imaging to treatment targets, and (2) use this toolkit to longitudinally monitor the response of tumors and the associated vasculature. The thesis has achieved: (1) customization of a novel micro-irradiator for mice, (2) technical development of an improved optical coherence tomography imaging system, (3) comprehensive experimental protocol and imaging optimization for optical microscopy in a specialized animal model, and (4) completion of a feasibility study to demonstrate the capabilities of the experimental platform in monitoring the response of tumor and vasculature to radiotherapy.

  16. In vivo oral imaging with integrated portable photoacoustic microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Qi, Weizhi; Jin, Tian; Guo, Heng; Xi, Lei

    2017-12-01

    Oral diseases, especially oral cancers, are becoming serious health problems in humans. To image vasculatures and structures simultaneously in the human oral cavity which are tightly associated with various oral diseases, we develop a dual-modality portable optical resolution photoacoustic microscopy (ORPAM) and optical coherence tomography (OCT) system. This system utilizes a new rotary scanning mechanism and a compact design of the imaging head, making it portable and free of translation of the imaging interface or samples. Through the phantom experiments, both modalities yield high lateral resolutions of 8.1 μm (ORPAM) and 8.56 μm (OCT), respectively. The axial resolutions are measured to be 116.5 μm for ORPAM and 6.1 μm for OCT. In vivo imaging of a mouse ear was carried out to evaluate the performance of the system in biological tissues. In addition, in vivo oral imaging of a healthy human lip and monitoring recovery progress of a lip ulcer demonstrate the clinical potential of this system.

  17. Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy.

    PubMed

    Tardif, Pier-Luc; Bertrand, Marie-Jeanne; Abran, Maxime; Castonguay, Alexandre; Lefebvre, Joël; Stähli, Barbara E; Merlet, Nolwenn; Mihalache-Avram, Teodora; Geoffroy, Pascale; Mecteau, Mélanie; Busseuil, David; Ni, Feng; Abulrob, Abedelnasser; Rhéaume, Éric; L'Allier, Philippe; Tardif, Jean-Claude; Lesage, Frédéric

    2016-12-15

    Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology.

  18. In planta imaging of Δ9-tetrahydrocannabinolic acid in Cannabis sativa L. with hyperspectral coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Garbacik, Erik T.; Korai, Roza P.; Frater, Eric H.; Korterik, Jeroen P.; Otto, Cees; Offerhaus, Herman L.

    2013-04-01

    Nature has developed many pathways to produce medicinal products of extraordinary potency and specificity with significantly higher efficiencies than current synthetic methods can achieve. Identification of these mechanisms and their precise locations within plants could substantially increase the yield of a number of natural pharmaceutics. We report label-free imaging of Δ9-tetrahydrocannabinolic acid (THCa) in Cannabis sativa L. using coherent anti-Stokes Raman scattering microscopy. In line with previous observations we find high concentrations of THCa in pistillate flowering bodies and relatively low amounts within flowering bracts. Surprisingly, we find differences in the local morphologies of the THCa-containing bodies: organelles within bracts are large, diffuse, and spheroidal, whereas in pistillate flowers they are generally compact, dense, and have heterogeneous structures. We have also identified two distinct vibrational signatures associated with THCa, both in pure crystalline form and within Cannabis plants; at present the exact natures of these spectra remain an open question.

  19. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    PubMed Central

    Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander

    2016-01-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033

  20. Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Qi, Ji; Young, Eric D.; Lazar, Alexander J.; Lev, Dina C.; Pollock, Raphael E.; Larin, Kirill V.; Shih, Wei-Chuan

    2014-10-01

    Current technique for tumor resection requires biopsy of the tumor region and histological confirmation before the surgeon can be certain that the entire tumor has been resected. This confirmation process is time consuming both for the surgeon and the patient and also requires sacrifice of healthy tissue, motivating the development of novel technologies which can enable real-time detection of tumor-healthy tissue boundary for faster and more efficient surgeries. In this study, the potential of combining structural information from optical coherence tomography (OCT) and molecular information from line-scan Raman microscopy (LSRM) for such an application is presented. The results show a clear presence of boundary between myxoid liposarcoma and normal fat which is easily identifiable both from structural and molecular information. In cases where structural images are indistinguishable, for example, in normal fat and well differentiated liposarcoma (WDLS) or gastrointestinal sarcoma tumor (GIST) and myxoma, distinct molecular spectra have been obtained. The results suggest LSRM can effectively complement OCT to tumor boundary demarcation with high specificity.

  1. In planta imaging of Δ⁹-tetrahydrocannabinolic acid in Cannabis sativa L. with hyperspectral coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Garbacik, Erik T; Korai, Roza P; Frater, Eric H; Korterik, Jeroen P; Otto, Cees; Offerhaus, Herman L

    2013-04-01

    Nature has developed many pathways to produce medicinal products of extraordinary potency and specificity with significantly higher efficiencies than current synthetic methods can achieve. Identification of these mechanisms and their precise locations within plants could substantially increase the yield of a number of natural pharmaceutics. We report label-free imaging of Δ⁹-tetrahydrocannabinolic acid (THCa) in Cannabis sativa L. using coherent anti-Stokes Raman scattering microscopy. In line with previous observations we find high concentrations of THCa in pistillate flowering bodies and relatively low amounts within flowering bracts. Surprisingly, we find differences in the local morphologies of the THCa-containing bodies: organelles within bracts are large, diffuse, and spheroidal, whereas in pistillate flowers they are generally compact, dense, and have heterogeneous structures. We have also identified two distinct vibrational signatures associated with THCa, both in pure crystalline form and within Cannabis plants; at present the exact natures of these spectra remain an open question.

  2. Effects of spatial coherence in diffraction phase microscopy.

    PubMed

    Edwards, Chris; Bhaduri, Basanta; Nguyen, Tan; Griffin, Benjamin G; Pham, Hoa; Kim, Taewoo; Popescu, Gabriel; Goddard, Lynford L

    2014-03-10

    Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.

  3. A phase space model of Fourier ptychographic microscopy

    PubMed Central

    Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995

  4. Gradient light interference microscopy (GLIM) for imaging thick specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail E.; Popescu, Gabriel

    2016-03-01

    Compared to the Phase Contrast, Differential Interference Contrast (DIC) has been known to give higher depth sectioning as well as a halo-free images when investigating transparent specimens. Thanks to relying on generating two slightly shifted replicas with a small amount of shift, within the coherence area, DIC is able to operate with very low coherence light. More importantly, the method is able to work with very large numerical aperture of the illumination, which offer comparable sectioning capability to bright field microscopy. However, DIC is still a qualitative method, which limits potential applications of the technique. In this paper, we introduce a method that extends the capability of DIC by combining it with a phase shifting module to extract the phase gradient information. A theoretical model of the image formation is developed and the possibility of integrating the gradient function is analyzed.. Our method is benchmarked on imaging embryos during their 7-day development, HeLa cells during mitosis, and control samples.

  5. Evans blue dye-enhanced imaging of the brain microvessels using spectral focusing coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Lee, Bo-Ram; Joo, Kyung-Il; Choi, Eun Sook; Jahng, Junghoon; Kim, Hyunmin

    2017-01-01

    We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS) microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB) dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature. PMID:29049299

  6. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions. PMID:29296504

  7. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy

    PubMed Central

    Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge

    2016-01-01

    Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots' of random light using a specially designed ‘time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence. PMID:27713416

  8. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a relatively large axial misalignment of the conjugate planes of the CDM and the aberrating interface. This dissertation advances the field of microscopy by providing new models and techniques for imaging deeply within strongly scattering tissue, and by describing new adaptive optics approaches to extending imaging FOV due to sample aberrations.

  9. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  10. Even illumination in total internal reflection fluorescence microscopy using laser light.

    PubMed

    Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A

    2008-01-01

    In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc

  11. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    PubMed

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  12. High-Precision Photothermal Ablation Using Biocompatible Palladium Nanoparticles and Laser Scanning Microscopy

    PubMed Central

    2018-01-01

    Herein, we report a straightforward method for the scalable preparation of Pd nanoparticles (Pd-NPs) with reduced inherent cytotoxicity and high photothermal conversion capacity. These Pd-NPs are rapidly taken up by cells and able to kill labeled cancer cells upon short exposure to near-infrared (NIR) light. Following cell treatment with Pd-NPs, ablated areas were patterned with high precision by laser scanning microscopy, allowing one to perform cell migration assays with unprecedented accuracy. Using coherent Raman microscopy, cells containing Pd-NPs were simultaneously ablated and imaged. This novel methodology was combined with intravital imaging to mediate microablation of cancerous tissue in tumor xenografts in mice. PMID:29320154

  13. Characterization of atherosclerotic plaques by cross-polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Dudenkova, Varvara V.; Feldchtein, Felix I.; Timofeeva, Lidia B.; Kiseleva, Elena B.; Kuznetsov, Sergei S.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Vitkin, Alex I.; Gladkova, Natalia D.

    2016-02-01

    We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers in the development of the atherosclerotic plaque (AP). The study shows potential of CP OCT for the assessment of collagen and elastin fibers condition in atherosclerotic arteries. Specifically, the additional information afforded by CP OCT, related to birefringence and cross-scattering properties of arterial tissues, may improve the robustness and accuracy of assessment about the microstructure and composition of the plaque for different stages of atherosclerosis.

  14. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    PubMed

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  15. Application of optical coherence tomography based microangiography for cerebral imaging

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  16. Accurate prediction of collapse temperature using optical coherence tomography-based freeze-drying microscopy.

    PubMed

    Greco, Kristyn; Mujat, Mircea; Galbally-Kinney, Kristin L; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Mulhall, Phillip; Sharma, Puneet; Kessler, William J; Pikal, Michael J

    2013-06-01

    The objective of this study was to assess the feasibility of developing and applying a laboratory tool that can provide three-dimensional product structural information during freeze-drying and which can accurately characterize the collapse temperature (Tc ) of pharmaceutical formulations designed for freeze-drying. A single-vial freeze dryer coupled with optical coherence tomography freeze-drying microscopy (OCT-FDM) was developed to investigate the structure and Tc of formulations in pharmaceutically relevant products containers (i.e., freeze-drying in vials). OCT-FDM was used to measure the Tc and eutectic melt of three formulations in freeze-drying vials. The Tc as measured by OCT-FDM was found to be predictive of freeze-drying with a batch of vials in a conventional laboratory freeze dryer. The freeze-drying cycles developed using OCT-FDM data, as compared with traditional light transmission freeze-drying microscopy (LT-FDM), resulted in a significant reduction in primary drying time, which could result in a substantial reduction of manufacturing costs while maintaining product quality. OCT-FDM provides quantitative data to justify freeze-drying at temperatures higher than the Tc measured by LT-FDM and provides a reliable upper limit to setting a product temperature in primary drying. Copyright © 2013 Wiley Periodicals, Inc.

  17. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue.

    PubMed

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  18. Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy.

    PubMed

    Jaeger, Daniel; Pilger, Christian; Hachmeister, Henning; Oberländer, Elina; Wördenweber, Robin; Wichmann, Julian; Mussgnug, Jan H; Huser, Thomas; Kruse, Olaf

    2016-10-21

    Oleaginous photosynthetic microalgae hold great promise as non-food feedstocks for the sustainable production of bio-commodities. The algal lipid quality can be analysed by Raman micro-spectroscopy, and the lipid content can be imaged in vivo in a label-free and non-destructive manner by coherent anti-Stokes Raman scattering (CARS) microscopy. In this study, both techniques were applied to the oleaginous microalga Monoraphidium neglectum, a biotechnologically promising microalga resistant to commonly applied lipid staining techniques. The lipid-specific CARS signal was successfully separated from the interfering two-photon excited fluorescence of chlorophyll and for the first time, lipid droplet formation during nitrogen starvation could directly be analysed. We found that the neutral lipid content deduced from CARS image analysis strongly correlated with the neutral lipid content measured gravimetrically and furthermore, that the relative degree of unsaturation of fatty acids stored in lipid droplets remained similar. Interestingly, the lipid profile during cellular adaption to nitrogen starvation showed a two-phase characteristic with initially fatty acid recycling and subsequent de novo lipid synthesis. This works demonstrates the potential of quantitative CARS microscopy as a label-free lipid analysis technique for any microalgal species, which is highly relevant for future biotechnological applications and to elucidate the process of microalgal lipid accumulation.

  19. Direct Imaging of Frenkel Exciton Transport by Ultrafast Microscopy.

    PubMed

    Zhu, Tong; Wan, Yan; Huang, Libai

    2017-07-18

    Long-range transport of Frenkel excitons is crucial for achieving efficient molecular-based solar energy harvesting. Understanding of exciton transport mechanisms is important for designing materials for solar energy applications. One major bottleneck in unraveling of exciton transport mechanisms is the lack of direct measurements to provide information in both spatial and temporal domains, imposed by the combination of fast energy transfer (typically ≤1 ps) and short exciton diffusion lengths (typically ≤100 nm). This challenge requires developing experimental tools to directly characterize excitation energy transport, and thus facilitate the elucidation of mechanisms. To address this challenge, we have employed ultrafast transient absorption microscopy (TAM) as a means to directly image exciton transport with ∼200 fs time resolution and ∼50 nm spatial precision. By mapping population in spatial and temporal domains, such approach has unraveled otherwise obscured information and provided important parameters for testing exciton transport models. In this Account, we discuss the recent progress in imaging Frenkel exciton migration in molecular crystals and aggregates by ultrafast microscopy. First, we establish the validity of the TAM methods by imaging singlet and triplet exciton transport in a series of polyacene single crystals that undergo singlet fission. A new singlet-mediated triplet transport pathway has been revealed by TAM, resulting from the equilibrium between triplet and singlet exciton populations. Such enhancement of triplet exciton transport enables triplet excitons to migrate as singlet excitons and leads to orders of magnitude faster apparent triplet exciton diffusion rate in the picosecond and nanosecond time scales, favorable for solar cell applications. Next we discuss how information obtained by ultrafast microscopy can evaluate coherent effects in exciton transport. We use tubular molecular aggregates that could support large exciton delocalization sizes as a model system. The initial experiments measure exciton diffusion constants of 3-6 cm 2 s -1 , 3-5 times higher than the incoherent limit predicted by theory, suggesting that coherent effects play a role. In summary, combining ultrafast spectroscopic methods with microscopic techniques provides a direct approach for obtaining important parameters to unravel the underlying exciton transport mechanisms in molecular solids. We discuss future directions to bridge the gap in understanding of fundamental energy transfer theories to include coherent and incoherent effects. We are still in the infancy of ultrafast microscopy, and the vast potential is not limited to the systems discussed in this Account.

  20. SNP rs403212791 in exon 2 of the MTNR1A gene is associated with reproductive seasonality in the Rasa aragonesa sheep breed.

    PubMed

    Calvo, J H; Serrano, M; Martinez-Royo, A; Lahoz, B; Sarto, P; Ibañez-Deler, A; Folch, J; Alabart, J L

    2018-06-01

    The aim of this study was to characterize and identify causative SNPs in the MTNR1A gene responsible for the reproductive seasonality traits in the Rasa aragonesa sheep breed. A total of 290 ewes (155, 84 and 51 mature, young and ewe lambs, respectively) from one flock were controlled from January to August. The following three reproductive seasonality traits were considered: the total days of anoestrus (TDA) and the progesterone cycling months (P4CM); both ovarian function seasonality traits based on blood progesterone levels; and the oestrus cycling months (OCM) based on oestrous detection, which indicate behavioural signs of oestrous. We have sequenced the total coding region plus 733 and 251 bp from the promoter and 3'-UTR regions, respectively, from the gene in 268 ewes. We found 9 and 4 SNPs associated with seasonality traits in the promoter (for TDA and P4CM) and exon 2 (for the three traits), respectively. The SNPs located in the gene promoter modify the putative binding sites for various trans-acting factors. In exon 2, two synonymous SNPs affect RFLP sites, rs406779174/RsaI (for the three traits) and rs430181568/MnlI (for OCM), and they have been related with seasonal reproductive activity in previous association studies with other breeds. SNP rs400830807, which is located in the 3'-UTR, was associated with the three traits, but this did not modify the putative target sites for ovine miRNAs according to in silico predictions. Finally, the SNP rs403212791 (NW_014639035.1: g.15099004G > A), which is also associated with the three seasonality phenotypes, was the most significant SNP detected in this study and was a non-synonymous polymorphism, leading a change from an Arginine to a Cysteine (R336C). Haplotype analyses confirmed the association results and showed that the effects found for the seasonality traits were caused by the SNPs located in exon 2. We have demonstrated that the T allele in the SNP rs403212791 in the MNTR1A gene is associated with a lower TDA and higher P4CM and OCM values in the Rasa Aragonesa breed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Tin Sulfide Phase Exploration: Dependence of Optoelectronic Properties on Microstructural Growth and Chemical Variations in Thin Film Material

    NASA Astrophysics Data System (ADS)

    Banai, Rona Elinor

    Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that conductivity type was not determined. Titanium, molybdenum, and aluminum contacts were tested for Ohmic and Schottky behavior using transmission line measurements. The complexity of its microstructure and flexibility in formation of varying phase and altered phase presents challenges to its use as a PV absorber.

  2. Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I.; Seibt, M.

    2015-12-15

    The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

  3. Phase contrast: the frontier of x-ray and electron imaging

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Margaritondo, G.

    2013-12-01

    Phase contrast has been a fundamental component of microscopy since the early 1940s. In broad terms, it refers to the formation of images using not the combination of wave intensities but their amplitudes with the corresponding phase factors. The impact on visible microscopy of biological specimens has been major. This contrast mechanism is now playing an increasingly important role in other kinds of microscopy, notably those based on electrons or x-rays. It notably solves the background problem of weak absorption contrast. New breakthroughs and new techniques are continuously produced, unfortunately unknown to most of the scientists that could exploit them. The present special cluster issue of reviews was inspired by this situation. The case of x-rays is very interesting. Phase contrast requires a high degree of longitudinal and lateral coherence. But conventional x-ray sources are not coherent. The progress of synchrotron sources yielded high coherence as a key byproduct—and started a rapid expansion of phase contrast radiology. No review—or cluster of reviews—can possibly cover all the facets of the recent progress. Without trying to be absolutely comprehensive, the present special cluster issue touches a variety of issues, giving a very broad picture. Liu et al review in general terms the different phase-based hard-x-ray techniques, with an interesting variety of examples. Then, Suortti et al and Wang et al present more specialized overviews of crystal and grating based x-ray imaging techniques, very powerful in the analysis of biological specimens. Mokso et al discuss the many facets of tomography using phase effects, expanding the picture of tomographic reconstruction of the three previous reviews. Wu et al treat the rapid progress in hard-x-ray focusing and its impact on radiology and tomography for materials science and biomedical research. The next two reviews deal with special and very interesting classes of applications. Specifically, Lee et al discuss the use of the new radiology techniques in the study of liquids, and Coan et al present the progress in phase-contrast radiology analysis of real patients. Although x-ray imaging is the main focus of the special cluster issue, the picture would not be complete without a view on the parallel and very exciting developments in electron microscopy. The last review, by Wu et al , is dedicated indeed to this broader picture, presenting recent progress in Zernike-related electron phase contrast. We trust that the special cluster issue will not only update readers on the evolution of a very important class of experimental techniques, but also prepare them for the forthcoming developments. We are indeed at the threshold of another revolution. The recently inaugurated first x-ray free electron lasers bring, together with many other record performances, full lateral coherence and excellent longitudinal coherence. The first imaging experiments show in practice their impact, and indicate that this field, far from saturating its progress, is ready for new major breakthroughs.

  4. Competing mortality in patients diagnosed with bladder cancer: evidence of undertreatment in the elderly and female patients.

    PubMed

    Noon, A P; Albertsen, P C; Thomas, F; Rosario, D J; Catto, J W F

    2013-04-16

    Bladder cancer (BC) predominantly affects the elderly and is often the cause of death among patients with muscle-invasive disease. Clinicians lack quantitative estimates of competing mortality risks when considering treatments for BC. Our aim was to determine the bladder cancer-specific mortality (CSM) rate and other-cause mortality (OCM) rate for patients with newly diagnosed BC. Patients (n=3281) identified from a population-based cancer registry diagnosed between 1994 and 2009. Median follow-up was 48.15 months (IQ range 18.1-98.7). Competing risk analysis was performed within patient groups and outcomes compared using Gray's test. At 5 years after diagnosis, 1246 (40%) patients were dead: 617 (19%) from BC and 629 (19%) from other causes. The 5-year BC mortality rate varied between 1 and 59%, and OCM rate between 6 and 90%, depending primarily on the tumour type and patient age. Cancer-specific mortality was highest in the oldest patient groups. Few elderly patients received radical treatment for invasive cancer (52% vs 12% for patients <60 vs >80 years, respectively). Female patients with high-risk non-muscle-invasive BC had worse CSM than equivalent males (Gray's P<0.01). Bladder CSM is highest among the elderly. Female patients with high-risk tumours are more likely to die of their disease compared with male patients. Clinicians should consider offering more aggressive treatment interventions among older patients.

  5. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    PubMed

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  6. Influence of dipping cycles on physical, optical, and electrical properties of Cu 2 NiSnS 4 : Direct solution dip coating for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokurala, Krishnaiah; Mallick, Sudhanshu; Bhargava, Parag

    Direct solution coating technique has emerged as a promising economically viable process for earth abundant chalcogenide absorber materials for photovoltaic applications. Here, direct ethanol based dip coating of earth abundant Cu2NiSnS4 (CNTS) films on soda lime glass (SLG), molybdenum coated glass (Mo), and fluorine doped tin oxide coated glass (FTO) substrates is investigated. The structural and morphological properties of pre-annealed and sulfurized CNTS films coated on SLG, FTO, and Mo substrates are reported. The influence of dipping cycles on composition and optoelectronic properties of pre-annealed and sulfurized CNTS films deposited on SLG substrate is presented. Energy dispersive spectroscopy (EDS) andmore » X-ray fluorescence (XRF) analysis reveal how changes in thickness and elemental composition affect morphology and optoelectronic properties. The obtained absorption coefficient, optical bandgap, resistivity and mobility of pre - annealed and sulfurized films are found to be 104 cm-1, 1.5 eV, 0.48 Ocm, 3.4 cm2/Vs and 104 cm-1, 1.29 eV, 0.14 Ocm, 11.0 cm2/Vs, respectively. These properties are well suited for photovoltaic applications and lead to the conclusion that the direct ethanol based dip coating can be an alternative economically viable process for the fabrication of earth abundant CNTS absorber layers for thin film solar cells.« less

  7. EBIC/TEM investigations of defects in solar silicon ribbon materials

    NASA Technical Reports Server (NTRS)

    Ast, D. G.

    1981-01-01

    Transmission electron microscopy was used to investigate the defect structure of edge defined film growth (EFG) material, web dentritic ribbons (WEB), and ribbon to ribbon recrystallized material (RTR). The most common defects in all these materials are coherent first order twin boundaries. These coherent twins can be very thin, a few atomic layers. Bundles of the twins which contain odd numbers of twins will in optical images appear as a seemingly single first twin boundary. First-order coherent twin boundaries are not electrically active, except at locations where they contain intrinsic (grain boundary) dislocations. These dislocations take up small deviations from the ideal twin relation and play the same role in twin boundaries as conventional and play the some role in twin boundaries as conventional edge and screw dislocations in small angle tilt and twist boundaries.

  8. Ultra-broadband ptychography with self-consistent coherence estimation from a high harmonic source

    NASA Astrophysics Data System (ADS)

    Odstrčil, M.; Baksh, P.; Kim, H.; Boden, S. A.; Brocklesby, W. S.; Frey, J. G.

    2015-09-01

    With the aim of improving imaging using table-top extreme ultraviolet sources, we demonstrate coherent diffraction imaging (CDI) with relative bandwidth of 20%. The coherence properties of the illumination probe are identified using the same imaging setup. The presented methods allows for the use of fewer monochromating optics, obtaining higher flux at the sample and thus reach higher resolution or shorter exposure time. This is important in the case of ptychography when a large number of diffraction patterns need to be collected. Our microscopy setup was tested on a reconstruction of an extended sample to show the quality of the reconstruction. We show that high harmonic generation based EUV tabletop microscope can provide reconstruction of samples with a large field of view and high resolution without additional prior knowledge about the sample or illumination.

  9. [Watching dance of the molecules - CARS microscopy].

    PubMed

    Korczyński, Jaroslaw; Kubiak, Katarzyna; Węgłowska, Edyta

    2017-01-01

    CARS (Coherent Anti-Stokes Raman Scattering) microscopy is an imaging method for living cells visualization as well as for food or cosmetics material analysis without the need for staining. The near infrared laser source generates the CARS signal - the characteristic intrinsic vibrational contrast of the molecules in a sample which is no longer caused by staining, but by the molecules themselves. It provides the benefit of a non-toxic, non-destructive and almost noninvasive method for sample imaging. CARS can easily be combined with fluorescence confocal microscopy so it is an excellent complementary imaging method. In this article we showed some of the applications for this technology: imaging of lipid droplets inside human HaCaT cells and analysis of the composition of cosmetic products. Moreover we believe, that soon new fields of application become accessible for this rapidly developing branch of microscopy.

  10. A high-power fiber-coupled semiconductor light source with low spatio-temporal coherence

    NASA Astrophysics Data System (ADS)

    Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Menke, Tim; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    Interference-induced distortions pose a significant challenge to a variety of experimental techniques, ranging from full-field imaging applications in biological research to the creation of optical potentials in quantum gas microscopy. Here, we present a design of a high-power, fiber-coupled semiconductor light source with low spatio-temporal coherence that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  11. Hot Electrons Regain Coherence in Semiconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Reiner, Jonathan; Nayak, Abhay Kumar; Avraham, Nurit; Norris, Andrew; Yan, Binghai; Fulga, Ion Cosma; Kang, Jung-Hyun; Karzig, Toesten; Shtrikman, Hadas; Beidenkopf, Haim

    2017-04-01

    The higher the energy of a particle is above equilibrium, the faster it relaxes because of the growing phase space of available electronic states it can interact with. In the relaxation process, phase coherence is lost, thus limiting high-energy quantum control and manipulation. In one-dimensional systems, high relaxation rates are expected to destabilize electronic quasiparticles. Here, we show that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves nonmonotonically with energy such that above a certain threshold hot electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing, for the first time, the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Pèrot resonators. A remarkable agreement with a theoretical model reveals that the nonmonotonic behavior is driven by the unique manner in which one-dimensional hot electrons interact with the cold electrons occupying the Fermi sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension.

  12. The response of the microcirculation to mechanical support of the heart in critical illness.

    PubMed

    Akin, Sakir; Kara, Atila; den Uil, Corstiaan A; Ince, Can

    2016-12-01

    Critical illness associated with cardiac pump failure results in reduced tissue perfusion in all organs and occurs in various conditions such as sepsis, cardiogenic shock, and heart failure. Mechanical circulatory support (MCS) devices can be used to maintain organ perfusion in patients with cardiogenic shock and decompensated chronic heart failure. However, correction of global hemodynamic parameters by MCS does not always cause a parallel improvement in microcirculatory perfusion and oxygenation of the organ systems, a condition referred to as a loss of hemodynamic coherence between macro- and microcirculation (MC). In this paper, we review the literature describing hemodynamic coherence or loss occurring during MCS of the heart. By using Embase, Medline Cochrane, Web of Science, and Google Scholar, we analyzed the literature on the response of MC and macrocirculation to MCS of the heart in critical illness. The characteristics of patients, MCS devices, and micro- and macrocirculatory parameters were very heterogenic. Short-term MCS studies (78%) described the effects of intra-aortic balloon pumps (IABPs) on the MC and macrocirculation. Improvement in MC, observed by handheld microscopy (orthogonal polarization spectral (OPS), sidestream dark-field (SDF), and Cytocam IDF imaging) in line with restored macrocirculation was found in 44% and 40% of the studies of short- and long-term MCS, respectively. In only 6 of 14 studies, hemodynamic coherence was described. It is concluded that more studies using direct visualization of the MC in short- and long-term MCS by handheld microscopy are needed, preferably randomized controlled studies, to identify the presence and clinical significance of hemodynamic coherence. It is anticipated that these further studies can enable to better identify patients who will benefit from treatment by mechanical heart support to ensure adequate organ perfusion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dose-dependent high-resolution electron ptychography

    NASA Astrophysics Data System (ADS)

    D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.

    2016-02-01

    Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed.

  14. Coherent to incoherent transition of precipitates during rupture test in TP347H austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Chang-Whan; Heo, Yoon-Uk, E-mail: yunuk01@postech.ac.kr; Heo, Nam-Hoe

    2016-05-15

    Precipitation of various particles and their growth during rupture test have been investigated in TP347H austenitic stainless steels using a transmission electron microscopy. Various precipitates of MnS, Nb-rich MC, and MnS + MC and MnS + M{sub 2}P complexes are observed in the γ matrix after rupture test at 750 °C. The MnS particles formed independently in the γ matrix show a coherency or semi-coherency with the γ matrix. The Nb-rich MC carbides show also a coherency with the γ matrix. The Nb-rich MC carbides showing a semi-coherency with the MnS also form on the surface of the coherent ormore » semi-coherent MnS particles, and they show a cube-cube orientation relationship with the MnS particles. The MnS + MC complex loses the initial coherency with the γ matrix, as the MC in the complex grows. The Nb-rich M{sub 2}P precipitates formed on the surface of the MnS particles do not show an orientation relationship with the MnS particles or the γ matrix. The MnS particles in the MnS + M{sub 2}P complex hold the initial coherency with the γ matrix. Effects of MnS precipitation followed by the formation of the complexes on rupture life of the TP347H austenitic stainless steels are discussed from the viewpoint of MnS precipitates acting as sinks of free sulfur segregating to the grain boundaries. - Highlights: • Coherent to incoherent transition of precipitates during rupture test in TP347H steels is clarified. • MnS precipitation actively retards the time to intergranular fracture. • Effect of the coherency of secondary precipitates on the coherency loss of the complex particle is compared.« less

  15. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-freemore » and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging. Although we did not accomplish the original goal of detecting single-molecule by CARS, our quest for high sensitivity of nonlinear optical microscopy paid off in providing the two brand new enabling technologies. Both techniques were greatly benefited from the use of high frequency modulation for microscopy, which led to orders of magnitude increase in sensitivity. Extensive efforts have been made on optics and electronics to accomplish these breakthroughs.« less

  16. Speckle-field digital holographic microscopy.

    PubMed

    Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S

    2009-07-20

    The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.

  17. Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy.

    PubMed

    Heinrich, Christoph; Hofer, Alexander; Ritsch, Andreas; Ciardi, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2008-02-18

    Wide-field Coherent Anti-Stokes Raman Scattering (CARS) microscopy is employed to identify saturated and unsaturated fatty acids in micro-emulsions and cells, using the ratio between the strong -C-H CARS signal at 2850 cm(-1) and the weak signal of the =C-H vibration around 3015 cm(-1) for distinction. Quantitative CARS imaging at the =C-H resonance is challenging, since it yields only a low CARS signal, and small differences on the order of 5% in the concentration of polyunsaturated fatty lipids have to be detected. For this purpose we draw advantage of the high signal-to-noise ratio of wide-field CARS microscopy that is achieved by an excitation geometry involving a "sheet-of-light"-type illumination.

  18. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  19. Interpreting CARS images of tissue within the C-H-stretching region

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Meyer, Tobias; Medyukhina, Anna; Bergner, Norbert; Krafft, Christoph; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Schmitt, Michael; Popp, Jürgen

    2014-03-01

    Single band coherent anti-Stokes Raman scattering (CARS) microscopy within the CH-stretching region is applied to detect individual cells and nuclei of human brain tissue and brain tumors - an information which allows for histopathologic grading of the tissue. The CARS image contrast within the C-H-stretching region correlated to the tissue composition. Based on the specific application example of identifying nuclei within (coherent) Raman images of neurotissue sections, we shall derive general design parameters for lasers optimally suited to serve in a clinical environment and discuss the potential of recently developed methods to analyze spectrally resolved CARS images and image segmentation algorithms.

  20. 3D Diffraction Microscope Provides a First Deep View

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei

    2005-03-01

    When a coherent diffraction pattern is sampled at a spacing sufficiently finer than the Bragg peak frequency (i.e. the inverse of the sample size), the phase information is in principle encoded inside the diffraction pattern, and can be directly retrieved by using an iterative process. In combination of this oversampling phasing method with either coherent X-rays or electrons, a novel form of diffraction microscopy has recently been developed to image nanoscale materials and biological structures. In this talk, I will present the principle of the oversampling method, discuss the first experimental demonstration of this microscope, and illustrate some applications in nanoscience and biology.

  1. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    PubMed Central

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  2. Display Systems Dynamics Requirements for Flying Qualities

    DTIC Science & Technology

    1988-05-09

    Schidtt. LodI Caser 13a. TYPE OP REPORT 1 &b TIME COVERED 14 DAEO EPOR Ywot.MDay)15. AGEWCUNT Finial Repart IFROM Oct.66o To DeB- 7lse may 9 178 16...e Di Spc Il .AI OF TABLE OF CONTENTS Section Page I INTRODUCTION 1 1 . Motivation and Objectives 1 2. Overview 3 3. Report Organization 4 II MODEL...BASED ANALYSIS FRAMEWORK 5 1 . Optimal Control Model Structure 5 2. OCM-Based Characterization of Flying Qualities 8 III MODELING THE PERCEPTUAL INTERFACE

  3. Pilot Evaluation of Adaptive Control in Motion-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Campbell, Stefan Forrest

    2009-01-01

    The objective of this work is to assess the strengths, weaknesses, and robustness characteristics of several MRAC (Model-Reference Adaptive Control) based adaptive control technologies garnering interest from the community as a whole. To facilitate this, a control study using piloted and unpiloted simulations to evaluate sensitivities and handling qualities was conducted. The adaptive control technologies under consideration were ALR (Adaptive Loop Recovery), BLS (Bounded Linear Stability), Hybrid Adaptive Control, L1, OCM (Optimal Control Modification), PMRAC (Predictor-based MRAC), and traditional MRAC

  4. Diminishing Manufacturing Sources and Material Shortages: A Guidebook of Best Practices for Implementing a Robust DMSMS Management Program

    DTIC Science & Technology

    2012-08-01

    EOL ) notices or other indicators of potential discontinuance. DMSMS monitoring and surveil- lance should begin as early as possible during the...throughout the duration of the program, when either the program receives a new EOL notice di- rectly, or the output of the program’s predictive tools or...OEM DMSMS mitigation efforts underway • OCM part number • Sources of active manufacturing • Actual or projected EOL • Function (active versus

  5. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    PubMed

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  6. DMD-based LED-illumination Super-resolution and optical sectioning microscopy

    PubMed Central

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens. PMID:23346373

  7. Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi

    2013-06-01

    Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.

  8. Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration

    NASA Astrophysics Data System (ADS)

    Granero, Luis; Ferreira, Carlos; Zalevsky, Zeev; García, Javier; Micó, Vicente

    2016-07-01

    Single-Exposure Super-Resolved Interferometric Microscopy (SESRIM) reports on a way to achieve one-dimensional (1-D) superresolved imaging in digital holographic microscopy (DHM) by a single illumination shot and digital recording. SESRIM provides color-coded angular multiplexing of the accessible sample's range of spatial frequencies and it allows their recording in a single CCD (color or monochrome) snapshot by adding 3 RGB coherent reference beams at the output plane. In this manuscript, we extend the applicability of SESRIM to the field of digital in-line holographic microscopy (DIHM), that is, working without lenses. As consequence of the in-line configuration, an additional restriction concerning the object field of view (FOV) must be imposed to the technique. Experimental results are reported for both a synthetic object (USAF resolution test target) and a biological sample (swine sperm sample) validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).

  9. Ultrafast Science Opportunities with Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durr, Hermann

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less

  10. Optical coherence elastography assesses tissue modifications in laser reshaping of cornea and cartilages

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. Y.; Matveyev, A. L.; Matveev, L. A.; Gelikonov, G. V.; Omelchenko, A. I.; Shabanov, D. V.; Sovetsky, A. A.; Baum, O. I.; Vitkin, A.; Sobol, E. N.

    2018-02-01

    Non-surgical thermo-mechanical reshaping of avascular collagenous tissues (cartilages and cornea) using moderate heating by IR-laser irradiation is an emerging technology that can find important applications in visioncorrection problems and preparation of cartilaginous implants in otolaryngology. To estimate both transient interframe strains and cumulative resultant strains produced by the laser irradiation of the tissue we use and improved version of strain mapping developed in our previous work related to compressional phase-sensitive optical coherence tomography. To reveal microstructural changes in the tissue regions where irradiation-produced strains do not disappear after temperature equilibration, we apply compressional optical coherence elastography in order to visualize the resultant variations in the tissue stiffness. The so-found regions of the stiffness reduction are attributed to formation of microscopic pores, existence of which agree with independent data obtained using methods of high-resolution microscopy.

  11. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  12. Polarization Sensitive Coherent Anti-Stokes Raman Spectroscopy of DCVJ in Doped Polymer

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo

    2014-05-01

    Coherent Raman Microscopy is an emerging technic and method to image biological samples such as living cells by recording vibrational fingerprints of molecules with high spatial resolution. The race is on to record the entire image during the shortest time possible in order to increase the time resolution of the recorded cellular events. The electronically enhanced polarization sensitive version of Coherent anti-Stokes Raman scattering is one of the method which can shorten the recording time and increase the sharpness of an image by enhancing the signal level of special molecular vibrational modes. In order to show the effectiveness of the method a model system, a highly fluorescence sample, DCVJ in a polymer matrix is investigated. Polarization sensitive resonance CARS spectra are recorded and analyzed. Vibrational signatures are extracted with model independent methods. Details of the measurements and data analysis will be presented. The author gratefully acknowledge the UWF for financial support.

  13. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  14. Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy

    PubMed Central

    Jaeger, Daniel; Pilger, Christian; Hachmeister, Henning; Oberländer, Elina; Wördenweber, Robin; Wichmann, Julian; Mussgnug, Jan H.; Huser, Thomas; Kruse, Olaf

    2016-01-01

    Oleaginous photosynthetic microalgae hold great promise as non-food feedstocks for the sustainable production of bio-commodities. The algal lipid quality can be analysed by Raman micro-spectroscopy, and the lipid content can be imaged in vivo in a label-free and non-destructive manner by coherent anti-Stokes Raman scattering (CARS) microscopy. In this study, both techniques were applied to the oleaginous microalga Monoraphidium neglectum, a biotechnologically promising microalga resistant to commonly applied lipid staining techniques. The lipid-specific CARS signal was successfully separated from the interfering two-photon excited fluorescence of chlorophyll and for the first time, lipid droplet formation during nitrogen starvation could directly be analysed. We found that the neutral lipid content deduced from CARS image analysis strongly correlated with the neutral lipid content measured gravimetrically and furthermore, that the relative degree of unsaturation of fatty acids stored in lipid droplets remained similar. Interestingly, the lipid profile during cellular adaption to nitrogen starvation showed a two-phase characteristic with initially fatty acid recycling and subsequent de novo lipid synthesis. This works demonstrates the potential of quantitative CARS microscopy as a label-free lipid analysis technique for any microalgal species, which is highly relevant for future biotechnological applications and to elucidate the process of microalgal lipid accumulation. PMID:27767024

  15. Phase contrast imaging with coherent high energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigireva, I.

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known inmore » optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.« less

  16. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    PubMed Central

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-01-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration. PMID:21361672

  17. Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148

    2012-05-15

    Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less

  18. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography

    DOE PAGES

    Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...

    2016-11-21

    Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less

  19. Color digital lensless holographic microscopy: laser versus LED illumination.

    PubMed

    Garcia-Sucerquia, Jorge

    2016-08-20

    A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters.

  20. High-definition optical coherence tomography and reflectance confocal microscopy in the in vivo visualization of a reaction to permanent make-up.

    PubMed

    Maier, T; Flaig, M J; Ruzicka, T; Berking, C; Pavicic, T

    2015-03-01

    After permanent make-up treatments, eczematous and granulomatous reactions may occur which need anti-inflammatory treatment. For the definite diagnosis oftentimes biopsies are recommended. In vivo imaging such as reflectance confocal microscopy (RCM) and high-definition optical coherence tomography (HD-OCT) has been successfully used in the non-invasive diagnosis of various dermatoses before. Here, we report on non-invasive imaging of a reaction towards permanent make-up in a 40-year-old woman by using HD-OCT and RCM. Both in HD-OCT and in RCM subepidermal pigment and granulomatous changes could be visualized and correlated with the histopathological findings. Regression of the lesions in response to topical steroids and intralesional injections of steroids and 5-fluorouracil is reported and treatment options are discussed. Non-invasive imaging techniques such as HD-OCT and RCM allow the visualization and localization of exogenous pigment and help in the evaluation of adverse reactions due to permanent make-up tattooing. © 2014 European Academy of Dermatology and Venereology.

  1. Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping

    DOE PAGES

    Wolf, Mark; May, Brian M.; Cabana, Jordi

    2017-03-21

    By unlocking the full performance capabilities of battery materials we require a thorough understanding of the underlying electrochemical mechanisms at a variety of length scales. A broad arsenal of X-ray microscopy and mapping techniques is now available to probe these processes down to the nanoscale. The tunable nature of X-ray sources allows for the extraction of chemical states through spectromicroscopy. The addition of phase contrast imaging can retrieve the complex-valued refraction of the material, giving an even more nuanced chemical picture. Tomography and coherent Bragg diffraction imaging provide a reconstructed three-dimensional volume of the specimen, as well as internal strainmore » information from the latter. There have been many insights into battery materials achieved through the creative use of these, and similar, methods. Experiments performed while the battery is being actively cycled reveal behavior that differs significantly from what is observed at equilibrium and metastable conditions. Furthermore, there are planned improvements to X-ray source brightness and coherence will extend these techniques by alleviating the current trade-off in time, chemical, and spatial resolution.« less

  2. Optical phase nanoscopy in red blood cells using low-coherence spectroscopy.

    PubMed

    Shock, Itay; Barbul, Alexander; Girshovitz, Pinhas; Nevo, Uri; Korenstein, Rafi; Shaked, Natan T

    2012-10-01

    We propose a low-coherence spectral-domain phase microscopy (SDPM) system for accurate quantitative phase measurements in red blood cells (RBCs) for the prognosis and monitoring of disease conditions that affect the visco-elastic properties of RBCs. Using the system, we performed time-recordings of cell membrane fluctuations, and compared the nano-scale fluctuation dynamics of healthy and glutaraldehyde-treated RBCs. Glutaraldehyde-treated RBCs possess lower amplitudes of fluctuations, reflecting an increased membrane stiffness. To demonstrate the ability of our system to measure fluctuations of lower amplitudes than those measured by the commonly used holographic phase microscopy techniques, we also constructed wide-field digital interferometry (WFDI) system and compared the performances of both systems. Due to its common-path geometry, the optical-path-delay stability of SDPM was found to be less than 0.3 nm in liquid environment, at least three times better than WFDI under the same conditions. In addition, due to the compactness of SDPM and its inexpensive and robust design, the system possesses a high potential for clinical applications.

  3. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  4. Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    You, Sixian; Liu, Yuan; Arp, Zane; Zhao, Youbo; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.

    2017-07-01

    Docosanol is an over-the-counter topical agent that has proved to be one of the most effective therapies for treating herpes simplex labialis. However, the mechanism by which docosanol suppresses lesion formation remains poorly understood. To elucidate its mechanism of action, we investigated the uptake of docosanol in living cells using coherent anti-Stokes Raman scattering microscopy. Based on direct visualization of the deuterated docosanol, we observed highly concentrated docosanol inside living cells 24 h after drug treatment. In addition, different spatial patterns of drug accumulation were observed in different cell lines. In keratinocytes, which are the targeted cells of docosanol, the drug molecules appeared to be docking at the periphery of the cell membrane. In contrast, the drug molecules in fibroblasts appeared to accumulate in densely packed punctate regions throughout the cytoplasm. These results suggest that this molecular imaging approach is suitable for the longitudinal tracking of drug molecules in living cells to identify cell-specific trafficking and may also have implications for elucidating the mechanism by which docosanol suppresses lesion formation.

  5. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  6. Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Mark; May, Brian M.; Cabana, Jordi

    By unlocking the full performance capabilities of battery materials we require a thorough understanding of the underlying electrochemical mechanisms at a variety of length scales. A broad arsenal of X-ray microscopy and mapping techniques is now available to probe these processes down to the nanoscale. The tunable nature of X-ray sources allows for the extraction of chemical states through spectromicroscopy. The addition of phase contrast imaging can retrieve the complex-valued refraction of the material, giving an even more nuanced chemical picture. Tomography and coherent Bragg diffraction imaging provide a reconstructed three-dimensional volume of the specimen, as well as internal strainmore » information from the latter. There have been many insights into battery materials achieved through the creative use of these, and similar, methods. Experiments performed while the battery is being actively cycled reveal behavior that differs significantly from what is observed at equilibrium and metastable conditions. Furthermore, there are planned improvements to X-ray source brightness and coherence will extend these techniques by alleviating the current trade-off in time, chemical, and spatial resolution.« less

  7. Spectral domain phase microscopy: a new tool for measuring cellular dynamics and cytoplasmic flow

    NASA Astrophysics Data System (ADS)

    McDowell, Emily J.; Choma, Michael A.; Ellerbee, Audrey K.; Izatt, Joseph A.

    2005-03-01

    Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved interferometric phase information via coherence gating. Here a phase sensitive technique called spectral domain phase microscopy (SDPM) is presented. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity. This sensitivity is made possible by the inherent phase stability of spectral domain OCT combined with common-path interferometry. The theory that underlies this technique is presented, the sensitivity of the technique is demonstrated by the measurement of the thermal expansion coefficient of borosilicate glass, and the response of an Amoeba proteus to puncture of its cell membrane is measured. We also exploit the phase stability of SDPM to perform Doppler flow imaging of cytoplasmic streaming in A. proteus. We show reversal of cytoplasmic flow in response to stimuli, and we show that the cytoplasmic flow is laminar (i.e. parabolic) in nature. We are currently investigating the use of SDPM in a variety of different cell types.

  8. In vivo time-serial evaluation of laser-induced choroidal neovascularization in rats simultaneously using photoacoustic microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dai, Cuixia; Li, Lin; Liu, Wenlu; Wang, Fenghua; Zhou, Chuanqing

    2018-02-01

    Determination of the precise location and degree of condition of the Choroidal neovascularization (CNV) lesion is essential for diagnosation Neovascular age-related macular degeneration (AMD) and evaluation the efficacy of treatment. Given the complimentary contrast mechanisms of Photoacoustic microscopy (PAM) and Optical coherence tomography (OCT), the combination of PAM and OCT imaging could potentially provide much sensitive and specific detection of CNV. In this paper, we validated the opportunity to evaluate the information of laser-induced CNV and presented the in vivo time-serial evaluation of the CNV by simultaneously using PAM and OCT techniques. In vivo PAM and OCT examination was performed after laser photocoagulation applied to the rat fundus at days 1, 3, 5, 7, 14. Time-serial results showed that CNV in rats increased to its maximum at day 7 and decreased at day 14. Evolution of CNV information was given in PAM images with a high contrast and details of high axial resolution OCT images were simultaneously given to show the hyperreflective reaction progress.

  9. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    PubMed

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.

  10. Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Ellerbee, Audrey K.; Yazdanfar, Siavash; Izatt, Joseph A.

    2006-03-01

    Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.

  11. Carbon contamination analysis and its effect on extreme ultra violet mask imaging performance using coherent scattering microscopy/in-situ accelerated contamination system.

    PubMed

    Jeong, Chang Young; Lee, Sangsul; Doh, Jong Gul; Lee, Jae Uk; Cha, Han-sun; Nichols, William T; Lee, Dong Gun; Kim, Seong Sue; Cho, Han Ku; Rah, Seung-yu; Ahn, Jinho

    2011-07-01

    The coherent scattering microscopy/in-situ accelerated contamination system (CSM/ICS) is a developmental metrology tool designed to analyze the impact of carbon contamination on the imaging performance. It was installed at 11B EUVL beam-line of the Pohang Accelerator Laboratory (PAL). Monochromatized 13.5 nm wavelength beam with Mo/Si multilayer mirrors and zirconium filters was used. The CSM/ICS is composed of the CSM for measuring imaging properties and the ICS for implementing acceleration of carbon contamination. The CSM has been proposed as an actinic inspection technique that records the coherent diffraction pattern from the EUV mask and reconstructs its aerial image using a phase retrieval algorithm. To improve the CSM measurement accuracy, optical and electrical noises of main chamber were minimized. The background noise level measured by CCD camera was approximately 8.5 counts (3 sigma) when the EUV beam was off. Actinic CD measurement repeatability was <1 A (3 sigma) at 17.5 nm line and space pattern. The influence of carbon contamination on the imaging properties can be analyzed by transferring EUV mask to CSM imaging center position after executing carbon contamination without a fine alignment system. We also installed photodiode and ellipsometry for in-situ reflectivity and thickness measurement. This paper describes optical design and system performance observed during the first phase of integration, including CSM imaging performance and carbon contamination analysis results.

  12. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  13. Ptychographic imaging with partially coherent plasma EUV sources

    NASA Astrophysics Data System (ADS)

    Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa

    2017-12-01

    We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.

  14. Fast Optimization of LiMgMnOx/La2O3 Catalysts for the Oxidative Coupling of Methane.

    PubMed

    Li, Zhinian; He, Lei; Wang, Shenliang; Yi, Wuzhong; Zou, Shihui; Xiao, Liping; Fan, Jie

    2017-01-09

    The development of efficient catalyst for oxidative coupling of methane (OCM) reaction represents a grand challenge in direct conversion of methane into other useful products. Here, we reported that a newly developed combinatorial approach can be used for ultrafast optimization of La 2 O 3 -based multicomponent metal oxide catalysts in OCM reaction. This new approach integrated inkjet printing assisted synthesis (IJP-A) with multidimensional group testing strategy (m-GT) tactfully takes the place of conventionally high-throughput synthesis-and-screen experiment. Just within a week, 2048 formulated LiMgMnO x -La 2 O 3 catalysts in a 64·8·8·8·8 = 262 144 compositional space were fabricated by IJP-A in a four-round synthesis-and-screen process, and an optimized formulation has been successfully identified through only 4·8 = 32 times of tests via m-GT screening strategy. The screening process identifies the most promising ternary composition region is Li 0-0.48 Mg 0-6.54 Mn 0-0.62 -La 100 O x with an external C 2 yield of 10.87% at 700 °C. The yield of C 2 is two times as high as the pure nano-La 2 O 3 . The good performance of the optimized catalyst formulation has been validated by the manual preparation, which further prove the effectiveness of the new combinatorial methodology in fast discovery of heterogeneous catalyst.

  15. Multimodal Nonlinear Optical Microscopy

    PubMed Central

    Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin

    2013-01-01

    Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747

  16. PtyNAMi: ptychographic nano-analytical microscope at PETRA III: interferometrically tracking positions for 3D x-ray scanning microscopy using a ball-lens retroreflector

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Seyrich, Martin; Kahnt, Maik; Botta, Stephan; Döhrmann, Ralph; Falkenberg, Gerald; Garrevoet, Jan; Lyubomirskiy, Mikhail; Scholz, Maria; Schropp, Andreas; Wittwer, Felix

    2017-09-01

    In recent years, ptychography has revolutionized x-ray microscopy in that it is able to overcome the diffraction limit of x-ray optics, pushing the spatial resolution limit down to a few nanometers. However, due to the weak interaction of x rays with matter, the detection of small features inside a sample requires a high coherent fluence on the sample, a high degree of mechanical stability, and a low background signal from the x-ray microscope. The x-ray scanning microscope PtyNAMi at PETRA III is designed for high-spatial-resolution 3D imaging with high sensitivity. The design concept is presented with a special focus on real-time metrology of the sample position during tomographic scanning microscopy.

  17. Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.

    PubMed

    Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N

    2016-07-01

    This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This paper demonstrates the existence of high fractions of large γ' precipitate (several micrometres in diameter) that are coherent with their surrounding matrix grain, in a commercial γ-γ' nickel-based superalloy. Such a configuration is very surprising, because there is apparently no reason for the coherency of such particles. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. Dispersive Fourier transformation for megahertz detection of coherent stokes and anti-stokes Raman spectra

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.

    2017-11-01

    In many fields of study, from coherent Raman microscopy on living cells to time-resolved coherent Raman spectroscopy of gas-phase turbulence and combustion reaction dynamics, the need for the capability to time-resolve fast dynamical and nonrepetitive processes has led to the continued development of high-speed coherent Raman methods and new high-repetition rate laser sources, such as pulse-burst laser systems. However, much less emphasis has been placed on our ability to detect shot to shot coherent Raman spectra at equivalently high scan rates, across the kilohertz to megahertz regime. This is beyond the capability of modern scientific charge coupled device (CCD) cameras, for instance, as would be employed with a Czerny-Turner type spectrograph. As an alternative detection strategy with megahertz spectral detection rate, we demonstrate dispersive Fourier transformation detection of pulsed (∼90 ps) coherent Raman signals in the time-domain. Instead of reading the frequency domain signal out using a spectrometer and CCD, the signal is transformed into a time-domain waveform through dispersive Fourier transformation in a long single-mode fiber and read-out with a fast sampling photodiode and oscilloscope. Molecular O- and S-branch rotational sideband spectra from both N2 and H2 were acquired employing this scheme, and the waveform is fitted to show highly quantitative agreement with a molecular model. The total detection time for the rotational spectrum was 20 ns, indicating an upper limit to the detection frequency of ∼50 MHz, significantly faster than any other reported spectrally-resolved coherent anti-Stokes Raman detection strategy to date.

  19. Correlation between polarization sensitive optical coherence tomography and SHG microscopy in articular cartilage

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Ju, Myeong Jin; Huang, Lin; Tang, Shuo

    2017-02-01

    Polarization-sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are two imaging modalities with different resolutions, field-of-views (FOV), and contrasts, while they both have the capability of imaging collagen fibers in biological tissues. PS-OCT can measure the tissue birefringence which is induced by highly organized fibers while SHG can image the collagen fiber organization with high resolution. Articular cartilage, with abundant structural collagen fibers, is a suitable sample to study the correlation between PS-OCT and SHG microscopy. Qualitative conjecture has been made that the phase retardation measured by PS-OCT is affected by the relationship between the collagen fiber orientation and the illumination direction. Anatomical studies show that the multilayered architecture of articular cartilage can be divided into four zones from its natural surface to the subchondral bone: the superficial zone, the middle zone, the deep zone, and the calcified zone. The different zones have different collagen fiber orientations, which can be studied by the different slopes in the cumulative phase retardation in PS-OCT. An algorithm is developed based on the quantitative analysis of PS-OCT phase retardation images to analyze the microstructural features in swine articular cartilage tissues. This algorithm utilizes the depth-dependent slope changing of phase retardation A-lines to segment structural layers. The results show good consistency with the knowledge of cartilage morphology and correlation with the SHG images measured at selected depth locations. The correlation between PS-OCT and SHG microscopy shows that PS-OCT has the potential to analyze both the macro and micro characteristics of biological tissues with abundant collagen fibers and other materials that may cause birefringence.

  20. Imaging of Lipids in Microalgae with Coherent Anti-Stokes Raman Scattering Microscopy1[OPEN

    PubMed Central

    Cavonius, Lillie; Fink, Helen; Kiskis, Juris; Albers, Eva; Undeland, Ingrid; Enejder, Annika

    2015-01-01

    Microalgae have great prospects as a sustainable resource of lipids for refinement into nutraceuticals and biodiesel, which increases the need for detailed insights into their intracellular lipid synthesis/storage mechanisms. As an alternative strategy to solvent- and label-based lipid quantification techniques, we introduce time-gated coherent anti-Stokes Raman scattering (CARS) microscopy for monitoring lipid contents in living algae, despite strong autofluorescence from the chloroplasts, at approximately picogram and subcellular levels by probing inherent molecular vibrations. Intracellular lipid droplet synthesis was followed in Phaeodactylum tricornutum algae grown under (1) light/nutrient-replete (control [Ctrl]), (2) light-limited (LL), and (3) nitrogen-starved (NS) conditions. Good correlation (r2 = 0.924) was found between lipid volume data yielded by CARS microscopy and total fatty acid content obtained from gas chromatography-mass spectrometry analysis. In Ctrl and LL cells, micron-sized lipid droplets were found to increase in number throughout the growth phases, particularly in the stationary phase. During more excessive lipid accumulation, as observed in NS cells, promising commercial harvest as biofuels and nutritional lipids, several micron-sized droplets were present already initially during cultivation, which then fused into a single giant droplet toward stationary phase alongside with new droplets emerging. CARS microspectroscopy further indicated lower lipid fluidity in NS cells than in Ctrl and LL cells, potentially due to higher fatty acid saturation. This agreed with the fatty acid profiles gathered by gas chromatography-mass spectrometry. CARS microscopy could thus provide quantitative and semiqualitative data at the single-cell level along with important insights into lipid-accumulating mechanisms, here revealing two different modes for normal and excessive lipid accumulation. PMID:25583924

  1. Analytical transmission cross-coefficients for pink beam X-ray microscopy based on compound refractive lenses.

    PubMed

    Falch, Ken Vidar; Detlefs, Carsten; Snigirev, Anatoly; Mathiesen, Ragnvald H

    2018-01-01

    Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum. The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-coefficients, a compact analytical expression for the modulation transfer function of the system is obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical expressions for optimal numerical aperture, coherence ratio, and bandwidth are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. SRS in the single molecule limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.; Crampton, Kevin T.; Fast, Alexander; Apkarian, Vartkess A.

    2017-02-01

    We present combined surface-enhanced stimulated Raman scattering (SE-SRS) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) measurements on individual plasmonic antennas dressed with bipyridyl-ethylene molecules. By carefully optimizing the conditions for performing SE-SRS experiments, we have obtained stable and reproducible molecular surface-enhanced SRS spectra from single nano-antennas. Using surface-enhanced Raman scattering (SERS) and transmission electron microscopy of the same antennas, we confirm that the observed SE-SRS signals originate from only one or a few molecules. We highlight the physics of surface enhancement in the context of coherent Raman scattering and derive sensitivity parameters under the relevant conditions. The implications of single molecule SRS measurements are discussed.

  3. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    PubMed Central

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro-Temboury, Miguel R; Madsen, Charlotte Stahl; Vosch, Tom; Zigmantas, Donatas

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled to a specific vibrational mode, resulting in the concerted transfer of population and coherence between excited states on a sub-100 fs timescale. PMID:28548085

  4. Actinic Keratosis and Non-Invasive Diagnostic Techniques: An Update

    PubMed Central

    Casari, Alice; Chester, Johanna; Pellacani, Giovanni

    2018-01-01

    Actinic keratosis represents the earliest manifestation of non-melanoma skin cancer. Because of their risk of progression to invasive squamous cell carcinoma, an earlier diagnosis and treatment are mandatory. Their diagnosis sometimes could represent a challenge even for expert dermatologists. Dermoscopy, confocal laser microscopy and optical coherence tomography could help clinicians in diagnosis. PMID:29316678

  5. Vascular endothelial growth factor expression and inhibition in uveal melanoma cell lines

    PubMed Central

    Logan, Patrick; Burnier, Julia; Burnier, Miguel N.

    2013-01-01

    Background: Uveal melanoma (UM) is a disease that affects approximately five people per million in the United States. This disease metastasises predominantly to the liver, and treatment options following the clinical detection of these sequelae are limited. Vascular endothelial growth factor-A (VEGF-A) is the primary activator of tumour angiogenesis and functions by binding to VEGF-Receptor 2 (VEGF-R2) and is often required for tumour growth beyond 2–3 mm. The purpose of this study was to investigate the expression of VEGF-A and the primary VEGF-R2 in three UM cell lines. Furthermore, we investigated the effects of VEGF-A inhibition on receptor activation and production of other cytokines. Finally, the effects of VEGF-A inhibition on the proliferation, migration, and invasion in the cell lines were ascertained. Materials: Three UM cell lines (92.1, OCM-1, and UW-1) were incubated with and without the addition of 100 μg/mL of bevacizumab. VEGF-A expression under both conditions was determined by sandwich enzyme-linked immunosorbent assay (ELISA), and phosphorylated VEGF-R2 expression was determined using western blot. The effects of VEGF-A inhibition on 20 cytokines (IL-1a, IL-2, IL-5, IL-8, IL-12p70, GM-CSF, IFNy, CCL3, MMP-9, TNF-a, IL-1b, IL-4, IL-6, IL-10, IL-13, GRO, MCP-1, MIP-1b, and RANTES) were determined using a multiplex sandwich ELISA. Proliferation rates before and after treatment were evaluated via sulforhodamine B assay, and migration and invasion assays implementing the Boyden chamber technique, the latter with artificial extracellular matrix, were used to assess their respective abilities. The Student’s t-test was used to compare changes in cytokine expression following VEGF-A inhibition. Analysis of variance was used to compare changes in the functional abilities of three uveal melanoma cell lines following VEGF-A inhibition. A P-value < 0.05 was considered statistically significant. Results: All three cell lines produced copious amounts of VEGF-A in culture (92.1, 11785.5 ± 231.8 pg/μL; OCM-1, 4608.0 ± 324.0 pg/μL; UW-1, 8309.3 ± 634.5 pg/μL), which was reduced to undetectable levels following the administration of bevacizumab (P< 0.05). Similarly, detectable phosphorylated VEGF-R2 was present in all cells, which was reduced significantly in all cell lines following bevacizumab treatment (107525.2 ± 8602.0 versus 1024.5 ± 98.2, 46587.3 ± 4192.9 versus 12821.1 ± 1666.7, and 60394.3 ± 4026.4 versus 6908.2 ± 607.2; 92.1, OCM-1, and UW-1, respectively; P< 0.05). Of the cytokines investigated, only MMP-9 and CCL3 were ubiquitously altered across all three cell lines following bevacizumab treatment; they were upregulated (CCL3: 1072.50 ± 18.77 pg/mL versus 1281.00 ± 72.34 pg/mL; 22.5 ± 7.85 pg/mL versus 62.00 ± 9.16 pg/mL; 20.33 ± 6.35 pg/mL versus 35.00 ± 6.22 pg/mL; control versus bevacizumab; MMP-9: 25.50 ± 5.47 pg/mL versus 88.25 ± 13.38 pg/mL; 19.75 ± 4.14 pg/mL versus 45.25 ± 8.36 pg/mL; 3.25 ± 1.09 pg/mL versus 19.25 ± 3.77 pg/mL; control versus bevacizumab; 92.1, OCM-1, and UW-1, respectively; P< 0.05). Bevacizumab significantly reduced the proliferation of one cell line (92.1: 0.405 ± 0.012 versus 0.509 ± 0.033; bevacizumab versus control; values OD; P< 0.05), the migration of two cell lines (92.1: 0.071 ± 0.003 versus 0.115 ± 0.003; OCM-1: 0.049 ± 0.005 versus 0.117 ± 0.014; bevacizumab versus control; values OD; P< 0.05), and did not significantly affect invasion. Conclusion: Despite the significant reduction in phosphorylated VEGF-R2 levels, bevacizumab did not have a dramatic impact on the functional abilities of the three UM cell lines studied. Our results indicate that compensatory mechanisms, such as the upregulation of MMP-9 and CCL-3, following bevacizumab administration may mitigate its effects on these abilities. PMID:23914254

  6. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  7. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  8. Aharonov-Bohm Effect in the Photodetachment Microscopy of Hydrogen Negative Ions in an Electric Field

    NASA Astrophysics Data System (ADS)

    Wang, Dehua

    2014-09-01

    The Aharonov-Bohm (AB) effect in the photodetachment microscopy of the H- ions in an electric field has been studied on the basis of the semiclassical theory. After the H- ion is irradiated by a laser light, they provide a coherent electron source. When the detached electron is accelerated by a uniform electric field, two trajectories of a detached electron which run from the source to the same point on the detector, will interfere with each other and lead to an interference pattern in the photodetachment microscopy. After the solenoid is electrified beside the H- ion, even though no Lorentz force acts on the electron outside the solenoid, the photodetachment microscopy interference pattern on the detector is changed with the variation in the magnetic flux enclosed by the solenoid. This is caused by the AB effect. Under certain conditions, the interference pattern reaches the macroscopic dimensions and could be observed in a direct AB effect experiment. Our study can provide some predictions for the future experimental study of the AB effect in the photodetachment microscopy of negative ions.

  9. Enabling the detection of UV signal in multimodal nonlinear microscopy with catalogue lens components.

    PubMed

    Vogel, Martin; Wingert, Axel; Fink, Rainer H A; Hagl, Christian; Ganikhanov, Feruz; Pfeffer, Christian P

    2015-10-01

    Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Shedding new light on lipid functions with CARS and SRS microscopy

    PubMed Central

    Yu, Yong; Ramachandran, Prasanna V.; Wang, Meng C.

    2014-01-01

    Modern optical microscopy has granted biomedical scientists unprecedented access to the inner workings of a cell, and revolutionized our understanding of the molecular mechanisms underlying physiological and disease states. In spite of these advances, however, visualization of certain classes of molecules (e.g. lipids) at the sub-cellular level has remained elusive. Recently developed chemical imaging modalities – Coherent Anti-Stokes Raman Scattering (CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy – have helped bridge this gap. By selectively imaging the vibration of a specific chemical group, these non-invasive techniques allow high-resolution imaging of individual molecules in vivo, and circumvent the need for potentially perturbative extrinsic labels. These tools have already been applied to the study of fat metabolism, helping uncover novel regulators of lipid storage. Here we review the underlying principle of CARS and SRS microscopy, and discuss the advantages and caveats of each technique. We also review recent applications of these tools in the study of lipids as well as other biomolecules, and conclude with a brief guide for interested researchers to build and use CARS/SRS systems for their own research. PMID:24576891

  11. Corneal edema after phacoemulsification

    PubMed Central

    Sharma, Namrata; Singhal, Deepali; Nair, Sreelakshmi P; Sahay, Pranita; Sreeshankar, SS; Maharana, Prafulla Kumar

    2017-01-01

    Phacoemulsification is the most commonly performed cataract surgery in this era. With all the recent advances in investigations and management of cataract through phacoemulsification, most of the patients are able to achieve excellent visual outcome. Corneal edema after phacoemulsification in the immediate postoperative period often leads to patient dissatisfaction and worsening of outcome. Delayed onset corneal edema often warrants endothelial keratoplasty. This review highlights the etiopathogenesis, risk factors, and management of corneal edema in the acute phase including descemet's membrane detachment (DMD) and toxic anterior segment syndrome. Various investigative modalities such as pachymetry, specular microscopy, anterior segment optical coherence tomography, and confocal microscopy have been discussed briefly. PMID:29208818

  12. Analysis of off-axis incoherent digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.

  13. Observation of the immune response of cells and tissue through multimodal label-free microscopy

    NASA Astrophysics Data System (ADS)

    Pavillon, Nicolas; Smith, Nicholas I.

    2017-02-01

    We present applications of a label-free approach to assess the immune response based on the combination of interferometric microscopy and Raman spectroscopy, which makes it possible to simultaneously acquire morphological and molecular information of live cells. We employ this approach to derive statistical models for predicting the activation state of macrophage cells based both on morphological parameters extracted from the high-throughput full-field quantitative phase imaging, and on the molecular content information acquired through Raman spectroscopy. We also employ a system for 3D imaging based on coherence gating, enabling specific targeting of the Raman channel to structures of interest within tissue.

  14. Microscopy illumination engineering using a low-cost liquid crystal display.

    PubMed

    Guo, Kaikai; Bian, Zichao; Dong, Siyuan; Nanda, Pariksheet; Wang, Ying Min; Zheng, Guoan

    2015-02-01

    Illumination engineering is critical for obtaining high-resolution, high-quality images in microscope settings. In a typical microscope, the condenser lens provides sample illumination that is uniform and free from glare. The associated condenser diaphragm can be manually adjusted to obtain the optimal illumination numerical aperture. In this paper, we report a programmable condenser lens for active illumination control. In our prototype setup, we used a $15 liquid crystal display as a transparent spatial light modulator and placed it at the back focal plane of the condenser lens. By setting different binary patterns on the display, we can actively control the illumination and the spatial coherence of the microscope platform. We demonstrated the use of such a simple scheme for multimodal imaging, including bright-field microscopy, darkfield microscopy, phase-contrast microscopy, polarization microscopy, 3D tomographic imaging, and super-resolution Fourier ptychographic imaging. The reported illumination engineering scheme is cost-effective and compatible with most existing platforms. It enables a turnkey solution with high flexibility for researchers in various communities. From the engineering point-of-view, the reported illumination scheme may also provide new insights for the development of multimodal microscopy and Fourier ptychographic imaging.

  15. Solving the inverse scattering problem in reflection-mode dynamic speckle-field phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; So, Peter T. C.; Yaqoob, Zahid; Jin, Di; Hosseini, Poorya; Kuang, Cuifang; Singh, Vijay Raj; Kim, Yang-Hyo; Dasari, Ramachandra R.

    2017-02-01

    Most of the quantitative phase microscopy systems are unable to provide depth-resolved information for measuring complex biological structures. Optical diffraction tomography provides a non-trivial solution to it by 3D reconstructing the object with multiple measurements through different ways of realization. Previously, our lab developed a reflection-mode dynamic speckle-field phase microscopy (DSPM) technique, which can be used to perform depth resolved measurements in a single shot. Thus, this system is suitable for measuring dynamics in a layer of interest in the sample. DSPM can be also used for tomographic imaging, which promises to solve the long-existing "missing cone" problem in 3D imaging. However, the 3D imaging theory for this type of system has not been developed in the literature. Recently, we have developed an inverse scattering model to rigorously describe the imaging physics in DSPM. Our model is based on the diffraction tomography theory and the speckle statistics. Using our model, we first precisely calculated the defocus response and the depth resolution in our system. Then, we further calculated the 3D coherence transfer function to link the 3D object structural information with the axially scanned imaging data. From this transfer function, we found that in the reflection mode excellent sectioning effect exists in the low lateral spatial frequency region, thus allowing us to solve the "missing cone" problem. Currently, we are working on using this coherence transfer function to reconstruct layered structures and complex cells.

  16. Holographic microscopy for in situ studies of microorganism motility

    NASA Astrophysics Data System (ADS)

    Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.

    2011-12-01

    Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are computationally intensive to reconstruct images from, so the technology to store and process large amounts of data are required. We have successfully deployed a digital in-line holographic microscope in lakes of the Canadian High Arctic and the open ocean. We present characteristic data sets from these experiments, as well as discussing how data acquisition and instrumentation can be improved. A design for a new type of autonomous, submersible holographic microscope incorporating an off-axis reference beam is presented, and future plans for controlled microbe-polymer studies are detailed.

  17. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGES

    Beetz, T.; Howells, M. R.; Jacobsen, C.; ...

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  18. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy

    PubMed Central

    Hanninen, Adam; Shu, Ming Wai; Potma, Eric O.

    2017-01-01

    Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family. PMID:28966861

  19. Temporal overlap estimation based on interference spectrum in CARS microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  20. Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy

    NASA Astrophysics Data System (ADS)

    Sencan, Ikbal; Coskun, Ahmet F.; Sikora, Uzair; Ozcan, Aydogan

    2014-01-01

    Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.

  1. Open quantum dots—probing the quantum to classical transition

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Burke, A. M.; Akis, R.; Brunner, R.; Day, T. E.; Meisels, R.; Kuchar, F.; Bird, J. P.; Bennett, B. R.

    2011-04-01

    Quantum dots provide a natural system in which to study both quantum and classical features of transport. As a closed testbed, they provide a natural system with a very rich set of eigenstates. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which classically would compose a mixed phase space. The manner of this breakup is governed strongly by Zurek's decoherence theory, and the remaining coherent states possess all the properties of his pointer states. These states are naturally studied via traditional magnetotransport at low temperatures. More recently, we have used scanning gate (conductance) microscopy to probe the nature of the coherent states, and have shown that families of states exist through the spectrum in a manner consistent with quantum Darwinism. In this review, we discuss the nature of the various states, how they are formed, and the signatures that appear in magnetotransport and general conductance studies.

  2. Single-electron pulses for ultrafast diffraction

    PubMed Central

    Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.

    2010-01-01

    Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681

  3. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study on the limits and a numerical study of nonbinary and phase objects.

    PubMed

    Latychevskaia, T; Chushkin, Y; Fink, H-W

    2016-10-01

    In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout

    NASA Astrophysics Data System (ADS)

    Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali

    2017-09-01

    Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.

  5. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortuna, S. V., E-mail: s-fortuna@ispms.ru; Ivanov, K. V., E-mail: ikv@ispms.ru; Eliseev, A. A., E-mail: alan@ispms.ru

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  6. Visible light spectral domain optical coherence microscopy system for ex vivo imaging

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Antonia; Harper, Danielle J.; Augustin, Marco; Eugui, Pablo; Fialová, Stanislava; Woehrer, Adelheid; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-02-01

    A visible light spectral domain optical coherence microscopy system operating in the wavelength range of 450-680 nm was developed. The resulting large wavelength range of 230 nm enabled an ultrahigh axial resolution of 0.88μm in tissue. The setup consisted of a Michelson interferometer combined with a homemade spectrometer with a spectral resolution of 0.03 nm. Scanning of 1 x 1 mm2 and 0.5 x 0.5 mm2 areas was performed by an integrated microelectromechanical mirror. After scanning the light beam is focused onto the tissue by a commercial objective with a 10 x magnification, resulting in a transverse resolution of 2 μm . Specification measurements showed that a -89 dB sensitivity with a 24 dB/mm roll-off could be achieved with the system. First of all the capabilities of the system were tested by investigating millimeter paper, tape and the USAF (US Air Force) 1951 resolution test target. Finally cerebral tissues from non-pathological and Alzheimer's disease affected brains were investigated. The results showed that structures, such as white and gray matter, could be distinguished. Furthermore a first effort was made to differentiate Alzheimer's disease from healthy brain tissue.

  7. Microstructure and Precipitate's Characterization of the Cu-Ni-Si-P Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Tian, Baohong; Volinsky, Alex A.; Sun, Huili; Chai, Zhe; Liu, Ping; Chen, Xiaohong; Liu, Yong

    2016-04-01

    Microstructure of the Cu-Ni-Si-P alloy was investigated by transmission electron microscopy (TEM). The alloy had 551 MPa tensile strength, 226 HV hardness, and 36% IACS electrical conductivity after 80% cold rolling and aging at 450 °C for 2 h. Under the same aging conditions, but without the cold rolling, the strength, hardness, and electrical conductivity were 379 MPa, 216 HV, and 32% IACS, respectively. The precipitates identified by TEM characterization were δ-Ni2Si. Some semi-coherent spherical precipitates with a typical coffee bean contrast were found after aging for 48 h at 450 °C. The average diameter of the observed semi-coherent precipitates is about 5 nm. The morphology of the fracture surface was observed by scanning electron microscopy. All samples showed typical ductile fracture. The addition of P refined the grain size and increased the nucleation rate of the precipitates. The precipitated phase coarsening was inhibited by the small additions of P. After aging, the Cu-Ni-Si-P alloy can gain excellent mechanical properties with 804 MPa strength and 49% IACS conductivity. This study aimed to optimize processing conditions of the Cu-Ni-Si-P alloys.

  8. Handheld optical coherence tomography-reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor; Yélamos, Oriol; Chen, Chih-Shan J.; Maguluri, Gopi; Cordova, Miguel A.; Sahu, Aditi; Park, Jesung; Fox, William; Alessi-Fox, Christi; Rajadhyaksha, Milind

    2017-07-01

    We present a hand-held implementation and preliminary evaluation of a combined optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) probe for detecting and delineating the margins of basal cell carcinomas (BCCs) in human skin in vivo. A standard OCT approach (spectrometer-based) with a central wavelength of 1310 nm and 0.11 numerical aperture (NA) was combined with a standard RCM approach (830-nm wavelength and 0.9 NA) into a common path hand-held probe. Cross-sectional OCT images and enface RCM images are simultaneously displayed, allowing for three-dimensional microscopic assessment of tumor morphology in real time. Depending on the subtype and depth of the BCC tumor and surrounding skin conditions, OCT and RCM imaging are able to complement each other, the strengths of each helping overcome the limitations of the other. Four representative cases are summarized, out of the 15 investigated in a preliminary pilot study, demonstrating how OCT and RCM imaging may be synergistically combined to more accurately detect BCCs and more completely delineate margins. Our preliminary results highlight the potential benefits of combining the two technologies within a single probe to potentially guide diagnosis as well as treatment of BCCs.

  9. Detection of cervical intraepithelial neoplasia by using optical coherence tomography in combination with microscopy

    NASA Astrophysics Data System (ADS)

    Gallwas, Julia; Jalilova, Aydan; Ladurner, Roland; Kolben, Theresa Maria; Kolben, Thomas; Ditsch, Nina; Homann, Christian; Lankenau, Eva; Dannecker, Christian

    2017-01-01

    Optical coherence tomography (OCT) is a noninvasive high-resolution imaging technique that permits the detection of cancerous and precancerous lesions of the uterine cervix. The purpose of this study was to evaluate a new system that integrates an OCT device into a microscope. OCT images were taken from loop electrosurgical excision procedure (LEEP) specimens under microscopic guidance. The images were blinded with respect to their origin within the microscopic image and analyzed independently by two investigators using initially defined criteria and later compared to the corresponding histology. Sensitivity and specificity were calculated with respect to the correct identification of high-grade squamous intraepithelial lesions (HSIL). The interinvestigator agreement was assessed by using Cohen's kappa statistics. About 160 OCT images were obtained from 20 LEEP specimens. Sixty randomly chosen images were used to define reproducible criteria for evaluation. The assessment of the remaining 100 images showed a sensitivity of 88% (second investigator 84%) and a specificity of 69% (65%) in detecting HSIL. Surgical microscopy-guided OCT appears to be a promising technique for immediate assessment of microanatomical changes. In the gynecological setting, the combination of OCT with a colposcope may improve the detection of high-grade squamous intraepithelial lesions.

  10. 4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Jannasch, Anett; Faak, Saskia; Waldow, Thomas; Koch, Edmund

    2015-07-01

    The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy. ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.

  11. Spectral Interferometry with Electron Microscopes

    PubMed Central

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  12. Noise models for low counting rate coherent diffraction imaging.

    PubMed

    Godard, Pierre; Allain, Marc; Chamard, Virginie; Rodenburg, John

    2012-11-05

    Coherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data.

  13. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited

    PubMed Central

    Xu, Peisheng; Gullotti, Emily; Tong, Ling; Highley, Christopher B.; Errabelli, Divya R.; Hasan, Tayyaba; Cheng, Ji-Xin; Kohane, Daniel S.; Yeo, Yoon

    2008-01-01

    We reexamined the cellular drug delivery mechanism by poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) to determine their utility and limitations as an intracellular drug delivery system. First, we prepared PLGA NPs which physically encapsulated Nile red (a hydrophobic fluorescent dye), in accordance with the usual procedure for labeling PLGA NPs, incubated them with mesothelial cells, and observed an increase in the intracellular fluorescence. We then prepared NPs from PLGA chemically conjugated to a fluorescent dye and observed their uptake by the mesothelial cells using confocal microscopy. We also used Coherent Anti-Stokes Raman Scattering (CARS) microscopy to image cellular uptake of unlabeled PLGA NPs. Results of this study coherently suggest that PLGA NPs (i) are not readily taken up by cells, but (ii) deliver the payload to cells by extracellular drug release and/or direct drug transfer to contacting cells, which are contrasted with the prevalent view. From this alternative standpoint, we analyzed cytotoxicities of doxorubicin and paclitaxel delivered by PLGA NPs and compared with those of free drugs. Finally, we revisit previous findings in the literature and discuss potential strategies to achieve efficient drug delivery to the target tissues using PLGA NPs. PMID:19035785

  14. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  15. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  16. Precipitation of coherent Ni{sub 2}(Cr, W) superlattice in an Ni–Cr–W superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiangyu; Hu, Rui, E-mail: rhu@nwpu.edu.cn; Zhang, Tiebang

    2016-01-15

    It is demonstrated that a nanometer-sized Ni{sub 2}(Cr, W) superlattice with a Pt{sub 2}Mo-type structure can precipitate in an Ni–Cr–W alloy by means of a simple aging treatment at 550 °C. The dark-field image of short-range order domains has been found for the first time experimentally. The mechanism of short-range order to long-range order transformation has been revealed based on transmission electron microscopy result and static concentration waves theory and found to be continuous ordering. The randomness of the transformation of static concentration waves leads to equiprobable occurrence of the different variants. The transformation of short-range order to long-range ordermore » gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W) superlattice. The interfaces between Ni{sub 2}(Cr, W) and Ni-based matrix and the different variants of Ni{sub 2}(Cr, W) have been investigated by high resolution transmission electron microscopy. The results reveal that the interfaces between Ni{sub 2}(Cr, W) and surrounding matrix are coherent at the atomic scale. - Highlights: • The DF image of SRO cluster has been found for the first time experimentally. • The transformation of SRO to LRO gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W). • Variants of Ni{sub 2}(Cr, W) occur equiprobably. • The interfaces between Ni{sub 2}(Cr, W) and matrix are coherent at the atomic scale.« less

  17. Imaging of single retinal ganglion cell with differential interference contrast microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oh, Juyeong; Kim, Yu Jeong; Kim, Chul-Ki; Lee, Taik Jin; Seo, Mina; Lee, Seok; Woo, Deok Ha; Jun, Seong Chan; Park, Ki-Ho; Kim, Seok Hwan; Kim, Jae Hun

    2017-02-01

    Glaucoma is a progressive optic neuropathy, characterized by the selective loss of retinal ganglion cells (RGCs). Therefore, monitoring the change of number or morphology of RGC is essential for the early detection as well as investigation of pathophysiology of glaucoma. Since RGC layer is transparent and hyporeflective, the direct optical visualization of RGCs has not been successful so far. Therefore, glaucoma evaluation mostly depends on indirect diagnostic methods such as the evaluation of optic disc morphology or retinal nerve fiber layer thickness measurement by optical coherence tomography. We have previously demonstrated single photoreceptor cell imaging with differential interference contrast (DIC) microscopy. Herein, we successfully visualized single RGC using DIC microscopy. Since RGC layer is much less reflective than photoreceptor layer, various techniques including the control of light wavelength and bandwidth using a tunable band pass filter were adopted to reduce the chromatic aberration in z-axis for higher and clearer resolution. To verify that the imaged cells were the RGCs, the flat-mounted retina of Sprague-Dawley rat, in which the RGCs were retrogradely labeled with fluorescence, was observed by both fluorescence and DIC microscopies for direct comparison. We have confirmed that the cell images obtained by fluorescence microscopy were perfectly matched with cell images by DIC microscopy. As conclusion, we have visualized single RGC with DIC microscopy, and confirmed with fluorescence microscopy.

  18. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  19. Corrosion Experiments Using Spherical Uranium Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G. L.; Siekhaus, W. J.; Teslich, N. E.

    2017-02-01

    Corrosion experiments using spherical U powders are continuing with scanning electron microscopy (SEM) showing that the particles are highly textured, 5 m to 25 m diameters with 4% larger particles that are fused smaller particles. This U has a high specific surface area with no corners or back-sides, is well annealed with no machining work, and coated with a coherent oxide film, 30 nm to 300 nm thick. Exposure of this powder to low vapor pressure H 2O in the absence of O 2, i.e., a vacuum desiccator, resulted in a coherent oxide film growth of ~1 m/y, ~ 10Xmore » the growth rate in ambient air, displaying fracture along the growth plane at ~300 nm.« less

  20. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  1. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  2. Performance evaluation of Bragg coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Öztürk, H.; Huang, X.; Yan, H.; Robinson, I. K.; Noyan, I. C.; Chu, Y. S.

    2017-10-01

    In this study, we present a numerical framework for modeling three-dimensional (3D) diffraction data in Bragg coherent diffraction imaging (Bragg CDI) experiments and evaluating the quality of obtained 3D complex-valued real-space images recovered by reconstruction algorithms under controlled conditions. The approach is used to systematically explore the performance and the detection limit of this phase-retrieval-based microscopy tool. The numerical investigation suggests that the superb performance of Bragg CDI is achieved with an oversampling ratio above 30 and a detection dynamic range above 6 orders. The observed performance degradation subject to the data binning processes is also studied. This numerical tool can be used to optimize experimental parameters and has the potential to significantly improve the throughput of Bragg CDI method.

  3. Multimodality optical imaging of embryonic heart microstructure

    PubMed Central

    Yelin, Ronit; Yelin, Dvir; Oh, Wang-Yuhl; Yun, Seok H.; Boudoux, Caroline; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2009-01-01

    Study of developmental heart defects requires the visualization of the microstructure and function of the embryonic myocardium, ideally with minimal alterations to the specimen. We demonstrate multiple endogenous contrast optical techniques for imaging the Xenopus laevis tadpole heart. Each technique provides distinct and complementary imaging capabilities, including: 1. 3-D coherence microscopy with subcellular (1 to 2 µm) resolution in fixed embryos, 2. real-time reflectance confocal microscopy with large penetration depth in vivo, and 3. ultra-high speed (up to 900 frames per second) that enables real-time 4-D high resolution imaging in vivo. These imaging modalities can provide a comprehensive picture of the morphologic and dynamic phenotype of the embryonic heart. The potential of endogenous-contrast optical microscopy is demonstrated for investigation of the teratogenic effects of ethanol. Microstructural abnormalities associated with high levels of ethanol exposure are observed, including compromised heart looping and loss of ventricular trabecular mass. PMID:18163837

  4. Multimodality optical imaging of embryonic heart microstructure.

    PubMed

    Yelin, Ronit; Yelin, Dvir; Oh, Wang-Yuhl; Yun, Seok H; Boudoux, Caroline; Vakoc, Benjamin J; Bouma, Brett E; Tearney, Guillermo J

    2007-01-01

    Study of developmental heart defects requires the visualization of the microstructure and function of the embryonic myocardium, ideally with minimal alterations to the specimen. We demonstrate multiple endogenous contrast optical techniques for imaging the Xenopus laevis tadpole heart. Each technique provides distinct and complementary imaging capabilities, including: 1. 3-D coherence microscopy with subcellular (1 to 2 microm) resolution in fixed embryos, 2. real-time reflectance confocal microscopy with large penetration depth in vivo, and 3. ultra-high speed (up to 900 frames per second) that enables real-time 4-D high resolution imaging in vivo. These imaging modalities can provide a comprehensive picture of the morphologic and dynamic phenotype of the embryonic heart. The potential of endogenous-contrast optical microscopy is demonstrated for investigation of the teratogenic effects of ethanol. Microstructural abnormalities associated with high levels of ethanol exposure are observed, including compromised heart looping and loss of ventricular trabecular mass.

  5. Assessment of fibrotic liver disease with multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Lin, Jian; Yu, Hanry; Huang, Zhiwei

    2010-02-01

    Liver fibrosis is the excessive accumulation of extracellular matrix proteins such as collagens, which may result in cirrhosis, liver failure, and portal hypertension. In this study, we apply a multimodal nonlinear optical microscopy platform developed to investigate the fibrotic liver diseases in rat models established by performing bile duct ligation (BDL) surgery. The three nonlinear microscopy imaging modalities are implemented on the same sectioned tissues of diseased model sequentially: i.e., second harmonic generation (SHG) imaging quantifies the contents of the collagens, the two-photon excitation fluorescence (TPEF) imaging reveals the morphology of hepatic cells, while coherent anti-Stokes Raman scattering (CARS) imaging maps the distributions of fats or lipids quantitatively across the tissue. Our imaging results show that during the development of liver fibrosis (collagens) in BDL model, fatty liver disease also occurs. The aggregated concentrations of collagen and fat constituents in liver fibrosis model show a certain correlationship between each other.

  6. Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation

    PubMed Central

    Downes, Andrew; Mouras, Rabah; Elfick, Alistair

    2010-01-01

    There is a requirement for a noninvasive technique to monitor stem cell differentiation. Several candidates based on optical spectroscopy are discussed in this review: Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and coherent anti-Stokes Raman scattering (CARS) microscopy. These techniques are briefly described, and the ability of each to distinguish undifferentiated from differentiated cells is discussed. FTIR spectroscopy has demonstrated its ability to distinguish between stem cells and their derivatives. Raman spectroscopy shows a clear reduction in DNA and RNA concentrations during embryonic stem cell differentiation (agreeing with the well-known reduction in the nucleus to cytoplasm ratio) and also shows clear increases in mineral content during differentiation of mesenchymal stem cells. CARS microscopy can map these DNA, RNA, and mineral concentrations at high speed, and Mutliplex CARS spectroscopy/microscopy is highlighted as the technique with most promise for future applications. PMID:20182537

  7. LASER BIOLOGY AND MEDICINE: Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation

    NASA Astrophysics Data System (ADS)

    Fedosov, I. V.; Tuchin, Valerii V.; Galanzha, E. I.; Solov'eva, A. V.; Stepanova, T. V.

    2002-11-01

    The direction-sensitive method of microflow velocity measurements based on the space — time correlation properties of the dynamic speckle field is described and used for in vivo monitoring of lymph flow in the vessels of rat mesentery. The results of measurements are compared with the data obtained from functional video microscopy of the microvessel region.

  8. Multifocal interferometric synthetic aperture microscopy

    PubMed Central

    Xu, Yang; Chng, Xiong Kai Benjamin; Adie, Steven G.; Boppart, Stephen A.; Scott Carney, P.

    2014-01-01

    There is an inherent trade-off between transverse resolution and depth of field (DOF) in optical coherence tomography (OCT) which becomes a limiting factor for certain applications. Multifocal OCT and interferometric synthetic aperture microscopy (ISAM) each provide a distinct solution to the trade-off through modification to the experiment or via post-processing, respectively. In this paper, we have solved the inverse problem of multifocal OCT and present a general algorithm for combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a regularized combination of the resampled datasets to bring advantages of both multifocal OCT and ISAM to achieve optimal transverse resolution, extended effective DOF and improved signal-to-noise ratio. We present theory, simulation and experimental results. PMID:24977909

  9. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy.

    PubMed

    Binding, Jonas; Ben Arous, Juliette; Léger, Jean-François; Gigan, Sylvain; Boccara, Claude; Bourdieu, Laurent

    2011-03-14

    Two-photon laser scanning microscopy (2PLSM) is an important tool for in vivo tissue imaging with sub-cellular resolution, but the penetration depth of current systems is potentially limited by sample-induced optical aberrations. To quantify these, we measured the refractive index n' in the somatosensory cortex of 7 rats in vivo using defocus optimization in full-field optical coherence tomography (ff-OCT). We found n' to be independent of imaging depth or rat age. From these measurements, we calculated that two-photon imaging beyond 200 µm into the cortex is limited by spherical aberration, indicating that adaptive optics will improve imaging depth.

  10. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  11. Seeing cilia: imaging modalities for ciliary motion and clinical connections.

    PubMed

    Peabody, Jacelyn E; Shei, Ren-Jay; Bermingham, Brent M; Phillips, Scott E; Turner, Brett; Rowe, Steven M; Solomon, George M

    2018-06-01

    The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision medicine. In this review, we provide an overview of ciliary motion, imaging modalities, and ciliopathic diseases of the respiratory system including primary ciliary dyskinesia, cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis.

  12. Validation of nonlinear interferometric vibrational imaging as a molecular OCT technique by the use of Raman microscopy

    NASA Astrophysics Data System (ADS)

    Benalcazar, Wladimir A.; Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B.; Boppart, Stephen A.

    2009-02-01

    We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal configuration allows the acquisition of 3D images based on endogenous molecular signatures. Images from both phantom and mammary tissues have been acquired by this instrument and its spectrum is compared with its spontaneous Raman signatures.

  13. A journey through the microscopic ages of DNA replication.

    PubMed

    Reinhart, Marius; Cardoso, M Cristina

    2017-05-01

    Scientific discoveries and technological advancements are inseparable but not always take place in a coherent chronological manner. In the next, we will provide a seemingly unconnected and serendipitous series of scientific facts that, in the whole, converged to unveil DNA and its duplication. We will not cover here the many and fundamental contributions from microbial genetics and in vitro biochemistry. Rather, in this journey, we will emphasize the interplay between microscopy development culminating on super resolution fluorescence microscopy (i.e., nanoscopy) and digital image analysis and its impact on our understanding of DNA duplication. We will interlace the journey with landmark concepts and experiments that have brought the cellular DNA replication field to its present state.

  14. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the extended samples' surfaces can be visualized with a nanoscale axial resolution providing topographic information. Finally, a platform for coherently interrogating single molecules is presented. Single-molecule limit SE-CARS on non-resonant molecules is achieved by means of 3D local field confinement in the nanojunctions between two spherical gold nanoparticles. Localized plasmon resonance of the dimer nanostructure confines the probe volume down to 1 nm3 and provides the local field enhancement necessary to reach single-molecule detection limit. Nonlinear excitation of Raman vibrations in SE-CARS microspectroscopy allows for higher image acquisition rates than in conventionally used single-molecule surface enhanced Raman spectroscopy (SERS). Therefore, data throughput is significantly improved while preserving spectral information despite the presence of the metal. Data simultaneously acquired from hundreds of nanoantennas allows to establish the peak enhancement factor from the observed count rates and define the maximum allowed local-field that preserves the integrity of the antenna. These results are paramount for the future design of time resolved single-molecule studies with multiple pulsed laser excitations, required for single-molecule coherence manipulation and quantum computing.

  15. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  16. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres

    NASA Astrophysics Data System (ADS)

    Skala, Melissa C.; Crow, Matthew J.; Wax, Adam; Izatt, Joseph A.

    2009-02-01

    Molecular imaging is a powerful tool for investigating disease processes and potential therapies in both in vivo and in vitro systems. However, high resolution molecular imaging has been limited to relatively shallow penetration depths that can be accessed with microscopy. Optical coherence tomography (OCT) is an optical analogue to ultrasound with relatively good penetration depth (1-2 mm) and resolution (~1-10 μm). We have developed and characterized photothermal OCT as a molecular contrast mechanism that allows for high resolution molecular imaging at deeper penetration depths than microscopy. Our photothermal system consists of an amplitude-modulated heating beam that spatially overlaps with the focused spot of the sample arm of a spectral-domain OCT microscope. Validation experiments in tissue-like phantoms containing gold nanospheres that absorb at 532 nm revealed a sensitivity of 14 parts per million nanospheres (weight/weight) in a tissue-like environment. The nanospheres were then conjugated to anti-EGFR, and molecular targeting was confirmed in cells that over-express EGFR (MDA-MB-468) and cells that express low levels of EGFR (MDA-MB-435). Molecular imaging in three-dimensional tissue constructs was confirmed with a significantly lower photothermal signal (p<0.0001) from the constructs composed of cells that express low levels of EGFR compared to the over-expressing cell constructs (300% signal increase). This technique could potentially augment confocal and multiphoton microscopy as a method for deep-tissue, depth-resolved molecular imaging with relatively high resolution and target sensitivity, without photobleaching or cytotoxicity.

  17. Subtle changes in myelination due to childhood experiences: label-free microscopy to infer nerve fibers morphology and myelination in brain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gasecka, Alicja; Tanti, Arnaud; Lutz, Pierre-Eric; Mechawar, Naguib; Cote, Daniel C.

    2017-02-01

    Adverse childhood experiences have lasting detrimental effects on mental health and are strongly associated with impaired cognition and increased risk of developing psychopathologies. Preclinical and neuroimaging studies have suggested that traumatic events during brain development can affect cerebral myelination particularly in areas and tracts implicated in mood and emotion. Although current neuroimaging techniques are quite powerful, they lack the resolution to infer myelin integrity at the cellular level. Recently demonstrated coherent Raman microscopy has accomplished cellular level imaging of myelin sheaths in the nervous system. However, a quantitative morphometric analysis of nerve fibers still remains a challenge. In particular, in brain, where fibres exhibit small diameters and varying local orientation. In this work, we developed an automated myelin identification and analysis method that is capable of providing a complete picture of axonal myelination and morphology in brain samples. This method performs three main procedures 1) detects molecular anisotropy of membrane phospholipids based on polarization resolved coherent Raman microscopy, 2) identifies regions of different molecular organization, 3) calculates morphometric features of myelinated axons (e.g. myelin thickness, g-ratio). We applied this method to monitor white matter areas from suicides adults that suffered from early live adversity and depression compared to depressed suicides adults and psychiatrically healthy controls. We demonstrate that our method allows for the rapid acquisition and automated analysis of neuronal networks morphology and myelination. This is especially useful for clinical and comparative studies, and may greatly enhance the understanding of processes underlying the neurobiological and psychopathological consequences of child abuse.

  18. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  19. Assessment of Breast, Brain and Skin Pathological Tissue Using Full Field OCM

    NASA Astrophysics Data System (ADS)

    Dalimier, Eugénie; Assayag, Osnath; Harms, Fabrice; Boccara, A. Claude

    The aim of this chapter is to assess whether the images of the breast, brain, and skin tissue obtained by FFOCM contain sufficient detail to allow pathologists to make a diagnosis of cancer and other pathologies comparable to what was obtained by conventional histological techniques. More precisely, it is necessary to verify on FFOCM images if it is possible to differentiate a healthy area from a pathological area. The reader interested in other organs or in animal studies may find a large number of 2D or 3D images in the atlas [2].

  20. Military Intervention, Kemalism, and Politics in Turkey

    DTIC Science & Technology

    1991-05-01

    critical geopolitical space on the world scene. As a close American ally and member of NATO, it is emerging as an increasingly important economic...1961 in trie aftermath of the first military intervention, was a statement against the 1950’ s style of Turkish dominant - party government. it was a very...I Fonn Appmvd ITATION PAGE 0MB No. 070薌 I Mn P ~iwe.,ac~am I I~ s 1 mnwmq~n5 sg~I aq agadM1C%* sxmghm n nAD-A236 024 "𔄃 a oo ,0I iqst Waam1 OC~m 0

  1. Better Ceramics Through Chemistry IV. Materials Research Society Sumposium Proceedings. Volume 180

    DTIC Science & Technology

    1991-03-31

    GELS 117 L.F. Nazar, D.G. Napier, D. Lapham, and E. Epperson SMALL ANGLE X - RAY SCATTERING STUDIES Or POLYMERIC ZIRCONIUM SPECIES IN AQUEOUS SOLUTION...recently obtained the first X - ray crystallographic data on bismuth alkoxides, Bi(OR) 3 (R = C(CH3) 3 and C6 H4 (CH 3 )2 -2,6) [8]. These data showed that...d8, ppm): 12.5 (O2CMe), 9.6 (OCMe3). The complex was identified by X - ray crystallography. 1 crystallizes in space group P21/n with a = 13.149(2) A, b

  2. Better Ceramics Through Chemistry 4. Symposium Held in San Francisco, California on April 16 - 20, 1990. Volume 180

    DTIC Science & Technology

    1990-04-20

    metal alkoxide precursors. For example, we only recently obtained the first X - ray crystallographic data on bismuth alkoxides, Bi(OR)3 (R = C(CH 3)3...OCMe3)6(u.O2CMe)4(J14-O2CMe)2. Complex I was fully characterized by single crystal X - ray crystallography. The six copper atoms are linked by six...hydrolyzed samples of 3 revealed stacks of plate-like particles with sizes up to 20 x 50 microns (Figure 3). X - ray analysis of these plates showed

  3. Automated seeding-based nuclei segmentation in nonlinear optical microscopy.

    PubMed

    Medyukhina, Anna; Meyer, Tobias; Heuke, Sandro; Vogler, Nadine; Dietzek, Benjamin; Popp, Jürgen

    2013-10-01

    Nonlinear optical (NLO) microscopy based, e.g., on coherent anti-Stokes Raman scattering (CARS) or two-photon-excited fluorescence (TPEF) is a fast label-free imaging technique, with a great potential for biomedical applications. However, NLO microscopy as a diagnostic tool is still in its infancy; there is a lack of robust and durable nuclei segmentation methods capable of accurate image processing in cases of variable image contrast, nuclear density, and type of investigated tissue. Nonetheless, such algorithms specifically adapted to NLO microscopy present one prerequisite for the technology to be routinely used, e.g., in pathology or intraoperatively for surgical guidance. In this paper, we compare the applicability of different seeding and boundary detection methods to NLO microscopic images in order to develop an optimal seeding-based approach capable of accurate segmentation of both TPEF and CARS images. Among different methods, the Laplacian of Gaussian filter showed the best accuracy for the seeding of the image, while a modified seeded watershed segmentation was the most accurate in the task of boundary detection. The resulting combination of these methods followed by the verification of the detected nuclei performs high average sensitivity and specificity when applied to various types of NLO microscopy images.

  4. Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets

    NASA Astrophysics Data System (ADS)

    Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmäng, Agneta; Sandberg, Ann-Sofie; Enejder, Annika

    2010-11-01

    Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.

  5. Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets.

    PubMed

    Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmaang, Agneta; Sandberg, Ann-Sofie; Enejder, Annika

    2010-01-01

    Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.

  6. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  7. Plasmonic antennas as design elements for coherent ultrafast nanophotonics.

    PubMed

    Brinks, Daan; Castro-Lopez, Marta; Hildner, Richard; van Hulst, Niek F

    2013-11-12

    Broadband excitation of plasmons allows control of light-matter interaction with nanometric precision at femtosecond timescales. Research in the field has spiked in the past decade in an effort to turn ultrafast plasmonics into a diagnostic, microscopy, computational, and engineering tool for this novel nanometric-femtosecond regime. Despite great developments, this goal has yet to materialize. Previous work failed to provide the ability to engineer and control the ultrafast response of a plasmonic system at will, needed to fully realize the potential of ultrafast nanophotonics in physical, biological, and chemical applications. Here, we perform systematic measurements of the coherent response of plasmonic nanoantennas at femtosecond timescales and use them as building blocks in ultrafast plasmonic structures. We determine the coherent response of individual nanoantennas to femtosecond excitation. By mixing localized resonances of characterized antennas, we design coupled plasmonic structures to achieve well-defined ultrafast and phase-stable field dynamics in a predetermined nanoscale hotspot. We present two examples of the application of such structures: control of the spectral amplitude and phase of a pulse in the near field, and ultrafast switching of mutually coherent hotspots. This simple, reproducible and scalable approach transforms ultrafast plasmonics into a straightforward tool for use in fields as diverse as room temperature quantum optics, nanoscale solid-state physics, and quantum biology.

  8. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  9. {l_angle}110{r_angle} dendrite growth in aluminum feathery grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, S.; Rappaz, M.; Jarry, P.

    1998-11-01

    Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of {l_angle}110{r_angle} primary dendrite trunks (e.g., [011{bar 1}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 {micro}m) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). Themore » [011{bar 1}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)--a feature probably resulting from a growth competition mechanism similar to that occurring during normal <100> columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along {l_angle}110{r_angle} directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that {l_angle}110{r_angle} branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [{bar 2}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal <100> to a {l_angle}110{r_angle} surface tension/attachment kinetics anisotropy growth mode. Finally, the proposed mechanisms of leathery grain growth are further supported by the observation of {l_angle}110{r_angle} dendrite growth morphologies in thin aluminum-zinc coatings.« less

  10. Multiscale optical imaging of rare-earth-doped nanocomposites in a small animal model

    NASA Astrophysics Data System (ADS)

    Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Zhao, Xinyu; Sheng, Yang; Tan, Mei-Chee; Roth, Charles M.; Riman, Richard E.; Moghe, Prabhas V.; Pierce, Mark C.

    2018-03-01

    Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer. Short-wave infrared emissions were detected in vivo and in whole organ imaging ex vivo. Visible upconversion emissions and tissue autofluorescence were imaged in biopsy specimens, alongside optical coherence tomography imaging of tissue microstructure. We anticipate that this work will provide guidance for researchers seeking to image these nanomaterials across a wide range of biological models.

  11. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.

    PubMed

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-12-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  12. Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs

    We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.

  13. Nondestructive monitoring of the repair of natural occlusal lesions using cross polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2012-01-01

    Previous remineralization studies employing cross polarization sensitive optical coherence tomography (CP-OCT), have been limited to the repair of artificial enamel-like lesions. In this study we attempted to remineralize existing occlusal lesions on extracted teeth. Lesions were imaged before and after exposure to an acidic remineralization regimen and the integrated reflectivity and lesion depth was calculated. Automated integration routines worked well for assessing the integrated reflectivity for the lesion areas after remineralization. Polarized light microscopy was also used to examine the lesions areas after sectioning the teeth. An acidic remineralization solution was used to remineralize the lesions. The integrated reflectivity significantly increased after exposure to the remineralization solution which suggests that the acidic solution caused additional demineralization as opposed to the desired remineralization.

  14. Assessing embryo development using swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.

    2018-03-01

    A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.

  15. Performance evaluation of Bragg coherent diffraction imaging

    DOE PAGES

    Ozturk, Hande; Huang, X.; Yan, H.; ...

    2017-10-03

    In this study, we present a numerical framework for modeling three-dimensional (3D) diffraction data in Bragg coherent diffraction imaging (Bragg CDI) experiments and evaluating the quality of obtained 3D complex-valued real-space images recovered by reconstruction algorithms under controlled conditions. The approach is used to systematically explore the performance and the detection limit of this phase-retrieval-based microscopy tool. The numerical investigation suggests that the superb performance of Bragg CDI is achieved with an oversampling ratio above 30 and a detection dynamic range above 6 orders. The observed performance degradation subject to the data binning processes is also studied. Furthermore, this numericalmore » tool can be used to optimize experimental parameters and has the potential to significantly improve the throughput of Bragg CDI method.« less

  16. Optical coherence tomography in dermatology

    NASA Astrophysics Data System (ADS)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  17. Diffraction data of core-shell nanoparticles from an X-ray free electron laser

    DOE PAGES

    Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less

  18. Nanoscale self-templating for oxide epitaxy with large symmetry mismatch

    DOE PAGES

    Gao, Xiang; Lee, Shinbuhm; Nichols, John A.; ...

    2016-12-02

    Direct observations using scanning transmission electron microscopy unveil an intriguing interfacial bi-layer that enables epitaxial growth of a strain-free, monoclinic, bronze-phase VO 2(B) thin film on a perovskite SrTiO 3 (STO) substrate. For this study, we observe an ultrathin (2–3 unit cells) interlayer best described as highly strained VO 2(B) nanodomains combined with an extra (Ti,V)O 2 layer on the TiO 2 terminated STO (001) surface. By forming a fully coherent interface with the STO substrate and a semi-coherent interface with the strain-free epitaxial VO 2(B) film above, the interfacial bi-layer enables the epitaxial connection of the two materials despitemore » their large symmetry and lattice mismatch.« less

  19. PREFACE: Ultrafast biophotonics Ultrafast biophotonics

    NASA Astrophysics Data System (ADS)

    Gu, Min; Reid, Derryck; Ben-Yakar, Adela

    2010-08-01

    The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and reduced chromatic aberration effects. These extensive advantages have led to further exploration of nonlinear processes including second-harmonic generation (SHG) microscopy and third-harmonic generation (THG) microscopy. Second-harmonic generation has provided biologists with an extremely powerful tool for generating contrast in biological imaging, with the additional benefit of non-invasive three-dimensional imaging. The recent popularity of THG microscopy is largely due to the fact that three-dimensional imaging is achievable without the need for any labels, but rather relying on the intrinsic properties of the biological specimen itself. This optical nonlinear technique has attracted much attention recently from the biological community due to its non-invasive capabilities. Users of ultrafast lasers in the biological and medical fields are becoming a fast-growing community, employing pulse-shaping microscopy, resolution-enhancing microscopy techniques, linear and nonlinear micro-spectroscopy, functional deep-tissue imaging, optical coherence tomography, nonlinear fluorescence microscopy, molecular imaging and control, harmonic microscopy and femtosecond lifetime imaging, for cutting-edge research concerning the interaction of light with biological dynamics. The adaptability of ultrafast lasers to interact with a large array of materials through nonlinear excitation has enabled precise control of laser fluence allowing for highly localized material interactions, permitting micro-structured fabricated surfaces. The resultant multi-dimensional fabricated micro-structures are capable of replicating and/or manipulating microenvironments for controlled cell biology. In this special issue of Journal of Optics readers have a chance to view a collection of new contributions to the growing research field of ultrafast biophotonics. They are presented with recent advances in ultrafast technology applied to biological and medical investigations, where topics include advances in the visualization and identification of photo-reaction dynamics of biological functions under relevant physiological conditions, theoretically proposed imaging designs for obtaining super-resolved optical sectioned images in single exposures and fabricated micro-structured surfaces for biological micro-environments. We hope the collection will stimulate innovative new research in this growing field by showcasing new techniques for the visualization and manipulation of complex biological systems using linear and and nonlinear optical processes. Professor Min Gu would like to acknowledge Dr Betty Kouskousis for her contribution and support towards this editorial.

  20. Correlative Microscopy of Vitreous Sections Provides Insights into BAR-Domain Organization In Situ.

    PubMed

    Bharat, Tanmay A M; Hoffmann, Patrick C; Kukulski, Wanda

    2018-04-10

    Electron microscopy imaging of macromolecular complexes in their native cellular context is limited by the inherent difficulty to acquire high-resolution tomographic data from thick cells and to specifically identify elusive structures within crowded cellular environments. Here, we combined cryo-fluorescence microscopy with electron cryo-tomography of vitreous sections into a coherent correlative microscopy workflow, ideal for detection and structural analysis of elusive protein assemblies in situ. We used this workflow to address an open question on BAR-domain coating of yeast plasma membrane compartments known as eisosomes. BAR domains can sense or induce membrane curvature, and form scaffold-like membrane coats in vitro. Our results demonstrate that in cells, the BAR protein Pil1 localizes to eisosomes of varying membrane curvature. Sub-tomogram analysis revealed a dense protein coat on curved eisosomes, which was not present on shallow eisosomes, indicating that while BAR domains can assemble at shallow membranes in vivo, scaffold formation is tightly coupled to curvature generation. Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Ltd.. All rights reserved.

  1. Simulated microsurgery monitoring using intraoperative multimodal surgical microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong

    2016-03-01

    We have developed an intraoperative multimodal surgical microscopy system that provides simultaneous real-time enlarged surface views and subsurface anatomic information during surgeries by integrating spectral domain optical coherence tomography (SD-OCT), optical-resolution photoacoustic microscopy (OR-PAM), and conventional surgical microscopy. By sharing the same optical path, both OCT and PAM images were simultaneously acquired. Additionally, the custom-made needle-type transducer received the generated PA signals enabling convenient surgical operation without using a water bath. Using a simple augmented device, the OCT and PAM images were projected on the view plane of the surgical microscope. To quantify the performance of our system, we measured spatial resolutions of our system. Then, three microsurgery simulation and analysis were processed: (1) ex vivo needle tracking and monitoring injection of carbon particles in biological tissues, (2) in vivo needle tracking and monitoring injection of carbon particles in tumor-bearing mice, and (3) in vivo guiding of melanoma removal in melanoma-bearing mice. The results indicate that this triple modal system is useful for intraoperative purposes, and can potentially be a vital tool in microsurgeries.

  2. New histopathologic and ultrastructural findings in Reis-Bücklers corneal dystrophy caused by the Arg124Leu mutation of TGFBI gene.

    PubMed

    Qiu, Wen-Ya; Zheng, Li-Bin; Pan, Fei; Wang, Bei-Bei; Yao, Yu-Feng

    2016-09-02

    Reis-Bücklers corneal dystrophy (RBCD) was consistently reported as a corneal dystrophy only affected Bowman's layer and superficial corneal stroma, and superficial keratectomy was a recommendation surgery for treatment in literatures. The study reported new histopathological and ultrastructural findings in RBCD caused by the Arg124Leu mutation of transforming growth factor induced (TGFBI) gene in a four-generation Chinese pedigree. Subjects including eight patients and seven unaffected family members received slit-lamp biomicroscopy and photography. DNA was obtained from all subjects, and exons 4 and 11 to 14 of TGFBI gene were analyzed by polymerase chain reaction and the products were sequenced. Anterior segment optical coherence tomography (AS OCT) and in vivo confocal microscopy were conducted for ten eyes of five patients. Based on the results of AS OCT and in vivo confocal microscopy, deep anterior lamellar keratoplasty (DLKP) using cryopreserved donor cornea was applied for four eyes of four patients. Four lamellar dystrophic corneal buttons were studied by light and transmission electron microscopy, and TGFBI immunohistochemistry. Eight patients had typical clinical manifestations of RBCD presenting recurrent painful corneal erosion starting in their early first decades, along with age-dependent progressive geographic corneal opacities. TGFBI sequencing revealed a heterozygous mutation, Arg124Leu in all eight patients. Anterior segment optical coherence tomography and in vivo confocal microscopy showed the dystrophic deposits involved not only in subepithelial and superficial stroma, but also in mid- or posterior stroma in four examined advanced eyes. Light microscopy showed Bowman's layer was absent, replaced by abnormal deposits stain bright red with Masson's trichrome. In superficial cornea, the deposits stacked and produced three to five continuous bands parallel to the corneal collagen lamellae. In mid- to posterior stroma, numerous granular or dot- like aggregates were heavily scattered, and most of them presented around the nuclei of stromal keratocytes. Transmission electron microscopy revealed the multiple electron-dense rod-shaped deposits aggregated and formed a characteristic pattern of three to five continuous bands in superficial cornea, which were similar to those seen under light microscopy. In mid- to posterior stroma, clusters of rod-shaped bodies were scattered extracellular or intracellular of the stromal keratocytes between the stromal lamellae suggesting the close relationship between mutated proteins and keratocyte. The study offer evidences indicating DLKP is a viable treatment option for advanced RBCD to avoid recurrence, and the mutated TGFBIp in dystrophic corneas are of keratocytes origin.

  3. The growth mechanism of grain boundary carbide in Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang

    2013-07-15

    The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less

  4. Imaging the coexistence of superconductivity and antiferromagnetism in Fe1+yTe1-xSex (x=0.1) using spin-polarized scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Aluru, Ramakrishna; Tsurkan, Vladimir; Loidl, Alois; Deisenhofer, Joachim; Wahl, Peter

    Magnetism has been widely thought to play an important role in unconventional superconductivity. In iron chalcogenide Fe1+yTe, the bicollinear antiferromagnetim (AFM) can be suppressed by Se doping, and consequently superconductivity appears. Though a competition between the two orders is expected, their relation has never been shown in details. Here, using spin-polarized scanning tunneling microscopy, we explore their relation at the atomic scale in an Fe1+yTe1-xSex (x=0.1) single crystal with TC = 10 K, in a regime of the phase diagram where a spin-glass phase has been detected. We clearly observe the short-range AFM order with domains of a lateral size of 10 nm embedded in a non-magnetic matrix. In addition we observe a superconducting gap with prominent coherent peaks in differential conductance spectroscopy with a gap size 2 Δ 4 mV. Surprisingly, no correlation between the superconducting properties (gap size and zero bias conductance) and the local AFM order is observed, while the coherence peaks are weakened by the existence of excess iron atoms. Our observations put constraints on theories that are aimed at explaining the relation between magnetism and unconventional superconductivity.

  5. Fiber-reinforced composite analysis using optical coherence tomography after mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Kyotoku, B. B. C.; Braz, A. K. S.; Braz, R.; Gomes, A. S. L.

    2007-02-01

    Fiber-reinforced composites are new materials which have been used for a variety of dental applications, including tooth splinting, replacement of missing teeth, treatment of dental emergencies, reinforcement of resin provisional fixed prosthodontic restorations, orthodontic retention, and other clinical applications. Different fiber types are available, but little clinical information has been disseminated. The traditional microscopy investigation, most commonly used to study this material, is a destructive technique, which requires specimen sectioning and are essentially surface measurements. On the basis of these considerations, the aim of this research is to analyze the interior of a dental sample reinforced with fiber after a mechanical and thermal cycling to emulate oral conditions using optical coherence tomography (OCT). The device we are using is a home built Fourier domain OCT working at 800 nm with 6 μm resolution. The results are compared with microscopy images to validate OCT as a working method. In long term, fractures allow bacterial invasion provoking plaque and calculus formation that can cause caries and periodontal disease. Therefore, non invasive imaging of the bridge fiber enables the possibility of periodic clinical evaluation to ensure the patient health. Furthermore, OCT images can provide a powerful method for quantitative analysis of crack propagation, and can potentially be used for in vivo assessment.

  6. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel R.; Gibson, Emily A.

    2014-11-01

    Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated.

  7. Coherent anti-Stokes Raman scattering microscope with a high-signal-to-noise ratio, high stability, and high-speed imaging for live cell observation

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi; Takimoto, Shinichi; Hashimoto, Takeshi

    2007-02-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy, which can produce images of specific molecules without staining, has attracted the attention of researchers, as it matches the need for molecular imaging and pathway analysis of live cells. In particular, there have been an increasing number of CARS experimental results regarding lipids in live cells, which cannot be fluorescently tagged while keeping the cells alive. One of the important applications of lipid research is for the metabolic syndrome. Since the metabolic syndrome is said to be related to the lipids in lipocytes, blood, arterial vessels, and so on, the CARS technique is expected to find application in this field. However, CARS microscopy requires a pair of picosecond laser pulses, which overlap both temporally and spatially. This makes the optical adjustments of a CARS microscope challenging. The authors developed a CARS unit that includes optics for easy and stable adjustment of the overlap of these laser pulses. Adding the CARS unit to a laser scanning microscope provides CARS images of a high signal-to-noise ratio, with an acquisition rate as high as 2 microseconds per pixel. Thus, images of fast-moving lipid droplets in Hela cells were obtained.

  8. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.

  9. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  10. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Braz, Ana K. S.; Araujo, Renato E. de; Ohulchanskyy, Tymish Y.; Shukla, Shoba; Bergey, Earl J.; Gomes, Anderson S. L.; Prasad, Paras N.

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  11. Kinetic mechanism of V-shaped twinning in 3C/4H-SiC heteroepitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Bin; Zhang, Yu-Ming; Jia, Ren-Xu, E-mail: rxjia@mail.xidian.edu.cn

    The authors investigated the kinetic mechanism of V-shaped twinning in 3C/4H-SiC heteroepitaxy. A fourfold V-shaped twinning complex was found, and its interface was measured with high-resolution transmission electron microscopy (HRTEM). Two linear coherent boundaries and a nonlinear incoherent boundary (also called the double-position boundary) were observed. On the basis of the HRTEM results, the authors proposed an adatom migration growth model, in which the activation barrier at the coherent boundary is much lower than that at the incoherent boundary. From a kinetic perspective, adatoms are prone to migrate to the side of the boundary with the lower potential energy ifmore » they have sufficient thermal energy to overcome the activation barrier. In the case of a coherent boundary, the growth rates of the domains either side of the boundary can be balanced through the intermigration of adatoms, leading to a linear boundary. Conversely, it is difficult for adatoms to migrate across an incoherent boundary, which results in asynchronous growth rates and a nonlinear boundary.« less

  12. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887

  13. The multidimensional burden of informal caregivers in primary malignant brain tumor.

    PubMed

    Bayen, Eléonore; Laigle-Donadey, Florence; Prouté, Myrtille; Hoang-Xuan, Khê; Joël, Marie-Eve; Delattre, Jean-Yves

    2017-01-01

    Informal caregivers (ICs) provide care and improve the quality of life of patients with malignant brain tumor. We analyze the impact of their involvement on themselves from a triple perspective. Home-dwelling patients with primary malignant brain tumor underwent a medical examination. ICs burden was evaluated by a self-administered postal questionnaire. Objective burden (Informal Care Time, ICT), subjective burden (Zarit Burden Inventory, ZBI), and financial burden (valuation of lost earnings using the Replacement and Opportunity Cost Methods, RCM, OCM) were evaluated. ICs (N = 84) were principally women (87 %) and spouses (64 %), of mean age 55 years, who assisted patients of mean age 53 years and with a mean KPS score of 61 (range = 30-90, med = 60). Subjective burden was moderate (mean ZBI = 30). Objective burden was high (mean ICT = 11.7 h/day), mostly consisting of supervision time. Higher subjective and objective burden were associated with poorer functional status (KPS) but not with a higher level of cognitive disorders in multivariate analyses. Other independent associated factors were bladder dysfunction and co-residency for objective burden and working and a poor social network for subjective burden. The 56 working ICs made work arrangements (75 %) that impacted their wages (36 %) and careers (30 %). Financial burden due to uncompensated caregiving hours for Activities of Daily Living had a mean monetary value from Є677(RCM) to Є1683(OCM) per month (i.e., ranging from Є8124 to Є20196 per year). IC burden is multidimensional. Greater provision of formal care, more IC support programs, and economic interventions targeting IC employment and finances are needed.

  14. Sea Level Rise Decision Support Tools for Adaptation Planning in Vulnerable Coastal Communities

    NASA Astrophysics Data System (ADS)

    Rozum, J. S.; Marcy, D.

    2015-12-01

    NOAA is involved in a myriad of climate related research and projects that help decision makers and the public understand climate science as well as climate change impacts. The NOAA Office for Coastal Management (OCM) provides data, tools, trainings and technical assistance to coastal resource managers. Beginning in 2011, NOAA OCM began developing a sea level rise and coastal flooding impacts viewer which provides nationally consistent data sets and analyses to help communities with coastal management goals such as: understanding and communicating coastal flood hazards, performing vulnerability assessments and increasing coastal resilience, and prioritizing actions for different inundation/flooding scenarios. The Viewer is available on NOAA's Digital Coast platform: (coast.noaa.gov/ditgitalcoast/tools/slr). In this presentation we will share the lessons learned from our work with coastal decision-makers on the role of coastal flood risk data and tools in helping to shape future land use decisions and policies. We will also focus on a recent effort in California to help users understand the similarities and differences of a growing array of sea level rise decision support tools. NOAA staff and other partners convened a workshop entitled, "Lifting the Fog: Bringing Clarity to Sea Level Rise and Shoreline Change Models and Tools," which was attended by tool develops, science translators and coastal managers with the goal to create a collaborative communication framework to help California coastal decision-makers navigate the range of available sea level rise planning tools, and to inform tool developers of future planning needs. A sea level rise tools comparison matrix will be demonstrated. This matrix was developed as part of this effort and has been expanded to many other states via a partnership with NOAA, Climate Central, and The Nature Conservancy.

  15. Normal appendiceal diameter in children: does choice of CT oral contrast (VoLumen versus Gastrografin) make a difference?

    PubMed

    Victoria, Teresa; Mahboubi, Soroosh

    2010-09-01

    Appendicitis is a common pediatric emergency and one of the most common causes for surgical exploration in the pediatric patient. Imaging has become an essential tool in the evaluation of the child with suspected appendicitis, aiming to avoid misdiagnosis and to facilitate early surgery, thus decreasing potential morbidity from ruptured appendicitis. The objective of this paper is to compare the luminal diameter of the normal appendix by computed tomography (CT) when utilizing the traditionally used high-attenuation oral contrast material (OCM), Gastrografin, and the relatively new neutral agent VoLumen, with the goal of establishing normal appendiceal size parameters for this neutral OCM. Twenty-six cases of VoLumen-enhanced CT studies of the abdomen and pelvis were identified, of which 13 met the inclusion criteria. These were randomly matched to age control Gastrografin CT examinations. Appendiceal diameters (from wall to wall) were measured in three orthogonal planes and the average of these was recorded. We show that there is no statistical difference between normal appendiceal diameters in patients with a VoLumen-opacified CT versus a Gastrografin-enhanced CT (p = 0.8) being 5.0 +/- 1.3 and 5.1 +/- 1.5 mm, respectively. Chart review revealed no clinical suspicion of appendicitis prior to imaging or on discharge diagnosis in the patients included in this study. The rate of nonvisualization of the appendix with VoLumen in our study was 31%, which equals previously published estimates in children. In summary, as VoLumen use increases in the evaluation of abdominal pathology in the ailing child, we provide guidelines to identify the normal appendix when utilizing this oral contrast agent.

  16. Detection of rip current using camera monitoring techniques

    NASA Astrophysics Data System (ADS)

    Kim, T.

    2016-02-01

    Rip currents are approximately shore normal seaward flows which are strong, localized and rather narrow. They are known that stacked water by longshore currents suddenly flow back out to sea as rip currents. They are transient phenomena and their generation time and location are unpredictable. They are also doing significant roles for offshore sediment transport and beach erosion. Rip currents can be very hazardous to swimmers or floaters because of their strong seaward flows and sudden depth changes by narrow and strong flows. Because of its importance in terms of safety, shoreline evolution and pollutant transport, a number of studies have been attempted to find out their mechanisms. However, understanding of rip currents is still not enough to make warning to people in the water by predicting their location and time. This paper investigates the development of rip currents using camera images. Since rip currents are developed by longshore currents, the observed longshore current variations in space and time can be used to detect rip current generation. Most of the time convergence of two longshore currents in the opposite direction is the outbreak of rip current. In order to observe longshore currents, an optical current meter(OCM) technique proposed by Chickadel et al.(2003) is used. The relationship between rip current generation time and longshore current velocity variation observed by OCM is analyzed from the images taken on the shore. The direct measurement of rip current velocity is also tested using image analysis techniques. Quantitative estimation of rip current strength is also conducted by using average and variance image of rip current area. These efforts will contribute to reduce the hazards of swimmers by prediction and warning of rip current generation.

  17. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences

  18. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  19. Measurement of ciliary beat frequency using Doppler optical coherence tomography.

    PubMed

    Lemieux, Bryan T; Chen, Jason J; Jing, Joseph; Chen, Zhongping; Wong, Brian J F

    2015-11-01

    Measuring ciliary beat frequency (CBF) is a technical challenge and difficult to perform in vivo. Doppler optical coherence tomography (D-OCT) is a mesoscopic noncontact imaging modality that provides high-resolution tomographic images and detects micromotion simultaneously in living tissues. In this work we used D-OCT to measure CBF in ex vivo tissue as the first step toward translating this technology to clinical use. Fresh ex vivo samples of rabbit tracheal mucosa were imaged using both D-OCT and phase-contrast microscopy (n = 5). The D-OCT system was designed and built to specification in our lab (1310-nm swept source vertical-cavity surface-emitting laser [VCSEL], 6-μm axial resolution). The samples were placed in culture and incubated at 37°C. A fast Fourier transform was performed on the D-OCT signal recorded on the surface of the samples to gauge CBF. High-speed digital video of the epithelium recorded via phase-contrast microscopy was analyzed to confirm the CBF measurements. The D-OCT system detected Doppler signal at the epithelial layer of ex vivo rabbit tracheal samples suggestive of ciliary motion. CBF was measured at 9.36 ± 1.22 Hz using D-OCT and 9.08 ± 0.48 Hz using phase-contrast microscopy. No significant differences were found between the 2 methods (p > 0.05). D-OCT allows for the quantitative measurement of CBF without the need to resolve individual cilia. Furthermore, D-OCT technology can be incorporated into endoscopic platforms that allow clinicians to readily measure CBF in the office and provide a direct measurement of mucosal health. © 2015 ARS-AAOA, LLC.

  20. Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes.

    PubMed

    Choi, Dae Sik; Rao, B Jayachander; Kim, Doyeon; Shim, Sang-Hee; Rhee, Hanju; Cho, Minhaeng

    2018-06-14

    Coherent Raman scattering spectroscopy and microscopy are useful methods for studying the chemical and biological structures of molecules with Raman-active modes. In particular, coherent anti-Stokes Raman scattering (CARS) microscopy, which is a label-free method capable of imaging structures by displaying the vibrational contrast of the molecules, has been widely used. However, the lack of a technique for switching-off the CARS signal has prevented the development of the super-resolution Raman imaging method. Here, we demonstrate that a selective suppression of the CARS signal is possible by using a three-beam double stimulated Raman scattering (SRS) scheme; the three beams are the pump, Stokes, and depletion lights in order of frequency. Both pump-Stokes and pump-depletion beam pairs can generate SRS processes by tuning their beat frequencies to match two different vibrational modes, then two CARS signals induced by pump-Stokes-pump and pump-depletion-pump interactions can be generated, where the two CARS signals are coupled with each other because they both involve interactions with the common pump beam. Herein, we show that as the intensity of the depletion beam is increased, one can selectively suppress the pump-Stokes-pump CARS signal because the pump-depletion SRS depletes the pump photons. A detailed theoretical description of the coupled differential equations for the three incident fields and the generated CARS signal fields is presented. Taking benzene as a molecular system, we obtained a maximum CARS suppression efficiency of about 97% with our experimental scheme, where the ring breathing mode of the benzene is associated with pump-Stokes-pump CARS, while the C-H stretching mode is associated with the competing pump-depletion SRS process. We anticipate that this selective switching-off scheme will be of use in developing super-resolution label-free CARS microscopy.

  1. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography

    PubMed Central

    Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.

    2016-01-01

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography. PMID:26832279

  2. Computational high-resolution optical imaging of the living human retina

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.

    2015-07-01

    High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.

  3. Suzuki segregation in a binary Cu-Si alloy.

    PubMed

    Mendis, Budhika G; Jones, Ian P; Smallman, Raymond E

    2004-01-01

    Suzuki segregation to stacking faults and coherent twin boundaries has been investigated in a Cu-7.15 at.% Si alloy, heat-treated at temperatures of 275, 400 and 550 degrees C, using field-emission gun transmission electron microscopy. Silicon enrichment was observed at the stacking fault plane and decreased monotonically with increasing annealing temperature. This increase in the concentration of solute at the fault is due to the stacking fault energy being lowered at higher values of the electron-to-atom ratio of the alloy. From a McLean isotherm, the binding energy for segregation was calculated to be -0.021 +/- 0.019 eV atom(-1). Hardly any segregation was observed to coherent twin boundaries in the same alloy. This is because a twin has a lower interfacial energy than a stacking fault, so that the driving force for segregation is diminished.

  4. Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.

    2017-04-01

    Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.

  5. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  6. High-resolution imaging of the central nervous system: how novel imaging methods combined with navigation strategies will advance patient care.

    PubMed

    Farooq, Hamza; Genis, Helen; Alarcon, Joseph; Vuong, Barry; Jivraj, Jamil; Yang, Victor X D; Cohen-Adad, Julien; Fehlings, Michael G; Cadotte, David W

    2015-01-01

    This narrative review captures a subset of recent advances in imaging of the central nervous system. First, we focus on improvements in the spatial and temporal profile afforded by optical coherence tomography, fluorescence-guided surgery, and Coherent Anti-Stokes Raman Scattering Microscopy. Next, we highlight advances in the generation and uses of imaging-based atlases and discuss how this will be applied to specific clinical situations. To conclude, we discuss how these and other imaging tools will be combined with neuronavigation techniques to guide surgeons in the operating room. Collectively, this work aims to highlight emerging biomedical imaging strategies that hold potential to be a valuable tool for both clinicians and researchers in the years to come. © 2015 Elsevier B.V. All rights reserved.

  7. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells.

    PubMed

    Hofemeier, Arne D; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F W; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-26

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO4(3-) symmetric stretch vibrations at 959 cm(-1) assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  8. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    NASA Astrophysics Data System (ADS)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43- symmetric stretch vibrations at 959 cm-1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  9. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    PubMed Central

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-01-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43− symmetric stretch vibrations at 959 cm−1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis. PMID:27225821

  10. An approach to the implementation of ISO 14000 at a shipping company

    NASA Astrophysics Data System (ADS)

    Panaitescu, F. V.; Panaitescu, M.

    2015-11-01

    We present here a successful implementation of the Environmental Management System (EMS) in a shipping company. The EMS of the each company must be revised and expanded and new analytical requirements included in it. This new EMS concept is available to everyone on board and must be studied by every seafarer. All environmental requirements to be strictly followed all over the world. The main points of new EMS are: new open reporting system, environmental tag system (ETS) which introduce non re-usable numbered seals, pollution prevention equipment (OWS, OCM, Incinerator and Sewage Treatment Plant), the environmental defect reports system - extraordinary E/R operations and leakages log book.

  11. Coherent assembly of heterostructures in ternary and quaternary carbonitrides

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Aperador, W.; Saldarriaga, W.

    2018-05-01

    In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).

  12. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    NASA Astrophysics Data System (ADS)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  13. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoliang Sunney

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less

  14. Recent progress in tissue optical clearing for spectroscopic application

    NASA Astrophysics Data System (ADS)

    Sdobnov, A. Yu.; Darvin, M. E.; Genina, E. A.; Bashkatov, A. N.; Lademann, J.; Tuchin, V. V.

    2018-05-01

    This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc. Structural images of different skin layers obtained ex vivo for porcine ear skin samples at application of Omnipaque™ and glycerol solutions during 60 min. Red color corresponds to TPEAF signal channel. Green color corresponds to SHG signal channel.

  15. An integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique for liver disease diagnosis

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei

    2012-03-01

    Liver steatosis and fibrosis are two prevalence liver diseases and may eventually develop into hepatocellular carcinoma (HCC) Due to their prevalence and severity, much work has been done to develop efficient diagnostic methods and therapies. Nonlinear optical microscopy has high sensitivity and chemical specificity for major biochemical compounds, making it a powerful tool for tissue imaging without staining. In this study, three nonlinear microscopy imaging modalities are applied to the study of liver diseases in a bile duct ligation rat modal. CARS shows the distributions of fats or lipids quantitatively across the tissue; SHG visualizes the collagens; and TPEF reveals the morphology of hepatic cells. The results clearly show the development of liver steatosis and fibrosis with time, and the hepatic fat and collagen fibrils are quantified. This study demonstrates the ability of multimodal nonlinear optical microscopy for liver disease diagnosis, and may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.

  16. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing.

    PubMed

    Baumgartl, Martin; Gottschall, Thomas; Abreu-Afonso, Javier; Díez, Antonio; Meyer, Tobias; Dietzek, Benjamin; Rothhardt, Manfred; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2012-09-10

    An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope images of biological tissue are presented probing the CH-stretching resonance of lipids at an anti-Stokes Raman-shift of 2845 cm(-1) and second-harmonic generation of collagen. Due to its simplicity, compactness, maintenance-free operation, and ease-of-use the presented low-cost laser is an ideal source for bio-medical applications outside laser laboratories and in particular inside clinics.

  17. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    PubMed

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  18. 4D imaging of transient structures and morphologies in ultrafast electron microscopy.

    PubMed

    Barwick, Brett; Park, Hyun Soon; Kwon, Oh-Hoon; Baskin, J Spencer; Zewail, Ahmed H

    2008-11-21

    With advances in spatial resolution reaching the atomic scale, two-dimensional (2D) and 3D imaging in electron microscopy has become an essential methodology in various fields of study. Here, we report 4D imaging, with in situ spatiotemporal resolutions, in ultrafast electron microscopy (UEM). The ability to capture selected-area-image dynamics with pixel resolution and to control the time separation between pulses for temporal cooling of the specimen made possible studies of fleeting structures and morphologies. We demonstrate the potential for applications with two examples, gold and graphite. For gold, after thermally induced stress, we determined the atomic structural expansion, the nonthermal lattice temperature, and the ultrafast transients of warping/bulging. In contrast, in graphite, striking coherent transients of the structure were observed in both image and diffraction, directly measuring, on the nanoscale, the longitudinal resonance period governed by Young's elastic modulus. The success of these studies demonstrates the promise of UEM in real-space imaging of dynamics.

  19. Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch

    NASA Astrophysics Data System (ADS)

    Kaldewey, Timo; Kuhlmann, Andreas V.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.; Warburton, Richard J.

    2018-02-01

    The diffraction limit prevents a conventional optical microscope from imaging at the nanoscale. However, nanoscale imaging of molecules is possible by exploiting an intensity-dependent molecular switch1-3. This switch is translated into a microscopy scheme, stimulated emission depletion microscopy4-7. Variants on this scheme exist3,8-13, yet all exploit an incoherent response to the lasers. We present a scheme that relies on a coherent response to a laser. Quantum control of a two-level system proceeds via rapid adiabatic passage, an ideal molecular switch. We implement this scheme on an ensemble of quantum dots. Each quantum dot results in a bright spot in the image with extent down to 30 nm (λ/31). There is no significant loss of intensity with respect to confocal microscopy, resulting in a factor of 10 improvement in emitter position determination. The experiments establish rapid adiabatic passage as a versatile tool in the super-resolution toolbox.

  20. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

Top